Line data Source code
1 : //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : /// \file
10 : /// This file implements the IRTranslator class.
11 : //===----------------------------------------------------------------------===//
12 :
13 : #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
14 : #include "llvm/ADT/PostOrderIterator.h"
15 : #include "llvm/ADT/STLExtras.h"
16 : #include "llvm/ADT/ScopeExit.h"
17 : #include "llvm/ADT/SmallSet.h"
18 : #include "llvm/ADT/SmallVector.h"
19 : #include "llvm/Analysis/OptimizationRemarkEmitter.h"
20 : #include "llvm/CodeGen/Analysis.h"
21 : #include "llvm/CodeGen/GlobalISel/CallLowering.h"
22 : #include "llvm/CodeGen/LowLevelType.h"
23 : #include "llvm/CodeGen/MachineBasicBlock.h"
24 : #include "llvm/CodeGen/MachineFrameInfo.h"
25 : #include "llvm/CodeGen/MachineFunction.h"
26 : #include "llvm/CodeGen/MachineInstrBuilder.h"
27 : #include "llvm/CodeGen/MachineMemOperand.h"
28 : #include "llvm/CodeGen/MachineOperand.h"
29 : #include "llvm/CodeGen/MachineRegisterInfo.h"
30 : #include "llvm/CodeGen/StackProtector.h"
31 : #include "llvm/CodeGen/TargetFrameLowering.h"
32 : #include "llvm/CodeGen/TargetLowering.h"
33 : #include "llvm/CodeGen/TargetPassConfig.h"
34 : #include "llvm/CodeGen/TargetRegisterInfo.h"
35 : #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 : #include "llvm/IR/BasicBlock.h"
37 : #include "llvm/IR/CFG.h"
38 : #include "llvm/IR/Constant.h"
39 : #include "llvm/IR/Constants.h"
40 : #include "llvm/IR/DataLayout.h"
41 : #include "llvm/IR/DebugInfo.h"
42 : #include "llvm/IR/DerivedTypes.h"
43 : #include "llvm/IR/Function.h"
44 : #include "llvm/IR/GetElementPtrTypeIterator.h"
45 : #include "llvm/IR/InlineAsm.h"
46 : #include "llvm/IR/InstrTypes.h"
47 : #include "llvm/IR/Instructions.h"
48 : #include "llvm/IR/IntrinsicInst.h"
49 : #include "llvm/IR/Intrinsics.h"
50 : #include "llvm/IR/LLVMContext.h"
51 : #include "llvm/IR/Metadata.h"
52 : #include "llvm/IR/Type.h"
53 : #include "llvm/IR/User.h"
54 : #include "llvm/IR/Value.h"
55 : #include "llvm/MC/MCContext.h"
56 : #include "llvm/Pass.h"
57 : #include "llvm/Support/Casting.h"
58 : #include "llvm/Support/CodeGen.h"
59 : #include "llvm/Support/Debug.h"
60 : #include "llvm/Support/ErrorHandling.h"
61 : #include "llvm/Support/LowLevelTypeImpl.h"
62 : #include "llvm/Support/MathExtras.h"
63 : #include "llvm/Support/raw_ostream.h"
64 : #include "llvm/Target/TargetIntrinsicInfo.h"
65 : #include "llvm/Target/TargetMachine.h"
66 : #include <algorithm>
67 : #include <cassert>
68 : #include <cstdint>
69 : #include <iterator>
70 : #include <string>
71 : #include <utility>
72 : #include <vector>
73 :
74 : #define DEBUG_TYPE "irtranslator"
75 :
76 : using namespace llvm;
77 :
78 : char IRTranslator::ID = 0;
79 :
80 85394 : INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
81 : false, false)
82 85394 : INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
83 655478 : INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
84 : false, false)
85 :
86 134 : static void reportTranslationError(MachineFunction &MF,
87 : const TargetPassConfig &TPC,
88 : OptimizationRemarkEmitter &ORE,
89 : OptimizationRemarkMissed &R) {
90 : MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
91 :
92 : // Print the function name explicitly if we don't have a debug location (which
93 : // makes the diagnostic less useful) or if we're going to emit a raw error.
94 134 : if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
95 536 : R << (" (in function: " + MF.getName() + ")").str();
96 :
97 134 : if (TPC.isGlobalISelAbortEnabled())
98 2 : report_fatal_error(R.getMsg());
99 : else
100 132 : ORE.emit(R);
101 132 : }
102 :
103 200 : IRTranslator::IRTranslator() : MachineFunctionPass(ID) {
104 200 : initializeIRTranslatorPass(*PassRegistry::getPassRegistry());
105 200 : }
106 :
107 196 : void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
108 : AU.addRequired<StackProtector>();
109 : AU.addRequired<TargetPassConfig>();
110 196 : getSelectionDAGFallbackAnalysisUsage(AU);
111 196 : MachineFunctionPass::getAnalysisUsage(AU);
112 196 : }
113 :
114 5471 : static void computeValueLLTs(const DataLayout &DL, Type &Ty,
115 : SmallVectorImpl<LLT> &ValueTys,
116 : SmallVectorImpl<uint64_t> *Offsets = nullptr,
117 : uint64_t StartingOffset = 0) {
118 : // Given a struct type, recursively traverse the elements.
119 : if (StructType *STy = dyn_cast<StructType>(&Ty)) {
120 129 : const StructLayout *SL = DL.getStructLayout(STy);
121 413 : for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I)
122 568 : computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets,
123 : StartingOffset + SL->getElementOffset(I));
124 : return;
125 : }
126 : // Given an array type, recursively traverse the elements.
127 : if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) {
128 126 : Type *EltTy = ATy->getElementType();
129 126 : uint64_t EltSize = DL.getTypeAllocSize(EltTy);
130 849 : for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
131 723 : computeValueLLTs(DL, *EltTy, ValueTys, Offsets,
132 723 : StartingOffset + i * EltSize);
133 : return;
134 : }
135 : // Interpret void as zero return values.
136 5216 : if (Ty.isVoidTy())
137 : return;
138 : // Base case: we can get an LLT for this LLVM IR type.
139 5089 : ValueTys.push_back(getLLTForType(Ty, DL));
140 5089 : if (Offsets != nullptr)
141 3383 : Offsets->push_back(StartingOffset * 8);
142 : }
143 :
144 : IRTranslator::ValueToVRegInfo::VRegListT &
145 29 : IRTranslator::allocateVRegs(const Value &Val) {
146 : assert(!VMap.contains(Val) && "Value already allocated in VMap");
147 29 : auto *Regs = VMap.getVRegs(Val);
148 29 : auto *Offsets = VMap.getOffsets(Val);
149 : SmallVector<LLT, 4> SplitTys;
150 29 : computeValueLLTs(*DL, *Val.getType(), SplitTys,
151 29 : Offsets->empty() ? Offsets : nullptr);
152 75 : for (unsigned i = 0; i < SplitTys.size(); ++i)
153 46 : Regs->push_back(0);
154 29 : return *Regs;
155 : }
156 :
157 5826 : ArrayRef<unsigned> IRTranslator::getOrCreateVRegs(const Value &Val) {
158 : auto VRegsIt = VMap.findVRegs(Val);
159 5826 : if (VRegsIt != VMap.vregs_end())
160 7022 : return *VRegsIt->second;
161 :
162 4630 : if (Val.getType()->isVoidTy())
163 83 : return *VMap.getVRegs(Val);
164 :
165 : // Create entry for this type.
166 2232 : auto *VRegs = VMap.getVRegs(Val);
167 2232 : auto *Offsets = VMap.getOffsets(Val);
168 :
169 : assert(Val.getType()->isSized() &&
170 : "Don't know how to create an empty vreg");
171 :
172 : SmallVector<LLT, 4> SplitTys;
173 2232 : computeValueLLTs(*DL, *Val.getType(), SplitTys,
174 2232 : Offsets->empty() ? Offsets : nullptr);
175 :
176 2232 : if (!isa<Constant>(Val)) {
177 3274 : for (auto Ty : SplitTys)
178 3678 : VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
179 1435 : return *VRegs;
180 : }
181 :
182 797 : if (Val.getType()->isAggregateType()) {
183 : // UndefValue, ConstantAggregateZero
184 : auto &C = cast<Constant>(Val);
185 : unsigned Idx = 0;
186 79 : while (auto Elt = C.getAggregateElement(Idx++)) {
187 59 : auto EltRegs = getOrCreateVRegs(*Elt);
188 59 : std::copy(EltRegs.begin(), EltRegs.end(), std::back_inserter(*VRegs));
189 59 : }
190 : } else {
191 : assert(SplitTys.size() == 1 && "unexpectedly split LLT");
192 1554 : VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
193 777 : bool Success = translate(cast<Constant>(Val), VRegs->front());
194 777 : if (!Success) {
195 : OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
196 0 : MF->getFunction().getSubprogram(),
197 0 : &MF->getFunction().getEntryBlock());
198 0 : R << "unable to translate constant: " << ore::NV("Type", Val.getType());
199 0 : reportTranslationError(*MF, *TPC, *ORE, R);
200 0 : return *VRegs;
201 : }
202 : }
203 :
204 797 : return *VRegs;
205 : }
206 :
207 47 : int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
208 47 : if (FrameIndices.find(&AI) != FrameIndices.end())
209 2 : return FrameIndices[&AI];
210 :
211 45 : unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType());
212 : unsigned Size =
213 45 : ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
214 :
215 : // Always allocate at least one byte.
