31#define DEBUG_TYPE "iv-descriptors"
35 for (
const Use &
Use :
I->operands())
79 if (!Phi->hasOneUse())
82 const APInt *M =
nullptr;
88 int32_t Bits = (*M + 1).exactLogBase2();
105 bool IsSigned =
false;
107 uint64_t MaxBitWidth =
DL.getTypeSizeInBits(Exit->getType());
115 auto Mask = DB->getDemandedBits(Exit);
116 MaxBitWidth = Mask.getBitWidth() - Mask.countl_zero();
119 if (MaxBitWidth ==
DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
124 auto NumTypeBits =
DL.getTypeSizeInBits(Exit->getType());
125 MaxBitWidth = NumTypeBits - NumSignBits;
127 if (!Bits.isNonNegative()) {
139 return std::make_pair(
Type::getIntNTy(Exit->getContext(), MaxBitWidth),
148 Type *RecurrenceType,
150 unsigned &MinWidthCastToRecurTy) {
155 MinWidthCastToRecurTy = -1U;
157 while (!Worklist.
empty()) {
161 if (Cast->getSrcTy() == RecurrenceType) {
168 if (Cast->getDestTy() == RecurrenceType) {
173 MinWidthCastToRecurTy = std::min<unsigned>(
174 MinWidthCastToRecurTy, Cast->getSrcTy()->getScalarSizeInBits());
203 if (Exit != ExactFPMathInst || Exit->hasNUsesOrMore(3))
208 auto *Op0 = Exit->getOperand(0);
209 auto *Op1 = Exit->getOperand(1);
215 LLVM_DEBUG(
dbgs() <<
"LV: Found an ordered reduction: Phi: " << *Phi
216 <<
", ExitInst: " << *Exit <<
"\n");
230 assert(Phi->getNumIncomingValues() == 2 &&
"phi must have 2 incoming values");
231 Value *Inc = Phi->getIncomingValueForBlock(Latch);
232 if (Phi->hasOneUse() || !Inc->
hasOneUse() ||
237 bool IsMinMax = [&]() {
254 if (
A ==
B || (
A != Phi &&
B != Phi))
262 false,
false, CastInsts,
271 if (Phi->getNumIncomingValues() != 2)
275 if (Phi->getParent() != TheLoop->
getHeader())
299 bool FoundReduxOp =
false;
305 bool FoundStartPHI =
false;
310 unsigned NumCmpSelectPatternInst = 0;
314 Type *RecurrenceType = Phi->getType();
316 unsigned MinWidthCastToRecurrenceType;
318 bool IsSigned =
false;
337 Start =
lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
344 VisitedInsts.
insert(Start);
373 while (!Worklist.
empty()) {
380 LLVM_DEBUG(
dbgs() <<
"Store instructions are not processed without "
381 <<
"Scalar Evolution Analysis\n");
388 const SCEV *OtherScev =
391 if (OtherScev != PtrScev) {
392 LLVM_DEBUG(
dbgs() <<
"Storing reduction value to different addresses "
393 <<
"inside the loop: " << *
SI->getPointerOperand()
402 LLVM_DEBUG(
dbgs() <<
"Storing reduction value to non-uniform address "
403 <<
"inside the loop: " << *
SI->getPointerOperand()
422 if (Cur != Phi && IsAPhi && Cur->
getParent() == Phi->getParent())
438 ExactFPMathInst = ExactFPMathInst ==
nullptr
452 CurFMF |= FCmp->getFastMathFlags();
477 if (IsAPhi && Cur != Phi && !
areAllUsesIn(Cur, VisitedInsts))
481 ++NumCmpSelectPatternInst;
483 ++NumCmpSelectPatternInst;
485 ++NumCmpSelectPatternInst;
488 FoundReduxOp |= !IsAPhi && Cur != Start;
509 if (ExitInstruction == Cur)
516 if (ExitInstruction !=
nullptr || Cur == Phi)
525 ExitInstruction = Cur;
532 InstDesc IgnoredVal(
false,
nullptr);
533 if (VisitedInsts.
