LCOV - code coverage report
Current view: top level - lib/CodeGen/GlobalISel - RegBankSelect.cpp (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 192 317 60.6 %
Date: 2018-10-20 13:21:21 Functions: 25 36 69.4 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : /// \file
      10             : /// This file implements the RegBankSelect class.
      11             : //===----------------------------------------------------------------------===//
      12             : 
      13             : #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
      14             : #include "llvm/ADT/PostOrderIterator.h"
      15             : #include "llvm/ADT/STLExtras.h"
      16             : #include "llvm/ADT/SmallVector.h"
      17             : #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
      18             : #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
      19             : #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
      20             : #include "llvm/CodeGen/GlobalISel/Utils.h"
      21             : #include "llvm/CodeGen/MachineBasicBlock.h"
      22             : #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
      23             : #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
      24             : #include "llvm/CodeGen/MachineFunction.h"
      25             : #include "llvm/CodeGen/MachineInstr.h"
      26             : #include "llvm/CodeGen/MachineOperand.h"
      27             : #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
      28             : #include "llvm/CodeGen/MachineRegisterInfo.h"
      29             : #include "llvm/CodeGen/TargetOpcodes.h"
      30             : #include "llvm/CodeGen/TargetPassConfig.h"
      31             : #include "llvm/CodeGen/TargetRegisterInfo.h"
      32             : #include "llvm/CodeGen/TargetSubtargetInfo.h"
      33             : #include "llvm/Config/llvm-config.h"
      34             : #include "llvm/IR/Attributes.h"
      35             : #include "llvm/IR/Function.h"
      36             : #include "llvm/Pass.h"
      37             : #include "llvm/Support/BlockFrequency.h"
      38             : #include "llvm/Support/CommandLine.h"
      39             : #include "llvm/Support/Compiler.h"
      40             : #include "llvm/Support/Debug.h"
      41             : #include "llvm/Support/ErrorHandling.h"
      42             : #include "llvm/Support/raw_ostream.h"
      43             : #include <algorithm>
      44             : #include <cassert>
      45             : #include <cstdint>
      46             : #include <limits>
      47             : #include <memory>
      48             : #include <utility>
      49             : 
      50             : #define DEBUG_TYPE "regbankselect"
      51             : 
      52             : using namespace llvm;
      53             : 
      54             : static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
      55             :     cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
      56             :     cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
      57             :                           "Run the Fast mode (default mapping)"),
      58             :                clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
      59             :                           "Use the Greedy mode (best local mapping)")));
      60             : 
      61             : char RegBankSelect::ID = 0;
      62             : 
      63       85394 : INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
      64             :                       "Assign register bank of generic virtual registers",
      65             :                       false, false);
      66       85394 : INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
      67       85394 : INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
      68       85394 : INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
      69      655553 : INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
      70             :                     "Assign register bank of generic virtual registers", false,
      71             :                     false)
      72             : 
      73         275 : RegBankSelect::RegBankSelect(Mode RunningMode)
      74         275 :     : MachineFunctionPass(ID), OptMode(RunningMode) {
      75         275 :   initializeRegBankSelectPass(*PassRegistry::getPassRegistry());
      76         275 :   if (RegBankSelectMode.getNumOccurrences() != 0) {
      77          61 :     OptMode = RegBankSelectMode;
      78             :     if (RegBankSelectMode != RunningMode)
      79             :       LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
      80             :   }
      81         275 : }
      82             : 
      83        1276 : void RegBankSelect::init(MachineFunction &MF) {
      84        1276 :   RBI = MF.getSubtarget().getRegBankInfo();
      85             :   assert(RBI && "Cannot work without RegisterBankInfo");
      86        1276 :   MRI = &MF.getRegInfo();
      87        1276 :   TRI = MF.getSubtarget().getRegisterInfo();
      88        1276 :   TPC = &getAnalysis<TargetPassConfig>();
      89        1276 :   if (OptMode != Mode::Fast) {
      90         243 :     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
      91         243 :     MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
      92             :   } else {
      93        1033 :     MBFI = nullptr;
      94        1033 :     MBPI = nullptr;
      95             :   }
      96        1276 :   MIRBuilder.setMF(MF);
      97        1276 :   MORE = llvm::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
      98        1276 : }
      99             : 
     100         230 : void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
     101         230 :   if (OptMode != Mode::Fast) {
     102             :     // We could preserve the information from these two analysis but
     103             :     // the APIs do not allow to do so yet.
     104             :     AU.addRequired<MachineBlockFrequencyInfo>();
     105             :     AU.addRequired<MachineBranchProbabilityInfo>();
     106             :   }
     107             :   AU.addRequired<TargetPassConfig>();
     108         230 :   getSelectionDAGFallbackAnalysisUsage(AU);
     109         230 :   MachineFunctionPass::getAnalysisUsage(AU);
     110         230 : }
     111             : 
     112       11707 : bool RegBankSelect::assignmentMatch(
     113             :     unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping,
     114             :     bool &OnlyAssign) const {
     115             :   // By default we assume we will have to repair something.
     116       11707 :   OnlyAssign = false;
     117             :   // Each part of a break down needs to end up in a different register.
     118             :   // In other word, Reg assignement does not match.
     119       11707 :   if (ValMapping.NumBreakDowns > 1)
     120             :     return false;
     121             : 
     122       11707 :   const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
     123       11707 :   const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
     124             :   // Reg is free of assignment, a simple assignment will make the
     125             :   // register bank to match.
