47#define LV_NAME "loop-vectorize"
48#define DEBUG_TYPE LV_NAME
54 case VPInstructionSC: {
57 if (VPI->getOpcode() == Instruction::Load)
59 return VPI->opcodeMayReadOrWriteFromMemory();
61 case VPInterleaveEVLSC:
64 case VPWidenStoreEVLSC:
72 ->getCalledScalarFunction()
74 case VPWidenIntrinsicSC:
76 case VPCanonicalIVPHISC:
77 case VPBranchOnMaskSC:
79 case VPFirstOrderRecurrencePHISC:
80 case VPReductionPHISC:
81 case VPScalarIVStepsSC:
85 case VPReductionEVLSC:
87 case VPVectorPointerSC:
88 case VPWidenCanonicalIVSC:
91 case VPWidenIntOrFpInductionSC:
92 case VPWidenLoadEVLSC:
95 case VPWidenPointerInductionSC:
100 assert((!
I || !
I->mayWriteToMemory()) &&
101 "underlying instruction may write to memory");
113 case VPInstructionSC:
115 case VPWidenLoadEVLSC:
120 ->mayReadFromMemory();
123 ->getCalledScalarFunction()
124 ->onlyWritesMemory();
125 case VPWidenIntrinsicSC:
127 case VPBranchOnMaskSC:
129 case VPFirstOrderRecurrencePHISC:
130 case VPPredInstPHISC:
131 case VPScalarIVStepsSC:
132 case VPWidenStoreEVLSC:
136 case VPReductionEVLSC:
138 case VPVectorPointerSC:
139 case VPWidenCanonicalIVSC:
142 case VPWidenIntOrFpInductionSC:
144 case VPWidenPointerInductionSC:
149 assert((!
I || !
I->mayReadFromMemory()) &&
150 "underlying instruction may read from memory");
164 case VPFirstOrderRecurrencePHISC:
165 case VPPredInstPHISC:
166 case VPVectorEndPointerSC:
168 case VPInstructionSC: {
175 case VPWidenCallSC: {
179 case VPWidenIntrinsicSC:
182 case VPReductionEVLSC:
184 case VPScalarIVStepsSC:
185 case VPVectorPointerSC:
186 case VPWidenCanonicalIVSC:
189 case VPWidenIntOrFpInductionSC:
191 case VPWidenPointerInductionSC:
196 assert((!
I || !
I->mayHaveSideEffects()) &&
197 "underlying instruction has side-effects");
200 case VPInterleaveEVLSC:
203 case VPWidenLoadEVLSC:
205 case VPWidenStoreEVLSC:
210 "mayHaveSideffects result for ingredient differs from this "
213 case VPReplicateSC: {
215 return R->getUnderlyingInstr()->mayHaveSideEffects();
223 assert(!Parent &&
"Recipe already in some VPBasicBlock");
225 "Insertion position not in any VPBasicBlock");
231 assert(!Parent &&
"Recipe already in some VPBasicBlock");
237 assert(!Parent &&
"Recipe already in some VPBasicBlock");
239 "Insertion position not in any VPBasicBlock");
274 UI = IG->getInsertPos();
276 UI = &WidenMem->getIngredient();
279 if (UI && Ctx.skipCostComputation(UI, VF.
isVector())) {
293 dbgs() <<
"Cost of " << RecipeCost <<
" for VF " << VF <<
": ";
315 assert(OpType == Other.OpType &&
"OpType must match");
317 case OperationType::OverflowingBinOp:
318 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
319 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
321 case OperationType::Trunc:
325 case OperationType::DisjointOp:
328 case OperationType::PossiblyExactOp:
329 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
331 case OperationType::GEPOp:
334 case OperationType::FPMathOp:
335 case OperationType::FCmp:
336 assert((OpType != OperationType::FCmp ||
337 FCmpFlags.Pred == Other.FCmpFlags.Pred) &&
338 "Cannot drop CmpPredicate");
339 getFMFsRef().NoNaNs &= Other.getFMFsRef().NoNaNs;
340 getFMFsRef().NoInfs &= Other.getFMFsRef().NoInfs;
342 case OperationType::NonNegOp:
345 case OperationType::Cmp:
348 case OperationType::ReductionOp:
350 "Cannot change RecurKind");
352 "Cannot change IsOrdered");
354 "Cannot change IsInLoop");
355 getFMFsRef().NoNaNs &= Other.getFMFsRef().NoNaNs;
356 getFMFsRef().NoInfs &= Other.getFMFsRef().NoInfs;
358 case OperationType::Other:
365 assert((OpType == OperationType::FPMathOp || OpType == OperationType::FCmp ||
366 OpType == OperationType::ReductionOp) &&
367 "recipe doesn't have fast math flags");
368 const FastMathFlagsTy &
F = getFMFsRef();
380#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
396template <
unsigned PartOpIdx>
399 if (U.getNumOperands() == PartOpIdx + 1)
400 return U.getOperand(PartOpIdx);
404template <
unsigned PartOpIdx>
423 "Set flags not supported for the provided opcode");
426 "number of operands does not match opcode");
441 case Instruction::Alloca:
442 case Instruction::ExtractValue:
443 case Instruction::Freeze:
444 case Instruction::Load:
461 case Instruction::ICmp:
462 case Instruction::FCmp:
463 case Instruction::ExtractElement:
464 case Instruction::Store:
473 case Instruction::Select:
480 case Instruction::Call:
481 case Instruction::GetElementPtr:
482 case Instruction::PHI:
483 case Instruction::Switch:
501bool VPInstruction::canGenerateScalarForFirstLane()
const {
507 case Instruction::Freeze:
508 case Instruction::ICmp:
509 case Instruction::PHI:
510 case Instruction::Select:
527 IRBuilderBase &Builder = State.
Builder;
546 case Instruction::ExtractElement: {
549 return State.
get(
getOperand(0), VPLane(Idx->getZExtValue()));
554 case Instruction::Freeze: {
558 case Instruction::FCmp:
559 case Instruction::ICmp: {
565 case Instruction::PHI: {
568 case Instruction::Select: {
594 {VIVElem0, ScalarTC},
nullptr, Name);
610 if (!V1->getType()->isVectorTy())
630 "Requested vector length should be an integer.");
636 Builder.
getInt32Ty(), Intrinsic::experimental_get_vector_length,
637 {AVL, VFArg, Builder.getTrue()});
643 assert(Part != 0 &&
"Must have a positive part");
656 VPBasicBlock *SecondVPSucc =
678 for (
unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
702 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
721 ReducedPartRdx,
"bin.rdx");
733 "unexpected recurrence kind for ComputeFindIVResult");
734 for (
unsigned Part = 1; Part <
UF; ++Part)
735 ReducedResult =
createMinMaxOp(Builder, MinMaxKind, ReducedResult,
744 ReducedResult = IsMaxRdx
753 return Builder.
CreateSelect(Cmp, ReducedResult, Start,
"rdx.select");
760 "should be handled by ComputeFindIVResult");
765 for (
unsigned Part = 0; Part < NumOperandsToReduce; ++Part)
768 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
773 Value *ReducedPartRdx = RdxParts[0];
775 ReducedPartRdx = RdxParts[NumOperandsToReduce - 1];
778 for (
unsigned Part = 1; Part < NumOperandsToReduce; ++Part) {
779 Value *RdxPart = RdxParts[Part];
781 ReducedPartRdx =
createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
790 Builder.
CreateBinOp(Opcode, RdxPart, ReducedPartRdx,
"bin.rdx");
804 return ReducedPartRdx;
813 "invalid offset to extract from");
818 assert(
Offset <= 1 &&
"invalid offset to extract from");
832 "can only generate first lane for PtrAdd");
851 "simplified to ExtractElement.");
854 Value *Res =
nullptr;
859 Builder.
CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
860 Value *VectorIdx = Idx == 1
862 : Builder.
