LLVM 19.0.0git
WebAssemblyRegStackify.cpp
Go to the documentation of this file.
1//===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a register stacking pass.
11///
12/// This pass reorders instructions to put register uses and defs in an order
13/// such that they form single-use expression trees. Registers fitting this form
14/// are then marked as "stackified", meaning references to them are replaced by
15/// "push" and "pop" from the value stack.
16///
17/// This is primarily a code size optimization, since temporary values on the
18/// value stack don't need to be named.
19///
20//===----------------------------------------------------------------------===//
21
22#include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
23#include "WebAssembly.h"
35#include "llvm/CodeGen/Passes.h"
36#include "llvm/Support/Debug.h"
38#include <iterator>
39using namespace llvm;
40
41#define DEBUG_TYPE "wasm-reg-stackify"
42
43namespace {
44class WebAssemblyRegStackify final : public MachineFunctionPass {
45 StringRef getPassName() const override {
46 return "WebAssembly Register Stackify";
47 }
48
49 void getAnalysisUsage(AnalysisUsage &AU) const override {
50 AU.setPreservesCFG();
59 }
60
61 bool runOnMachineFunction(MachineFunction &MF) override;
62
63public:
64 static char ID; // Pass identification, replacement for typeid
65 WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
66};
67} // end anonymous namespace
68
69char WebAssemblyRegStackify::ID = 0;
70INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE,
71 "Reorder instructions to use the WebAssembly value stack",
72 false, false)
73
75 return new WebAssemblyRegStackify();
76}
77
78// Decorate the given instruction with implicit operands that enforce the
79// expression stack ordering constraints for an instruction which is on
80// the expression stack.
82 // Write the opaque VALUE_STACK register.
83 if (!MI->definesRegister(WebAssembly::VALUE_STACK, /*TRI=*/nullptr))
84 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
85 /*isDef=*/true,
86 /*isImp=*/true));
87
88 // Also read the opaque VALUE_STACK register.
89 if (!MI->readsRegister(WebAssembly::VALUE_STACK, /*TRI=*/nullptr))
90 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
91 /*isDef=*/false,
92 /*isImp=*/true));
93}
94
95// Convert an IMPLICIT_DEF instruction into an instruction which defines
96// a constant zero value.
99 const TargetInstrInfo *TII,
100 MachineFunction &MF,
102 assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF);
103
104 const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg());
105 if (RegClass == &WebAssembly::I32RegClass) {
106 MI->setDesc(TII->get(WebAssembly::CONST_I32));
107 MI->addOperand(MachineOperand::CreateImm(0));
108 } else if (RegClass == &WebAssembly::I64RegClass) {
109 MI->setDesc(TII->get(WebAssembly::CONST_I64));
110 MI->addOperand(MachineOperand::CreateImm(0));
111 } else if (RegClass == &WebAssembly::F32RegClass) {
112 MI->setDesc(TII->get(WebAssembly::CONST_F32));
113 auto *Val = cast<ConstantFP>(Constant::getNullValue(
115 MI->addOperand(MachineOperand::CreateFPImm(Val));
116 } else if (RegClass == &WebAssembly::F64RegClass) {
117 MI->setDesc(TII->get(WebAssembly::CONST_F64));
118 auto *Val = cast<ConstantFP>(Constant::getNullValue(
120 MI->addOperand(MachineOperand::CreateFPImm(Val));
121 } else if (RegClass == &WebAssembly::V128RegClass) {
122 MI->setDesc(TII->get(WebAssembly::CONST_V128_I64x2));
123 MI->addOperand(MachineOperand::CreateImm(0));
124 MI->addOperand(MachineOperand::CreateImm(0));
125 } else {
126 llvm_unreachable("Unexpected reg class");
127 }
128}
129
130// Determine whether a call to the callee referenced by
131// MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
132// effects.
133static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write,
134 bool &Effects, bool &StackPointer) {
135 // All calls can use the stack pointer.
136 StackPointer = true;
137
139 if (MO.isGlobal()) {
140 const Constant *GV = MO.getGlobal();
141 if (const auto *GA = dyn_cast<GlobalAlias>(GV))
142 if (!GA->isInterposable())
143 GV = GA->getAliasee();
144
145 if (const auto *F = dyn_cast<Function>(GV)) {
146 if (!F->doesNotThrow())
147 Effects = true;
148 if (F->doesNotAccessMemory())
149 return;
150 if (F->onlyReadsMemory()) {
151 Read = true;
152 return;
153 }
154 }
155 }
156
157 // Assume the worst.
158 Write = true;
159 Read = true;
160 Effects = true;
161}
162
163// Determine whether MI reads memory, writes memory, has side effects,
164// and/or uses the stack pointer value.
165static void query(const MachineInstr &MI, bool &Read, bool &Write,
166 bool &Effects, bool &StackPointer) {
167 assert(!MI.isTerminator());
168
169 if (MI.isDebugInstr() || MI.isPosition())
170 return;
171
172 // Check for loads.
173 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad())
174 Read = true;
175
176 // Check for stores.
