LLVM 20.0.0git
VPlan.cpp
Go to the documentation of this file.
1//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This is the LLVM vectorization plan. It represents a candidate for
11/// vectorization, allowing to plan and optimize how to vectorize a given loop
12/// before generating LLVM-IR.
13/// The vectorizer uses vectorization plans to estimate the costs of potential
14/// candidates and if profitable to execute the desired plan, generating vector
15/// LLVM-IR code.
16///
17//===----------------------------------------------------------------------===//
18
19#include "VPlan.h"
21#include "VPlanCFG.h"
22#include "VPlanPatternMatch.h"
23#include "VPlanTransforms.h"
24#include "VPlanUtils.h"
26#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/Twine.h"
32#include "llvm/IR/BasicBlock.h"
33#include "llvm/IR/CFG.h"
34#include "llvm/IR/IRBuilder.h"
35#include "llvm/IR/Instruction.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Value.h"
41#include "llvm/Support/Debug.h"
46#include <cassert>
47#include <string>
48
49using namespace llvm;
50using namespace llvm::VPlanPatternMatch;
51
52namespace llvm {
54}
56
58 "vplan-print-in-dot-format", cl::Hidden,
59 cl::desc("Use dot format instead of plain text when dumping VPlans"));
60
61#define DEBUG_TYPE "loop-vectorize"
62
63#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
65 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
67 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
68 V.print(OS, SlotTracker);
69 return OS;
70}
71#endif
72
74 const ElementCount &VF) const {
75 switch (LaneKind) {
77 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
78 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
79 Builder.getInt32(VF.getKnownMinValue() - Lane));
81 return Builder.getInt32(Lane);
82 }
83 llvm_unreachable("Unknown lane kind");
84}
85
86VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
87 : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
88 if (Def)
89 Def->addDefinedValue(this);
90}
91
93 assert(Users.empty() && "trying to delete a VPValue with remaining users");
94 if (Def)
95 Def->removeDefinedValue(this);
96}
97
98#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
100 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
101 R->print(OS, "", SlotTracker);
102 else
104}
105
106void VPValue::dump() const {
107 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
109 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
111 dbgs() << "\n";
112}
113
114void VPDef::dump() const {
115 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
117 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
118 print(dbgs(), "", SlotTracker);
119 dbgs() << "\n";
120}
121#endif
122
124 return cast_or_null<VPRecipeBase>(Def);
125}
126
128 return cast_or_null<VPRecipeBase>(Def);
129}
130
131// Get the top-most entry block of \p Start. This is the entry block of the
132// containing VPlan. This function is templated to support both const and non-const blocks
133template <typename T> static T *getPlanEntry(T *Start) {
134 T *Next = Start;
135 T *Current = Start;
136 while ((Next = Next->getParent()))
137 Current = Next;
138
139 SmallSetVector<T *, 8> WorkList;
140 WorkList.insert(Current);
141
142 for (unsigned i = 0; i < WorkList.size(); i++) {
143 T *Current = WorkList[i];
144 if (Current->getNumPredecessors() == 0)
145 return Current;
146 auto &Predecessors = Current->getPredecessors();
147 WorkList.insert(Predecessors.begin(), Predecessors.end());
148 }
149
150 llvm_unreachable("VPlan without any entry node without predecessors");
151}
152
153VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
154
155const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
156
157/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
159 const VPBlockBase *Block = this;
160 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
161 Block = Region->getEntry();
162 return cast<VPBasicBlock>(Block);
163}
164
166 VPBlockBase *Block = this;
167 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
168 Block = Region->getEntry();
169 return cast<VPBasicBlock>(Block);
170}
171
172void VPBlockBase::setPlan(VPlan *ParentPlan) {
173 assert(ParentPlan->getEntry() == this && "Can only set plan on its entry.");
174 Plan = ParentPlan;
175}
176
177/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
179 const VPBlockBase *Block = this;
180 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
181 Block = Region->getExiting();
182 return cast<VPBasicBlock>(Block);
183}
184
186 VPBlockBase *Block = this;
187 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
188 Block = Region->getExiting();
189 return cast<VPBasicBlock>(Block);
190}
191
193 if (!Successors.empty() || !Parent)
194 return this;
195 assert(Parent->getExiting() == this &&
196 "Block w/o successors not the exiting block of its parent.");
197 return Parent->getEnclosingBlockWithSuccessors();
198}
199
201 if (!Predecessors.empty() || !Parent)
202 return this;
203 assert(Parent->getEntry() == this &&
204 "Block w/o predecessors not the entry of its parent.");
205 return Parent->getEnclosingBlockWithPredecessors();
206}
207
209 iterator It = begin();
210 while (It != end() && It->isPhi())
211 It++;
212 return It;
213}
214
216 ElementCount VF, unsigned UF, LoopInfo *LI,
217 DominatorTree *DT, IRBuilderBase &Builder,
218 InnerLoopVectorizer *ILV, VPlan *Plan,
219 Loop *CurrentParentLoop, Type *CanonicalIVTy)
220 : TTI(TTI), VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
221 CurrentParentLoop(CurrentParentLoop), LVer(nullptr),
222 TypeAnalysis(CanonicalIVTy) {}
223
225 if (Def->isLiveIn())
226 return Def->getLiveInIRValue();
227
228 if (hasScalarValue(Def, Lane))
229 return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)];
230
231 if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) &&
233 return Data.VPV2Scalars[Def][0];
234 }
235
237 auto *VecPart = Data.VPV2Vector[Def];
238 if (!VecPart->getType()->isVectorTy()) {
239 assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
240 return VecPart;
241 }
242 // TODO: Cache created scalar values.
243 Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF);
244 auto *Extract = Builder.CreateExtractElement(VecPart, LaneV);
245 // set(Def, Extract, Instance);
246 return Extract;
247}
248
249Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) {
250 if (NeedsScalar) {
251 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) ||
253 (hasScalarValue(Def, VPLane(0)) &&
254 Data.VPV2Scalars[Def].size() == 1)) &&
255 "Trying to access a single scalar per part but has multiple scalars "
256 "per part.");
257 return get(Def, VPLane(0));
258 }
259
260 // If Values have been set for this Def return the one relevant for \p Part.
261 if (hasVectorValue(Def))
262 return Data.VPV2Vector[Def];
263
264 auto GetBroadcastInstrs = [this, Def](Value *V) {
265 bool SafeToHoist = Def->isDefinedOutsideLoopRegions();
266 if (VF.isScalar())
267 return V;
268 // Place the code for broadcasting invariant variables in the new preheader.
270 if (SafeToHoist) {
271 BasicBlock *LoopVectorPreHeader =
273 if (LoopVectorPreHeader)
274 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
275 }
276
277 // Place the code for broadcasting invariant variables in the new preheader.
278 // Broadcast the scalar into all locations in the vector.
279 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
280
281 return Shuf;
282 };
283
284 if (!hasScalarValue(Def, {0})) {
285 assert(Def->isLiveIn() && "expected a live-in");
286 Value *IRV = Def->getLiveInIRValue();
287 Value *B = GetBroadcastInstrs(IRV);
288 set(Def, B);
289 return B;
290 }
291
292 Value *ScalarValue = get(Def, VPLane(0));
293 // If we aren't vectorizing, we can just copy the scalar map values over
294 // to the vector map.
295 if (VF.isScalar()) {
296 set(Def, ScalarValue);
297 return ScalarValue;
298 }
299
300 bool IsUniform = vputils::isUniformAfterVectorization(Def);
301
302 VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1);
303 // Check if there is a scalar value for the selected lane.
304 if (!hasScalarValue(Def, LastLane)) {
305 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
306 // VPExpandSCEVRecipes can also be uniform.
308 VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
309 "unexpected recipe found to be invariant");
310 IsUniform = true;
311 LastLane = 0;
312 }
313
314 auto *LastInst = cast<Instruction>(get(Def, LastLane));
315 // Set the insert point after the last scalarized instruction or after the
316 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
317 // will directly follow the scalar definitions.
318 auto OldIP = Builder.saveIP();
319 auto NewIP = isa<PHINode>(LastInst)
320 ? LastInst->getParent()->getFirstNonPHIIt()
321 : std::next(BasicBlock::iterator(LastInst));
322 Builder.SetInsertPoint(&*NewIP);
323
324 // However, if we are vectorizing, we need to construct the vector values.
325 // If the value is known to be uniform after vectorization, we can just
326 // broadcast the scalar value corresponding to lane zero. Otherwise, we
327 // construct the vector values using insertelement instructions. Since the
328 // resulting vectors are stored in State, we will only generate the
329 // insertelements once.
330 Value *VectorValue = nullptr;
331 if (IsUniform) {
332 VectorValue = GetBroadcastInstrs(ScalarValue);
333 set(Def, VectorValue);
334 } else {
335 // Initialize packing with insertelements to start from undef.
