LLVM 19.0.0git
ValueTracking.h
Go to the documentation of this file.
1//===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains routines that help analyze properties that chains of
10// computations have.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ANALYSIS_VALUETRACKING_H
15#define LLVM_ANALYSIS_VALUETRACKING_H
16
17#include "llvm/ADT/ArrayRef.h"
20#include "llvm/IR/Constants.h"
21#include "llvm/IR/DataLayout.h"
22#include "llvm/IR/FMF.h"
24#include "llvm/IR/InstrTypes.h"
25#include "llvm/IR/Intrinsics.h"
26#include <cassert>
27#include <cstdint>
28
29namespace llvm {
30
31class Operator;
32class AddOperator;
33class AllocaInst;
34class APInt;
35class AssumptionCache;
36class DominatorTree;
37class GEPOperator;
38class LoadInst;
39class WithOverflowInst;
40struct KnownBits;
41class Loop;
42class LoopInfo;
43class MDNode;
44class StringRef;
45class TargetLibraryInfo;
46class Value;
47
48constexpr unsigned MaxAnalysisRecursionDepth = 6;
49
50/// Determine which bits of V are known to be either zero or one and return
51/// them in the KnownZero/KnownOne bit sets.
52///
53/// This function is defined on values with integer type, values with pointer
54/// type, and vectors of integers. In the case
55/// where V is a vector, the known zero and known one values are the
56/// same width as the vector element, and the bit is set only if it is true
57/// for all of the elements in the vector.
58void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL,
59 unsigned Depth = 0, AssumptionCache *AC = nullptr,
60 const Instruction *CxtI = nullptr,
61 const DominatorTree *DT = nullptr,
62 bool UseInstrInfo = true);
63
64/// Returns the known bits rather than passing by reference.
66 unsigned Depth = 0, AssumptionCache *AC = nullptr,
67 const Instruction *CxtI = nullptr,
68 const DominatorTree *DT = nullptr,
69 bool UseInstrInfo = true);
70
71/// Returns the known bits rather than passing by reference.
72KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
73 const DataLayout &DL, unsigned Depth = 0,
74 AssumptionCache *AC = nullptr,
75 const Instruction *CxtI = nullptr,
76 const DominatorTree *DT = nullptr,
77 bool UseInstrInfo = true);
78
79KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
80 unsigned Depth, const SimplifyQuery &Q);
81
82KnownBits computeKnownBits(const Value *V, unsigned Depth,
83 const SimplifyQuery &Q);
84
85void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
86 const SimplifyQuery &Q);
87
88/// Compute known bits from the range metadata.
89/// \p KnownZero the set of bits that are known to be zero
90/// \p KnownOne the set of bits that are known to be one
91void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known);
92
93/// Merge bits known from context-dependent facts into Known.
94void computeKnownBitsFromContext(const Value *V, KnownBits &Known,
95 unsigned Depth, const SimplifyQuery &Q);
96
97/// Using KnownBits LHS/RHS produce the known bits for logic op (and/xor/or).
99 const KnownBits &KnownLHS,
100 const KnownBits &KnownRHS,
101 unsigned Depth, const SimplifyQuery &SQ);
102
103/// Return true if LHS and RHS have no common bits set.
105 const WithCache<const Value *> &RHSCache,
106 const SimplifyQuery &SQ);
107
108/// Return true if the given value is known to have exactly one bit set when
109/// defined. For vectors return true if every element is known to be a power
110/// of two when defined. Supports values with integer or pointer type and
111/// vectors of integers. If 'OrZero' is set, then return true if the given
112/// value is either a power of two or zero.
113bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
114 bool OrZero = false, unsigned Depth = 0,
115 AssumptionCache *AC = nullptr,
116 const Instruction *CxtI = nullptr,
117 const DominatorTree *DT = nullptr,
118 bool UseInstrInfo = true);
119
121
122/// Return true if the given value is known to be non-zero when defined. For
123/// vectors, return true if every element is known to be non-zero when
124/// defined. For pointers, if the context instruction and dominator tree are
125/// specified, perform context-sensitive analysis and return true if the
126/// pointer couldn't possibly be null at the specified instruction.
127/// Supports values with integer or pointer type and vectors of integers.
128bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth = 0);
129
130/// Return true if the two given values are negation.
131/// Currently can recoginze Value pair:
132/// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X)
133/// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A)
134bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW = false,
135 bool AllowPoison = true);
136
137/// Returns true if the give value is known to be non-negative.
138bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ,
139 unsigned Depth = 0);
140
141/// Returns true if the given value is known be positive (i.e. non-negative
142/// and non-zero).
143bool isKnownPositive(const Value *V, const SimplifyQuery &SQ,
144 unsigned Depth = 0);
145
146/// Returns true if the given value is known be negative (i.e. non-positive
147/// and non-zero).
148bool isKnownNegative(const Value *V, const SimplifyQuery &DL,
149 unsigned Depth = 0);
150
151/// Return true if the given values are known to be non-equal when defined.
152/// Supports scalar integer types only.
153bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL,
154 AssumptionCache *AC = nullptr,
155 const Instruction *CxtI = nullptr,
156 const DominatorTree *DT = nullptr,
157 bool UseInstrInfo = true);
158
159/// Return true if 'V & Mask' is known to be zero. We use this predicate to
160/// simplify operations downstream. Mask is known to be zero for bits that V
161/// cannot have.
162///
163/// This function is defined on values with integer type, values with pointer
164/// type, and vectors of integers. In the case
165/// where V is a vector, the mask, known zero, and known one values are the
166/// same width as the vector element, and the bit is set only if it is true
167/// for all of the elements in the vector.
168bool MaskedValueIsZero(const Value *V, const APInt &Mask,
169 const SimplifyQuery &DL, unsigned Depth = 0);
170
171/// Return the number of times the sign bit of the register is replicated into
172/// the other bits. We know that at least 1 bit is always equal to the sign
173/// bit (itself), but other cases can give us information. For example,
174/// immediately after an "ashr X, 2", we know that the top 3 bits are all
175/// equal to each other, so we return 3. For vectors, return the number of
176/// sign bits for the vector element with the mininum number of known sign
177/// bits.
178unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL,
179 unsigned Depth = 0, AssumptionCache *AC = nullptr,
180 const Instruction *CxtI = nullptr,
181 const DominatorTree *DT = nullptr,
182 bool UseInstrInfo = true);
183
184/// Get the upper bound on bit size for this Value \p Op as a signed integer.
185/// i.e. x == sext(trunc(x to MaxSignificantBits) to bitwidth(x)).
186/// Similar to the APInt::getSignificantBits function.
187unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL,
188 unsigned Depth = 0,
189 AssumptionCache *AC = nullptr,
190 const Instruction *CxtI = nullptr,
191 const DominatorTree *DT = nullptr);
192
193/// Map a call instruction to an intrinsic ID. Libcalls which have equivalent
194/// intrinsics are treated as-if they were intrinsics.
196 const TargetLibraryInfo *TLI);
197
198/// Given an exploded icmp instruction, return true if the comparison only
199/// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if
200/// the result of the comparison is true when the input value is signed.
202 bool &TrueIfSigned);
203
204/// Returns a pair of values, which if passed to llvm.is.fpclass, returns the
205/// same result as an fcmp with the given operands.