     126       11707 :   OnlyAssign = CurRegBank == nullptr;
     127             :   LLVM_DEBUG(dbgs() << "Does assignment already match: ";
     128             :              if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
     129             :              dbgs() << " against ";
     130             :              assert(DesiredRegBrank && "The mapping must be valid");
     131             :              dbgs() << *DesiredRegBrank << '\n';);
     132       11707 :   return CurRegBank == DesiredRegBrank;
     133             : }
     134             : 
     135         187 : bool RegBankSelect::repairReg(
     136             :     MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
     137             :     RegBankSelect::RepairingPlacement &RepairPt,
     138             :     const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) {
     139         187 :   if (ValMapping.NumBreakDowns != 1 && !TPC->isGlobalISelAbortEnabled())
     140             :     return false;
     141             :   assert(ValMapping.NumBreakDowns == 1 && "Not yet implemented");
     142             :   // An empty range of new register means no repairing.
     143             :   assert(NewVRegs.begin() != NewVRegs.end() && "We should not have to repair");
     144             : 
     145             :   // Assume we are repairing a use and thus, the original reg will be
     146             :   // the source of the repairing.
     147         187 :   unsigned Src = MO.getReg();
     148         187 :   unsigned Dst = *NewVRegs.begin();
     149             : 
     150             :   // If we repair a definition, swap the source and destination for
     151             :   // the repairing.
     152         187 :   if (MO.isDef())
     153             :     std::swap(Src, Dst);
     154             : 
     155             :   assert((RepairPt.getNumInsertPoints() == 1 ||
     156             :           TargetRegisterInfo::isPhysicalRegister(Dst)) &&
     157             :          "We are about to create several defs for Dst");
     158             : 
     159             :   // Build the instruction used to repair, then clone it at the right
     160             :   // places. Avoiding buildCopy bypasses the check that Src and Dst have the
     161             :   // same types because the type is a placeholder when this function is called.
     162             :   MachineInstr *MI =
     163         374 :       MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY).addDef(Dst).addUse(Src);
     164             :   LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
     165             :                     << '\n');
     166             :   // TODO:
     167             :   // Check if MI is legal. if not, we need to legalize all the
     168             :   // instructions we are going to insert.
     169             :   std::unique_ptr<MachineInstr *[]> NewInstrs(
     170         187 :       new MachineInstr *[RepairPt.getNumInsertPoints()]);
     171             :   bool IsFirst = true;
     172             :   unsigned Idx = 0;
     173         374 :   for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
     174             :     MachineInstr *CurMI;
     175         187 :     if (IsFirst)
     176             :       CurMI = MI;
     177             :     else
     178           0 :       CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
     179         187 :     InsertPt->insert(*CurMI);
     180         374 :     NewInstrs[Idx++] = CurMI;
     181             :     IsFirst = false;
     182             :   }
     183             :   // TODO:
     184             :   // Legalize NewInstrs if need be.
     185             :   return true;
     186             : }
     187             : 
     188         164 : uint64_t RegBankSelect::getRepairCost(
     189             :     const MachineOperand &MO,
     190             :     const RegisterBankInfo::ValueMapping &ValMapping) const {
     191             :   assert(MO.isReg() && "We should only repair register operand");
     192             :   assert(ValMapping.NumBreakDowns && "Nothing to map??");
     193             : 
     194         164 :   bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
     195         164 :   const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
     196             :   // If MO does not have a register bank, we should have just been
     197             :   // able to set one unless we have to break the value down.
     198             :   assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair");
     199             :   // Def: Val <- NewDefs
     200             :   //     Same number of values: copy
     201             :   //     Different number: Val = build_sequence Defs1, Defs2, ...
     202             :   // Use: NewSources <- Val.
     203             :   //     Same number of values: copy.
     204             :   //     Different number: Src1, Src2, ... =
     205             :   //           extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
     206             :   // We should remember that this value is available somewhere else to
     207             :   // coalesce the value.
     208             : 
     209         164 :   if (IsSameNumOfValues) {
     210         164 :     const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
     211             :     // If we repair a definition, swap the source and destination for
     212             :     // the repairing.
     213         164 :     if (MO.isDef())
     214             :       std::swap(CurRegBank, DesiredRegBrank);
     215             :     // TODO: It may be possible to actually avoid the copy.
     216             :     // If we repair something where the source is defined by a copy
     217             :     // and the source of that copy is on the right bank, we can reuse
     218             :     // it for free.
     219             :     // E.g.,
     220             :     // RegToRepair<BankA> = copy AlternativeSrc<BankB>
     221             :     // = op RegToRepair<BankA>
     222             :     // We can simply propagate AlternativeSrc instead of copying RegToRepair
     223             :     // into a new virtual register.
     224             :     // We would also need to propagate this information in the
     225             :     // repairing placement.
     226         164 :     unsigned Cost = RBI->copyCost(*DesiredRegBrank, *CurRegBank,
     227         164 :                                   RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
     228             :     // TODO: use a dedicated constant for ImpossibleCost.
     229         164 :     if (Cost != std::numeric_limits<unsigned>::max())
     230         130 :       return Cost;
     231             :     // Return the legalization cost of that repairing.