336 assert(!VF.isScalable() && "VF is assumed to be non scalable.");
337 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
338 set(Def, Undef);
339 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
341 VectorValue = get(Def);
342 }
343 Builder.restoreIP(OldIP);
344 return VectorValue;
345}
346
348 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
349 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
350}
351
353 const Instruction *Orig) {
354 // If the loop was versioned with memchecks, add the corresponding no-alias
355 // metadata.
356 if (LVer && isa<LoadInst, StoreInst>(Orig))
357 LVer->annotateInstWithNoAlias(To, Orig);
358}
359
361 // No source instruction to transfer metadata from?
362 if (!From)
363 return;
364
365 if (Instruction *ToI = dyn_cast<Instruction>(To)) {
367 addNewMetadata(ToI, From);
368 }
369}
370
372 const DILocation *DIL = DL;
373 // When a FSDiscriminator is enabled, we don't need to add the multiply
374 // factors to the discriminators.
375 if (DIL &&
377 ->getParent()
380 // FIXME: For scalable vectors, assume vscale=1.
381 unsigned UF = Plan->getUF();
382 auto NewDIL =
384 if (NewDIL)
386 else
387 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
388 << DIL->getFilename() << " Line: " << DIL->getLine());
389 } else
391}
392
394 const VPLane &Lane) {
395 Value *ScalarInst = get(Def, Lane);
396 Value *VectorValue = get(Def);
397 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
398 Lane.getAsRuntimeExpr(Builder, VF));
399 set(Def, VectorValue);
400}
401
403VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
404 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
405 // Pred stands for Predessor. Prev stands for Previous - last visited/created.
406 BasicBlock *PrevBB = CFG.PrevBB;
407 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
408 PrevBB->getParent(), CFG.ExitBB);
409 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
410
411 return NewBB;
412}
413
415 BasicBlock *NewBB = CFG.VPBB2IRBB[this];
416 // Hook up the new basic block to its predecessors.
417 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
418 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
419 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
420 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
421
422 assert(PredBB && "Predecessor basic-block not found building successor.");
423 auto *PredBBTerminator = PredBB->getTerminator();
424 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
425
426 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
427 if (isa<UnreachableInst>(PredBBTerminator)) {
428 assert(PredVPSuccessors.size() == 1 &&
429 "Predecessor ending w/o branch must have single successor.");
430 DebugLoc DL = PredBBTerminator->getDebugLoc();
431 PredBBTerminator->eraseFromParent();
432 auto *Br = BranchInst::Create(NewBB, PredBB);
433 Br->setDebugLoc(DL);
434 } else if (TermBr && !TermBr->isConditional()) {
435 TermBr->setSuccessor(0, NewBB);
436 } else {
437 // Set each forward successor here when it is created, excluding
438 // backedges. A backward successor is set when the branch is created.
439 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
440 assert((TermBr && (!TermBr->getSuccessor(idx) ||
441 (isa<VPIRBasicBlock>(this) &&
442 TermBr->getSuccessor(idx) == NewBB))) &&
443 "Trying to reset an existing successor block.");
444 TermBr->setSuccessor(idx, NewBB);
445 }
446 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
447 }
448}
449
451 assert(getHierarchicalSuccessors().size() <= 2 &&
452 "VPIRBasicBlock can have at most two successors at the moment!");
453 State->Builder.SetInsertPoint(IRBB->getTerminator());
454 State->CFG.PrevBB = IRBB;
455 State->CFG.VPBB2IRBB[this] = IRBB;
456 executeRecipes(State, IRBB);
457 // Create a branch instruction to terminate IRBB if one was not created yet
458 // and is needed.
459 if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) {
460 auto *Br = State->Builder.CreateBr(IRBB);
461 Br->setOperand(0, nullptr);
462 IRBB->getTerminator()->eraseFromParent();
463 } else {
464 assert(
465 (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) &&
466 "other blocks must be terminated by a branch");
467 }
468
469 connectToPredecessors(State->CFG);
470}
471
473 auto *NewBlock = getPlan()->createEmptyVPIRBasicBlock(IRBB);
474 for (VPRecipeBase &R : Recipes)
475 NewBlock->appendRecipe(R.clone());
476 return NewBlock;
477}
478
480 bool Replica = bool(State->Lane);
481 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
482
483 auto IsReplicateRegion = [](VPBlockBase *BB) {
484 auto *R = dyn_cast_or_null<VPRegionBlock>(BB);
485 return R && R->isReplicator();
486 };
487
488 // 1. Create an IR basic block.
489 if ((Replica && this == getParent()->getEntry()) ||
490 IsReplicateRegion(getSingleHierarchicalPredecessor())) {
491 // Reuse the previous basic block if the current VPBB is either
492 // * the entry to a replicate region, or
493 // * the exit of a replicate region.
494 State->CFG.VPBB2IRBB[this] = NewBB;
495 } else {
496 NewBB = createEmptyBasicBlock(State->CFG);
497
498 State->Builder.SetInsertPoint(NewBB);
499 // Temporarily terminate with unreachable until CFG is rewired.
500 UnreachableInst *Terminator = State->Builder.CreateUnreachable();
501 // Register NewBB in its loop. In innermost loops its the same for all
502 // BB's.
503 if (State->CurrentParentLoop)
504 State->CurrentParentLoop->addBasicBlockToLoop(NewBB, *State->LI);
505 State->Builder.SetInsertPoint(Terminator);
506
507 State->CFG.PrevBB = NewBB;
508 State->CFG.VPBB2IRBB[this] = NewBB;
509 connectToPredecessors(State->CFG);
510 }
511
512 // 2. Fill the IR basic block with IR instructions.
513 executeRecipes(State, NewBB);
514}
515
517 auto *NewBlock = getPlan()->createVPBasicBlock(getName());
518 for (VPRecipeBase &R : *this)
519 NewBlock->appendRecipe(R.clone());
520 return NewBlock;
521}
522
524 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
525 << " in BB:" << BB->getName() << '\n');
526
527 State->CFG.PrevVPBB = this;
528
529 for (VPRecipeBase &Recipe : Recipes)
530 Recipe.execute(*State);
531
532 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
533}
534
536 assert((SplitAt == end() || SplitAt->getParent() == this) &&
537 "can only split at a position in the same block");
538
540 // Create new empty block after the block to split.
541 auto *SplitBlock = getPlan()->createVPBasicBlock(getName() + ".split");
543
544 // Finally, move the recipes starting at SplitAt to new block.
545 for (VPRecipeBase &ToMove :
546 make_early_inc_range(make_range(SplitAt, this->end())))
547 ToMove.moveBefore(*SplitBlock, SplitBlock->end());
548
549 return SplitBlock;
550}
551
552/// Return the enclosing loop region for region \p P. The templated version is
553/// used to support both const and non-const block arguments.
554template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) {
555 if (P && P->isReplicator()) {
556 P = P->getParent();
557 // Multiple loop regions can be nested, but replicate regions can only be
558 // nested inside a loop region or must be outside any other region.
559 assert((!P || !cast<VPRegionBlock>(P)->isReplicator()) &&
560 "unexpected nested replicate regions");
561 }
562 return P;
563}
564
567}
568
571}
572
573static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
574 if (VPBB->empty()) {
575 assert(
576 VPBB->getNumSuccessors() < 2 &&
577 "block with multiple successors doesn't have a recipe as terminator");
578 return false;
579 }
580
581 const VPRecipeBase *R = &VPBB->back();
582 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
585 (void)IsCondBranch;
586
587 if (VPBB->getNumSuccessors() >= 2 ||
588 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
589 assert(IsCondBranch && "block with multiple successors not terminated by "
590 "conditional branch recipe");
591
592 return true;
593 }
594
595 assert(
596 !IsCondBranch &&
597 "block with 0 or 1 successors terminated by conditional branch recipe");
598 return false;
599}
600
602 if (hasConditionalTerminator(this))
603 return &back();
604 return nullptr;
605}
606
608 if (hasConditionalTerminator(this))
609 return &back();
610 return nullptr;
611}
612
614 return getParent() && getParent()->getExitingBasicBlock() == this;
615}
616
617#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
618void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
619 if (getSuccessors().empty()) {
620 O << Indent << "No successors\n";
621 } else {
622 O << Indent << "Successor(s): ";
623 ListSeparator LS;
624 for (auto *Succ : getSuccessors())
625 O << LS << Succ->getName();
626 O << '\n';
627 }
628}
629
630void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
631 VPSlotTracker &SlotTracker) const {
632 O << Indent << getName() << ":\n";
633
634 auto RecipeIndent = Indent + " ";
635 for (const VPRecipeBase &Recipe : *this) {
636 Recipe.print(O, RecipeIndent, SlotTracker);
637 O << '\n';
638 }
639
640 printSuccessors(O, Indent);
641}
642#endif
643
644static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
645
646// Clone the CFG for all nodes reachable from \p Entry, this includes cloning
647// the blocks and their recipes. Operands of cloned recipes will NOT be updated.