206///
207/// If \p LookThroughSrc is true, consider the input value when computing the
208/// mask.
209///
210/// If \p LookThroughSrc is false, ignore the source value (i.e. the first pair
211/// element will always be LHS.
212std::pair<Value *, FPClassTest> fcmpToClassTest(CmpInst::Predicate Pred,
213 const Function &F, Value *LHS,
214 Value *RHS,
215 bool LookThroughSrc = true);
216std::pair<Value *, FPClassTest> fcmpToClassTest(CmpInst::Predicate Pred,
217 const Function &F, Value *LHS,
218 const APFloat *ConstRHS,
219 bool LookThroughSrc = true);
220
221/// Compute the possible floating-point classes that \p LHS could be based on
222/// fcmp \Pred \p LHS, \p RHS.
223///
224/// \returns { TestedValue, ClassesIfTrue, ClassesIfFalse }
225///
226/// If the compare returns an exact class test, ClassesIfTrue == ~ClassesIfFalse
227///
228/// This is a less exact version of fcmpToClassTest (e.g. fcmpToClassTest will
229/// only succeed for a test of x > 0 implies positive, but not x > 1).
230///
231/// If \p LookThroughSrc is true, consider the input value when computing the
232/// mask. This may look through sign bit operations.
233///
234/// If \p LookThroughSrc is false, ignore the source value (i.e. the first pair
235/// element will always be LHS.
236///
237std::tuple<Value *, FPClassTest, FPClassTest>
239 Value *RHS, bool LookThroughSrc = true);
240std::tuple<Value *, FPClassTest, FPClassTest>
242 FPClassTest RHS, bool LookThroughSrc = true);
243std::tuple<Value *, FPClassTest, FPClassTest>
245 const APFloat &RHS, bool LookThroughSrc = true);
246
248 /// Floating-point classes the value could be one of.
250
251 /// std::nullopt if the sign bit is unknown, true if the sign bit is
252 /// definitely set or false if the sign bit is definitely unset.
253 std::optional<bool> SignBit;
254
256 return KnownFPClasses == Other.KnownFPClasses && SignBit == Other.SignBit;
257 }
258
259 /// Return true if it's known this can never be one of the mask entries.
260 bool isKnownNever(FPClassTest Mask) const {
261 return (KnownFPClasses & Mask) == fcNone;
262 }
263
264 bool isUnknown() const {
265 return KnownFPClasses == fcAllFlags && !SignBit;
266 }
267
268 /// Return true if it's known this can never be a nan.
269 bool isKnownNeverNaN() const {
270 return isKnownNever(fcNan);
271 }
272
273 /// Return true if it's known this can never be an infinity.
274 bool isKnownNeverInfinity() const {
275 return isKnownNever(fcInf);
276 }
277
278 /// Return true if it's known this can never be +infinity.
280 return isKnownNever(fcPosInf);
281 }
282
283 /// Return true if it's known this can never be -infinity.
285 return isKnownNever(fcNegInf);
286 }
287
288 /// Return true if it's known this can never be a subnormal
291 }
292
293 /// Return true if it's known this can never be a positive subnormal
296 }
297
298 /// Return true if it's known this can never be a negative subnormal
301 }
302
303 /// Return true if it's known this can never be a zero. This means a literal
304 /// [+-]0, and does not include denormal inputs implicitly treated as [+-]0.
305 bool isKnownNeverZero() const {
306 return isKnownNever(fcZero);
307 }
308
309 /// Return true if it's known this can never be a literal positive zero.
310 bool isKnownNeverPosZero() const {
311 return isKnownNever(fcPosZero);
312 }
313
314 /// Return true if it's known this can never be a negative zero. This means a
315 /// literal -0 and does not include denormal inputs implicitly treated as -0.
316 bool isKnownNeverNegZero() const {
317 return isKnownNever(fcNegZero);
318 }
319
320 /// Return true if it's know this can never be interpreted as a zero. This
321 /// extends isKnownNeverZero to cover the case where the assumed
322 /// floating-point mode for the function interprets denormals as zero.
323 bool isKnownNeverLogicalZero(const Function &F, Type *Ty) const;
324
325 /// Return true if it's know this can never be interpreted as a negative zero.
326 bool isKnownNeverLogicalNegZero(const Function &F, Type *Ty) const;
327
328 /// Return true if it's know this can never be interpreted as a positive zero.
329 bool isKnownNeverLogicalPosZero(const Function &F, Type *Ty) const;
330
335
336 /// Return true if we can prove that the analyzed floating-point value is
337 /// either NaN or never less than -0.0.
338 ///
339 /// NaN --> true
340 /// +0 --> true
341 /// -0 --> true
342 /// x > +0 --> true
343 /// x < -0 --> false
346 }
347
348 /// Return true if we can prove that the analyzed floating-point value is
349 /// either NaN or never greater than -0.0.
350 /// NaN --> true
351 /// +0 --> true
352 /// -0 --> true
353 /// x > +0 --> false
354 /// x < -0 --> true
357 }
358
360 KnownFPClasses = KnownFPClasses | RHS.KnownFPClasses;
361
362 if (SignBit != RHS.SignBit)
363 SignBit = std::nullopt;
364 return *this;
365 }
366
367 void knownNot(FPClassTest RuleOut) {
368 KnownFPClasses = KnownFPClasses & ~RuleOut;
369 if (isKnownNever(fcNan) && !SignBit) {
371 SignBit = false;
372 else if (isKnownNever(fcPositive))
373 SignBit = true;
374 }
375 }
376
377 void fneg() {
379 if (SignBit)
380 SignBit = !*SignBit;
381 }
382
383 void fabs() {
386
389
392
395
397 }
398
399 /// Return true if the sign bit must be 0, ignoring the sign of nans.
400 bool signBitIsZeroOrNaN() const {
401 return isKnownNever(fcNegative);
402 }
403
404 /// Assume the sign bit is zero.
407 SignBit = false;
408 }
409
410 /// Assume the sign bit is one.
413 SignBit = true;
414 }
415
416 void copysign(const KnownFPClass &Sign) {
417 // Don't know anything about the sign of the source. Expand the possible set
418 // to its opposite sign pair.
425 if (KnownFPClasses & fcInf)
427
428 // Sign bit is exactly preserved even for nans.
429 SignBit = Sign.SignBit;
430
431 // Clear sign bits based on the input sign mask.
432 if (Sign.isKnownNever(fcPositive | fcNan) || (SignBit && *SignBit))
434 if (Sign.isKnownNever(fcNegative | fcNan) || (SignBit && !*SignBit))
436 }
437
438 // Propagate knowledge that a non-NaN source implies the result can also not
439 // be a NaN. For unconstrained operations, signaling nans are not guaranteed
440 // to be quieted but cannot be introduced.
441 void propagateNaN(const KnownFPClass &Src, bool PreserveSign = false) {
442 if (Src.isKnownNever(fcNan)) {
444 if (PreserveSign)
445 SignBit = Src.SignBit;
446 } else if (Src.isKnownNever(fcSNan))
448 }
449
450 /// Propagate knowledge from a source value that could be a denormal or
451 /// zero. We have to be conservative since output flushing is not guaranteed,
452 /// so known-never-zero may not hold.