CreateSub(LaneToExtract, VectorStart);
887 Value *Res =
nullptr;
888 for (
int Idx = LastOpIdx; Idx >= 0; --Idx) {
889 Value *TrailingZeros =
920 Intrinsic::experimental_vector_extract_last_active, {VTy},
930 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
933 case Instruction::FNeg:
934 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
935 case Instruction::UDiv:
936 case Instruction::SDiv:
937 case Instruction::SRem:
938 case Instruction::URem:
939 case Instruction::Add:
940 case Instruction::FAdd:
941 case Instruction::Sub:
942 case Instruction::FSub:
943 case Instruction::Mul:
944 case Instruction::FMul:
945 case Instruction::FDiv:
946 case Instruction::FRem:
947 case Instruction::Shl:
948 case Instruction::LShr:
949 case Instruction::AShr:
950 case Instruction::And:
951 case Instruction::Or:
952 case Instruction::Xor: {
960 RHSInfo = Ctx.getOperandInfo(RHS);
971 return Ctx.TTI.getArithmeticInstrCost(
972 Opcode, ResultTy, Ctx.CostKind,
973 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
974 RHSInfo, Operands, CtxI, &Ctx.TLI);
976 case Instruction::Freeze:
978 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
980 case Instruction::ExtractValue:
981 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
983 case Instruction::ICmp:
984 case Instruction::FCmp: {
988 return Ctx.TTI.getCmpSelInstrCost(
990 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
991 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
993 case Instruction::BitCast: {
994 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
999 case Instruction::SExt:
1000 case Instruction::ZExt:
1001 case Instruction::FPToUI:
1002 case Instruction::FPToSI:
1003 case Instruction::FPExt:
1004 case Instruction::PtrToInt:
1005 case Instruction::PtrToAddr:
1006 case Instruction::IntToPtr:
1007 case Instruction::SIToFP:
1008 case Instruction::UIToFP:
1009 case Instruction::Trunc:
1010 case Instruction::FPTrunc:
1011 case Instruction::AddrSpaceCast: {
1026 if (WidenMemoryRecipe ==
nullptr)
1030 if (!WidenMemoryRecipe->isConsecutive())
1032 if (WidenMemoryRecipe->isReverse())
1034 if (WidenMemoryRecipe->isMasked())
1042 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
1044 if (R->getNumUsers() == 0 || R->hasMoreThanOneUniqueUser())
1052 CCH = ComputeCCH(Recipe);
1056 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
1057 Opcode == Instruction::FPExt) {
1063 CCH = ComputeCCH(Recipe);
1071 Opcode, ResultTy, SrcTy, CCH, Ctx.
CostKind,
1074 case Instruction::Select: {
1085 (IsLogicalAnd || IsLogicalOr)) {
1091 SmallVector<const Value *, 2> Operands;
1093 [](
VPValue *
Op) {
return Op->getUnderlyingValue(); }))
1096 IsLogicalOr ? Instruction::Or : Instruction::And, ResultTy,
1097 Ctx.
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, SI);
1104 llvm::CmpPredicate Pred;
1108 Pred = Cmp->getPredicate();
1111 Instruction::Select, VectorTy, CondTy, Pred, Ctx.
CostKind,
1112 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, SI);
1128 "Should only generate a vector value or single scalar, not scalars "
1136 case Instruction::Select: {
1139 auto *CondTy = Ctx.Types.inferScalarType(
getOperand(0));
1140 auto *VecTy = Ctx.Types.inferScalarType(
getOperand(1));
1145 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1148 case Instruction::ExtractElement:
1158 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1162 auto *VecTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1163 return Ctx.TTI.getArithmeticReductionCost(
1169 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1176 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1177 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1182 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1189 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1192 Cost += Ctx.TTI.getArithmeticInstrCost(
1193 Instruction::Xor, PredTy, Ctx.CostKind,
1194 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1195 {TargetTransformInfo::OK_UniformConstantValue,
1196 TargetTransformInfo::OP_None});
1198 Cost += Ctx.TTI.getArithmeticInstrCost(
1203 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1207 Intrinsic::experimental_vector_extract_last_active, ScalarTy,
1208 {VecTy, MaskTy, ScalarTy});
1209 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind);
1215 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1228 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1235 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1236 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1239 assert(VF.
isVector() &&
"Reverse operation must be vector type");
1243 VectorTy, {}, Ctx.CostKind,
1249 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1250 VecTy, Ctx.CostKind, 0);
1260 "unexpected VPInstruction witht underlying value");
1268 getOpcode() == Instruction::ExtractElement ||
1281 case Instruction::PHI:
1292 assert(!State.Lane &&
"VPInstruction executing an Lane");
1295 "Set flags not supported for the provided opcode");
1298 Value *GeneratedValue = generate(State);
1301 assert(GeneratedValue &&
"generate must produce a value");
1302 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1307 !GeneratesPerFirstLaneOnly) ||
1308 State.VF.isScalar()) &&
1309 "scalar value but not only first lane defined");
1310 State.set(
this, GeneratedValue,
1311 GeneratesPerFirstLaneOnly);
1318 case Instruction::GetElementPtr:
1319 case Instruction::ExtractElement:
1320 case Instruction::Freeze:
1321 case Instruction::FCmp:
1322 case Instruction::ICmp:
1323 case Instruction::Select:
1324 case Instruction::PHI:
1368 case Instruction::ExtractElement:
1370 case Instruction::PHI:
1372 case Instruction::FCmp:
1373 case Instruction::ICmp:
1374 case Instruction::Select:
1375 case Instruction::Or:
1376 case Instruction::Freeze:
1418 case Instruction::FCmp:
1419 case Instruction::ICmp:
1420 case Instruction::Select:
1431#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1439 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1451 O <<
"combined load";
1454 O <<
"combined store";
1457 O <<
"active lane mask";
1460 O <<
"EXPLICIT-VECTOR-LENGTH";
1463 O <<
"first-order splice";
1466 O <<
"branch-on-cond";
1469 O <<
"branch-on-two-conds";
1472 O <<
"TC > VF ? TC - VF : 0";
1478 O <<
"branch-on-count";
1484 O <<
"buildstructvector";
1490 O <<
"extract-lane";
1493 O <<
"extract-last-lane";
1496 O <<
"extract-last-part";
1499 O <<
"extract-penultimate-element";
1502 O <<
"compute-anyof-result";
1505 O <<
"compute-find-iv-result";
1508 O <<
"compute-reduction-result";
1523 O <<
"first-active-lane";
1526 O <<
"last-active-lane";
1529 O <<
"reduction-start-vector";
1532 O <<
"resume-for-epilogue";
1541 O <<
"extract-last-active";
1558 State.set(
this, Cast,
VPLane(0));
1569 Value *
VScale = State.Builder.CreateVScale(ResultTy);
1570 State.set(
this,
VScale,
true);
1579#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1582 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1588 O <<
"wide-iv-step ";
1592 O <<
"step-vector " << *ResultTy;
1595 O <<
"vscale " << *ResultTy;
1601 O <<
" to " << *ResultTy;
1608 PHINode *NewPhi = State.Builder.CreatePHI(
1609 State.TypeAnalysis.inferScalarType(
this), 2,
getName());
1616 for (
unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1621 State.set(
this, NewPhi,
VPLane(0));
1624#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1627 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1642 "PHINodes must be handled by VPIRPhi");
1645 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1658 "can only update exiting operands to phi nodes");
1669#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1672 O << Indent <<
"IR " << I;
1684 auto *PredVPBB = Pred->getExitingBasicBlock();
1685 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1692 if (Phi->getBasicBlockIndex(PredBB) == -1)
1693 Phi->addIncoming(V, PredBB);
1695 Phi->setIncomingValueForBlock(PredBB, V);
1700 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1705 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1706 "Number of phi operands must match number of predecessors");
1707 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1708 R->removeOperand(Position);
1711#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1725#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1731 O <<
" (extra operand" << (
getNumOperands() > 1 ?