     232             :   }
     233             :   return std::numeric_limits<unsigned>::max();
     234             : }
     235             : 
     236         992 : const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
     237             :     MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
     238             :     SmallVectorImpl<RepairingPlacement> &RepairPts) {
     239             :   assert(!PossibleMappings.empty() &&
     240             :          "Do not know how to map this instruction");
     241             : 
     242             :   const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
     243         992 :   MappingCost Cost = MappingCost::ImpossibleCost();
     244         992 :   SmallVector<RepairingPlacement, 4> LocalRepairPts;
     245        1165 :   for (const RegisterBankInfo::InstructionMapping *CurMapping :
     246        2157 :        PossibleMappings) {
     247             :     MappingCost CurCost =
     248        1165 :         computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
     249        1165 :     if (CurCost < Cost) {
     250             :       LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
     251        1011 :       Cost = CurCost;
     252             :       BestMapping = CurMapping;
     253             :       RepairPts.clear();
     254        1932 :       for (RepairingPlacement &RepairPt : LocalRepairPts)
     255         921 :         RepairPts.emplace_back(std::move(RepairPt));
     256             :     }
     257             :   }
     258         992 :   if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
     259             :     // If none of the mapping worked that means they are all impossible.
     260             :     // Thus, pick the first one and set an impossible repairing point.
     261             :     // It will trigger the failed isel mode.
     262           0 :     BestMapping = *PossibleMappings.begin();
     263           0 :     RepairPts.emplace_back(
     264           0 :         RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
     265             :   } else
     266             :     assert(BestMapping && "No suitable mapping for instruction");
     267         992 :   return *BestMapping;
     268             : }
     269             : 
     270           0 : void RegBankSelect::tryAvoidingSplit(
     271             :     RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
     272             :     const RegisterBankInfo::ValueMapping &ValMapping) const {
     273           0 :   const MachineInstr &MI = *MO.getParent();
     274             :   assert(RepairPt.hasSplit() && "We should not have to adjust for split");
     275             :   // Splitting should only occur for PHIs or between terminators,
     276             :   // because we only do local repairing.
     277             :   assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
     278             : 
     279             :   assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
     280             :          "Repairing placement does not match operand");
     281             : 
     282             :   // If we need splitting for phis, that means it is because we
     283             :   // could not find an insertion point before the terminators of
     284             :   // the predecessor block for this argument. In other words,
     285             :   // the input value is defined by one of the terminators.
     286             :   assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
     287             : 
     288             :   // We split to repair the use of a phi or a terminator.
     289           0 :   if (!MO.isDef()) {
     290           0 :     if (MI.isTerminator()) {
     291             :       assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
     292             :              "Need to split for the first terminator?!");
     293             :     } else {
     294             :       // For the PHI case, the split may not be actually required.
     295             :       // In the copy case, a phi is already a copy on the incoming edge,
     296             :       // therefore there is no need to split.
     297           0 :       if (ValMapping.NumBreakDowns == 1)
     298             :         // This is a already a copy, there is nothing to do.
     299             :         RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
     300             :     }
     301           0 :     return;
     302             :   }
     303             : 
     304             :   // At this point, we need to repair a defintion of a terminator.
     305             : 
     306             :   // Technically we need to fix the def of MI on all outgoing
     307             :   // edges of MI to keep the repairing local. In other words, we
     308             :   // will create several definitions of the same register. This
     309             :   // does not work for SSA unless that definition is a physical
     310             :   // register.
     311             :   // However, there are other cases where we can get away with
     312             :   // that while still keeping the repairing local.
     313             :   assert(MI.isTerminator() && MO.isDef() &&
     314             :          "This code is for the def of a terminator");
     315             : 
     316             :   // Since we use RPO traversal, if we need to repair a definition
     317             :   // this means this definition could be:
     318             :   // 1. Used by PHIs (i.e., this VReg has been visited as part of the
     319             :   //    uses of a phi.), or
     320             :   // 2. Part of a target specific instruction (i.e., the target applied
     321             :   //    some register class constraints when creating the instruction.)
     322             :   // If the constraints come for #2, the target said that another mapping
     323             :   // is supported so we may just drop them. Indeed, if we do not change
     324             :   // the number of registers holding that value, the uses will get fixed
     325             :   // when we get to them.
     326             :   // Uses in PHIs may have already been proceeded though.
     327             :   // If the constraints come for #1, then, those are weak constraints and
     328             :   // no actual uses may rely on them. However, the problem remains mainly
     329             :   // the same as for #2. If the value stays in one register, we could
     330             :   // just switch the register bank of the definition, but we would need to
     331             :   // account for a repairing cost for each phi we silently change.
     332             :   //
     333             :   // In any case, if the value needs to be broken down into several
     334             :   // registers, the repairing is not local anymore as we need to patch
     335             :   // every uses to rebuild the value in just one register.
     336             :   //
     337             :   // To summarize:
     338             :   // - If the value is in a physical register, we can do the split and
     339             :   //   fix locally.
     340             :   // Otherwise if the value is in a virtual register:
     341             :   // - If the value remains in one register, we do not have to split
     342             :   //   just switching the register bank would do, but we need to account
     343             :   //   in the repairing cost all the phi we changed.
     344             :   // - If the value spans several registers, then we cannot do a local
     345             :   //   repairing.
     346             : 
     347             :   // Check if this is a physical or virtual register.
     348           0 :   unsigned Reg = MO.getReg();
     349           0 :   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
     350             :     // We are going to split every outgoing edges.
     351             :     // Check that this is possible.
     352             :     // FIXME: The machine representation is currently broken
     353             :     // since it also several terminators in one basic block.
     354             :     // Because of that we would technically need a way to get
     355             :     // the targets of just one terminator to know which edges
     356             :     // we have to split.
     357             :     // Assert that we do not hit the ill-formed representation.
     358             : 
     359             :     // If there are other terminators before that one, some of
     360             :     // the outgoing edges may not be dominated by this definition.
