LLVM 22.0.0git
ValueTracking.cpp
Go to the documentation of this file.
1//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains routines that help analyze properties that chains of
10// computations have.
11//
12//===----------------------------------------------------------------------===//
13
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/ScopeExit.h"
23#include "llvm/ADT/StringRef.h"
33#include "llvm/Analysis/Loads.h"
38#include "llvm/IR/Argument.h"
39#include "llvm/IR/Attributes.h"
40#include "llvm/IR/BasicBlock.h"
41#include "llvm/IR/Constant.h"
44#include "llvm/IR/Constants.h"
47#include "llvm/IR/Dominators.h"
49#include "llvm/IR/Function.h"
51#include "llvm/IR/GlobalAlias.h"
52#include "llvm/IR/GlobalValue.h"
54#include "llvm/IR/InstrTypes.h"
55#include "llvm/IR/Instruction.h"
58#include "llvm/IR/Intrinsics.h"
59#include "llvm/IR/IntrinsicsAArch64.h"
60#include "llvm/IR/IntrinsicsAMDGPU.h"
61#include "llvm/IR/IntrinsicsRISCV.h"
62#include "llvm/IR/IntrinsicsX86.h"
63#include "llvm/IR/LLVMContext.h"
64#include "llvm/IR/Metadata.h"
65#include "llvm/IR/Module.h"
66#include "llvm/IR/Operator.h"
68#include "llvm/IR/Type.h"
69#include "llvm/IR/User.h"
70#include "llvm/IR/Value.h"
79#include <algorithm>
80#include <cassert>
81#include <cstdint>
82#include <optional>
83#include <utility>
84
85using namespace llvm;
86using namespace llvm::PatternMatch;
87
88// Controls the number of uses of the value searched for possible
89// dominating comparisons.
90static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
91 cl::Hidden, cl::init(20));
92
93/// Maximum number of instructions to check between assume and context
94/// instruction.
95static constexpr unsigned MaxInstrsToCheckForFree = 16;
96
97/// Returns the bitwidth of the given scalar or pointer type. For vector types,
98/// returns the element type's bitwidth.
99static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
100 if (unsigned BitWidth = Ty->getScalarSizeInBits())
101 return BitWidth;
102
103 return DL.getPointerTypeSizeInBits(Ty);
104}
105
106// Given the provided Value and, potentially, a context instruction, return
107// the preferred context instruction (if any).
108static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
109 // If we've been provided with a context instruction, then use that (provided
110 // it has been inserted).
111 if (CxtI && CxtI->getParent())
112 return CxtI;
113
114 // If the value is really an already-inserted instruction, then use that.
115 CxtI = dyn_cast<Instruction>(V);
116 if (CxtI && CxtI->getParent())
117 return CxtI;
118
119 return nullptr;
120}
121
123 const APInt &DemandedElts,
124 APInt &DemandedLHS, APInt &DemandedRHS) {
125 if (isa<ScalableVectorType>(Shuf->getType())) {
126 assert(DemandedElts == APInt(1,1));
127 DemandedLHS = DemandedRHS = DemandedElts;
128 return true;
129 }
130
131 int NumElts =
132 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
133 return llvm::getShuffleDemandedElts(NumElts, Shuf->getShuffleMask(),
134 DemandedElts, DemandedLHS, DemandedRHS);
135}
136
137static void computeKnownBits(const Value *V, const APInt &DemandedElts,
138 KnownBits &Known, const SimplifyQuery &Q,
139 unsigned Depth);
140
142 const SimplifyQuery &Q, unsigned Depth) {
143 // Since the number of lanes in a scalable vector is unknown at compile time,
144 // we track one bit which is implicitly broadcast to all lanes. This means
145 // that all lanes in a scalable vector are considered demanded.
146 auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
147 APInt DemandedElts =
148 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
149 ::computeKnownBits(V, DemandedElts, Known, Q, Depth);
150}
151
153 const DataLayout &DL, AssumptionCache *AC,
154 const Instruction *CxtI, const DominatorTree *DT,
155 bool UseInstrInfo, unsigned Depth) {
156 computeKnownBits(V, Known,
157 SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo),
158 Depth);
159}
160
162 AssumptionCache *AC, const Instruction *CxtI,
163 const DominatorTree *DT, bool UseInstrInfo,
164 unsigned Depth) {
165 return computeKnownBits(
166 V, SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo), Depth);
167}
168
169KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
170 const DataLayout &DL, AssumptionCache *AC,
171 const Instruction *CxtI,
172 const DominatorTree *DT, bool UseInstrInfo,
173 unsigned Depth) {
174 return computeKnownBits(
175 V, DemandedElts,
176 SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo), Depth);
177}
178
180 const SimplifyQuery &SQ) {
181 // Look for an inverted mask: (X & ~M) op (Y & M).
182 {
183 Value *M;
184 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
186 isGuaranteedNotToBeUndef(M, SQ.AC, SQ.CxtI, SQ.DT))
187 return true;
188 }
189
190 // X op (Y & ~X)
193 return true;
194
195 // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern
196 // for constant Y.
197 Value *Y;
198 if (match(RHS,
200 isGuaranteedNotToBeUndef(LHS, SQ.AC, SQ.CxtI, SQ.DT) &&
201 isGuaranteedNotToBeUndef(Y, SQ.AC, SQ.CxtI, SQ.DT))
202 return true;
203
204 // Peek through extends to find a 'not' of the other side:
205 // (ext Y) op ext(~Y)
206 if (match(LHS, m_ZExtOrSExt(m_Value(Y))) &&
208 isGuaranteedNotToBeUndef(Y, SQ.AC, SQ.CxtI, SQ.DT))
209 return true;
210
211 // Look for: (A & B) op ~(A | B)
212 {
213 Value *A, *B;
214 if (match(LHS, m_And(m_Value(A), m_Value(B))) &&
216 isGuaranteedNotToBeUndef(A, SQ.AC, SQ.CxtI, SQ.DT) &&
217 isGuaranteedNotToBeUndef(B, SQ.AC, SQ.CxtI, SQ.DT))
218 return true;
219 }
220
221 // Look for: (X << V) op (Y >> (BitWidth - V))
222 // or (X >> V) op (Y << (BitWidth - V))
223 {
224 const Value *V;
225 const APInt *R;
226 if (((match(RHS, m_Shl(m_Value(), m_Sub(m_APInt(R), m_Value(V)))) &&
227 match(LHS, m_LShr(m_Value(), m_Specific(V)))) ||
228 (match(RHS, m_LShr(m_Value(), m_Sub(m_APInt(R), m_Value(V)))) &&
229 match(LHS, m_Shl(m_Value(), m_Specific(V))))) &&
230 R->uge(LHS->getType()->getScalarSizeInBits()))
231 return true;
232 }
233
234 return false;
235}
236
238 const WithCache<const Value *> &RHSCache,
239 const SimplifyQuery &SQ) {
240 const Value *LHS = LHSCache.getValue();
241 const Value *RHS = RHSCache.getValue();
242
243 assert(LHS->getType() == RHS->getType() &&
244 "LHS and RHS should have the same type");
245 assert(LHS->getType()->isIntOrIntVectorTy() &&
246 "LHS and RHS should be integers");
247
248 if (haveNoCommonBitsSetSpecialCases(LHS, RHS, SQ) ||
250 return true;
251
253 RHSCache.getKnownBits(SQ));
254}
255
257 return !I->user_empty() &&
258 all_of(I->users(), match_fn(m_ICmp(m_Value(), m_Zero())));
259}
260
262 return !I->user_empty() && all_of(I->users(), [](const User *U) {
263 CmpPredicate P;
264 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
265 });
266}
267
269 bool OrZero, AssumptionCache *AC,
270 const Instruction *CxtI,
271 const DominatorTree *DT, bool UseInstrInfo,
272 unsigned Depth) {
273 return ::isKnownToBeAPowerOfTwo(
274 V, OrZero, SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo),
275 Depth);
276}
277
278static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
279 const SimplifyQuery &Q, unsigned Depth);
280
282 unsigned Depth) {
283 return computeKnownBits(V, SQ, Depth).isNonNegative();
284}
285
287 unsigned Depth) {
288 if (auto *CI = dyn_cast<ConstantInt>(V))
289 return CI->getValue().isStrictlyPositive();
290
291 // If `isKnownNonNegative` ever becomes more sophisticated, make sure to keep
292 // this updated.
293 KnownBits Known = computeKnownBits(V, SQ, Depth);
294 return Known.isNonNegative() &&
295 (Known.isNonZero() || isKnownNonZero(V, SQ, Depth));
296}
297
299 unsigned Depth) {
300 return computeKnownBits(V, SQ, Depth).isNegative();
301}
302
303static bool isKnownNonEqual(const Value *V1, const Value *V2,
304 const APInt &DemandedElts, const SimplifyQuery &Q,
305 unsigned Depth);
306
307bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
308 const SimplifyQuery &Q, unsigned Depth) {
309 // We don't support looking through casts.
310 if (V1 == V2 || V1->getType() != V2->getType())
311 return false;
312 auto *FVTy = dyn_cast<FixedVectorType>(V1->getType());
313 APInt DemandedElts =
314 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
315 return ::isKnownNonEqual(V1, V2, DemandedElts, Q, Depth);
316}
317
318bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
319 const SimplifyQuery &SQ, unsigned Depth) {
320 KnownBits Known(Mask.getBitWidth());
321 computeKnownBits(V, Known, SQ, Depth);
322 return Mask.isSubsetOf(Known.Zero);
323}
324
325static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
326 const SimplifyQuery &Q, unsigned Depth);
327
328static unsigned ComputeNumSignBits(const Value *V, const SimplifyQuery &Q,
329 unsigned Depth = 0) {
330 auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
331 APInt DemandedElts =
332 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
333 return ComputeNumSignBits(V, DemandedElts, Q, Depth);
334}
335
336unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
337 AssumptionCache *AC, const Instruction *CxtI,
338 const DominatorTree *DT, bool UseInstrInfo,
339 unsigned Depth) {
340 return ::ComputeNumSignBits(
341 V, SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo), Depth);
342}
343
345 AssumptionCache *AC,
346 const Instruction *CxtI,
347 const DominatorTree *DT,
348 unsigned Depth) {
349 unsigned SignBits = ComputeNumSignBits(V, DL, AC, CxtI, DT, Depth);
350 return V->getType()->getScalarSizeInBits() - SignBits + 1;
351}
352
353/// Try to detect the lerp pattern: a * (b - c) + c * d
354/// where a >= 0, b >= 0, c >= 0, d >= 0, and b >= c.