216 46 : Size = std::max(Size, 1u);
217 :
218 : unsigned Alignment = AI.getAlignment();
219 45 : if (!Alignment)
220 14 : Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
221 :
222 45 : int &FI = FrameIndices[&AI];
223 45 : FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
224 45 : return FI;
225 : }
226 :
227 792 : unsigned IRTranslator::getMemOpAlignment(const Instruction &I) {
228 : unsigned Alignment = 0;
229 : Type *ValTy = nullptr;
230 : if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
231 : Alignment = SI->getAlignment();
232 396 : ValTy = SI->getValueOperand()->getType();
233 : } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
234 : Alignment = LI->getAlignment();
235 382 : ValTy = LI->getType();
236 : } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
237 : // TODO(PR27168): This instruction has no alignment attribute, but unlike
238 : // the default alignment for load/store, the default here is to assume
239 : // it has NATURAL alignment, not DataLayout-specified alignment.
240 3 : const DataLayout &DL = AI->getModule()->getDataLayout();
241 3 : Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
242 3 : ValTy = AI->getCompareOperand()->getType();
243 : } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
244 : // TODO(PR27168): This instruction has no alignment attribute, but unlike
245 : // the default alignment for load/store, the default here is to assume
246 : // it has NATURAL alignment, not DataLayout-specified alignment.
247 11 : const DataLayout &DL = AI->getModule()->getDataLayout();
248 11 : Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType());
249 11 : ValTy = AI->getType();
250 : } else {
251 0 : OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
252 0 : R << "unable to translate memop: " << ore::NV("Opcode", &I);
253 0 : reportTranslationError(*MF, *TPC, *ORE, R);
254 : return 1;
255 : }
256 :
257 792 : return Alignment ? Alignment : DL->getABITypeAlignment(ValTy);
258 : }
259 :
260 2890 : MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
261 2890 : MachineBasicBlock *&MBB = BBToMBB[&BB];
262 : assert(MBB && "BasicBlock was not encountered before");
263 2890 : return *MBB;
264 : }
265 :
266 11 : void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
267 : assert(NewPred && "new predecessor must be a real MachineBasicBlock");
268 11 : MachinePreds[Edge].push_back(NewPred);
269 11 : }
270 :
271 510 : bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
272 : MachineIRBuilder &MIRBuilder) {
273 : // FIXME: handle signed/unsigned wrapping flags.
274 :
275 : // Get or create a virtual register for each value.
276 : // Unless the value is a Constant => loadimm cst?
277 : // or inline constant each time?
278 : // Creation of a virtual register needs to have a size.
279 : unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
280 : unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
281 510 : unsigned Res = getOrCreateVReg(U);
282 1020 : auto FBinOp = MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op0).addUse(Op1);
283 510 : if (isa<Instruction>(U)) {
284 : MachineInstr *FBinOpMI = FBinOp.getInstr();
285 : const Instruction &I = cast<Instruction>(U);
286 510 : FBinOpMI->copyIRFlags(I);
287 : }
288 510 : return true;
289 : }
290 :
291 23 : bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
292 : // -0.0 - X --> G_FNEG
293 25 : if (isa<Constant>(U.getOperand(0)) &&
294 2 : U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) {
295 2 : MIRBuilder.buildInstr(TargetOpcode::G_FNEG)
296 2 : .addDef(getOrCreateVReg(U))
297 : .addUse(getOrCreateVReg(*U.getOperand(1)));
298 2 : return true;
299 : }
300 21 : return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
301 : }
302 :
303 56 : bool IRTranslator::translateCompare(const User &U,
304 : MachineIRBuilder &MIRBuilder) {
305 : const CmpInst *CI = dyn_cast<CmpInst>(&U);
306 : unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
307 : unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
308 56 : unsigned Res = getOrCreateVReg(U);
309 : CmpInst::Predicate Pred =
310 56 : CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
311 0 : cast<ConstantExpr>(U).getPredicate());
312 56 : if (CmpInst::isIntPredicate(Pred))
313 47 : MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
314 9 : else if (Pred == CmpInst::FCMP_FALSE)
315 : MIRBuilder.buildCopy(
316 2 : Res, getOrCreateVReg(*Constant::getNullValue(CI->getType())));
317 8 : else if (Pred == CmpInst::FCMP_TRUE)
318 : MIRBuilder.buildCopy(
319 2 : Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType())));
320 : else
321 7 : MIRBuilder.buildFCmp(Pred, Res, Op0, Op1);
322 :
323 56 : return true;
324 : }
325 :
326 1200 : bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
327 : const ReturnInst &RI = cast<ReturnInst>(U);
328 : const Value *Ret = RI.getReturnValue();
329 929 : if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
330 : Ret = nullptr;
331 :
332 1200 : ArrayRef<unsigned> VRegs;
333 1200 : if (Ret)
334 928 : VRegs = getOrCreateVRegs(*Ret);
335 :
336 : // The target may mess up with the insertion point, but
337 : // this is not important as a return is the last instruction
338 : // of the block anyway.
339 :
340 1200 : return CLI->lowerReturn(MIRBuilder, Ret, VRegs);
341 : }
342 :
343 86 : bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
344 : const BranchInst &BrInst = cast<BranchInst>(U);
345 : unsigned Succ = 0;
346 86 : if (!BrInst.isUnconditional()) {
347 : // We want a G_BRCOND to the true BB followed by an unconditional branch.
348 : unsigned Tst = getOrCreateVReg(*BrInst.getCondition());
349 : const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
350 27 : MachineBasicBlock &TrueBB = getMBB(TrueTgt);
351 27 : MIRBuilder.buildBrCond(Tst, TrueBB);
352 : }
353 :
354 : const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
355 86 : MachineBasicBlock &TgtBB = getMBB(BrTgt);
356 86 : MachineBasicBlock &CurBB = MIRBuilder.getMBB();
357 :
358 : // If the unconditional target is the layout successor, fallthrough.
359 86 : if (!CurBB.isLayoutSuccessor(&TgtBB))
360 54 : MIRBuilder.buildBr(TgtBB);
361 :
362 : // Link successors.
363 285 : for (const BasicBlock *Succ : successors(&BrInst))
364 113 : CurBB.addSuccessor(&getMBB(*Succ));
365 86 : return true;
366 : }
367 :
368 3 : bool IRTranslator::translateSwitch(const User &U,
369 : MachineIRBuilder &MIRBuilder) {
370 : // For now, just translate as a chain of conditional branches.
371 : // FIXME: could we share most of the logic/code in
372 : // SelectionDAGBuilder::visitSwitch between SelectionDAG and GlobalISel?
373 : // At first sight, it seems most of the logic in there is independent of
374 : // SelectionDAG-specifics and a lot of work went in to optimize switch
375 : // lowering in there.
376 :
377 : const SwitchInst &SwInst = cast<SwitchInst>(U);
378 : const unsigned SwCondValue = getOrCreateVReg(*SwInst.getCondition());
379 3 : const BasicBlock *OrigBB = SwInst.getParent();
380 :
381 3 : LLT LLTi1 = getLLTForType(*Type::getInt1Ty(U.getContext()), *DL);
382 11 : for (auto &CaseIt : SwInst.cases()) {
383 16 : const unsigned CaseValueReg = getOrCreateVReg(*CaseIt.getCaseValue());
384 16 : const unsigned Tst = MRI->createGenericVirtualRegister(LLTi1);
385 8 : MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Tst, CaseValueReg, SwCondValue);
386 8 : MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
387 8 : const BasicBlock *TrueBB = CaseIt.getCaseSuccessor();
388 8 : MachineBasicBlock &TrueMBB = getMBB(*TrueBB);
389 :
390 8 : MIRBuilder.buildBrCond(Tst, TrueMBB);
391 8 : CurMBB.addSuccessor(&TrueMBB);
392 8 : addMachineCFGPred({OrigBB, TrueBB}, &CurMBB);
393 :
394 : MachineBasicBlock *FalseMBB =
395 8 : MF->CreateMachineBasicBlock(SwInst.getParent());
396 : // Insert the comparison blocks one after the other.
397 8 : MF->insert(std::next(CurMBB.getIterator()), FalseMBB);
398 8 : MIRBuilder.buildBr(*FalseMBB);
399 8 : CurMBB.addSuccessor(FalseMBB);
400 :
401 8 : MIRBuilder.setMBB(*FalseMBB);
402 : }
403 : // handle default case
404 : const BasicBlock *DefaultBB = SwInst.getDefaultDest();
405 3 : MachineBasicBlock &DefaultMBB = getMBB(*DefaultBB);
406 3 : MIRBuilder.buildBr(DefaultMBB);
407 3 : MachineBasicBlock &CurMBB = MIRBuilder.getMBB();
408 3 : CurMBB.addSuccessor(&DefaultMBB);
409 3 : addMachineCFGPred({OrigBB, DefaultBB}, &CurMBB);
410 :
411 3 : return true;
412 : }
413 :
414 3 : bool IRTranslator::translateIndirectBr(const User &U,
415 : MachineIRBuilder &MIRBuilder) {
416 : const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
417 :
418 : const unsigned Tgt = getOrCreateVReg(*BrInst.getAddress());
419 3 : MIRBuilder.buildBrIndirect(Tgt);
420 :
421 : // Link successors.