453 ///
454 /// This assumes a copy-like operation and will replace any currently known
455 /// information.
456 void propagateDenormal(const KnownFPClass &Src, const Function &F, Type *Ty);
457
458 /// Report known classes if \p Src is evaluated through a potentially
459 /// canonicalizing operation. We can assume signaling nans will not be
460 /// introduced, but cannot assume a denormal will be flushed under FTZ/DAZ.
461 ///
462 /// This assumes a copy-like operation and will replace any currently known
463 /// information.
464 void propagateCanonicalizingSrc(const KnownFPClass &Src, const Function &F,
465 Type *Ty);
466
467 void resetAll() { *this = KnownFPClass(); }
468};
469
471 LHS |= RHS;
472 return LHS;
473}
474
476 RHS |= LHS;
477 return std::move(RHS);
478}
479
480/// Determine which floating-point classes are valid for \p V, and return them
481/// in KnownFPClass bit sets.
482///
483/// This function is defined on values with floating-point type, values vectors
484/// of floating-point type, and arrays of floating-point type.
485
486/// \p InterestedClasses is a compile time optimization hint for which floating
487/// point classes should be queried. Queries not specified in \p
488/// InterestedClasses should be reliable if they are determined during the
489/// query.
490KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts,
491 FPClassTest InterestedClasses, unsigned Depth,
492 const SimplifyQuery &SQ);
493
494KnownFPClass computeKnownFPClass(const Value *V, FPClassTest InterestedClasses,
495 unsigned Depth, const SimplifyQuery &SQ);
496
498 const Value *V, const DataLayout &DL,
499 FPClassTest InterestedClasses = fcAllFlags, unsigned Depth = 0,
500 const TargetLibraryInfo *TLI = nullptr, AssumptionCache *AC = nullptr,
501 const Instruction *CxtI = nullptr, const DominatorTree *DT = nullptr,
502 bool UseInstrInfo = true) {
503 return computeKnownFPClass(
504 V, InterestedClasses, Depth,
505 SimplifyQuery(DL, TLI, DT, AC, CxtI, UseInstrInfo));
506}
507
508/// Wrapper to account for known fast math flags at the use instruction.
510 FPClassTest InterestedClasses,
511 unsigned Depth,
512 const SimplifyQuery &SQ) {
513 if (FMF.noNaNs())
514 InterestedClasses &= ~fcNan;
515 if (FMF.noInfs())
516 InterestedClasses &= ~fcInf;
517
518 KnownFPClass Result = computeKnownFPClass(V, InterestedClasses, Depth, SQ);
519
520 if (FMF.noNaNs())
521 Result.KnownFPClasses &= ~fcNan;
522 if (FMF.noInfs())
523 Result.KnownFPClasses &= ~fcInf;
524 return Result;
525}
526
527/// Return true if we can prove that the specified FP value is never equal to
528/// -0.0. Users should use caution when considering PreserveSign
529/// denormal-fp-math.
530inline bool cannotBeNegativeZero(const Value *V, unsigned Depth,
531 const SimplifyQuery &SQ) {
533 return Known.isKnownNeverNegZero();
534}
535
536/// Return true if we can prove that the specified FP value is either NaN or
537/// never less than -0.0.
538///
539/// NaN --> true
540/// +0 --> true
541/// -0 --> true
542/// x > +0 --> true
543/// x < -0 --> false
544inline bool cannotBeOrderedLessThanZero(const Value *V, unsigned Depth,
545 const SimplifyQuery &SQ) {
546 KnownFPClass Known =
548 return Known.cannotBeOrderedLessThanZero();
549}
550
551/// Return true if the floating-point scalar value is not an infinity or if
552/// the floating-point vector value has no infinities. Return false if a value
553/// could ever be infinity.
554inline bool isKnownNeverInfinity(const Value *V, unsigned Depth,
555 const SimplifyQuery &SQ) {
557 return Known.isKnownNeverInfinity();
558}
559
560/// Return true if the floating-point value can never contain a NaN or infinity.
561inline bool isKnownNeverInfOrNaN(const Value *V, unsigned Depth,
562 const SimplifyQuery &SQ) {
564 return Known.isKnownNeverNaN() && Known.isKnownNeverInfinity();
565}
566
567/// Return true if the floating-point scalar value is not a NaN or if the
568/// floating-point vector value has no NaN elements. Return false if a value
569/// could ever be NaN.
570inline bool isKnownNeverNaN(const Value *V, unsigned Depth,
571 const SimplifyQuery &SQ) {
573 return Known.isKnownNeverNaN();
574}
575
576/// Return false if we can prove that the specified FP value's sign bit is 0.
577/// Return true if we can prove that the specified FP value's sign bit is 1.
578/// Otherwise return std::nullopt.
579inline std::optional<bool> computeKnownFPSignBit(const Value *V, unsigned Depth,
580 const SimplifyQuery &SQ) {
582 return Known.SignBit;
583}
584
585/// If the specified value can be set by repeating the same byte in memory,
586/// return the i8 value that it is represented with. This is true for all i8
587/// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
588/// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
589/// i16 0x1234), return null. If the value is entirely undef and padding,
590/// return undef.
591Value *isBytewiseValue(Value *V, const DataLayout &DL);
592
593/// Given an aggregate and an sequence of indices, see if the scalar value
594/// indexed is already around as a register, for example if it were inserted
595/// directly into the aggregate.
596///
597/// If InsertBefore is not empty, this function will duplicate (modified)
598/// insertvalues when a part of a nested struct is extracted.
599Value *FindInsertedValue(
600 Value *V, ArrayRef<unsigned> idx_range,
601 std::optional<BasicBlock::iterator> InsertBefore = std::nullopt);
602
603/// Analyze the specified pointer to see if it can be expressed as a base
604/// pointer plus a constant offset. Return the base and offset to the caller.
605///
606/// This is a wrapper around Value::stripAndAccumulateConstantOffsets that
607/// creates and later unpacks the required APInt.
609 const DataLayout &DL,
610 bool AllowNonInbounds = true) {
611 APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
612 Value *Base =
613 Ptr->stripAndAccumulateConstantOffsets(DL, OffsetAPInt, AllowNonInbounds);
614
615 Offset = OffsetAPInt.getSExtValue();
616 return Base;
617}
618inline const Value *
620 const DataLayout &DL,
621 bool AllowNonInbounds = true) {
622 return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset, DL,
623 AllowNonInbounds);
624}
625
626/// Returns true if the GEP is based on a pointer to a string (array of
627// \p CharSize integers) and is indexing into this string.
628bool isGEPBasedOnPointerToString(const GEPOperator *GEP, unsigned CharSize = 8);
629
630/// Represents offset+length into a ConstantDataArray.
632 /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
633 /// initializer, it just doesn't fit the ConstantDataArray interface).
635
636 /// Slice starts at this Offset.
638
639 /// Length of the slice.
641
642 /// Moves the Offset and adjusts Length accordingly.
643 void move(uint64_t Delta) {
644 assert(Delta < Length);
645 Offset += Delta;
646 Length -= Delta;
647 }
648
649 /// Convenience accessor for elements in the slice.