177 if (MI.mayStore()) {
178 Write = true;
179 } else if (MI.hasOrderedMemoryRef()) {
180 switch (MI.getOpcode()) {
181 case WebAssembly::DIV_S_I32:
182 case WebAssembly::DIV_S_I64:
183 case WebAssembly::REM_S_I32:
184 case WebAssembly::REM_S_I64:
185 case WebAssembly::DIV_U_I32:
186 case WebAssembly::DIV_U_I64:
187 case WebAssembly::REM_U_I32:
188 case WebAssembly::REM_U_I64:
189 case WebAssembly::I32_TRUNC_S_F32:
190 case WebAssembly::I64_TRUNC_S_F32:
191 case WebAssembly::I32_TRUNC_S_F64:
192 case WebAssembly::I64_TRUNC_S_F64:
193 case WebAssembly::I32_TRUNC_U_F32:
194 case WebAssembly::I64_TRUNC_U_F32:
195 case WebAssembly::I32_TRUNC_U_F64:
196 case WebAssembly::I64_TRUNC_U_F64:
197 // These instruction have hasUnmodeledSideEffects() returning true
198 // because they trap on overflow and invalid so they can't be arbitrarily
199 // moved, however hasOrderedMemoryRef() interprets this plus their lack
200 // of memoperands as having a potential unknown memory reference.
201 break;
202 default:
203 // Record volatile accesses, unless it's a call, as calls are handled
204 // specially below.
205 if (!MI.isCall()) {
206 Write = true;
207 Effects = true;
208 }
209 break;
210 }
211 }
212
213 // Check for side effects.
214 if (MI.hasUnmodeledSideEffects()) {
215 switch (MI.getOpcode()) {
216 case WebAssembly::DIV_S_I32:
217 case WebAssembly::DIV_S_I64:
218 case WebAssembly::REM_S_I32:
219 case WebAssembly::REM_S_I64:
220 case WebAssembly::DIV_U_I32:
221 case WebAssembly::DIV_U_I64:
222 case WebAssembly::REM_U_I32:
223 case WebAssembly::REM_U_I64:
224 case WebAssembly::I32_TRUNC_S_F32:
225 case WebAssembly::I64_TRUNC_S_F32:
226 case WebAssembly::I32_TRUNC_S_F64:
227 case WebAssembly::I64_TRUNC_S_F64:
228 case WebAssembly::I32_TRUNC_U_F32:
229 case WebAssembly::I64_TRUNC_U_F32:
230 case WebAssembly::I32_TRUNC_U_F64:
231 case WebAssembly::I64_TRUNC_U_F64:
232 // These instructions have hasUnmodeledSideEffects() returning true
233 // because they trap on overflow and invalid so they can't be arbitrarily
234 // moved, however in the specific case of register stackifying, it is safe
235 // to move them because overflow and invalid are Undefined Behavior.
236 break;
237 default:
238 Effects = true;
239 break;
240 }
241 }
242
243 // Check for writes to __stack_pointer global.
244 if ((MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 ||
245 MI.getOpcode() == WebAssembly::GLOBAL_SET_I64) &&
246 strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0)
247 StackPointer = true;
248
249 // Analyze calls.
250 if (MI.isCall()) {
251 queryCallee(MI, Read, Write, Effects, StackPointer);
252 }
253}
254
255// Test whether Def is safe and profitable to rematerialize.
256static bool shouldRematerialize(const MachineInstr &Def,
257 const WebAssemblyInstrInfo *TII) {
258 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def);
259}
260
261// Identify the definition for this register at this point. This is a
262// generalization of MachineRegisterInfo::getUniqueVRegDef that uses
263// LiveIntervals to handle complex cases.
264static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert,
266 const LiveIntervals &LIS) {
267 // Most registers are in SSA form here so we try a quick MRI query first.
268 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
269 return Def;
270
271 // MRI doesn't know what the Def is. Try asking LIS.
272 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
273 LIS.getInstructionIndex(*Insert)))
274 return LIS.getInstructionFromIndex(ValNo->def);
275
276 return nullptr;
277}
278
279// Test whether Reg, as defined at Def, has exactly one use. This is a
280// generalization of MachineRegisterInfo::hasOneNonDBGUse that uses
281// LiveIntervals to handle complex cases.
282static bool hasOneNonDBGUse(unsigned Reg, MachineInstr *Def,
285 // Most registers are in SSA form here so we try a quick MRI query first.
286 if (MRI.hasOneNonDBGUse(Reg))
287 return true;
288
289 bool HasOne = false;
290 const LiveInterval &LI = LIS.getInterval(Reg);
291 const VNInfo *DefVNI =
292 LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot());
293 assert(DefVNI);
294 for (auto &I : MRI.use_nodbg_operands(Reg)) {
295 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
296 if (Result.valueIn() == DefVNI) {
297 if (!Result.isKill())
298 return false;
299 if (HasOne)
300 return false;
301 HasOne = true;
302 }
303 }
304 return HasOne;
305}
306
307// Test whether it's safe to move Def to just before Insert.
308// TODO: Compute memory dependencies in a way that doesn't require always
309// walking the block.
310// TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
311// more precise.