"s" :
"") <<
": ";
1736 std::get<1>(
Op)->printAsOperand(O);
1744 for (
const auto &[Kind,
Node] : Metadata)
1745 I.setMetadata(Kind,
Node);
1750 for (
const auto &[KindA, MDA] : Metadata) {
1751 for (
const auto &[KindB, MDB] :
Other.Metadata) {
1752 if (KindA == KindB && MDA == MDB) {
1758 Metadata = std::move(MetadataIntersection);
1761#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1764 if (Metadata.empty() || !M)
1770 auto [Kind,
Node] = KindNodePair;
1772 "Unexpected unnamed metadata kind");
1773 O <<
"!" << MDNames[Kind] <<
" ";
1781 assert(State.VF.isVector() &&
"not widening");
1782 assert(Variant !=
nullptr &&
"Can't create vector function.");
1793 Arg = State.get(
I.value(),
VPLane(0));
1796 Args.push_back(Arg);
1802 CI->getOperandBundlesAsDefs(OpBundles);
1804 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1807 V->setCallingConv(Variant->getCallingConv());
1809 if (!V->getType()->isVoidTy())
1815 return Ctx.TTI.getCallInstrCost(
nullptr, Variant->getReturnType(),
1816 Variant->getFunctionType()->params(),
1820#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1823 O << Indent <<
"WIDEN-CALL ";
1835 O <<
" @" << CalledFn->
getName() <<
"(";
1841 O <<
" (using library function";
1842 if (Variant->hasName())
1843 O <<
": " << Variant->getName();
1849 assert(State.VF.isVector() &&
"not widening");
1857 for (
auto [Idx, Ty] :
enumerate(ContainedTys)) {
1870 Arg = State.get(
I.value(),
VPLane(0));
1876 Args.push_back(Arg);
1880 Module *M = State.Builder.GetInsertBlock()->getModule();
1884 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1889 CI->getOperandBundlesAsDefs(OpBundles);
1891 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1896 if (!V->getType()->isVoidTy())
1912 for (
const auto &[Idx,
Op] :
enumerate(Operands)) {
1913 auto *V =
Op->getUnderlyingValue();
1916 Arguments.push_back(UI->getArgOperand(Idx));
1925 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1931 : Ctx.Types.inferScalarType(
Op));
1936 R.hasFastMathFlags() ? R.getFastMathFlags() :
FastMathFlags();
1941 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1963#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1966 O << Indent <<
"WIDEN-INTRINSIC ";
1967 if (ResultTy->isVoidTy()) {
1995 Value *Mask =
nullptr;
1997 Mask = State.get(VPMask);
2000 Builder.CreateVectorSplat(VTy->
getElementCount(), Builder.getInt1(1));
2004 if (Opcode == Instruction::Sub)
2005 IncAmt = Builder.CreateNeg(IncAmt);
2007 assert(Opcode == Instruction::Add &&
"only add or sub supported for now");
2009 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
2024 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
2030 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
2040 {PtrTy, IncTy, MaskTy});
2043 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
2044 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
2047#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2050 O << Indent <<
"WIDEN-HISTOGRAM buckets: ";
2053 if (Opcode == Instruction::Sub)
2056 assert(Opcode == Instruction::Add);
2068VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(
const FastMathFlags &FMF) {
2081 case OperationType::OverflowingBinOp:
2082 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
2083 Opcode == Instruction::Mul || Opcode == Instruction::Shl ||
2084 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
2085 case OperationType::Trunc:
2086 return Opcode == Instruction::Trunc;
2087 case OperationType::DisjointOp:
2088 return Opcode == Instruction::Or;
2089 case OperationType::PossiblyExactOp:
2090 return Opcode == Instruction::AShr || Opcode == Instruction::LShr ||
2091 Opcode == Instruction::UDiv || Opcode == Instruction::SDiv;
2092 case OperationType::GEPOp:
2093 return Opcode == Instruction::GetElementPtr ||
2096 case OperationType::FPMathOp:
2097 return Opcode == Instruction::Call || Opcode == Instruction::FAdd ||
2098 Opcode == Instruction::FMul || Opcode == Instruction::FSub ||
2099 Opcode == Instruction::FNeg || Opcode == Instruction::FDiv ||
2100 Opcode == Instruction::FRem || Opcode == Instruction::FPExt ||
2101 Opcode == Instruction::FPTrunc || Opcode == Instruction::Select ||
2104 case OperationType::FCmp:
2105 return Opcode == Instruction::FCmp;
2106 case OperationType::NonNegOp:
2107 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2108 case OperationType::Cmp:
2109 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2110 case OperationType::ReductionOp:
2113 case OperationType::Other:
2120#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2123 case OperationType::Cmp:
2126 case OperationType::FCmp:
2130 case OperationType::DisjointOp:
2134 case OperationType::PossiblyExactOp:
2138 case OperationType::OverflowingBinOp:
2144 case OperationType::Trunc:
2150 case OperationType::FPMathOp:
2153 case OperationType::GEPOp:
2156 else if (
GEPFlags.hasNoUnsignedSignedWrap())
2161 case OperationType::NonNegOp:
2165 case OperationType::ReductionOp: {
2211 case OperationType::Other:
2219 auto &Builder = State.Builder;
2221 case Instruction::Call:
2222 case Instruction::Br:
2223 case Instruction::PHI:
2224 case Instruction::GetElementPtr:
2226 case Instruction::UDiv:
2227 case Instruction::SDiv:
2228 case Instruction::SRem:
2229 case Instruction::URem:
2230 case Instruction::Add:
2231 case Instruction::FAdd:
2232 case Instruction::Sub:
2233 case Instruction::FSub:
2234 case Instruction::FNeg:
2235 case Instruction::Mul:
2236 case Instruction::FMul:
2237 case Instruction::FDiv:
2238 case Instruction::FRem:
2239 case Instruction::Shl:
2240 case Instruction::LShr:
2241 case Instruction::AShr:
2242 case Instruction::And:
2243 case Instruction::Or:
2244 case Instruction::Xor: {
2248 Ops.push_back(State.get(VPOp));
2250 Value *V = Builder.CreateNAryOp(Opcode,
Ops);
2261 case Instruction::ExtractValue: {
2264 Value *Extract = Builder.CreateExtractValue(
2266 State.set(
this, Extract);
2269 case Instruction::Freeze: {
2271 Value *Freeze = Builder.CreateFreeze(
Op);
2272 State.set(
this, Freeze);
2275 case Instruction::ICmp:
2276 case Instruction::FCmp: {
2278 bool FCmp = Opcode == Instruction::FCmp;
2294 case Instruction::Select: {
2299 Value *Sel = State.Builder.CreateSelect(
Cond, Op0, Op1);
2300 State.set(
this, Sel);
2319 State.get(
this)->getType() &&
2320 "inferred type and type from generated instructions do not match");