648// Remapping of operands must be done separately. Returns a pair with the new
649// entry and exiting blocks of the cloned region. If \p Entry isn't part of a
650// region, return nullptr for the exiting block.
651static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
653 VPBlockBase *Exiting = nullptr;
654 bool InRegion = Entry->getParent();
655 // First, clone blocks reachable from Entry.
656 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
657 VPBlockBase *NewBB = BB->clone();
658 Old2NewVPBlocks[BB] = NewBB;
659 if (InRegion && BB->getNumSuccessors() == 0) {
660 assert(!Exiting && "Multiple exiting blocks?");
661 Exiting = BB;
662 }
663 }
664 assert((!InRegion || Exiting) && "regions must have a single exiting block");
665
666 // Second, update the predecessors & successors of the cloned blocks.
667 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
668 VPBlockBase *NewBB = Old2NewVPBlocks[BB];
670 for (VPBlockBase *Pred : BB->getPredecessors()) {
671 NewPreds.push_back(Old2NewVPBlocks[Pred]);
672 }
673 NewBB->setPredecessors(NewPreds);
675 for (VPBlockBase *Succ : BB->successors()) {
676 NewSuccs.push_back(Old2NewVPBlocks[Succ]);
677 }
678 NewBB->setSuccessors(NewSuccs);
679 }
680
681#if !defined(NDEBUG)
682 // Verify that the order of predecessors and successors matches in the cloned
683 // version.
684 for (const auto &[OldBB, NewBB] :
686 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
687 for (const auto &[OldPred, NewPred] :
688 zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
689 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
690
691 for (const auto &[OldSucc, NewSucc] :
692 zip(OldBB->successors(), NewBB->successors()))
693 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
694 }
695#endif
696
697 return std::make_pair(Old2NewVPBlocks[Entry],
698 Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
699}
700
702 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
703 auto *NewRegion = getPlan()->createVPRegionBlock(NewEntry, NewExiting,
704 getName(), isReplicator());
705 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
706 Block->setParent(NewRegion);
707 return NewRegion;
708}
709
712 RPOT(Entry);
713
714 if (!isReplicator()) {
715 // Create and register the new vector loop.
716 Loop *PrevLoop = State->CurrentParentLoop;
717 State->CurrentParentLoop = State->LI->AllocateLoop();
718 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
719 Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
720
721 // Insert the new loop into the loop nest and register the new basic blocks
722 // before calling any utilities such as SCEV that require valid LoopInfo.
723 if (ParentLoop)
724 ParentLoop->addChildLoop(State->CurrentParentLoop);
725 else
726 State->LI->addTopLevelLoop(State->CurrentParentLoop);
727
728 // Visit the VPBlocks connected to "this", starting from it.
729 for (VPBlockBase *Block : RPOT) {
730 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
731 Block->execute(State);
732 }
733
734 State->CurrentParentLoop = PrevLoop;
735 return;
736 }
737
738 assert(!State->Lane && "Replicating a Region with non-null instance.");
739
740 // Enter replicating mode.
741 assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
742 State->Lane = VPLane(0);
743 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
744 ++Lane) {
746 // Visit the VPBlocks connected to \p this, starting from it.
747 for (VPBlockBase *Block : RPOT) {
748 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
749 Block->execute(State);
750 }
751 }
752
753 // Exit replicating mode.
754 State->Lane.reset();
755}
756
759 for (VPRecipeBase &R : Recipes)
760 Cost += R.cost(VF, Ctx);
761 return Cost;
762}
763
765 if (!isReplicator()) {
767 for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
768 Cost += Block->cost(VF, Ctx);
769 InstructionCost BackedgeCost =
770 ForceTargetInstructionCost.getNumOccurrences()
771 ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
772 : Ctx.TTI.getCFInstrCost(Instruction::Br, Ctx.CostKind);
773 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
774 << ": vector loop backedge\n");
775 Cost += BackedgeCost;
776 return Cost;
777 }
778
779 // Compute the cost of a replicate region. Replicating isn't supported for
780 // scalable vectors, return an invalid cost for them.
781 // TODO: Discard scalable VPlans with replicate recipes earlier after
782 // construction.
783 if (VF.isScalable())
785
786 // First compute the cost of the conditionally executed recipes, followed by
787 // account for the branching cost, except if the mask is a header mask or
788 // uniform condition.
789 using namespace llvm::VPlanPatternMatch;
790 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
791 InstructionCost ThenCost = Then->cost(VF, Ctx);
792
793 // For the scalar case, we may not always execute the original predicated
794 // block, Thus, scale the block's cost by the probability of executing it.
795 if (VF.isScalar())
796 return ThenCost / getReciprocalPredBlockProb();
797
798 return ThenCost;
799}
800
801#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
803 VPSlotTracker &SlotTracker) const {
804 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
805 auto NewIndent = Indent + " ";
806 for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
807 O << '\n';
808 BlockBase->print(O, NewIndent, SlotTracker);
809 }
810 O << Indent << "}\n";
811
812 printSuccessors(O, Indent);
813}
814#endif
815
816VPlan::VPlan(Loop *L) {
817 setEntry(createVPIRBasicBlock(L->getLoopPreheader()));
818 ScalarHeader = createVPIRBasicBlock(L->getHeader());
819}
820
822 VPValue DummyValue;
823
824 for (auto *VPB : CreatedBlocks) {
825 if (auto *VPBB = dyn_cast<VPBasicBlock>(VPB)) {
826 // Replace all operands of recipes and all VPValues defined in VPBB with
827 // DummyValue so the block can be deleted.
828 for (VPRecipeBase &R : *VPBB) {
829 for (auto *Def : R.definedValues())
830 Def->replaceAllUsesWith(&DummyValue);
831
832 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
833 R.setOperand(I, &DummyValue);
834 }
835 }
836 delete VPB;
837 }
838 for (VPValue *VPV : VPLiveInsToFree)
839 delete VPV;
840 if (BackedgeTakenCount)
841 delete BackedgeTakenCount;
842}
843
846 bool RequiresScalarEpilogueCheck,
847 bool TailFolded, Loop *TheLoop) {
848 auto Plan = std::make_unique<VPlan>(TheLoop);
849 VPBlockBase *ScalarHeader = Plan->getScalarHeader();
850
851 // Connect entry only to vector preheader initially. Entry will also be
852 // connected to the scalar preheader later, during skeleton creation when
853 // runtime guards are added as needed. Note that when executing the VPlan for
854 // an epilogue vector loop, the original entry block here will be replaced by
855 // a new VPIRBasicBlock wrapping the entry to the epilogue vector loop after
856 // generating code for the main vector loop.
857 VPBasicBlock *VecPreheader = Plan->createVPBasicBlock("vector.ph");
858 VPBlockUtils::connectBlocks(Plan->getEntry(), VecPreheader);
859
860 // Create SCEV and VPValue for the trip count.
861 // We use the symbolic max backedge-taken-count, which works also when
862 // vectorizing loops with uncountable early exits.
863 const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount();
864 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) &&
865 "Invalid loop count");
866 ScalarEvolution &SE = *PSE.getSE();
867 const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV,
868 InductionTy, TheLoop);
869 Plan->TripCount =
871
872 // Create VPRegionBlock, with empty header and latch blocks, to be filled
873 // during processing later.
874 VPBasicBlock *HeaderVPBB = Plan->createVPBasicBlock("vector.body");
875 VPBasicBlock *LatchVPBB = Plan->createVPBasicBlock("vector.latch");
876 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
877 auto *TopRegion = Plan->createVPRegionBlock(
878 HeaderVPBB, LatchVPBB, "vector loop", false /*isReplicator*/);
879
880 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
881 VPBasicBlock *MiddleVPBB = Plan->createVPBasicBlock("middle.block");
882 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
883
884 VPBasicBlock *ScalarPH = Plan->createVPBasicBlock("scalar.ph");
885 VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader);
886 if (!RequiresScalarEpilogueCheck) {
887 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
888 return Plan;
889 }
890
891 // If needed, add a check in the middle block to see if we have completed
892 // all of the iterations in the first vector loop. Three cases:
893 // 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
894 // Thus if tail is to be folded, we know we don't need to run the
895 // remainder and we can set the condition to true.
896 // 2) If we require a scalar epilogue, there is no conditional branch as
897 // we unconditionally branch to the scalar preheader. Do nothing.
898 // 3) Otherwise, construct a runtime check.
899 BasicBlock *IRExitBlock = TheLoop->getUniqueLatchExitBlock();
900 auto *VPExitBlock = Plan->createVPIRBasicBlock(IRExitBlock);
901 // The connection order corresponds to the operands of the conditional branch.
902 VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
903 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
904
905 auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
906 // Here we use the same DebugLoc as the scalar loop latch terminator instead
907 // of the corresponding compare because they may have ended up with
908 // different line numbers and we want to avoid awkward line stepping while
909 // debugging. Eg. if the compare has got a line number inside the loop.