insert(UI).second) {
538 if (
SI &&
SI->getPointerOperand() == Cur) {
556 FoundStartPHI =
true;
566 NumCmpSelectPatternInst != 0)
584 if (ExitInstruction &&
586 LLVM_DEBUG(
dbgs() <<
"Last store Instruction of reduction value does not "
587 "store last calculated value of the reduction: "
594 if (!ExitInstruction)
598 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
601 const bool IsOrdered =
630 std::tie(ComputedType, IsSigned) =
632 if (ComputedType != RecurrenceType)
650 MinWidthCastToRecurrenceType);
660 FMF, ExactFPMathInst, RecurrenceType, IsSigned,
661 IsOrdered, CastInsts, MinWidthCastToRecurrenceType);
702 Value *NonPhi =
nullptr;
705 NonPhi =
SI->getFalseValue();
707 NonPhi =
SI->getTrueValue();
777 Value *NonRdxPhi =
nullptr;
786 auto GetFindFirstLastIVRecurKind = [&](
Value *V) -> std::optional<RecurKind> {
787 Type *Ty = V->getType();
810 auto CheckRange = [&](
bool IsSigned) {
813 unsigned NumBits = Ty->getIntegerBitWidth();
825 dbgs() <<
"LV: " << (PositiveStep ?
"FindLastIV" :
"FindFirstIV")
826 <<
" valid range is " << ValidRange <<
", and the range of "
827 << *AR <<
" is " << IVRange <<
"\n");
831 return ValidRange.
contains(IVRange);
834 if (CheckRange(
true))
836 if (CheckRange(
false))
841 if (CheckRange(
true))
843 if (CheckRange(
false))
848 if (
auto RK = GetFindFirstLastIVRecurKind(NonRdxPhi))
859 "Expected a cmp or select or call instruction");
915 Value *TrueVal, *FalseVal;
929 if (!I1 || !I1->isBinaryOp())
944 if (!IPhi || IPhi != FalseVal)
954 switch (
I->getOpcode()) {
957 case Instruction::PHI:
959 case Instruction::Sub:
962 case Instruction::Add:
965 case Instruction::Mul:
967 case Instruction::And:
969 case Instruction::Or:
971 case Instruction::Xor:
973 case Instruction::FDiv:
974 case Instruction::FMul:
976 I->hasAllowReassoc() ?
nullptr :
I);
977 case Instruction::FSub:
978 case Instruction::FAdd:
980 I->hasAllowReassoc() ?
nullptr :
I);
981 case Instruction::Select:
989 case Instruction::FCmp:
990 case Instruction::ICmp:
991 case Instruction::Call:
994 auto HasRequiredFMF = [&]() {
1014 if (HasRequiredFMF())
1021 "unexpected recurrence kind for maxnum");
1026 "unexpected recurrence kind for minnum");