312static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use,
313 const MachineInstr *Insert,
314 const WebAssemblyFunctionInfo &MFI,
315 const MachineRegisterInfo &MRI) {
316 const MachineInstr *DefI = Def->getParent();
317 const MachineInstr *UseI = Use->getParent();
318 assert(DefI->getParent() == Insert->getParent());
319 assert(UseI->getParent() == Insert->getParent());
320
321 // The first def of a multivalue instruction can be stackified by moving,
322 // since the later defs can always be placed into locals if necessary. Later
323 // defs can only be stackified if all previous defs are already stackified
324 // since ExplicitLocals will not know how to place a def in a local if a
325 // subsequent def is stackified. But only one def can be stackified by moving
326 // the instruction, so it must be the first one.
327 //
328 // TODO: This could be loosened to be the first *live* def, but care would
329 // have to be taken to ensure the drops of the initial dead defs can be
330 // placed. This would require checking that no previous defs are used in the
331 // same instruction as subsequent defs.
332 if (Def != DefI->defs().begin())
333 return false;
334
335 // If any subsequent def is used prior to the current value by the same
336 // instruction in which the current value is used, we cannot
337 // stackify. Stackifying in this case would require that def moving below the
338 // current def in the stack, which cannot be achieved, even with locals.
339 // Also ensure we don't sink the def past any other prior uses.
340 for (const auto &SubsequentDef : drop_begin(DefI->defs())) {
341 auto I = std::next(MachineBasicBlock::const_iterator(DefI));
342 auto E = std::next(MachineBasicBlock::const_iterator(UseI));
343 for (; I != E; ++I) {
344 for (const auto &PriorUse : I->uses()) {
345 if (&PriorUse == Use)
346 break;
347 if (PriorUse.isReg() && SubsequentDef.getReg() == PriorUse.getReg())
348 return false;
349 }
350 }
351 }
352
353 // If moving is a semantic nop, it is always allowed
354 const MachineBasicBlock *MBB = DefI->getParent();
355 auto NextI = std::next(MachineBasicBlock::const_iterator(DefI));
356 for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI)
357 ;
358 if (NextI == Insert)
359 return true;
360
361 // 'catch' and 'catch_all' should be the first instruction of a BB and cannot
362 // move.
363 if (WebAssembly::isCatch(DefI->getOpcode()))
364 return false;
365
366 // Check for register dependencies.
367 SmallVector<unsigned, 4> MutableRegisters;
368 for (const MachineOperand &MO : DefI->operands()) {
369 if (!MO.isReg() || MO.isUndef())
370 continue;
371 Register Reg = MO.getReg();
372
373 // If the register is dead here and at Insert, ignore it.
374 if (MO.isDead() && Insert->definesRegister(Reg, /*TRI=*/nullptr) &&
375 !Insert->readsRegister(Reg, /*TRI=*/nullptr))
376 continue;
377
378 if (Reg.isPhysical()) {
379 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
380 // from moving down, and we've already checked for that.
381 if (Reg == WebAssembly::ARGUMENTS)
382 continue;
383 // If the physical register is never modified, ignore it.
384 if (!MRI.isPhysRegModified(Reg))
385 continue;
386 // Otherwise, it's a physical register with unknown liveness.
387 return false;
388 }
389
390 // If one of the operands isn't in SSA form, it has different values at
391 // different times, and we need to make sure we don't move our use across
392 // a different def.
393 if (!MO.isDef() && !MRI.hasOneDef(Reg))
394 MutableRegisters.push_back(Reg);
395 }
396
397 bool Read = false, Write = false, Effects = false, StackPointer = false;
398 query(*DefI, Read, Write, Effects, StackPointer);
399
400 // If the instruction does not access memory and has no side effects, it has
401 // no additional dependencies.
402 bool HasMutableRegisters = !MutableRegisters.empty();
403 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters)
404 return true;
405
406 // Scan through the intervening instructions between DefI and Insert.
408 for (--I; I != D; --I) {
409 bool InterveningRead = false;
410 bool InterveningWrite = false;
411 bool InterveningEffects = false;
412 bool InterveningStackPointer = false;
413 query(*I, InterveningRead, InterveningWrite, InterveningEffects,
414 InterveningStackPointer);
415 if (Effects && InterveningEffects)
416 return false;
417 if (Read && InterveningWrite)
418 return false;
419 if (Write && (InterveningRead || InterveningWrite))
420 return false;
421 if (StackPointer && InterveningStackPointer)
422 return false;
423
424 for (unsigned Reg : MutableRegisters)
425 for (const MachineOperand &MO : I->operands())
426 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
427 return false;
428 }
429
430 return true;
431}
432
433/// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
434static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
435 const MachineBasicBlock &MBB,
437 const MachineDominatorTree &MDT,
440 const LiveInterval &LI = LIS.getInterval(Reg);
441
442 const MachineInstr *OneUseInst = OneUse.getParent();
443 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));
444
445 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) {
446 if (&Use == &OneUse)
447 continue;
448
449 const MachineInstr *UseInst = Use.getParent();
450 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));
451
452 if (UseVNI != OneUseVNI)
453 continue;
454
455 if (UseInst == OneUseInst) {
456 // Another use in the same instruction. We need to ensure that the one
457 // selected use happens "before" it.