650 uint64_t operator[](unsigned I) const {
651 return Array == nullptr ? 0 : Array->getElementAsInteger(I + Offset);
652 }
653};
654
655/// Returns true if the value \p V is a pointer into a ConstantDataArray.
656/// If successful \p Slice will point to a ConstantDataArray info object
657/// with an appropriate offset.
658bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice,
659 unsigned ElementSize, uint64_t Offset = 0);
660
661/// This function computes the length of a null-terminated C string pointed to
662/// by V. If successful, it returns true and returns the string in Str. If
663/// unsuccessful, it returns false. This does not include the trailing null
664/// character by default. If TrimAtNul is set to false, then this returns any
665/// trailing null characters as well as any other characters that come after
666/// it.
667bool getConstantStringInfo(const Value *V, StringRef &Str,
668 bool TrimAtNul = true);
669
670/// If we can compute the length of the string pointed to by the specified
671/// pointer, return 'len+1'. If we can't, return 0.
672uint64_t GetStringLength(const Value *V, unsigned CharSize = 8);
673
674/// This function returns call pointer argument that is considered the same by
675/// aliasing rules. You CAN'T use it to replace one value with another. If
676/// \p MustPreserveNullness is true, the call must preserve the nullness of
677/// the pointer.
678const Value *getArgumentAliasingToReturnedPointer(const CallBase *Call,
679 bool MustPreserveNullness);
681 bool MustPreserveNullness) {
682 return const_cast<Value *>(getArgumentAliasingToReturnedPointer(
683 const_cast<const CallBase *>(Call), MustPreserveNullness));
684}
685
686/// {launder,strip}.invariant.group returns pointer that aliases its argument,
687/// and it only captures pointer by returning it.
688/// These intrinsics are not marked as nocapture, because returning is
689/// considered as capture. The arguments are not marked as returned neither,
690/// because it would make it useless. If \p MustPreserveNullness is true,
691/// the intrinsic must preserve the nullness of the pointer.
693 const CallBase *Call, bool MustPreserveNullness);
694
695/// This method strips off any GEP address adjustments, pointer casts
696/// or `llvm.threadlocal.address` from the specified value \p V, returning the
697/// original object being addressed. Note that the returned value has pointer
698/// type if the specified value does. If the \p MaxLookup value is non-zero, it
699/// limits the number of instructions to be stripped off.
700const Value *getUnderlyingObject(const Value *V, unsigned MaxLookup = 6);
701inline Value *getUnderlyingObject(Value *V, unsigned MaxLookup = 6) {
702 // Force const to avoid infinite recursion.
703 const Value *VConst = V;
704 return const_cast<Value *>(getUnderlyingObject(VConst, MaxLookup));
705}
706
707/// This method is similar to getUnderlyingObject except that it can
708/// look through phi and select instructions and return multiple objects.
709///
710/// If LoopInfo is passed, loop phis are further analyzed. If a pointer
711/// accesses different objects in each iteration, we don't look through the
712/// phi node. E.g. consider this loop nest:
713///
714/// int **A;
715/// for (i)
716/// for (j) {
717/// A[i][j] = A[i-1][j] * B[j]
718/// }
719///
720/// This is transformed by Load-PRE to stash away A[i] for the next iteration
721/// of the outer loop:
722///
723/// Curr = A[0]; // Prev_0
724/// for (i: 1..N) {
725/// Prev = Curr; // Prev = PHI (Prev_0, Curr)
726/// Curr = A[i];
727/// for (j: 0..N) {
728/// Curr[j] = Prev[j] * B[j]
729/// }
730/// }
731///
732/// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
733/// should not assume that Curr and Prev share the same underlying object thus
734/// it shouldn't look through the phi above.
735void getUnderlyingObjects(const Value *V,
736 SmallVectorImpl<const Value *> &Objects,
737 LoopInfo *LI = nullptr, unsigned MaxLookup = 6);
738
739/// This is a wrapper around getUnderlyingObjects and adds support for basic
740/// ptrtoint+arithmetic+inttoptr sequences.
741bool getUnderlyingObjectsForCodeGen(const Value *V,
742 SmallVectorImpl<Value *> &Objects);
743
744/// Returns unique alloca where the value comes from, or nullptr.
745/// If OffsetZero is true check that V points to the begining of the alloca.
746AllocaInst *findAllocaForValue(Value *V, bool OffsetZero = false);
747inline const AllocaInst *findAllocaForValue(const Value *V,
748 bool OffsetZero = false) {
749 return findAllocaForValue(const_cast<Value *>(V), OffsetZero);
750}
751
752/// Return true if the only users of this pointer are lifetime markers.
753bool onlyUsedByLifetimeMarkers(const Value *V);
754
755/// Return true if the only users of this pointer are lifetime markers or
756/// droppable instructions.
758
759/// Return true if speculation of the given load must be suppressed to avoid
760/// ordering or interfering with an active sanitizer. If not suppressed,
761/// dereferenceability and alignment must be proven separately. Note: This
762/// is only needed for raw reasoning; if you use the interface below
763/// (isSafeToSpeculativelyExecute), this is handled internally.
764bool mustSuppressSpeculation(const LoadInst &LI);
765
766/// Return true if the instruction does not have any effects besides
767/// calculating the result and does not have undefined behavior.
768///
769/// This method never returns true for an instruction that returns true for
770/// mayHaveSideEffects; however, this method also does some other checks in
771/// addition. It checks for undefined behavior, like dividing by zero or
772/// loading from an invalid pointer (but not for undefined results, like a
773/// shift with a shift amount larger than the width of the result). It checks
774/// for malloc and alloca because speculatively executing them might cause a
775/// memory leak. It also returns false for instructions related to control
776/// flow, specifically terminators and PHI nodes.
777///
778/// If the CtxI is specified this method performs context-sensitive analysis
779/// and returns true if it is safe to execute the instruction immediately
780/// before the CtxI.
781///
782/// If the CtxI is NOT specified this method only looks at the instruction
783/// itself and its operands, so if this method returns true, it is safe to
784/// move the instruction as long as the correct dominance relationships for
785/// the operands and users hold.
786///
787/// This method can return true for instructions that read memory;
788/// for such instructions, moving them may change the resulting value.
789bool isSafeToSpeculativelyExecute(const Instruction *I,
790 const Instruction *CtxI = nullptr,
791 AssumptionCache *AC = nullptr,
792 const DominatorTree *DT = nullptr,
793 const TargetLibraryInfo *TLI = nullptr);
794
795inline bool
797 AssumptionCache *AC = nullptr,
798 const DominatorTree *DT = nullptr,
799 const TargetLibraryInfo *TLI = nullptr) {
800 // Take an iterator, and unwrap it into an Instruction *.
801 return isSafeToSpeculativelyExecute(I, &*CtxI, AC, DT, TLI);
802}
803
804/// This returns the same result as isSafeToSpeculativelyExecute if Opcode is
805/// the actual opcode of Inst. If the provided and actual opcode differ, the
806/// function (virtually) overrides the opcode of Inst with the provided
807/// Opcode. There are come constraints in this case:
808/// * If Opcode has a fixed number of operands (eg, as binary operators do),
809/// then Inst has to have at least as many leading operands. The function
810/// will ignore all trailing operands beyond that number.
811/// * If Opcode allows for an arbitrary number of operands (eg, as CallInsts
812/// do), then all operands are considered.
