46#define LV_NAME "loop-vectorize"
47#define DEBUG_TYPE LV_NAME
53 case VPInstructionSC: {
56 if (VPI->getOpcode() == Instruction::Load)
58 return VPI->opcodeMayReadOrWriteFromMemory();
60 case VPInterleaveEVLSC:
63 case VPWidenStoreEVLSC:
71 ->getCalledScalarFunction()
73 case VPWidenIntrinsicSC:
75 case VPCanonicalIVPHISC:
76 case VPBranchOnMaskSC:
78 case VPFirstOrderRecurrencePHISC:
79 case VPReductionPHISC:
80 case VPScalarIVStepsSC:
84 case VPReductionEVLSC:
86 case VPVectorPointerSC:
87 case VPWidenCanonicalIVSC:
90 case VPWidenIntOrFpInductionSC:
91 case VPWidenLoadEVLSC:
94 case VPWidenPointerInductionSC:
96 case VPWidenSelectSC: {
100 assert((!
I || !
I->mayWriteToMemory()) &&
101 "underlying instruction may write to memory");
113 case VPInstructionSC:
115 case VPWidenLoadEVLSC:
120 ->mayReadFromMemory();
123 ->getCalledScalarFunction()
124 ->onlyWritesMemory();
125 case VPWidenIntrinsicSC:
127 case VPBranchOnMaskSC:
129 case VPFirstOrderRecurrencePHISC:
130 case VPPredInstPHISC:
131 case VPScalarIVStepsSC:
132 case VPWidenStoreEVLSC:
136 case VPReductionEVLSC:
138 case VPVectorPointerSC:
139 case VPWidenCanonicalIVSC:
142 case VPWidenIntOrFpInductionSC:
144 case VPWidenPointerInductionSC:
146 case VPWidenSelectSC: {
150 assert((!
I || !
I->mayReadFromMemory()) &&
151 "underlying instruction may read from memory");
165 case VPFirstOrderRecurrencePHISC:
166 case VPPredInstPHISC:
167 case VPVectorEndPointerSC:
169 case VPInstructionSC: {
175 case VPWidenCallSC: {
179 case VPWidenIntrinsicSC:
182 case VPReductionEVLSC:
184 case VPScalarIVStepsSC:
185 case VPVectorPointerSC:
186 case VPWidenCanonicalIVSC:
189 case VPWidenIntOrFpInductionSC:
191 case VPWidenPointerInductionSC:
193 case VPWidenSelectSC: {
197 assert((!
I || !
I->mayHaveSideEffects()) &&
198 "underlying instruction has side-effects");
201 case VPInterleaveEVLSC:
204 case VPWidenLoadEVLSC:
206 case VPWidenStoreEVLSC:
211 "mayHaveSideffects result for ingredient differs from this "
214 case VPReplicateSC: {
216 return R->getUnderlyingInstr()->mayHaveSideEffects();
224 assert(!Parent &&
"Recipe already in some VPBasicBlock");
226 "Insertion position not in any VPBasicBlock");
232 assert(!Parent &&
"Recipe already in some VPBasicBlock");
238 assert(!Parent &&
"Recipe already in some VPBasicBlock");
240 "Insertion position not in any VPBasicBlock");
275 UI = IG->getInsertPos();
277 UI = &WidenMem->getIngredient();
280 if (UI && Ctx.skipCostComputation(UI, VF.
isVector())) {
294 dbgs() <<
"Cost of " << RecipeCost <<
" for VF " << VF <<
": ";
316 assert(OpType == Other.OpType &&
"OpType must match");
318 case OperationType::OverflowingBinOp:
319 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
320 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
322 case OperationType::Trunc:
326 case OperationType::DisjointOp:
329 case OperationType::PossiblyExactOp:
330 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
332 case OperationType::GEPOp:
335 case OperationType::FPMathOp:
336 case OperationType::FCmp:
337 assert((OpType != OperationType::FCmp ||
338 FCmpFlags.Pred == Other.FCmpFlags.Pred) &&
339 "Cannot drop CmpPredicate");
340 getFMFsRef().NoNaNs &= Other.getFMFsRef().NoNaNs;
341 getFMFsRef().NoInfs &= Other.getFMFsRef().NoInfs;
343 case OperationType::NonNegOp:
346 case OperationType::Cmp:
349 case OperationType::Other:
356 assert((OpType == OperationType::FPMathOp || OpType == OperationType::FCmp) &&
357 "recipe doesn't have fast math flags");
358 const FastMathFlagsTy &
F = getFMFsRef();
370#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
386template <
unsigned PartOpIdx>
389 if (U.getNumOperands() == PartOpIdx + 1)
390 return U.getOperand(PartOpIdx);
394template <
unsigned PartOpIdx>
413 "Set flags not supported for the provided opcode");
414 assert((getNumOperandsForOpcode(Opcode) == -1u ||
416 "number of operands does not match opcode");
420unsigned VPInstruction::getNumOperandsForOpcode(
unsigned Opcode) {
431 case Instruction::Alloca:
432 case Instruction::ExtractValue:
433 case Instruction::Freeze:
434 case Instruction::Load:
449 case Instruction::ICmp:
450 case Instruction::FCmp:
451 case Instruction::ExtractElement:
452 case Instruction::Store:
462 case Instruction::Select:
469 case Instruction::Call:
470 case Instruction::GetElementPtr:
471 case Instruction::PHI:
472 case Instruction::Switch:
489bool VPInstruction::canGenerateScalarForFirstLane()
const {
495 case Instruction::Freeze:
496 case Instruction::ICmp:
497 case Instruction::PHI:
498 case Instruction::Select:
524 BasicBlock *SecondIRSucc = State.CFG.VPBB2IRBB.lookup(SecondVPSucc);
526 BranchInst *CondBr = State.Builder.CreateCondBr(
Cond, IRBB, SecondIRSucc);
534 IRBuilderBase &Builder = State.
Builder;
553 case Instruction::ExtractElement: {
556 unsigned IdxToExtract =
564 case Instruction::Freeze: {
568 case Instruction::FCmp:
569 case Instruction::ICmp: {
575 case Instruction::PHI: {
578 case Instruction::Select: {
604 {VIVElem0, ScalarTC},
nullptr, Name);
620 if (!V1->getType()->isVectorTy())
640 "Requested vector length should be an integer.");
646 Builder.
getInt32Ty(), Intrinsic::experimental_get_vector_length,
647 {AVL, VFArg, Builder.getTrue()});
653 assert(Part != 0 &&
"Must have a positive part");
684 for (
unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
708 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
727 ReducedPartRdx,
"bin.rdx");
736 RecurKind RK = PhiR->getRecurrenceKind();
738 "Unexpected reduction kind");
739 assert(!PhiR->isInLoop() &&
740 "In-loop FindLastIV reduction is not supported yet");
752 for (
unsigned Part = 1; Part <
UF; ++Part)
753 ReducedPartRdx =
createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
767 RecurKind RK = PhiR->getRecurrenceKind();
769 "should be handled by ComputeFindIVResult");
775 for (
unsigned Part = 0; Part <
UF; ++Part)
776 RdxParts[Part] = State.
get(
getOperand(1 + Part), PhiR->isInLoop());
778 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
783 Value *ReducedPartRdx = RdxParts[0];
784 if (PhiR->isOrdered()) {
785 ReducedPartRdx = RdxParts[
UF - 1];
788 for (
unsigned Part = 1; Part <
UF; ++Part) {
789 Value *RdxPart = RdxParts[Part];
791 ReducedPartRdx =
createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
800 Builder.
CreateBinOp(Opcode, RdxPart, ReducedPartRdx,
"bin.rdx");
807 if (State.