1033 I->hasAllowReassoc() ?
nullptr :
I);
1040 unsigned MaxNumUses) {
1041 unsigned NumUses = 0;
1042 for (
const Use &U :
I->operands()) {
1045 if (NumUses > MaxNumUses)
1061 F.getFnAttribute(
"no-nans-fp-math").getValueAsBool());
1062 FMF.setNoSignedZeros(
1063 F.getFnAttribute(
"no-signed-zeros-fp-math").getValueAsBool());
1067 LLVM_DEBUG(
dbgs() <<
"Found an ADD reduction PHI." << *Phi <<
"\n");
1072 LLVM_DEBUG(
dbgs() <<
"Found a SUB reduction PHI." << *Phi <<
"\n");
1077 LLVM_DEBUG(
dbgs() <<
"Found a chained ADD-SUB reduction PHI." << *Phi
1083 LLVM_DEBUG(
dbgs() <<
"Found a MUL reduction PHI." << *Phi <<
"\n");
1088 LLVM_DEBUG(
dbgs() <<
"Found an OR reduction PHI." << *Phi <<
"\n");
1093 LLVM_DEBUG(
dbgs() <<
"Found an AND reduction PHI." << *Phi <<
"\n");
1098 LLVM_DEBUG(
dbgs() <<
"Found a XOR reduction PHI." << *Phi <<
"\n");
1103 LLVM_DEBUG(
dbgs() <<
"Found a SMAX reduction PHI." << *Phi <<
"\n");
1108 LLVM_DEBUG(
dbgs() <<
"Found a SMIN reduction PHI." << *Phi <<
"\n");
1113 LLVM_DEBUG(
dbgs() <<
"Found a UMAX reduction PHI." << *Phi <<
"\n");
1118 LLVM_DEBUG(
dbgs() <<
"Found a UMIN reduction PHI." << *Phi <<
"\n");
1123 LLVM_DEBUG(
dbgs() <<
"Found a conditional select reduction PHI." << *Phi
1129 LLVM_DEBUG(
dbgs() <<
"Found a Find reduction PHI." << *Phi <<
"\n");
1134 LLVM_DEBUG(
dbgs() <<
"Found an FMult reduction PHI." << *Phi <<
"\n");
1139 LLVM_DEBUG(
dbgs() <<
"Found an FAdd reduction PHI." << *Phi <<
"\n");
1144 LLVM_DEBUG(
dbgs() <<
"Found a float MAX reduction PHI." << *Phi <<
"\n");
1149 LLVM_DEBUG(
dbgs() <<
"Found a float MIN reduction PHI." << *Phi <<
"\n");
1154 LLVM_DEBUG(
dbgs() <<
"Found an FMulAdd reduction PHI." << *Phi <<
"\n");
1159 LLVM_DEBUG(
dbgs() <<
"Found a float MAXIMUM reduction PHI." << *Phi <<
"\n");
1164 LLVM_DEBUG(
dbgs() <<
"Found a float MINIMUM reduction PHI." << *Phi <<
"\n");
1169 LLVM_DEBUG(
dbgs() <<
"Found a float MAXIMUMNUM reduction PHI." << *Phi
1175 LLVM_DEBUG(
dbgs() <<
"Found a float MINIMUMNUM reduction PHI." << *Phi
1187 if (Phi->getParent() != TheLoop->
getHeader() ||
1188 Phi->getNumIncomingValues() != 2)
1195 if (!Preheader || !Latch)
1199 if (Phi->getBasicBlockIndex(Preheader) < 0 ||
1200 Phi->getBasicBlockIndex(Latch) < 0)
1213 if (PrevPhi->getParent() != Phi->getParent())
1215 if (!SeenPhis.
insert(PrevPhi).second)
1232 auto TryToPushSinkCandidate = [&](
Instruction *SinkCandidate) {
1234 if (Previous == SinkCandidate)
1237 if (!Seen.
insert(SinkCandidate).second)
1243 if (SinkCandidate->getParent() != PhiBB ||
1244 SinkCandidate->mayHaveSideEffects() ||
1245 SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator())
1260 while (!WorkList.
