LLVM 20.0.0git
CodeLayout.cpp
Go to the documentation of this file.
1//===- CodeLayout.cpp - Implementation of code layout algorithms ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The file implements "cache-aware" layout algorithms of basic blocks and
10// functions in a binary.
11//
12// The algorithm tries to find a layout of nodes (basic blocks) of a given CFG
13// optimizing jump locality and thus processor I-cache utilization. This is
14// achieved via increasing the number of fall-through jumps and co-locating
15// frequently executed nodes together. The name follows the underlying
16// optimization problem, Extended-TSP, which is a generalization of classical
17// (maximum) Traveling Salesmen Problem.
18//
19// The algorithm is a greedy heuristic that works with chains (ordered lists)
20// of basic blocks. Initially all chains are isolated basic blocks. On every
21// iteration, we pick a pair of chains whose merging yields the biggest increase
22// in the ExtTSP score, which models how i-cache "friendly" a specific chain is.
23// A pair of chains giving the maximum gain is merged into a new chain. The
24// procedure stops when there is only one chain left, or when merging does not
25// increase ExtTSP. In the latter case, the remaining chains are sorted by
26// density in the decreasing order.
27//
28// An important aspect is the way two chains are merged. Unlike earlier
29// algorithms (e.g., based on the approach of Pettis-Hansen), two
30// chains, X and Y, are first split into three, X1, X2, and Y. Then we
31// consider all possible ways of gluing the three chains (e.g., X1YX2, X1X2Y,
32// X2X1Y, X2YX1, YX1X2, YX2X1) and choose the one producing the largest score.
33// This improves the quality of the final result (the search space is larger)
34// while keeping the implementation sufficiently fast.
35//
36// Reference:
37// * A. Newell and S. Pupyrev, Improved Basic Block Reordering,
38// IEEE Transactions on Computers, 2020
39// https://arxiv.org/abs/1809.04676
40//
41//===----------------------------------------------------------------------===//
42
45#include "llvm/Support/Debug.h"
46
47#include <cmath>
48#include <set>
49
50using namespace llvm;
51using namespace llvm::codelayout;
52
53#define DEBUG_TYPE "code-layout"
54
55namespace llvm {
57 "enable-ext-tsp-block-placement", cl::Hidden, cl::init(false),
58 cl::desc("Enable machine block placement based on the ext-tsp model, "
59 "optimizing I-cache utilization."));
60
62 "ext-tsp-apply-without-profile",
63 cl::desc("Whether to apply ext-tsp placement for instances w/o profile"),
64 cl::init(true), cl::Hidden);
65} // namespace llvm
66
67// Algorithm-specific params for Ext-TSP. The values are tuned for the best
68// performance of large-scale front-end bound binaries.
70 "ext-tsp-forward-weight-cond", cl::ReallyHidden, cl::init(0.1),
71 cl::desc("The weight of conditional forward jumps for ExtTSP value"));
72
74 "ext-tsp-forward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
75 cl::desc("The weight of unconditional forward jumps for ExtTSP value"));
76
78 "ext-tsp-backward-weight-cond", cl::ReallyHidden, cl::init(0.1),
79 cl::desc("The weight of conditional backward jumps for ExtTSP value"));
80
82 "ext-tsp-backward-weight-uncond", cl::ReallyHidden, cl::init(0.1),
83 cl::desc("The weight of unconditional backward jumps for ExtTSP value"));
84
86 "ext-tsp-fallthrough-weight-cond", cl::ReallyHidden, cl::init(1.0),
87 cl::desc("The weight of conditional fallthrough jumps for ExtTSP value"));
88
90 "ext-tsp-fallthrough-weight-uncond", cl::ReallyHidden, cl::init(1.05),
91 cl::desc("The weight of unconditional fallthrough jumps for ExtTSP value"));
92
94 "ext-tsp-forward-distance", cl::ReallyHidden, cl::init(1024),
95 cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP"));
96
98 "ext-tsp-backward-distance", cl::ReallyHidden, cl::init(640),
99 cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP"));
100
101// The maximum size of a chain created by the algorithm. The size is bounded
102// so that the algorithm can efficiently process extremely large instances.
104 MaxChainSize("ext-tsp-max-chain-size", cl::ReallyHidden, cl::init(512),
105 cl::desc("The maximum size of a chain to create"));
106
107// The maximum size of a chain for splitting. Larger values of the threshold
108// may yield better quality at the cost of worsen run-time.
110 "ext-tsp-chain-split-threshold", cl::ReallyHidden, cl::init(128),
111 cl::desc("The maximum size of a chain to apply splitting"));
112
113// The maximum ratio between densities of two chains for merging.
115 "ext-tsp-max-merge-density-ratio", cl::ReallyHidden, cl::init(100),
116 cl::desc("The maximum ratio between densities of two chains for merging"));
117
118// Algorithm-specific options for CDSort.
119static cl::opt<unsigned> CacheEntries("cdsort-cache-entries", cl::ReallyHidden,
120 cl::desc("The size of the cache"));
121
122static cl::opt<unsigned> CacheSize("cdsort-cache-size", cl::ReallyHidden,
123 cl::desc("The size of a line in the cache"));
124
126 CDMaxChainSize("cdsort-max-chain-size", cl::ReallyHidden,
127 cl::desc("The maximum size of a chain to create"));
128
130 "cdsort-distance-power", cl::ReallyHidden,
131 cl::desc("The power exponent for the distance-based locality"));
132
134 "cdsort-frequency-scale", cl::ReallyHidden,
135 cl::desc("The scale factor for the frequency-based locality"));
136
137namespace {
138
139// Epsilon for comparison of doubles.
140constexpr double EPS = 1e-8;
141
142// Compute the Ext-TSP score for a given jump.
143double jumpExtTSPScore(uint64_t JumpDist, uint64_t JumpMaxDist, uint64_t Count,
144 double Weight) {
145 if (JumpDist > JumpMaxDist)
146 return 0;
147 double Prob = 1.0 - static_cast<double>(JumpDist) / JumpMaxDist;
148 return Weight * Prob * Count;
149}
150
151// Compute the Ext-TSP score for a jump between a given pair of blocks,
152// using their sizes, (estimated) addresses and the jump execution count.
153double extTSPScore(uint64_t SrcAddr, uint64_t SrcSize, uint64_t DstAddr,
154 uint64_t Count, bool IsConditional) {
155 // Fallthrough
156 if (SrcAddr + SrcSize == DstAddr) {
157 return jumpExtTSPScore(0, 1, Count,
158 IsConditional ? FallthroughWeightCond
160 }
161 // Forward
162 if (SrcAddr + SrcSize < DstAddr) {
163 const uint64_t Dist = DstAddr - (SrcAddr + SrcSize);
164 return jumpExtTSPScore(Dist, ForwardDistance, Count,
165 IsConditional ? ForwardWeightCond
167 }
168 // Backward
169 const uint64_t Dist = SrcAddr + SrcSize - DstAddr;
170 return jumpExtTSPScore(Dist, BackwardDistance, Count,
171 IsConditional ? BackwardWeightCond
173}
174
175/// A type of merging two chains, X and Y. The former chain is split into
176/// X1 and X2 and then concatenated with Y in the order specified by the type.
177enum class MergeTypeT : int { X_Y, Y_X, X1_Y_X2, Y_X2_X1, X2_X1_Y };
178
179/// The gain of merging two chains, that is, the Ext-TSP score of the merge
180/// together with the corresponding merge 'type' and 'offset'.
181struct MergeGainT {
182 explicit MergeGainT() = default;
183 explicit MergeGainT(double Score, size_t MergeOffset, MergeTypeT MergeType)
184 : Score(Score), MergeOffset(MergeOffset), MergeType(MergeType) {}
185
186 double score() const { return Score; }
187
188 size_t mergeOffset() const { return MergeOffset; }
189
190 MergeTypeT mergeType() const { return MergeType; }
191
192 void setMergeType(MergeTypeT Ty) { MergeType = Ty; }
193
194 // Returns 'true' iff Other is preferred over this.
195 bool operator<(const MergeGainT &Other) const {
196 return (Other.Score > EPS && Other.Score > Score + EPS);
197 }
198
199 // Update the current gain if Other is preferred over this.
200 void updateIfLessThan(const MergeGainT &Other) {
201 if (*this < Other)
202 *this = Other;
203 }
204
205private:
206 double Score{-1.0};
207 size_t MergeOffset{0};
208 MergeTypeT MergeType{MergeTypeT::X_Y};
209};
210
211struct JumpT;
212struct ChainT;
213struct ChainEdge;
214
215/// A node in the graph, typically corresponding to a basic block in the CFG or
216/// a function in the call graph.