VF.
isVector() && !PhiR->isInLoop()) {
814 return ReducedPartRdx;
823 "invalid offset to extract from");
828 assert(
Offset <= 1 &&
"invalid offset to extract from");
842 "can only generate first lane for PtrAdd");
862 Value *Res =
nullptr;
867 Builder.
CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
868 Value *VectorIdx = Idx == 1
870 : Builder.
CreateSub(LaneToExtract, VectorStart);
895 Value *Res =
nullptr;
896 for (
int Idx = LastOpIdx; Idx >= 0; --Idx) {
897 Value *TrailingZeros =
927 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
930 case Instruction::FNeg:
931 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
932 case Instruction::UDiv:
933 case Instruction::SDiv:
934 case Instruction::SRem:
935 case Instruction::URem:
936 case Instruction::Add:
937 case Instruction::FAdd:
938 case Instruction::Sub:
939 case Instruction::FSub:
940 case Instruction::Mul:
941 case Instruction::FMul:
942 case Instruction::FDiv:
943 case Instruction::FRem:
944 case Instruction::Shl:
945 case Instruction::LShr:
946 case Instruction::AShr:
947 case Instruction::And:
948 case Instruction::Or:
949 case Instruction::Xor: {
957 RHSInfo = Ctx.getOperandInfo(RHS);
968 return Ctx.TTI.getArithmeticInstrCost(
969 Opcode, ResultTy, Ctx.CostKind,
970 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
971 RHSInfo, Operands, CtxI, &Ctx.TLI);
973 case Instruction::Freeze:
975 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
977 case Instruction::ExtractValue:
978 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
980 case Instruction::ICmp:
981 case Instruction::FCmp: {
985 return Ctx.TTI.getCmpSelInstrCost(
987 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
988 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
1004 "Should only generate a vector value or single scalar, not scalars "
1012 case Instruction::Select: {
1015 auto *CondTy = Ctx.Types.inferScalarType(
getOperand(0));
1016 auto *VecTy = Ctx.Types.inferScalarType(
getOperand(1));
1021 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1024 case Instruction::ExtractElement:
1034 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1038 auto *VecTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1039 return Ctx.TTI.getArithmeticReductionCost(
1045 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1052 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1053 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1058 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1065 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1068 Cost += Ctx.TTI.getArithmeticInstrCost(
1069 Instruction::Xor, PredTy, Ctx.CostKind,
1070 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1071 {TargetTransformInfo::OK_UniformConstantValue,
1072 TargetTransformInfo::OP_None});
1074 Cost += Ctx.TTI.getArithmeticInstrCost(
1082 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1091 unsigned Multiplier =
1096 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1103 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1104 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1109 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1110 VecTy, Ctx.CostKind, 0);
1120 "unexpected VPInstruction witht underlying value");
1128 getOpcode() == Instruction::ExtractElement ||
1140 case Instruction::PHI:
1151 assert(!State.Lane &&
"VPInstruction executing an Lane");
1154 "Set flags not supported for the provided opcode");
1157 Value *GeneratedValue = generate(State);
1160 assert(GeneratedValue &&
"generate must produce a value");
1161 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1166 !GeneratesPerFirstLaneOnly) ||
1167 State.VF.isScalar()) &&
1168 "scalar value but not only first lane defined");
1169 State.set(
this, GeneratedValue,
1170 GeneratesPerFirstLaneOnly);
1177 case Instruction::GetElementPtr:
1178 case Instruction::ExtractElement:
1179 case Instruction::Freeze:
1180 case Instruction::FCmp:
1181 case Instruction::ICmp:
1182 case Instruction::Select:
1183 case Instruction::PHI:
1224 case Instruction::ExtractElement:
1226 case Instruction::PHI:
1228 case Instruction::FCmp:
1229 case Instruction::ICmp:
1230 case Instruction::Select:
1231 case Instruction::Or:
1232 case Instruction::Freeze:
1273 case Instruction::FCmp:
1274 case Instruction::ICmp:
1275 case Instruction::Select:
1285#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1293 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1305 O <<
"combined load";
1308 O <<
"combined store";
1311 O <<
"active lane mask";
1314 O <<
"EXPLICIT-VECTOR-LENGTH";
1317 O <<
"first-order splice";
1320 O <<
"branch-on-cond";
1323 O <<
"TC > VF ? TC - VF : 0";
1329 O <<
"branch-on-count";
1335 O <<
"buildstructvector";
1341 O <<
"extract-lane";
1344 O <<
"extract-last-lane";
1347 O <<
"extract-last-part";
1350 O <<
"extract-penultimate-element";
1353 O <<
"compute-anyof-result";
1356 O <<
"compute-find-iv-result";
1359 O <<
"compute-reduction-result";
1374 O <<
"first-active-lane";
1377 O <<
"last-active-lane";
1380 O <<
"reduction-start-vector";
1383 O <<
"resume-for-epilogue";
1403 State.set(
this, Cast,
VPLane(0));
1414 Value *
VScale = State.Builder.CreateVScale(ResultTy);
1415 State.set(
this,
VScale,
true);
1424#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1427 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1433 O <<
"wide-iv-step ";
1437 O <<
"step-vector " << *ResultTy;
1440 O <<
"vscale " << *ResultTy;
1446 O <<
" to " << *ResultTy;
1453 PHINode *NewPhi = State.Builder.CreatePHI(
1454 State.TypeAnalysis.inferScalarType(
this), 2,
getName());
1461 for (
unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1466 State.set(
this, NewPhi,
VPLane(0));
1469#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1472 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1487 "PHINodes must be handled by VPIRPhi");
1490 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1503 "can only update exiting operands to phi nodes");
1514#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1517 O << Indent <<
"IR " << I;
1529 auto *PredVPBB = Pred->getExitingBasicBlock();
1530 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1537 if (Phi->getBasicBlockIndex(PredBB) == -1)
1538 Phi->addIncoming(V, PredBB);
1540 Phi->setIncomingValueForBlock(PredBB, V);
1545 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1550 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1551 "Number of phi operands must match number of predecessors");
1552 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1553 R->removeOperand(Position);
1556#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1570#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1576 O <<
" (extra operand" << (
getNumOperands() > 1 ?