813/// * The virtual instruction has to satisfy all typing rules of the provided
814/// Opcode.
815/// * This function is pessimistic in the following sense: If one actually
816/// materialized the virtual instruction, then isSafeToSpeculativelyExecute
817/// may say that the materialized instruction is speculatable whereas this
818/// function may have said that the instruction wouldn't be speculatable.
819/// This behavior is a shortcoming in the current implementation and not
820/// intentional.
822 unsigned Opcode, const Instruction *Inst, const Instruction *CtxI = nullptr,
823 AssumptionCache *AC = nullptr, const DominatorTree *DT = nullptr,
824 const TargetLibraryInfo *TLI = nullptr);
825
826/// Returns true if the result or effects of the given instructions \p I
827/// depend values not reachable through the def use graph.
828/// * Memory dependence arises for example if the instruction reads from
829/// memory or may produce effects or undefined behaviour. Memory dependent
830/// instructions generally cannot be reorderd with respect to other memory
831/// dependent instructions.
832/// * Control dependence arises for example if the instruction may fault
833/// if lifted above a throwing call or infinite loop.
834bool mayHaveNonDefUseDependency(const Instruction &I);
835
836/// Return true if it is an intrinsic that cannot be speculated but also
837/// cannot trap.
838bool isAssumeLikeIntrinsic(const Instruction *I);
839
840/// Return true if it is valid to use the assumptions provided by an
841/// assume intrinsic, I, at the point in the control-flow identified by the
842/// context instruction, CxtI. By default, ephemeral values of the assumption
843/// are treated as an invalid context, to prevent the assumption from being used
844/// to optimize away its argument. If the caller can ensure that this won't
845/// happen, it can call with AllowEphemerals set to true to get more valid
846/// assumptions.
847bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
848 const DominatorTree *DT = nullptr,
849 bool AllowEphemerals = false);
850
851enum class OverflowResult {
852 /// Always overflows in the direction of signed/unsigned min value.
854 /// Always overflows in the direction of signed/unsigned max value.
856 /// May or may not overflow.
858 /// Never overflows.
860};
861
862OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS,
863 const SimplifyQuery &SQ);
864OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
865 const SimplifyQuery &SQ);
867computeOverflowForUnsignedAdd(const WithCache<const Value *> &LHS,
868 const WithCache<const Value *> &RHS,
869 const SimplifyQuery &SQ);
870OverflowResult computeOverflowForSignedAdd(const WithCache<const Value *> &LHS,
871 const WithCache<const Value *> &RHS,
872 const SimplifyQuery &SQ);
873/// This version also leverages the sign bit of Add if known.
875 const SimplifyQuery &SQ);
876OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS,
877 const SimplifyQuery &SQ);
878OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
879 const SimplifyQuery &SQ);
880
881/// Returns true if the arithmetic part of the \p WO 's result is
882/// used only along the paths control dependent on the computation
883/// not overflowing, \p WO being an <op>.with.overflow intrinsic.
884bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
885 const DominatorTree &DT);
886
887/// Determine the possible constant range of vscale with the given bit width,
888/// based on the vscale_range function attribute.
889ConstantRange getVScaleRange(const Function *F, unsigned BitWidth);
890
891/// Determine the possible constant range of an integer or vector of integer
892/// value. This is intended as a cheap, non-recursive check.
893ConstantRange computeConstantRange(const Value *V, bool ForSigned,
894 bool UseInstrInfo = true,
895 AssumptionCache *AC = nullptr,
896 const Instruction *CtxI = nullptr,
897 const DominatorTree *DT = nullptr,
898 unsigned Depth = 0);
899
900/// Combine constant ranges from computeConstantRange() and computeKnownBits().
901ConstantRange
902computeConstantRangeIncludingKnownBits(const WithCache<const Value *> &V,
903 bool ForSigned, const SimplifyQuery &SQ);
904
905/// Return true if this function can prove that the instruction I will
906/// always transfer execution to one of its successors (including the next
907/// instruction that follows within a basic block). E.g. this is not
908/// guaranteed for function calls that could loop infinitely.
909///
910/// In other words, this function returns false for instructions that may
911/// transfer execution or fail to transfer execution in a way that is not
912/// captured in the CFG nor in the sequence of instructions within a basic
913/// block.
914///
915/// Undefined behavior is assumed not to happen, so e.g. division is
916/// guaranteed to transfer execution to the following instruction even
917/// though division by zero might cause undefined behavior.
918bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I);
919
920/// Returns true if this block does not contain a potential implicit exit.
921/// This is equivelent to saying that all instructions within the basic block
922/// are guaranteed to transfer execution to their successor within the basic
923/// block. This has the same assumptions w.r.t. undefined behavior as the
924/// instruction variant of this function.
925bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB);
926
927/// Return true if every instruction in the range (Begin, End) is
928/// guaranteed to transfer execution to its static successor. \p ScanLimit
929/// bounds the search to avoid scanning huge blocks.
932 unsigned ScanLimit = 32);
933
934/// Same as previous, but with range expressed via iterator_range.
936 iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit = 32);
937
938/// Return true if this function can prove that the instruction I
939/// is executed for every iteration of the loop L.
940///
941/// Note that this currently only considers the loop header.
942bool isGuaranteedToExecuteForEveryIteration(const Instruction *I,
943 const Loop *L);
944
945/// Return true if \p PoisonOp's user yields poison or raises UB if its
946/// operand \p PoisonOp is poison.
947///
948/// If \p PoisonOp is a vector or an aggregate and the operation's result is a
949/// single value, any poison element in /p PoisonOp should make the result
950/// poison or raise UB.
951///
952/// To filter out operands that raise UB on poison, you can use
953/// getGuaranteedNonPoisonOp.
954bool propagatesPoison(const Use &PoisonOp);
955
956/// Insert operands of I into Ops such that I will trigger undefined behavior
957/// if I is executed and that operand has a poison value.
958void getGuaranteedNonPoisonOps(const Instruction *I,
959 SmallVectorImpl<const Value *> &Ops);
960
961/// Insert operands of I into Ops such that I will trigger undefined behavior
962/// if I is executed and that operand is not a well-defined value
963/// (i.e. has undef bits or poison).
964void getGuaranteedWellDefinedOps(const Instruction *I,
965 SmallVectorImpl<const Value *> &Ops);
966
967/// Return true if the given instruction must trigger undefined behavior
968/// when I is executed with any operands which appear in KnownPoison holding
969/// a poison value at the point of execution.
970bool mustTriggerUB(const Instruction *I,
971 const SmallPtrSetImpl<const Value *> &KnownPoison);
972
973/// Return true if this function can prove that if Inst is executed
974/// and yields a poison value or undef bits, then that will trigger
975/// undefined behavior.
976///
977/// Note that this currently only considers the basic block that is
978/// the parent of Inst.
979bool programUndefinedIfUndefOrPoison(const Instruction *Inst);
980bool programUndefinedIfPoison(const Instruction *Inst);
981
982/// canCreateUndefOrPoison returns true if Op can create undef or poison from
983/// non-undef & non-poison operands.
984/// For vectors, canCreateUndefOrPoison returns true if there is potential
985/// poison or undef in any element of the result when vectors without
986/// undef/poison poison are given as operands.