422 3 : MachineBasicBlock &CurBB = MIRBuilder.getMBB();
423 11 : for (const BasicBlock *Succ : successors(&BrInst))
424 5 : CurBB.addSuccessor(&getMBB(*Succ));
425 :
426 3 : return true;
427 : }
428 :
429 266 : bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
430 : const LoadInst &LI = cast<LoadInst>(U);
431 :
432 266 : auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile
433 : : MachineMemOperand::MONone;
434 : Flags |= MachineMemOperand::MOLoad;
435 :
436 266 : if (DL->getTypeStoreSize(LI.getType()) == 0)
437 : return true;
438 :
439 265 : ArrayRef<unsigned> Regs = getOrCreateVRegs(LI);
440 265 : ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
441 : unsigned Base = getOrCreateVReg(*LI.getPointerOperand());
442 :
443 647 : for (unsigned i = 0; i < Regs.size(); ++i) {
444 382 : unsigned Addr = 0;
445 764 : MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8);
446 :
447 382 : MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
448 382 : unsigned BaseAlign = getMemOpAlignment(LI);
449 382 : auto MMO = MF->getMachineMemOperand(
450 1146 : Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8,
451 382 : MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr,
452 382 : LI.getSyncScopeID(), LI.getOrdering());
453 382 : MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
454 : }
455 :
456 : return true;
457 : }
458 :
459 268 : bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
460 : const StoreInst &SI = cast<StoreInst>(U);
461 268 : auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile
462 : : MachineMemOperand::MONone;
463 : Flags |= MachineMemOperand::MOStore;
464 :
465 268 : if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
466 : return true;
467 :
468 267 : ArrayRef<unsigned> Vals = getOrCreateVRegs(*SI.getValueOperand());
469 267 : ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
470 : unsigned Base = getOrCreateVReg(*SI.getPointerOperand());
471 :
472 663 : for (unsigned i = 0; i < Vals.size(); ++i) {
473 396 : unsigned Addr = 0;
474 792 : MIRBuilder.materializeGEP(Addr, Base, LLT::scalar(64), Offsets[i] / 8);
475 :
476 396 : MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
477 396 : unsigned BaseAlign = getMemOpAlignment(SI);
478 396 : auto MMO = MF->getMachineMemOperand(
479 1188 : Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8,
480 396 : MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr,
481 396 : SI.getSyncScopeID(), SI.getOrdering());
482 396 : MIRBuilder.buildStore(Vals[i], Addr, *MMO);
483 : }
484 : return true;
485 : }
486 :
487 29 : static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
488 : const Value *Src = U.getOperand(0);
489 29 : Type *Int32Ty = Type::getInt32Ty(U.getContext());
490 :
491 : // getIndexedOffsetInType is designed for GEPs, so the first index is the
492 : // usual array element rather than looking into the actual aggregate.
493 : SmallVector<Value *, 1> Indices;
494 29 : Indices.push_back(ConstantInt::get(Int32Ty, 0));
495 :
496 : if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
497 43 : for (auto Idx : EVI->indices())
498 22 : Indices.push_back(ConstantInt::get(Int32Ty, Idx));
499 : } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
500 18 : for (auto Idx : IVI->indices())
501 10 : Indices.push_back(ConstantInt::get(Int32Ty, Idx));
502 : } else {
503 0 : for (unsigned i = 1; i < U.getNumOperands(); ++i)
504 0 : Indices.push_back(U.getOperand(i));
505 : }
506 :
507 29 : return 8 * static_cast<uint64_t>(
508 29 : DL.getIndexedOffsetInType(Src->getType(), Indices));
509 : }
510 :
511 21 : bool IRTranslator::translateExtractValue(const User &U,
512 : MachineIRBuilder &MIRBuilder) {
513 : const Value *Src = U.getOperand(0);
514 21 : uint64_t Offset = getOffsetFromIndices(U, *DL);
515 21 : ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src);
516 21 : ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
517 21 : unsigned Idx = std::lower_bound(Offsets.begin(), Offsets.end(), Offset) -
518 21 : Offsets.begin();
519 21 : auto &DstRegs = allocateVRegs(U);
520 :
521 43 : for (unsigned i = 0; i < DstRegs.size(); ++i)
522 44 : DstRegs[i] = SrcRegs[Idx++];
523 :
524 21 : return true;
525 : }
526 :
527 8 : bool IRTranslator::translateInsertValue(const User &U,
528 : MachineIRBuilder &MIRBuilder) {
529 : const Value *Src = U.getOperand(0);
530 8 : uint64_t Offset = getOffsetFromIndices(U, *DL);
531 8 : auto &DstRegs = allocateVRegs(U);
532 8 : ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
533 8 : ArrayRef<unsigned> SrcRegs = getOrCreateVRegs(*Src);
534 8 : ArrayRef<unsigned> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
535 : auto InsertedIt = InsertedRegs.begin();
536 :
537 32 : for (unsigned i = 0; i < DstRegs.size(); ++i) {
538 24 : if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
539 22 : DstRegs[i] = *InsertedIt++;
540 : else
541 26 : DstRegs[i] = SrcRegs[i];
542 : }
543 :
544 8 : return true;
545 : }
546 :
547 6 : bool IRTranslator::translateSelect(const User &U,
548 : MachineIRBuilder &MIRBuilder) {
549 : unsigned Tst = getOrCreateVReg(*U.getOperand(0));
550 6 : ArrayRef<unsigned> ResRegs = getOrCreateVRegs(U);
551 6 : ArrayRef<unsigned> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
552 6 : ArrayRef<unsigned> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
553 :
554 12 : for (unsigned i = 0; i < ResRegs.size(); ++i)
555 24 : MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i]);
556 :
557 6 : return true;
558 : }
559 :
560 68 : bool IRTranslator::translateBitCast(const User &U,
561 : MachineIRBuilder &MIRBuilder) {
562 : // If we're bitcasting to the source type, we can reuse the source vreg.
563 136 : if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
564 134 : getLLTForType(*U.getType(), *DL)) {
565 66 : unsigned SrcReg = getOrCreateVReg(*U.getOperand(0));
566 66 : auto &Regs = *VMap.getVRegs(U);
567 : // If we already assigned a vreg for this bitcast, we can't change that.
568 : // Emit a copy to satisfy the users we already emitted.
569 66 : if (!Regs.empty())
570 12 : MIRBuilder.buildCopy(Regs[0], SrcReg);
571 : else {
572 60 : Regs.push_back(SrcReg);
573 60 : VMap.getOffsets(U)->push_back(0);
574 : }
575 : return true;
576 : }
577 2 : return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
578 : }
579 :
580 237 : bool IRTranslator::translateCast(unsigned Opcode, const User &U,
581 : MachineIRBuilder &MIRBuilder) {
582 : unsigned Op = getOrCreateVReg(*U.getOperand(0));
583 237 : unsigned Res = getOrCreateVReg(U);
584 237 : MIRBuilder.buildInstr(Opcode).addDef(Res).addUse(Op);
585 237 : return true;
586 : }
587 :
588 94 : bool IRTranslator::translateGetElementPtr(const User &U,
589 : MachineIRBuilder &MIRBuilder) {
590 : // FIXME: support vector GEPs.
591 188 : if (U.getType()->isVectorTy())
592 : return false;
593 :
594 : Value &Op0 = *U.getOperand(0);
595 : unsigned BaseReg = getOrCreateVReg(Op0);
596 94 : Type *PtrIRTy = Op0.getType();
597 94 : LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
598 94 : Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
599 94 : LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
600 :
601 : int64_t Offset = 0;
602 230 : for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
603 366 : GTI != E; ++GTI) {
604 : const Value *Idx = GTI.getOperand();
605 10 : if (StructType *StTy = GTI.getStructTypeOrNull()) {
606 10 : unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
607 10 : Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
608 10 : continue;
609 : } else {
610 126 : uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
611 :
612 : // If this is a scalar constant or a splat vector of constants,
613 : // handle it quickly.
614 : if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
615 103 : Offset += ElementSize * CI->getSExtValue();
616 103 : continue;
617 : }
618 :
619 23 : if (Offset != 0) {
620 2 : unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
621 : unsigned OffsetReg =
622 1 : getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset));
623 1 : MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetReg);
624 :
625 : BaseReg = NewBaseReg;
626 : Offset = 0;
627 : }
628 :
629 : unsigned IdxReg = getOrCreateVReg(*Idx);
630 46 : if (MRI->getType(IdxReg) != OffsetTy) {
631 5 : unsigned NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy);
632 5 : MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg);
633 : IdxReg = NewIdxReg;
634 : }
635 :
636 : // N = N + Idx * ElementSize;
637 : // Avoid doing it for ElementSize of 1.