217struct NodeT {
218 NodeT(const NodeT &) = delete;
219 NodeT(NodeT &&) = default;
220 NodeT &operator=(const NodeT &) = delete;
221 NodeT &operator=(NodeT &&) = default;
222
223 explicit NodeT(size_t Index, uint64_t Size, uint64_t Count)
224 : Index(Index), Size(Size), ExecutionCount(Count) {}
225
226 bool isEntry() const { return Index == 0; }
227
228 // Check if Other is a successor of the node.
229 bool isSuccessor(const NodeT *Other) const;
230
231 // The total execution count of outgoing jumps.
232 uint64_t outCount() const;
233
234 // The total execution count of incoming jumps.
235 uint64_t inCount() const;
236
237 // The original index of the node in graph.
238 size_t Index{0};
239 // The index of the node in the current chain.
240 size_t CurIndex{0};
241 // The size of the node in the binary.
242 uint64_t Size{0};
243 // The execution count of the node in the profile data.
244 uint64_t ExecutionCount{0};
245 // The current chain of the node.
246 ChainT *CurChain{nullptr};
247 // The offset of the node in the current chain.
248 mutable uint64_t EstimatedAddr{0};
249 // Forced successor of the node in the graph.
250 NodeT *ForcedSucc{nullptr};
251 // Forced predecessor of the node in the graph.
252 NodeT *ForcedPred{nullptr};
253 // Outgoing jumps from the node.
254 std::vector<JumpT *> OutJumps;
255 // Incoming jumps to the node.
256 std::vector<JumpT *> InJumps;
257};
258
259/// An arc in the graph, typically corresponding to a jump between two nodes.
260struct JumpT {
261 JumpT(const JumpT &) = delete;
262 JumpT(JumpT &&) = default;
263 JumpT &operator=(const JumpT &) = delete;
264 JumpT &operator=(JumpT &&) = default;
265
266 explicit JumpT(NodeT *Source, NodeT *Target, uint64_t ExecutionCount)
267 : Source(Source), Target(Target), ExecutionCount(ExecutionCount) {}
268
269 // Source node of the jump.
270 NodeT *Source;
271 // Target node of the jump.
272 NodeT *Target;
273 // Execution count of the arc in the profile data.
274 uint64_t ExecutionCount{0};
275 // Whether the jump corresponds to a conditional branch.
276 bool IsConditional{false};
277 // The offset of the jump from the source node.
278 uint64_t Offset{0};
279};
280
281/// A chain (ordered sequence) of nodes in the graph.
282struct ChainT {
283 ChainT(const ChainT &) = delete;
284 ChainT(ChainT &&) = default;
285 ChainT &operator=(const ChainT &) = delete;
286 ChainT &operator=(ChainT &&) = default;
287
288 explicit ChainT(uint64_t Id, NodeT *Node)
289 : Id(Id), ExecutionCount(Node->ExecutionCount), Size(Node->Size),
290 Nodes(1, Node) {}
291
292 size_t numBlocks() const { return Nodes.size(); }
293
294 double density() const { return ExecutionCount / Size; }
295
296 bool isEntry() const { return Nodes[0]->Index == 0; }
297
298 bool isCold() const {
299 for (NodeT *Node : Nodes) {
300 if (Node->ExecutionCount > 0)
301 return false;
302 }
303 return true;
304 }
305
306 ChainEdge *getEdge(ChainT *Other) const {
307 for (const auto &[Chain, ChainEdge] : Edges) {
308 if (Chain == Other)
309 return ChainEdge;
310 }
311 return nullptr;
312 }
313
314 void removeEdge(ChainT *Other) {
315 auto It = Edges.begin();
316 while (It != Edges.end()) {
317 if (It->first == Other) {
318 Edges.erase(It);
319 return;
320 }
321 It++;
322 }
323 }
324
325 void addEdge(ChainT *Other, ChainEdge *Edge) {
326 Edges.push_back(std::make_pair(Other, Edge));
327 }
328
329 void merge(ChainT *Other, std::vector<NodeT *> MergedBlocks) {
330 Nodes = std::move(MergedBlocks);
331 // Update the chain's data.
332 ExecutionCount += Other->ExecutionCount;
333 Size += Other->Size;
334 Id = Nodes[0]->Index;
335 // Update the node's data.
336 for (size_t Idx = 0; Idx < Nodes.size(); Idx++) {
337 Nodes[Idx]->CurChain = this;
338 Nodes[Idx]->CurIndex = Idx;
339 }
340 }
341
342 void mergeEdges(ChainT *Other);
343
344 void clear() {
345 Nodes.clear();
346 Nodes.shrink_to_fit();
347 Edges.clear();
348 Edges.shrink_to_fit();
349 }
350
351 // Unique chain identifier.
352 uint64_t Id;
353 // Cached ext-tsp score for the chain.
354 double Score{0};
355 // The total execution count of the chain. Since the execution count of
356 // a basic block is uint64_t, using doubles here to avoid overflow.
357 double ExecutionCount{0};
358 // The total size of the chain.
359 uint64_t Size{0};
360 // Nodes of the chain.
361 std::vector<NodeT *> Nodes;
362 // Adjacent chains and corresponding edges (lists of jumps).
363 std::vector<std::pair<ChainT *, ChainEdge *>> Edges;
364};
365
366/// An edge in the graph representing jumps between two chains.
367/// When nodes are merged into chains, the edges are combined too so that
368/// there is always at most one edge between a pair of chains.
369struct ChainEdge {
370 ChainEdge(const ChainEdge &) = delete;
371 ChainEdge(ChainEdge &&) = default;
372 ChainEdge &operator=(const ChainEdge &) = delete;
373 ChainEdge &operator=(ChainEdge &&) = delete;
374
375 explicit ChainEdge(JumpT *Jump)
376 : SrcChain(Jump->Source->CurChain), DstChain(Jump->Target->CurChain),
377 Jumps(1, Jump) {}
378
379 ChainT *srcChain() const { return SrcChain; }
380
381 ChainT *dstChain() const { return DstChain; }
382
383 bool isSelfEdge() const { return SrcChain == DstChain; }
384
385 const std::vector<JumpT *> &jumps() const { return Jumps; }
386
387 void appendJump(JumpT *Jump) { Jumps.push_back(Jump); }
388
389 void moveJumps(ChainEdge *Other) {
390 Jumps.insert(Jumps.end(), Other->Jumps.begin(), Other->Jumps.end());
391 Other->Jumps.clear();
392 Other->Jumps.shrink_to_fit();
393 }
394
395 void changeEndpoint(ChainT *From, ChainT *To) {
396 if (From == SrcChain)
397 SrcChain = To;
398 if (From == DstChain)
399 DstChain = To;
400 }
401
402 bool hasCachedMergeGain(ChainT *Src, ChainT *Dst) const {
403 return Src == SrcChain ? CacheValidForward : CacheValidBackward;
404 }
405
406 MergeGainT getCachedMergeGain(ChainT *Src, ChainT *Dst) const {
407 return Src == SrcChain ? CachedGainForward : CachedGainBackward;
408 }
409
410 void setCachedMergeGain(ChainT *Src, ChainT *Dst, MergeGainT MergeGain) {
411 if (Src == SrcChain) {
412 CachedGainForward = MergeGain;
413 CacheValidForward = true;
414 } else {
415 CachedGainBackward = MergeGain;
416 CacheValidBackward = true;
417 }
418 }
419
420 void invalidateCache() {
421 CacheValidForward = false;
422 CacheValidBackward = false;
423 }
424
425 void setMergeGain(MergeGainT Gain) { CachedGain = Gain; }
426
427 MergeGainT getMergeGain() const { return CachedGain; }
428
429 double gain() const { return CachedGain.score(); }
430
431private:
432 // Source chain.
433 ChainT *SrcChain{nullptr};
434 // Destination chain.
435 ChainT *DstChain{nullptr};
436 // Original jumps in the binary with corresponding execution counts.
437 std::vector<JumpT *> Jumps;
438 // Cached gain value for merging the pair of chains.
439 MergeGainT CachedGain;
440
441 // Cached gain values for merging the pair of chains. Since the gain of
442 // merging (Src, Dst) and (Dst, Src) might be different, we store both values
443 // here and a flag indicating which of the options results in a higher gain.
444 // Cached gain values.
445 MergeGainT CachedGainForward;
446 MergeGainT CachedGainBackward;
447 // Whether the cached value must be recomputed.