2327 case Instruction::UDiv:
2328 case Instruction::SDiv:
2329 case Instruction::SRem:
2330 case Instruction::URem:
2335 case Instruction::FNeg:
2336 case Instruction::Add:
2337 case Instruction::FAdd:
2338 case Instruction::Sub:
2339 case Instruction::FSub:
2340 case Instruction::Mul:
2341 case Instruction::FMul:
2342 case Instruction::FDiv:
2343 case Instruction::FRem:
2344 case Instruction::Shl:
2345 case Instruction::LShr:
2346 case Instruction::AShr:
2347 case Instruction::And:
2348 case Instruction::Or:
2349 case Instruction::Xor:
2350 case Instruction::Freeze:
2351 case Instruction::ExtractValue:
2352 case Instruction::ICmp:
2353 case Instruction::FCmp:
2354 case Instruction::Select:
2361#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2364 O << Indent <<
"WIDEN ";
2373 auto &Builder = State.Builder;
2375 assert(State.VF.isVector() &&
"Not vectorizing?");
2380 State.set(
this, Cast);
2397#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2400 O << Indent <<
"WIDEN-CAST ";
2411 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2414#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2419 O <<
" = WIDEN-INDUCTION";
2424 O <<
" (truncated to " << *TI->getType() <<
")";
2434 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2438#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2443 O <<
" = DERIVED-IV ";
2467 assert(BaseIVTy == Step->
getType() &&
"Types of BaseIV and Step must match!");
2474 AddOp = Instruction::Add;
2475 MulOp = Instruction::Mul;
2477 AddOp = InductionOpcode;
2478 MulOp = Instruction::FMul;
2488 unsigned StartLane = 0;
2489 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2491 StartLane = State.Lane->getKnownLane();
2492 EndLane = StartLane + 1;
2496 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2501 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->
getType(),
2504 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2508 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2510 for (
unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2515 ? ConstantInt::get(BaseIVTy, Lane,
false,
2517 : ConstantFP::get(BaseIVTy, Lane);
2518 Value *StartIdx = Builder.CreateBinOp(AddOp, StartIdx0, LaneValue);
2522 "Expected StartIdx to be folded to a constant when VF is not "
2524 auto *
Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2525 auto *
Add = Builder.CreateBinOp(AddOp, BaseIV,
Mul);
2530#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2535 O <<
" = SCALAR-STEPS ";
2546 assert(State.VF.isVector() &&
"not widening");
2554 return Op->isDefinedOutsideLoopRegions();
2556 if (AllOperandsAreInvariant) {
2571 Value *
Splat = State.Builder.CreateVectorSplat(State.VF, NewGEP);
2572 State.set(
this,
Splat);
2580 auto *Ptr = State.get(
getOperand(0), isPointerLoopInvariant());
2587 Indices.
push_back(State.get(Operand, isIndexLoopInvariant(
I - 1)));
2594 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2595 "NewGEP is not a pointer vector");
2596 State.set(
this, NewGEP);
2599#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2602 O << Indent <<
"WIDEN-GEP ";
2603 O << (isPointerLoopInvariant() ?
"Inv" :
"Var");
2605 O <<
"[" << (isIndexLoopInvariant(
I) ?
"Inv" :
"Var") <<
"]";
2609 O <<
" = getelementptr";
2616 auto &Builder = State.Builder;
2618 const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
2619 Type *IndexTy = DL.getIndexType(State.TypeAnalysis.inferScalarType(
this));
2623 if (IndexTy != RunTimeVF->
getType())
2624 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2626 Value *NumElt = Builder.CreateMul(
2630 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2637 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane,
"",
2640 State.set(
this, ResultPtr,
true);
2643#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2648 O <<
" = vector-end-pointer";
2655 auto &Builder = State.Builder;
2657 "Expected prior simplification of recipe without offset");
2662 State.set(
this, ResultPtr,
true);
2665#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2670 O <<
" = vector-pointer";
2683 Type *ResultTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
2686 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2690#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2693 O << Indent <<
"BLEND ";
2715 assert(!State.Lane &&
"Reduction being replicated.");
2718 "In-loop AnyOf reductions aren't currently supported");
2724 Value *NewCond = State.get(
Cond, State.VF.isScalar());
2729 if (State.VF.isVector())
2730 Start = State.Builder.CreateVectorSplat(VecTy->
getElementCount(), Start);
2732 Value *
Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2739 if (State.VF.isVector())
2743 NewRed = State.Builder.CreateBinOp(
2745 PrevInChain, NewVecOp);
2746 PrevInChain = NewRed;
2747 NextInChain = NewRed;
2751 NewRed = State.Builder.CreateIntrinsic(
2752 PrevInChain->
getType(), Intrinsic::vector_partial_reduce_add,
2753 {PrevInChain, NewVecOp},
nullptr,
"partial.reduce");
2754 PrevInChain = NewRed;
2755 NextInChain = NewRed;
2758 "The reduction must either be ordered, partial or in-loop");
2762 NextInChain =
createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2764 NextInChain = State.Builder.CreateBinOp(
2766 PrevInChain, NewRed);
2772 assert(!State.Lane &&
"Reduction being replicated.");
2774 auto &Builder = State.Builder;
2786 Mask = State.get(CondOp);
2788 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2798 NewRed = Builder.CreateBinOp(
2802 State.set(
this, NewRed,
true);
2808 Type *ElementTy = Ctx.Types.inferScalarType(
this);
2812 std::optional<FastMathFlags> OptionalFMF =
2821 CondCost = Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VectorTy,
2822 CondTy, Pred, Ctx.CostKind);
2824 return CondCost + Ctx.TTI.getPartialReductionCost(
2825 Opcode, ElementTy, ElementTy, ElementTy, VF,
2835 "Any-of reduction not implemented in VPlan-based cost model currently.");
2841 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy,
FMFs, Ctx.CostKind);
2846 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2850VPExpressionRecipe::VPExpressionRecipe(
2851 ExpressionTypes ExpressionType,
2854 ExpressionRecipes(ExpressionRecipes),
ExpressionType(ExpressionType) {
2855 assert(!ExpressionRecipes.empty() &&
"Nothing to combine?");
2859 "expression cannot contain recipes with side-effects");
2863 for (
auto *R : ExpressionRecipes)