638 : unsigned GepOffsetReg;
639 23 : if (ElementSize != 1) {
640 : unsigned ElementSizeReg =
641 20 : getOrCreateVReg(*ConstantInt::get(OffsetIRTy, ElementSize));
642 :
643 40 : GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy);
644 20 : MIRBuilder.buildMul(GepOffsetReg, ElementSizeReg, IdxReg);
645 : } else
646 : GepOffsetReg = IdxReg;
647 :
648 46 : unsigned NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
649 23 : MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg);
650 : BaseReg = NewBaseReg;
651 : }
652 : }
653 :
654 94 : if (Offset != 0) {
655 44 : unsigned OffsetReg = getOrCreateVReg(*ConstantInt::get(OffsetIRTy, Offset));
656 88 : MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetReg);
657 44 : return true;
658 : }
659 :
660 100 : MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
661 50 : return true;
662 : }
663 :
664 13 : bool IRTranslator::translateMemfunc(const CallInst &CI,
665 : MachineIRBuilder &MIRBuilder,
666 : unsigned ID) {
667 13 : LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL);
668 13 : Type *DstTy = CI.getArgOperand(0)->getType();
669 26 : if (cast<PointerType>(DstTy)->getAddressSpace() != 0 ||
670 13 : SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0))
671 0 : return false;
672 :
673 : SmallVector<CallLowering::ArgInfo, 8> Args;
674 52 : for (int i = 0; i < 3; ++i) {
675 39 : const auto &Arg = CI.getArgOperand(i);
676 78 : Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType());
677 : }
678 :
679 : const char *Callee;
680 13 : switch (ID) {
681 12 : case Intrinsic::memmove:
682 : case Intrinsic::memcpy: {
683 12 : Type *SrcTy = CI.getArgOperand(1)->getType();
684 12 : if(cast<PointerType>(SrcTy)->getAddressSpace() != 0)
685 : return false;
686 12 : Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove";
687 : break;
688 : }
689 : case Intrinsic::memset:
690 : Callee = "memset";
691 : break;
692 : default:
693 : return false;
694 : }
695 :
696 13 : return CLI->lowerCall(MIRBuilder, CI.getCallingConv(),
697 13 : MachineOperand::CreateES(Callee),
698 26 : CallLowering::ArgInfo(0, CI.getType()), Args);
699 : }
700 :
701 1 : void IRTranslator::getStackGuard(unsigned DstReg,
702 : MachineIRBuilder &MIRBuilder) {
703 1 : const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
704 1 : MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
705 1 : auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD);
706 : MIB.addDef(DstReg);
707 :
708 1 : auto &TLI = *MF->getSubtarget().getTargetLowering();
709 1 : Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
710 1 : if (!Global)
711 0 : return;
712 :
713 : MachinePointerInfo MPInfo(Global);
714 : auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
715 : MachineMemOperand::MODereferenceable;
716 : MachineMemOperand *MemRef =
717 1 : MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
718 1 : DL->getPointerABIAlignment(0));
719 1 : MIB.setMemRefs({MemRef});
720 : }
721 :
722 6 : bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
723 : MachineIRBuilder &MIRBuilder) {
724 6 : ArrayRef<unsigned> ResRegs = getOrCreateVRegs(CI);
725 6 : MIRBuilder.buildInstr(Op)
726 6 : .addDef(ResRegs[0])
727 6 : .addDef(ResRegs[1])
728 6 : .addUse(getOrCreateVReg(*CI.getOperand(0)))
729 : .addUse(getOrCreateVReg(*CI.getOperand(1)));
730 :
731 6 : return true;
732 : }
733 :
734 95 : bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
735 : MachineIRBuilder &MIRBuilder) {
736 95 : switch (ID) {
737 : default:
738 : break;
739 2 : case Intrinsic::lifetime_start:
740 : case Intrinsic::lifetime_end:
741 : // Stack coloring is not enabled in O0 (which we care about now) so we can
742 : // drop these. Make sure someone notices when we start compiling at higher
743 : // opts though.
744 2 : if (MF->getTarget().getOptLevel() != CodeGenOpt::None)
745 0 : return false;
746 : return true;
747 : case Intrinsic::dbg_declare: {
748 : const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
749 : assert(DI.getVariable() && "Missing variable");
750 :
751 : const Value *Address = DI.getAddress();
752 3 : if (!Address || isa<UndefValue>(Address)) {
753 : LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
754 : return true;
755 : }
756 :
757 : assert(DI.getVariable()->isValidLocationForIntrinsic(
758 : MIRBuilder.getDebugLoc()) &&
759 : "Expected inlined-at fields to agree");
760 : auto AI = dyn_cast<AllocaInst>(Address);
761 2 : if (AI && AI->isStaticAlloca()) {
762 : // Static allocas are tracked at the MF level, no need for DBG_VALUE
763 : // instructions (in fact, they get ignored if they *do* exist).
764 2 : MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
765 : getOrCreateFrameIndex(*AI), DI.getDebugLoc());
766 : } else {
767 : // A dbg.declare describes the address of a source variable, so lower it
768 : // into an indirect DBG_VALUE.
769 : MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
770 4 : DI.getVariable(), DI.getExpression());
771 : }
772 : return true;
773 : }
774 : case Intrinsic::dbg_label: {
775 : const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
776 : assert(DI.getLabel() && "Missing label");
777 :
778 : assert(DI.getLabel()->isValidLocationForIntrinsic(
779 : MIRBuilder.getDebugLoc()) &&
780 : "Expected inlined-at fields to agree");
781 :
782 0 : MIRBuilder.buildDbgLabel(DI.getLabel());
783 0 : return true;
784 : }
785 : case Intrinsic::vaend:
786 : // No target I know of cares about va_end. Certainly no in-tree target
787 : // does. Simplest intrinsic ever!
788 : return true;
789 3 : case Intrinsic::vastart: {
790 3 : auto &TLI = *MF->getSubtarget().getTargetLowering();
791 3 : Value *Ptr = CI.getArgOperand(0);
792 3 : unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
793 :
794 3 : MIRBuilder.buildInstr(TargetOpcode::G_VASTART)
795 : .addUse(getOrCreateVReg(*Ptr))
796 3 : .addMemOperand(MF->getMachineMemOperand(
797 6 : MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 0));
798 3 : return true;
799 : }
800 : case Intrinsic::dbg_value: {
801 : // This form of DBG_VALUE is target-independent.
802 : const DbgValueInst &DI = cast<DbgValueInst>(CI);
803 : const Value *V = DI.getValue();
804 : assert(DI.getVariable()->isValidLocationForIntrinsic(
805 : MIRBuilder.getDebugLoc()) &&
806 : "Expected inlined-at fields to agree");
807 14 : if (!V) {
808 : // Currently the optimizer can produce this; insert an undef to
809 : // help debugging. Probably the optimizer should not do this.
810 0 : MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
811 : } else if (const auto *CI = dyn_cast<Constant>(V)) {
812 10 : MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
813 : } else {
814 : unsigned Reg = getOrCreateVReg(*V);
815 : // FIXME: This does not handle register-indirect values at offset 0. The
816 : // direct/indirect thing shouldn't really be handled by something as
817 : // implicit as reg+noreg vs reg+imm in the first palce, but it seems
818 : // pretty baked in right now.
819 18 : MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
820 : }
821 : return true;
822 : }
823 1 : case Intrinsic::uadd_with_overflow:
824 1 : return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
825 1 : case Intrinsic::sadd_with_overflow:
826 1 : return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
827 1 : case Intrinsic::usub_with_overflow:
828 1 : return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
829 1 : case Intrinsic::ssub_with_overflow:
830 1 : return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
831 1 : case Intrinsic::umul_with_overflow:
832 1 : return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
833 1 : case Intrinsic::smul_with_overflow:
834 1 : return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
835 7 : case Intrinsic::pow:
836 7 : MIRBuilder.buildInstr(TargetOpcode::G_FPOW)
837 7 : .addDef(getOrCreateVReg(CI))
838 7 : .addUse(getOrCreateVReg(*CI.getArgOperand(0)))
839 : .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
840 7 : return true;
841 1 : case Intrinsic::exp:
842 1 : MIRBuilder.buildInstr(TargetOpcode::G_FEXP)
843 1 : .addDef(getOrCreateVReg(CI))
844 1 : .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
845 1 : return true;
846 1 : case Intrinsic::exp2:
847 1 : MIRBuilder.buildInstr(TargetOpcode::G_FEXP2)
848 1 : .addDef(getOrCreateVReg(CI))
849 1 : .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
850 1 : return true;
851 1 : case Intrinsic::log:
852 1 : MIRBuilder.buildInstr(TargetOpcode::G_FLOG)
853 1 : .addDef(getOrCreateVReg(CI))
854 1 : .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
855 1 : return true;
856 1 : case Intrinsic::log2:
857 1 : MIRBuilder.buildInstr(TargetOpcode::G_FLOG2)
858 1 : .addDef(getOrCreateVReg(CI))
859 1 : .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
860 1 : return true;
861 1 : case Intrinsic::fabs:
862 1 : MIRBuilder.buildInstr(TargetOpcode::G_FABS)
863 1 : .addDef(getOrCreateVReg(CI))
864 1 : .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
865 1 : return true;
866 1 : case Intrinsic::trunc:
867 1 : MIRBuilder.buildInstr(TargetOpcode::G_INTRINSIC_TRUNC)
868 1 : .addDef(getOrCreateVReg(CI))
869 1 : .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
870 1 : return true;
871 1 : case Intrinsic::round:
872 1 : MIRBuilder.buildInstr(TargetOpcode::G_INTRINSIC_ROUND)
873 1 : .addDef(getOrCreateVReg(CI))
874 1 : .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
875 1 : return true;
876 1 : case Intrinsic::fma:
877 1 : MIRBuilder.buildInstr(TargetOpcode::G_FMA)
878 1 : .addDef(getOrCreateVReg(CI))
879 1 : .addUse(getOrCreateVReg(*CI.getArgOperand(0)))
880 : .addUse(getOrCreateVReg(*CI.getArgOperand(1)))
881 : .addUse(getOrCreateVReg(*CI.getArgOperand(2)));
882 1 : return true;
883 2 : case Intrinsic::fmuladd: {
884 2 : const TargetMachine &TM = MF->getTarget();
885 2 : const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
886 2 : unsigned Dst = getOrCreateVReg(CI);
887 4 : unsigned Op0 = getOrCreateVReg(*CI.getArgOperand(0));
888 2 : unsigned Op1 = getOrCreateVReg(*CI.getArgOperand(1));
889 2 : unsigned Op2 = getOrCreateVReg(*CI.getArgOperand(2));
890 3 : if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
891 1 : TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) {
892 : // TODO: Revisit this to see if we should move this part of the
893 : // lowering to the combiner.