458 if (&OneUse > &Use)
459 return false;
460 } else {
461 // Test that the use is dominated by the one selected use.
462 while (!MDT.dominates(OneUseInst, UseInst)) {
463 // Actually, dominating is over-conservative. Test that the use would
464 // happen after the one selected use in the stack evaluation order.
465 //
466 // This is needed as a consequence of using implicit local.gets for
467 // uses and implicit local.sets for defs.
468 if (UseInst->getDesc().getNumDefs() == 0)
469 return false;
470 const MachineOperand &MO = UseInst->getOperand(0);
471 if (!MO.isReg())
472 return false;
473 Register DefReg = MO.getReg();
474 if (!DefReg.isVirtual() || !MFI.isVRegStackified(DefReg))
475 return false;
476 assert(MRI.hasOneNonDBGUse(DefReg));
477 const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg);
478 const MachineInstr *NewUseInst = NewUse.getParent();
479 if (NewUseInst == OneUseInst) {
480 if (&OneUse > &NewUse)
481 return false;
482 break;
483 }
484 UseInst = NewUseInst;
485 }
486 }
487 }
488 return true;
489}
490
491/// Get the appropriate tee opcode for the given register class.
492static unsigned getTeeOpcode(const TargetRegisterClass *RC) {
493 if (RC == &WebAssembly::I32RegClass)
494 return WebAssembly::TEE_I32;
495 if (RC == &WebAssembly::I64RegClass)
496 return WebAssembly::TEE_I64;
497 if (RC == &WebAssembly::F32RegClass)
498 return WebAssembly::TEE_F32;
499 if (RC == &WebAssembly::F64RegClass)
500 return WebAssembly::TEE_F64;
501 if (RC == &WebAssembly::V128RegClass)
502 return WebAssembly::TEE_V128;
503 if (RC == &WebAssembly::EXTERNREFRegClass)
504 return WebAssembly::TEE_EXTERNREF;
505 if (RC == &WebAssembly::FUNCREFRegClass)
506 return WebAssembly::TEE_FUNCREF;
507 llvm_unreachable("Unexpected register class");
508}
509
510// Shrink LI to its uses, cleaning up LI.
512 if (LIS.shrinkToUses(&LI)) {
514 LIS.splitSeparateComponents(LI, SplitLIs);
515 }
516}
517
518/// A single-use def in the same block with no intervening memory or register
519/// dependencies; move the def down and nest it with the current instruction.
525 LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump());
526
528 DefDIs.sink(Insert);
529 LIS.handleMove(*Def);
530
531 if (MRI.hasOneDef(Reg) && MRI.hasOneNonDBGUse(Reg)) {
532 // No one else is using this register for anything so we can just stackify
533 // it in place.
534 MFI.stackifyVReg(MRI, Reg);
535 } else {
536 // The register may have unrelated uses or defs; create a new register for
537 // just our one def and use so that we can stackify it.
538 Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
539 Op.setReg(NewReg);
540 DefDIs.updateReg(NewReg);
541
542 // Tell LiveIntervals about the new register.
543 LIS.createAndComputeVirtRegInterval(NewReg);
544
545 // Tell LiveIntervals about the changes to the old register.
546 LiveInterval &LI = LIS.getInterval(Reg);
547 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
548 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
549 /*RemoveDeadValNo=*/true);
550
551 MFI.stackifyVReg(MRI, NewReg);
552
553 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
554 }
555
557 return Def;
558}
559
561 for (auto *I = MI->getPrevNode(); I; I = I->getPrevNode())
562 if (!I->isDebugInstr())
563 return I;
564 return nullptr;
565}
566
567/// A trivially cloneable instruction; clone it and nest the new copy with the
568/// current instruction.
570 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
574 LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
575 LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());
576
577 WebAssemblyDebugValueManager DefDIs(&Def);
578
579 Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
580 DefDIs.cloneSink(&*Insert, NewReg);
581 Op.setReg(NewReg);
582 MachineInstr *Clone = getPrevNonDebugInst(&*Insert);
583 assert(Clone);
584 LIS.InsertMachineInstrInMaps(*Clone);
585 LIS.createAndComputeVirtRegInterval(NewReg);
586 MFI.stackifyVReg(MRI, NewReg);
587 imposeStackOrdering(Clone);
588
589 LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump());
590
591 // Shrink the interval.
592 bool IsDead = MRI.use_empty(Reg);
593 if (!IsDead) {
594 LiveInterval &LI = LIS.getInterval(Reg);
595 shrinkToUses(LI, LIS);
596 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
597 }
598
599 // If that was the last use of the original, delete the original.
600 if (IsDead) {
601 LLVM_DEBUG(dbgs() << " - Deleting original\n");
602 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
603 LIS.removePhysRegDefAt(MCRegister::from(WebAssembly::ARGUMENTS), Idx);
604 LIS.removeInterval(Reg);
605 LIS.RemoveMachineInstrFromMaps(Def);
606 DefDIs.removeDef();
607 }
608
609 return Clone;
610}
611
612/// A multiple-use def in the same block with no intervening memory or register
613/// dependencies; move the def down, nest it with the current instruction, and
614/// insert a tee to satisfy the rest of the uses. As an illustration, rewrite
615/// this:
616///
617/// Reg = INST ... // Def
618/// INST ..., Reg, ... // Insert
619/// INST ..., Reg, ...