"s" :
"") <<
": ";
1581 std::get<1>(
Op)->printAsOperand(O);
1589 for (
const auto &[Kind,
Node] : Metadata)
1590 I.setMetadata(Kind,
Node);
1595 for (
const auto &[KindA, MDA] : Metadata) {
1596 for (
const auto &[KindB, MDB] :
Other.Metadata) {
1597 if (KindA == KindB && MDA == MDB) {
1603 Metadata = std::move(MetadataIntersection);
1606#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1609 if (Metadata.empty() || !M)
1615 auto [Kind,
Node] = KindNodePair;
1617 "Unexpected unnamed metadata kind");
1618 O <<
"!" << MDNames[Kind] <<
" ";
1626 assert(State.VF.isVector() &&
"not widening");
1627 assert(Variant !=
nullptr &&
"Can't create vector function.");
1638 Arg = State.get(
I.value(),
VPLane(0));
1641 Args.push_back(Arg);
1647 CI->getOperandBundlesAsDefs(OpBundles);
1649 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1652 V->setCallingConv(Variant->getCallingConv());
1654 if (!V->getType()->isVoidTy())
1660 return Ctx.TTI.getCallInstrCost(
nullptr, Variant->getReturnType(),
1661 Variant->getFunctionType()->params(),
1665#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1668 O << Indent <<
"WIDEN-CALL ";
1680 O <<
" @" << CalledFn->
getName() <<
"(";
1686 O <<
" (using library function";
1687 if (Variant->hasName())
1688 O <<
": " << Variant->getName();
1694 assert(State.VF.isVector() &&
"not widening");
1707 Arg = State.get(
I.value(),
VPLane(0));
1713 Args.push_back(Arg);
1717 Module *M = State.Builder.GetInsertBlock()->getModule();
1721 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1726 CI->getOperandBundlesAsDefs(OpBundles);
1728 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1733 if (!V->getType()->isVoidTy())
1749 for (
const auto &[Idx,
Op] :
enumerate(Operands)) {
1750 auto *V =
Op->getUnderlyingValue();
1753 Arguments.push_back(UI->getArgOperand(Idx));
1762 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1768 : Ctx.Types.inferScalarType(
Op));
1773 R.hasFastMathFlags() ? R.getFastMathFlags() :
FastMathFlags();
1778 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1800#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1803 O << Indent <<
"WIDEN-INTRINSIC ";
1804 if (ResultTy->isVoidTy()) {
1832 Value *Mask =
nullptr;
1834 Mask = State.get(VPMask);
1837 Builder.CreateVectorSplat(VTy->
getElementCount(), Builder.getInt1(1));
1841 if (Opcode == Instruction::Sub)
1842 IncAmt = Builder.CreateNeg(IncAmt);
1844 assert(Opcode == Instruction::Add &&
"only add or sub supported for now");
1846 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
1861 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
1867 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
1880 {PtrTy, IncTy, MaskTy});
1883 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
1884 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
1887#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1890 O << Indent <<
"WIDEN-HISTOGRAM buckets: ";
1893 if (Opcode == Instruction::Sub)
1896 assert(Opcode == Instruction::Add);
1909 O << Indent <<
"WIDEN-SELECT ";
1928 Value *Sel = State.Builder.CreateSelect(
Cond, Op0, Op1);
1929 State.set(
this, Sel);
1941 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1942 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1950 const auto [Op1VK, Op1VP] = Ctx.getOperandInfo(Op0);
1951 const auto [Op2VK, Op2VP] = Ctx.getOperandInfo(Op1);
1955 [](
VPValue *
Op) {
return Op->getUnderlyingValue(); }))
1956 Operands.
append(
SI->op_begin(),
SI->op_end());
1958 return Ctx.TTI.getArithmeticInstrCost(
1959 IsLogicalOr ? Instruction::Or : Instruction::And, VectorTy,
1960 Ctx.CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands,
SI);
1969 Pred = Cmp->getPredicate();
1970 return Ctx.TTI.getCmpSelInstrCost(
1971 Instruction::Select, VectorTy, CondTy, Pred, Ctx.CostKind,
1972 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
SI);
1975VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(
const FastMathFlags &FMF) {
1988 case OperationType::OverflowingBinOp:
1989 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
1990 Opcode == Instruction::Mul || Opcode == Instruction::Shl ||
1991 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
1992 case OperationType::Trunc:
1993 return Opcode == Instruction::Trunc;
1994 case OperationType::DisjointOp:
1995 return Opcode == Instruction::Or;
1996 case OperationType::PossiblyExactOp:
1997 return Opcode == Instruction::AShr || Opcode == Instruction::LShr ||
1998 Opcode == Instruction::UDiv || Opcode == Instruction::SDiv;
1999 case OperationType::GEPOp:
2000 return Opcode == Instruction::GetElementPtr ||
2003 case OperationType::FPMathOp:
2004 return Opcode == Instruction::Call || Opcode == Instruction::FAdd ||
2005 Opcode == Instruction::FMul || Opcode == Instruction::FSub ||
2006 Opcode == Instruction::FNeg || Opcode == Instruction::FDiv ||
2007 Opcode == Instruction::FRem || Opcode == Instruction::FPExt ||
2008 Opcode == Instruction::FPTrunc || Opcode == Instruction::Select ||
2012 case OperationType::FCmp:
2013 return Opcode == Instruction::FCmp;
2014 case OperationType::NonNegOp:
2015 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2016 case OperationType::Cmp:
2017 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2018 case OperationType::Other:
2025#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2028 case OperationType::Cmp:
2031 case OperationType::FCmp:
2035 case OperationType::DisjointOp:
2039 case OperationType::PossiblyExactOp:
2043 case OperationType::OverflowingBinOp:
2049 case OperationType::Trunc:
2055 case OperationType::FPMathOp:
2058 case OperationType::GEPOp:
2061 else if (
GEPFlags.hasNoUnsignedSignedWrap())
2066 case OperationType::NonNegOp:
2070 case OperationType::Other:
2078 auto &Builder = State.Builder;
2080 case Instruction::Call:
2081 case Instruction::Br:
2082 case Instruction::PHI:
2083 case Instruction::GetElementPtr:
2084 case Instruction::Select:
2086 case Instruction::UDiv:
2087 case Instruction::SDiv:
2088 case Instruction::SRem:
2089 case Instruction::URem:
2090 case Instruction::Add:
2091 case Instruction::FAdd:
2092 case Instruction::Sub:
2093 case Instruction::FSub:
2094 case Instruction::FNeg:
2095 case Instruction::Mul:
2096 case Instruction::FMul:
2097 case Instruction::FDiv:
2098 case Instruction::FRem:
2099 case Instruction::Shl:
2100 case Instruction::LShr:
2101 case Instruction::AShr:
2102 case Instruction::And:
2103 case Instruction::Or:
2104 case Instruction::Xor: {
2108 Ops.push_back(State.get(VPOp));
2110 Value *V = Builder.CreateNAryOp(Opcode,
Ops);
2121 case Instruction::ExtractValue: {
2125 Value *Extract = Builder.CreateExtractValue(
Op, CI->getZExtValue());
2126 State.set(
this, Extract);
2129 case Instruction::Freeze: {
2131 Value *Freeze = Builder.CreateFreeze(
Op);
2132 State.set(
this, Freeze);
2135 case Instruction::ICmp:
2136 case Instruction::FCmp: {
2138 bool FCmp = Opcode == Instruction::FCmp;
2165 State.get(
this)->getType() &&