894 1 : MIRBuilder.buildInstr(TargetOpcode::G_FMA, Dst, Op0, Op1, Op2);
895 : } else {
896 1 : LLT Ty = getLLTForType(*CI.getType(), *DL);
897 1 : auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, Ty, Op0, Op1);
898 1 : MIRBuilder.buildInstr(TargetOpcode::G_FADD, Dst, FMul, Op2);
899 : }
900 : return true;
901 : }
902 13 : case Intrinsic::memcpy:
903 : case Intrinsic::memmove:
904 : case Intrinsic::memset:
905 13 : return translateMemfunc(CI, MIRBuilder, ID);
906 1 : case Intrinsic::eh_typeid_for: {
907 1 : GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
908 1 : unsigned Reg = getOrCreateVReg(CI);
909 1 : unsigned TypeID = MF->getTypeIDFor(GV);
910 1 : MIRBuilder.buildConstant(Reg, TypeID);
911 1 : return true;
912 : }
913 4 : case Intrinsic::objectsize: {
914 : // If we don't know by now, we're never going to know.
915 4 : const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1));
916 :
917 14 : MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0);
918 4 : return true;
919 : }
920 0 : case Intrinsic::stackguard:
921 0 : getStackGuard(getOrCreateVReg(CI), MIRBuilder);
922 0 : return true;
923 1 : case Intrinsic::stackprotector: {
924 1 : LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
925 2 : unsigned GuardVal = MRI->createGenericVirtualRegister(PtrTy);
926 1 : getStackGuard(GuardVal, MIRBuilder);
927 :
928 : AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
929 : MIRBuilder.buildStore(
930 : GuardVal, getOrCreateVReg(*Slot),
931 2 : *MF->getMachineMemOperand(
932 1 : MachinePointerInfo::getFixedStack(*MF,
933 : getOrCreateFrameIndex(*Slot)),
934 : MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
935 4 : PtrTy.getSizeInBits() / 8, 8));
936 : return true;
937 : }
938 2 : case Intrinsic::cttz:
939 : case Intrinsic::ctlz: {
940 2 : ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
941 : bool isTrailing = ID == Intrinsic::cttz;
942 : unsigned Opcode = isTrailing
943 4 : ? Cst->isZero() ? TargetOpcode::G_CTTZ
944 : : TargetOpcode::G_CTTZ_ZERO_UNDEF
945 : : Cst->isZero() ? TargetOpcode::G_CTLZ
946 : : TargetOpcode::G_CTLZ_ZERO_UNDEF;
947 2 : MIRBuilder.buildInstr(Opcode)
948 2 : .addDef(getOrCreateVReg(CI))
949 : .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
950 2 : return true;
951 : }
952 1 : case Intrinsic::ctpop: {
953 1 : MIRBuilder.buildInstr(TargetOpcode::G_CTPOP)
954 1 : .addDef(getOrCreateVReg(CI))
955 1 : .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
956 1 : return true;
957 : }
958 1 : case Intrinsic::invariant_start: {
959 1 : LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
960 2 : unsigned Undef = MRI->createGenericVirtualRegister(PtrTy);
961 1 : MIRBuilder.buildUndef(Undef);
962 : return true;
963 : }
964 : case Intrinsic::invariant_end:
965 : return true;
966 : }
967 25 : return false;
968 : }
969 :
970 4 : bool IRTranslator::translateInlineAsm(const CallInst &CI,
971 : MachineIRBuilder &MIRBuilder) {
972 : const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue());
973 4 : if (!IA.getConstraintString().empty())
974 : return false;
975 :
976 : unsigned ExtraInfo = 0;
977 2 : if (IA.hasSideEffects())
978 : ExtraInfo |= InlineAsm::Extra_HasSideEffects;
979 2 : if (IA.getDialect() == InlineAsm::AD_Intel)
980 0 : ExtraInfo |= InlineAsm::Extra_AsmDialect;
981 :
982 2 : MIRBuilder.buildInstr(TargetOpcode::INLINEASM)
983 : .addExternalSymbol(IA.getAsmString().c_str())
984 2 : .addImm(ExtraInfo);
985 :
986 2 : return true;
987 : }
988 :
989 341 : unsigned IRTranslator::packRegs(const Value &V,
990 : MachineIRBuilder &MIRBuilder) {
991 341 : ArrayRef<unsigned> Regs = getOrCreateVRegs(V);
992 341 : ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V);
993 341 : LLT BigTy = getLLTForType(*V.getType(), *DL);
994 :
995 341 : if (Regs.size() == 1)
996 313 : return Regs[0];
997 :
998 56 : unsigned Dst = MRI->createGenericVirtualRegister(BigTy);
999 28 : MIRBuilder.buildUndef(Dst);
1000 194 : for (unsigned i = 0; i < Regs.size(); ++i) {
1001 332 : unsigned NewDst = MRI->createGenericVirtualRegister(BigTy);
1002 332 : MIRBuilder.buildInsert(NewDst, Dst, Regs[i], Offsets[i]);
1003 : Dst = NewDst;
1004 : }
1005 : return Dst;
1006 : }
1007 :
1008 61 : void IRTranslator::unpackRegs(const Value &V, unsigned Src,
1009 : MachineIRBuilder &MIRBuilder) {
1010 61 : ArrayRef<unsigned> Regs = getOrCreateVRegs(V);
1011 61 : ArrayRef<uint64_t> Offsets = *VMap.getOffsets(V);
1012 :
1013 391 : for (unsigned i = 0; i < Regs.size(); ++i)
1014 990 : MIRBuilder.buildExtract(Regs[i], Src, Offsets[i]);
1015 61 : }
1016 :
1017 244 : bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
1018 : const CallInst &CI = cast<CallInst>(U);
1019 244 : auto TII = MF->getTarget().getIntrinsicInfo();
1020 : const Function *F = CI.getCalledFunction();
1021 :
1022 : // FIXME: support Windows dllimport function calls.
1023 232 : if (F && F->hasDLLImportStorageClass())
1024 : return false;
1025 :
1026 243 : if (CI.isInlineAsm())
1027 4 : return translateInlineAsm(CI, MIRBuilder);
1028 :
1029 : Intrinsic::ID ID = Intrinsic::not_intrinsic;
1030 239 : if (F && F->isIntrinsic()) {
1031 95 : ID = F->getIntrinsicID();
1032 95 : if (TII && ID == Intrinsic::not_intrinsic)
1033 0 : ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
1034 : }
1035 :
1036 239 : bool IsSplitType = valueIsSplit(CI);
1037 239 : if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) {
1038 267 : unsigned Res = IsSplitType ? MRI->createGenericVirtualRegister(
1039 21 : getLLTForType(*CI.getType(), *DL))
1040 : : getOrCreateVReg(CI);
1041 :
1042 : SmallVector<unsigned, 8> Args;
1043 430 : for (auto &Arg: CI.arg_operands())
1044 286 : Args.push_back(packRegs(*Arg, MIRBuilder));
1045 :
1046 144 : MF->getFrameInfo().setHasCalls(true);
1047 288 : bool Success = CLI->lowerCall(MIRBuilder, &CI, Res, Args, [&]() {
1048 : return getOrCreateVReg(*CI.getCalledValue());
1049 : });
1050 :
1051 144 : if (IsSplitType)
1052 21 : unpackRegs(CI, Res, MIRBuilder);
1053 : return Success;
1054 : }
1055 :
1056 : assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
1057 :
1058 95 : if (translateKnownIntrinsic(CI, ID, MIRBuilder))
1059 : return true;
1060 :
1061 : unsigned Res = 0;
1062 50 : if (!CI.getType()->isVoidTy()) {
1063 17 : if (IsSplitType)
1064 : Res =
1065 0 : MRI->createGenericVirtualRegister(getLLTForType(*CI.getType(), *DL));
1066 : else
1067 : Res = getOrCreateVReg(CI);
1068 : }
1069 : MachineInstrBuilder MIB =
1070 25 : MIRBuilder.buildIntrinsic(ID, Res, !CI.doesNotAccessMemory());
1071 :
1072 73 : for (auto &Arg : CI.arg_operands()) {
1073 : // Some intrinsics take metadata parameters. Reject them.
1074 50 : if (isa<MetadataAsValue>(Arg))
1075 : return false;
1076 48 : MIB.addUse(packRegs(*Arg, MIRBuilder));
1077 : }
1078 :
1079 23 : if (IsSplitType)
1080 0 : unpackRegs(CI, Res, MIRBuilder);
1081 :
1082 : // Add a MachineMemOperand if it is a target mem intrinsic.