     361             :     assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
     362             :            "Do not know which outgoing edges are relevant");
     363             :     const MachineInstr *Next = MI.getNextNode();
     364             :     assert((!Next || Next->isUnconditionalBranch()) &&
     365             :            "Do not know where each terminator ends up");
     366             :     if (Next)
     367             :       // If the next terminator uses Reg, this means we have
     368             :       // to split right after MI and thus we need a way to ask
     369             :       // which outgoing edges are affected.
     370             :       assert(!Next->readsRegister(Reg) && "Need to split between terminators");
     371             :     // We will split all the edges and repair there.
     372             :   } else {
     373             :     // This is a virtual register defined by a terminator.
     374           0 :     if (ValMapping.NumBreakDowns == 1) {
     375             :       // There is nothing to repair, but we may actually lie on
     376             :       // the repairing cost because of the PHIs already proceeded
     377             :       // as already stated.
     378             :       // Though the code will be correct.
     379             :       assert(false && "Repairing cost may not be accurate");
     380             :     } else {
     381             :       // We need to do non-local repairing. Basically, patch all
     382             :       // the uses (i.e., phis) that we already proceeded.
     383             :       // For now, just say this mapping is not possible.
     384             :       RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
     385             :     }
     386             :   }
     387             : }
     388             : 
     389        7384 : RegBankSelect::MappingCost RegBankSelect::computeMapping(
     390             :     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
     391             :     SmallVectorImpl<RepairingPlacement> &RepairPts,
     392             :     const RegBankSelect::MappingCost *BestCost) {
     393             :   assert((MBFI || !BestCost) && "Costs comparison require MBFI");
     394             : 
     395             :   if (!InstrMapping.isValid())
     396           0 :     return MappingCost::ImpossibleCost();
     397             : 
     398             :   // If mapped with InstrMapping, MI will have the recorded cost.
     399       13603 :   MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
     400        7384 :   bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
     401             :   assert(!Saturated && "Possible mapping saturated the cost");
     402             :   LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
     403             :   LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
     404             :   RepairPts.clear();
     405        7384 :   if (BestCost && Cost > *BestCost) {
     406             :     LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
     407          28 :     return Cost;
     408             :   }
     409             : 
     410             :   // Moreover, to realize this mapping, the register bank of each operand must
     411             :   // match this mapping. In other words, we may need to locally reassign the
     412             :   // register banks. Account for that repairing cost as well.
     413             :   // In this context, local means in the surrounding of MI.
     414       20258 :   for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
     415       20258 :        OpIdx != EndOpIdx; ++OpIdx) {
     416       12980 :     const MachineOperand &MO = MI.getOperand(OpIdx);
     417       12980 :     if (!MO.isReg())
     418       12816 :       continue;
     419       11716 :     unsigned Reg = MO.getReg();
     420       11716 :     if (!Reg)
     421             :       continue;
     422             :     LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
     423             :     const RegisterBankInfo::ValueMapping &ValMapping =
     424             :         InstrMapping.getOperandMapping(OpIdx);
     425             :     // If Reg is already properly mapped, this is free.
     426             :     bool Assign;
     427       11707 :     if (assignmentMatch(Reg, ValMapping, Assign)) {
     428             :       LLVM_DEBUG(dbgs() << "=> is free (match).\n");
     429             :       continue;
     430             :     }
     431        6191 :     if (Assign) {
     432             :       LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
     433        5897 :       RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
     434             :                                                 RepairingPlacement::Reassign));
     435        5897 :       continue;
     436             :     }
     437             : 
     438             :     // Find the insertion point for the repairing code.
     439         294 :     RepairPts.emplace_back(
     440         588 :         RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
     441             :     RepairingPlacement &RepairPt = RepairPts.back();
     442             : 
     443             :     // If we need to split a basic block to materialize this insertion point,
     444             :     // we may give a higher cost to this mapping.
     445             :     // Nevertheless, we may get away with the split, so try that first.
     446         294 :     if (RepairPt.hasSplit())
     447           0 :       tryAvoidingSplit(RepairPt, MO, ValMapping);
     448             : 
     449             :     // Check that the materialization of the repairing is possible.
     450         294 :     if (!RepairPt.canMaterialize()) {
     451             :       LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
     452          78 :       return MappingCost::ImpossibleCost();
     453             :     }
     454             : 
     455             :     // Account for the split cost and repair cost.
     456             :     // Unless the cost is already saturated or we do not care about the cost.
     457         294 :     if (!BestCost || Saturated)
     458             :       continue;
     459             : 
     460             :     // To get accurate information we need MBFI and MBPI.
     461             :     // Thus, if we end up here this information should be here.
     462             :     assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
     463             : 
     464             :     // FIXME: We will have to rework the repairing cost model.
     465             :     // The repairing cost depends on the register bank that MO has.
     466             :     // However, when we break down the value into different values,
     467             :     // MO may not have a register bank while still needing repairing.
     468             :     // For the fast mode, we don't compute the cost so that is fine,
     469             :     // but still for the repairing code, we will have to make a choice.
     470             :     // For the greedy mode, we should choose greedily what is the best
     471             :     // choice based on the next use of MO.
     472             : 
     473             :     // Sums up the repairing cost of MO at each insertion point.
     474         164 :     uint64_t RepairCost = getRepairCost(MO, ValMapping);
     475             : 
     476             :     // This is an impossible to repair cost.
     477         164 :     if (RepairCost == std::numeric_limits<unsigned>::max())
     478          34 :       return MappingCost::ImpossibleCost();
     479             : 
     480             :     // Bias used for splitting: 5%.