empty()) {
1274 return Instruction::Sub;
1277 return Instruction::Add;
1279 return Instruction::Mul;
1281 return Instruction::Or;
1283 return Instruction::And;
1285 return Instruction::Xor;
1287 return Instruction::FMul;
1290 return Instruction::FAdd;
1295 return Instruction::ICmp;
1302 return Instruction::FCmp;
1336 unsigned ExpectedUses = 1;
1366 if (Cur->getOpcode() == Instruction::Sub &&
1374 unsigned ExtraPhiUses = 0;
1377 if (ExitPhi->getNumIncomingValues() != 2)
1386 else if (Inc1 == Phi)
1399 if (!isCorrectOpcode(RdxInstr) || !LoopExitInstr->hasNUses(2))
1404 if (!Phi->hasNUses(ExpectedUses + ExtraPhiUses))
1411 while (Cur != RdxInstr) {
1412 if (!Cur || !isCorrectOpcode(Cur) || !Cur->
hasNUses(ExpectedUses))
1416 Cur = getNextInstruction(Cur);
1420 return ReductionOperations;
1426 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
1427 assert(IK != IK_NoInduction &&
"Not an induction");
1431 assert(StartValue &&
"StartValue is null");
1432 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
1433 "StartValue is not a pointer for pointer induction");
1434 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
1435 "StartValue is not an integer for integer induction");
1438 assert((!getConstIntStepValue() || !getConstIntStepValue()->
isZero()) &&
1439 "Step value is zero");
1442 "StepValue is not an integer");
1445 "StepValue is not FP for FpInduction");
1446 assert((IK != IK_FpInduction ||
1448 (InductionBinOp->getOpcode() == Instruction::FAdd ||
1449 InductionBinOp->getOpcode() == Instruction::FSub))) &&
1450 "Binary opcode should be specified for FP induction");
1467 assert(Phi->getType()->isFloatingPointTy() &&
"Unexpected Phi type");
1469 if (TheLoop->
getHeader() != Phi->getParent())
1474 if (Phi->getNumIncomingValues() != 2)
1476 Value *BEValue =
nullptr, *StartValue =
nullptr;
1477 if (TheLoop->
contains(Phi->getIncomingBlock(0))) {
1478 BEValue = Phi->getIncomingValue(0);
1479 StartValue = Phi->getIncomingValue(1);
1482 "Unexpected Phi node in the loop");
1483 BEValue = Phi->getIncomingValue(1);
1484 StartValue = Phi->getIncomingValue(0);
1491 Value *Addend =
nullptr;
1492 if (BOp->
getOpcode() == Instruction::FAdd) {
1497 }
else if (BOp->
getOpcode() == Instruction::FSub)
1552 assert(CastInsts.
empty() &&
"CastInsts is expected to be empty.");
1554 assert(PSE.
getSCEV(PN) == AR &&
"Unexpected phi node SCEV expression");
1571 Value *Def =
nullptr;
1572 if (L->isLoopInvariant(Op0))
1574 else if (L->isLoopInvariant(Op1))
1584 Value *Val = PN->getIncomingValueForBlock(Latch);
1592 bool InCastSequence =
false;
1597 if (!Inst || !L->contains(Inst)) {
1602 InCastSequence =
true;
1603 if (InCastSequence) {
1606 if (!CastInsts.
empty())
1607 if (!Inst->hasOneUse())
1617 return InCastSequence;
1623 Type *PhiTy = Phi->getType();
1655 if (PhiScev != AR && SymbolicPhi) {
1668 Type *PhiTy = Phi->getType();
1674 const SCEV *PhiScev = Expr ? Expr : SE->
getSCEV(Phi);
1683 dbgs() <<
"LV: PHI is not a poly recurrence for requested loop.\n");
1691 "Invalid Phi node, not present in loop header");
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, const SCEVUnknown *PhiScev, const SCEVAddRecExpr *AR, SmallVectorImpl< Instruction * > &CastInsts)
This function is called when we suspect that the update-chain of a phi node (whose symbolic SCEV expr...
static bool isMinMaxReductionPhiWithUsersOutsideReductionChain(PHINode *Phi, RecurKind Kind, Loop *TheLoop, RecurrenceDescriptor &RedDes)
Returns true if Phi is a min/max reduction matching Kind where Phi is used outside the reduction chai...
static void collectCastInstrs(Loop *TheLoop, Instruction *Exit, Type *RecurrenceType, SmallPtrSetImpl< Instruction * > &Casts, unsigned &MinWidthCastToRecurTy)
Collect cast instructions that can be ignored in the vectorizer's cost model, given a reduction exit ...
static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst, Instruction *Exit, PHINode *Phi)
static Instruction * lookThroughAnd(PHINode *Phi, Type *&RT, SmallPtrSetImpl< Instruction * > &Visited, SmallPtrSetImpl< Instruction * > &CI)
Determines if Phi may have been type-promoted.
static std::pair< Type *, bool > computeRecurrenceType(Instruction *Exit, DemandedBits *DB, AssumptionCache *AC, DominatorTree *DT)
Compute the minimal bit width needed to represent a reduction whose exit instruction is given by Exit...