355///
356/// In that particular case, we can use the following chain of reasoning:
357///
358/// a * (b - c) + c * d <= a' * (b - c) + a' * c = a' * b where a' = max(a, d)
359///
360/// Since that is true for arbitrary a, b, c and d within our constraints, we
361/// can conclude that:
362///
363/// max(a * (b - c) + c * d) <= max(max(a), max(d)) * max(b) = U
364///
365/// Considering that any result of the lerp would be less or equal to U, it
366/// would have at least the number of leading 0s as in U.
367///
368/// While being quite a specific situation, it is fairly common in computer
369/// graphics in the shape of alpha blending.
370///
371/// Modifies given KnownOut in-place with the inferred information.
372static void computeKnownBitsFromLerpPattern(const Value *Op0, const Value *Op1,
373 const APInt &DemandedElts,
374 KnownBits &KnownOut,
375 const SimplifyQuery &Q,
376 unsigned Depth) {
377
378 Type *Ty = Op0->getType();
379 const unsigned BitWidth = Ty->getScalarSizeInBits();
380
381 // Only handle scalar types for now
382 if (Ty->isVectorTy())
383 return;
384
385 // Try to match: a * (b - c) + c * d.
386 // When a == 1 => A == nullptr, the same applies to d/D as well.
387 const Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
388 const Instruction *SubBC = nullptr;
389
390 const auto MatchSubBC = [&]() {
391 // (b - c) can have two forms that interest us:
392 //
393 // 1. sub nuw %b, %c
394 // 2. xor %c, %b
395 //
396 // For the first case, nuw flag guarantees our requirement b >= c.
397 //
398 // The second case might happen when the analysis can infer that b is a mask
399 // for c and we can transform sub operation into xor (that is usually true
400 // for constant b's). Even though xor is symmetrical, canonicalization
401 // ensures that the constant will be the RHS. We have additional checks
402 // later on to ensure that this xor operation is equivalent to subtraction.
404 m_Xor(m_Value(C), m_Value(B))));
405 };
406
407 const auto MatchASubBC = [&]() {
408 // Cases:
409 // - a * (b - c)
410 // - (b - c) * a
411 // - (b - c) <- a implicitly equals 1
412 return m_CombineOr(m_c_Mul(m_Value(A), MatchSubBC()), MatchSubBC());
413 };
414
415 const auto MatchCD = [&]() {
416 // Cases:
417 // - d * c
418 // - c * d
419 // - c <- d implicitly equals 1
421 };
422
423 const auto Match = [&](const Value *LHS, const Value *RHS) {
424 // We do use m_Specific(C) in MatchCD, so we have to make sure that
425 // it's bound to anything and match(LHS, MatchASubBC()) absolutely
426 // has to evaluate first and return true.
427 //
428 // If Match returns true, it is guaranteed that B != nullptr, C != nullptr.
429 return match(LHS, MatchASubBC()) && match(RHS, MatchCD());
430 };
431
432 if (!Match(Op0, Op1) && !Match(Op1, Op0))
433 return;
434
435 const auto ComputeKnownBitsOrOne = [&](const Value *V) {
436 // For some of the values we use the convention of leaving
437 // it nullptr to signify an implicit constant 1.
438 return V ? computeKnownBits(V, DemandedElts, Q, Depth + 1)
440 };
441
442 // Check that all operands are non-negative
443 const KnownBits KnownA = ComputeKnownBitsOrOne(A);
444 if (!KnownA.isNonNegative())
445 return;
446
447 const KnownBits KnownD = ComputeKnownBitsOrOne(D);
448 if (!KnownD.isNonNegative())
449 return;
450
451 const KnownBits KnownB = computeKnownBits(B, DemandedElts, Q, Depth + 1);
452 if (!KnownB.isNonNegative())
453 return;
454
455 const KnownBits KnownC = computeKnownBits(C, DemandedElts, Q, Depth + 1);
456 if (!KnownC.isNonNegative())
457 return;
458
459 // If we matched subtraction as xor, we need to actually check that xor
460 // is semantically equivalent to subtraction.
461 //
462 // For that to be true, b has to be a mask for c or that b's known
463 // ones cover all known and possible ones of c.
464 if (SubBC->getOpcode() == Instruction::Xor &&
465 !KnownC.getMaxValue().isSubsetOf(KnownB.getMinValue()))
466 return;
467
468 const APInt MaxA = KnownA.getMaxValue();
469 const APInt MaxD = KnownD.getMaxValue();
470 const APInt MaxAD = APIntOps::umax(MaxA, MaxD);
471 const APInt MaxB = KnownB.getMaxValue();
472
473 // We can't infer leading zeros info if the upper-bound estimate wraps.
474 bool Overflow;
475 const APInt UpperBound = MaxAD.umul_ov(MaxB, Overflow);
476
477 if (Overflow)
478 return;
479
480 // If we know that x <= y and both are positive than x has at least the same
481 // number of leading zeros as y.
482 const unsigned MinimumNumberOfLeadingZeros = UpperBound.countl_zero();
483 KnownOut.Zero.setHighBits(MinimumNumberOfLeadingZeros);
484}
485
486static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
487 bool NSW, bool NUW,
488 const APInt &DemandedElts,
489 KnownBits &KnownOut, KnownBits &Known2,
490 const SimplifyQuery &Q, unsigned Depth) {
491 computeKnownBits(Op1, DemandedElts, KnownOut, Q, Depth + 1);
492
493 // If one operand is unknown and we have no nowrap information,
494 // the result will be unknown independently of the second operand.
495 if (KnownOut.isUnknown() && !NSW && !NUW)
496 return;
497
498 computeKnownBits(Op0, DemandedElts, Known2, Q, Depth + 1);
499 KnownOut = KnownBits::computeForAddSub(Add, NSW, NUW, Known2, KnownOut);
500
501 if (!Add && NSW && !KnownOut.isNonNegative() &&
503 .value_or(false))
504 KnownOut.makeNonNegative();
505
506 if (Add)
507 // Try to match lerp pattern and combine results
508 computeKnownBitsFromLerpPattern(Op0, Op1, DemandedElts, KnownOut, Q, Depth);
509}
510
511static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
512 bool NUW, const APInt &DemandedElts,
513 KnownBits &Known, KnownBits &Known2,
514 const SimplifyQuery &Q, unsigned Depth) {
515 computeKnownBits(Op1, DemandedElts, Known, Q, Depth + 1);
516 computeKnownBits(Op0, DemandedElts, Known2, Q, Depth + 1);
517
518 bool isKnownNegative = false;
519 bool isKnownNonNegative = false;
520 // If the multiplication is known not to overflow, compute the sign bit.
521 if (NSW) {
522 if (Op0 == Op1) {
523 // The product of a number with itself is non-negative.
524 isKnownNonNegative = true;
525 } else {
526 bool isKnownNonNegativeOp1 = Known.isNonNegative();
527 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
528 bool isKnownNegativeOp1 = Known.isNegative();
529 bool isKnownNegativeOp0 = Known2.isNegative();
530 // The product of two numbers with the same sign is non-negative.
531 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
532 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
533 if (!isKnownNonNegative && NUW) {
534 // mul nuw nsw with a factor > 1 is non-negative.
536 isKnownNonNegative = KnownBits::sgt(Known, One).value_or(false) ||
537 KnownBits::sgt(Known2, One).value_or(false);
538 }
539
540 // The product of a negative number and a non-negative number is either
541 // negative or zero.
544 (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
545 Known2.isNonZero()) ||
546 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
547 }
548 }
549
550 bool SelfMultiply = Op0 == Op1;
551 if (SelfMultiply)
552 SelfMultiply &=
553 isGuaranteedNotToBeUndef(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1);
554 Known = KnownBits::mul(Known, Known2, SelfMultiply);
555
556 if (SelfMultiply) {
557 unsigned SignBits = ComputeNumSignBits(Op0, DemandedElts, Q, Depth + 1);
558 unsigned TyBits = Op0->getType()->getScalarSizeInBits();
559 unsigned OutValidBits = 2 * (TyBits - SignBits + 1);
560
561 if (OutValidBits < TyBits) {
562 APInt KnownZeroMask =
563 APInt::getHighBitsSet(TyBits, TyBits - OutValidBits + 1);
564 Known.Zero |= KnownZeroMask;
565 }
566 }
567
568 // Only make use of no-wrap flags if we failed to compute the sign bit
569 // directly. This matters if the multiplication always overflows, in
570 // which case we prefer to follow the result of the direct computation,
571 // though as the program is invoking undefined behaviour we can choose
572 // whatever we like here.
573 if (isKnownNonNegative && !Known.isNegative())
574 Known.makeNonNegative();
575 else if (isKnownNegative && !Known.isNonNegative())
576 Known.makeNegative();
577}
578
580 KnownBits &Known) {
581 unsigned BitWidth = Known.getBitWidth();
582 unsigned NumRanges = Ranges.getNumOperands() / 2;
583 assert(NumRanges >= 1);
584
585 Known.setAllConflict();
586
587 for (unsigned i = 0; i < NumRanges; ++i) {
589 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
591 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
592 ConstantRange Range(Lower->getValue(), Upper->getValue());
593 // BitWidth must equal the Ranges BitWidth for the correct number of high
594 // bits to be set.
