LLVM 19.0.0git
LoopVectorizationPlanner.h
Go to the documentation of this file.
1//===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file provides a LoopVectorizationPlanner class.
11/// InnerLoopVectorizer vectorizes loops which contain only one basic
12/// LoopVectorizationPlanner - drives the vectorization process after having
13/// passed Legality checks.
14/// The planner builds and optimizes the Vectorization Plans which record the
15/// decisions how to vectorize the given loop. In particular, represent the
16/// control-flow of the vectorized version, the replication of instructions that
17/// are to be scalarized, and interleave access groups.
18///
19/// Also provides a VPlan-based builder utility analogous to IRBuilder.
20/// It provides an instruction-level API for generating VPInstructions while
21/// abstracting away the Recipe manipulation details.
22//===----------------------------------------------------------------------===//
23
24#ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
25#define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
26
27#include "VPlan.h"
28#include "llvm/ADT/SmallSet.h"
30
31namespace llvm {
32
33class LoopInfo;
34class DominatorTree;
35class LoopVectorizationLegality;
36class LoopVectorizationCostModel;
37class PredicatedScalarEvolution;
38class LoopVectorizeHints;
39class OptimizationRemarkEmitter;
40class TargetTransformInfo;
41class TargetLibraryInfo;
42class VPRecipeBuilder;
43
44/// VPlan-based builder utility analogous to IRBuilder.
45class VPBuilder {
46 VPBasicBlock *BB = nullptr;
48
49 /// Insert \p VPI in BB at InsertPt if BB is set.
50 VPInstruction *tryInsertInstruction(VPInstruction *VPI) {
51 if (BB)
52 BB->insert(VPI, InsertPt);
53 return VPI;
54 }
55
56 VPInstruction *createInstruction(unsigned Opcode,
58 const Twine &Name = "") {
59 return tryInsertInstruction(new VPInstruction(Opcode, Operands, DL, Name));
60 }
61
62 VPInstruction *createInstruction(unsigned Opcode,
63 std::initializer_list<VPValue *> Operands,
64 DebugLoc DL, const Twine &Name = "") {
65 return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name);
66 }
67
68public:
69 VPBuilder() = default;
70 VPBuilder(VPBasicBlock *InsertBB) { setInsertPoint(InsertBB); }
71 VPBuilder(VPRecipeBase *InsertPt) { setInsertPoint(InsertPt); }
72
73 /// Clear the insertion point: created instructions will not be inserted into
74 /// a block.
76 BB = nullptr;
77 InsertPt = VPBasicBlock::iterator();
78 }
79
80 VPBasicBlock *getInsertBlock() const { return BB; }
81 VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
82
83 /// Create a VPBuilder to insert after \p R.
86 B.setInsertPoint(R->getParent(), std::next(R->getIterator()));
87 return B;
88 }
89
90 /// InsertPoint - A saved insertion point.
92 VPBasicBlock *Block = nullptr;
94
95 public:
96 /// Creates a new insertion point which doesn't point to anything.
97 VPInsertPoint() = default;
98
99 /// Creates a new insertion point at the given location.
101 : Block(InsertBlock), Point(InsertPoint) {}
102
103 /// Returns true if this insert point is set.
104 bool isSet() const { return Block != nullptr; }
105
106 VPBasicBlock *getBlock() const { return Block; }
107 VPBasicBlock::iterator getPoint() const { return Point; }
108 };
109
110 /// Sets the current insert point to a previously-saved location.
112 if (IP.isSet())
113 setInsertPoint(IP.getBlock(), IP.getPoint());
114 else
116 }
117
118 /// This specifies that created VPInstructions should be appended to the end
119 /// of the specified block.
121 assert(TheBB && "Attempting to set a null insert point");
122 BB = TheBB;
123 InsertPt = BB->end();
124 }
125
126 /// This specifies that created instructions should be inserted at the
127 /// specified point.
129 BB = TheBB;
130 InsertPt = IP;
131 }
132
133 /// This specifies that created instructions should be inserted at the
134 /// specified point.
136 BB = IP->getParent();
137 InsertPt = IP->getIterator();
138 }
139
140 /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
141 /// its underlying Instruction.