448 bool CacheValidForward{false};
449 bool CacheValidBackward{false};
450};
451
452bool NodeT::isSuccessor(const NodeT *Other) const {
453 for (JumpT *Jump : OutJumps)
454 if (Jump->Target == Other)
455 return true;
456 return false;
457}
458
459uint64_t NodeT::outCount() const {
460 uint64_t Count = 0;
461 for (JumpT *Jump : OutJumps)
462 Count += Jump->ExecutionCount;
463 return Count;
464}
465
466uint64_t NodeT::inCount() const {
467 uint64_t Count = 0;
468 for (JumpT *Jump : InJumps)
469 Count += Jump->ExecutionCount;
470 return Count;
471}
472
473void ChainT::mergeEdges(ChainT *Other) {
474 // Update edges adjacent to chain Other.
475 for (const auto &[DstChain, DstEdge] : Other->Edges) {
476 ChainT *TargetChain = DstChain == Other ? this : DstChain;
477 ChainEdge *CurEdge = getEdge(TargetChain);
478 if (CurEdge == nullptr) {
479 DstEdge->changeEndpoint(Other, this);
480 this->addEdge(TargetChain, DstEdge);
481 if (DstChain != this && DstChain != Other)
482 DstChain->addEdge(this, DstEdge);
483 } else {
484 CurEdge->moveJumps(DstEdge);
485 }
486 // Cleanup leftover edge.
487 if (DstChain != Other)
488 DstChain->removeEdge(Other);
489 }
490}
491
492using NodeIter = std::vector<NodeT *>::const_iterator;
493static std::vector<NodeT *> EmptyList;
494
495/// A wrapper around three concatenated vectors (chains) of nodes; it is used
496/// to avoid extra instantiation of the vectors.
497struct MergedNodesT {
498 MergedNodesT(NodeIter Begin1, NodeIter End1,
499 NodeIter Begin2 = EmptyList.begin(),
500 NodeIter End2 = EmptyList.end(),
501 NodeIter Begin3 = EmptyList.begin(),
502 NodeIter End3 = EmptyList.end())
503 : Begin1(Begin1), End1(End1), Begin2(Begin2), End2(End2), Begin3(Begin3),
504 End3(End3) {}
505
506 template <typename F> void forEach(const F &Func) const {
507 for (auto It = Begin1; It != End1; It++)
508 Func(*It);
509 for (auto It = Begin2; It != End2; It++)
510 Func(*It);
511 for (auto It = Begin3; It != End3; It++)
512 Func(*It);
513 }
514
515 std::vector<NodeT *> getNodes() const {
516 std::vector<NodeT *> Result;
517 Result.reserve(std::distance(Begin1, End1) + std::distance(Begin2, End2) +
518 std::distance(Begin3, End3));
519 Result.insert(Result.end(), Begin1, End1);
520 Result.insert(Result.end(), Begin2, End2);
521 Result.insert(Result.end(), Begin3, End3);
522 return Result;
523 }
524
525 const NodeT *getFirstNode() const { return *Begin1; }
526
527private:
528 NodeIter Begin1;
529 NodeIter End1;
530 NodeIter Begin2;
531 NodeIter End2;
532 NodeIter Begin3;
533 NodeIter End3;
534};
535
536/// A wrapper around two concatenated vectors (chains) of jumps.
537struct MergedJumpsT {
538 MergedJumpsT(const std::vector<JumpT *> *Jumps1,
539 const std::vector<JumpT *> *Jumps2 = nullptr) {
540 assert(!Jumps1->empty() && "cannot merge empty jump list");
541 JumpArray[0] = Jumps1;
542 JumpArray[1] = Jumps2;
543 }
544
545 template <typename F> void forEach(const F &Func) const {
546 for (auto Jumps : JumpArray)
547 if (Jumps != nullptr)
548 for (JumpT *Jump : *Jumps)
549 Func(Jump);
550 }
551
552private:
553 std::array<const std::vector<JumpT *> *, 2> JumpArray{nullptr, nullptr};
554};
555
556/// Merge two chains of nodes respecting a given 'type' and 'offset'.
557///
558/// If MergeType == 0, then the result is a concatenation of two chains.
559/// Otherwise, the first chain is cut into two sub-chains at the offset,
560/// and merged using all possible ways of concatenating three chains.
561MergedNodesT mergeNodes(const std::vector<NodeT *> &X,
562 const std::vector<NodeT *> &Y, size_t MergeOffset,
563 MergeTypeT MergeType) {
564 // Split the first chain, X, into X1 and X2.
565 NodeIter BeginX1 = X.begin();
566 NodeIter EndX1 = X.begin() + MergeOffset;
567 NodeIter BeginX2 = X.begin() + MergeOffset;
568 NodeIter EndX2 = X.end();
569 NodeIter BeginY = Y.begin();
570 NodeIter EndY = Y.end();
571
572 // Construct a new chain from the three existing ones.
573 switch (MergeType) {
574 case MergeTypeT::X_Y:
575 return MergedNodesT(BeginX1, EndX2, BeginY, EndY);
576 case MergeTypeT::Y_X:
577 return MergedNodesT(BeginY, EndY, BeginX1, EndX2);
578 case MergeTypeT::X1_Y_X2:
579 return MergedNodesT(BeginX1, EndX1, BeginY, EndY, BeginX2, EndX2);
580 case MergeTypeT::Y_X2_X1:
581 return MergedNodesT(BeginY, EndY, BeginX2, EndX2, BeginX1, EndX1);
582 case MergeTypeT::X2_X1_Y:
583 return MergedNodesT(BeginX2, EndX2, BeginX1, EndX1, BeginY, EndY);
584 }
585 llvm_unreachable("unexpected chain merge type");
586}
587
588/// The implementation of the ExtTSP algorithm.
589class ExtTSPImpl {
590public:
591 ExtTSPImpl(ArrayRef<uint64_t> NodeSizes, ArrayRef<uint64_t> NodeCounts,
592 ArrayRef<EdgeCount> EdgeCounts)
593 : NumNodes(NodeSizes.size()) {
594 initialize(NodeSizes, NodeCounts, EdgeCounts);
595 }
596
597 /// Run the algorithm and return an optimized ordering of nodes.
598 std::vector<uint64_t> run() {
599 // Pass 1: Merge nodes with their mutually forced successors
600 mergeForcedPairs();
601
602 // Pass 2: Merge pairs of chains while improving the ExtTSP objective
603 mergeChainPairs();
604
605 // Pass 3: Merge cold nodes to reduce code size
606 mergeColdChains();
607
608 // Collect nodes from all chains
609 return concatChains();
610 }
611
612private:
613 /// Initialize the algorithm's data structures.
614 void initialize(const ArrayRef<uint64_t> &NodeSizes,
615 const ArrayRef<uint64_t> &NodeCounts,
616 const ArrayRef<EdgeCount> &EdgeCounts) {
617 // Initialize nodes.
618 AllNodes.reserve(NumNodes);
619 for (uint64_t Idx = 0; Idx < NumNodes; Idx++) {
620 uint64_t Size = std::max<uint64_t>(NodeSizes[Idx], 1ULL);
621 uint64_t ExecutionCount = NodeCounts[Idx];
622 // The execution count of the entry node is set to at least one.
623 if (Idx == 0 && ExecutionCount == 0)
624 ExecutionCount = 1;
625 AllNodes.emplace_back(Idx, Size, ExecutionCount);
626 }
627
628 // Initialize jumps between the nodes.
629 SuccNodes.resize(NumNodes);
630 PredNodes.resize(NumNodes);
631 std::vector<uint64_t> OutDegree(NumNodes, 0);
632 AllJumps.reserve(EdgeCounts.size());
633 for (auto Edge : EdgeCounts) {
634 ++OutDegree[Edge.src];
635 // Ignore self-edges.
636 if (Edge.src == Edge.dst)
637 continue;
638
639 SuccNodes[Edge.src].push_back(Edge.dst);
640 PredNodes[Edge.dst].push_back(Edge.src);
641 if (Edge.count > 0) {
642 NodeT &PredNode = AllNodes[Edge.src];
643 NodeT &SuccNode = AllNodes[Edge.dst];
644 AllJumps.emplace_back(&PredNode, &SuccNode, Edge.count);
645 SuccNode.InJumps.push_back(&AllJumps.back());
646 PredNode.OutJumps.push_back(&AllJumps.back());
647 // Adjust execution counts.
648 PredNode.ExecutionCount = std::max(PredNode.ExecutionCount, Edge.count);
649 SuccNode.ExecutionCount = std::max(SuccNode.ExecutionCount, Edge.count);
650 }
651 }
652 for (JumpT &Jump : AllJumps) {
653 assert(OutDegree[Jump.Source->Index] > 0 &&
654 "incorrectly computed out-degree of the block");
655 Jump.IsConditional = OutDegree[Jump.Source->Index] > 1;
656 }
657
658 // Initialize chains.