595 assert(BitWidth == Range.getBitWidth() &&
596 "Known bit width must match range bit width!");
597
598 // The first CommonPrefixBits of all values in Range are equal.
599 unsigned CommonPrefixBits =
600 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countl_zero();
601 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
602 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
603 Known.One &= UnsignedMax & Mask;
604 Known.Zero &= ~UnsignedMax & Mask;
605 }
606}
607
608static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
612
613 // The instruction defining an assumption's condition itself is always
614 // considered ephemeral to that assumption (even if it has other
615 // non-ephemeral users). See r246696's test case for an example.
616 if (is_contained(I->operands(), E))
617 return true;
618
619 while (!WorkSet.empty()) {
620 const Instruction *V = WorkSet.pop_back_val();
621 if (!Visited.insert(V).second)
622 continue;
623
624 // If all uses of this value are ephemeral, then so is this value.
625 if (all_of(V->users(), [&](const User *U) {
626 return EphValues.count(cast<Instruction>(U));
627 })) {
628 if (V == E)
629 return true;
630
631 if (V == I || (!V->mayHaveSideEffects() && !V->isTerminator())) {
632 EphValues.insert(V);
633
634 if (const User *U = dyn_cast<User>(V)) {
635 for (const Use &U : U->operands()) {
636 if (const auto *I = dyn_cast<Instruction>(U.get()))
637 WorkSet.push_back(I);
638 }
639 }
640 }
641 }
642 }
643
644 return false;
645}
646
647// Is this an intrinsic that cannot be speculated but also cannot trap?
649 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
650 return CI->isAssumeLikeIntrinsic();
651
652 return false;
653}
654
656 const Instruction *CxtI,
657 const DominatorTree *DT,
658 bool AllowEphemerals) {
659 // There are two restrictions on the use of an assume:
660 // 1. The assume must dominate the context (or the control flow must
661 // reach the assume whenever it reaches the context).
662 // 2. The context must not be in the assume's set of ephemeral values
663 // (otherwise we will use the assume to prove that the condition
664 // feeding the assume is trivially true, thus causing the removal of
665 // the assume).
666
667 if (Inv->getParent() == CxtI->getParent()) {
668 // If Inv and CtxI are in the same block, check if the assume (Inv) is first
669 // in the BB.
670 if (Inv->comesBefore(CxtI))
671 return true;
672
673 // Don't let an assume affect itself - this would cause the problems
674 // `isEphemeralValueOf` is trying to prevent, and it would also make
675 // the loop below go out of bounds.
676 if (!AllowEphemerals && Inv == CxtI)
677 return false;
678
679 // The context comes first, but they're both in the same block.
680 // Make sure there is nothing in between that might interrupt
681 // the control flow, not even CxtI itself.
682 // We limit the scan distance between the assume and its context instruction
683 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
684 // it can be adjusted if needed (could be turned into a cl::opt).
685 auto Range = make_range(CxtI->getIterator(), Inv->getIterator());
687 return false;
688
689 return AllowEphemerals || !isEphemeralValueOf(Inv, CxtI);
690 }
691
692 // Inv and CxtI are in different blocks.
693 if (DT) {
694 if (DT->dominates(Inv, CxtI))
695 return true;
696 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor() ||
697 Inv->getParent()->isEntryBlock()) {
698 // We don't have a DT, but this trivially dominates.
699 return true;
700 }
701
702 return false;
703}
704
706 const Instruction *CtxI) {
707 // Helper to check if there are any calls in the range that may free memory.
708 auto hasNoFreeCalls = [](auto Range) {
709 for (const auto &[Idx, I] : enumerate(Range)) {
710 if (Idx > MaxInstrsToCheckForFree)
711 return false;
712 if (const auto *CB = dyn_cast<CallBase>(&I))
713 if (!CB->hasFnAttr(Attribute::NoFree))
714 return false;
715 }
716 return true;
717 };
718
719 // Make sure the current function cannot arrange for another thread to free on
720 // its behalf.
721 if (!CtxI->getFunction()->hasNoSync())
722 return false;
723
724 // Handle cross-block case: CtxI in a successor of Assume's block.
725 const BasicBlock *CtxBB = CtxI->getParent();
726 const BasicBlock *AssumeBB = Assume->getParent();
727 BasicBlock::const_iterator CtxIter = CtxI->getIterator();
728 if (CtxBB != AssumeBB) {
729 if (CtxBB->getSinglePredecessor() != AssumeBB)
730 return false;
731
732 if (!hasNoFreeCalls(make_range(CtxBB->begin(), CtxIter)))
733 return false;
734
735 CtxIter = AssumeBB->end();
736 } else {
737 // Same block case: check that Assume comes before CtxI.
738 if (!Assume->comesBefore(CtxI))
739 return false;
740 }
741
742 // Check if there are any calls between Assume and CtxIter that may free
743 // memory.
744 return hasNoFreeCalls(make_range(Assume->getIterator(), CtxIter));
745}
746
747// TODO: cmpExcludesZero misses many cases where `RHS` is non-constant but
748// we still have enough information about `RHS` to conclude non-zero. For
749// example Pred=EQ, RHS=isKnownNonZero. cmpExcludesZero is called in loops
750// so the extra compile time may not be worth it, but possibly a second API
751// should be created for use outside of loops.
752static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
753 // v u> y implies v != 0.
754 if (Pred == ICmpInst::ICMP_UGT)
755 return true;
756
757 // Special-case v != 0 to also handle v != null.
758 if (Pred == ICmpInst::ICMP_NE)
759 return match(RHS, m_Zero());
760
761 // All other predicates - rely on generic ConstantRange handling.
762 const APInt *C;
763 auto Zero = APInt::getZero(RHS->getType()->getScalarSizeInBits());
764 if (match(RHS, m_APInt(C))) {
766 return !TrueValues.contains(Zero);
767 }
768
770 if (VC == nullptr)
771 return false;
772
773 for (unsigned ElemIdx = 0, NElem = VC->getNumElements(); ElemIdx < NElem;
774 ++ElemIdx) {
776 Pred, VC->getElementAsAPInt(ElemIdx));
777 if (TrueValues.contains(Zero))
778 return false;
779 }
780 return true;
781}
782
783static void breakSelfRecursivePHI(const Use *U, const PHINode *PHI,
784 Value *&ValOut, Instruction *&CtxIOut,
785 const PHINode **PhiOut = nullptr) {
786 ValOut = U->get();
787 if (ValOut == PHI)
788 return;
789 CtxIOut = PHI->getIncomingBlock(*U)->getTerminator();
790 if (PhiOut)
791 *PhiOut = PHI;
792 Value *V;
793 // If the Use is a select of this phi, compute analysis on other arm to break
794 // recursion.
795 // TODO: Min/Max
796 if (match(ValOut, m_Select(m_Value(), m_Specific(PHI), m_Value(V))) ||
797 match(ValOut, m_Select(m_Value(), m_Value(V), m_Specific(PHI))))
798 ValOut = V;
799
800 // Same for select, if this phi is 2-operand phi, compute analysis on other
801 // incoming value to break recursion.
802 // TODO: We could handle any number of incoming edges as long as we only have
803 // two unique values.
804 if (auto *IncPhi = dyn_cast<PHINode>(ValOut);
805 IncPhi && IncPhi->getNumIncomingValues() == 2) {
806 for (int Idx = 0; Idx < 2; ++Idx) {
807 if (IncPhi->getIncomingValue(Idx) == PHI) {
808 ValOut = IncPhi->getIncomingValue(1 - Idx);
809 if (PhiOut)
810 *PhiOut = IncPhi;
811 CtxIOut = IncPhi->getIncomingBlock(1 - Idx)->getTerminator();
812 break;
813 }
814 }
815 }
816}
817
818static bool isKnownNonZeroFromAssume(const Value *V, const SimplifyQuery &Q) {
819 // Use of assumptions is context-sensitive. If we don't have a context, we
820 // cannot use them!
821 if (!Q.AC || !Q.CxtI)
822 return false;
823
824 for (AssumptionCache::ResultElem &Elem : Q.AC->assumptionsFor(V)) {
825 if (!Elem.Assume)
826 continue;
827
828 AssumeInst *I = cast<AssumeInst>(Elem.Assume);
829 assert(I->getFunction() == Q.CxtI->getFunction() &&
830 "Got assumption for the wrong function!");
831
832 if (Elem.Index != AssumptionCache::ExprResultIdx) {
833 if (!V->getType()->isPointerTy())
834 continue;
836 *I, I->bundle_op_info_begin()[Elem.Index])) {
837 if (RK.WasOn == V &&
838 (RK.AttrKind == Attribute::NonNull ||
839 (RK.AttrKind == Attribute::Dereferenceable &&
841 V->getType()->getPointerAddressSpace()))) &&
843 return true;
844 }
845 continue;
846 }
847
848 // Warning: This loop can end up being somewhat performance sensitive.
849 // We're running this loop for once for each value queried resulting in a
850 // runtime of ~O(#assumes * #values).
851
852 Value *RHS;
853 CmpPredicate Pred;
854 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
855 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
856 continue;
857
858 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
859 return true;
860 }
861
862 return false;
863}
864
866 Value *LHS, Value *RHS, KnownBits &Known,
867 const SimplifyQuery &Q) {
868 if (RHS->getType()->isPointerTy()) {
869 // Handle comparison of pointer to null explicitly, as it will not be
870 // covered by the m_APInt() logic below.
871 if (LHS == V && match(RHS, m_Zero())) {
872 switch (Pred) {
874 Known.setAllZero();
875 break;
878 Known.makeNonNegative();
879 break;
881 Known.makeNegative();
882 break;
883 default:
884 break;
885 }
886 }
887 return;
888 }
889
890 unsigned BitWidth = Known.getBitWidth();
891 auto m_V =
893
894 Value *Y;
895 const APInt *Mask, *C;
896 if (!match(RHS, m_APInt(C)))
897 return;
898
899 uint64_t ShAmt;
900 switch (Pred) {
902 // assume(V = C)
903 if (match(LHS, m_V)) {
904 Known = Known.unionWith(KnownBits::makeConstant(*C));
905 // assume(V & Mask = C)
906 } else if (match(LHS, m_c_And(m_V, m_Value(Y)))) {
907 // For one bits in Mask, we can propagate bits from C to V.