143 Instruction *Inst = nullptr,
144 const Twine &Name = "") {
145 DebugLoc DL;
146 if (Inst)
147 DL = Inst->getDebugLoc();
148 VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL, Name);
149 NewVPInst->setUnderlyingValue(Inst);
150 return NewVPInst;
151 }
153 DebugLoc DL, const Twine &Name = "") {
154 return createInstruction(Opcode, Operands, DL, Name);
155 }
156
158 std::initializer_list<VPValue *> Operands,
160 DebugLoc DL = {}, const Twine &Name = "") {
161 return tryInsertInstruction(
162 new VPInstruction(Opcode, Operands, WrapFlags, DL, Name));
163 }
165 const Twine &Name = "") {
166 return createInstruction(VPInstruction::Not, {Operand}, DL, Name);
167 }
168
170 const Twine &Name = "") {
171 return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL, Name);
172 }
173
175 const Twine &Name = "") {
176
177 return tryInsertInstruction(new VPInstruction(
178 Instruction::BinaryOps::Or, {LHS, RHS},
179 VPRecipeWithIRFlags::DisjointFlagsTy(false), DL, Name));
180 }
181
183 DebugLoc DL = {}, const Twine &Name = "",
184 std::optional<FastMathFlags> FMFs = std::nullopt) {
185 auto *Select =
186 FMFs ? new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal},
187 *FMFs, DL, Name)
188 : new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal},
189 DL, Name);
190 return tryInsertInstruction(Select);
191 }
192
193 /// Create a new ICmp VPInstruction with predicate \p Pred and operands \p A
194 /// and \p B.
195 /// TODO: add createFCmp when needed.
196 VPValue *createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B,
197 DebugLoc DL = {}, const Twine &Name = "");
198
199 //===--------------------------------------------------------------------===//
200 // RAII helpers.
201 //===--------------------------------------------------------------------===//
202
203 /// RAII object that stores the current insertion point and restores it when
204 /// the object is destroyed.
206 VPBuilder &Builder;
207 VPBasicBlock *Block;
209
210 public:
212 : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
213
216
217 ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
218 };
219};
220
221/// TODO: The following VectorizationFactor was pulled out of
222/// LoopVectorizationCostModel class. LV also deals with
223/// VectorizerParams::VectorizationFactor and VectorizationCostTy.
224/// We need to streamline them.
225
226/// Information about vectorization costs.
228 /// Vector width with best cost.
230
231 /// Cost of the loop with that width.
233
234 /// Cost of the scalar loop.
236
237 /// The minimum trip count required to make vectorization profitable, e.g. due
238 /// to runtime checks.
240
244
245 /// Width 1 means no vectorization, cost 0 means uncomputed cost.
247 return {ElementCount::getFixed(1), 0, 0};
248 }
249
250 bool operator==(const VectorizationFactor &rhs) const {
251 return Width == rhs.Width && Cost == rhs.Cost;
252 }
253
254 bool operator!=(const VectorizationFactor &rhs) const {
255 return !(*this == rhs);
256 }
257};
258
259/// ElementCountComparator creates a total ordering for ElementCount
260/// for the purposes of using it in a set structure.
262 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
263 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
264 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
265 }
266};
268
269/// A class that represents two vectorization factors (initialized with 0 by
270/// default). One for fixed-width vectorization and one for scalable
271/// vectorization. This can be used by the vectorizer to choose from a range of
272/// fixed and/or scalable VFs in order to find the most cost-effective VF to
273/// vectorize with.
277
279 : FixedVF(ElementCount::getFixed(0)),
280 ScalableVF(ElementCount::getScalable(0)) {}
282 *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max;
283 }
288 "Invalid scalable properties");
289 }
290
292
293 /// \return true if either fixed- or scalable VF is non-zero.
294 explicit operator bool() const { return FixedVF || ScalableVF; }
295
296 /// \return true if either fixed- or scalable VF is a valid vector VF.
297 bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); }
298};
299
300/// Planner drives the vectorization process after having passed
301/// Legality checks.
303 /// The loop that we evaluate.
304 Loop *OrigLoop;
305
306 /// Loop Info analysis.
307 LoopInfo *LI;
308
309 /// The dominator tree.
310 DominatorTree *DT;
311
312 /// Target Library Info.
313 const TargetLibraryInfo *TLI;
314
315 /// Target Transform Info.
317
318 /// The legality analysis.
320
321 /// The profitability analysis.
323
324 /// The interleaved access analysis.
326
328
329 const LoopVectorizeHints &Hints;
330
332
334
335 /// Profitable vector factors.
337
338 /// A builder used to construct the current plan.
339 VPBuilder Builder;
340
341public:
343 Loop *L, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
348 : OrigLoop(L), LI(LI), DT(DT), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM),
349 IAI(IAI), PSE(PSE), Hints(Hints), ORE(ORE) {}
350
351 /// Plan how to best vectorize, return the best VF and its cost, or
352 /// std::nullopt if vectorization and interleaving should be avoided up front.