1083 23 : const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1084 23 : TargetLowering::IntrinsicInfo Info;
1085 : // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
1086 23 : if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
1087 2 : uint64_t Size = Info.memVT.getStoreSize();
1088 2 : MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
1089 4 : Info.flags, Size, Info.align));
1090 : }
1091 :
1092 : return true;
1093 : }
1094 :
1095 6 : bool IRTranslator::translateInvoke(const User &U,
1096 : MachineIRBuilder &MIRBuilder) {
1097 : const InvokeInst &I = cast<InvokeInst>(U);
1098 6 : MCContext &Context = MF->getContext();
1099 :
1100 : const BasicBlock *ReturnBB = I.getSuccessor(0);
1101 : const BasicBlock *EHPadBB = I.getSuccessor(1);
1102 :
1103 : const Value *Callee = I.getCalledValue();
1104 : const Function *Fn = dyn_cast<Function>(Callee);
1105 6 : if (isa<InlineAsm>(Callee))
1106 : return false;
1107 :
1108 : // FIXME: support invoking patchpoint and statepoint intrinsics.
1109 6 : if (Fn && Fn->isIntrinsic())
1110 : return false;
1111 :
1112 : // FIXME: support whatever these are.
1113 6 : if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
1114 : return false;
1115 :
1116 : // FIXME: support Windows exception handling.
1117 6 : if (!isa<LandingPadInst>(EHPadBB->front()))
1118 : return false;
1119 :
1120 : // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
1121 : // the region covered by the try.
1122 6 : MCSymbol *BeginSymbol = Context.createTempSymbol();
1123 6 : MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
1124 :
1125 : unsigned Res =
1126 12 : MRI->createGenericVirtualRegister(getLLTForType(*I.getType(), *DL));
1127 : SmallVector<unsigned, 8> Args;
1128 13 : for (auto &Arg: I.arg_operands())
1129 7 : Args.push_back(packRegs(*Arg, MIRBuilder));
1130 :
1131 18 : if (!CLI->lowerCall(MIRBuilder, &I, Res, Args,
1132 : [&]() { return getOrCreateVReg(*I.getCalledValue()); }))
1133 : return false;
1134 :
1135 4 : unpackRegs(I, Res, MIRBuilder);
1136 :
1137 4 : MCSymbol *EndSymbol = Context.createTempSymbol();
1138 4 : MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
1139 :
1140 : // FIXME: track probabilities.
1141 4 : MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
1142 4 : &ReturnMBB = getMBB(*ReturnBB);
1143 4 : MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
1144 4 : MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
1145 4 : MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
1146 4 : MIRBuilder.buildBr(ReturnMBB);
1147 :
1148 4 : return true;
1149 : }
1150 :
1151 4 : bool IRTranslator::translateLandingPad(const User &U,
1152 : MachineIRBuilder &MIRBuilder) {
1153 : const LandingPadInst &LP = cast<LandingPadInst>(U);
1154 :
1155 4 : MachineBasicBlock &MBB = MIRBuilder.getMBB();
1156 :
1157 : MBB.setIsEHPad();
1158 :
1159 : // If there aren't registers to copy the values into (e.g., during SjLj
1160 : // exceptions), then don't bother.
1161 4 : auto &TLI = *MF->getSubtarget().getTargetLowering();
1162 4 : const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
1163 4 : if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
1164 0 : TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
1165 : return true;
1166 :
1167 : // If landingpad's return type is token type, we don't create DAG nodes
1168 : // for its exception pointer and selector value. The extraction of exception
1169 : // pointer or selector value from token type landingpads is not currently
1170 : // supported.
1171 8 : if (LP.getType()->isTokenTy())
1172 : return true;
1173 :
1174 : // Add a label to mark the beginning of the landing pad. Deletion of the
1175 : // landing pad can thus be detected via the MachineModuleInfo.
1176 4 : MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
1177 4 : .addSym(MF->addLandingPad(&MBB));
1178 :
1179 4 : LLT Ty = getLLTForType(*LP.getType(), *DL);
1180 8 : unsigned Undef = MRI->createGenericVirtualRegister(Ty);
1181 4 : MIRBuilder.buildUndef(Undef);
1182 :
1183 : SmallVector<LLT, 2> Tys;
1184 12 : for (Type *Ty : cast<StructType>(LP.getType())->elements())
1185 8 : Tys.push_back(getLLTForType(*Ty, *DL));
1186 : assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
1187 :
1188 : // Mark exception register as live in.
1189 4 : unsigned ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
1190 4 : if (!ExceptionReg)
1191 : return false;
1192 :
1193 4 : MBB.addLiveIn(ExceptionReg);
1194 4 : ArrayRef<unsigned> ResRegs = getOrCreateVRegs(LP);
1195 4 : MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
1196 :
1197 4 : unsigned SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
1198 4 : if (!SelectorReg)
1199 : return false;
1200 :
1201 4 : MBB.addLiveIn(SelectorReg);
1202 8 : unsigned PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
1203 4 : MIRBuilder.buildCopy(PtrVReg, SelectorReg);
1204 4 : MIRBuilder.buildCast(ResRegs[1], PtrVReg);
1205 :
1206 4 : return true;
1207 : }
1208 :
1209 52 : bool IRTranslator::translateAlloca(const User &U,
1210 : MachineIRBuilder &MIRBuilder) {
1211 : auto &AI = cast<AllocaInst>(U);
1212 :
1213 52 : if (AI.isSwiftError())
1214 : return false;
1215 :
1216 50 : if (AI.isStaticAlloca()) {
1217 45 : unsigned Res = getOrCreateVReg(AI);
1218 45 : int FI = getOrCreateFrameIndex(AI);
1219 45 : MIRBuilder.buildFrameIndex(Res, FI);
1220 45 : return true;
1221 : }
1222 :
1223 : // FIXME: support stack probing for Windows.
1224 10 : if (MF->getTarget().getTargetTriple().isOSWindows())
1225 : return false;
1226 :
1227 : // Now we're in the harder dynamic case.
1228 4 : Type *Ty = AI.getAllocatedType();
1229 : unsigned Align =
1230 5 : std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment());
1231 :
1232 : unsigned NumElts = getOrCreateVReg(*AI.getArraySize());
1233 :
1234 8 : Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
1235 4 : LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
1236 8 : if (MRI->getType(NumElts) != IntPtrTy) {
1237 4 : unsigned ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
1238 4 : MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
1239 : NumElts = ExtElts;
1240 : }
1241 :
1242 8 : unsigned AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
1243 : unsigned TySize =
1244 4 : getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty)));
1245 4 : MIRBuilder.buildMul(AllocSize, NumElts, TySize);
1246 :
1247 8 : LLT PtrTy = getLLTForType(*AI.getType(), *DL);
1248 4 : auto &TLI = *MF->getSubtarget().getTargetLowering();
1249 4 : unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1250 :
1251 8 : unsigned SPTmp = MRI->createGenericVirtualRegister(PtrTy);
1252 4 : MIRBuilder.buildCopy(SPTmp, SPReg);
1253 :
1254 8 : unsigned AllocTmp = MRI->createGenericVirtualRegister(PtrTy);
1255 4 : MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize);
1256 :
1257 : // Handle alignment. We have to realign if the allocation granule was smaller
1258 : // than stack alignment, or the specific alloca requires more than stack
1259 : // alignment.
1260 : unsigned StackAlign =
1261 4 : MF->getSubtarget().getFrameLowering()->getStackAlignment();
1262 4 : Align = std::max(Align, StackAlign);
1263 4 : if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) {
1264 : // Round the size of the allocation up to the stack alignment size
1265 : // by add SA-1 to the size. This doesn't overflow because we're computing
1266 : // an address inside an alloca.
1267 6 : unsigned AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy);
1268 3 : MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align));
1269 : AllocTmp = AlignedAlloc;
1270 : }
1271 :
1272 4 : MIRBuilder.buildCopy(SPReg, AllocTmp);
1273 8 : MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp);
1274 :
1275 8 : MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI);
1276 : assert(MF->getFrameInfo().hasVarSizedObjects());
1277 4 : return true;
1278 : }
1279 :
1280 3 : bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
1281 : // FIXME: We may need more info about the type. Because of how LLT works,
1282 : // we're completely discarding the i64/double distinction here (amongst
1283 : // others). Fortunately the ABIs I know of where that matters don't use va_arg
1284 : // anyway but that's not guaranteed.
1285 3 : MIRBuilder.buildInstr(TargetOpcode::G_VAARG)
1286 3 : .addDef(getOrCreateVReg(U))
1287 : .addUse(getOrCreateVReg(*U.getOperand(0)))
1288 3 : .addImm(DL->getABITypeAlignment(U.getType()));
1289 3 : return true;
1290 : }
1291 :
1292 25 : bool IRTranslator::translateInsertElement(const User &U,
1293 : MachineIRBuilder &MIRBuilder) {
1294 : // If it is a <1 x Ty> vector, use the scalar as it is
1295 : // not a legal vector type in LLT.
1296 50 : if (U.getType()->getVectorNumElements() == 1) {
1297 6 : unsigned Elt = getOrCreateVReg(*U.getOperand(1));
1298 6 : auto &Regs = *VMap.getVRegs(U);
1299 6 : if (Regs.empty()) {
1300 6 : Regs.push_back(Elt);
1301 6 : VMap.getOffsets(U)->push_back(0);
1302 : } else {
1303 0 : MIRBuilder.buildCopy(Regs[0], Elt);
1304 : }
1305 : return true;
1306 : }
1307 :
1308 19 : unsigned Res = getOrCreateVReg(U);
1309 : unsigned Val = getOrCreateVReg(*U.getOperand(0));
1310 : unsigned Elt = getOrCreateVReg(*U.getOperand(1));
1311 : unsigned Idx = getOrCreateVReg(*U.getOperand(2));
1312 19 : MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
1313 19 : return true;
1314 : }
1315 :
1316 26 : bool IRTranslator::translateExtractElement(const User &U,
1317 : MachineIRBuilder &MIRBuilder) {
1318 : // If it is a <1 x Ty> vector, use the scalar as it is
1319 : // not a legal vector type in LLT.