908 Known.One |= *C;
909 if (match(Y, m_APInt(Mask)))
910 Known.Zero |= ~*C & *Mask;
911 // assume(V | Mask = C)
912 } else if (match(LHS, m_c_Or(m_V, m_Value(Y)))) {
913 // For zero bits in Mask, we can propagate bits from C to V.
914 Known.Zero |= ~*C;
915 if (match(Y, m_APInt(Mask)))
916 Known.One |= *C & ~*Mask;
917 // assume(V << ShAmt = C)
918 } else if (match(LHS, m_Shl(m_V, m_ConstantInt(ShAmt))) &&
919 ShAmt < BitWidth) {
920 // For those bits in C that are known, we can propagate them to known
921 // bits in V shifted to the right by ShAmt.
923 RHSKnown >>= ShAmt;
924 Known = Known.unionWith(RHSKnown);
925 // assume(V >> ShAmt = C)
926 } else if (match(LHS, m_Shr(m_V, m_ConstantInt(ShAmt))) &&
927 ShAmt < BitWidth) {
928 // For those bits in RHS that are known, we can propagate them to known
929 // bits in V shifted to the right by C.
931 RHSKnown <<= ShAmt;
932 Known = Known.unionWith(RHSKnown);
933 }
934 break;
935 case ICmpInst::ICMP_NE: {
936 // assume (V & B != 0) where B is a power of 2
937 const APInt *BPow2;
938 if (C->isZero() && match(LHS, m_And(m_V, m_Power2(BPow2))))
939 Known.One |= *BPow2;
940 break;
941 }
942 default: {
943 const APInt *Offset = nullptr;
944 if (match(LHS, m_CombineOr(m_V, m_AddLike(m_V, m_APInt(Offset))))) {
946 if (Offset)
947 LHSRange = LHSRange.sub(*Offset);
948 Known = Known.unionWith(LHSRange.toKnownBits());
949 }
950 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
951 // X & Y u> C -> X u> C && Y u> C
952 // X nuw- Y u> C -> X u> C
953 if (match(LHS, m_c_And(m_V, m_Value())) ||
954 match(LHS, m_NUWSub(m_V, m_Value())))
955 Known.One.setHighBits(
956 (*C + (Pred == ICmpInst::ICMP_UGT)).countLeadingOnes());
957 }
958 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
959 // X | Y u< C -> X u< C && Y u< C
960 // X nuw+ Y u< C -> X u< C && Y u< C
961 if (match(LHS, m_c_Or(m_V, m_Value())) ||
962 match(LHS, m_c_NUWAdd(m_V, m_Value()))) {
963 Known.Zero.setHighBits(
964 (*C - (Pred == ICmpInst::ICMP_ULT)).countLeadingZeros());
965 }
966 }
967 } break;
968 }
969}
970
971static void computeKnownBitsFromICmpCond(const Value *V, ICmpInst *Cmp,
972 KnownBits &Known,
973 const SimplifyQuery &SQ, bool Invert) {
975 Invert ? Cmp->getInversePredicate() : Cmp->getPredicate();
976 Value *LHS = Cmp->getOperand(0);
977 Value *RHS = Cmp->getOperand(1);
978
979 // Handle icmp pred (trunc V), C
980 if (match(LHS, m_Trunc(m_Specific(V)))) {
981 KnownBits DstKnown(LHS->getType()->getScalarSizeInBits());
982 computeKnownBitsFromCmp(LHS, Pred, LHS, RHS, DstKnown, SQ);
984 Known = Known.unionWith(DstKnown.zext(Known.getBitWidth()));
985 else
986 Known = Known.unionWith(DstKnown.anyext(Known.getBitWidth()));
987 return;
988 }
989
990 computeKnownBitsFromCmp(V, Pred, LHS, RHS, Known, SQ);
991}
992
994 KnownBits &Known, const SimplifyQuery &SQ,
995 bool Invert, unsigned Depth) {
996 Value *A, *B;
999 KnownBits Known2(Known.getBitWidth());
1000 KnownBits Known3(Known.getBitWidth());
1001 computeKnownBitsFromCond(V, A, Known2, SQ, Invert, Depth + 1);
1002 computeKnownBitsFromCond(V, B, Known3, SQ, Invert, Depth + 1);
1003 if (Invert ? match(Cond, m_LogicalOr(m_Value(), m_Value()))
1005 Known2 = Known2.unionWith(Known3);
1006 else
1007 Known2 = Known2.intersectWith(Known3);
1008 Known = Known.unionWith(Known2);
1009 return;
1010 }
1011
1012 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
1013 computeKnownBitsFromICmpCond(V, Cmp, Known, SQ, Invert);
1014 return;
1015 }
1016
1017 if (match(Cond, m_Trunc(m_Specific(V)))) {
1018 KnownBits DstKnown(1);
1019 if (Invert) {
1020 DstKnown.setAllZero();
1021 } else {
1022 DstKnown.setAllOnes();
1023 }
1025 Known = Known.unionWith(DstKnown.zext(Known.getBitWidth()));
1026 return;
1027 }
1028 Known = Known.unionWith(DstKnown.anyext(Known.getBitWidth()));
1029 return;
1030 }
1031
1033 computeKnownBitsFromCond(V, A, Known, SQ, !Invert, Depth + 1);
1034}
1035
1037 const SimplifyQuery &Q, unsigned Depth) {
1038 // Handle injected condition.
1039 if (Q.CC && Q.CC->AffectedValues.contains(V))
1040 computeKnownBitsFromCond(V, Q.CC->Cond, Known, Q, Q.CC->Invert, Depth);
1041
1042 if (!Q.CxtI)
1043 return;
1044
1045 if (Q.DC && Q.DT) {
1046 // Handle dominating conditions.
1047 for (BranchInst *BI : Q.DC->conditionsFor(V)) {
1048 BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0));
1049 if (Q.DT->dominates(Edge0, Q.CxtI->getParent()))
1050 computeKnownBitsFromCond(V, BI->getCondition(), Known, Q,
1051 /*Invert*/ false, Depth);
1052
1053 BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1));
1054 if (Q.DT->dominates(Edge1, Q.CxtI->getParent()))
1055 computeKnownBitsFromCond(V, BI->getCondition(), Known, Q,
1056 /*Invert*/ true, Depth);
1057 }
1058
1059 if (Known.hasConflict())
1060 Known.resetAll();
1061 }
1062
1063 if (!Q.AC)
1064 return;
1065
1066 unsigned BitWidth = Known.getBitWidth();
1067
1068 // Note that the patterns below need to be kept in sync with the code
1069 // in AssumptionCache::updateAffectedValues.
1070
1071 for (AssumptionCache::ResultElem &Elem : Q.AC->assumptionsFor(V)) {
1072 if (!Elem.Assume)
1073 continue;
1074
1075 AssumeInst *I = cast<AssumeInst>(Elem.Assume);
1076 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
1077 "Got assumption for the wrong function!");
1078
1079 if (Elem.Index != AssumptionCache::ExprResultIdx) {
1080 if (!V->getType()->isPointerTy())
1081 continue;
1083 *I, I->bundle_op_info_begin()[Elem.Index])) {
1084 // Allow AllowEphemerals in isValidAssumeForContext, as the CxtI might
1085 // be the producer of the pointer in the bundle. At the moment, align
1086 // assumptions aren't optimized away.
1087 if (RK.WasOn == V && RK.AttrKind == Attribute::Alignment &&
1088 isPowerOf2_64(RK.ArgValue) &&
1089 isValidAssumeForContext(I, Q.CxtI, Q.DT, /*AllowEphemerals*/ true))
1090 Known.Zero.setLowBits(Log2_64(RK.ArgValue));
1091 }
1092 continue;
1093 }
1094
1095 // Warning: This loop can end up being somewhat performance sensitive.
1096 // We're running this loop for once for each value queried resulting in a
1097 // runtime of ~O(#assumes * #values).
1098
1099 Value *Arg = I->getArgOperand(0);
1100
1101 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
1102 assert(BitWidth == 1 && "assume operand is not i1?");
1103 (void)BitWidth;
1104 Known.setAllOnes();
1105 return;
1106 }
1107 if (match(Arg, m_Not(m_Specific(V))) &&
1109 assert(BitWidth == 1 && "assume operand is not i1?");
1110 (void)BitWidth;
1111 Known.setAllZero();
1112 return;
1113 }
1114 auto *Trunc = dyn_cast<TruncInst>(Arg);
1115 if (Trunc && Trunc->getOperand(0) == V &&
1117 if (Trunc->hasNoUnsignedWrap()) {
1119 return;
1120 }
1121 Known.One.setBit(0);
1122 return;
1123 }
1124
1125 // The remaining tests are all recursive, so bail out if we hit the limit.
1127 continue;
1128
1129 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
1130 if (!Cmp)
1131 continue;
1132
1133 if (!isValidAssumeForContext(I, Q.CxtI, Q.DT))
1134 continue;
1135
1136 computeKnownBitsFromICmpCond(V, Cmp, Known, Q, /*Invert=*/false);
1137 }
1138
1139 // Conflicting assumption: Undefined behavior will occur on this execution
1140 // path.
1141 if (Known.hasConflict())
1142 Known.resetAll();
1143}
1144
1145/// Compute known bits from a shift operator, including those with a
1146/// non-constant shift amount. Known is the output of this function. Known2 is a
1147/// pre-allocated temporary with the same bit width as Known and on return
1148/// contains the known bit of the shift value source. KF is an
1149/// operator-specific function that, given the known-bits and a shift amount,
1150/// compute the implied known-bits of the shift operator's result respectively
1151/// for that shift amount. The results from calling KF are conservatively
1152/// combined for all permitted shift amounts.