     481             :     const uint64_t PercentageForBias = 5;
     482         130 :     uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
     483             :     // We should not need more than a couple of instructions to repair
     484             :     // an assignment. In other words, the computation should not
     485             :     // overflow because the repairing cost is free of basic block
     486             :     // frequency.
     487             :     assert(((RepairCost < RepairCost * PercentageForBias) &&
     488             :             (RepairCost * PercentageForBias <
     489             :              RepairCost * PercentageForBias + 99)) &&
     490             :            "Repairing involves more than a billion of instructions?!");
     491         216 :     for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
     492             :       assert(InsertPt->canMaterialize() && "We should not have made it here");
     493             :       // We will applied some basic block frequency and those uses uint64_t.
     494         130 :       if (!InsertPt->isSplit())
     495         130 :         Saturated = Cost.addLocalCost(RepairCost);
     496             :       else {
     497             :         uint64_t CostForInsertPt = RepairCost;
     498             :         // Again we shouldn't overflow here givent that
     499             :         // CostForInsertPt is frequency free at this point.
     500             :         assert(CostForInsertPt + Bias > CostForInsertPt &&
     501             :                "Repairing + split bias overflows");
     502           0 :         CostForInsertPt += Bias;
     503           0 :         uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
     504             :         // Check if we just overflowed.
     505           0 :         if ((Saturated = PtCost < CostForInsertPt))
     506           0 :           Cost.saturate();
     507             :         else
     508           0 :           Saturated = Cost.addNonLocalCost(PtCost);
     509             :       }
     510             : 
     511             :       // Stop looking into what it takes to repair, this is already
     512             :       // too expensive.
     513         130 :       if (BestCost && Cost > *BestCost) {
     514             :         LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
     515          44 :         return Cost;
     516             :       }
     517             : 
     518             :       // No need to accumulate more cost information.
     519             :       // We need to still gather the repairing information though.
     520          86 :       if (Saturated)
     521             :         break;
     522             :     }
     523             :   }
     524             :   LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
     525        7278 :   return Cost;
     526             : }
     527             : 
     528        7211 : bool RegBankSelect::applyMapping(
     529             :     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
     530             :     SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
     531             :   // OpdMapper will hold all the information needed for the rewritting.
     532       14422 :   RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
     533             : 
     534             :   // First, place the repairing code.
     535       13165 :   for (RepairingPlacement &RepairPt : RepairPts) {
     536        5954 :     if (!RepairPt.canMaterialize() ||
     537        5954 :         RepairPt.getKind() == RepairingPlacement::Impossible)
     538             :       return false;
     539             :     assert(RepairPt.getKind() != RepairingPlacement::None &&
     540             :            "This should not make its way in the list");
     541        5954 :     unsigned OpIdx = RepairPt.getOpIdx();
     542        5954 :     MachineOperand &MO = MI.getOperand(OpIdx);
     543             :     const RegisterBankInfo::ValueMapping &ValMapping =
     544             :         InstrMapping.getOperandMapping(OpIdx);
     545        5954 :     unsigned Reg = MO.getReg();
     546             : 
     547        5954 :     switch (RepairPt.getKind()) {
     548        5767 :     case RepairingPlacement::Reassign:
     549             :       assert(ValMapping.NumBreakDowns == 1 &&
     550             :              "Reassignment should only be for simple mapping");
     551        5767 :       MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
     552        5767 :       break;
     553         187 :     case RepairingPlacement::Insert:
     554         187 :       OpdMapper.createVRegs(OpIdx);
     555         187 :       if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
     556             :         return false;
     557             :       break;
     558           0 :     default:
     559           0 :       llvm_unreachable("Other kind should not happen");
     560             :     }
     561             :   }
     562             : 
     563             :   // Second, rewrite the instruction.
     564             :   LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
     565        7211 :   RBI->applyMapping(OpdMapper);
     566             : 
     567        7211 :   return true;
     568             : }
     569             : 
     570        7211 : bool RegBankSelect::assignInstr(MachineInstr &MI) {
     571             :   LLVM_DEBUG(dbgs() << "Assign: " << MI);
     572             :   // Remember the repairing placement for all the operands.
     573        7211 :   SmallVector<RepairingPlacement, 4> RepairPts;
     574             : 
     575             :   const RegisterBankInfo::InstructionMapping *BestMapping;
     576        7211 :   if (OptMode == RegBankSelect::Mode::Fast) {
     577        6219 :     BestMapping = &RBI->getInstrMapping(MI);
     578        6219 :     MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
     579             :     (void)DefaultCost;
     580        6219 :     if (DefaultCost == MappingCost::ImpossibleCost())
     581           0 :       return false;
     582             :   } else {
     583             :     RegisterBankInfo::InstructionMappings PossibleMappings =
     584         992 :         RBI->getInstrPossibleMappings(MI);
     585         992 :     if (PossibleMappings.empty())
     586             :       return false;
     587         992 :     BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
     588             :   }
     589             :   // Make sure the mapping is valid for MI.
     590             :   assert(BestMapping->verify(MI) && "Invalid instruction mapping");
     591             : 
     592             :   LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
     593             : 
     594             :   // After this call, MI may not be valid anymore.
     595             :   // Do not use it.
     596        7211 :   return applyMapping(MI, *BestMapping, RepairPts);
     597             : }
     598             : 
     599        1390 : bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
     600             :   // If the ISel pipeline failed, do not bother running that pass.