2166 "inferred type and type from generated instructions do not match");
2173 case Instruction::UDiv:
2174 case Instruction::SDiv:
2175 case Instruction::SRem:
2176 case Instruction::URem:
2181 case Instruction::FNeg:
2182 case Instruction::Add:
2183 case Instruction::FAdd:
2184 case Instruction::Sub:
2185 case Instruction::FSub:
2186 case Instruction::Mul:
2187 case Instruction::FMul:
2188 case Instruction::FDiv:
2189 case Instruction::FRem:
2190 case Instruction::Shl:
2191 case Instruction::LShr:
2192 case Instruction::AShr:
2193 case Instruction::And:
2194 case Instruction::Or:
2195 case Instruction::Xor:
2196 case Instruction::Freeze:
2197 case Instruction::ExtractValue:
2198 case Instruction::ICmp:
2199 case Instruction::FCmp:
2206#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2209 O << Indent <<
"WIDEN ";
2218 auto &Builder = State.Builder;
2220 assert(State.VF.isVector() &&
"Not vectorizing?");
2225 State.set(
this, Cast);
2249 if (WidenMemoryRecipe ==
nullptr)
2251 if (!WidenMemoryRecipe->isConsecutive())
2253 if (WidenMemoryRecipe->isReverse())
2255 if (WidenMemoryRecipe->isMasked())
2263 if ((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
2266 CCH = ComputeCCH(StoreRecipe);
2269 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
2270 Opcode == Instruction::FPExt) {
2281 return Ctx.TTI.getCastInstrCost(
2282 Opcode, DestTy, SrcTy, CCH, Ctx.CostKind,
2286#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2289 O << Indent <<
"WIDEN-CAST ";
2300 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2307 : ConstantFP::get(Ty,
C);
2310#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2315 O <<
" = WIDEN-INDUCTION";
2321 O <<
" (truncated to " << *TI->getType() <<
")";
2333 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2337#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2342 O <<
" = DERIVED-IV ";
2366 assert(BaseIVTy == Step->
getType() &&
"Types of BaseIV and Step must match!");
2373 AddOp = Instruction::Add;
2374 MulOp = Instruction::Mul;
2376 AddOp = InductionOpcode;
2377 MulOp = Instruction::FMul;
2387 unsigned StartLane = 0;
2388 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2390 StartLane = State.Lane->getKnownLane();
2391 EndLane = StartLane + 1;
2395 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2400 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->
getType(),
2403 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2407 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2409 for (
unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2410 Value *StartIdx = Builder.CreateBinOp(
2415 "Expected StartIdx to be folded to a constant when VF is not "
2417 auto *
Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2418 auto *
Add = Builder.CreateBinOp(AddOp, BaseIV,
Mul);
2423#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2428 O <<
" = SCALAR-STEPS ";
2439 assert(State.VF.isVector() &&
"not widening");
2448 [](
VPValue *
Op) {
return !
Op->isDefinedOutsideLoopRegions(); }) &&
2449 "Expected at least one loop-variant operand");
2455 auto *Ptr = State.get(
getOperand(0), isPointerLoopInvariant());
2462 Indices.
push_back(State.get(Operand, isIndexLoopInvariant(
I - 1)));
2469 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2470 "NewGEP is not a pointer vector");
2471 State.set(
this, NewGEP);
2474#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2477 O << Indent <<
"WIDEN-GEP ";
2478 O << (isPointerLoopInvariant() ?
"Inv" :
"Var");
2480 O <<
"[" << (isIndexLoopInvariant(
I) ?
"Inv" :
"Var") <<
"]";
2484 O <<
" = getelementptr";
2491 auto &Builder = State.Builder;
2493 const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
2494 Type *IndexTy = DL.getIndexType(State.TypeAnalysis.inferScalarType(
this));
2498 if (IndexTy != RunTimeVF->
getType())
2499 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2501 Value *NumElt = Builder.CreateMul(
2502 ConstantInt::get(IndexTy, Stride * (int64_t)CurrentPart), RunTimeVF);
2504 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2506 LastLane = Builder.CreateMul(ConstantInt::get(IndexTy, Stride), LastLane);
2510 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane,
"",
2513 State.set(
this, ResultPtr,
true);
2516#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2521 O <<
" = vector-end-pointer";
2528 auto &Builder = State.Builder;
2530 const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
2531 Type *IndexTy = DL.getIndexType(State.TypeAnalysis.inferScalarType(
this));
2538 State.set(
this, ResultPtr,
true);
2541#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2546 O <<
" = vector-pointer";
2557 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2559 Type *ResultTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
2562 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2566#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2569 O << Indent <<
"BLEND ";
2591 assert(!State.Lane &&
"Reduction being replicated.");
2594 "In-loop AnyOf reductions aren't currently supported");
2600 Value *NewCond = State.get(
Cond, State.VF.isScalar());
2605 if (State.VF.isVector())
2606 Start = State.Builder.CreateVectorSplat(VecTy->
getElementCount(), Start);
2608 Value *
Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2615 if (State.VF.isVector())
2619 NewRed = State.Builder.CreateBinOp(
2621 PrevInChain, NewVecOp);
2622 PrevInChain = NewRed;
2623 NextInChain = NewRed;
2627 NewRed = State.Builder.CreateIntrinsic(
2628 PrevInChain->
getType(), Intrinsic::vector_partial_reduce_add,
2629 {PrevInChain, NewVecOp},
nullptr,
"partial.reduce");
2630 PrevInChain = NewRed;
2631 NextInChain = NewRed;
2634 "The reduction must either be ordered, partial or in-loop");
2638 NextInChain =
createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2640 NextInChain = State.Builder.CreateBinOp(
2642 PrevInChain, NewRed);
2648 assert(!State.Lane &&
"Reduction being replicated.");
2650 auto &Builder = State.Builder;
2662 Mask = State.get(CondOp);
2664 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2674 NewRed = Builder.CreateBinOp(
2678 State.set(
this, NewRed,
true);
2684 Type *ElementTy = Ctx.Types.inferScalarType(
this);
2688 std::optional<FastMathFlags> OptionalFMF =
2697 CondCost = Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VectorTy,
2698 CondTy, Pred, Ctx.CostKind);
2700 return CondCost + Ctx.TTI.getPartialReductionCost(
2701 Opcode, ElementTy, ElementTy, ElementTy, VF,
2711 "Any-of reduction not implemented in VPlan-based cost model currently.");
2717 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy,
FMFs, Ctx.CostKind);
2722 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2727 ExpressionTypes ExpressionType,
2730 ExpressionRecipes(ExpressionRecipes),
ExpressionType(ExpressionType) {
2731 assert(!ExpressionRecipes.empty() &&
"Nothing to combine?");
2735 "expression cannot contain recipes with side-effects");
2739 for (
auto *R : ExpressionRecipes)