2864 ExpressionRecipesAsSetOfUsers.
insert(R);
2870 if (R != ExpressionRecipes.back() &&
2871 any_of(
R->users(), [&ExpressionRecipesAsSetOfUsers](
VPUser *U) {
2872 return !ExpressionRecipesAsSetOfUsers.contains(U);
2877 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2879 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2884 R->removeFromParent();
2891 for (
auto *R : ExpressionRecipes) {
2892 for (
const auto &[Idx,
Op] :
enumerate(
R->operands())) {
2893 auto *
Def =
Op->getDefiningRecipe();
2894 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2903 for (
auto *R : ExpressionRecipes)
2904 for (
auto const &[LiveIn, Tmp] :
zip(operands(), LiveInPlaceholders))
2905 R->replaceUsesOfWith(LiveIn, Tmp);
2909 for (
auto *R : ExpressionRecipes)
2912 if (!R->getParent())
2913 R->insertBefore(
this);
2916 LiveInPlaceholders[Idx]->replaceAllUsesWith(
Op);
2919 ExpressionRecipes.clear();
2924 Type *RedTy = Ctx.Types.inferScalarType(
this);
2928 "VPExpressionRecipe only supports integer types currently.");
2931 switch (ExpressionType) {
2932 case ExpressionTypes::ExtendedReduction: {
2938 ->isPartialReduction()
2939 ? Ctx.TTI.getPartialReductionCost(
2940 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
nullptr,
2945 : Ctx.TTI.getExtendedReductionCost(
2946 Opcode, ExtR->getOpcode() == Instruction::ZExt, RedTy,
2947 SrcVecTy, std::nullopt, Ctx.CostKind);
2949 case ExpressionTypes::MulAccReduction:
2950 return Ctx.TTI.getMulAccReductionCost(
false, Opcode, RedTy, SrcVecTy,
2953 case ExpressionTypes::ExtNegatedMulAccReduction:
2954 assert(Opcode == Instruction::Add &&
"Unexpected opcode");
2955 Opcode = Instruction::Sub;
2957 case ExpressionTypes::ExtMulAccReduction: {
2959 if (RedR->isPartialReduction()) {
2963 return Ctx.TTI.getPartialReductionCost(
2964 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
2965 Ctx.Types.inferScalarType(
getOperand(1)), RedTy, VF,
2967 Ext0R->getOpcode()),
2969 Ext1R->getOpcode()),
2970 Mul->getOpcode(), Ctx.CostKind);
2972 return Ctx.TTI.getMulAccReductionCost(
2975 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2983 return R->mayReadFromMemory() || R->mayWriteToMemory();
2991 "expression cannot contain recipes with side-effects");
2999 return RR && !RR->isPartialReduction();
3002#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3006 O << Indent <<
"EXPRESSION ";
3012 switch (ExpressionType) {
3013 case ExpressionTypes::ExtendedReduction: {
3015 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
3022 << *Ext0->getResultType();
3023 if (Red->isConditional()) {
3030 case ExpressionTypes::ExtNegatedMulAccReduction: {
3032 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
3042 << *Ext0->getResultType() <<
"), (";
3046 << *Ext1->getResultType() <<
")";
3047 if (Red->isConditional()) {
3054 case ExpressionTypes::MulAccReduction:
3055 case ExpressionTypes::ExtMulAccReduction: {
3057 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
3062 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
3064 : ExpressionRecipes[0]);
3072 << *Ext0->getResultType() <<
"), (";
3080 << *Ext1->getResultType() <<
")";
3082 if (Red->isConditional()) {
3095 O << Indent <<
"PARTIAL-REDUCE ";
3097 O << Indent <<
"REDUCE ";
3117 O << Indent <<
"REDUCE ";
3145 assert((!Instr->getType()->isAggregateType() ||
3147 "Expected vectorizable or non-aggregate type.");
3150 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3154 Cloned->
setName(Instr->getName() +
".cloned");
3155 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3159 if (ResultTy != Cloned->
getType())
3170 State.setDebugLocFrom(
DL);
3175 auto InputLane = Lane;
3179 Cloned->
setOperand(
I.index(), State.get(Operand, InputLane));
3183 State.Builder.Insert(Cloned);
3185 State.set(RepRecipe, Cloned, Lane);
3189 State.AC->registerAssumption(
II);
3195 [](
VPValue *
Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3196 "Expected a recipe is either within a region or all of its operands "
3197 "are defined outside the vectorized region.");
3204 assert(IsSingleScalar &&
"VPReplicateRecipes outside replicate regions "
3205 "must have already been unrolled");
3211 "uniform recipe shouldn't be predicated");
3212 assert(!State.VF.isScalable() &&
"Can't scalarize a scalable vector");
3217 State.Lane->isFirstLane()
3220 State.set(
this, State.packScalarIntoVectorizedValue(
this, WideValue,
3256 while (!WorkList.
empty()) {
3258 if (!Cur || !Seen.
insert(Cur).second)
3266 return Seen.contains(
3267 Blend->getIncomingValue(I)->getDefiningRecipe());
3271 for (
VPUser *U : Cur->users()) {
3273 if (InterleaveR->getAddr() == Cur)
3276 if (RepR->getOpcode() == Instruction::Load &&
3277 RepR->getOperand(0) == Cur)
3279 if (RepR->getOpcode() == Instruction::Store &&
3280 RepR->getOperand(1) == Cur)
3284 if (MemR->getAddr() == Cur && MemR->isConsecutive())
3305 Ctx.SkipCostComputation.insert(UI);
3311 case Instruction::Alloca:
3314 return Ctx.TTI.getArithmeticInstrCost(
3315 Instruction::Mul, Ctx.Types.inferScalarType(
this), Ctx.CostKind);
3316 case Instruction::GetElementPtr:
3322 case Instruction::Call: {
3328 for (
const VPValue *ArgOp : ArgOps)
3329 Tys.
push_back(Ctx.Types.inferScalarType(ArgOp));
3331 if (CalledFn->isIntrinsic())
3334 switch (CalledFn->getIntrinsicID()) {
3335 case Intrinsic::assume:
3336 case Intrinsic::lifetime_end:
3337 case Intrinsic::lifetime_start:
3338 case Intrinsic::sideeffect:
3339 case Intrinsic::pseudoprobe:
3340 case Intrinsic::experimental_noalias_scope_decl: {
3343 "scalarizing intrinsic should be free");
3350 Type *ResultTy = Ctx.Types.inferScalarType(
this);
3352 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3354 if (CalledFn->isIntrinsic())
3355 ScalarCallCost = std::min(
3359 return ScalarCallCost;
3363 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3365 case Instruction::Add:
3366 case Instruction::Sub:
3367 case Instruction::FAdd:
3368 case Instruction::FSub:
3369 case Instruction::Mul:
3370 case Instruction::FMul:
3371 case Instruction::FDiv:
3372 case Instruction::FRem:
3373 case Instruction::Shl:
3374 case Instruction::LShr:
3375 case Instruction::AShr:
3376 case Instruction::And:
3377 case Instruction::Or:
3378 case Instruction::Xor:
3379 case Instruction::ICmp:
3380 case Instruction::FCmp:
3384 case Instruction::SDiv:
3385 case Instruction::UDiv:
3386 case Instruction::SRem:
3387 case Instruction::URem: {
3394 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(
this),
3403 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3407 ScalarCost /= Ctx.getPredBlockCostDivisor(UI->
getParent());
3410 case Instruction::Load:
3411 case Instruction::Store: {
3418 bool IsLoad = UI->
getOpcode() == Instruction::Load;
3424 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ?