659 AllChains.reserve(NumNodes);
660 HotChains.reserve(NumNodes);
661 for (NodeT &Node : AllNodes) {
662 // Create a chain.
663 AllChains.emplace_back(Node.Index, &Node);
664 Node.CurChain = &AllChains.back();
665 if (Node.ExecutionCount > 0)
666 HotChains.push_back(&AllChains.back());
667 }
668
669 // Initialize chain edges.
670 AllEdges.reserve(AllJumps.size());
671 for (NodeT &PredNode : AllNodes) {
672 for (JumpT *Jump : PredNode.OutJumps) {
673 assert(Jump->ExecutionCount > 0 && "incorrectly initialized jump");
674 NodeT *SuccNode = Jump->Target;
675 ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain);
676 // This edge is already present in the graph.
677 if (CurEdge != nullptr) {
678 assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr);
679 CurEdge->appendJump(Jump);
680 continue;
681 }
682 // This is a new edge.
683 AllEdges.emplace_back(Jump);
684 PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back());
685 SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back());
686 }
687 }
688 }
689
690 /// For a pair of nodes, A and B, node B is the forced successor of A,
691 /// if (i) all jumps (based on profile) from A goes to B and (ii) all jumps
692 /// to B are from A. Such nodes should be adjacent in the optimal ordering;
693 /// the method finds and merges such pairs of nodes.
694 void mergeForcedPairs() {
695 // Find forced pairs of blocks.
696 for (NodeT &Node : AllNodes) {
697 if (SuccNodes[Node.Index].size() == 1 &&
698 PredNodes[SuccNodes[Node.Index][0]].size() == 1 &&
699 SuccNodes[Node.Index][0] != 0) {
700 size_t SuccIndex = SuccNodes[Node.Index][0];
701 Node.ForcedSucc = &AllNodes[SuccIndex];
702 AllNodes[SuccIndex].ForcedPred = &Node;
703 }
704 }
705
706 // There might be 'cycles' in the forced dependencies, since profile
707 // data isn't 100% accurate. Typically this is observed in loops, when the
708 // loop edges are the hottest successors for the basic blocks of the loop.
709 // Break the cycles by choosing the node with the smallest index as the
710 // head. This helps to keep the original order of the loops, which likely
711 // have already been rotated in the optimized manner.
712 for (NodeT &Node : AllNodes) {
713 if (Node.ForcedSucc == nullptr || Node.ForcedPred == nullptr)
714 continue;
715
716 NodeT *SuccNode = Node.ForcedSucc;
717 while (SuccNode != nullptr && SuccNode != &Node) {
718 SuccNode = SuccNode->ForcedSucc;
719 }
720 if (SuccNode == nullptr)
721 continue;
722 // Break the cycle.
723 AllNodes[Node.ForcedPred->Index].ForcedSucc = nullptr;
724 Node.ForcedPred = nullptr;
725 }
726
727 // Merge nodes with their fallthrough successors.
728 for (NodeT &Node : AllNodes) {
729 if (Node.ForcedPred == nullptr && Node.ForcedSucc != nullptr) {
730 const NodeT *CurBlock = &Node;
731 while (CurBlock->ForcedSucc != nullptr) {
732 const NodeT *NextBlock = CurBlock->ForcedSucc;
733 mergeChains(Node.CurChain, NextBlock->CurChain, 0, MergeTypeT::X_Y);
734 CurBlock = NextBlock;
735 }
736 }
737 }
738 }
739
740 /// Merge pairs of chains while improving the ExtTSP objective.
741 void mergeChainPairs() {
742 /// Deterministically compare pairs of chains.
743 auto compareChainPairs = [](const ChainT *A1, const ChainT *B1,
744 const ChainT *A2, const ChainT *B2) {
745 return std::make_tuple(A1->Id, B1->Id) < std::make_tuple(A2->Id, B2->Id);
746 };
747
748 while (HotChains.size() > 1) {
749 ChainT *BestChainPred = nullptr;
750 ChainT *BestChainSucc = nullptr;
751 MergeGainT BestGain;
752 // Iterate over all pairs of chains.
753 for (ChainT *ChainPred : HotChains) {
754 // Get candidates for merging with the current chain.
755 for (const auto &[ChainSucc, Edge] : ChainPred->Edges) {
756 // Ignore loop edges.
757 if (Edge->isSelfEdge())
758 continue;
759 // Skip the merge if the combined chain violates the maximum specified
760 // size.
761 if (ChainPred->numBlocks() + ChainSucc->numBlocks() >= MaxChainSize)
762 continue;
763 // Don't merge the chains if they have vastly different densities.
764 // Skip the merge if the ratio between the densities exceeds
765 // MaxMergeDensityRatio. Smaller values of the option result in fewer
766 // merges, and hence, more chains.
767 const double ChainPredDensity = ChainPred->density();
768 const double ChainSuccDensity = ChainSucc->density();
769 assert(ChainPredDensity > 0.0 && ChainSuccDensity > 0.0 &&
770 "incorrectly computed chain densities");
771 auto [MinDensity, MaxDensity] =
772 std::minmax(ChainPredDensity, ChainSuccDensity);
773 const double Ratio = MaxDensity / MinDensity;
774 if (Ratio > MaxMergeDensityRatio)
775 continue;
776
777 // Compute the gain of merging the two chains.
778 MergeGainT CurGain = getBestMergeGain(ChainPred, ChainSucc, Edge);
779 if (CurGain.score() <= EPS)
780 continue;
781
782 if (BestGain < CurGain ||
783 (std::abs(CurGain.score() - BestGain.score()) < EPS &&
784 compareChainPairs(ChainPred, ChainSucc, BestChainPred,
785 BestChainSucc))) {
786 BestGain = CurGain;
787 BestChainPred = ChainPred;
788 BestChainSucc = ChainSucc;
789 }
790 }
791 }
792
793 // Stop merging when there is no improvement.
794 if (BestGain.score() <= EPS)
795 break;
796
797 // Merge the best pair of chains.
798 mergeChains(BestChainPred, BestChainSucc, BestGain.mergeOffset(),
799 BestGain.mergeType());
800 }
801 }
802
803 /// Merge remaining nodes into chains w/o taking jump counts into
804 /// consideration. This allows to maintain the original node order in the
805 /// absence of profile data.
806 void mergeColdChains() {
807 for (size_t SrcBB = 0; SrcBB < NumNodes; SrcBB++) {
808 // Iterating in reverse order to make sure original fallthrough jumps are
809 // merged first; this might be beneficial for code size.
810 size_t NumSuccs = SuccNodes[SrcBB].size();
811 for (size_t Idx = 0; Idx < NumSuccs; Idx++) {
812 size_t DstBB = SuccNodes[SrcBB][NumSuccs - Idx - 1];
813 ChainT *SrcChain = AllNodes[SrcBB].CurChain;
814 ChainT *DstChain = AllNodes[DstBB].CurChain;
815 if (SrcChain != DstChain && !DstChain->isEntry() &&
816 SrcChain->Nodes.back()->Index == SrcBB &&
817 DstChain->Nodes.front()->Index == DstBB &&
818 SrcChain->isCold() == DstChain->isCold()) {
819 mergeChains(SrcChain, DstChain, 0, MergeTypeT::X_Y);
820 }
821 }
822 }
823 }
824
825 /// Compute the Ext-TSP score for a given node order and a list of jumps.
826 double extTSPScore(const MergedNodesT &Nodes,
827 const MergedJumpsT &Jumps) const {
828 uint64_t CurAddr = 0;
829 Nodes.forEach([&](const NodeT *Node) {
830 Node->EstimatedAddr = CurAddr;
831 CurAddr += Node->Size;
832 });
833
834 double Score = 0;
835 Jumps.forEach([&](const JumpT *Jump) {
836 const NodeT *SrcBlock = Jump->Source;
837 const NodeT *DstBlock = Jump->Target;
838 Score += ::extTSPScore(SrcBlock->EstimatedAddr, SrcBlock->Size,
839 DstBlock->EstimatedAddr, Jump->ExecutionCount,
840 Jump->IsConditional);
841 });
842 return Score;
843 }
844
845 /// Compute the gain of merging two chains.
846 ///
847 /// The function considers all possible ways of merging two chains and
848 /// computes the one having the largest increase in ExtTSP objective. The
849 /// result is a pair with the first element being the gain and the second
850 /// element being the corresponding merging type.