910 VPBuilder Builder(MiddleVPBB);
911 VPValue *Cmp =
912 TailFolded
914 IntegerType::getInt1Ty(TripCount->getType()->getContext())))
915 : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
917 ScalarLatchTerm->getDebugLoc(), "cmp.n");
918 Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
919 ScalarLatchTerm->getDebugLoc());
920 return Plan;
921}
922
923void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
924 VPTransformState &State) {
925 Type *TCTy = TripCountV->getType();
926 // Check if the backedge taken count is needed, and if so build it.
927 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
929 auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1),
930 "trip.count.minus.1");
931 BackedgeTakenCount->setUnderlyingValue(TCMO);
932 }
933
934 VectorTripCount.setUnderlyingValue(VectorTripCountV);
935
937 // FIXME: Model VF * UF computation completely in VPlan.
938 assert((!getVectorLoopRegion() || VFxUF.getNumUsers()) &&
939 "VFxUF expected to always have users");
940 unsigned UF = getUF();
941 if (VF.getNumUsers()) {
942 Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF);
943 VF.setUnderlyingValue(RuntimeVF);
944 VFxUF.setUnderlyingValue(
945 UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF))
946 : RuntimeVF);
947 } else {
948 VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF));
949 }
950}
951
952/// Generate the code inside the preheader and body of the vectorized loop.
953/// Assumes a single pre-header basic-block was created for this. Introduce
954/// additional basic-blocks as needed, and fill them all.
956 // Initialize CFG state.
957 State->CFG.PrevVPBB = nullptr;
958 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
959
960 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
961 BasicBlock *VectorPreHeader = State->CFG.PrevBB;
962 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
963 State->CFG.DTU.applyUpdates(
964 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
965
966 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF
967 << ", UF=" << getUF() << '\n');
968 setName("Final VPlan");
969 LLVM_DEBUG(dump());
970
971 // Disconnect the middle block from its single successor (the scalar loop
972 // header) in both the CFG and DT. The branch will be recreated during VPlan
973 // execution.
974 BasicBlock *MiddleBB = State->CFG.ExitBB;
975 BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
976 auto *BrInst = new UnreachableInst(MiddleBB->getContext());
977 BrInst->insertBefore(MiddleBB->getTerminator()->getIterator());
978 MiddleBB->getTerminator()->eraseFromParent();
979 State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
980 // Disconnect scalar preheader and scalar header, as the dominator tree edge
981 // will be updated as part of VPlan execution. This allows keeping the DTU
982 // logic generic during VPlan execution.
983 State->CFG.DTU.applyUpdates(
984 {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}});
985
987 Entry);
988 // Generate code for the VPlan, in parts of the vector skeleton, loop body and
989 // successor blocks including the middle, exit and scalar preheader blocks.
990 for (VPBlockBase *Block : RPOT)
991 Block->execute(State);
992
993 State->CFG.DTU.flush();
994
995 auto *LoopRegion = getVectorLoopRegion();
996 if (!LoopRegion)
997 return;
998
999 VPBasicBlock *LatchVPBB = LoopRegion->getExitingBasicBlock();
1000 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
1001
1002 // Fix the latch value of canonical, reduction and first-order recurrences
1003 // phis in the vector loop.
1004 VPBasicBlock *Header = LoopRegion->getEntryBasicBlock();
1005 for (VPRecipeBase &R : Header->phis()) {
1006 // Skip phi-like recipes that generate their backedege values themselves.
1007 if (isa<VPWidenPHIRecipe>(&R))
1008 continue;
1009
1010 if (isa<VPWidenInductionRecipe>(&R)) {
1011 PHINode *Phi = nullptr;
1012 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1013 Phi = cast<PHINode>(State->get(R.getVPSingleValue()));
1014 } else {
1015 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
1016 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
1017 "recipe generating only scalars should have been replaced");
1018 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi));
1019 Phi = cast<PHINode>(GEP->getPointerOperand());
1020 }
1021
1022 Phi->setIncomingBlock(1, VectorLatchBB);
1023
1024 // Move the last step to the end of the latch block. This ensures
1025 // consistent placement of all induction updates.
1026 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1027 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1028
1029 // Use the steps for the last part as backedge value for the induction.
1030 if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R))
1031 Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand()));
1032 continue;
1033 }
1034
1035 auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1036 bool NeedsScalar = isa<VPScalarPHIRecipe>(PhiR) ||
1037 (isa<VPReductionPHIRecipe>(PhiR) &&
1038 cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1039 Value *Phi = State->get(PhiR, NeedsScalar);
1040 Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar);
1041 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1042 }
1043}
1044
1046 // For now only return the cost of the vector loop region, ignoring any other
1047 // blocks, like the preheader or middle blocks.
1048 return getVectorLoopRegion()->cost(VF, Ctx);
1049}
1050
1052 // TODO: Cache if possible.
1053 for (VPBlockBase *B : vp_depth_first_shallow(getEntry()))
1054 if (auto *R = dyn_cast<VPRegionBlock>(B))
1055 return R->isReplicator() ? nullptr : R;
1056 return nullptr;
1057}
1058
1060 for (const VPBlockBase *B : vp_depth_first_shallow(getEntry()))
1061 if (auto *R = dyn_cast<VPRegionBlock>(B))
1062 return R->isReplicator() ? nullptr : R;
1063 return nullptr;
1064}
1065
1066#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1069
1070 if (VF.getNumUsers() > 0) {
1071 O << "\nLive-in ";
1072 VF.printAsOperand(O, SlotTracker);
1073 O << " = VF";
1074 }
1075
1076 if (VFxUF.getNumUsers() > 0) {
1077 O << "\nLive-in ";
1078 VFxUF.printAsOperand(O, SlotTracker);
1079 O << " = VF * UF";
1080 }
1081
1082 if (VectorTripCount.getNumUsers() > 0) {
1083 O << "\nLive-in ";
1084 VectorTripCount.printAsOperand(O, SlotTracker);
1085 O << " = vector-trip-count";
1086 }
1087
1088 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1089 O << "\nLive-in ";
1090 BackedgeTakenCount->printAsOperand(O, SlotTracker);
1091 O << " = backedge-taken count";
1092 }
1093
1094 O << "\n";
1095 if (TripCount->isLiveIn())
1096 O << "Live-in ";
1097 TripCount->printAsOperand(O, SlotTracker);
1098 O << " = original trip-count";
1099 O << "\n";
1100}
1101
1105
1106 O << "VPlan '" << getName() << "' {";
1107
1108 printLiveIns(O);
1109
1111 RPOT(getEntry());
1112 for (const VPBlockBase *Block : RPOT) {
1113 O << '\n';
1114 Block->print(O, "", SlotTracker);
1115 }
1116
1117 O << "}\n";
1118}
1119
1120std::string VPlan::getName() const {
1121 std::string Out;
1122 raw_string_ostream RSO(Out);
1123 RSO << Name << " for ";
1124 if (!VFs.empty()) {
1125 RSO << "VF={" << VFs[0];
1126 for (ElementCount VF : drop_begin(VFs))
1127 RSO << "," << VF;
1128 RSO << "},";
1129 }
1130
1131 if (UFs.empty()) {
1132 RSO << "UF>=1";
1133 } else {
1134 RSO << "UF={" << UFs[0];
1135 for (unsigned UF : drop_begin(UFs))
1136 RSO << "," << UF;
1137 RSO << "}";
1138 }
1139
1140 return Out;
1141}
1142
1145 VPlanPrinter Printer(O, *this);
1146 Printer.dump();
1147}
1148
1150void VPlan::dump() const { print(dbgs()); }
1151#endif
1152
1153static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1154 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1155 // Update the operands of all cloned recipes starting at NewEntry. This
1156 // traverses all reachable blocks. This is done in two steps, to handle cycles
1157 // in PHI recipes.
1159 OldDeepRPOT(Entry);
1161 NewDeepRPOT(NewEntry);
1162 // First, collect all mappings from old to new VPValues defined by cloned
1163 // recipes.
1164 for (const auto &[OldBB, NewBB] :
1165 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1166 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1167 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1168 "blocks must have the same number of recipes");
1169 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1170 assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1171 "recipes must have the same number of operands");
1172 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1173 "recipes must define the same number of operands");
1174 for (const auto &[OldV, NewV] :
1175 zip(OldR.definedValues(), NewR.definedValues()))
1176 Old2NewVPValues[OldV] = NewV;
1177 }
1178 }
1179
1180 // Update all operands to use cloned VPValues.
1181 for (VPBasicBlock *NewBB :
1182 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1183 for (VPRecipeBase &NewR : *NewBB)
1184 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1185 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1186 NewR.setOperand(I, NewOp);
1187 }
1188 }
1189}
1190
1192 unsigned NumBlocksBeforeCloning = CreatedBlocks.size();
1193 // Clone blocks.