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Class for arbitrary precision integers.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
BinaryOps getOpcode() const
This is the shared class of boolean and integer constants.
This class represents a range of values.
LLVM_ABI ConstantRange inverse() const
Return a new range that is the logical not of the current set.
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
A parsed version of the target data layout string in and methods for querying it.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Convenience struct for specifying and reasoning about fast-math flags.
bool noSignedZeros() const
void setNoNaNs(bool B=true)
static FastMathFlags getFast()
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
static LLVM_ABI bool isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE, InductionDescriptor &D, const SCEV *Expr=nullptr, SmallVectorImpl< Instruction * > *CastsToIgnore=nullptr)
Returns true if Phi is an induction in the loop L.
static LLVM_ABI bool isFPInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE, InductionDescriptor &D)
Returns true if Phi is a floating point induction in the loop L.
InductionDescriptor()=default
Default constructor - creates an invalid induction.
LLVM_ABI ConstantInt * getConstIntStepValue() const
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
BlockT * getHeader() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
Represents a single loop in the control flow graph.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const
Check if AR1 and AR2 are equal, while taking into account Equal predicates in Preds.
LLVM_ABI const SCEVAddRecExpr * getAsAddRec(Value *V)
Attempts to produce an AddRecExpr for V by adding additional SCEV predicates.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
This POD struct holds information about a potential recurrence operation.
RecurKind getRecKind() const
Instruction * getPatternInst() const
bool isRecurrence() const
Instruction * getExactFPMathInst() const
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFPMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating-point min/max kind.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
static LLVM_ABI bool isFixedOrderRecurrence(PHINode *Phi, Loop *TheLoop, DominatorTree *DT)
Returns true if Phi is a fixed-order recurrence.
unsigned getOpcode() const
static LLVM_ABI InstDesc isConditionalRdxPattern(Instruction *I)
Returns a struct describing if the instruction is a Select(FCmp(X, Y), (Z = X op PHINode),...
static LLVM_ABI bool hasMultipleUsesOf(Instruction *I, SmallPtrSetImpl< Instruction * > &Insts, unsigned MaxNumUses)
Returns true if instruction I has multiple uses in Insts.
static LLVM_ABI bool isReductionPHI(PHINode *Phi, Loop *TheLoop, RecurrenceDescriptor &RedDes, DemandedBits *DB=nullptr, AssumptionCache *AC=nullptr, DominatorTree *DT=nullptr, ScalarEvolution *SE=nullptr)
Returns true if Phi is a reduction in TheLoop.
static LLVM_ABI bool areAllUsesIn(Instruction *I, SmallPtrSetImpl< Instruction * > &Set)
Returns true if all uses of the instruction I is within the Set.
RecurrenceDescriptor()=default
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static LLVM_ABI InstDesc isAnyOfPattern(Loop *Loop, PHINode *OrigPhi, Instruction *I, InstDesc &Prev)
Returns a struct describing whether the instruction is either a Select(ICmp(A, B),...
StoreInst * IntermediateStore
Reductions may store temporary or final result to an invariant address.
static LLVM_ABI InstDesc isRecurrenceInstr(Loop *L, PHINode *Phi, Instruction *I, RecurKind Kind, InstDesc &Prev, FastMathFlags FuncFMF, ScalarEvolution *SE)
Returns a struct describing if the instruction 'I' can be a recurrence variable of type 'Kind' for a ...
static bool isFindRecurrenceKind(RecurKind Kind)
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static LLVM_ABI InstDesc isFindPattern(Loop *TheLoop, PHINode *OrigPhi, Instruction *I, ScalarEvolution &SE)
Returns a struct describing whether the instruction is either a Select(ICmp(A, B),...