this :
getOperand(0));
3425 Type *ScalarPtrTy = Ctx.Types.inferScalarType(PtrOp);
3430 UI->
getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo);
3433 bool PreferVectorizedAddressing = Ctx.TTI.prefersVectorizedAddressing();
3434 bool UsedByLoadStoreAddress =
3438 Ctx.TTI.getAddressComputationCost(
3439 PtrTy, UsedByLoadStoreAddress ?
nullptr : Ctx.PSE.getSE(), PtrSCEV,
3450 if (!UsedByLoadStoreAddress) {
3451 bool EfficientVectorLoadStore =
3452 Ctx.TTI.supportsEfficientVectorElementLoadStore();
3453 if (!(IsLoad && !PreferVectorizedAddressing) &&
3454 !(!IsLoad && EfficientVectorLoadStore))
3457 if (!EfficientVectorLoadStore)
3458 ResultTy = Ctx.Types.inferScalarType(
this);
3462 Ctx.getScalarizationOverhead(ResultTy, OpsToScalarize, VF,
true);
3464 case Instruction::SExt:
3465 case Instruction::ZExt:
3466 case Instruction::FPToUI:
3467 case Instruction::FPToSI:
3468 case Instruction::FPExt:
3469 case Instruction::PtrToInt:
3470 case Instruction::PtrToAddr:
3471 case Instruction::IntToPtr:
3472 case Instruction::SIToFP:
3473 case Instruction::UIToFP:
3474 case Instruction::Trunc:
3475 case Instruction::FPTrunc:
3476 case Instruction::AddrSpaceCast: {
3481 case Instruction::ExtractValue:
3482 case Instruction::InsertValue:
3483 return Ctx.TTI.getInsertExtractValueCost(
getOpcode(), Ctx.CostKind);
3486 return Ctx.getLegacyCost(UI, VF);
3489#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3492 O << Indent << (IsSingleScalar ?
"CLONE " :
"REPLICATE ");
3501 O <<
"@" << CB->getCalledFunction()->getName() <<
"(";
3519 assert(State.Lane &&
"Branch on Mask works only on single instance.");
3522 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3526 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3528 "Expected to replace unreachable terminator with conditional branch.");
3530 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB,
nullptr);
3531 CondBr->setSuccessor(0,
nullptr);
3532 CurrentTerminator->eraseFromParent();
3544 assert(State.Lane &&
"Predicated instruction PHI works per instance.");
3549 assert(PredicatingBB &&
"Predicated block has no single predecessor.");
3551 "operand must be VPReplicateRecipe");
3562 "Packed operands must generate an insertelement or insertvalue");
3570 for (
unsigned I = 0;
I < StructTy->getNumContainedTypes() - 1;
I++)
3573 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3574 VPhi->
addIncoming(VecI->getOperand(0), PredicatingBB);
3576 if (State.hasVectorValue(
this))
3577 State.reset(
this, VPhi);
3579 State.set(
this, VPhi);
3587 Type *PredInstType = State.TypeAnalysis.inferScalarType(
getOperand(0));
3588 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3591 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3592 if (State.hasScalarValue(
this, *State.Lane))
3593 State.reset(
this, Phi, *State.Lane);
3595 State.set(
this, Phi, *State.Lane);
3598 State.reset(
getOperand(0), Phi, *State.Lane);
3602#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3605 O << Indent <<
"PHI-PREDICATED-INSTRUCTION ";
3616 ->getAddressSpace();
3619 : Instruction::Store;
3626 "Inconsecutive memory access should not have the order.");
3639 : Intrinsic::vp_scatter;
3640 return Ctx.TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
3642 Ctx.TTI.getMemIntrinsicInstrCost(
3651 : Intrinsic::masked_store;
3652 Cost += Ctx.TTI.getMemIntrinsicInstrCost(
3658 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty,
Alignment, AS, Ctx.CostKind,
3669 auto &Builder = State.Builder;
3670 Value *Mask =
nullptr;
3671 if (
auto *VPMask =
getMask()) {
3674 Mask = State.get(VPMask);
3676 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3682 NewLI = Builder.CreateMaskedGather(DataTy, Addr,
Alignment, Mask,
nullptr,
3683 "wide.masked.gather");
3686 Builder.CreateMaskedLoad(DataTy, Addr,
Alignment, Mask,
3689 NewLI = Builder.CreateAlignedLoad(DataTy, Addr,
Alignment,
"wide.load");
3692 State.set(
this, NewLI);
3695#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3698 O << Indent <<
"WIDEN ";
3710 Value *AllTrueMask =
3711 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3712 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3713 {Operand, AllTrueMask, EVL},
nullptr, Name);
3721 auto &Builder = State.Builder;
3725 Value *Mask =
nullptr;
3727 Mask = State.get(VPMask);
3731 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3736 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3737 nullptr,
"wide.masked.gather");
3739 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3740 {Addr, Mask, EVL},
nullptr,
"vp.op.load");
3746 State.set(
this, Res);
3761 ->getAddressSpace();
3762 return Ctx.TTI.getMemIntrinsicInstrCost(
3767#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3770 O << Indent <<
"WIDEN ";
3781 auto &Builder = State.Builder;
3783 Value *Mask =
nullptr;
3784 if (
auto *VPMask =
getMask()) {
3787 Mask = State.get(VPMask);
3789 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3792 Value *StoredVal = State.get(StoredVPValue);
3796 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr,
Alignment, Mask);
3798 NewSI = Builder.CreateMaskedStore(StoredVal, Addr,
Alignment, Mask);
3800 NewSI = Builder.CreateAlignedStore(StoredVal, Addr,
Alignment);
3804#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3807 O << Indent <<
"WIDEN store ";
3816 auto &Builder = State.Builder;
3819 Value *StoredVal = State.get(StoredValue);
3821 Value *Mask =
nullptr;
3823 Mask = State.get(VPMask);
3827 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3830 if (CreateScatter) {
3832 Intrinsic::vp_scatter,
3833 {StoredVal, Addr, Mask, EVL});
3836 Intrinsic::vp_store,
3837 {StoredVal, Addr, Mask, EVL});
3856 ->getAddressSpace();
3857 return Ctx.TTI.getMemIntrinsicInstrCost(
3862#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3865 O << Indent <<
"WIDEN vp.store ";
3873 auto VF = DstVTy->getElementCount();
3875 assert(VF == SrcVecTy->getElementCount() &&
"Vector dimensions do not match");
3876 Type *SrcElemTy = SrcVecTy->getElementType();
3877 Type *DstElemTy = DstVTy->getElementType();
3878 assert((
DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) &&
3879 "Vector elements must have same size");
3883 return Builder.CreateBitOrPointerCast(V, DstVTy);
3890 "Only one type should be a pointer type");
3892 "Only one type should be a floating point type");
3896 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3897 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3903 const Twine &Name) {
3904 unsigned Factor = Vals.