2740 ExpressionRecipesAsSetOfUsers.
insert(R);
2746 if (R != ExpressionRecipes.back() &&
2747 any_of(
R->users(), [&ExpressionRecipesAsSetOfUsers](
VPUser *U) {
2748 return !ExpressionRecipesAsSetOfUsers.contains(U);
2753 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2755 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2760 R->removeFromParent();
2767 for (
auto *R : ExpressionRecipes) {
2768 for (
const auto &[Idx,
Op] :
enumerate(
R->operands())) {
2769 auto *
Def =
Op->getDefiningRecipe();
2770 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2773 LiveInPlaceholders.push_back(
new VPValue());
2779 for (
auto *R : ExpressionRecipes)
2780 for (
auto const &[LiveIn, Tmp] :
zip(operands(), LiveInPlaceholders))
2781 R->replaceUsesOfWith(LiveIn, Tmp);
2785 for (
auto *R : ExpressionRecipes)
2788 if (!R->getParent())
2789 R->insertBefore(
this);
2792 LiveInPlaceholders[Idx]->replaceAllUsesWith(
Op);
2795 ExpressionRecipes.clear();
2800 Type *RedTy = Ctx.Types.inferScalarType(
this);
2804 "VPExpressionRecipe only supports integer types currently.");
2807 switch (ExpressionType) {
2808 case ExpressionTypes::ExtendedReduction: {
2814 ->isPartialReduction()
2815 ? Ctx.TTI.getPartialReductionCost(
2816 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
nullptr,
2821 : Ctx.TTI.getExtendedReductionCost(
2822 Opcode, ExtR->getOpcode() == Instruction::ZExt, RedTy,
2823 SrcVecTy, std::nullopt, Ctx.CostKind);
2825 case ExpressionTypes::MulAccReduction:
2826 return Ctx.TTI.getMulAccReductionCost(
false, Opcode, RedTy, SrcVecTy,
2829 case ExpressionTypes::ExtNegatedMulAccReduction:
2830 assert(Opcode == Instruction::Add &&
"Unexpected opcode");
2831 Opcode = Instruction::Sub;
2833 case ExpressionTypes::ExtMulAccReduction: {
2835 if (RedR->isPartialReduction()) {
2839 return Ctx.TTI.getPartialReductionCost(
2840 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
2841 Ctx.Types.inferScalarType(
getOperand(1)), RedTy, VF,
2843 Ext0R->getOpcode()),
2845 Ext1R->getOpcode()),
2846 Mul->getOpcode(), Ctx.CostKind);
2848 return Ctx.TTI.getMulAccReductionCost(
2851 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2859 return R->mayReadFromMemory() || R->mayWriteToMemory();
2867 "expression cannot contain recipes with side-effects");
2875 return RR && !RR->isPartialReduction();
2878#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2882 O << Indent <<
"EXPRESSION ";
2888 switch (ExpressionType) {
2889 case ExpressionTypes::ExtendedReduction: {
2891 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
2898 << *Ext0->getResultType();
2899 if (Red->isConditional()) {
2906 case ExpressionTypes::ExtNegatedMulAccReduction: {
2908 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
2918 << *Ext0->getResultType() <<
"), (";
2922 << *Ext1->getResultType() <<
")";
2923 if (Red->isConditional()) {
2930 case ExpressionTypes::MulAccReduction:
2931 case ExpressionTypes::ExtMulAccReduction: {
2933 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
2938 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
2940 : ExpressionRecipes[0]);
2948 << *Ext0->getResultType() <<
"), (";
2956 << *Ext1->getResultType() <<
")";
2958 if (Red->isConditional()) {
2971 O << Indent <<
"PARTIAL-REDUCE ";
2973 O << Indent <<
"REDUCE ";
2993 O << Indent <<
"REDUCE ";
3021 assert((!Instr->getType()->isAggregateType() ||
3023 "Expected vectorizable or non-aggregate type.");
3026 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3030 Cloned->
setName(Instr->getName() +
".cloned");
3031 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3035 if (ResultTy != Cloned->
getType())
3046 State.setDebugLocFrom(
DL);
3051 auto InputLane = Lane;
3055 Cloned->
setOperand(
I.index(), State.get(Operand, InputLane));
3059 State.Builder.Insert(Cloned);
3061 State.set(RepRecipe, Cloned, Lane);
3065 State.AC->registerAssumption(
II);
3071 [](
VPValue *
Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3072 "Expected a recipe is either within a region or all of its operands "
3073 "are defined outside the vectorized region.");
3080 assert(IsSingleScalar &&
"VPReplicateRecipes outside replicate regions "
3081 "must have already been unrolled");
3087 "uniform recipe shouldn't be predicated");
3088 assert(!State.VF.isScalable() &&
"Can't scalarize a scalable vector");
3093 State.Lane->isFirstLane()
3096 State.set(
this, State.packScalarIntoVectorizedValue(
this, WideValue,
3121 Instruction::GetElementPtr) ||
3129 if (!Opd->isDefinedOutsideLoopRegions() &&
3143 while (!WorkList.
empty()) {
3145 if (!Cur || !Seen.
insert(Cur).second)
3153 return Seen.contains(
3154 Blend->getIncomingValue(I)->getDefiningRecipe());
3158 for (
VPUser *U : Cur->users()) {
3160 if (InterleaveR->getAddr() == Cur)
3163 if (RepR->getOpcode() == Instruction::Load &&
3164 RepR->getOperand(0) == Cur)
3166 if (RepR->getOpcode() == Instruction::Store &&
3167 RepR->getOperand(1) == Cur)
3171 if (MemR->getAddr() == Cur && MemR->isConsecutive())
3192 Ctx.SkipCostComputation.insert(UI);
3198 case Instruction::GetElementPtr:
3204 case Instruction::Call: {
3210 for (
const VPValue *ArgOp : ArgOps)
3211 Tys.
push_back(Ctx.Types.inferScalarType(ArgOp));
3213 if (CalledFn->isIntrinsic())
3216 switch (CalledFn->getIntrinsicID()) {
3217 case Intrinsic::assume:
3218 case Intrinsic::lifetime_end:
3219 case Intrinsic::lifetime_start:
3220 case Intrinsic::sideeffect:
3221 case Intrinsic::pseudoprobe:
3222 case Intrinsic::experimental_noalias_scope_decl: {
3225 "scalarizing intrinsic should be free");
3232 Type *ResultTy = Ctx.Types.inferScalarType(
this);
3234 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3236 if (CalledFn->isIntrinsic())
3237 ScalarCallCost = std::min(
3241 return ScalarCallCost;
3245 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3247 case Instruction::Add:
3248 case Instruction::Sub:
3249 case Instruction::FAdd:
3250 case Instruction::FSub:
3251 case Instruction::Mul:
3252 case Instruction::FMul:
3253 case Instruction::FDiv:
3254 case Instruction::FRem:
3255 case Instruction::Shl:
3256 case Instruction::LShr:
3257 case Instruction::AShr:
3258 case Instruction::And:
3259 case Instruction::Or:
3260 case Instruction::Xor:
3261 case Instruction::ICmp:
3262 case Instruction::FCmp:
3266 case Instruction::SDiv:
3267 case Instruction::UDiv:
3268 case Instruction::SRem:
3269 case Instruction::URem: {
3276 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(
this),
3285 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3289 ScalarCost /= Ctx.getPredBlockCostDivisor(UI->
getParent());
3292 case Instruction::Load:
3293 case Instruction::Store: {
3300 bool IsLoad = UI->
getOpcode() == Instruction::Load;
3306 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ?