1194 const auto &[NewEntry, __] = cloneFrom(Entry);
1195
1196 BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock();
1197 VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if(
1198 vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) {
1199 auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB);
1200 return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB;
1201 }));
1202 // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1203 auto *NewPlan = new VPlan(cast<VPBasicBlock>(NewEntry), NewScalarHeader);
1204 DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1205 for (VPValue *OldLiveIn : VPLiveInsToFree) {
1206 Old2NewVPValues[OldLiveIn] =
1207 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1208 }
1209 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1210 Old2NewVPValues[&VF] = &NewPlan->VF;
1211 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1212 if (BackedgeTakenCount) {
1213 NewPlan->BackedgeTakenCount = new VPValue();
1214 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1215 }
1216 assert(TripCount && "trip count must be set");
1217 if (TripCount->isLiveIn())
1218 Old2NewVPValues[TripCount] =
1219 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1220 // else NewTripCount will be created and inserted into Old2NewVPValues when
1221 // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1222
1223 remapOperands(Entry, NewEntry, Old2NewVPValues);
1224
1225 // Initialize remaining fields of cloned VPlan.
1226 NewPlan->VFs = VFs;
1227 NewPlan->UFs = UFs;
1228 // TODO: Adjust names.
1229 NewPlan->Name = Name;
1230 assert(Old2NewVPValues.contains(TripCount) &&
1231 "TripCount must have been added to Old2NewVPValues");
1232 NewPlan->TripCount = Old2NewVPValues[TripCount];
1233
1234 // Transfer all cloned blocks (the second half of all current blocks) from
1235 // current to new VPlan.
1236 unsigned NumBlocksAfterCloning = CreatedBlocks.size();
1237 for (unsigned I :
1238 seq<unsigned>(NumBlocksBeforeCloning, NumBlocksAfterCloning))
1239 NewPlan->CreatedBlocks.push_back(this->CreatedBlocks[I]);
1240 CreatedBlocks.truncate(NumBlocksBeforeCloning);
1241
1242 return NewPlan;
1243}
1244
1246 auto *VPIRBB = new VPIRBasicBlock(IRBB);
1247 CreatedBlocks.push_back(VPIRBB);
1248 return VPIRBB;
1249}
1250
1252 auto *VPIRBB = createEmptyVPIRBasicBlock(IRBB);
1253 for (Instruction &I :
1254 make_range(IRBB->begin(), IRBB->getTerminator()->getIterator()))
1255 VPIRBB->appendRecipe(new VPIRInstruction(I));
1256 return VPIRBB;
1257}
1258
1259#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1260
1261Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1262 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1263 Twine(getOrCreateBID(Block));
1264}
1265
1266Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1267 const std::string &Name = Block->getName();
1268 if (!Name.empty())
1269 return Name;
1270 return "VPB" + Twine(getOrCreateBID(Block));
1271}
1272
1274 Depth = 1;
1275 bumpIndent(0);
1276 OS << "digraph VPlan {\n";
1277 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1278 if (!Plan.getName().empty())
1279 OS << "\\n" << DOT::EscapeString(Plan.getName());
1280
1281 {
1282 // Print live-ins.
1283 std::string Str;
1284 raw_string_ostream SS(Str);
1285 Plan.printLiveIns(SS);
1287 StringRef(Str).rtrim('\n').split(Lines, "\n");
1288 for (auto Line : Lines)
1289 OS << DOT::EscapeString(Line.str()) << "\\n";
1290 }
1291
1292 OS << "\"]\n";
1293 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1294 OS << "edge [fontname=Courier, fontsize=30]\n";
1295 OS << "compound=true\n";
1296
1298 dumpBlock(Block);
1299
1300 OS << "}\n";
1301}
1302
1303void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1304 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1305 dumpBasicBlock(BasicBlock);
1306 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1307 dumpRegion(Region);
1308 else
1309 llvm_unreachable("Unsupported kind of VPBlock.");
1310}
1311
1312void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1313 bool Hidden, const Twine &Label) {
1314 // Due to "dot" we print an edge between two regions as an edge between the
1315 // exiting basic block and the entry basic of the respective regions.
1316 const VPBlockBase *Tail = From->getExitingBasicBlock();
1317 const VPBlockBase *Head = To->getEntryBasicBlock();
1318 OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1319 OS << " [ label=\"" << Label << '\"';
1320 if (Tail != From)
1321 OS << " ltail=" << getUID(From);
1322 if (Head != To)
1323 OS << " lhead=" << getUID(To);
1324 if (Hidden)
1325 OS << "; splines=none";
1326 OS << "]\n";
1327}
1328
1329void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1330 auto &Successors = Block->getSuccessors();
1331 if (Successors.size() == 1)
1332 drawEdge(Block, Successors.front(), false, "");
1333 else if (Successors.size() == 2) {
1334 drawEdge(Block, Successors.front(), false, "T");
1335 drawEdge(Block, Successors.back(), false, "F");
1336 } else {
1337 unsigned SuccessorNumber = 0;
1338 for (auto *Successor : Successors)
1339 drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1340 }
1341}
1342
1343void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1344 // Implement dot-formatted dump by performing plain-text dump into the
1345 // temporary storage followed by some post-processing.
1346 OS << Indent << getUID(BasicBlock) << " [label =\n";
1347 bumpIndent(1);
1348 std::string Str;
1350 // Use no indentation as we need to wrap the lines into quotes ourselves.
1351 BasicBlock->print(SS, "", SlotTracker);
1352
1353 // We need to process each line of the output separately, so split
1354 // single-string plain-text dump.
1356 StringRef(Str).rtrim('\n').split(Lines, "\n");
1357
1358 auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1359 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1360 };
1361
1362 // Don't need the "+" after the last line.
1363 for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1364 EmitLine(Line, " +\n");
1365 EmitLine(Lines.back(), "\n");
1366
1367 bumpIndent(-1);
1368 OS << Indent << "]\n";
1369
1371}
1372
1373void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1374 OS << Indent << "subgraph " << getUID(Region) << " {\n";
1375 bumpIndent(1);
1376 OS << Indent << "fontname=Courier\n"
1377 << Indent << "label=\""
1378 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1379 << DOT::EscapeString(Region->getName()) << "\"\n";
1380 // Dump the blocks of the region.
1381 assert(Region->getEntry() && "Region contains no inner blocks.");
1383 dumpBlock(Block);
1384 bumpIndent(-1);
1385 OS << Indent << "}\n";
1387}
1388
1390 if (auto *Inst = dyn_cast<Instruction>(V)) {
1391 if (!Inst->getType()->isVoidTy()) {
1392 Inst->printAsOperand(O, false);
1393 O << " = ";
1394 }
1395 O << Inst->getOpcodeName() << " ";
1396 unsigned E = Inst->getNumOperands();
1397 if (E > 0) {
1398 Inst->getOperand(0)->printAsOperand(O, false);
1399 for (unsigned I = 1; I < E; ++I)
1400 Inst->getOperand(I)->printAsOperand(O << ", ", false);
1401 }
1402 } else // !Inst
1403 V->printAsOperand(O, false);
1404}
1405
1406#endif
1407
1408/// Returns true if there is a vector loop region and \p VPV is defined in a
1409/// loop region.
1410static bool isDefinedInsideLoopRegions(const VPValue *VPV) {
1411 const VPRecipeBase *DefR = VPV->getDefiningRecipe();
1412 return DefR && (!DefR->getParent()->getPlan()->getVectorLoopRegion() ||
1414}
1415
1417 return !isDefinedInsideLoopRegions(this);
1418}
1420 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1421}
1422
1424 VPValue *New,
1425 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1426 // Note that this early exit is required for correctness; the implementation
1427 // below relies on the number of users for this VPValue to decrease, which
1428 // isn't the case if this == New.
1429 if (this == New)
1430 return;
1431
1432 for (unsigned J = 0; J < getNumUsers();) {
1433 VPUser *User = Users[J];
1434 bool RemovedUser = false;
1435 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1436 if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1437 continue;
1438
1439 RemovedUser = true;
1440 User->setOperand(I, New);
1441 }
1442 // If a user got removed after updating the current user, the next user to
1443 // update will be moved to the current position, so we only need to
1444 // increment the index if the number of users did not change.