1154 const Operator *I, const APInt &DemandedElts, KnownBits &Known,
1155 KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth,
1156 function_ref<KnownBits(const KnownBits &, const KnownBits &, bool)> KF) {
1157 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Q, Depth + 1);
1158 computeKnownBits(I->getOperand(1), DemandedElts, Known, Q, Depth + 1);
1159 // To limit compile-time impact, only query isKnownNonZero() if we know at
1160 // least something about the shift amount.
1161 bool ShAmtNonZero =
1162 Known.isNonZero() ||
1163 (Known.getMaxValue().ult(Known.getBitWidth()) &&
1164 isKnownNonZero(I->getOperand(1), DemandedElts, Q, Depth + 1));
1165 Known = KF(Known2, Known, ShAmtNonZero);
1166}
1167
1168static KnownBits
1169getKnownBitsFromAndXorOr(const Operator *I, const APInt &DemandedElts,
1170 const KnownBits &KnownLHS, const KnownBits &KnownRHS,
1171 const SimplifyQuery &Q, unsigned Depth) {
1172 unsigned BitWidth = KnownLHS.getBitWidth();
1173 KnownBits KnownOut(BitWidth);
1174 bool IsAnd = false;
1175 bool HasKnownOne = !KnownLHS.One.isZero() || !KnownRHS.One.isZero();
1176 Value *X = nullptr, *Y = nullptr;
1177
1178 switch (I->getOpcode()) {
1179 case Instruction::And:
1180 KnownOut = KnownLHS & KnownRHS;
1181 IsAnd = true;
1182 // and(x, -x) is common idioms that will clear all but lowest set
1183 // bit. If we have a single known bit in x, we can clear all bits
1184 // above it.
1185 // TODO: instcombine often reassociates independent `and` which can hide
1186 // this pattern. Try to match and(x, and(-x, y)) / and(and(x, y), -x).
1187 if (HasKnownOne && match(I, m_c_And(m_Value(X), m_Neg(m_Deferred(X))))) {
1188 // -(-x) == x so using whichever (LHS/RHS) gets us a better result.
1189 if (KnownLHS.countMaxTrailingZeros() <= KnownRHS.countMaxTrailingZeros())
1190 KnownOut = KnownLHS.blsi();
1191 else
1192 KnownOut = KnownRHS.blsi();
1193 }
1194 break;
1195 case Instruction::Or:
1196 KnownOut = KnownLHS | KnownRHS;
1197 break;
1198 case Instruction::Xor:
1199 KnownOut = KnownLHS ^ KnownRHS;
1200 // xor(x, x-1) is common idioms that will clear all but lowest set
1201 // bit. If we have a single known bit in x, we can clear all bits
1202 // above it.
1203 // TODO: xor(x, x-1) is often rewritting as xor(x, x-C) where C !=
1204 // -1 but for the purpose of demanded bits (xor(x, x-C) &
1205 // Demanded) == (xor(x, x-1) & Demanded). Extend the xor pattern
1206 // to use arbitrary C if xor(x, x-C) as the same as xor(x, x-1).
1207 if (HasKnownOne &&
1209 const KnownBits &XBits = I->getOperand(0) == X ? KnownLHS : KnownRHS;
1210 KnownOut = XBits.blsmsk();
1211 }
1212 break;
1213 default:
1214 llvm_unreachable("Invalid Op used in 'analyzeKnownBitsFromAndXorOr'");
1215 }
1216
1217 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1218 // xor/or(x, add (x, -1)) is an idiom that will always set the low bit.
1219 // here we handle the more general case of adding any odd number by
1220 // matching the form and/xor/or(x, add(x, y)) where y is odd.
1221 // TODO: This could be generalized to clearing any bit set in y where the
1222 // following bit is known to be unset in y.
1223 if (!KnownOut.Zero[0] && !KnownOut.One[0] &&
1227 KnownBits KnownY(BitWidth);
1228 computeKnownBits(Y, DemandedElts, KnownY, Q, Depth + 1);
1229 if (KnownY.countMinTrailingOnes() > 0) {
1230 if (IsAnd)
1231 KnownOut.Zero.setBit(0);
1232 else
1233 KnownOut.One.setBit(0);
1234 }
1235 }
1236 return KnownOut;
1237}
1238
1240 const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q,
1241 unsigned Depth,
1242 const function_ref<KnownBits(const KnownBits &, const KnownBits &)>
1243 KnownBitsFunc) {
1244 APInt DemandedEltsLHS, DemandedEltsRHS;
1246 DemandedElts, DemandedEltsLHS,
1247 DemandedEltsRHS);
1248
1249 const auto ComputeForSingleOpFunc =
1250 [Depth, &Q, KnownBitsFunc](const Value *Op, APInt &DemandedEltsOp) {
1251 return KnownBitsFunc(
1252 computeKnownBits(Op, DemandedEltsOp, Q, Depth + 1),
1253 computeKnownBits(Op, DemandedEltsOp << 1, Q, Depth + 1));
1254 };
1255
1256 if (DemandedEltsRHS.isZero())
1257 return ComputeForSingleOpFunc(I->getOperand(0), DemandedEltsLHS);
1258 if (DemandedEltsLHS.isZero())
1259 return ComputeForSingleOpFunc(I->getOperand(1), DemandedEltsRHS);
1260
1261 return ComputeForSingleOpFunc(I->getOperand(0), DemandedEltsLHS)
1262 .intersectWith(ComputeForSingleOpFunc(I->getOperand(1), DemandedEltsRHS));
1263}
1264
1265// Public so this can be used in `SimplifyDemandedUseBits`.
1267 const KnownBits &KnownLHS,
1268 const KnownBits &KnownRHS,
1269 const SimplifyQuery &SQ,
1270 unsigned Depth) {
1271 auto *FVTy = dyn_cast<FixedVectorType>(I->getType());
1272 APInt DemandedElts =
1273 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
1274
1275 return getKnownBitsFromAndXorOr(I, DemandedElts, KnownLHS, KnownRHS, SQ,
1276 Depth);
1277}
1278
1280 Attribute Attr = F->getFnAttribute(Attribute::VScaleRange);
1281 // Without vscale_range, we only know that vscale is non-zero.
1282 if (!Attr.isValid())
1284
1285 unsigned AttrMin = Attr.getVScaleRangeMin();
1286 // Minimum is larger than vscale width, result is always poison.
1287 if ((unsigned)llvm::bit_width(AttrMin) > BitWidth)
1288 return ConstantRange::getEmpty(BitWidth);
1289
1290 APInt Min(BitWidth, AttrMin);
1291 std::optional<unsigned> AttrMax = Attr.getVScaleRangeMax();
1292 if (!AttrMax || (unsigned)llvm::bit_width(*AttrMax) > BitWidth)
1294
1295 return ConstantRange(Min, APInt(BitWidth, *AttrMax) + 1);
1296}
1297
1299 Value *Arm, bool Invert,
1300 const SimplifyQuery &Q, unsigned Depth) {
1301 // If we have a constant arm, we are done.
1302 if (Known.isConstant())
1303 return;
1304
1305 // See what condition implies about the bits of the select arm.
1306 KnownBits CondRes(Known.getBitWidth());
1307 computeKnownBitsFromCond(Arm, Cond, CondRes, Q, Invert, Depth + 1);
1308 // If we don't get any information from the condition, no reason to
1309 // proceed.
1310 if (CondRes.isUnknown())
1311 return;
1312
1313 // We can have conflict if the condition is dead. I.e if we have
1314 // (x | 64) < 32 ? (x | 64) : y
1315 // we will have conflict at bit 6 from the condition/the `or`.
1316 // In that case just return. Its not particularly important
1317 // what we do, as this select is going to be simplified soon.
1318 CondRes = CondRes.unionWith(Known);
1319 if (CondRes.hasConflict())
1320 return;
1321
1322 // Finally make sure the information we found is valid. This is relatively
1323 // expensive so it's left for the very end.
1324 if (!isGuaranteedNotToBeUndef(Arm, Q.AC, Q.CxtI, Q.DT, Depth + 1))
1325 return;
1326
1327 // Finally, we know we get information from the condition and its valid,
1328 // so return it.
1329 Known = CondRes;
1330}
1331
1332// Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
1333// Returns the input and lower/upper bounds.