this :
getOperand(0));
3307 Type *ScalarPtrTy = Ctx.Types.inferScalarType(PtrOp);
3312 UI->
getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo);
3315 bool PreferVectorizedAddressing = Ctx.TTI.prefersVectorizedAddressing();
3316 bool UsedByLoadStoreAddress =
3319 ScalarMemOpCost + Ctx.TTI.getAddressComputationCost(
3320 PtrTy, UsedByLoadStoreAddress ?
nullptr : &Ctx.SE,
3321 PtrSCEV, Ctx.CostKind);
3331 if (!UsedByLoadStoreAddress) {
3332 bool EfficientVectorLoadStore =
3333 Ctx.TTI.supportsEfficientVectorElementLoadStore();
3334 if (!(IsLoad && !PreferVectorizedAddressing) &&
3335 !(!IsLoad && EfficientVectorLoadStore))
3338 if (!EfficientVectorLoadStore)
3339 ResultTy = Ctx.Types.inferScalarType(
this);
3343 Ctx.getScalarizationOverhead(ResultTy, OpsToScalarize, VF,
true);
3347 return Ctx.getLegacyCost(UI, VF);
3350#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3353 O << Indent << (IsSingleScalar ?
"CLONE " :
"REPLICATE ");
3362 O <<
"@" << CB->getCalledFunction()->getName() <<
"(";
3380 assert(State.Lane &&
"Branch on Mask works only on single instance.");
3383 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3387 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3389 "Expected to replace unreachable terminator with conditional branch.");
3391 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB,
nullptr);
3392 CondBr->setSuccessor(0,
nullptr);
3393 CurrentTerminator->eraseFromParent();
3405 assert(State.Lane &&
"Predicated instruction PHI works per instance.");
3410 assert(PredicatingBB &&
"Predicated block has no single predecessor.");
3412 "operand must be VPReplicateRecipe");
3423 "Packed operands must generate an insertelement or insertvalue");
3431 for (
unsigned I = 0;
I < StructTy->getNumContainedTypes() - 1;
I++)
3434 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3435 VPhi->
addIncoming(VecI->getOperand(0), PredicatingBB);
3437 if (State.hasVectorValue(
this))
3438 State.reset(
this, VPhi);
3440 State.set(
this, VPhi);
3448 Type *PredInstType = State.TypeAnalysis.inferScalarType(
getOperand(0));
3449 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3452 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3453 if (State.hasScalarValue(
this, *State.Lane))
3454 State.reset(
this, Phi, *State.Lane);
3456 State.set(
this, Phi, *State.Lane);
3459 State.reset(
getOperand(0), Phi, *State.Lane);
3463#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3466 O << Indent <<
"PHI-PREDICATED-INSTRUCTION ";
3477 ->getAddressSpace();
3480 : Instruction::Store;
3487 "Inconsecutive memory access should not have the order.");
3500 : Intrinsic::vp_scatter;
3501 return Ctx.TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
3503 Ctx.TTI.getMemIntrinsicInstrCost(
3512 : Intrinsic::masked_store;
3513 Cost += Ctx.TTI.getMemIntrinsicInstrCost(
3519 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty,
Alignment, AS, Ctx.CostKind,
3525 return Cost += Ctx.TTI.getShuffleCost(
3535 auto &Builder = State.Builder;
3536 Value *Mask =
nullptr;
3537 if (
auto *VPMask =
getMask()) {
3540 Mask = State.get(VPMask);
3542 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3548 NewLI = Builder.CreateMaskedGather(DataTy, Addr,
Alignment, Mask,
nullptr,
3549 "wide.masked.gather");
3552 Builder.CreateMaskedLoad(DataTy, Addr,
Alignment, Mask,
3555 NewLI = Builder.CreateAlignedLoad(DataTy, Addr,
Alignment,
"wide.load");
3559 NewLI = Builder.CreateVectorReverse(NewLI,
"reverse");
3560 State.set(
this, NewLI);
3563#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3566 O << Indent <<
"WIDEN ";
3578 Value *AllTrueMask =
3579 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3580 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3581 {Operand, AllTrueMask, EVL},
nullptr, Name);
3589 auto &Builder = State.Builder;
3593 Value *Mask =
nullptr;
3595 Mask = State.get(VPMask);
3599 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3604 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3605 nullptr,
"wide.masked.gather");
3607 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3608 {Addr, Mask, EVL},
nullptr,
"vp.op.load");
3616 State.set(
this, Res);
3631 ->getAddressSpace();
3638 return Cost + Ctx.TTI.getShuffleCost(
3643#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3646 O << Indent <<
"WIDEN ";
3657 auto &Builder = State.Builder;
3659 Value *Mask =
nullptr;
3660 if (
auto *VPMask =
getMask()) {
3663 Mask = State.get(VPMask);
3665 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3668 Value *StoredVal = State.get(StoredVPValue);
3672 StoredVal = Builder.CreateVectorReverse(StoredVal,
"reverse");
3679 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr,
Alignment, Mask);
3681 NewSI = Builder.CreateMaskedStore(StoredVal, Addr,
Alignment, Mask);
3683 NewSI = Builder.CreateAlignedStore(StoredVal, Addr,
Alignment);
3687#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3690 O << Indent <<
"WIDEN store ";
3699 auto &Builder = State.Builder;
3702 Value *StoredVal = State.get(StoredValue);
3706 Value *Mask =
nullptr;
3708 Mask = State.get(VPMask);
3712 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3715 if (CreateScatter) {
3717 Intrinsic::vp_scatter,
3718 {StoredVal, Addr, Mask, EVL});
3721 Intrinsic::vp_store,
3722 {StoredVal, Addr, Mask, EVL});
3741 ->getAddressSpace();
3748 return Cost + Ctx.TTI.getShuffleCost(
3753#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3756 O << Indent <<
"WIDEN vp.store ";
3764 auto VF = DstVTy->getElementCount();
3766 assert(VF == SrcVecTy->getElementCount() &&
"Vector dimensions do not match");
3767 Type *SrcElemTy = SrcVecTy->getElementType();
3768 Type *DstElemTy = DstVTy->getElementType();
3769 assert((
DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) &&
3770 "Vector elements must have same size");
3774 return Builder.CreateBitOrPointerCast(V, DstVTy);
3781 "Only one type should be a pointer type");
3783 "Only one type should be a floating point type");
3787 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3788 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3794 const Twine &Name) {
3795 unsigned Factor = Vals.