353 std::optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC);
354
355 /// Use the VPlan-native path to plan how to best vectorize, return the best
356 /// VF and its cost.
358
359 /// Return the best VPlan for \p VF.
361
362 /// Generate the IR code for the vectorized loop captured in VPlan \p BestPlan
363 /// according to the best selected \p VF and \p UF.
364 ///
365 /// TODO: \p IsEpilogueVectorization is needed to avoid issues due to epilogue
366 /// vectorization re-using plans for both the main and epilogue vector loops.
367 /// It should be removed once the re-use issue has been fixed.
368 /// \p ExpandedSCEVs is passed during execution of the plan for epilogue loop
369 /// to re-use expansion results generated during main plan execution.
370 ///
371 /// Returns a mapping of SCEVs to their expanded IR values and a mapping for
372 /// the reduction resume values. Note that this is a temporary workaround
373 /// needed due to the current epilogue handling.
374 std::pair<DenseMap<const SCEV *, Value *>,
376 executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan,
378 bool IsEpilogueVectorization,
379 const DenseMap<const SCEV *, Value *> *ExpandedSCEVs = nullptr);
380
381#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
382 void printPlans(raw_ostream &O);
383#endif
384
385 /// Look through the existing plans and return true if we have one with
386 /// vectorization factor \p VF.
388 return any_of(VPlans,
389 [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); });
390 }
391
392 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying
393 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the
394 /// returned value holds for the entire \p Range.
395 static bool
396 getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate,
397 VFRange &Range);
398
399 /// \return The most profitable vectorization factor and the cost of that VF
400 /// for vectorizing the epilogue. Returns VectorizationFactor::Disabled if
401 /// epilogue vectorization is not supported for the loop.
403 selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC);
404
405protected:
406 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
407 /// according to the information gathered by Legal when it checked if it is
408 /// legal to vectorize the loop.
409 void buildVPlans(ElementCount MinVF, ElementCount MaxVF);
410
411private:
412 /// Build a VPlan according to the information gathered by Legal. \return a
413 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End
414 /// exclusive, possibly decreasing \p Range.End.
415 VPlanPtr buildVPlan(VFRange &Range);
416
417 /// Build a VPlan using VPRecipes according to the information gather by
418 /// Legal. This method is only used for the legacy inner loop vectorizer.
419 /// \p Range's largest included VF is restricted to the maximum VF the
420 /// returned VPlan is valid for. If no VPlan can be built for the input range,
421 /// set the largest included VF to the maximum VF for which no plan could be
422 /// built.
423 VPlanPtr tryToBuildVPlanWithVPRecipes(VFRange &Range);
424
425 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
426 /// according to the information gathered by Legal when it checked if it is
427 /// legal to vectorize the loop. This method creates VPlans using VPRecipes.
428 void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF);
429
430 // Adjust the recipes for reductions. For in-loop reductions the chain of
431 // instructions leading from the loop exit instr to the phi need to be
432 // converted to reductions, with one operand being vector and the other being
433 // the scalar reduction chain. For other reductions, a select is introduced
434 // between the phi and live-out recipes when folding the tail.
435 void adjustRecipesForReductions(VPBasicBlock *LatchVPBB, VPlanPtr &Plan,
436 VPRecipeBuilder &RecipeBuilder,
437 ElementCount MinVF);
438
439 /// \return The most profitable vectorization factor and the cost of that VF.
440 /// This method checks every VF in \p CandidateVFs.
442 selectVectorizationFactor(const ElementCountSet &CandidateVFs);
443
444 /// Returns true if the per-lane cost of VectorizationFactor A is lower than
445 /// that of B.
446 bool isMoreProfitable(const VectorizationFactor &A,
447 const VectorizationFactor &B) const;
448
449 /// Determines if we have the infrastructure to vectorize the loop and its
450 /// epilogue, assuming the main loop is vectorized by \p VF.
451 bool isCandidateForEpilogueVectorization(const ElementCount VF) const;
452};
453
454} // namespace llvm
455
456#endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
amdgpu AMDGPU Register Bank Select
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
std::string Name
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
mir Rename Register Operands
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallSet class.
This file contains the declarations of the Vectorization Plan base classes:
Value * RHS
Value * LHS
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:993
A debug info location.
Definition: DebugLoc.h:33
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
constexpr bool isVector() const
One or more elements.