1445 if (!RemovedUser)
1446 J++;
1447 }
1448}
1449
1450#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1452 OS << Tracker.getOrCreateName(this);
1453}
1454
1456 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1457 Op->printAsOperand(O, SlotTracker);
1458 });
1459}
1460#endif
1461
1462void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1463 Old2NewTy &Old2New,
1464 InterleavedAccessInfo &IAI) {
1466 RPOT(Region->getEntry());
1467 for (VPBlockBase *Base : RPOT) {
1468 visitBlock(Base, Old2New, IAI);
1469 }
1470}
1471
1472void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1473 InterleavedAccessInfo &IAI) {
1474 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1475 for (VPRecipeBase &VPI : *VPBB) {
1476 if (isa<VPWidenPHIRecipe>(&VPI))
1477 continue;
1478 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1479 auto *VPInst = cast<VPInstruction>(&VPI);
1480
1481 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1482 if (!Inst)
1483 continue;
1484 auto *IG = IAI.getInterleaveGroup(Inst);
1485 if (!IG)
1486 continue;
1487
1488 auto NewIGIter = Old2New.find(IG);
1489 if (NewIGIter == Old2New.end())
1490 Old2New[IG] = new InterleaveGroup<VPInstruction>(
1491 IG->getFactor(), IG->isReverse(), IG->getAlign());
1492
1493 if (Inst == IG->getInsertPos())
1494 Old2New[IG]->setInsertPos(VPInst);
1495
1496 InterleaveGroupMap[VPInst] = Old2New[IG];
1497 InterleaveGroupMap[VPInst]->insertMember(
1498 VPInst, IG->getIndex(Inst),
1499 Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1500 : IG->getFactor()));
1501 }
1502 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1503 visitRegion(Region, Old2New, IAI);
1504 else
1505 llvm_unreachable("Unsupported kind of VPBlock.");
1506}
1507
1509 InterleavedAccessInfo &IAI) {
1510 Old2NewTy Old2New;
1511 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1512}
1513
1514void VPSlotTracker::assignName(const VPValue *V) {
1515 assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1516 auto *UV = V->getUnderlyingValue();
1517 auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe());
1518 if (!UV && !(VPI && !VPI->getName().empty())) {
1519 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1520 NextSlot++;
1521 return;
1522 }
1523
1524 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1525 // appending ".Number" to the name if there are multiple uses.
1526 std::string Name;
1527 if (UV) {
1529 UV->printAsOperand(S, false);
1530 } else
1531 Name = VPI->getName();
1532
1533 assert(!Name.empty() && "Name cannot be empty.");
1534 StringRef Prefix = UV ? "ir<" : "vp<%";
1535 std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
1536
1537 // First assign the base name for V.
1538 const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1539 // Integer or FP constants with different types will result in he same string
1540 // due to stripping types.
1541 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1542 return;
1543
1544 // If it is already used by C > 0 other VPValues, increase the version counter
1545 // C and use it for V.
1546 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1547 if (!UseInserted) {
1548 C->second++;
1549 A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1550 }
1551}
1552
1553void VPSlotTracker::assignNames(const VPlan &Plan) {
1554 if (Plan.VF.getNumUsers() > 0)
1555 assignName(&Plan.VF);
1556 if (Plan.VFxUF.getNumUsers() > 0)
1557 assignName(&Plan.VFxUF);
1558 assignName(&Plan.VectorTripCount);
1559 if (Plan.BackedgeTakenCount)
1560 assignName(Plan.BackedgeTakenCount);
1561 for (VPValue *LI : Plan.VPLiveInsToFree)
1562 assignName(LI);
1563
1566 for (const VPBasicBlock *VPBB :
1567 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1568 assignNames(VPBB);
1569}
1570
1571void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1572 for (const VPRecipeBase &Recipe : *VPBB)
1573 for (VPValue *Def : Recipe.definedValues())
1574 assignName(Def);
1575}
1576
1577std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1578 std::string Name = VPValue2Name.lookup(V);
1579 if (!Name.empty())
1580 return Name;
1581
1582 // If no name was assigned, no VPlan was provided when creating the slot
1583 // tracker or it is not reachable from the provided VPlan. This can happen,
1584 // e.g. when trying to print a recipe that has not been inserted into a VPlan
1585 // in a debugger.
1586 // TODO: Update VPSlotTracker constructor to assign names to recipes &
1587 // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1588 // here.
1589 const VPRecipeBase *DefR = V->getDefiningRecipe();
1590 (void)DefR;
1591 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1592 "VPValue defined by a recipe in a VPlan?");
1593
1594 // Use the underlying value's name, if there is one.
1595 if (auto *UV = V->getUnderlyingValue()) {
1596 std::string Name;
1598 UV->printAsOperand(S, false);
1599 return (Twine("ir<") + Name + ">").str();
1600 }
1601
1602 return "<badref>";
1603}
1604
1606 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
1607 assert(!Range.isEmpty() && "Trying to test an empty VF range.");
1608 bool PredicateAtRangeStart = Predicate(Range.Start);
1609
1610 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
1611 if (Predicate(TmpVF) != PredicateAtRangeStart) {
1612 Range.End = TmpVF;
1613 break;
1614 }
1615
1616 return PredicateAtRangeStart;
1617}
1618
1619/// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
1620/// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
1621/// of VF's starting at a given VF and extending it as much as possible. Each
1622/// vectorization decision can potentially shorten this sub-range during
1623/// buildVPlan().
1625 ElementCount MaxVF) {
1626 auto MaxVFTimes2 = MaxVF * 2;
1627 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
1628 VFRange SubRange = {VF, MaxVFTimes2};
1629 auto Plan = buildVPlan(SubRange);
1631 VPlans.push_back(std::move(Plan));
1632 VF = SubRange.End;
1633 }
1634}
1635
1637 assert(count_if(VPlans,
1638 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1639 1 &&
1640 "Multiple VPlans for VF.");
1641
1642 for (const VPlanPtr &Plan : VPlans) {
1643 if (Plan->hasVF(VF))
1644 return *Plan.get();
1645 }
1646 llvm_unreachable("No plan found!");
1647}
1648
1649#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1651 if (VPlans.empty()) {
1652 O << "LV: No VPlans built.\n";
1653 return;
1654 }
1655 for (const auto &Plan : VPlans)
1657 Plan->printDOT(O);
1658 else
1659 Plan->print(O);
1660}
1661#endif
1662
1665 if (!V->isLiveIn())
1666 return {};
1667
1668 return TTI::getOperandInfo(V->getLiveInIRValue());
1669}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static const Function * getParent(const Value *V)
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:622
dxil pretty DXIL Metadata Pretty Printer
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(...)
Definition: Debug.h:106
std::string Name
Flatten the CFG
static void dumpEdges(CFGMST< Edge, BBInfo > &MST, GCOVFunction &GF)
Hexagon Common GEP
#define _
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
iv Induction Variable Users
Definition: IVUsers.cpp:48
This file provides a LoopVectorizationPlanner class.
cl::opt< unsigned > ForceTargetInstructionCost("force-target-instruction-cost", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's expected cost for " "an instruction to a single constant value. Mostly " "useful for getting consistent testing."))
#define I(x, y, z)
Definition: MD5.cpp:58
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
#define P(N)
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
static StringRef getName(Value *V)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
This file provides utility VPlan to VPlan transformations.
static T * getPlanEntry(T *Start)
Definition: VPlan.cpp:133
static T * getEnclosingLoopRegionForRegion(T *P)
Return the enclosing loop region for region P.
Definition: VPlan.cpp:554
static bool isDefinedInsideLoopRegions(const VPValue *VPV)
Returns true if there is a vector loop region and VPV is defined in a loop region.
Definition: VPlan.cpp:1410
cl::opt< unsigned > ForceTargetInstructionCost
static bool hasConditionalTerminator(const VPBasicBlock *VPBB)
Definition: VPlan.cpp:573
static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, DenseMap< VPValue *, VPValue * > &Old2NewVPValues)
Definition: VPlan.cpp:1153
static std::pair< VPBlockBase *, VPBlockBase * > cloneFrom(VPBlockBase *Entry)
Definition: VPlan.cpp:651
static cl::opt< bool > PrintVPlansInDotFormat("vplan-print-in-dot-format", cl::Hidden, cl::desc("Use dot format instead of plain text when dumping VPlans"))
This file contains the declarations of the Vectorization Plan base classes:
static bool IsCondBranch(unsigned BrOpc)
static const uint32_t IV[8]
Definition: blake3_impl.h:78
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
iterator end()
Definition: BasicBlock.h:462
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:449
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the basic block to an output stream with an optional AssemblyAnnotationWriter.
Definition: AsmWriter.cpp:4901
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:213
const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
Definition: BasicBlock.cpp:489
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:220
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:168
size_t size() const
Definition: BasicBlock.h:470
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:240
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
@ ICMP_EQ
equal
Definition: InstrTypes.h:694
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:866
Debug location.
std::optional< const DILocation * > cloneByMultiplyingDuplicationFactor(unsigned DF) const
Returns a new DILocation with duplication factor DF * current duplication factor encoded in the discr...
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:194
unsigned size() const
Definition: DenseMap.h:99
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:147
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
constexpr bool isScalar() const
Exactly one element.
Definition: TypeSize.h:322
bool shouldEmitDebugInfoForProfiling() const
Returns true if we should emit debug info for profiling.
Definition: Metadata.cpp:1878
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
void flush()
Apply all pending updates to available trees and flush all BasicBlocks awaiting deletion.
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:113
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2511
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2499
UnreachableInst * CreateUnreachable()
Definition: IRBuilder.h:1306
Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Definition: IRBuilder.cpp:1163
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition: IRBuilder.h:545
BasicBlock * GetInsertBlock() const
Definition: IRBuilder.h:193
void SetCurrentDebugLocation(DebugLoc L)
Set location information used by debugging information.