     601        1390 :   if (MF.getProperties().hasProperty(
     602             :           MachineFunctionProperties::Property::FailedISel))
     603             :     return false;
     604             : 
     605             :   LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
     606        1276 :   const Function &F = MF.getFunction();
     607        1276 :   Mode SaveOptMode = OptMode;
     608        1276 :   if (F.hasFnAttribute(Attribute::OptimizeNone))
     609           3 :     OptMode = Mode::Fast;
     610        1276 :   init(MF);
     611             : 
     612             : #ifndef NDEBUG
     613             :   // Check that our input is fully legal: we require the function to have the
     614             :   // Legalized property, so it should be.
     615             :   // FIXME: This should be in the MachineVerifier.
     616             :   if (!DisableGISelLegalityCheck)
     617             :     if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
     618             :       reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
     619             :                          "instruction is not legal", *MI);
     620             :       return false;
     621             :     }
     622             : #endif
     623             : 
     624             :   // Walk the function and assign register banks to all operands.
     625             :   // Use a RPOT to make sure all registers are assigned before we choose
     626             :   // the best mapping of the current instruction.
     627             :   ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
     628        2629 :   for (MachineBasicBlock *MBB : RPOT) {
     629             :     // Set a sensible insertion point so that subsequent calls to
     630             :     // MIRBuilder.
     631        1353 :     MIRBuilder.setMBB(*MBB);
     632             :     for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
     633        9869 :          MII != End;) {
     634             :       // MI might be invalidated by the assignment, so move the
     635             :       // iterator before hand.
     636             :       MachineInstr &MI = *MII++;
     637             : 
     638             :       // Ignore target-specific instructions: they should use proper regclasses.
     639       17032 :       if (isTargetSpecificOpcode(MI.getOpcode()))
     640             :         continue;
     641             : 
     642        7211 :       if (!assignInstr(MI)) {
     643           0 :         reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
     644             :                            "unable to map instruction", MI);
     645             :         return false;
     646             :       }
     647             :     }
     648             :   }
     649        1276 :   OptMode = SaveOptMode;
     650        1276 :   return false;
     651             : }
     652             : 
     653             : //------------------------------------------------------------------------------
     654             : //                  Helper Classes Implementation
     655             : //------------------------------------------------------------------------------
     656        6191 : RegBankSelect::RepairingPlacement::RepairingPlacement(
     657             :     MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
     658        6191 :     RepairingPlacement::RepairingKind Kind)
     659             :     // Default is, we are going to insert code to repair OpIdx.
     660             :     : Kind(Kind), OpIdx(OpIdx),
     661        6191 :       CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
     662        6191 :   const MachineOperand &MO = MI.getOperand(OpIdx);
     663             :   assert(MO.isReg() && "Trying to repair a non-reg operand");
     664             : 
     665        6191 :   if (Kind != RepairingKind::Insert)
     666             :     return;
     667             : 
     668             :   // Repairings for definitions happen after MI, uses happen before.
     669         294 :   bool Before = !MO.isDef();
     670             : 
     671             :   // Check if we are done with MI.
     672         294 :   if (!MI.isPHI() && !MI.isTerminator()) {
     673         294 :     addInsertPoint(MI, Before);
     674             :     // We are done with the initialization.
     675         294 :     return;
     676             :   }
     677             : 
     678             :   // Now, look for the special cases.
     679             :   if (MI.isPHI()) {
     680             :     // - PHI must be the first instructions:
     681             :     //   * Before, we have to split the related incoming edge.
     682             :     //   * After, move the insertion point past the last phi.
     683           0 :     if (!Before) {
     684           0 :       MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
     685           0 :       if (It != MI.getParent()->end())
     686           0 :         addInsertPoint(*It, /*Before*/ true);
     687             :       else
     688           0 :         addInsertPoint(*(--It), /*Before*/ false);
     689             :       return;
     690             :     }
     691             :     // We repair a use of a phi, we may need to split the related edge.
     692           0 :     MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
     693             :     // Check if we can move the insertion point prior to the
     694             :     // terminators of the predecessor.
     695           0 :     unsigned Reg = MO.getReg();
     696           0 :     MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
     697           0 :     for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
     698           0 :       if (It->modifiesRegister(Reg, &TRI)) {
     699             :         // We cannot hoist the repairing code in the predecessor.
     700             :         // Split the edge.
     701           0 :         addInsertPoint(Pred, *MI.getParent());
     702             :         return;
     703             :       }
     704             :     // At this point, we can insert in Pred.
     705             : 
     706             :     // - If It is invalid, Pred is empty and we can insert in Pred
     707             :     //   wherever we want.
     708             :     // - If It is valid, It is the first non-terminator, insert after It.
     709           0 :     if (It == Pred.end())
     710           0 :       addInsertPoint(Pred, /*Beginning*/ false);
     711             :     else
     712           0 :       addInsertPoint(*It, /*Before*/ false);
     713             :   } else {
     714             :     // - Terminators must be the last instructions:
     715             :     //   * Before, move the insert point before the first terminator.
     716             :     //   * After, we have to split the outcoming edges.
     717           0 :     unsigned Reg = MO.getReg();
     718           0 :     if (Before) {
     719             :       // Check whether Reg is defined by any terminator.
     720             :       MachineBasicBlock::iterator It = MI;
     721           0 :       for (auto Begin = MI.getParent()->begin();
     722           0 :            --It != Begin && It->isTerminator();)
     723           0 :         if (It->modifiesRegister(Reg, &TRI)) {
     724             :           // Insert the repairing code right after the definition.