987/// For example, given `Op = shl <2 x i32> %x, <0, 32>`, this function returns
988/// true. If Op raises immediate UB but never creates poison or undef
989/// (e.g. sdiv I, 0), canCreatePoison returns false.
990///
991/// \p ConsiderFlagsAndMetadata controls whether poison producing flags and
992/// metadata on the instruction are considered. This can be used to see if the
993/// instruction could still introduce undef or poison even without poison
994/// generating flags and metadata which might be on the instruction.
995/// (i.e. could the result of Op->dropPoisonGeneratingFlags() still create
996/// poison or undef)
997///
998/// canCreatePoison returns true if Op can create poison from non-poison
999/// operands.
1000bool canCreateUndefOrPoison(const Operator *Op,
1001 bool ConsiderFlagsAndMetadata = true);
1002bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata = true);
1003
1004/// Return true if V is poison given that ValAssumedPoison is already poison.
1005/// For example, if ValAssumedPoison is `icmp X, 10` and V is `icmp X, 5`,
1006/// impliesPoison returns true.
1007bool impliesPoison(const Value *ValAssumedPoison, const Value *V);
1008
1009/// Return true if this function can prove that V does not have undef bits
1010/// and is never poison. If V is an aggregate value or vector, check whether
1011/// all elements (except padding) are not undef or poison.
1012/// Note that this is different from canCreateUndefOrPoison because the
1013/// function assumes Op's operands are not poison/undef.
1014///
1015/// If CtxI and DT are specified this method performs flow-sensitive analysis
1016/// and returns true if it is guaranteed to be never undef or poison
1017/// immediately before the CtxI.
1018bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
1019 AssumptionCache *AC = nullptr,
1020 const Instruction *CtxI = nullptr,
1021 const DominatorTree *DT = nullptr,
1022 unsigned Depth = 0);
1023
1024/// Returns true if V cannot be poison, but may be undef.
1025bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC = nullptr,
1026 const Instruction *CtxI = nullptr,
1027 const DominatorTree *DT = nullptr,
1028 unsigned Depth = 0);
1029
1032 const DominatorTree *DT = nullptr,
1033 unsigned Depth = 0) {
1034 // Takes an iterator as a position, passes down to Instruction *
1035 // implementation.
1036 return isGuaranteedNotToBePoison(V, AC, &*CtxI, DT, Depth);
1037}
1038
1039/// Returns true if V cannot be undef, but may be poison.
1040bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC = nullptr,
1041 const Instruction *CtxI = nullptr,
1042 const DominatorTree *DT = nullptr,
1043 unsigned Depth = 0);
1044
1045/// Return true if undefined behavior would provable be executed on the path to
1046/// OnPathTo if Root produced a posion result. Note that this doesn't say
1047/// anything about whether OnPathTo is actually executed or whether Root is
1048/// actually poison. This can be used to assess whether a new use of Root can
1049/// be added at a location which is control equivalent with OnPathTo (such as
1050/// immediately before it) without introducing UB which didn't previously
1051/// exist. Note that a false result conveys no information.
1052bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
1053 Instruction *OnPathTo,
1054 DominatorTree *DT);
1055
1056/// Specific patterns of select instructions we can match.
1059 SPF_SMIN, /// Signed minimum
1060 SPF_UMIN, /// Unsigned minimum
1061 SPF_SMAX, /// Signed maximum
1062 SPF_UMAX, /// Unsigned maximum
1063 SPF_FMINNUM, /// Floating point minnum
1064 SPF_FMAXNUM, /// Floating point maxnum
1065 SPF_ABS, /// Absolute value
1066 SPF_NABS /// Negated absolute value
1068
1069/// Behavior when a floating point min/max is given one NaN and one
1070/// non-NaN as input.
1072 SPNB_NA = 0, /// NaN behavior not applicable.
1073 SPNB_RETURNS_NAN, /// Given one NaN input, returns the NaN.
1074 SPNB_RETURNS_OTHER, /// Given one NaN input, returns the non-NaN.
1075 SPNB_RETURNS_ANY /// Given one NaN input, can return either (or
1076 /// it has been determined that no operands can
1077 /// be NaN).
1079
1082 SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is
1083 /// SPF_FMINNUM or SPF_FMAXNUM.
1084 bool Ordered; /// When implementing this min/max pattern as
1085 /// fcmp; select, does the fcmp have to be
1086 /// ordered?
1087
1088 /// Return true if \p SPF is a min or a max pattern.
1090 return SPF != SPF_UNKNOWN && SPF != SPF_ABS && SPF != SPF_NABS;
1091 }
1092};
1093
1094/// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
1095/// and providing the out parameter results if we successfully match.
1096///
1097/// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be
1098/// the negation instruction from the idiom.
1099///
1100/// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
1101/// not match that of the original select. If this is the case, the cast
1102/// operation (one of Trunc,SExt,Zext) that must be done to transform the
1103/// type of LHS and RHS into the type of V is returned in CastOp.
1104///
1105/// For example:
1106/// %1 = icmp slt i32 %a, i32 4
1107/// %2 = sext i32 %a to i64
1108/// %3 = select i1 %1, i64 %2, i64 4
1109///
1110/// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
1111///
1112SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
1113 Instruction::CastOps *CastOp = nullptr,
1114 unsigned Depth = 0);
1115
1117 const Value *&RHS) {
1118 Value *L = const_cast<Value *>(LHS);
1119 Value *R = const_cast<Value *>(RHS);
1120 auto Result = matchSelectPattern(const_cast<Value *>(V), L, R);
1121 LHS = L;
1122 RHS = R;
1123 return Result;
1124}
1125
1126/// Determine the pattern that a select with the given compare as its
1127/// predicate and given values as its true/false operands would match.
1128SelectPatternResult matchDecomposedSelectPattern(
1129 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
1130 Instruction::CastOps *CastOp = nullptr, unsigned Depth = 0);
1131
1132/// Return the canonical comparison predicate for the specified
1133/// minimum/maximum flavor.
1134CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered = false);
1135
1136/// Return the inverse minimum/maximum flavor of the specified flavor.
1137/// For example, signed minimum is the inverse of signed maximum.
1139
1141
1142/// Return the minimum or maximum constant value for the specified integer
1143/// min/max flavor and type.
1144APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth);
1145
1146/// Check if the values in \p VL are select instructions that can be converted
1147/// to a min or max (vector) intrinsic. Returns the intrinsic ID, if such a
1148/// conversion is possible, together with a bool indicating whether all select
1149/// conditions are only used by the selects. Otherwise return
1150/// Intrinsic::not_intrinsic.
1151std::pair<Intrinsic::ID, bool>
1152canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL);
1153
1154/// Attempt to match a simple first order recurrence cycle of the form:
1155/// %iv = phi Ty [%Start, %Entry], [%Inc, %backedge]
1156/// %inc = binop %iv, %step
1157/// OR
1158/// %iv = phi Ty [%Start, %Entry], [%Inc, %backedge]
1159/// %inc = binop %step, %iv
1160///
1161/// A first order recurrence is a formula with the form: X_n = f(X_(n-1))
1162///
1163/// A couple of notes on subtleties in that definition:
1164/// * The Step does not have to be loop invariant. In math terms, it can
1165/// be a free variable. We allow recurrences with both constant and
1166/// variable coefficients. Callers may wish to filter cases where Step
1167/// does not dominate P.