851 MergeGainT getBestMergeGain(ChainT *ChainPred, ChainT *ChainSucc,
852 ChainEdge *Edge) const {
853 if (Edge->hasCachedMergeGain(ChainPred, ChainSucc))
854 return Edge->getCachedMergeGain(ChainPred, ChainSucc);
855
856 assert(!Edge->jumps().empty() && "trying to merge chains w/o jumps");
857 // Precompute jumps between ChainPred and ChainSucc.
858 ChainEdge *EdgePP = ChainPred->getEdge(ChainPred);
859 MergedJumpsT Jumps(&Edge->jumps(), EdgePP ? &EdgePP->jumps() : nullptr);
860
861 // This object holds the best chosen gain of merging two chains.
862 MergeGainT Gain = MergeGainT();
863
864 /// Given a merge offset and a list of merge types, try to merge two chains
865 /// and update Gain with a better alternative.
866 auto tryChainMerging = [&](size_t Offset,
867 const std::vector<MergeTypeT> &MergeTypes) {
868 // Skip merging corresponding to concatenation w/o splitting.
869 if (Offset == 0 || Offset == ChainPred->Nodes.size())
870 return;
871 // Skip merging if it breaks Forced successors.
872 NodeT *Node = ChainPred->Nodes[Offset - 1];
873 if (Node->ForcedSucc != nullptr)
874 return;
875 // Apply the merge, compute the corresponding gain, and update the best
876 // value, if the merge is beneficial.
877 for (const MergeTypeT &MergeType : MergeTypes) {
878 Gain.updateIfLessThan(
879 computeMergeGain(ChainPred, ChainSucc, Jumps, Offset, MergeType));
880 }
881 };
882
883 // Try to concatenate two chains w/o splitting.
884 Gain.updateIfLessThan(
885 computeMergeGain(ChainPred, ChainSucc, Jumps, 0, MergeTypeT::X_Y));
886
887 // Attach (a part of) ChainPred before the first node of ChainSucc.
888 for (JumpT *Jump : ChainSucc->Nodes.front()->InJumps) {
889 const NodeT *SrcBlock = Jump->Source;
890 if (SrcBlock->CurChain != ChainPred)
891 continue;
892 size_t Offset = SrcBlock->CurIndex + 1;
893 tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::X2_X1_Y});
894 }
895
896 // Attach (a part of) ChainPred after the last node of ChainSucc.
897 for (JumpT *Jump : ChainSucc->Nodes.back()->OutJumps) {
898 const NodeT *DstBlock = Jump->Target;
899 if (DstBlock->CurChain != ChainPred)
900 continue;
901 size_t Offset = DstBlock->CurIndex;
902 tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1});
903 }
904
905 // Try to break ChainPred in various ways and concatenate with ChainSucc.
906 if (ChainPred->Nodes.size() <= ChainSplitThreshold) {
907 for (size_t Offset = 1; Offset < ChainPred->Nodes.size(); Offset++) {
908 // Do not split the chain along a fall-through jump. One of the two
909 // loops above may still "break" such a jump whenever it results in a
910 // new fall-through.
911 const NodeT *BB = ChainPred->Nodes[Offset - 1];
912 const NodeT *BB2 = ChainPred->Nodes[Offset];
913 if (BB->isSuccessor(BB2))
914 continue;
915
916 // In practice, applying X2_Y_X1 merging almost never provides benefits;
917 // thus, we exclude it from consideration to reduce the search space.
918 tryChainMerging(Offset, {MergeTypeT::X1_Y_X2, MergeTypeT::Y_X2_X1,
919 MergeTypeT::X2_X1_Y});
920 }
921 }
922
923 Edge->setCachedMergeGain(ChainPred, ChainSucc, Gain);
924 return Gain;
925 }
926
927 /// Compute the score gain of merging two chains, respecting a given
928 /// merge 'type' and 'offset'.
929 ///
930 /// The two chains are not modified in the method.
931 MergeGainT computeMergeGain(const ChainT *ChainPred, const ChainT *ChainSucc,
932 const MergedJumpsT &Jumps, size_t MergeOffset,
933 MergeTypeT MergeType) const {
934 MergedNodesT MergedNodes =
935 mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType);
936
937 // Do not allow a merge that does not preserve the original entry point.
938 if ((ChainPred->isEntry() || ChainSucc->isEntry()) &&
939 !MergedNodes.getFirstNode()->isEntry())
940 return MergeGainT();
941
942 // The gain for the new chain.
943 double NewScore = extTSPScore(MergedNodes, Jumps);
944 double CurScore = ChainPred->Score;
945 return MergeGainT(NewScore - CurScore, MergeOffset, MergeType);
946 }
947
948 /// Merge chain From into chain Into, update the list of active chains,
949 /// adjacency information, and the corresponding cached values.
950 void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset,
951 MergeTypeT MergeType) {
952 assert(Into != From && "a chain cannot be merged with itself");
953
954 // Merge the nodes.
955 MergedNodesT MergedNodes =
956 mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType);
957 Into->merge(From, MergedNodes.getNodes());
958
959 // Merge the edges.
960 Into->mergeEdges(From);
961 From->clear();
962
963 // Update cached ext-tsp score for the new chain.
964 ChainEdge *SelfEdge = Into->getEdge(Into);
965 if (SelfEdge != nullptr) {
966 MergedNodes = MergedNodesT(Into->Nodes.begin(), Into->Nodes.end());
967 MergedJumpsT MergedJumps(&SelfEdge->jumps());
968 Into->Score = extTSPScore(MergedNodes, MergedJumps);
969 }
970
971 // Remove the chain from the list of active chains.
972 llvm::erase(HotChains, From);
973
974 // Invalidate caches.
975 for (auto EdgeIt : Into->Edges)
976 EdgeIt.second->invalidateCache();
977 }
978
979 /// Concatenate all chains into the final order.
980 std::vector<uint64_t> concatChains() {
981 // Collect non-empty chains.
982 std::vector<const ChainT *> SortedChains;
983 for (ChainT &Chain : AllChains) {
984 if (!Chain.Nodes.empty())
985 SortedChains.push_back(&Chain);
986 }
987
988 // Sorting chains by density in the decreasing order.
989 std::sort(SortedChains.begin(), SortedChains.end(),
990 [&](const ChainT *L, const ChainT *R) {
991 // Place the entry point at the beginning of the order.
992 if (L->isEntry() != R->isEntry())
993 return L->isEntry();
994
995 // Compare by density and break ties by chain identifiers.
996 return std::make_tuple(-L->density(), L->Id) <
997 std::make_tuple(-R->density(), R->Id);
998 });
999
1000 // Collect the nodes in the order specified by their chains.
1001 std::vector<uint64_t> Order;
1002 Order.reserve(NumNodes);
1003 for (const ChainT *Chain : SortedChains)
1004 for (NodeT *Node : Chain->Nodes)
1005 Order.push_back(Node->Index);
1006 return Order;
1007 }
1008
1009private:
1010 /// The number of nodes in the graph.
1011 const size_t NumNodes;
1012
1013 /// Successors of each node.
1014 std::vector<std::vector<uint64_t>> SuccNodes;
1015
1016 /// Predecessors of each node.
1017 std::vector<std::vector<uint64_t>> PredNodes;
1018
1019 /// All nodes (basic blocks) in the graph.
1020 std::vector<NodeT> AllNodes;
1021
1022 /// All jumps between the nodes.
1023 std::vector<JumpT> AllJumps;
1024
1025 /// All chains of nodes.
1026 std::vector<ChainT> AllChains;
1027
1028 /// All edges between the chains.
1029 std::vector<ChainEdge> AllEdges;
1030
1031 /// Active chains. The vector gets updated at runtime when chains are merged.
1032 std::vector<ChainT *> HotChains;
1033};
1034
1035/// The implementation of the Cache-Directed Sort (CDSort) algorithm for
1036/// ordering functions represented by a call graph.
1037class CDSortImpl {
1038public:
1039 CDSortImpl(const CDSortConfig &Config, ArrayRef<uint64_t> NodeSizes,
1040 ArrayRef<uint64_t> NodeCounts, ArrayRef<EdgeCount> EdgeCounts,
1041 ArrayRef<uint64_t> EdgeOffsets)
1042 : Config(Config), NumNodes(NodeSizes.size()) {
1043 initialize(NodeSizes, NodeCounts, EdgeCounts, EdgeOffsets);
1044 }
1045
1046 /// Run the algorithm and return an ordered set of function clusters.
1047 std::vector<uint64_t> run() {
1048 // Merge pairs of chains while improving the objective.
1049 mergeChainPairs();
1050
1051 // Collect nodes from all the chains.