620/// INST ..., Reg, ...
621///
622/// to this:
623///
624/// DefReg = INST ... // Def (to become the new Insert)
625/// TeeReg, Reg = TEE_... DefReg
626/// INST ..., TeeReg, ... // Insert
627/// INST ..., Reg, ...
628/// INST ..., Reg, ...
629///
630/// with DefReg and TeeReg stackified. This eliminates a local.get from the
631/// resulting code.
633 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
636 LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());
637
638 const auto *RegClass = MRI.getRegClass(Reg);
639 Register TeeReg = MRI.createVirtualRegister(RegClass);
640 Register DefReg = MRI.createVirtualRegister(RegClass);
641
642 // Move Def into place.
644 DefDIs.sink(Insert);
645 LIS.handleMove(*Def);
646
647 // Create the Tee and attach the registers.
648 MachineOperand &DefMO = Def->getOperand(0);
649 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
650 TII->get(getTeeOpcode(RegClass)), TeeReg)
652 .addReg(DefReg, getUndefRegState(DefMO.isDead()));
653 Op.setReg(TeeReg);
654 DefDIs.updateReg(DefReg);
655 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
656 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();
657
658 // Tell LiveIntervals we moved the original vreg def from Def to Tee.
659 LiveInterval &LI = LIS.getInterval(Reg);
661 VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
662 I->start = TeeIdx;
663 ValNo->def = TeeIdx;
664 shrinkToUses(LI, LIS);
665
666 // Finish stackifying the new regs.
667 LIS.createAndComputeVirtRegInterval(TeeReg);
668 LIS.createAndComputeVirtRegInterval(DefReg);
669 MFI.stackifyVReg(MRI, DefReg);
670 MFI.stackifyVReg(MRI, TeeReg);
673
674 // Even though 'TeeReg, Reg = TEE ...', has two defs, we don't need to clone
675 // DBG_VALUEs for both of them, given that the latter will cancel the former
676 // anyway. Here we only clone DBG_VALUEs for TeeReg, which will be converted
677 // to a local index in ExplicitLocals pass.
678 DefDIs.cloneSink(Insert, TeeReg, /* CloneDef */ false);
679
680 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
681 LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
682 return Def;
683}
684
685namespace {
686/// A stack for walking the tree of instructions being built, visiting the
687/// MachineOperands in DFS order.
688class TreeWalkerState {
689 using mop_iterator = MachineInstr::mop_iterator;
690 using mop_reverse_iterator = std::reverse_iterator<mop_iterator>;
693
694public:
695 explicit TreeWalkerState(MachineInstr *Insert) {
696 const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
697 if (!Range.empty())
698 Worklist.push_back(reverse(Range));
699 }
700
701 bool done() const { return Worklist.empty(); }
702
703 MachineOperand &pop() {
704 RangeTy &Range = Worklist.back();
705 MachineOperand &Op = *Range.begin();
706 Range = drop_begin(Range);
707 if (Range.empty())
708 Worklist.pop_back();
709 assert((Worklist.empty() || !Worklist.back().empty()) &&
710 "Empty ranges shouldn't remain in the worklist");
711 return Op;
712 }
713
714 /// Push Instr's operands onto the stack to be visited.
715 void pushOperands(MachineInstr *Instr) {
716 const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
717 if (!Range.empty())
718 Worklist.push_back(reverse(Range));
719 }
720
721 /// Some of Instr's operands are on the top of the stack; remove them and
722 /// re-insert them starting from the beginning (because we've commuted them).
723 void resetTopOperands(MachineInstr *Instr) {
724 assert(hasRemainingOperands(Instr) &&
725 "Reseting operands should only be done when the instruction has "
726 "an operand still on the stack");
727 Worklist.back() = reverse(Instr->explicit_uses());
728 }
729
730 /// Test whether Instr has operands remaining to be visited at the top of
731 /// the stack.
732 bool hasRemainingOperands(const MachineInstr *Instr) const {
733 if (Worklist.empty())
734 return false;
735 const RangeTy &Range = Worklist.back();
736 return !Range.empty() && Range.begin()->getParent() == Instr;
737 }
738
739 /// Test whether the given register is present on the stack, indicating an
740 /// operand in the tree that we haven't visited yet. Moving a definition of
741 /// Reg to a point in the tree after that would change its value.
742 ///
743 /// This is needed as a consequence of using implicit local.gets for
744 /// uses and implicit local.sets for defs.
745 bool isOnStack(unsigned Reg) const {
746 for (const RangeTy &Range : Worklist)
747 for (const MachineOperand &MO : Range)
748 if (MO.isReg() && MO.getReg() == Reg)
749 return true;
750 return false;
751 }
752};
753
754/// State to keep track of whether commuting is in flight or whether it's been
755/// tried for the current instruction and didn't work.