1168/// * For non-commutative operators, we will match both forms. This
1169/// results in some odd recurrence structures. Callers may wish to filter
1170/// out recurrences where the phi is not the LHS of the returned operator.
1171/// * Because of the structure matched, the caller can assume as a post
1172/// condition of the match the presence of a Loop with P's parent as it's
1173/// header *except* in unreachable code. (Dominance decays in unreachable
1174/// code.)
1175///
1176/// NOTE: This is intentional simple. If you want the ability to analyze
1177/// non-trivial loop conditons, see ScalarEvolution instead.
1178bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start,
1179 Value *&Step);
1180
1181/// Analogous to the above, but starting from the binary operator
1182bool matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, Value *&Start,
1183 Value *&Step);
1184
1185/// Return true if RHS is known to be implied true by LHS. Return false if
1186/// RHS is known to be implied false by LHS. Otherwise, return std::nullopt if
1187/// no implication can be made. A & B must be i1 (boolean) values or a vector of
1188/// such values. Note that the truth table for implication is the same as <=u on
1189/// i1 values (but not
1190/// <=s!). The truth table for both is:
1191/// | T | F (B)
1192/// T | T | F
1193/// F | T | T
1194/// (A)
1195std::optional<bool> isImpliedCondition(const Value *LHS, const Value *RHS,
1196 const DataLayout &DL,
1197 bool LHSIsTrue = true,
1198 unsigned Depth = 0);
1199std::optional<bool> isImpliedCondition(const Value *LHS,
1200 CmpInst::Predicate RHSPred,
1201 const Value *RHSOp0, const Value *RHSOp1,
1202 const DataLayout &DL,
1203 bool LHSIsTrue = true,
1204 unsigned Depth = 0);
1205
1206/// Return the boolean condition value in the context of the given instruction
1207/// if it is known based on dominating conditions.
1208std::optional<bool> isImpliedByDomCondition(const Value *Cond,
1209 const Instruction *ContextI,
1210 const DataLayout &DL);
1211std::optional<bool> isImpliedByDomCondition(CmpInst::Predicate Pred,
1212 const Value *LHS, const Value *RHS,
1213 const Instruction *ContextI,
1214 const DataLayout &DL);
1215
1216/// Call \p InsertAffected on all Values whose known bits / value may be
1217/// affected by the condition \p Cond. Used by AssumptionCache and
1218/// DomConditionCache.
1219void findValuesAffectedByCondition(Value *Cond, bool IsAssume,
1220 function_ref<void(Value *)> InsertAffected);
1221
1222} // end namespace llvm
1223
1224#endif // LLVM_ANALYSIS_VALUETRACKING_H
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the declarations for the subclasses of Constant, which represent the different fla...
bool End
Definition: ELF_riscv.cpp:480
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
Hexagon Common GEP
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
#define P(N)
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition: APInt.h:76
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1513
an instruction to allocate memory on the stack
Definition: Instructions.h:59
A cache of @llvm.assume calls within a function.
InstListType::const_iterator const_iterator
Definition: BasicBlock.h:166
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:165
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1494
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:993
An array constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
Definition: Constants.h:692
uint64_t getElementAsInteger(unsigned i) const
If this is a sequential container of integers (of any size), return the specified element in the low ...
Definition: Constants.cpp:3005
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:20
bool noInfs() const
Definition: FMF.h:67
bool noNaNs() const
Definition: FMF.h:66
Metadata node.
Definition: Metadata.h:1067
This is a utility class that provides an abstraction for the common functionality between Instruction...
Definition: Operator.h:31
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
LLVM Value Representation.
Definition: Value.h:74
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool haveNoCommonBitsSet(const WithCache< const Value * > &LHSCache, const WithCache< const Value * > &RHSCache, const SimplifyQuery &SQ)
Return true if LHS and RHS have no common bits set.
bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, Instruction *OnPathTo, DominatorTree *DT)
Return true if undefined behavior would provable be executed on the path to OnPathTo if Root produced...
Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
@ Offset
Definition: DWP.cpp:456
OverflowResult
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &DL, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
bool mustTriggerUB(const Instruction *I, const SmallPtrSetImpl< const Value * > &KnownPoison)
Return true if the given instruction must trigger undefined behavior when I is executed with any oper...
bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
const Value * getArgumentAliasingToReturnedPointer(const CallBase *Call, bool MustPreserveNullness)
This function returns call pointer argument that is considered the same by aliasing rules.
bool isAssumeLikeIntrinsic(const Instruction *I)
Return true if it is an intrinsic that cannot be speculated but also cannot trap.
AllocaInst * findAllocaForValue(Value *V, bool OffsetZero=false)
Returns unique alloca where the value comes from, or nullptr.
APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth)
Return the minimum or maximum constant value for the specified integer min/max flavor and type.
bool isKnownNeverInfinity(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if the floating-point scalar value is not an infinity or if the floating-point vector val...
void getGuaranteedNonPoisonOps(const Instruction *I, SmallVectorImpl< const Value * > &Ops)
Insert operands of I into Ops such that I will trigger undefined behavior if I is executed and that o...
bool getConstantStringInfo(const Value *V, StringRef &Str, bool TrimAtNul=true)
This function computes the length of a null-terminated C string pointed to by V.
bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V)
Return true if the only users of this pointer are lifetime markers or droppable instructions.
bool getUnderlyingObjectsForCodeGen(const Value *V, SmallVectorImpl< Value * > &Objects)
This is a wrapper around getUnderlyingObjects and adds support for basic ptrtoint+arithmetic+inttoptr...
std::pair< Intrinsic::ID, bool > canConvertToMinOrMaxIntrinsic(ArrayRef< Value * > VL)
Check if the values in VL are select instructions that can be converted to a min or max (vector) intr...
OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
bool isGuaranteedToExecuteForEveryIteration(const Instruction *I, const Loop *L)
Return true if this function can prove that the instruction I is executed for every iteration of the ...
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout &DL, bool AllowNonInbounds=true)
Analyze the specified pointer to see if it can be expressed as a base pointer plus a constant offset.
const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=6)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if the given value is known to have exactly one bit set when defined.
bool mustSuppressSpeculation(const LoadInst &LI)
Return true if speculation of the given load must be suppressed to avoid ordering or interfering with...
bool isKnownNeverInfOrNaN(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if the floating-point value can never contain a NaN or infinity.
CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
void computeKnownBitsFromContext(const Value *V, KnownBits &Known, unsigned Depth, const SimplifyQuery &Q)
Merge bits known from context-dependent facts into Known.
bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, const DominatorTree &DT)
Returns true if the arithmetic part of the WO 's result is used only along the paths control dependen...
bool isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, const Instruction *Inst, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
This returns the same result as isSafeToSpeculativelyExecute if Opcode is the actual opcode of Inst.
bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
KnownBits analyzeKnownBitsFromAndXorOr(const Operator *I, const KnownBits &KnownLHS, const KnownBits &KnownRHS, unsigned Depth, const SimplifyQuery &SQ)
Using KnownBits LHS/RHS produce the known bits for logic op (and/xor/or).
SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF)
Return the inverse minimum/maximum flavor of the specified flavor.
constexpr unsigned MaxAnalysisRecursionDepth
Definition: ValueTracking.h:48
void getGuaranteedWellDefinedOps(const Instruction *I, SmallVectorImpl< const Value * > &Ops)
Insert operands of I into Ops such that I will trigger undefined behavior if I is executed and that o...
FPClassTest fneg(FPClassTest Mask)
Return the test mask which returns true if the value's sign bit is flipped.
OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
std::tuple< Value *, FPClassTest, FPClassTest > fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS, Value *RHS, bool LookThroughSrc=true)
Compute the possible floating-point classes that LHS could be based on fcmp \Pred LHS,...
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_UNKNOWN
@ SPF_FMINNUM
Unsigned maximum.
bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(const CallBase *Call, bool MustPreserveNullness)
{launder,strip}.invariant.group returns pointer that aliases its argument, and it only captures point...
bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
bool programUndefinedIfPoison(const Instruction *Inst)
SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
bool programUndefinedIfUndefOrPoison(const Instruction *Inst)
Return true if this function can prove that if Inst is executed and yields a poison value or undef bi...
uint64_t GetStringLength(const Value *V, unsigned CharSize=8)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
bool onlyUsedByLifetimeMarkers(const Value *V)
Return true if the only users of this pointer are lifetime markers.
Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB, const TargetLibraryInfo *TLI)
Map a call instruction to an intrinsic ID.
@ Other
Any other memory.
void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, LoopInfo *LI=nullptr, unsigned MaxLookup=6)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
OverflowResult computeOverflowForSignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
bool propagatesPoison(const Use &PoisonOp)
Return true if PoisonOp's user yields poison or raises UB if its operand PoisonOp is poison.
bool isKnownNegative(const Value *V, const SimplifyQuery &DL, unsigned Depth=0)
Returns true if the given value is known be negative (i.e.
bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if the given values are known to be non-equal when defined.
@ Add
Sum of integers.
ConstantRange computeConstantRangeIncludingKnownBits(const WithCache< const Value * > &V, bool ForSigned, const SimplifyQuery &SQ)
Combine constant ranges from computeConstantRange() and computeKnownBits().
SelectPatternNaNBehavior
Behavior when a floating point min/max is given one NaN and one non-NaN as input.
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
DWARFExpression::Operation Op
bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Return true if the instruction does not have any effects besides calculating the result and does not ...
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:191
SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
std::pair< Value *, FPClassTest > fcmpToClassTest(CmpInst::Predicate Pred, const Function &F, Value *LHS, Value *RHS, bool LookThroughSrc=true)
Returns a pair of values, which if passed to llvm.is.fpclass, returns the same result as an fcmp with...
Value * isBytewiseValue(Value *V, const DataLayout &DL)
If the specified value can be set by repeating the same byte in memory, return the i8 value that it i...
std::optional< bool > computeKnownFPSignBit(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return false if we can prove that the specified FP value's sign bit is 0.
bool cannotBeOrderedLessThanZero(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if we can prove that the specified FP value is either NaN or never less than -0....
unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return the number of times the sign bit of the register is replicated into the other bits.
bool cannotBeNegativeZero(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if we can prove that the specified FP value is never equal to -0.0.
OverflowResult computeOverflowForUnsignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
bool isKnownNeverNaN(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
bool isGEPBasedOnPointerToString(const GEPOperator *GEP, unsigned CharSize=8)
Returns true if the GEP is based on a pointer to a string (array of.
APInt operator|(APInt a, const APInt &b)
Definition: APInt.h:2073
bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, unsigned Depth, const SimplifyQuery &SQ)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.
void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
Value * FindInsertedValue(Value *V, ArrayRef< unsigned > idx_range, std::optional< BasicBlock::iterator > InsertBefore=std::nullopt)
Given an aggregate and an sequence of indices, see if the scalar value indexed is already around as a...
bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
bool isKnownPositive(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be positive (i.e.
bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr)
Get the upper bound on bit size for this Value Op as a signed integer.
bool mayHaveNonDefUseDependency(const Instruction &I)
Returns true if the result or effects of the given instructions I depend values not reachable through...
std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
void findValuesAffectedByCondition(Value *Cond, bool IsAssume, function_ref< void(Value *)> InsertAffected)
Call InsertAffected on all Values whose known bits / value may be affected by the condition Cond.
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
uint64_t operator[](unsigned I) const
Convenience accessor for elements in the slice.
void move(uint64_t Delta)
Moves the Offset and adjusts Length accordingly.
const ConstantDataArray * Array
ConstantDataArray pointer.
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
bool cannotBeOrderedGreaterThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never greater tha...
static constexpr FPClassTest OrderedGreaterThanZeroMask
static constexpr FPClassTest OrderedLessThanZeroMask
void knownNot(FPClassTest RuleOut)
bool isKnownNeverZero() const
Return true if it's known this can never be a zero.
void copysign(const KnownFPClass &Sign)
bool isKnownNeverSubnormal() const
Return true if it's known this can never be a subnormal.
bool isKnownNeverLogicalNegZero(const Function &F, Type *Ty) const
Return true if it's know this can never be interpreted as a negative zero.
bool isKnownNeverLogicalPosZero(const Function &F, Type *Ty) const
Return true if it's know this can never be interpreted as a positive zero.
KnownFPClass & operator|=(const KnownFPClass &RHS)
void propagateCanonicalizingSrc(const KnownFPClass &Src, const Function &F, Type *Ty)
Report known classes if Src is evaluated through a potentially canonicalizing operation.
void propagateDenormal(const KnownFPClass &Src, const Function &F, Type *Ty)
Propagate knowledge from a source value that could be a denormal or zero.
bool isUnknown() const
bool isKnownNeverNegInfinity() const
Return true if it's known this can never be -infinity.
bool isKnownNeverNegSubnormal() const
Return true if it's known this can never be a negative subnormal.
bool isKnownNeverPosZero() const
Return true if it's known this can never be a literal positive zero.
std::optional< bool > SignBit
std::nullopt if the sign bit is unknown, true if the sign bit is definitely set or false if the sign ...
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool isKnownNever(FPClassTest Mask) const
Return true if it's known this can never be one of the mask entries.
bool isKnownNeverNegZero() const
Return true if it's known this can never be a negative zero.
bool isKnownNeverLogicalZero(const Function &F, Type *Ty) const
Return true if it's know this can never be interpreted as a zero.
void propagateNaN(const KnownFPClass &Src, bool PreserveSign=false)
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
void signBitMustBeOne()
Assume the sign bit is one.
void signBitMustBeZero()
Assume the sign bit is zero.
bool isKnownNeverPosInfinity() const
Return true if it's known this can never be +infinity.
bool operator==(KnownFPClass Other) const
bool signBitIsZeroOrNaN() const
Return true if the sign bit must be 0, ignoring the sign of nans.
bool isKnownNeverPosSubnormal() const
Return true if it's known this can never be a positive subnormal.
SelectPatternFlavor Flavor
bool Ordered
Only applicable if Flavor is SPF_FMINNUM or SPF_FMAXNUM.
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
SelectPatternNaNBehavior NaNBehavior