Definition: TypeSize.h:323
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition: TypeSize.h:308
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
Drive the analysis of interleaved memory accesses in the loop.
Definition: VectorUtils.h:586
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
Planner drives the vectorization process after having passed Legality checks.
std::optional< VectorizationFactor > plan(ElementCount UserVF, unsigned UserIC)
Plan how to best vectorize, return the best VF and its cost, or std::nullopt if vectorization and int...
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
LoopVectorizationPlanner(Loop *L, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo &TTI, LoopVectorizationLegality *Legal, LoopVectorizationCostModel &CM, InterleavedAccessInfo &IAI, PredicatedScalarEvolution &PSE, const LoopVectorizeHints &Hints, OptimizationRemarkEmitter *ORE)
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
std::pair< DenseMap< const SCEV *, Value * >, DenseMap< const RecurrenceDescriptor *, Value * > > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool IsEpilogueVectorization, const DenseMap< const SCEV *, Value * > *ExpandedSCEVs=nullptr)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VPlan & getBestPlanFor(ElementCount VF) const
Return the best VPlan for VF.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:44
The optimization diagnostic interface.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:135
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:2825
RecipeListTy::iterator iterator
Instruction iterators...
Definition: VPlan.h:2846
iterator end()
Definition: VPlan.h:2856
void insert(VPRecipeBase *Recipe, iterator InsertPt)
Definition: VPlan.h:2884
RAII object that stores the current insertion point and restores it when the object is destroyed.
InsertPointGuard(const InsertPointGuard &)=delete
InsertPointGuard & operator=(const InsertPointGuard &)=delete
InsertPoint - A saved insertion point.
VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
Creates a new insertion point at the given location.
VPBasicBlock::iterator getPoint() const
VPInsertPoint()=default
Creates a new insertion point which doesn't point to anything.
bool isSet() const
Returns true if this insert point is set.
VPlan-based builder utility analogous to IRBuilder.
void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP)
This specifies that created instructions should be inserted at the specified point.
void setInsertPoint(VPRecipeBase *IP)
This specifies that created instructions should be inserted at the specified point.
void restoreIP(VPInsertPoint IP)
Sets the current insert point to a previously-saved location.
VPValue * createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
VPBasicBlock * getInsertBlock() const
VPBasicBlock::iterator getInsertPoint() const
VPBuilder(VPBasicBlock *InsertBB)
static VPBuilder getToInsertAfter(VPRecipeBase *R)
Create a VPBuilder to insert after R.
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, DebugLoc DL, const Twine &Name="")
VPValue * createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B, DebugLoc DL={}, const Twine &Name="")
Create a new ICmp VPInstruction with predicate Pred and operands A and B.
VPBuilder(VPRecipeBase *InsertPt)
VPInstruction * createOverflowingOp(unsigned Opcode, std::initializer_list< VPValue * > Operands, VPRecipeWithIRFlags::WrapFlagsTy WrapFlags, DebugLoc DL={}, const Twine &Name="")
VPValue * createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
void clearInsertionPoint()
Clear the insertion point: created instructions will not be inserted into a block.
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPValue * createNot(VPValue *Operand, DebugLoc DL={}, const Twine &Name="")
VPBuilder()=default
VPValue * createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, DebugLoc DL={}, const Twine &Name="", std::optional< FastMathFlags > FMFs=std::nullopt)
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
This is a concrete Recipe that models a single VPlan-level instruction.
Definition: VPlan.h:1159
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition: VPlan.h:709
VPBasicBlock * getParent()
Definition: VPlan.h:734
Helper class to create VPRecipies from IR instructions.
void setUnderlyingValue(Value *Val)
Definition: VPlanValue.h:190
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition: VPlan.h:3059
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition: TypeSize.h:171
self_iterator getIterator()
Definition: ilist_node.h:109
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
std::unique_ptr< VPlan > VPlanPtr
Definition: VPlan.h:134
ElementCountComparator creates a total ordering for ElementCount for the purposes of using it in a se...
bool operator()(const ElementCount &LHS, const ElementCount &RHS) const
A class that represents two vectorization factors (initialized with 0 by default).
FixedScalableVFPair(const ElementCount &FixedVF, const ElementCount &ScalableVF)
FixedScalableVFPair(const ElementCount &Max)
static FixedScalableVFPair getNone()
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Definition: VPlan.h:87
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
bool operator==(const VectorizationFactor &rhs) const
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
bool operator!=(const VectorizationFactor &rhs) const
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
VectorizationFactor(ElementCount Width, InstructionCost Cost, InstructionCost ScalarCost)