756class CommutingState {
757 /// There are effectively three states: the initial state where we haven't
758 /// started commuting anything and we don't know anything yet, the tentative
759 /// state where we've commuted the operands of the current instruction and are
760 /// revisiting it, and the declined state where we've reverted the operands
761 /// back to their original order and will no longer commute it further.
762 bool TentativelyCommuting = false;
763 bool Declined = false;
764
765 /// During the tentative state, these hold the operand indices of the commuted
766 /// operands.
767 unsigned Operand0, Operand1;
768
769public:
770 /// Stackification for an operand was not successful due to ordering
771 /// constraints. If possible, and if we haven't already tried it and declined
772 /// it, commute Insert's operands and prepare to revisit it.
773 void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
774 const WebAssemblyInstrInfo *TII) {
775 if (TentativelyCommuting) {
776 assert(!Declined &&
777 "Don't decline commuting until you've finished trying it");
778 // Commuting didn't help. Revert it.
779 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
780 TentativelyCommuting = false;
781 Declined = true;
782 } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) {
785 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
786 // Tentatively commute the operands and try again.
787 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
788 TreeWalker.resetTopOperands(Insert);
789 TentativelyCommuting = true;
790 Declined = false;
791 }
792 }
793 }
794
795 /// Stackification for some operand was successful. Reset to the default
796 /// state.
797 void reset() {
798 TentativelyCommuting = false;
799 Declined = false;
800 }
801};
802} // end anonymous namespace
803
804bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
805 LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n"
806 "********** Function: "
807 << MF.getName() << '\n');
808
809 bool Changed = false;
812 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
813 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
814 auto &MDT = getAnalysis<MachineDominatorTree>();
815 auto &LIS = getAnalysis<LiveIntervals>();
816
817 // Walk the instructions from the bottom up. Currently we don't look past
818 // block boundaries, and the blocks aren't ordered so the block visitation
819 // order isn't significant, but we may want to change this in the future.
820 for (MachineBasicBlock &MBB : MF) {
821 // Don't use a range-based for loop, because we modify the list as we're
822 // iterating over it and the end iterator may change.
823 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
824 MachineInstr *Insert = &*MII;
825 // Don't nest anything inside an inline asm, because we don't have
826 // constraints for $push inputs.
827 if (Insert->isInlineAsm())
828 continue;
829
830 // Ignore debugging intrinsics.
831 if (Insert->isDebugValue())
832 continue;
833
834 // Iterate through the inputs in reverse order, since we'll be pulling
835 // operands off the stack in LIFO order.
836 CommutingState Commuting;
837 TreeWalkerState TreeWalker(Insert);
838 while (!TreeWalker.done()) {
839 MachineOperand &Use = TreeWalker.pop();
840
841 // We're only interested in explicit virtual register operands.
842 if (!Use.isReg())
843 continue;
844
845 Register Reg = Use.getReg();
846 assert(Use.isUse() && "explicit_uses() should only iterate over uses");
847 assert(!Use.isImplicit() &&
848 "explicit_uses() should only iterate over explicit operands");
849 if (Reg.isPhysical())
850 continue;
851
852 // Identify the definition for this register at this point.
853 MachineInstr *DefI = getVRegDef(Reg, Insert, MRI, LIS);
854 if (!DefI)
855 continue;
856
857 // Don't nest an INLINE_ASM def into anything, because we don't have
858 // constraints for $pop outputs.
859 if (DefI->isInlineAsm())
860 continue;
861
862 // Argument instructions represent live-in registers and not real
863 // instructions.
865 continue;
866
868 DefI->findRegisterDefOperand(Reg, /*TRI=*/nullptr);
869 assert(Def != nullptr);
870
871 // Decide which strategy to take. Prefer to move a single-use value
872 // over cloning it, and prefer cloning over introducing a tee.
873 // For moving, we require the def to be in the same block as the use;
874 // this makes things simpler (LiveIntervals' handleMove function only
875 // supports intra-block moves) and it's MachineSink's job to catch all
876 // the sinking opportunities anyway.
877 bool SameBlock = DefI->getParent() == &MBB;
878 bool CanMove = SameBlock && isSafeToMove(Def, &Use, Insert, MFI, MRI) &&
879 !TreeWalker.isOnStack(Reg);
880 if (CanMove && hasOneNonDBGUse(Reg, DefI, MRI, MDT, LIS)) {
881 Insert = moveForSingleUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, MRI);
882
883 // If we are removing the frame base reg completely, remove the debug
884 // info as well.
885 // TODO: Encode this properly as a stackified value.
886 if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg)
887 MFI.clearFrameBaseVreg();
888 } else if (shouldRematerialize(*DefI, TII)) {
889 Insert =
890 rematerializeCheapDef(Reg, Use, *DefI, MBB, Insert->getIterator(),
891 LIS, MFI, MRI, TII, TRI);
892 } else if (CanMove && oneUseDominatesOtherUses(Reg, Use, MBB, MRI, MDT,
893 LIS, MFI)) {
894 Insert = moveAndTeeForMultiUse(Reg, Use, DefI, MBB, Insert, LIS, MFI,
895 MRI, TII);
896 } else {
897 // We failed to stackify the operand. If the problem was ordering
898 // constraints, Commuting may be able to help.