1334static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
1335 const APInt *&CLow, const APInt *&CHigh) {
1337 cast<Operator>(Select)->getOpcode() == Instruction::Select &&
1338 "Input should be a Select!");
1339
1340 const Value *LHS = nullptr, *RHS = nullptr;
1342 if (SPF != SPF_SMAX && SPF != SPF_SMIN)
1343 return false;
1344
1345 if (!match(RHS, m_APInt(CLow)))
1346 return false;
1347
1348 const Value *LHS2 = nullptr, *RHS2 = nullptr;
1350 if (getInverseMinMaxFlavor(SPF) != SPF2)
1351 return false;
1352
1353 if (!match(RHS2, m_APInt(CHigh)))
1354 return false;
1355
1356 if (SPF == SPF_SMIN)
1357 std::swap(CLow, CHigh);
1358
1359 In = LHS2;
1360 return CLow->sle(*CHigh);
1361}
1362
1364 const APInt *&CLow,
1365 const APInt *&CHigh) {
1366 assert((II->getIntrinsicID() == Intrinsic::smin ||
1367 II->getIntrinsicID() == Intrinsic::smax) &&
1368 "Must be smin/smax");
1369
1370 Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
1371 auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
1372 if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
1373 !match(II->getArgOperand(1), m_APInt(CLow)) ||
1374 !match(InnerII->getArgOperand(1), m_APInt(CHigh)))
1375 return false;
1376
1377 if (II->getIntrinsicID() == Intrinsic::smin)
1378 std::swap(CLow, CHigh);
1379 return CLow->sle(*CHigh);
1380}
1381
1383 KnownBits &Known) {
1384 const APInt *CLow, *CHigh;
1385 if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh))
1386 Known = Known.unionWith(
1387 ConstantRange::getNonEmpty(*CLow, *CHigh + 1).toKnownBits());
1388}
1389
1391 const APInt &DemandedElts,
1392 KnownBits &Known,
1393 const SimplifyQuery &Q,
1394 unsigned Depth) {
1395 unsigned BitWidth = Known.getBitWidth();
1396
1397 KnownBits Known2(BitWidth);
1398 switch (I->getOpcode()) {
1399 default: break;
1400 case Instruction::Load:
1401 if (MDNode *MD =
1402 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1404 break;
1405 case Instruction::And:
1406 computeKnownBits(I->getOperand(1), DemandedElts, Known, Q, Depth + 1);
1407 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Q, Depth + 1);
1408
1409 Known = getKnownBitsFromAndXorOr(I, DemandedElts, Known2, Known, Q, Depth);
1410 break;
1411 case Instruction::Or:
1412 computeKnownBits(I->getOperand(1), DemandedElts, Known, Q, Depth + 1);
1413 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Q, Depth + 1);
1414
1415 Known = getKnownBitsFromAndXorOr(I, DemandedElts, Known2, Known, Q, Depth);
1416 break;
1417 case Instruction::Xor:
1418 computeKnownBits(I->getOperand(1), DemandedElts, Known, Q, Depth + 1);
1419 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Q, Depth + 1);
1420
1421 Known = getKnownBitsFromAndXorOr(I, DemandedElts, Known2, Known, Q, Depth);
1422 break;
1423 case Instruction::Mul: {
1426 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, NUW,
1427 DemandedElts, Known, Known2, Q, Depth);
1428 break;
1429 }
1430 case Instruction::UDiv: {
1431 computeKnownBits(I->getOperand(0), DemandedElts, Known, Q, Depth + 1);
1432 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Q, Depth + 1);
1433 Known =
1434 KnownBits::udiv(Known, Known2, Q.IIQ.isExact(cast<BinaryOperator>(I)));
1435 break;
1436 }
1437 case Instruction::SDiv: {
1438 computeKnownBits(I->getOperand(0), DemandedElts, Known, Q, Depth + 1);
1439 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Q, Depth + 1);
1440 Known =
1441 KnownBits::sdiv(Known, Known2, Q.IIQ.isExact(cast<BinaryOperator>(I)));
1442 break;
1443 }
1444 case Instruction::Select: {
1445 auto ComputeForArm = [&](Value *Arm, bool Invert) {
1446 KnownBits Res(Known.getBitWidth());
1447 computeKnownBits(Arm, DemandedElts, Res, Q, Depth + 1);
1448 adjustKnownBitsForSelectArm(Res, I->getOperand(0), Arm, Invert, Q, Depth);
1449 return Res;
1450 };
1451 // Only known if known in both the LHS and RHS.
1452 Known =
1453 ComputeForArm(I->getOperand(1), /*Invert=*/false)
1454 .intersectWith(ComputeForArm(I->getOperand(2), /*Invert=*/true));
1455 break;
1456 }
1457 case Instruction::FPTrunc:
1458 case Instruction::FPExt:
1459 case Instruction::FPToUI:
1460 case Instruction::FPToSI:
1461 case Instruction::SIToFP:
1462 case Instruction::UIToFP:
1463 break; // Can't work with floating point.
1464 case Instruction::PtrToInt:
1465 case Instruction::IntToPtr:
1466 // Fall through and handle them the same as zext/trunc.
1467 [[fallthrough]];
1468 case Instruction::ZExt:
1469 case Instruction::Trunc: {
1470 Type *SrcTy = I->getOperand(0)->getType();
1471
1472 unsigned SrcBitWidth;
1473 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1474 // which fall through here.
1475 Type *ScalarTy = SrcTy->getScalarType();
1476 SrcBitWidth = ScalarTy->isPointerTy() ?
1477 Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1478 Q.DL.getTypeSizeInBits(ScalarTy);
1479
1480 assert(SrcBitWidth && "SrcBitWidth can't be zero");
1481 Known = Known.anyextOrTrunc(SrcBitWidth);
1482 computeKnownBits(I->getOperand(0), DemandedElts, Known, Q, Depth + 1);
1483 if (auto *Inst = dyn_cast<PossiblyNonNegInst>(I);
1484 Inst && Inst->hasNonNeg() && !Known.isNegative())
1485 Known.makeNonNegative();
1486 Known = Known.zextOrTrunc(BitWidth);
1487 break;
1488 }
1489 case Instruction::BitCast: {
1490 Type *SrcTy = I->getOperand(0)->getType();
1491 if (SrcTy->isIntOrPtrTy() &&
1492 // TODO: For now, not handling conversions like:
1493 // (bitcast i64 %x to <2 x i32>)
1494 !I->getType()->isVectorTy()) {
1495 computeKnownBits(I->getOperand(0), Known, Q, Depth + 1);
1496 break;
1497 }
1498
1499 const Value *V;
1500 // Handle bitcast from floating point to integer.
1501 if (match(I, m_ElementWiseBitCast(m_Value(V))) &&
1502 V->getType()->isFPOrFPVectorTy()) {
1503 Type *FPType = V->getType()->getScalarType();
1504 KnownFPClass Result =
1505 computeKnownFPClass(V, DemandedElts, fcAllFlags, Q, Depth + 1);
1506 FPClassTest FPClasses = Result.KnownFPClasses;
1507
1508 // TODO: Treat it as zero/poison if the use of I is unreachable.
1509 if (FPClasses == fcNone)
1510 break;
1511
1512 if (Result.isKnownNever(fcNormal | fcSubnormal | fcNan)) {
1513 Known.setAllConflict();
1514
1515 if (FPClasses & fcInf)
1517 APFloat::getInf(FPType->getFltSemantics()).bitcastToAPInt()));
1518
1519 if (FPClasses & fcZero)
1521 APInt::getZero(FPType->getScalarSizeInBits())));
1522
1523 Known.Zero.clearSignBit();
1524 Known.One.clearSignBit();
1525 }
1526
1527 if (Result.SignBit) {
1528 if (*Result.SignBit)
1529 Known.makeNegative();
1530 else
1531 Known.makeNonNegative();
1532 }
1533
1534 break;
1535 }
1536
1537 // Handle cast from vector integer type to scalar or vector integer.
1538 auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy);
1539 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1540 !I->getType()->isIntOrIntVectorTy() ||
1541 isa<ScalableVectorType>(I->getType()))
1542 break;
1543
1544 unsigned NumElts = DemandedElts.getBitWidth();
1545 bool IsLE = Q.DL.isLittleEndian();
1546 // Look through a cast from narrow vector elements to wider type.
1547 // Examples: v4i32 -> v2i64, v3i8 -> v24
1548 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1549 if (BitWidth % SubBitWidth == 0) {
1550 // Known bits are automatically intersected across demanded elements of a
1551 // vector. So for example, if a bit is computed as known zero, it must be
1552 // zero across all demanded elements of the vector.
1553 //
1554 // For this bitcast, each demanded element of the output is sub-divided
1555 // across a set of smaller vector elements in the source vector. To get
1556 // the known bits for an entire element of the output, compute the known
1557 // bits for each sub-element sequentially. This is done by shifting the
1558 // one-set-bit demanded elements parameter across the sub-elements for
1559 // consecutive calls to computeKnownBits. We are using the demanded
1560 // elements parameter as a mask operator.
1561 //
1562 // The known bits of each sub-element are then inserted into place
1563 // (dependent on endian) to form the full result of known bits.
1564 unsigned SubScale = BitWidth / SubBitWidth;
1565 APInt SubDemandedElts = APInt::getZero(NumElts * SubScale);
1566 for (unsigned i = 0; i != NumElts; ++i) {
1567 if (DemandedElts[i])
1568 SubDemandedElts.setBit(i * SubScale);
1569 }
1570
1571 KnownBits KnownSrc(SubBitWidth);
1572 for (unsigned i = 0; i != SubScale; ++i) {
1573 computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc, Q,
1574 Depth + 1);
1575 unsigned ShiftElt = IsLE ? i : SubScale - 1 - i;
1576 Known.insertBits(KnownSrc, ShiftElt * SubBitWidth);
1577 }
1578 }
1579 // Look through a cast from wider vector elements to narrow type.
1580 // Examples: v2i64 -> v4i32
1581 if (SubBitWidth % BitWidth == 0) {
1582 unsigned SubScale = SubBitWidth / BitWidth;
1583 KnownBits KnownSrc(SubBitWidth);
1584 APInt SubDemandedElts =
1585 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
1586 computeKnownBits(I->getOperand(0), SubDemandedElts, KnownSrc, Q,
1587 Depth + 1);
1588
1589 Known.setAllConflict();
1590 for (unsigned i = 0; i != NumElts; ++i) {
1591 if (DemandedElts[i]) {
1592 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
1593 unsigned Offset = (Shifts % SubScale) * BitWidth;
1594 Known = Known.intersectWith(KnownSrc.extractBits(BitWidth, Offset));
1595 if (Known.isUnknown())
1596 break;
1597 }
1598 }
1599 }
1600 break;
1601 }
1602 case Instruction::SExt: {
1603 // Compute the bits in the result that are not present in the input.
1604 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1605
1606 Known = Known.trunc(SrcBitWidth);
1607 computeKnownBits(I->getOperand(0), DemandedElts, Known, Q, Depth + 1);
1608 // If the sign bit of the input is known set or clear, then we know the
1609 // top bits of the result.
1610 Known = Known.sext(BitWidth);
1611 break;
1612 }
1613 case Instruction::Shl: {
1616 auto KF = [NUW, NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt,
1617 bool ShAmtNonZero) {
1618 return KnownBits::shl(KnownVal, KnownAmt, NUW, NSW, ShAmtNonZero);
1619 };
1620 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Q, Depth,
1621 KF);
1622 // Trailing zeros of a right-shifted constant never decrease.