Definition: IRBuilder.h:239
InsertPoint saveIP() const
Returns the current insert point.
Definition: IRBuilder.h:296
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:505
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1387
BranchInst * CreateBr(BasicBlock *Dest)
Create an unconditional 'br label X' instruction.
Definition: IRBuilder.h:1158
void restoreIP(InsertPoint IP)
Sets the current insert point to a previously-saved location.
Definition: IRBuilder.h:308
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:199
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1404
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2705
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
static InstructionCost getInvalid(CostType Val=0)
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:94
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
The group of interleaved loads/stores sharing the same stride and close to each other.
Definition: VectorUtils.h:488
Drive the analysis of interleaved memory accesses in the loop.
Definition: VectorUtils.h:630
InterleaveGroup< Instruction > * getInterleaveGroup(const Instruction *Instr) const
Get the interleave group that Instr belongs to.
Definition: VectorUtils.h:675
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
BlockT * getUniqueLatchExitBlock() const
Return the unique exit block for the latch, or null if there are multiple different exit blocks or th...
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
LoopT * AllocateLoop(ArgsTy &&...Args)
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
Definition: VPlan.cpp:1636
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
Definition: VPlan.cpp:1624
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition: VPlan.cpp:1605
void printPlans(raw_ostream &O)
Definition: VPlan.cpp:1650
void annotateInstWithNoAlias(Instruction *VersionedInst, const Instruction *OrigInst)
Add the noalias annotations to VersionedInst.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
void eraseFromParent()
This method unlinks 'this' from the containing function and deletes it.
void dump() const
User-friendly dump.
Definition: AsmWriter.cpp:5337
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1878
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
BlockT * getEntry() const
Get the entry BasicBlock of the Region.
Definition: RegionInfo.h:320
This class represents an analyzed expression in the program.
Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:98
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:162
This class provides computation of slot numbers for LLVM Assembly writing.
Definition: AsmWriter.cpp:698
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:370
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition: StringRef.h:700
StringRef rtrim(char Char) const
Return string with consecutive Char characters starting from the right removed.
Definition: StringRef.h:803
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
static OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static IntegerType * getInt1Ty(LLVMContext &C)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
This function has undefined behavior.
void setOperand(unsigned i, Value *Val)
Definition: User.h:233
Value * getOperand(unsigned i) const
Definition: User.h:228
unsigned getNumOperands() const
Definition: User.h:250
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:3532
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
Definition: VPlan.h:3607
RecipeListTy::iterator iterator
Instruction iterators...
Definition: VPlan.h:3559
void connectToPredecessors(VPTransformState::CFGState &CFG)
Connect the VPBBs predecessors' in the VPlan CFG to the IR basic block generated for this VPBB.
Definition: VPlan.cpp:414
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
Definition: VPlan.cpp:479
iterator end()
Definition: VPlan.h:3569
iterator begin()
Recipe iterator methods.
Definition: VPlan.h:3567
VPBasicBlock * clone() override
Clone the current block and it's recipes, without updating the operands of the cloned recipes.
Definition: VPlan.cpp:516
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
Definition: VPlan.cpp:757
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition: VPlan.cpp:208
VPRegionBlock * getEnclosingLoopRegion()
Definition: VPlan.cpp:565
VPBasicBlock * splitAt(iterator SplitAt)
Split current block at SplitAt by inserting a new block between the current block and its successors ...
Definition: VPlan.cpp:535
void executeRecipes(VPTransformState *State, BasicBlock *BB)
Execute the recipes in the IR basic block BB.
Definition: VPlan.cpp:523
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print this VPBsicBlock to O, prefixing all lines with Indent.
Definition: VPlan.cpp:630
bool isExiting() const
Returns true if the block is exiting it's parent region.
Definition: VPlan.cpp:613
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
Definition: VPlan.cpp:601
const VPRecipeBase & back() const
Definition: VPlan.h:3581
bool empty() const
Definition: VPlan.h:3578
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:391
void setSuccessors(ArrayRef< VPBlockBase * > NewSuccs)
Set each VPBasicBlock in NewSuccss as successor of this VPBlockBase.
Definition: VPlan.h:607
VPRegionBlock * getParent()
Definition: VPlan.h:483
const VPBasicBlock * getExitingBasicBlock() const
Definition: VPlan.cpp:178
size_t getNumSuccessors() const
Definition: VPlan.h:529
iterator_range< VPBlockBase ** > successors()
Definition: VPlan.h:511
void printSuccessors(raw_ostream &O, const Twine &Indent) const
Print the successors of this block to O, prefixing all lines with Indent.
Definition: VPlan.cpp:618
void setPredecessors(ArrayRef< VPBlockBase * > NewPreds)
Set each VPBasicBlock in NewPreds as predecessor of this VPBlockBase.
Definition: VPlan.h:598
VPBlockBase * getEnclosingBlockWithPredecessors()
Definition: VPlan.cpp:200
const VPBlocksTy & getPredecessors() const
Definition: VPlan.h:514
VPlan * getPlan()
Definition: VPlan.cpp:153
void setPlan(VPlan *ParentPlan)
Sets the pointer of the plan containing the block.
Definition: VPlan.cpp:172
const VPBlocksTy & getHierarchicalSuccessors()
Definition: VPlan.h:549
VPBlockBase * getEnclosingBlockWithSuccessors()
An Enclosing Block of a block B is any block containing B, including B itself.
Definition: VPlan.cpp:192
const VPBasicBlock * getEntryBasicBlock() const
Definition: VPlan.cpp:158
Helper for GraphTraits specialization that traverses through VPRegionBlocks.
Definition: VPlanCFG.h:116
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBase NewBlock after BlockPtr.
Definition: VPlanUtils.h:88
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition: VPlanUtils.h:142
VPlan-based builder utility analogous to IRBuilder.
This class augments a recipe with a set of VPValues defined by the recipe.
Definition: VPlanValue.h:298
void dump() const
Dump the VPDef to stderr (for debugging).
Definition: VPlan.cpp:114
virtual void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPDef prints itself.
Recipe to expand a SCEV expression.
Definition: VPlan.h:3190
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition: VPlan.h:3674
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
Definition: VPlan.cpp:450
VPIRBasicBlock * clone() override
Clone the current block and it's recipes, without updating the operands of the cloned recipes.
Definition: VPlan.cpp:472
A recipe to wrap on original IR instruction not to be modified during execution, execept for PHIs.
Definition: VPlan.h:1376
This is a concrete Recipe that models a single VPlan-level instruction.
Definition: VPlan.h:1188
VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI)
Definition: VPlan.cpp:1508
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
Definition: VPlan.h:153
Value * getAsRuntimeExpr(IRBuilderBase &Builder, const ElementCount &VF) const
Returns an expression describing the lane index that can be used at runtime.
Definition: VPlan.cpp:73
static VPLane getFirstLane()
Definition: VPlan.h:178
@ ScalableLast
For ScalableLast, Lane is the offset from the start of the last N-element subvector in a scalable vec...
@ First
For First, Lane is the index into the first N elements of a fixed-vector <N x <ElTy>> or a scalable v...
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition: VPlan.h:710
VPBasicBlock * getParent()
Definition: VPlan.h:735
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition: VPlan.h:3709
VPRegionBlock * clone() override
Clone all blocks in the single-entry single-exit region of the block and their recipes without updati...
Definition: VPlan.cpp:701
const VPBlockBase * getEntry() const
Definition: VPlan.h:3745
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
Definition: VPlan.h:3777
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of the block.
Definition: VPlan.cpp:764
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print this VPRegionBlock to O (recursively), prefixing all lines with Indent.
Definition: VPlan.cpp:802
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPRegionBlock,...
Definition: VPlan.cpp:710
const VPBlockBase * getExiting() const
Definition: VPlan.h:3757
VPBasicBlock * getPreheaderVPBB()
Returns the pre-header VPBasicBlock of the loop region.
Definition: VPlan.h:3770
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
Definition: VPlan.h:3475
This class can be used to assign names to VPValues.
Definition: VPlanValue.h:447
std::string getOrCreateName(const VPValue *V) const
Returns the name assigned to V, if there is one, otherwise try to construct one from the underlying v...
Definition: VPlan.cpp:1577
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition: VPlanValue.h:206
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
Definition: VPlan.cpp:1455
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop region.
Definition: VPlan.cpp:1416
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition: VPlan.cpp:123
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Definition: VPlan.cpp:1451
void dump() const
Dump the value to stderr (for debugging).
Definition: VPlan.cpp:106
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
Definition: VPlan.cpp:86
virtual ~VPValue()
Definition: VPlan.cpp:92
void print(raw_ostream &OS, VPSlotTracker &Tracker) const
Definition: VPlan.cpp:99
void replaceAllUsesWith(VPValue *New)
Definition: VPlan.cpp:1419
unsigned getNumUsers() const
Definition: VPlanValue.h:117
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition: VPlan.cpp:1423
VPDef * Def
Pointer to the VPDef that defines this VPValue.