899 if (!CanMove && SameBlock)
900 Commuting.maybeCommute(Insert, TreeWalker, TII);
901 // Proceed to the next operand.
902 continue;
903 }
904
905 // Stackifying a multivalue def may unlock in-place stackification of
906 // subsequent defs. TODO: Handle the case where the consecutive uses are
907 // not all in the same instruction.
908 auto *SubsequentDef = Insert->defs().begin();
909 auto *SubsequentUse = &Use;
910 while (SubsequentDef != Insert->defs().end() &&
911 SubsequentUse != Use.getParent()->uses().end()) {
912 if (!SubsequentDef->isReg() || !SubsequentUse->isReg())
913 break;
914 Register DefReg = SubsequentDef->getReg();
915 Register UseReg = SubsequentUse->getReg();
916 // TODO: This single-use restriction could be relaxed by using tees
917 if (DefReg != UseReg || !MRI.hasOneNonDBGUse(DefReg))
918 break;
919 MFI.stackifyVReg(MRI, DefReg);
920 ++SubsequentDef;
921 ++SubsequentUse;
922 }
923
924 // If the instruction we just stackified is an IMPLICIT_DEF, convert it
925 // to a constant 0 so that the def is explicit, and the push/pop
926 // correspondence is maintained.
927 if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF)
929
930 // We stackified an operand. Add the defining instruction's operands to
931 // the worklist stack now to continue to build an ever deeper tree.
932 Commuting.reset();
933 TreeWalker.pushOperands(Insert);
934 }
935
936 // If we stackified any operands, skip over the tree to start looking for
937 // the next instruction we can build a tree on.
938 if (Insert != &*MII) {
939 imposeStackOrdering(&*MII);
941 Changed = true;
942 }
943 }
944 }
945
946 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so
947 // that it never looks like a use-before-def.
948 if (Changed) {
949 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK);
950 for (MachineBasicBlock &MBB : MF)
951 MBB.addLiveIn(WebAssembly::VALUE_STACK);
952 }
953
954#ifndef NDEBUG
955 // Verify that pushes and pops are performed in LIFO order.
957 for (MachineBasicBlock &MBB : MF) {
958 for (MachineInstr &MI : MBB) {
959 if (MI.isDebugInstr())
960 continue;
961 for (MachineOperand &MO : reverse(MI.explicit_uses())) {
962 if (!MO.isReg())
963 continue;
964 Register Reg = MO.getReg();
965 if (MFI.isVRegStackified(Reg))
966 assert(Stack.pop_back_val() == Reg &&
967 "Register stack pop should be paired with a push");
968 }
969 for (MachineOperand &MO : MI.defs()) {
970 if (!MO.isReg())
971 continue;
972 Register Reg = MO.getReg();
973 if (MFI.isVRegStackified(Reg))
974 Stack.push_back(MO.getReg());
975 }
976 }
977 // TODO: Generalize this code to support keeping values on the stack across
978 // basic block boundaries.
979 assert(Stack.empty() &&
980 "Register stack pushes and pops should be balanced");
981 }
982#endif
983
984 return Changed;
985}
unsigned const MachineRegisterInfo * MRI
MachineBasicBlock & MBB
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
static Register UseReg(const MachineOperand &MO)
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
INITIALIZE_PASS(RISCVInsertVSETVLI, DEBUG_TYPE, RISCV_INSERT_VSETVLI_NAME, false, false) char RISCVCoalesceVSETVLI const LiveIntervals * LIS
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
bool IsDead
This file contains the declaration of the WebAssembly-specific manager for DebugValues associated wit...
This file provides WebAssembly-specific target descriptions.
This file declares WebAssembly-specific per-machine-function information.
static MachineInstr * rematerializeCheapDef(unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI)
A trivially cloneable instruction; clone it and nest the new copy with the current instruction.
static unsigned getTeeOpcode(const TargetRegisterClass *RC)
Get the appropriate tee opcode for the given register class.
static MachineInstr * getVRegDef(unsigned Reg, const MachineInstr *Insert, const MachineRegisterInfo &MRI, const LiveIntervals &LIS)
static void convertImplicitDefToConstZero(MachineInstr *MI, MachineRegisterInfo &MRI, const TargetInstrInfo *TII, MachineFunction &MF, LiveIntervals &LIS)
static bool hasOneNonDBGUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI, MachineDominatorTree &MDT, LiveIntervals &LIS)
static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use, const MachineInstr *Insert, const WebAssemblyFunctionInfo &MFI, const MachineRegisterInfo &MRI)
static MachineInstr * moveForSingleUse(unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI)
A single-use def in the same block with no intervening memory or register dependencies; move the def ...
static void imposeStackOrdering(MachineInstr *MI)
static void query(const MachineInstr &MI, bool &Read, bool &Write, bool &Effects, bool &StackPointer)
static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS)
static MachineInstr * getPrevNonDebugInst(MachineInstr *MI)
static bool shouldRematerialize(const MachineInstr &Def, const WebAssemblyInstrInfo *TII)
#define DEBUG_TYPE
static MachineInstr * moveAndTeeForMultiUse(unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII)
A multiple-use def in the same block with no intervening memory or register dependencies; move the de...
static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, const MachineBasicBlock &MBB, const MachineRegisterInfo &MRI, const MachineDominatorTree &MDT, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI)
Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write, bool &Effects, bool &StackPointer)
This file declares the WebAssembly-specific subclass of TargetSubtarget.