     725           0 :           addInsertPoint(*It, /*Before*/ false);
     726             :           return;
     727             :         }
     728           0 :       addInsertPoint(*It, /*Before*/ true);
     729           0 :       return;
     730             :     }
     731             :     // Make sure Reg is not redefined by other terminators, otherwise
     732             :     // we do not know how to split.
     733           0 :     for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
     734           0 :          ++It != End;)
     735             :       // The machine verifier should reject this kind of code.
     736             :       assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split");
     737             :     // Split each outcoming edges.
     738             :     MachineBasicBlock &Src = *MI.getParent();
     739           0 :     for (auto &Succ : Src.successors())
     740           0 :       addInsertPoint(Src, Succ);
     741             :   }
     742             : }
     743             : 
     744         294 : void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
     745             :                                                        bool Before) {
     746         294 :   addInsertPoint(*new InstrInsertPoint(MI, Before));
     747         294 : }
     748             : 
     749           0 : void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
     750             :                                                        bool Beginning) {
     751           0 :   addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
     752           0 : }
     753             : 
     754           0 : void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
     755             :                                                        MachineBasicBlock &Dst) {
     756           0 :   addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
     757           0 : }
     758             : 
     759         294 : void RegBankSelect::RepairingPlacement::addInsertPoint(
     760             :     RegBankSelect::InsertPoint &Point) {
     761         294 :   CanMaterialize &= Point.canMaterialize();
     762         294 :   HasSplit |= Point.isSplit();
     763         294 :   InsertPoints.emplace_back(&Point);
     764         294 : }
     765             : 
     766         294 : RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
     767         294 :                                                   bool Before)
     768         294 :     : InsertPoint(), Instr(Instr), Before(Before) {
     769             :   // Since we do not support splitting, we do not need to update
     770             :   // liveness and such, so do not do anything with P.
     771             :   assert((!Before || !Instr.isPHI()) &&
     772             :          "Splitting before phis requires more points");
     773             :   assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
     774             :          "Splitting between phis does not make sense");
     775         294 : }
     776             : 
     777         187 : void RegBankSelect::InstrInsertPoint::materialize() {
     778         187 :   if (isSplit()) {
     779             :     // Slice and return the beginning of the new block.
     780             :     // If we need to split between the terminators, we theoritically
     781             :     // need to know where the first and second set of terminators end
     782             :     // to update the successors properly.
     783             :     // Now, in pratice, we should have a maximum of 2 branch
     784             :     // instructions; one conditional and one unconditional. Therefore
     785             :     // we know how to update the successor by looking at the target of
     786             :     // the unconditional branch.
     787             :     // If we end up splitting at some point, then, we should update
     788             :     // the liveness information and such. I.e., we would need to
     789             :     // access P here.
     790             :     // The machine verifier should actually make sure such cases
     791             :     // cannot happen.
     792           0 :     llvm_unreachable("Not yet implemented");
     793             :   }
     794             :   // Otherwise the insertion point is just the current or next
     795             :   // instruction depending on Before. I.e., there is nothing to do
     796             :   // here.
     797         187 : }
     798             : 
     799         611 : bool RegBankSelect::InstrInsertPoint::isSplit() const {
     800             :   // If the insertion point is after a terminator, we need to split.
     801         611 :   if (!Before)
     802           8 :     return Instr.isTerminator();
     803             :   // If we insert before an instruction that is after a terminator,
     804             :   // we are still after a terminator.
     805        1206 :   return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
     806             : }
     807             : 
     808           0 : uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
     809             :   // Even if we need to split, because we insert between terminators,
     810             :   // this split has actually the same frequency as the instruction.
     811             :   const MachineBlockFrequencyInfo *MBFI =
     812           0 :       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
     813           0 :   if (!MBFI)
     814             :     return 1;
     815           0 :   return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
     816             : }
     817             : 
     818           0 : uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
     819             :   const MachineBlockFrequencyInfo *MBFI =
     820           0 :       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
     821           0 :   if (!MBFI)
     822             :     return 1;
     823           0 :   return MBFI->getBlockFreq(&MBB).getFrequency();
     824             : }
     825             : 
     826           0 : void RegBankSelect::EdgeInsertPoint::materialize() {
     827             :   // If we end up repairing twice at the same place before materializing the
     828             :   // insertion point, we may think we have to split an edge twice.
     829             :   // We should have a factory for the insert point such that identical points
     830             :   // are the same instance.
     831             :   assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
     832             :          "This point has already been split");
     833           0 :   MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
     834             :   assert(NewBB && "Invalid call to materialize");
     835             :   // We reuse the destination block to hold the information of the new block.
     836           0 :   DstOrSplit = NewBB;
     837           0 : }
     838             : 
     839           0 : uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
     840             :   const MachineBlockFrequencyInfo *MBFI =
     841           0 :       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
     842           0 :   if (!MBFI)
     843             :     return 1;
     844           0 :   if (WasMaterialized)
     845           0 :     return MBFI->getBlockFreq(DstOrSplit).getFrequency();
     846             : 
     847             :   const MachineBranchProbabilityInfo *MBPI =
     848           0 :       P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
     849           0 :   if (!MBPI)
     850             :     return 1;
     851             :   // The basic block will be on the edge.
     852           0 :   return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
     853           0 :       .getFrequency();
     854             : }
     855             : 
     856           0 : bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
     857             :   // If this is not a critical edge, we should not have used this insert
     858             :   // point. Indeed, either the successor or the predecessor should
     859             :   // have do.
     860             :   assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
     861             :          "Edge is not critical");
     862           0 :   return Src.canSplitCriticalEdge(DstOrSplit);
     863             : }
     864             : 
     865        7384 : RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
     866        7384 :     : LocalFreq(LocalFreq.getFrequency()) {}
     867             : 
     868        7514 : bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
     869             :   // Check if this overflows.