size();
3905 assert(Factor > 1 &&
"Tried to interleave invalid number of vectors");
3909 for (
Value *Val : Vals)
3910 assert(Val->getType() == VecTy &&
"Tried to interleave mismatched types");
3915 if (VecTy->isScalableTy()) {
3916 assert(Factor <= 8 &&
"Unsupported interleave factor for scalable vectors");
3917 return Builder.CreateVectorInterleave(Vals, Name);
3924 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3925 return Builder.CreateShuffleVector(
3958 assert(!State.Lane &&
"Interleave group being replicated.");
3960 "Masking gaps for scalable vectors is not yet supported.");
3966 unsigned InterleaveFactor = Group->
getFactor();
3973 auto CreateGroupMask = [&BlockInMask, &State,
3974 &InterleaveFactor](
Value *MaskForGaps) ->
Value * {
3975 if (State.VF.isScalable()) {
3976 assert(!MaskForGaps &&
"Interleaved groups with gaps are not supported.");
3977 assert(InterleaveFactor <= 8 &&
3978 "Unsupported deinterleave factor for scalable vectors");
3979 auto *ResBlockInMask = State.get(BlockInMask);
3987 Value *ResBlockInMask = State.get(BlockInMask);
3988 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3991 "interleaved.mask");
3992 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3993 ShuffledMask, MaskForGaps)
3997 const DataLayout &DL = Instr->getDataLayout();
4000 Value *MaskForGaps =
nullptr;
4004 assert(MaskForGaps &&
"Mask for Gaps is required but it is null");
4008 if (BlockInMask || MaskForGaps) {
4009 Value *GroupMask = CreateGroupMask(MaskForGaps);
4011 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
4013 PoisonVec,
"wide.masked.vec");
4015 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
4022 if (VecTy->isScalableTy()) {
4025 assert(InterleaveFactor <= 8 &&
4026 "Unsupported deinterleave factor for scalable vectors");
4027 NewLoad = State.Builder.CreateIntrinsic(
4030 nullptr,
"strided.vec");
4033 auto CreateStridedVector = [&InterleaveFactor, &State,
4034 &NewLoad](
unsigned Index) ->
Value * {
4035 assert(Index < InterleaveFactor &&
"Illegal group index");
4036 if (State.VF.isScalable())
4037 return State.Builder.CreateExtractValue(NewLoad, Index);
4043 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
4047 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
4054 Value *StridedVec = CreateStridedVector(
I);
4057 if (Member->getType() != ScalarTy) {
4064 StridedVec = State.Builder.CreateVectorReverse(StridedVec,
"reverse");
4066 State.set(VPDefs[J], StridedVec);
4076 Value *MaskForGaps =
4079 "Mismatch between NeedsMaskForGaps and MaskForGaps");
4083 unsigned StoredIdx = 0;
4084 for (
unsigned i = 0; i < InterleaveFactor; i++) {
4086 "Fail to get a member from an interleaved store group");
4096 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4100 StoredVec = State.Builder.CreateVectorReverse(StoredVec,
"reverse");
4104 if (StoredVec->
getType() != SubVT)
4113 if (BlockInMask || MaskForGaps) {
4114 Value *GroupMask = CreateGroupMask(MaskForGaps);
4115 NewStoreInstr = State.Builder.CreateMaskedStore(
4116 IVec, ResAddr, Group->
getAlign(), GroupMask);
4119 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->
getAlign());
4126#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4130 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4131 IG->getInsertPos()->printAsOperand(O,
false);
4141 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4142 if (!IG->getMember(i))
4145 O <<
"\n" << Indent <<
" store ";
4147 O <<
" to index " << i;
4149 O <<
"\n" << Indent <<
" ";
4151 O <<
" = load from index " << i;
4159 assert(!State.Lane &&
"Interleave group being replicated.");
4160 assert(State.VF.isScalable() &&
4161 "Only support scalable VF for EVL tail-folding.");
4163 "Masking gaps for scalable vectors is not yet supported.");
4169 unsigned InterleaveFactor = Group->
getFactor();
4170 assert(InterleaveFactor <= 8 &&
4171 "Unsupported deinterleave/interleave factor for scalable vectors");
4178 Value *InterleaveEVL = State.Builder.CreateMul(
4179 EVL, ConstantInt::get(EVL->
getType(), InterleaveFactor),
"interleave.evl",
4183 Value *GroupMask =
nullptr;
4189 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
4194 CallInst *NewLoad = State.Builder.CreateIntrinsic(
4195 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL},
nullptr,
4206 NewLoad = State.Builder.CreateIntrinsic(
4209 nullptr,
"strided.vec");
4211 const DataLayout &DL = Instr->getDataLayout();
4212 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
4218 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad,
I);
4220 if (Member->getType() != ScalarTy) {
4238 const DataLayout &DL = Instr->getDataLayout();
4239 for (
unsigned I = 0, StoredIdx = 0;
I < InterleaveFactor;
I++) {
4247 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4249 if (StoredVec->
getType() != SubVT)
4259 State.Builder.CreateIntrinsic(
Type::getVoidTy(Ctx), Intrinsic::vp_store,
4260 {IVec, ResAddr, GroupMask, InterleaveEVL});
4269#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4273 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4274 IG->getInsertPos()->printAsOperand(O,
false);
4285 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4286 if (!IG->getMember(i))
4289 O <<
"\n" << Indent <<
" vp.store ";
4291 O <<
" to index " << i;
4293 O <<
"\n" << Indent <<
" ";
4295 O <<
" = vp.load from index " << i;
4306 unsigned InsertPosIdx = 0;
4307 for (
unsigned Idx = 0; IG->getFactor(); ++Idx)
4308 if (
auto *Member = IG->getMember(Idx)) {
4309 if (Member == InsertPos)
4313 Type *ValTy = Ctx.Types.inferScalarType(
4318 ->getAddressSpace();
4320 unsigned InterleaveFactor = IG->getFactor();
4325 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
4326 if (IG->getMember(IF))
4331 InsertPos->
getOpcode(), WideVecTy, IG->getFactor(), Indices,
4332 IG->getAlign(), AS, Ctx.CostKind,
getMask(), NeedsMaskForGaps);
4334 if (!IG->isReverse())
4337 return Cost + IG->getNumMembers() *
4339 VectorTy, VectorTy, {}, Ctx.CostKind,
4343#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4346 O << Indent <<
"EMIT ";
4348 O <<
" = CANONICAL-INDUCTION ";
4358#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4362 "unexpected number of operands");
4363 O << Indent <<
"EMIT ";
4365 O <<
" = WIDEN-POINTER-INDUCTION ";
4381 O << Indent <<
"EMIT ";
4383 O <<
" = EXPAND SCEV " << *Expr;
4390 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4394 : Builder.CreateVectorSplat(VF, CanonicalIV,
"broadcast");
4397 VStep = Builder.CreateVectorSplat(VF, VStep);
4399 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->
getType()));
4401 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep,
"vec.iv");
4402 State.set(
this, CanonicalVectorIV);
4405#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4408 O << Indent <<
"EMIT ";
4410 O <<
" = WIDEN-CANONICAL-INDUCTION ";
4416 auto &Builder = State.Builder;
4420 Type *VecTy = State.VF.isScalar()
4421 ? VectorInit->getType()
4425 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4426 if (State.VF.isVector()) {
4428 auto *One = ConstantInt::get(IdxTy, 1);
4431 auto *RuntimeVF =
getRuntimeVF(Builder, IdxTy, State.VF);
4432 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4433 VectorInit = Builder.CreateInsertElement(
4439 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4440 Phi->addIncoming(VectorInit, VectorPH);
4441 State.set(
this, Phi);
4448 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4453#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4456 O << Indent <<
"FIRST-ORDER-RECURRENCE-PHI ";
4473 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4474 bool ScalarPHI = State.VF.isScalar() ||
isInLoop();
4475 Value *StartV = State.get(StartVPV, ScalarPHI);
4479 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4480 "recipe must be in the vector loop header");
4485 Phi->addIncoming(StartV, VectorPH);
4488#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4491 O << Indent <<
"WIDEN-REDUCTION-PHI ";
4504 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4505 State.set(
this, VecPhi);
4510 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4513#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4516 O << Indent <<
"WIDEN-PHI ";
4526 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4529 State.Builder.CreatePHI(StartMask->
getType(), 2,
"active.lane.mask");
4530 Phi->addIncoming(StartMask, VectorPH);
4531 State.set(
this, Phi);
4534#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4537 O << Indent <<
"ACTIVE-LANE-MASK-PHI ";
4545#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4548 O << Indent <<
"EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
SmallVector< Value *, 2 > VectorParts
static bool isUsedByLoadStoreAddress(const VPUser *V)
Returns true if V is used as part of the address of another load or store.