This file contains the declaration of the WebAssembly-specific utility functions.
This file contains the entry points for global functions defined in the LLVM WebAssembly back-end.
Represent the analysis usage information of a pass.
AnalysisUsage & addPreservedID(const void *ID)
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:269
This is an important base class in LLVM.
Definition: Constant.h:41
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:370
This class represents an Operation in the Expression.
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:311
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition: Function.cpp:356
LiveInterval - This class represents the liveness of a register, or stack slot.
Definition: LiveInterval.h:687
bool liveAt(SlotIndex index) const
Definition: LiveInterval.h:401
LiveQueryResult Query(SlotIndex Idx) const
Query Liveness at Idx.
Definition: LiveInterval.h:542
VNInfo * getVNInfoBefore(SlotIndex Idx) const
getVNInfoBefore - Return the VNInfo that is live up to but not necessarilly including Idx,...
Definition: LiveInterval.h:429
iterator FindSegmentContaining(SlotIndex Idx)
Return an iterator to the segment that contains the specified index, or end() if there is none.
Definition: LiveInterval.h:436
void removeSegment(SlotIndex Start, SlotIndex End, bool RemoveDeadValNo=false)
Remove the specified interval from this live range.
VNInfo * getVNInfoAt(SlotIndex Idx) const
getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
Definition: LiveInterval.h:421
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
Definition: MCInstrDesc.h:248
static MCRegister from(unsigned Val)
Check the provided unsigned value is a valid MCRegister.
Definition: MCRegister.h:74
reverse_iterator rend()
Instructions::iterator instr_iterator
void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask=LaneBitmask::getAll())
Adds the specified register as a live in.
reverse_iterator rbegin()
MachineInstrBundleIterator< MachineInstr > iterator
MachineBlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate machine basic b...
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
bool dominates(const MachineDomTreeNode *A, const MachineDomTreeNode *B) const
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
reverse_iterator getReverse() const
Get a reverse iterator to the same node.
Representation of each machine instruction.
Definition: MachineInstr.h:69
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:558
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:341
bool isInlineAsm() const
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
Definition: MachineInstr.h:555
iterator_range< mop_iterator > operands()
Definition: MachineInstr.h:674
iterator_range< mop_iterator > defs()
Returns a range over all explicit operands that are register definitions.
Definition: MachineInstr.h:711
MachineOperand * mop_iterator
iterator/begin/end - Iterate over all operands of a machine instruction.
Definition: MachineInstr.h:665
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:568
MachineOperand * findRegisterDefOperand(Register Reg, const TargetRegisterInfo *TRI, bool isDead=false, bool Overlap=false)
Wrapper for findRegisterDefOperandIdx, it returns a pointer to the MachineOperand rather than an inde...
MachineOperand class - Representation of each machine instruction operand.
const GlobalValue * getGlobal() const
static MachineOperand CreateFPImm(const ConstantFP *CFP)
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
static MachineOperand CreateImm(int64_t Val)
bool isGlobal() const
isGlobal - Tests if this is a MO_GlobalAddress operand.
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition: Register.h:91
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:68
SlotIndexes pass.
Definition: SlotIndexes.h:300
bool empty() const
Definition: SmallVector.h:94
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
TargetInstrInfo - Interface to description of machine instruction set.
static const unsigned CommuteAnyOperandIndex
static Type * getDoubleTy(LLVMContext &C)
static Type * getFloatTy(LLVMContext &C)
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
VNInfo - Value Number Information.
Definition: LiveInterval.h:53
SlotIndex def
The index of the defining instruction.
Definition: LiveInterval.h:61
iterator_range< use_iterator > uses()
Definition: Value.h:376
void cloneSink(MachineInstr *Insert, Register NewReg=Register(), bool CloneDef=true) const
This class is derived from MachineFunctionInfo and contains private WebAssembly-specific information ...
void stackifyVReg(MachineRegisterInfo &MRI, unsigned VReg)
A range adaptor for a pair of iterators.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ Define
Register definition.
bool isArgument(unsigned Opc)
const MachineOperand & getCalleeOp(const MachineInstr &MI)
Returns the operand number of a callee, assuming the argument is a call instruction.
bool isCatch(unsigned Opc)
Reg
All possible values of the reg field in the ModR/M byte.
NodeAddr< InstrNode * > Instr
Definition: RDFGraph.h:389
NodeAddr< DefNode * > Def
Definition: RDFGraph.h:384
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:419
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
unsigned getUndefRegState(bool B)
DWARFExpression::Operation Op
char & LiveVariablesID
LiveVariables pass - This pass computes the set of blocks in which each variable is life and sets mac...
FunctionPass * createWebAssemblyRegStackify()