     870        7514 :   if (LocalCost + Cost < LocalCost) {
     871           0 :     saturate();
     872           0 :     return true;
     873             :   }
     874        7514 :   LocalCost += Cost;
     875        7514 :   return isSaturated();
     876             : }
     877             : 
     878           0 : bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
     879             :   // Check if this overflows.
     880           0 :   if (NonLocalCost + Cost < NonLocalCost) {
     881           0 :     saturate();
     882           0 :     return true;
     883             :   }
     884           0 :   NonLocalCost += Cost;
     885           0 :   return isSaturated();
     886             : }
     887             : 
     888        7926 : bool RegBankSelect::MappingCost::isSaturated() const {
     889        7926 :   return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
     890           0 :          LocalFreq == UINT64_MAX;
     891             : }
     892             : 
     893           0 : void RegBankSelect::MappingCost::saturate() {
     894           0 :   *this = ImpossibleCost();
     895           0 :   --LocalCost;
     896           0 : }
     897             : 
     898       14919 : RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
     899       14919 :   return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
     900             : }
     901             : 
     902        2344 : bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
     903             :   // Sort out the easy cases.
     904        2344 :   if (*this == Cost)
     905             :     return false;
     906             :   // If one is impossible to realize the other is cheaper unless it is
     907             :   // impossible as well.
     908        2296 :   if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
     909        2090 :     return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
     910             :   // If one is saturated the other is cheaper, unless it is saturated
     911             :   // as well.
     912         206 :   if (isSaturated() || Cost.isSaturated())
     913           0 :     return isSaturated() < Cost.isSaturated();
     914             :   // At this point we know both costs hold sensible values.
     915             : 
     916             :   // If both values have a different base frequency, there is no much
     917             :   // we can do but to scale everything.
     918             :   // However, if they have the same base frequency we can avoid making
     919             :   // complicated computation.
     920             :   uint64_t ThisLocalAdjust;
     921             :   uint64_t OtherLocalAdjust;
     922         206 :   if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
     923             : 
     924             :     // At this point, we know the local costs are comparable.
     925             :     // Do the case that do not involve potential overflow first.
     926         206 :     if (NonLocalCost == Cost.NonLocalCost)
     927             :       // Since the non-local costs do not discriminate on the result,
     928             :       // just compare the local costs.
     929         206 :       return LocalCost < Cost.LocalCost;
     930             : 
     931             :     // The base costs are comparable so we may only keep the relative
     932             :     // value to increase our chances of avoiding overflows.
     933             :     ThisLocalAdjust = 0;
     934             :     OtherLocalAdjust = 0;
     935           0 :     if (LocalCost < Cost.LocalCost)
     936           0 :       OtherLocalAdjust = Cost.LocalCost - LocalCost;
     937             :     else
     938           0 :       ThisLocalAdjust = LocalCost - Cost.LocalCost;
     939             :   } else {
     940           0 :     ThisLocalAdjust = LocalCost;
     941           0 :     OtherLocalAdjust = Cost.LocalCost;
     942             :   }
     943             : 
     944             :   // The non-local costs are comparable, just keep the relative value.
     945             :   uint64_t ThisNonLocalAdjust = 0;
     946             :   uint64_t OtherNonLocalAdjust = 0;
     947           0 :   if (NonLocalCost < Cost.NonLocalCost)
     948           0 :     OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
     949             :   else
     950           0 :     ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
     951             :   // Scale everything to make them comparable.
     952           0 :   uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
     953             :   // Check for overflow on that operation.
     954           0 :   bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
     955             :                                            ThisScaledCost < LocalFreq);
     956           0 :   uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
     957             :   // Check for overflow on the last operation.
     958             :   bool OtherOverflows =
     959           0 :       OtherLocalAdjust &&
     960           0 :       (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
     961             :   // Add the non-local costs.
     962           0 :   ThisOverflows |= ThisNonLocalAdjust &&
     963           0 :                    ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
     964           0 :   ThisScaledCost += ThisNonLocalAdjust;
     965           0 :   OtherOverflows |= OtherNonLocalAdjust &&
     966           0 :                     OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
     967           0 :   OtherScaledCost += OtherNonLocalAdjust;
     968             :   // If both overflows, we cannot compare without additional
     969             :   // precision, e.g., APInt. Just give up on that case.
     970           0 :   if (ThisOverflows && OtherOverflows)
     971             :     return false;
     972             :   // If one overflows but not the other, we can still compare.
     973           0 :   if (ThisOverflows || OtherOverflows)
     974           0 :     return ThisOverflows < OtherOverflows;
     975             :   // Otherwise, just compare the values.
     976           0 :   return ThisScaledCost < OtherScaledCost;
     977             : }
     978             : 
     979       17532 : bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
     980       17532 :   return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
     981        4344 :          LocalFreq == Cost.LocalFreq;
     982             : }
     983             : 
     984             : #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
     985             : LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
     986             :   print(dbgs());
     987             :   dbgs() << '\n';
     988             : }
     989             : #endif
     990             : 
     991           0 : void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
     992           0 :   if (*this == ImpossibleCost()) {
     993           0 :     OS << "impossible";
     994           0 :     return;
     995             :   }
     996           0 :   if (isSaturated()) {
     997           0 :     OS << "saturated";
     998           0 :     return;
     999             :   }
    1000           0 :   OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
    1001             : }

Generated by: LCOV version 1.13