1623 const APInt *C;
1624 if (match(I->getOperand(0), m_APInt(C)))
1625 Known.Zero.setLowBits(C->countr_zero());
1626 break;
1627 }
1628 case Instruction::LShr: {
1629 bool Exact = Q.IIQ.isExact(cast<BinaryOperator>(I));
1630 auto KF = [Exact](const KnownBits &KnownVal, const KnownBits &KnownAmt,
1631 bool ShAmtNonZero) {
1632 return KnownBits::lshr(KnownVal, KnownAmt, ShAmtNonZero, Exact);
1633 };
1634 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Q, Depth,
1635 KF);
1636 // Leading zeros of a left-shifted constant never decrease.
1637 const APInt *C;
1638 if (match(I->getOperand(0), m_APInt(C)))
1639 Known.Zero.setHighBits(C->countl_zero());
1640 break;
1641 }
1642 case Instruction::AShr: {
1643 bool Exact = Q.IIQ.isExact(cast<BinaryOperator>(I));
1644 auto KF = [Exact](const KnownBits &KnownVal, const KnownBits &KnownAmt,
1645 bool ShAmtNonZero) {
1646 return KnownBits::ashr(KnownVal, KnownAmt, ShAmtNonZero, Exact);
1647 };
1648 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Q, Depth,
1649 KF);
1650 break;
1651 }
1652 case Instruction::Sub: {
1655 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, NUW,
1656 DemandedElts, Known, Known2, Q, Depth);
1657 break;
1658 }
1659 case Instruction::Add: {
1662 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, NUW,
1663 DemandedElts, Known, Known2, Q, Depth);
1664 break;
1665 }
1666 case Instruction::SRem:
1667 computeKnownBits(I->getOperand(0), DemandedElts, Known, Q, Depth + 1);
1668 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Q, Depth + 1);
1669 Known = KnownBits::srem(Known, Known2);
1670 break;
1671
1672 case Instruction::URem:
1673 computeKnownBits(I->getOperand(0), DemandedElts, Known, Q, Depth + 1);
1674 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Q, Depth + 1);
1675 Known = KnownBits::urem(Known, Known2);
1676 break;
1677 case Instruction::Alloca:
1679 break;
1680 case Instruction::GetElementPtr: {
1681 // Analyze all of the subscripts of this getelementptr instruction
1682 // to determine if we can prove known low zero bits.
1683 computeKnownBits(I->getOperand(0), Known, Q, Depth + 1);
1684 // Accumulate the constant indices in a separate variable
1685 // to minimize the number of calls to computeForAddSub.
1686 unsigned IndexWidth = Q.DL.getIndexTypeSizeInBits(I->getType());
1687 APInt AccConstIndices(IndexWidth, 0);
1688
1689 auto AddIndexToKnown = [&](KnownBits IndexBits) {
1690 if (IndexWidth == BitWidth) {
1691 // Note that inbounds does *not* guarantee nsw for the addition, as only
1692 // the offset is signed, while the base address is unsigned.
1693 Known = KnownBits::add(Known, IndexBits);
1694 } else {
1695 // If the index width is smaller than the pointer width, only add the
1696 // value to the low bits.
1697 assert(IndexWidth < BitWidth &&
1698 "Index width can't be larger than pointer width");
1699 Known.insertBits(KnownBits::add(Known.trunc(IndexWidth), IndexBits), 0);
1700 }
1701 };
1702
1704 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1705 // TrailZ can only become smaller, short-circuit if we hit zero.
1706 if (Known.isUnknown())
1707 break;
1708
1709 Value *Index = I->getOperand(i);
1710
1711 // Handle case when index is zero.
1712 Constant *CIndex = dyn_cast<Constant>(Index);
1713 if (CIndex && CIndex->isZeroValue())
1714 continue;
1715
1716 if (StructType *STy = GTI.getStructTypeOrNull()) {
1717 // Handle struct member offset arithmetic.
1718
1719 assert(CIndex &&
1720 "Access to structure field must be known at compile time");
1721
1722 if (CIndex->getType()->isVectorTy())
1723 Index = CIndex->getSplatValue();
1724
1725 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1726 const StructLayout *SL = Q.DL.getStructLayout(STy);
1727 uint64_t Offset = SL->getElementOffset(Idx);
1728 AccConstIndices += Offset;
1729 continue;
1730 }
1731
1732 // Handle array index arithmetic.
1733 Type *IndexedTy = GTI.getIndexedType();
1734 if (!IndexedTy->isSized()) {
1735 Known.resetAll();
1736 break;
1737 }
1738
1739 TypeSize Stride = GTI.getSequentialElementStride(Q.DL);
1740 uint64_t StrideInBytes = Stride.getKnownMinValue();
1741 if (!Stride.isScalable()) {
1742 // Fast path for constant offset.
1743 if (auto *CI = dyn_cast<ConstantInt>(Index)) {
1744 AccConstIndices +=
1745 CI->getValue().sextOrTrunc(IndexWidth) * StrideInBytes;
1746 continue;
1747 }
1748 }
1749
1750 KnownBits IndexBits =
1751 computeKnownBits(Index, Q, Depth + 1).sextOrTrunc(IndexWidth);
1752 KnownBits ScalingFactor(IndexWidth);
1753 // Multiply by current sizeof type.
1754 // &A[i] == A + i * sizeof(*A[i]).
1755 if (Stride.isScalable()) {
1756 // For scalable types the only thing we know about sizeof is
1757 // that this is a multiple of the minimum size.
1758 ScalingFactor.Zero.setLowBits(llvm::countr_zero(StrideInBytes));
1759 } else {
1760 ScalingFactor =
1761 KnownBits::makeConstant(APInt(IndexWidth, StrideInBytes));
1762 }
1763 AddIndexToKnown(KnownBits::mul(IndexBits, ScalingFactor));
1764 }
1765 if (!Known.isUnknown() && !AccConstIndices.isZero())
1766 AddIndexToKnown(KnownBits::makeConstant(AccConstIndices));
1767 break;
1768 }
1769 case Instruction::PHI: {
1770 const PHINode *P = cast<PHINode>(I);
1771 BinaryOperator *BO = nullptr;
1772 Value *R = nullptr, *L = nullptr;
1773 if (matchSimpleRecurrence(P, BO, R, L)) {
1774 // Handle the case of a simple two-predecessor recurrence PHI.
1775 // There's a lot more that could theoretically be done here, but
1776 // this is sufficient to catch some interesting cases.
1777 unsigned Opcode = BO->getOpcode();
1778
1779 switch (Opcode) {
1780 // If this is a shift recurrence, we know the bits being shifted in. We
1781 // can combine that with information about the start value of the
1782 // recurrence to conclude facts about the result. If this is a udiv
1783 // recurrence, we know that the result can never exceed either the
1784 // numerator or the start value, whichever is greater.
1785 case Instruction::LShr:
1786 case Instruction::AShr:
1787 case Instruction::Shl:
1788 case Instruction::UDiv:
1789 if (BO->getOperand(0) != I)
1790 break;
1791 [[fallthrough]];
1792
1793 // For a urem recurrence, the result can never exceed the start value. The
1794 // phi could either be the numerator or the denominator.
1795 case Instruction::URem: {
1796 // We have matched a recurrence of the form:
1797 // %iv = [R, %entry], [%iv.next, %backedge]
1798 // %iv.next = shift_op %iv, L
1799
1800 // Recurse with the phi context to avoid concern about whether facts
1801 // inferred hold at original context instruction. TODO: It may be
1802 // correct to use the original context. IF warranted, explore and
1803 // add sufficient tests to cover.
1805 RecQ.CxtI = P;
1806 computeKnownBits(R, DemandedElts, Known2, RecQ, Depth + 1);
1807 switch (Opcode) {
1808 case Instruction::Shl:
1809 // A shl recurrence will only increase the tailing zeros
1810 Known.Zero.setLowBits(Known2.countMinTrailingZeros());
1811 break;
1812 case Instruction::LShr:
1813 case Instruction::UDiv:
1814 case Instruction::URem:
1815 // lshr, udiv, and urem recurrences will preserve the leading zeros of
1816 // the start value.
1817 Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1818 break;
1819 case Instruction::AShr:
1820 // An ashr recurrence will extend the initial sign bit
1821 Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1822 Known.One.setHighBits(Known2.countMinLeadingOnes());
1823 break;
1824 }
1825 break;
1826 }
1827
1828 // Check for operations that have the property that if
1829 // both their operands have low zero bits, the result
1830 // will have low zero bits.
1831 case Instruction::Add:
1832 case Instruction::Sub:
1833 case Instruction::And:
1834 case Instruction::Or:
1835 case Instruction::Mul: {
1836 // Change the context instruction to the "edge" that flows into the
1837 // phi. This is important because that is where the value is actually
1838 // "evaluated" even though it is used later somewhere else. (see also
1839 // D69571).
1841
1842 unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
1843 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
1844 Instruction *LInst = P->getIncomingBlock(1 - OpNum)->getTerminator();
1845
1846 // Ok, we have a PHI of the form L op= R. Check for low
1847 // zero bits.
1848 RecQ.CxtI = RInst;
1849 computeKnownBits(R, DemandedElts, Known2, RecQ, Depth + 1);
1850
1851 // We need to take the minimum number of known bits
1852 KnownBits Known3(BitWidth);
1853 RecQ.CxtI = LInst;
1854 computeKnownBits(L, DemandedElts, Known3, RecQ, Depth + 1);
1855
1856 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1857 Known3.countMinTrailingZeros()));
1858
1859 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
1860 if (!OverflowOp || !Q.IIQ.hasNoSignedWrap(OverflowOp))
1861 break;
1862
1863 switch (Opcode) {
1864 // If initial value of recurrence is nonnegative, and we are adding
1865 // a nonnegative number with nsw, the result can only be nonnegative
1866 // or poison value regardless of the number of times we execute the
1867 // add in phi recurrence. If initial value is negative and we are
1868 // adding a negative number with nsw, the result can only be
1869 // negative or poison value. Similar arguments apply to sub and mul.