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
void printAsOperand(OutputBuffer &OB, Prec P=Prec::Default, bool StrictlyWorse=false) const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
static LLVM_ABI StringRef getPredicateName(Predicate P)
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static ConstantInt * getSigned(IntegerType *Ty, int64_t V, bool ImplicitTrunc=false)
Return a ConstantInt with the specified value for the specified type.
This is an important base class in LLVM.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
void setAllowContract(bool B=true)
bool noSignedZeros() const
void setAllowReciprocal(bool B=true)
bool allowReciprocal() const
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
void setNoNaNs(bool B=true)
void setAllowReassoc(bool B=true)
Flag setters.
void setApproxFunc(bool B=true)
void setNoInfs(bool B=true)
bool allowContract() const
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
bool doesNotThrow() const
Determine if the function cannot unwind.
Type * getReturnType() const
Returns the type of the ret val.
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
IntegerType * getInt1Ty()
Fetch the type representing a single bit.
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
LLVM_ABI Value * CreateVectorReverse(Value *V, const Twine &Name="")
Return a vector value that contains the vector V reversed.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a conditional 'br Cond, TrueDest, FalseDest' instruction.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
LLVM_ABI CallInst * CreateIntMaxReduce(Value *Src, bool IsSigned=false)
Create a vector integer max reduction intrinsic of the source vector.
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name="")
LLVM_ABI CallInst * CreateIntMinReduce(Value *Src, bool IsSigned=false)
Create a vector integer min reduction intrinsic of the source vector.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
static InstructionCost getInvalid(CostType Val=0)
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
This is an important class for using LLVM in a threaded context.
Represents a single loop in the control flow graph.
Information for memory intrinsic cost model.
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents an analyzed expression in the program.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isVoidTy() const
Return true if this is 'void'.
value_op_iterator value_op_end()
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
value_op_iterator value_op_begin()
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
const VPBlocksTy & getPredecessors() const
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
LLVM_ABI_FOR_TEST void dump() const
Dump the VPDef to stderr (for debugging).
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
ArrayRef< VPRecipeValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
unsigned getVPDefID() const
VPIRValue * getStartValue() const
VPValue * getStepValue() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
bool isSingleScalar() const
Returns true if the result of this VPExpressionRecipe is a single-scalar.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
Class to record and manage LLVM IR flags.
ReductionFlagsTy ReductionFlags
LLVM_ABI_FOR_TEST bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
CmpInst::Predicate CmpPredicate
void printFlags(raw_ostream &O) const
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
bool isReductionOrdered() const
CmpInst::Predicate getPredicate() const
bool hasNoSignedWrap() const
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
DisjointFlagsTy DisjointFlags
bool hasNoUnsignedWrap() const
NonNegFlagsTy NonNegFlags
bool isReductionInLoop() const
void applyFlags(Instruction &I) const
Apply the IR flags to I.
RecurKind getRecurKind() const
Instruction & getInstruction() const
void extractLastLaneOfLastPartOfFirstOperand(VPBuilder &Builder)
Update the recipe's first operand to the last lane of the last part of the operand using Builder.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
static unsigned getNumOperandsForOpcode(unsigned Opcode)
Return the number of operands determined by the opcode of the VPInstruction.
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLastActive
Extracts the lane from the first operand corresponding to the last active (non-zero) lane in the mask...
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ VScale
Returns the value for vscale.
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
unsigned getOpcode() const
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool usesFirstPartOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
VPValue * getAddr() const
Return the address accessed by this recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
virtual void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPRecipe prints itself, without printing common information, like debug info or metadat...
VPRegionBlock * getRegion()
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override final
Print the recipe, delegating to printRecipe().
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
unsigned getVFScaleFactor() const
Get the factor that the VF of this recipe's output should be scaled by, or 1 if it isn't scaled.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
VPValue * getCondOp() const
The VPValue of the condition for the block.
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
bool isPartialReduction() const
Returns true if the reduction outputs a vector with a scaled down VF.
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
bool isInLoop() const
Returns true if the reduction is in-loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getOpcode() const
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
VPValue * getStepValue() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
LLVM_ABI_FOR_TEST LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
virtual bool usesFirstLaneOnly(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Value * getLiveInIRValue() const
Return the underlying IR value for a VPIRValue.
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getSourceElementType() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
Function * getCalledScalarFunction() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce widened copies of the cast.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
Type * getSourceElementType() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
VPIRValue * getStartValue() const
Returns the start value of the induction.
VPValue * getStepValue()
Returns the step value of the induction.
VPIRValue * getStartValue() const
Returns the start value of the induction.
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Type * getScalarType() const
Returns the scalar type of the induction.
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
LLVM_ABI_FOR_TEST bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Type * getResultType() const
Return the scalar return type of the intrinsic.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
VPValue * getMask() const
Return the mask used by this recipe.
Align Alignment
Alignment information for this memory access.
VPValue * getAddr() const
Return the address accessed by this recipe.
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenPHIRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
const ParentTy * getParent() const
self_iterator getIterator()
typename base_list_type::iterator iterator
iterator erase(iterator where)
pointer remove(iterator &IT)
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
bool match(Val *V, const Pattern &P)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::Reverse, Op0_t > m_Reverse(const Op0_t &Op0)
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool isAddressSCEVForCost(const SCEV *Addr, ScalarEvolution &SE, const Loop *L)
Returns true if Addr is an address SCEV that can be passed to TTI::getAddressComputationCost,...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
const SCEV * getSCEVExprForVPValue(const VPValue *V, PredicatedScalarEvolution &PSE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
auto cast_or_null(const Y &Val)
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
auto reverse(ContainerTy &&C)
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
LLVM_ABI bool isVectorIntrinsicWithStructReturnOverloadAtField(Intrinsic::ID ID, int RetIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic that returns a struct is overloaded at the struct elem...
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
FunctionAddr VTableAddr uintptr_t uintptr_t Data
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ FMinimumNum
FP min with llvm.minimumnum semantics.
@ FMinimum
FP min with llvm.minimum semantics.
@ FMaxNum
FP max with llvm.maxnum semantics including NaNs.
@ Mul
Product of integers.
@ FMaximum
FP max with llvm.maximum semantics.
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ FMinNum
FP min with llvm.minnum semantics including NaNs.
@ Sub
Subtraction of integers.
@ FMaximumNum
FP max with llvm.maximumnum semantics.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
@ Default
The result values are uniform if and only if all operands are uniform.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Struct to hold various analysis needed for cost computations.
TargetTransformInfo::OperandValueInfo getOperandInfo(VPValue *V) const
Returns the OperandInfo for V, if it is a live-in.
TargetTransformInfo::TargetCostKind CostKind
const TargetTransformInfo & TTI
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void execute(VPTransformState &State) override
Generate the instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags, DebugLoc DL=DebugLoc::getUnknown())
A symbolic live-in VPValue, used for values like vector trip count, VF, and VFxUF.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide load or gather.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide store or scatter.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void execute(VPTransformState &State) override
Generate a wide store or scatter.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStoredValue() const
Return the value stored by this recipe.