Definition: VPlanValue.h:69
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition: VPlan.h:2142
VPlanPrinter prints a given VPlan to a given output stream.
Definition: VPlan.h:4135
LLVM_DUMP_METHOD void dump()
Definition: VPlan.cpp:1273
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition: VPlan.h:3808
void printDOT(raw_ostream &O) const
Print this VPlan in DOT format to O.
Definition: VPlan.cpp:1144
std::string getName() const
Return a string with the name of the plan and the applicable VFs and UFs.
Definition: VPlan.cpp:1120
void prepareToExecute(Value *TripCount, Value *VectorTripCount, VPTransformState &State)
Prepare the plan for execution, setting up the required live-in values.
Definition: VPlan.cpp:923
VPBasicBlock * getEntry()
Definition: VPlan.h:3921
VPRegionBlock * createVPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, const std::string &Name="", bool IsReplicator=false)
Create a new VPRegionBlock with Entry, Exiting and Name.
Definition: VPlan.h:4101
VPValue & getVectorTripCount()
The vector trip count.
Definition: VPlan.h:3983
VPValue * getTripCount() const
The trip count of the original loop.
Definition: VPlan.h:3962
unsigned getUF() const
Definition: VPlan.h:4014
static VPlanPtr createInitialVPlan(Type *InductionTy, PredicatedScalarEvolution &PSE, bool RequiresScalarEpilogueCheck, bool TailFolded, Loop *TheLoop)
Create initial VPlan, having an "entry" VPBasicBlock (wrapping original scalar pre-header) which cont...
Definition: VPlan.cpp:844
VPIRBasicBlock * createEmptyVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock wrapping IRBB, but do not create VPIRInstructions wrapping the instructions i...
Definition: VPlan.cpp:1245
bool hasVF(ElementCount VF)
Definition: VPlan.h:3999
VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition: VPlan.cpp:1051
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
Definition: VPlan.cpp:1045
VPBasicBlock * createVPBasicBlock(const Twine &Name, VPRecipeBase *Recipe=nullptr)
Create a new VPBasicBlock with Name and containing Recipe if present.
Definition: VPlan.h:4091
VPIRBasicBlock * createVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
Definition: VPlan.cpp:1251
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
Definition: VPlan.h:4032
LLVM_DUMP_METHOD void dump() const
Dump the plan to stderr (for debugging).
Definition: VPlan.cpp:1150
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
Definition: VPlan.cpp:955
void print(raw_ostream &O) const
Print this VPlan to O.
Definition: VPlan.cpp:1103
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition: VPlan.h:3953
void printLiveIns(raw_ostream &O) const
Print the live-ins of this VPlan to O.
Definition: VPlan.cpp:1067
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
Definition: VPlan.h:3926
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
Definition: VPlan.cpp:1191
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition: TypeSize.h:218
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition: TypeSize.h:171
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition: TypeSize.h:168
An efficient, type-erasing, non-owning reference to a callable.
self_iterator getIterator()
Definition: ilist_node.h:132
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:661
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition: CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
std::string EscapeString(const std::string &Label)
Definition: GraphWriter.cpp:56
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
BinaryVPInstruction_match< Op0_t, Op1_t, VPInstruction::BranchOnCount > m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1)
UnaryVPInstruction_match< Op0_t, VPInstruction::BranchOnCond > m_BranchOnCond(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
@ SS
Definition: X86.h:212
bool isUniformAfterVectorization(const VPValue *VPV)
Returns true if VPV is uniform after vectorization.
Definition: VPlanUtils.h:41
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, ScalarEvolution &SE)
Get or create a VPValue that corresponds to the expansion of Expr.
Definition: VPlanUtils.cpp:26
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
Definition: VPlanUtils.cpp:16
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition: STLExtras.h:854
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1697
auto successors(const MachineBasicBlock *BB)
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
Definition: STLExtras.h:2207
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:657
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition: VPlanCFG.h:215
Instruction * propagateMetadata(Instruction *I, ArrayRef< Value * > VL)
Specifically, let Kinds = [MD_tbaa, MD_alias_scope, MD_noalias, MD_fpmath, MD_nontemporal,...
Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST=nullptr)
cl::opt< bool > EnableFSDiscriminator
cl::opt< bool > EnableVPlanNativePath("enable-vplan-native-path", cl::Hidden, cl::desc("Enable VPlan-native vectorization path with " "support for outer loop vectorization."))
Definition: VPlan.cpp:53
std::unique_ptr< VPlan > VPlanPtr
Definition: VPlan.h:144
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition: Casting.h:548
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
Definition: APFixedPoint.h:303
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition: STLExtras.h:1945
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1766
InstructionCost Cost
unsigned getReciprocalPredBlockProb()
A helper function that returns the reciprocal of the block probability of predicated blocks.
Definition: VPlan.h:92
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Definition: VPlan.h:97
ElementCount End
Definition: VPlan.h:102
Struct to hold various analysis needed for cost computations.
Definition: VPlan.h:676
TargetTransformInfo::OperandValueInfo getOperandInfo(VPValue *V) const
Returns the OperandInfo for V, if it is a live-in.
Definition: VPlan.cpp:1664
TargetTransformInfo::TargetCostKind CostKind
Definition: VPlan.h:683
const TargetTransformInfo & TTI
Definition: VPlan.h:677
Hold state information used when constructing the CFG of the output IR, traversing the VPBasicBlocks ...
Definition: VPlan.h:332
BasicBlock * PrevBB
The previous IR BasicBlock created or used.
Definition: VPlan.h:338
SmallDenseMap< VPBasicBlock *, BasicBlock * > VPBB2IRBB
A mapping of each VPBasicBlock to the corresponding BasicBlock.
Definition: VPlan.h:346
VPBasicBlock * PrevVPBB
The previous VPBasicBlock visited. Initially set to null.
Definition: VPlan.h:334
BasicBlock * ExitBB
The last IR BasicBlock in the output IR.
Definition: VPlan.h:342
BasicBlock * getPreheaderBBFor(VPRecipeBase *R)
Returns the BasicBlock* mapped to the pre-header of the loop region containing R.
Definition: VPlan.cpp:347
DomTreeUpdater DTU
Updater for the DominatorTree.
Definition: VPlan.h:349
DenseMap< VPValue *, Value * > VPV2Vector
Definition: VPlan.h:249
DenseMap< VPValue *, SmallVector< Value *, 4 > > VPV2Scalars
Definition: VPlan.h:251
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
Definition: VPlan.h:230
bool hasScalarValue(VPValue *Def, VPLane Lane)
Definition: VPlan.h:263
bool hasVectorValue(VPValue *Def)
Definition: VPlan.h:261
LoopInfo * LI
Hold a pointer to LoopInfo to register new basic blocks in the loop.
Definition: VPlan.h:360
struct llvm::VPTransformState::DataState Data
void addMetadata(Value *To, Instruction *From)
Add metadata from one instruction to another.
Definition: VPlan.cpp:360
void packScalarIntoVectorValue(VPValue *Def, const VPLane &Lane)
Construct the vector value of a scalarized value V one lane at a time.
Definition: VPlan.cpp:393
Value * get(VPValue *Def, bool IsScalar=false)
Get the generated vector Value for a given VPValue Def if IsScalar is false, otherwise return the gen...
Definition: VPlan.cpp:249
struct llvm::VPTransformState::CFGState CFG
LoopVersioning * LVer
LoopVersioning.
Definition: VPlan.h:379
void addNewMetadata(Instruction *To, const Instruction *Orig)
Add additional metadata to To that was not present on Orig.
Definition: VPlan.cpp:352
std::optional< VPLane > Lane
Hold the index to generate specific scalar instructions.
Definition: VPlan.h:244
VPTransformState(const TargetTransformInfo *TTI, ElementCount VF, unsigned UF, LoopInfo *LI, DominatorTree *DT, IRBuilderBase &Builder, InnerLoopVectorizer *ILV, VPlan *Plan, Loop *CurrentParentLoop, Type *CanonicalIVTy)
Definition: VPlan.cpp:215
IRBuilderBase & Builder
Hold a reference to the IRBuilder used to generate output IR code.
Definition: VPlan.h:363
VPlan * Plan
Pointer to the VPlan code is generated for.
Definition: VPlan.h:369
ElementCount VF
The chosen Vectorization Factor of the loop being vectorized.
Definition: VPlan.h:239
void setDebugLocFrom(DebugLoc DL)
Set the debug location in the builder using the debug location DL.
Definition: VPlan.cpp:371
Loop * CurrentParentLoop
The parent loop object for the current scope, or nullptr.
Definition: VPlan.h:372
void set(VPValue *Def, Value *V, bool IsScalar=false)
Set the generated vector Value for a given VPValue, if IsScalar is false.
Definition: VPlan.h:273
void print(raw_ostream &O) const
Definition: VPlan.cpp:1389
static void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...