1052 return concatChains();
1053 }
1054
1055private:
1056 /// Initialize the algorithm's data structures.
1057 void initialize(const ArrayRef<uint64_t> &NodeSizes,
1058 const ArrayRef<uint64_t> &NodeCounts,
1059 const ArrayRef<EdgeCount> &EdgeCounts,
1060 const ArrayRef<uint64_t> &EdgeOffsets) {
1061 // Initialize nodes.
1062 AllNodes.reserve(NumNodes);
1063 for (uint64_t Node = 0; Node < NumNodes; Node++) {
1064 uint64_t Size = std::max<uint64_t>(NodeSizes[Node], 1ULL);
1065 uint64_t ExecutionCount = NodeCounts[Node];
1066 AllNodes.emplace_back(Node, Size, ExecutionCount);
1067 TotalSamples += ExecutionCount;
1068 if (ExecutionCount > 0)
1069 TotalSize += Size;
1070 }
1071
1072 // Initialize jumps between the nodes.
1073 SuccNodes.resize(NumNodes);
1074 PredNodes.resize(NumNodes);
1075 AllJumps.reserve(EdgeCounts.size());
1076 for (size_t I = 0; I < EdgeCounts.size(); I++) {
1077 auto [Pred, Succ, Count] = EdgeCounts[I];
1078 // Ignore recursive calls.
1079 if (Pred == Succ)
1080 continue;
1081
1082 SuccNodes[Pred].push_back(Succ);
1083 PredNodes[Succ].push_back(Pred);
1084 if (Count > 0) {
1085 NodeT &PredNode = AllNodes[Pred];
1086 NodeT &SuccNode = AllNodes[Succ];
1087 AllJumps.emplace_back(&PredNode, &SuccNode, Count);
1088 AllJumps.back().Offset = EdgeOffsets[I];
1089 SuccNode.InJumps.push_back(&AllJumps.back());
1090 PredNode.OutJumps.push_back(&AllJumps.back());
1091 // Adjust execution counts.
1092 PredNode.ExecutionCount = std::max(PredNode.ExecutionCount, Count);
1093 SuccNode.ExecutionCount = std::max(SuccNode.ExecutionCount, Count);
1094 }
1095 }
1096
1097 // Initialize chains.
1098 AllChains.reserve(NumNodes);
1099 for (NodeT &Node : AllNodes) {
1100 // Adjust execution counts.
1101 Node.ExecutionCount = std::max(Node.ExecutionCount, Node.inCount());
1102 Node.ExecutionCount = std::max(Node.ExecutionCount, Node.outCount());
1103 // Create chain.
1104 AllChains.emplace_back(Node.Index, &Node);
1105 Node.CurChain = &AllChains.back();
1106 }
1107
1108 // Initialize chain edges.
1109 AllEdges.reserve(AllJumps.size());
1110 for (NodeT &PredNode : AllNodes) {
1111 for (JumpT *Jump : PredNode.OutJumps) {
1112 NodeT *SuccNode = Jump->Target;
1113 ChainEdge *CurEdge = PredNode.CurChain->getEdge(SuccNode->CurChain);
1114 // This edge is already present in the graph.
1115 if (CurEdge != nullptr) {
1116 assert(SuccNode->CurChain->getEdge(PredNode.CurChain) != nullptr);
1117 CurEdge->appendJump(Jump);
1118 continue;
1119 }
1120 // This is a new edge.
1121 AllEdges.emplace_back(Jump);
1122 PredNode.CurChain->addEdge(SuccNode->CurChain, &AllEdges.back());
1123 SuccNode->CurChain->addEdge(PredNode.CurChain, &AllEdges.back());
1124 }
1125 }
1126 }
1127
1128 /// Merge pairs of chains while there is an improvement in the objective.
1129 void mergeChainPairs() {
1130 // Create a priority queue containing all edges ordered by the merge gain.
1131 auto GainComparator = [](ChainEdge *L, ChainEdge *R) {
1132 return std::make_tuple(-L->gain(), L->srcChain()->Id, L->dstChain()->Id) <
1133 std::make_tuple(-R->gain(), R->srcChain()->Id, R->dstChain()->Id);
1134 };
1135 std::set<ChainEdge *, decltype(GainComparator)> Queue(GainComparator);
1136
1137 // Insert the edges into the queue.
1138 [[maybe_unused]] size_t NumActiveChains = 0;
1139 for (NodeT &Node : AllNodes) {
1140 if (Node.ExecutionCount == 0)
1141 continue;
1142 ++NumActiveChains;
1143 for (const auto &[_, Edge] : Node.CurChain->Edges) {
1144 // Ignore self-edges.
1145 if (Edge->isSelfEdge())
1146 continue;
1147 // Ignore already processed edges.
1148 if (Edge->gain() != -1.0)
1149 continue;
1150
1151 // Compute the gain of merging the two chains.
1152 MergeGainT Gain = getBestMergeGain(Edge);
1153 Edge->setMergeGain(Gain);
1154
1155 if (Edge->gain() > EPS)
1156 Queue.insert(Edge);
1157 }
1158 }
1159
1160 // Merge the chains while the gain of merging is positive.
1161 while (!Queue.empty()) {
1162 // Extract the best (top) edge for merging.
1163 ChainEdge *BestEdge = *Queue.begin();
1164 Queue.erase(Queue.begin());
1165 ChainT *BestSrcChain = BestEdge->srcChain();
1166 ChainT *BestDstChain = BestEdge->dstChain();
1167
1168 // Remove outdated edges from the queue.
1169 for (const auto &[_, ChainEdge] : BestSrcChain->Edges)
1170 Queue.erase(ChainEdge);
1171 for (const auto &[_, ChainEdge] : BestDstChain->Edges)
1172 Queue.erase(ChainEdge);
1173
1174 // Merge the best pair of chains.
1175 MergeGainT BestGain = BestEdge->getMergeGain();
1176 mergeChains(BestSrcChain, BestDstChain, BestGain.mergeOffset(),
1177 BestGain.mergeType());
1178 --NumActiveChains;
1179
1180 // Insert newly created edges into the queue.
1181 for (const auto &[_, Edge] : BestSrcChain->Edges) {
1182 // Ignore loop edges.
1183 if (Edge->isSelfEdge())
1184 continue;
1185 if (Edge->srcChain()->numBlocks() + Edge->dstChain()->numBlocks() >
1186 Config.MaxChainSize)
1187 continue;
1188
1189 // Compute the gain of merging the two chains.
1190 MergeGainT Gain = getBestMergeGain(Edge);
1191 Edge->setMergeGain(Gain);
1192
1193 if (Edge->gain() > EPS)
1194 Queue.insert(Edge);
1195 }
1196 }
1197
1198 LLVM_DEBUG(dbgs() << "Cache-directed function sorting reduced the number"
1199 << " of chains from " << NumNodes << " to "
1200 << NumActiveChains << "\n");
1201 }
1202
1203 /// Compute the gain of merging two chains.
1204 ///
1205 /// The function considers all possible ways of merging two chains and
1206 /// computes the one having the largest increase in ExtTSP objective. The
1207 /// result is a pair with the first element being the gain and the second
1208 /// element being the corresponding merging type.
1209 MergeGainT getBestMergeGain(ChainEdge *Edge) const {
1210 assert(!Edge->jumps().empty() && "trying to merge chains w/o jumps");
1211 // Precompute jumps between ChainPred and ChainSucc.
1212 MergedJumpsT Jumps(&Edge->jumps());
1213 ChainT *SrcChain = Edge->srcChain();
1214 ChainT *DstChain = Edge->dstChain();
1215
1216 // This object holds the best currently chosen gain of merging two chains.
1217 MergeGainT Gain = MergeGainT();
1218
1219 /// Given a list of merge types, try to merge two chains and update Gain
1220 /// with a better alternative.
1221 auto tryChainMerging = [&](const std::vector<MergeTypeT> &MergeTypes) {
1222 // Apply the merge, compute the corresponding gain, and update the best
1223 // value, if the merge is beneficial.
1224 for (const MergeTypeT &MergeType : MergeTypes) {
1225 MergeGainT NewGain =
1226 computeMergeGain(SrcChain, DstChain, Jumps, MergeType);
1227
1228 // When forward and backward gains are the same, prioritize merging that
1229 // preserves the original order of the functions in the binary.