1320 52 : if (U.getOperand(0)->getType()->getVectorNumElements() == 1) {
1321 4 : unsigned Elt = getOrCreateVReg(*U.getOperand(0));
1322 4 : auto &Regs = *VMap.getVRegs(U);
1323 4 : if (Regs.empty()) {
1324 4 : Regs.push_back(Elt);
1325 4 : VMap.getOffsets(U)->push_back(0);
1326 : } else {
1327 0 : MIRBuilder.buildCopy(Regs[0], Elt);
1328 : }
1329 : return true;
1330 : }
1331 22 : unsigned Res = getOrCreateVReg(U);
1332 : unsigned Val = getOrCreateVReg(*U.getOperand(0));
1333 : unsigned Idx = getOrCreateVReg(*U.getOperand(1));
1334 22 : MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
1335 22 : return true;
1336 : }
1337 :
1338 15 : bool IRTranslator::translateShuffleVector(const User &U,
1339 : MachineIRBuilder &MIRBuilder) {
1340 15 : MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR)
1341 15 : .addDef(getOrCreateVReg(U))
1342 : .addUse(getOrCreateVReg(*U.getOperand(0)))
1343 : .addUse(getOrCreateVReg(*U.getOperand(1)))
1344 : .addUse(getOrCreateVReg(*U.getOperand(2)));
1345 15 : return true;
1346 : }
1347 :
1348 18 : bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
1349 : const PHINode &PI = cast<PHINode>(U);
1350 :
1351 : SmallVector<MachineInstr *, 4> Insts;
1352 39 : for (auto Reg : getOrCreateVRegs(PI)) {
1353 21 : auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, Reg);
1354 21 : Insts.push_back(MIB.getInstr());
1355 : }
1356 :
1357 18 : PendingPHIs.emplace_back(&PI, std::move(Insts));
1358 18 : return true;
1359 : }
1360 :
1361 3 : bool IRTranslator::translateAtomicCmpXchg(const User &U,
1362 : MachineIRBuilder &MIRBuilder) {
1363 : const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
1364 :
1365 3 : if (I.isWeak())
1366 : return false;
1367 :
1368 3 : auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
1369 : : MachineMemOperand::MONone;
1370 : Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1371 :
1372 3 : Type *ResType = I.getType();
1373 : Type *ValType = ResType->Type::getStructElementType(0);
1374 :
1375 3 : auto Res = getOrCreateVRegs(I);
1376 3 : unsigned OldValRes = Res[0];
1377 3 : unsigned SuccessRes = Res[1];
1378 : unsigned Addr = getOrCreateVReg(*I.getPointerOperand());
1379 : unsigned Cmp = getOrCreateVReg(*I.getCompareOperand());
1380 : unsigned NewVal = getOrCreateVReg(*I.getNewValOperand());
1381 :
1382 : MIRBuilder.buildAtomicCmpXchgWithSuccess(
1383 : OldValRes, SuccessRes, Addr, Cmp, NewVal,
1384 9 : *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
1385 3 : Flags, DL->getTypeStoreSize(ValType),
1386 3 : getMemOpAlignment(I), AAMDNodes(), nullptr,
1387 3 : I.getSyncScopeID(), I.getSuccessOrdering(),
1388 6 : I.getFailureOrdering()));
1389 3 : return true;
1390 : }
1391 :
1392 11 : bool IRTranslator::translateAtomicRMW(const User &U,
1393 : MachineIRBuilder &MIRBuilder) {
1394 : const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
1395 :
1396 11 : auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
1397 : : MachineMemOperand::MONone;
1398 : Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1399 :
1400 11 : Type *ResType = I.getType();
1401 :
1402 11 : unsigned Res = getOrCreateVReg(I);
1403 : unsigned Addr = getOrCreateVReg(*I.getPointerOperand());
1404 : unsigned Val = getOrCreateVReg(*I.getValOperand());
1405 :
1406 : unsigned Opcode = 0;
1407 : switch (I.getOperation()) {
1408 0 : default:
1409 0 : llvm_unreachable("Unknown atomicrmw op");
1410 : return false;
1411 : case AtomicRMWInst::Xchg:
1412 : Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
1413 : break;
1414 : case AtomicRMWInst::Add:
1415 : Opcode = TargetOpcode::G_ATOMICRMW_ADD;
1416 : break;
1417 : case AtomicRMWInst::Sub:
1418 : Opcode = TargetOpcode::G_ATOMICRMW_SUB;
1419 : break;
1420 : case AtomicRMWInst::And:
1421 : Opcode = TargetOpcode::G_ATOMICRMW_AND;
1422 : break;
1423 : case AtomicRMWInst::Nand:
1424 : Opcode = TargetOpcode::G_ATOMICRMW_NAND;
1425 : break;
1426 : case AtomicRMWInst::Or:
1427 : Opcode = TargetOpcode::G_ATOMICRMW_OR;
1428 : break;
1429 : case AtomicRMWInst::Xor:
1430 : Opcode = TargetOpcode::G_ATOMICRMW_XOR;
1431 : break;
1432 : case AtomicRMWInst::Max:
1433 : Opcode = TargetOpcode::G_ATOMICRMW_MAX;
1434 : break;
1435 : case AtomicRMWInst::Min:
1436 : Opcode = TargetOpcode::G_ATOMICRMW_MIN;
1437 : break;
1438 : case AtomicRMWInst::UMax:
1439 : Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
1440 : break;
1441 : case AtomicRMWInst::UMin:
1442 : Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
1443 : break;
1444 : }
1445 :
1446 : MIRBuilder.buildAtomicRMW(
1447 : Opcode, Res, Addr, Val,
1448 33 : *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
1449 11 : Flags, DL->getTypeStoreSize(ResType),
1450 11 : getMemOpAlignment(I), AAMDNodes(), nullptr,
1451 33 : I.getSyncScopeID(), I.getOrdering()));
1452 : return true;
1453 : }
1454 :
1455 1187 : void IRTranslator::finishPendingPhis() {
1456 1205 : for (auto &Phi : PendingPHIs) {
1457 18 : const PHINode *PI = Phi.first;
1458 : ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
1459 :
1460 : // All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator
1461 : // won't create extra control flow here, otherwise we need to find the
1462 : // dominating predecessor here (or perhaps force the weirder IRTranslators
1463 : // to provide a simple boundary).
1464 : SmallSet<const BasicBlock *, 4> HandledPreds;
1465 :
1466 55 : for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
1467 : auto IRPred = PI->getIncomingBlock(i);
1468 37 : if (HandledPreds.count(IRPred))
1469 1 : continue;
1470 :
1471 36 : HandledPreds.insert(IRPred);
1472 36 : ArrayRef<unsigned> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
1473 109 : for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
1474 : assert(Pred->isSuccessor(ComponentPHIs[0]->getParent()) &&
1475 : "incorrect CFG at MachineBasicBlock level");
1476 80 : for (unsigned j = 0; j < ValRegs.size(); ++j) {
1477 43 : MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
1478 86 : MIB.addUse(ValRegs[j]);
1479 : MIB.addMBB(Pred);
1480 : }
1481 : }
1482 : }
1483 : }
1484 1187 : }
1485 :
1486 2203 : bool IRTranslator::valueIsSplit(const Value &V,
1487 : SmallVectorImpl<uint64_t> *Offsets) {
1488 : SmallVector<LLT, 4> SplitTys;
1489 2203 : if (Offsets && !Offsets->empty())
1490 : Offsets->clear();
1491 2203 : computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
1492 2203 : return SplitTys.size() > 1;
1493 : }
1494 :
1495 3202 : bool IRTranslator::translate(const Instruction &Inst) {
1496 : CurBuilder.setDebugLoc(Inst.getDebugLoc());
1497 3202 : switch(Inst.getOpcode()) {
1498 : #define HANDLE_INST(NUM, OPCODE, CLASS) \
1499 : case Instruction::OPCODE: return translate##OPCODE(Inst, CurBuilder);
1500 : #include "llvm/IR/Instruction.def"
1501 : default:
1502 : return false;
1503 : }
1504 : }
1505 :
1506 780 : bool IRTranslator::translate(const Constant &C, unsigned Reg) {
1507 : if (auto CI = dyn_cast<ConstantInt>(&C))
1508 426 : EntryBuilder.buildConstant(Reg, *CI);
1509 : else if (auto CF = dyn_cast<ConstantFP>(&C))
1510 46 : EntryBuilder.buildFConstant(Reg, *CF);
1511 308 : else if (isa<UndefValue>(C))
1512 74 : EntryBuilder.buildUndef(Reg);
1513 234 : else if (isa<ConstantPointerNull>(C)) {
1514 : // As we are trying to build a constant val of 0 into a pointer,
1515 : // insert a cast to make them correct with respect to types.
1516 11 : unsigned NullSize = DL->getTypeSizeInBits(C.getType());
1517 11 : auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize);
1518 11 : auto *ZeroVal = ConstantInt::get(ZeroTy, 0);
1519 11 : unsigned ZeroReg = getOrCreateVReg(*ZeroVal);
1520 11 : EntryBuilder.buildCast(Reg, ZeroReg);
1521 : } else if (auto GV = dyn_cast<GlobalValue>(&C))
1522 159 : EntryBuilder.buildGlobalValue(Reg, GV);
1523 : else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
1524 18 : if (!CAZ->getType()->isVectorTy())
1525 1 : return false;
1526 : // Return the scalar if it is a <1 x Ty> vector.