size();
3796 assert(Factor > 1 &&
"Tried to interleave invalid number of vectors");
3800 for (
Value *Val : Vals)
3801 assert(Val->getType() == VecTy &&
"Tried to interleave mismatched types");
3806 if (VecTy->isScalableTy()) {
3807 assert(Factor <= 8 &&
"Unsupported interleave factor for scalable vectors");
3808 return Builder.CreateVectorInterleave(Vals, Name);
3815 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3816 return Builder.CreateShuffleVector(
3849 assert(!State.Lane &&
"Interleave group being replicated.");
3851 "Masking gaps for scalable vectors is not yet supported.");
3857 unsigned InterleaveFactor = Group->
getFactor();
3864 auto CreateGroupMask = [&BlockInMask, &State,
3865 &InterleaveFactor](
Value *MaskForGaps) ->
Value * {
3866 if (State.VF.isScalable()) {
3867 assert(!MaskForGaps &&
"Interleaved groups with gaps are not supported.");
3868 assert(InterleaveFactor <= 8 &&
3869 "Unsupported deinterleave factor for scalable vectors");
3870 auto *ResBlockInMask = State.get(BlockInMask);
3878 Value *ResBlockInMask = State.get(BlockInMask);
3879 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3882 "interleaved.mask");
3883 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3884 ShuffledMask, MaskForGaps)
3888 const DataLayout &DL = Instr->getDataLayout();
3891 Value *MaskForGaps =
nullptr;
3895 assert(MaskForGaps &&
"Mask for Gaps is required but it is null");
3899 if (BlockInMask || MaskForGaps) {
3900 Value *GroupMask = CreateGroupMask(MaskForGaps);
3902 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
3904 PoisonVec,
"wide.masked.vec");
3906 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
3913 if (VecTy->isScalableTy()) {
3916 assert(InterleaveFactor <= 8 &&
3917 "Unsupported deinterleave factor for scalable vectors");
3918 NewLoad = State.Builder.CreateIntrinsic(
3921 nullptr,
"strided.vec");
3924 auto CreateStridedVector = [&InterleaveFactor, &State,
3925 &NewLoad](
unsigned Index) ->
Value * {
3926 assert(Index < InterleaveFactor &&
"Illegal group index");
3927 if (State.VF.isScalable())
3928 return State.Builder.CreateExtractValue(NewLoad, Index);
3934 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
3938 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
3945 Value *StridedVec = CreateStridedVector(
I);
3948 if (Member->getType() != ScalarTy) {
3955 StridedVec = State.Builder.CreateVectorReverse(StridedVec,
"reverse");
3957 State.set(VPDefs[J], StridedVec);
3967 Value *MaskForGaps =
3970 "Mismatch between NeedsMaskForGaps and MaskForGaps");
3974 unsigned StoredIdx = 0;
3975 for (
unsigned i = 0; i < InterleaveFactor; i++) {
3977 "Fail to get a member from an interleaved store group");
3987 Value *StoredVec = State.get(StoredValues[StoredIdx]);
3991 StoredVec = State.Builder.CreateVectorReverse(StoredVec,
"reverse");
3995 if (StoredVec->
getType() != SubVT)
4004 if (BlockInMask || MaskForGaps) {
4005 Value *GroupMask = CreateGroupMask(MaskForGaps);
4006 NewStoreInstr = State.Builder.CreateMaskedStore(
4007 IVec, ResAddr, Group->
getAlign(), GroupMask);
4010 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->
getAlign());
4017#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4021 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4022 IG->getInsertPos()->printAsOperand(O,
false);
4032 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4033 if (!IG->getMember(i))
4036 O <<
"\n" << Indent <<
" store ";
4038 O <<
" to index " << i;
4040 O <<
"\n" << Indent <<
" ";
4042 O <<
" = load from index " << i;
4050 assert(!State.Lane &&
"Interleave group being replicated.");
4051 assert(State.VF.isScalable() &&
4052 "Only support scalable VF for EVL tail-folding.");
4054 "Masking gaps for scalable vectors is not yet supported.");
4060 unsigned InterleaveFactor = Group->
getFactor();
4061 assert(InterleaveFactor <= 8 &&
4062 "Unsupported deinterleave/interleave factor for scalable vectors");
4069 Value *InterleaveEVL = State.Builder.CreateMul(
4070 EVL, ConstantInt::get(EVL->
getType(), InterleaveFactor),
"interleave.evl",
4074 Value *GroupMask =
nullptr;
4080 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
4085 CallInst *NewLoad = State.Builder.CreateIntrinsic(
4086 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL},
nullptr,
4097 NewLoad = State.Builder.CreateIntrinsic(
4100 nullptr,
"strided.vec");
4102 const DataLayout &DL = Instr->getDataLayout();
4103 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
4109 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad,
I);
4111 if (Member->getType() != ScalarTy) {
4129 const DataLayout &DL = Instr->getDataLayout();
4130 for (
unsigned I = 0, StoredIdx = 0;
I < InterleaveFactor;
I++) {
4138 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4140 if (StoredVec->
getType() != SubVT)
4150 State.Builder.CreateIntrinsic(
Type::getVoidTy(Ctx), Intrinsic::vp_store,
4151 {IVec, ResAddr, GroupMask, InterleaveEVL});
4160#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4164 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4165 IG->getInsertPos()->printAsOperand(O,
false);
4176 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4177 if (!IG->getMember(i))
4180 O <<
"\n" << Indent <<
" vp.store ";
4182 O <<
" to index " << i;
4184 O <<
"\n" << Indent <<
" ";
4186 O <<
" = vp.load from index " << i;
4197 unsigned InsertPosIdx = 0;
4198 for (
unsigned Idx = 0; IG->getFactor(); ++Idx)
4199 if (
auto *Member = IG->getMember(Idx)) {
4200 if (Member == InsertPos)
4204 Type *ValTy = Ctx.Types.inferScalarType(
4209 ->getAddressSpace();
4211 unsigned InterleaveFactor = IG->getFactor();
4216 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
4217 if (IG->getMember(IF))
4222 InsertPos->
getOpcode(), WideVecTy, IG->getFactor(), Indices,
4223 IG->getAlign(), AS, Ctx.CostKind,
getMask(), NeedsMaskForGaps);
4225 if (!IG->isReverse())
4228 return Cost + IG->getNumMembers() *
4230 VectorTy, VectorTy, {}, Ctx.CostKind,
4234#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4237 O << Indent <<
"EMIT ";
4239 O <<
" = CANONICAL-INDUCTION ";
4249#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4253 "unexpected number of operands");
4254 O << Indent <<
"EMIT ";
4256 O <<
" = WIDEN-POINTER-INDUCTION ";
4272 O << Indent <<
"EMIT ";
4274 O <<
" = EXPAND SCEV " << *Expr;
4281 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4285 : Builder.CreateVectorSplat(VF, CanonicalIV,
"broadcast");
4288 VStep = Builder.CreateVectorSplat(VF, VStep);
4290 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->
getType()));
4292 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep,
"vec.iv");
4293 State.set(
this, CanonicalVectorIV);
4296#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4299 O << Indent <<
"EMIT ";
4301 O <<
" = WIDEN-CANONICAL-INDUCTION ";
4307 auto &Builder = State.Builder;
4311 Type *VecTy = State.VF.isScalar()
4312 ? VectorInit->getType()
4316 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4317 if (State.VF.isVector()) {
4319 auto *One = ConstantInt::get(IdxTy, 1);
4322 auto *RuntimeVF =
getRuntimeVF(Builder, IdxTy, State.VF);
4323 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4324 VectorInit = Builder.CreateInsertElement(
4330 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4331 Phi->addIncoming(VectorInit, VectorPH);
4332 State.set(
this, Phi);
4339 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4344#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4347 O << Indent <<
"FIRST-ORDER-RECURRENCE-PHI ";
4364 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4365 bool ScalarPHI = State.VF.isScalar() ||
isInLoop();
4366 Value *StartV = State.get(StartVPV, ScalarPHI);
4370 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4371 "recipe must be in the vector loop header");
4376 Phi->addIncoming(StartV, VectorPH);
4379#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4382 O << Indent <<
"WIDEN-REDUCTION-PHI ";
4395 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4396 State.set(
this, VecPhi);
4399#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4402 O << Indent <<
"WIDEN-PHI ";
4414 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4417 State.Builder.CreatePHI(StartMask->
getType(), 2,
"active.lane.mask");
4418 Phi->addIncoming(StartMask, VectorPH);
4419 State.set(
this, Phi);
4422#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4425 O << Indent <<
"ACTIVE-LANE-MASK-PHI ";
4433#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4436 O << Indent <<
"EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
SmallVector< Value *, 2 > VectorParts
static bool isUsedByLoadStoreAddress(const VPUser *V)
Returns true if V is used as part of the address of another load or store.