1230 if (std::abs(Gain.score() - NewGain.score()) < EPS) {
1231 if ((MergeType == MergeTypeT::X_Y && SrcChain->Id < DstChain->Id) ||
1232 (MergeType == MergeTypeT::Y_X && SrcChain->Id > DstChain->Id)) {
1233 Gain = NewGain;
1234 }
1235 } else if (NewGain.score() > Gain.score() + EPS) {
1236 Gain = NewGain;
1237 }
1238 }
1239 };
1240
1241 // Try to concatenate two chains w/o splitting.
1242 tryChainMerging({MergeTypeT::X_Y, MergeTypeT::Y_X});
1243
1244 return Gain;
1245 }
1246
1247 /// Compute the score gain of merging two chains, respecting a given type.
1248 ///
1249 /// The two chains are not modified in the method.
1250 MergeGainT computeMergeGain(ChainT *ChainPred, ChainT *ChainSucc,
1251 const MergedJumpsT &Jumps,
1252 MergeTypeT MergeType) const {
1253 // This doesn't depend on the ordering of the nodes
1254 double FreqGain = freqBasedLocalityGain(ChainPred, ChainSucc);
1255
1256 // Merge offset is always 0, as the chains are not split.
1257 size_t MergeOffset = 0;
1258 auto MergedBlocks =
1259 mergeNodes(ChainPred->Nodes, ChainSucc->Nodes, MergeOffset, MergeType);
1260 double DistGain = distBasedLocalityGain(MergedBlocks, Jumps);
1261
1262 double GainScore = DistGain + Config.FrequencyScale * FreqGain;
1263 // Scale the result to increase the importance of merging short chains.
1264 if (GainScore >= 0.0)
1265 GainScore /= std::min(ChainPred->Size, ChainSucc->Size);
1266
1267 return MergeGainT(GainScore, MergeOffset, MergeType);
1268 }
1269
1270 /// Compute the change of the frequency locality after merging the chains.
1271 double freqBasedLocalityGain(ChainT *ChainPred, ChainT *ChainSucc) const {
1272 auto missProbability = [&](double ChainDensity) {
1273 double PageSamples = ChainDensity * Config.CacheSize;
1274 if (PageSamples >= TotalSamples)
1275 return 0.0;
1276 double P = PageSamples / TotalSamples;
1277 return pow(1.0 - P, static_cast<double>(Config.CacheEntries));
1278 };
1279
1280 // Cache misses on the chains before merging.
1281 double CurScore =
1282 ChainPred->ExecutionCount * missProbability(ChainPred->density()) +
1283 ChainSucc->ExecutionCount * missProbability(ChainSucc->density());
1284
1285 // Cache misses on the merged chain
1286 double MergedCounts = ChainPred->ExecutionCount + ChainSucc->ExecutionCount;
1287 double MergedSize = ChainPred->Size + ChainSucc->Size;
1288 double MergedDensity = static_cast<double>(MergedCounts) / MergedSize;
1289 double NewScore = MergedCounts * missProbability(MergedDensity);
1290
1291 return CurScore - NewScore;
1292 }
1293
1294 /// Compute the distance locality for a jump / call.
1295 double distScore(uint64_t SrcAddr, uint64_t DstAddr, uint64_t Count) const {
1296 uint64_t Dist = SrcAddr <= DstAddr ? DstAddr - SrcAddr : SrcAddr - DstAddr;
1297 double D = Dist == 0 ? 0.1 : static_cast<double>(Dist);
1298 return static_cast<double>(Count) * std::pow(D, -Config.DistancePower);
1299 }
1300
1301 /// Compute the change of the distance locality after merging the chains.
1302 double distBasedLocalityGain(const MergedNodesT &Nodes,
1303 const MergedJumpsT &Jumps) const {
1304 uint64_t CurAddr = 0;
1305 Nodes.forEach([&](const NodeT *Node) {
1306 Node->EstimatedAddr = CurAddr;
1307 CurAddr += Node->Size;
1308 });
1309
1310 double CurScore = 0;
1311 double NewScore = 0;
1312 Jumps.forEach([&](const JumpT *Jump) {
1313 uint64_t SrcAddr = Jump->Source->EstimatedAddr + Jump->Offset;
1314 uint64_t DstAddr = Jump->Target->EstimatedAddr;
1315 NewScore += distScore(SrcAddr, DstAddr, Jump->ExecutionCount);
1316 CurScore += distScore(0, TotalSize, Jump->ExecutionCount);
1317 });
1318 return NewScore - CurScore;
1319 }
1320
1321 /// Merge chain From into chain Into, update the list of active chains,
1322 /// adjacency information, and the corresponding cached values.
1323 void mergeChains(ChainT *Into, ChainT *From, size_t MergeOffset,
1324 MergeTypeT MergeType) {
1325 assert(Into != From && "a chain cannot be merged with itself");
1326
1327 // Merge the nodes.
1328 MergedNodesT MergedNodes =
1329 mergeNodes(Into->Nodes, From->Nodes, MergeOffset, MergeType);
1330 Into->merge(From, MergedNodes.getNodes());
1331
1332 // Merge the edges.
1333 Into->mergeEdges(From);
1334 From->clear();
1335 }
1336
1337 /// Concatenate all chains into the final order.
1338 std::vector<uint64_t> concatChains() {
1339 // Collect chains and calculate density stats for their sorting.
1340 std::vector<const ChainT *> SortedChains;
1342 for (ChainT &Chain : AllChains) {
1343 if (!Chain.Nodes.empty()) {
1344 SortedChains.push_back(&Chain);
1345 // Using doubles to avoid overflow of ExecutionCounts.
1346 double Size = 0;
1347 double ExecutionCount = 0;
1348 for (NodeT *Node : Chain.Nodes) {
1349 Size += static_cast<double>(Node->Size);
1350 ExecutionCount += static_cast<double>(Node->ExecutionCount);
1351 }
1352 assert(Size > 0 && "a chain of zero size");
1353 ChainDensity[&Chain] = ExecutionCount / Size;
1354 }
1355 }
1356
1357 // Sort chains by density in the decreasing order.
1358 std::sort(SortedChains.begin(), SortedChains.end(),
1359 [&](const ChainT *L, const ChainT *R) {
1360 const double DL = ChainDensity[L];
1361 const double DR = ChainDensity[R];
1362 // Compare by density and break ties by chain identifiers.
1363 return std::make_tuple(-DL, L->Id) <
1364 std::make_tuple(-DR, R->Id);
1365 });
1366
1367 // Collect the nodes in the order specified by their chains.
1368 std::vector<uint64_t> Order;
1369 Order.reserve(NumNodes);
1370 for (const ChainT *Chain : SortedChains)
1371 for (NodeT *Node : Chain->Nodes)
1372 Order.push_back(Node->Index);
1373 return Order;
1374 }
1375
1376private:
1377 /// Config for the algorithm.
1378 const CDSortConfig Config;
1379
1380 /// The number of nodes in the graph.
1381 const size_t NumNodes;
1382
1383 /// Successors of each node.
1384 std::vector<std::vector<uint64_t>> SuccNodes;
1385
1386 /// Predecessors of each node.
1387 std::vector<std::vector<uint64_t>> PredNodes;
1388
1389 /// All nodes (functions) in the graph.
1390 std::vector<NodeT> AllNodes;
1391
1392 /// All jumps (function calls) between the nodes.
1393 std::vector<JumpT> AllJumps;
1394
1395 /// All chains of nodes.
1396 std::vector<ChainT> AllChains;
1397
1398 /// All edges between the chains.
1399 std::vector<ChainEdge> AllEdges;
1400
1401 /// The total number of samples in the graph.
1402 uint64_t TotalSamples{0};
1403
1404 /// The total size of the nodes in the graph.
1405 uint64_t TotalSize{0};
1406};
1407
1408} // end of anonymous namespace
1409
1410std::vector<uint64_t>
1412 ArrayRef<uint64_t> NodeCounts,
1413 ArrayRef<EdgeCount> EdgeCounts) {
1414 // Verify correctness of the input data.
1415 assert(NodeCounts.size() == NodeSizes.size() && "Incorrect input");
1416 assert(NodeSizes.size() > 2 && "Incorrect input");
1417
1418 // Apply the reordering algorithm.
1419 ExtTSPImpl Alg(NodeSizes, NodeCounts, EdgeCounts);
1420 std::vector<uint64_t> Result = Alg.run();
1421
1422 // Verify correctness of the output.
1423 assert(Result.front() == 0 && "Original entry point is not preserved");
1424 assert(Result.size() == NodeSizes.size() && "Incorrect size of layout");
1425 return Result;
1426}
1427
1429 ArrayRef<uint64_t> NodeSizes,
1430 ArrayRef<uint64_t> NodeCounts,
1431 ArrayRef<EdgeCount> EdgeCounts) {
1432 // Estimate addresses of the blocks in memory.