static LLVM_ABI InstDesc isMinMaxPattern(Instruction *I, RecurKind Kind, const InstDesc &Prev)
Returns a struct describing if the instruction is a llvm.
static LLVM_ABI bool AddReductionVar(PHINode *Phi, RecurKind Kind, Loop *TheLoop, FastMathFlags FuncFMF, RecurrenceDescriptor &RedDes, DemandedBits *DB=nullptr, AssumptionCache *AC=nullptr, DominatorTree *DT=nullptr, ScalarEvolution *SE=nullptr)
Returns true if Phi is a reduction of type Kind and adds it to the RecurrenceDescriptor.
static LLVM_ABI bool isIntegerRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is an integer kind.
static bool isIntMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is an integer min/max kind.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This node represents a polynomial recurrence on the trip count of the specified loop.
const Loop * getLoop() const
This means that we are dealing with an entirely unknown SCEV value, and only represent it as its LLVM...
This class represents an analyzed expression in the program.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
LLVM_ABI bool isKnownNonZero(const SCEV *S)
Test if the given expression is known to be non-zero.
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
ConstantRange getSignedRange(const SCEV *S)
Determine the signed range for a particular SCEV.
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isKnownPositive(const SCEV *S)
Test if the given expression is known to be positive.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
ConstantRange getUnsignedRange(const SCEV *S)
Determine the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * getUnknown(Value *V)
This class represents the LLVM 'select' instruction.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isPointerTy() const
True if this is an instance of PointerType.
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
LLVM Value Representation.
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
LLVM_ABI bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
const ParentTy * getParent() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::FMul > m_FMul(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_FMaxNum(const Opnd0 &Op0, const Opnd1 &Op1)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_FMinimum(const Opnd0 &Op0, const Opnd1 &Op1)
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > > m_OrdOrUnordFMin(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point minimum function.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_FMaximum(const Opnd0 &Op0, const Opnd1 &Op1)
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_FMaximumNum(const Opnd0 &Op0, const Opnd1 &Op1)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_FMinimumNum(const Opnd0 &Op0, const Opnd1 &Op1)
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > > m_OrdOrUnordFMax(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point maximum function.
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_FMinNum(const Opnd0 &Op0, const Opnd1 &Op1)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
specificloop_ty m_SpecificLoop(const Loop *L)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
This is an optimization pass for GlobalISel generic memory operations.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
MachineInstr * getDef(const MachineOperand &MO, const MachineRegisterInfo *MRI)
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
auto dyn_cast_or_null(const Y &Val)
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ FMinimumNum
FP min with llvm.minimumnum semantics.
@ FindLastIVUMax
FindLast reduction with select(cmp(),x,y) where one of (x,y) is increasing loop induction,...
@ FindFirstIVUMin
FindFirst reduction with select(icmp(),x,y) where one of (x,y) is a decreasing loop induction,...
@ Or
Bitwise or logical OR of integers.
@ FMinimum
FP min with llvm.minimum semantics.
@ FMaxNum
FP max with llvm.maxnum semantics including NaNs.
@ FindLastIVSMax
FindFirst reduction with select(icmp(),x,y) where one of (x,y) is a decreasing loop induction,...
@ Mul
Product of integers.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ Xor
Bitwise or logical XOR of integers.
@ FindLast
FindLast reduction with select(cmp(),x,y) where x and y are an integer type, one is the current recur...
@ FMax
FP max implemented in terms of select(cmp()).
@ FMaximum
FP max with llvm.maximum semantics.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ And
Bitwise or logical AND of integers.
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ FMin
FP min implemented in terms of select(cmp()).
@ FMinNum
FP min with llvm.minnum semantics including NaNs.
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
@ FMaximumNum
FP max with llvm.maximumnum semantics.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return the number of times the sign bit of the register is replicated into the other bits.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?