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static Constant * getSignedIntOrFpConstant(Type *Ty, int64_t C)
A helper function that returns an integer or floating-point constant with value C.
static BranchInst * createCondBranch(Value *Cond, VPBasicBlock *VPBB, VPTransformState &State)
Create a conditional branch using Cond branching to the successors of VPBB.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
void printAsOperand(OutputBuffer &OB, Prec P=Prec::Default, bool StrictlyWorse=false) const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Conditional or Unconditional Branch instruction.
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
static LLVM_ABI StringRef getPredicateName(Predicate P)
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This is an important base class in LLVM.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
void setAllowContract(bool B=true)
bool noSignedZeros() const
void setAllowReciprocal(bool B=true)
bool allowReciprocal() const
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
void setNoNaNs(bool B=true)
void setAllowReassoc(bool B=true)
Flag setters.
void setApproxFunc(bool B=true)
void setNoInfs(bool B=true)
bool allowContract() const
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
bool doesNotThrow() const
Determine if the function cannot unwind.
Type * getReturnType() const
Returns the type of the ret val.
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
IntegerType * getInt1Ty()
Fetch the type representing a single bit.
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
static InstructionCost getInvalid(CostType Val=0)
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
This is an important class for using LLVM in a threaded context.
Represents a single loop in the control flow graph.
Information for memory intrinsic cost model.
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents an analyzed expression in the program.
The main scalar evolution driver.
This class represents the LLVM 'select' instruction.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isVoidTy() const
Return true if this is 'void'.
value_op_iterator value_op_end()
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
value_op_iterator value_op_begin()
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
const VPBlocksTy & getPredecessors() const
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
const VPBlocksTy & getSuccessors() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
LLVM_ABI_FOR_TEST void dump() const
Dump the VPDef to stderr (for debugging).
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
unsigned getVPDefID() const
VPValue * getStepValue() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStartValue() const
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
bool isSingleScalar() const
Returns true if the result of this VPExpressionRecipe is a single-scalar.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
Class to record and manage LLVM IR flags.
bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
CmpInst::Predicate CmpPredicate
void printFlags(raw_ostream &O) const
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
CmpInst::Predicate getPredicate() const
bool hasNoSignedWrap() const
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
DisjointFlagsTy DisjointFlags
bool hasNoUnsignedWrap() const
NonNegFlagsTy NonNegFlags
void applyFlags(Instruction &I) const
Apply the IR flags to I.
Instruction & getInstruction() const
void extractLastLaneOfLastPartOfFirstOperand(VPBuilder &Builder)
Update the recipe's first operand to the last lane of the last part of the operand using Builder.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ VScale
Returns the value for vscale.
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
unsigned getOpcode() const
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool usesFirstPartOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
VPValue * getAddr() const
Return the address accessed by this recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
virtual void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPRecipe prints itself, without printing common information, like debug info or metadat...
VPRegionBlock * getRegion()
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override final
Print the recipe, delegating to printRecipe().
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
unsigned getVFScaleFactor() const
Get the factor that the VF of this recipe's output should be scaled by, or 1 if it isn't scaled.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
VPValue * getCondOp() const
The VPValue of the condition for the block.
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
bool isPartialReduction() const
Returns true if the reduction outputs a vector with a scaled down VF.
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
bool isInLoop() const
Returns true if the reduction is in-loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getOpcode() const
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
VPValue * getStepValue() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
LLVM_ABI_FOR_TEST LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
virtual bool usesFirstLaneOnly(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
friend class VPExpressionRecipe
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
bool hasMoreThanOneUniqueUser() const
Returns true if the value has more than one unique user.
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getSourceElementType() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
Function * getCalledScalarFunction() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
void execute(VPTransformState &State) override
Produce widened copies of the cast.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
Type * getSourceElementType() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
VPValue * getStepValue()
Returns the step value of the induction.
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Type * getScalarType() const
Returns the scalar type of the induction.
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Type * getResultType() const
Return the scalar return type of the intrinsic.
void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
VPValue * getMask() const
Return the mask used by this recipe.
Align Alignment
Alignment information for this memory access.
VPValue * getAddr() const
Return the address accessed by this recipe.
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
const ParentTy * getParent() const
self_iterator getIterator()
typename base_list_type::iterator iterator
iterator erase(iterator where)
pointer remove(iterator &IT)
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
bool match(Val *V, const Pattern &P)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
const SCEV * getSCEVExprForVPValue(const VPValue *V, ScalarEvolution &SE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
auto cast_or_null(const Y &Val)
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
auto reverse(ContainerTy &&C)
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
@ Increment
Incrementally increasing token ID.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Struct to hold various analysis needed for cost computations.
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void execute(VPTransformState &State) override
Generate the instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the wide load or gather.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
VPValue * getCond() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenSelectRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the select instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
void execute(VPTransformState &State) override
Generate the wide store or scatter.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void execute(VPTransformState &State) override
Generate a wide store or scatter.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStoredValue() const
Return the value stored by this recipe.