1433 std::vector<uint64_t> Addr(NodeSizes.size(), 0);
1434 for (size_t Idx = 1; Idx < Order.size(); Idx++) {
1435 Addr[Order[Idx]] = Addr[Order[Idx - 1]] + NodeSizes[Order[Idx - 1]];
1436 }
1437 std::vector<uint64_t> OutDegree(NodeSizes.size(), 0);
1438 for (auto Edge : EdgeCounts)
1439 ++OutDegree[Edge.src];
1440
1441 // Increase the score for each jump.
1442 double Score = 0;
1443 for (auto Edge : EdgeCounts) {
1444 bool IsConditional = OutDegree[Edge.src] > 1;
1445 Score += ::extTSPScore(Addr[Edge.src], NodeSizes[Edge.src], Addr[Edge.dst],
1446 Edge.count, IsConditional);
1447 }
1448 return Score;
1449}
1450
1452 ArrayRef<uint64_t> NodeCounts,
1453 ArrayRef<EdgeCount> EdgeCounts) {
1454 std::vector<uint64_t> Order(NodeSizes.size());
1455 for (size_t Idx = 0; Idx < NodeSizes.size(); Idx++) {
1456 Order[Idx] = Idx;
1457 }
1458 return calcExtTspScore(Order, NodeSizes, NodeCounts, EdgeCounts);
1459}
1460
1462 const CDSortConfig &Config, ArrayRef<uint64_t> FuncSizes,
1463 ArrayRef<uint64_t> FuncCounts, ArrayRef<EdgeCount> CallCounts,
1464 ArrayRef<uint64_t> CallOffsets) {
1465 // Verify correctness of the input data.
1466 assert(FuncCounts.size() == FuncSizes.size() && "Incorrect input");
1467
1468 // Apply the reordering algorithm.
1469 CDSortImpl Alg(Config, FuncSizes, FuncCounts, CallCounts, CallOffsets);
1470 std::vector<uint64_t> Result = Alg.run();
1471 assert(Result.size() == FuncSizes.size() && "Incorrect size of layout");
1472 return Result;
1473}
1474
1476 ArrayRef<uint64_t> FuncSizes, ArrayRef<uint64_t> FuncCounts,
1477 ArrayRef<EdgeCount> CallCounts, ArrayRef<uint64_t> CallOffsets) {
1479 // Populate the config from the command-line options.
1480 if (CacheEntries.getNumOccurrences() > 0)
1481 Config.CacheEntries = CacheEntries;
1482 if (CacheSize.getNumOccurrences() > 0)
1483 Config.CacheSize = CacheSize;
1484 if (CDMaxChainSize.getNumOccurrences() > 0)
1485 Config.MaxChainSize = CDMaxChainSize;
1486 if (DistancePower.getNumOccurrences() > 0)
1487 Config.DistancePower = DistancePower;
1488 if (FrequencyScale.getNumOccurrences() > 0)
1489 Config.FrequencyScale = FrequencyScale;
1490 return computeCacheDirectedLayout(Config, FuncSizes, FuncCounts, CallCounts,
1491 CallOffsets);
1492}
BlockVerifier::State From
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static cl::opt< unsigned > CacheSize("cdsort-cache-size", cl::ReallyHidden, cl::desc("The size of a line in the cache"))
static cl::opt< unsigned > ForwardDistance("ext-tsp-forward-distance", cl::ReallyHidden, cl::init(1024), cl::desc("The maximum distance (in bytes) of a forward jump for ExtTSP"))
static cl::opt< unsigned > BackwardDistance("ext-tsp-backward-distance", cl::ReallyHidden, cl::init(640), cl::desc("The maximum distance (in bytes) of a backward jump for ExtTSP"))
static cl::opt< double > BackwardWeightCond("ext-tsp-backward-weight-cond", cl::ReallyHidden, cl::init(0.1), cl::desc("The weight of conditional backward jumps for ExtTSP value"))
static cl::opt< double > FrequencyScale("cdsort-frequency-scale", cl::ReallyHidden, cl::desc("The scale factor for the frequency-based locality"))
static cl::opt< double > ForwardWeightUncond("ext-tsp-forward-weight-uncond", cl::ReallyHidden, cl::init(0.1), cl::desc("The weight of unconditional forward jumps for ExtTSP value"))
static cl::opt< double > DistancePower("cdsort-distance-power", cl::ReallyHidden, cl::desc("The power exponent for the distance-based locality"))
static cl::opt< unsigned > MaxChainSize("ext-tsp-max-chain-size", cl::ReallyHidden, cl::init(512), cl::desc("The maximum size of a chain to create"))
static cl::opt< unsigned > ChainSplitThreshold("ext-tsp-chain-split-threshold", cl::ReallyHidden, cl::init(128), cl::desc("The maximum size of a chain to apply splitting"))
static cl::opt< double > FallthroughWeightUncond("ext-tsp-fallthrough-weight-uncond", cl::ReallyHidden, cl::init(1.05), cl::desc("The weight of unconditional fallthrough jumps for ExtTSP value"))
static cl::opt< double > BackwardWeightUncond("ext-tsp-backward-weight-uncond", cl::ReallyHidden, cl::init(0.1), cl::desc("The weight of unconditional backward jumps for ExtTSP value"))
static cl::opt< unsigned > CDMaxChainSize("cdsort-max-chain-size", cl::ReallyHidden, cl::desc("The maximum size of a chain to create"))
static cl::opt< double > ForwardWeightCond("ext-tsp-forward-weight-cond", cl::ReallyHidden, cl::init(0.1), cl::desc("The weight of conditional forward jumps for ExtTSP value"))
static cl::opt< unsigned > CacheEntries("cdsort-cache-entries", cl::ReallyHidden, cl::desc("The size of the cache"))
static cl::opt< double > MaxMergeDensityRatio("ext-tsp-max-merge-density-ratio", cl::ReallyHidden, cl::init(100), cl::desc("The maximum ratio between densities of two chains for merging"))
static cl::opt< double > FallthroughWeightCond("ext-tsp-fallthrough-weight-cond", cl::ReallyHidden, cl::init(1.0), cl::desc("The weight of conditional fallthrough jumps for ExtTSP value"))
Declares methods and data structures for code layout algorithms.
static void clear(coro::Shape &Shape)
Definition: Coroutines.cpp:148
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
uint64_t Addr
uint64_t Size
std::optional< std::vector< StOtherPiece > > Other
Definition: ELFYAML.cpp:1309
RelaxConfig Config
Definition: ELF_riscv.cpp:506
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
#define _
static void addEdge(SmallVectorImpl< LazyCallGraph::Edge > &Edges, DenseMap< LazyCallGraph::Node *, int > &EdgeIndexMap, LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK)
static LoopDeletionResult merge(LoopDeletionResult A, LoopDeletionResult B)
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
#define P(N)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static void initialize(TargetLibraryInfoImpl &TLI, const Triple &T, ArrayRef< StringLiteral > StandardNames)
Initialize the set of available library functions based on the specified target triple.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
const T & back() const
back - Get the last element.
Definition: ArrayRef.h:174
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:165
Target - Wrapper for Target specific information.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ ReallyHidden
Definition: CommandLine.h:138
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
std::vector< uint64_t > computeCacheDirectedLayout(ArrayRef< uint64_t > FuncSizes, ArrayRef< uint64_t > FuncCounts, ArrayRef< EdgeCount > CallCounts, ArrayRef< uint64_t > CallOffsets)
Apply a Cache-Directed Sort for functions represented by a call graph.
double calcExtTspScore(ArrayRef< uint64_t > Order, ArrayRef< uint64_t > NodeSizes, ArrayRef< uint64_t > NodeCounts, ArrayRef< EdgeCount > EdgeCounts)
Estimate the "quality" of a given node order in CFG.
std::vector< uint64_t > computeExtTspLayout(ArrayRef< uint64_t > NodeSizes, ArrayRef< uint64_t > NodeCounts, ArrayRef< EdgeCount > EdgeCounts)
Find a layout of nodes (basic blocks) of a given CFG optimizing jump locality and thus processor I-ca...
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
NodeAddr< FuncNode * > Func
Definition: RDFGraph.h:393
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
bool operator<(int64_t V1, const APSInt &V2)
Definition: APSInt.h:361
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1680
cl::opt< bool > ApplyExtTspWithoutProfile
void erase(Container &C, ValueType V)
Wrapper function to remove a value from a container:
Definition: STLExtras.h:2090
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
cl::opt< bool > EnableExtTspBlockPlacement
Algorithm-specific params for Cache-Directed Sort.
Definition: CodeLayout.h:62