1527 9 : if (CAZ->getNumElements() == 1)
1528 1 : return translate(*CAZ->getElementValue(0u), Reg);
1529 : std::vector<unsigned> Ops;
1530 29 : for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
1531 21 : Constant &Elt = *CAZ->getElementValue(i);
1532 21 : Ops.push_back(getOrCreateVReg(Elt));
1533 : }
1534 16 : EntryBuilder.buildMerge(Reg, Ops);
1535 : } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
1536 : // Return the scalar if it is a <1 x Ty> vector.
1537 19 : if (CV->getNumElements() == 1)
1538 2 : return translate(*CV->getElementAsConstant(0), Reg);
1539 : std::vector<unsigned> Ops;
1540 73 : for (unsigned i = 0; i < CV->getNumElements(); ++i) {
1541 56 : Constant &Elt = *CV->getElementAsConstant(i);
1542 56 : Ops.push_back(getOrCreateVReg(Elt));
1543 : }
1544 34 : EntryBuilder.buildMerge(Reg, Ops);
1545 : } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
1546 34 : switch(CE->getOpcode()) {
1547 : #define HANDLE_INST(NUM, OPCODE, CLASS) \
1548 : case Instruction::OPCODE: return translate##OPCODE(*CE, EntryBuilder);
1549 : #include "llvm/IR/Instruction.def"
1550 : default:
1551 : return false;
1552 : }
1553 : } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
1554 1 : if (CV->getNumOperands() == 1)
1555 0 : return translate(*CV->getOperand(0), Reg);
1556 : SmallVector<unsigned, 4> Ops;
1557 5 : for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
1558 4 : Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
1559 : }
1560 2 : EntryBuilder.buildMerge(Reg, Ops);
1561 : } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
1562 1 : EntryBuilder.buildBlockAddress(Reg, BA);
1563 : } else
1564 : return false;
1565 :
1566 : return true;
1567 : }
1568 :
1569 1275 : void IRTranslator::finalizeFunction() {
1570 : // Release the memory used by the different maps we
1571 : // needed during the translation.
1572 1275 : PendingPHIs.clear();
1573 1275 : VMap.reset();
1574 1275 : FrameIndices.clear();
1575 1275 : MachinePreds.clear();
1576 : // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
1577 : // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
1578 : // destroying it twice (in ~IRTranslator() and ~LLVMContext())
1579 1275 : EntryBuilder = MachineIRBuilder();
1580 1275 : CurBuilder = MachineIRBuilder();
1581 1275 : }
1582 :
1583 1277 : bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
1584 1277 : MF = &CurMF;
1585 1277 : const Function &F = MF->getFunction();
1586 1277 : if (F.empty())
1587 : return false;
1588 1277 : CLI = MF->getSubtarget().getCallLowering();
1589 1277 : CurBuilder.setMF(*MF);
1590 1277 : EntryBuilder.setMF(*MF);
1591 1277 : MRI = &MF->getRegInfo();
1592 1277 : DL = &F.getParent()->getDataLayout();
1593 1277 : TPC = &getAnalysis<TargetPassConfig>();
1594 1277 : ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F);
1595 :
1596 : assert(PendingPHIs.empty() && "stale PHIs");
1597 :
1598 1277 : if (!DL->isLittleEndian()) {
1599 : // Currently we don't properly handle big endian code.
1600 : OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
1601 45 : F.getSubprogram(), &F.getEntryBlock());
1602 45 : R << "unable to translate in big endian mode";
1603 45 : reportTranslationError(*MF, *TPC, *ORE, R);
1604 : }
1605 :
1606 : // Release the per-function state when we return, whether we succeeded or not.
1607 1275 : auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
1608 :
1609 : // Setup a separate basic-block for the arguments and constants
1610 1276 : MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
1611 1276 : MF->push_back(EntryBB);
1612 1276 : EntryBuilder.setMBB(*EntryBB);
1613 :
1614 : // Create all blocks, in IR order, to preserve the layout.
1615 2665 : for (const BasicBlock &BB: F) {
1616 1389 : auto *&MBB = BBToMBB[&BB];
1617 :
1618 1389 : MBB = MF->CreateMachineBasicBlock(&BB);
1619 1389 : MF->push_back(MBB);
1620 :
1621 1389 : if (BB.hasAddressTaken())
1622 5 : MBB->setHasAddressTaken();
1623 : }
1624 :
1625 : // Make our arguments/constants entry block fallthrough to the IR entry block.
1626 1276 : EntryBB->addSuccessor(&getMBB(F.front()));
1627 :
1628 : // Lower the actual args into this basic block.
1629 : SmallVector<unsigned, 8> VRegArgs;
1630 3327 : for (const Argument &Arg: F.args()) {
1631 2051 : if (DL->getTypeStoreSize(Arg.getType()) == 0)
1632 : continue; // Don't handle zero sized types.
1633 2049 : VRegArgs.push_back(
1634 4098 : MRI->createGenericVirtualRegister(getLLTForType(*Arg.getType(), *DL)));
1635 : }
1636 :
1637 : // We don't currently support translating swifterror or swiftself functions.
1638 3325 : for (auto &Arg : F.args()) {
1639 2051 : if (Arg.hasSwiftErrorAttr() || Arg.hasSwiftSelfAttr()) {
1640 : OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
1641 2 : F.getSubprogram(), &F.getEntryBlock());
1642 : R << "unable to lower arguments due to swifterror/swiftself: "
1643 4 : << ore::NV("Prototype", F.getType());
1644 2 : reportTranslationError(*MF, *TPC, *ORE, R);
1645 : return false;
1646 : }
1647 : }
1648 :
1649 2548 : if (!CLI->lowerFormalArguments(EntryBuilder, F, VRegArgs)) {
1650 : OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
1651 53 : F.getSubprogram(), &F.getEntryBlock());
1652 106 : R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
1653 53 : reportTranslationError(*MF, *TPC, *ORE, R);
1654 : return false;
1655 : }
1656 :
1657 : auto ArgIt = F.arg_begin();
1658 3185 : for (auto &VArg : VRegArgs) {
1659 : // If the argument is an unsplit scalar then don't use unpackRegs to avoid
1660 : // creating redundant copies.
1661 1964 : if (!valueIsSplit(*ArgIt, VMap.getOffsets(*ArgIt))) {
1662 1928 : auto &VRegs = *VMap.getVRegs(cast<Value>(*ArgIt));
1663 : assert(VRegs.empty() && "VRegs already populated?");
1664 1928 : VRegs.push_back(VArg);
1665 : } else {
1666 36 : unpackRegs(*ArgIt, VArg, EntryBuilder);
1667 : }
1668 1964 : ArgIt++;
1669 : }
1670 :
1671 : // Need to visit defs before uses when translating instructions.
1672 : ReversePostOrderTraversal<const Function *> RPOT(&F);
1673 2517 : for (const BasicBlock *BB : RPOT) {
1674 1330 : MachineBasicBlock &MBB = getMBB(*BB);
1675 : // Set the insertion point of all the following translations to
1676 : // the end of this basic block.
1677 1330 : CurBuilder.setMBB(MBB);
1678 :
1679 4498 : for (const Instruction &Inst : *BB) {
1680 3202 : if (translate(Inst))
1681 3168 : continue;
1682 :
1683 : OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
1684 34 : Inst.getDebugLoc(), BB);
1685 68 : R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
1686 :
1687 34 : if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
1688 : std::string InstStrStorage;
1689 25 : raw_string_ostream InstStr(InstStrStorage);
1690 : InstStr << Inst;
1691 :
1692 50 : R << ": '" << InstStr.str() << "'";
1693 : }
1694 :
1695 34 : reportTranslationError(*MF, *TPC, *ORE, R);
1696 : return false;
1697 : }
1698 : }
1699 :
1700 1187 : finishPendingPhis();
1701 :
1702 : // Merge the argument lowering and constants block with its single
1703 : // successor, the LLVM-IR entry block. We want the basic block to
1704 : // be maximal.
1705 : assert(EntryBB->succ_size() == 1 &&
1706 : "Custom BB used for lowering should have only one successor");
1707 : // Get the successor of the current entry block.
1708 1187 : MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
1709 : assert(NewEntryBB.pred_size() == 1 &&
1710 : "LLVM-IR entry block has a predecessor!?");
1711 : // Move all the instruction from the current entry block to the
1712 : // new entry block.
1713 : NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
1714 : EntryBB->end());
1715 :
1716 : // Update the live-in information for the new entry block.
1717 3015 : for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
1718 : NewEntryBB.addLiveIn(LiveIn);
1719 1187 : NewEntryBB.sortUniqueLiveIns();
1720 :
1721 : // Get rid of the now empty basic block.
1722 1187 : EntryBB->removeSuccessor(&NewEntryBB);
1723 1187 : MF->remove(EntryBB);
1724 1187 : MF->DeleteMachineBasicBlock(EntryBB);
1725 :
1726 : assert(&MF->front() == &NewEntryBB &&
1727 : "New entry wasn't next in the list of basic block!");
1728 :
1729 : // Initialize stack protector information.
1730 1187 : StackProtector &SP = getAnalysis<StackProtector>();
1731 1187 : SP.copyToMachineFrameInfo(MF->getFrameInfo());
1732 :
1733 1187 : return false;
1734 : }
|