1870 //
1871 // (add non-negative, non-negative) --> non-negative
1872 // (add negative, negative) --> negative
1873 case Instruction::Add: {
1874 if (Known2.isNonNegative() && Known3.isNonNegative())
1875 Known.makeNonNegative();
1876 else if (Known2.isNegative() && Known3.isNegative())
1877 Known.makeNegative();
1878 break;
1879 }
1880
1881 // (sub nsw non-negative, negative) --> non-negative
1882 // (sub nsw negative, non-negative) --> negative
1883 case Instruction::Sub: {
1884 if (BO->getOperand(0) != I)
1885 break;
1886 if (Known2.isNonNegative() && Known3.isNegative())
1887 Known.makeNonNegative();
1888 else if (Known2.isNegative() && Known3.isNonNegative())
1889 Known.makeNegative();
1890 break;
1891 }
1892
1893 // (mul nsw non-negative, non-negative) --> non-negative
1894 case Instruction::Mul:
1895 if (Known2.isNonNegative() && Known3.isNonNegative())
1896 Known.makeNonNegative();
1897 break;
1898
1899 default:
1900 break;
1901 }
1902 break;
1903 }
1904
1905 default:
1906 break;
1907 }
1908 }
1909
1910 // Unreachable blocks may have zero-operand PHI nodes.
1911 if (P->getNumIncomingValues() == 0)
1912 break;
1913
1914 // Otherwise take the unions of the known bit sets of the operands,
1915 // taking conservative care to avoid excessive recursion.
1916 if (Depth < MaxAnalysisRecursionDepth - 1 && Known.isUnknown()) {
1917 // Skip if every incoming value references to ourself.
1918 if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
1919 break;
1920
1921 Known.setAllConflict();
1922 for (const Use &U : P->operands()) {
1923 Value *IncValue;
1924 const PHINode *CxtPhi;
1925 Instruction *CxtI;
1926 breakSelfRecursivePHI(&U, P, IncValue, CxtI, &CxtPhi);
1927 // Skip direct self references.
1928 if (IncValue == P)
1929 continue;
1930
1931 // Change the context instruction to the "edge" that flows into the
1932 // phi. This is important because that is where the value is actually
1933 // "evaluated" even though it is used later somewhere else. (see also
1934 // D69571).
1936
1937 Known2 = KnownBits(BitWidth);
1938
1939 // Recurse, but cap the recursion to one level, because we don't
1940 // want to waste time spinning around in loops.
1941 // TODO: See if we can base recursion limiter on number of incoming phi
1942 // edges so we don't overly clamp analysis.
1943 computeKnownBits(IncValue, DemandedElts, Known2, RecQ,
1945
1946 // See if we can further use a conditional branch into the phi
1947 // to help us determine the range of the value.
1948 if (!Known2.isConstant()) {
1949 CmpPredicate Pred;
1950 const APInt *RHSC;
1951 BasicBlock *TrueSucc, *FalseSucc;
1952 // TODO: Use RHS Value and compute range from its known bits.
1953 if (match(RecQ.CxtI,
1954 m_Br(m_c_ICmp(Pred, m_Specific(IncValue), m_APInt(RHSC)),
1955 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
1956 // Check for cases of duplicate successors.
1957 if ((TrueSucc == CxtPhi->getParent()) !=
1958 (FalseSucc == CxtPhi->getParent())) {
1959 // If we're using the false successor, invert the predicate.
1960 if (FalseSucc == CxtPhi->getParent())
1961 Pred = CmpInst::getInversePredicate(Pred);
1962 // Get the knownbits implied by the incoming phi condition.
1963 auto CR = ConstantRange::makeExactICmpRegion(Pred, *RHSC);
1964 KnownBits KnownUnion = Known2.unionWith(CR.toKnownBits());
1965 // We can have conflicts here if we are analyzing deadcode (its
1966 // impossible for us reach this BB based the icmp).
1967 if (KnownUnion.hasConflict()) {
1968 // No reason to continue analyzing in a known dead region, so
1969 // just resetAll and break. This will cause us to also exit the
1970 // outer loop.
1971 Known.resetAll();
1972 break;
1973 }
1974 Known2 = KnownUnion;
1975 }
1976 }
1977 }
1978
1979 Known = Known.intersectWith(Known2);
1980 // If all bits have been ruled out, there's no need to check
1981 // more operands.
1982 if (Known.isUnknown())
1983 break;
1984 }
1985 }
1986 break;
1987 }
1988 case Instruction::Call:
1989 case Instruction::Invoke: {
1990 // If range metadata is attached to this call, set known bits from that,
1991 // and then intersect with known bits based on other properties of the
1992 // function.
1993 if (MDNode *MD =
1994 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1996
1997 const auto *CB = cast<CallBase>(I);
1998
1999 if (std::optional<ConstantRange> Range = CB->getRange())
2000 Known = Known.unionWith(Range->toKnownBits());
2001
2002 if (const Value *RV = CB->getReturnedArgOperand()) {
2003 if (RV->getType() == I->getType()) {
2004 computeKnownBits(RV, Known2, Q, Depth + 1);
2005 Known = Known.unionWith(Known2);
2006 // If the function doesn't return properly for all input values
2007 // (e.g. unreachable exits) then there might be conflicts between the
2008 // argument value and the range metadata. Simply discard the known bits
2009 // in case of conflicts.
2010 if (Known.hasConflict())
2011 Known.resetAll();
2012 }
2013 }
2014 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2015 switch (II->getIntrinsicID()) {
2016 default:
2017 break;
2018 case Intrinsic::abs: {
2019 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Q, Depth + 1);
2020 bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
2021 Known = Known.unionWith(Known2.abs(IntMinIsPoison));
2022 break;
2023 }
2024 case Intrinsic::bitreverse:
2025 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Q, Depth + 1);
2026 Known = Known.unionWith(Known2.reverseBits());
2027 break;
2028 case Intrinsic::bswap:
2029 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Q, Depth + 1);
2030 Known = Known.unionWith(Known2.byteSwap());
2031 break;
2032 case Intrinsic::ctlz: {
2033 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Q, Depth + 1);
2034 // If we have a known 1, its position is our upper bound.
2035 unsigned PossibleLZ = Known2.countMaxLeadingZeros();
2036 // If this call is poison for 0 input, the result will be less than 2^n.
2037 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
2038 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
2039 unsigned LowBits = llvm::bit_width(PossibleLZ);
2040 Known.Zero.setBitsFrom(LowBits);
2041 break;
2042 }
2043 case Intrinsic::cttz: {
2044 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Q, Depth + 1);
2045 // If we have a known 1, its position is our upper bound.
2046 unsigned PossibleTZ = Known2.countMaxTrailingZeros();
2047 // If this call is poison for 0 input, the result will be less than 2^n.
2048 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
2049 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
2050 unsigned LowBits = llvm::bit_width(PossibleTZ);
2051 Known.Zero.setBitsFrom(LowBits);
2052 break;
2053 }
2054 case Intrinsic::ctpop: {
2055 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Q, Depth + 1);
2056 // We can bound the space the count needs. Also, bits known to be zero
2057 // can't contribute to the population.
2058 unsigned BitsPossiblySet = Known2.countMaxPopulation();
2059 unsigned LowBits = llvm::bit_width(BitsPossiblySet);
2060 Known.Zero.setBitsFrom(LowBits);
2061 // TODO: we could bound KnownOne using the lower bound on the number
2062 // of bits which might be set provided by popcnt KnownOne2.
2063 break;
2064 }
2065 case Intrinsic::fshr:
2066 case Intrinsic::fshl: {
2067 const APInt *SA;
2068 if (!match(I->getOperand(2), m_APInt(SA)))
2069 break;
2070
2071 // Normalize to funnel shift left.
2072 uint64_t ShiftAmt = SA->urem(BitWidth);
2073 if (II->getIntrinsicID() == Intrinsic::fshr)
2074 ShiftAmt = BitWidth - ShiftAmt;
2075
2076 KnownBits Known3(BitWidth);
2077 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Q, Depth + 1);
2078 computeKnownBits(I->getOperand(1), DemandedElts, Known3, Q, Depth + 1);
2079
2080 Known2 <<= ShiftAmt;
2081 Known3 >>= BitWidth - ShiftAmt;
2082 Known = Known2.unionWith(Known3);
2083 break;
2084 }
2085 case Intrinsic::uadd_sat:
2086 computeKnownBits(I->getOperand(0), DemandedElts, Known, Q, Depth + 1);
2087 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Q, Depth + 1);
2088 Known = KnownBits::uadd_sat(Known, Known2);
2089 break;
2090 case Intrinsic::usub_sat:
2091 computeKnownBits(I->getOperand(0), DemandedElts, Known, Q, Depth + 1);
2092 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Q, Depth + 1);
2093 Known = KnownBits::usub_sat(Known, Known2);
2094 break;
2095 case Intrinsic::sadd_sat:
2096 computeKnownBits(I->getOperand(0), DemandedElts, Known, Q, Depth + 1);
2097 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Q, Depth + 1);
2098 Known = KnownBits::sadd_sat(Known, Known2);
2099 break;
2100 case Intrinsic::ssub_sat:
2101 computeKnownBits(I->getOperand(0), DemandedElts, Known, Q, Depth + 1);
2102 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Q, Depth + 1);
2103 Known = KnownBits::ssub_sat(Known, Known2);
2104 break;
2105 // Vec reverse preserves bits from input vec.
2106 case Intrinsic::vector_reverse:
2107 computeKnownBits(I->getOperand(0), DemandedElts.reverseBits(), Known, Q,
2108 Depth + 1);
2109 break;
2110 // for min/max/and/or reduce, any bit common to each element in the
2111 // input vec is set in the output.
2112 case Intrinsic::vector_reduce_and:
2113 case Intrinsic::vector_reduce_or:
2114 case Intrinsic::vector_reduce_umax:
2115 case Intrinsic::vector_reduce_umin:
2116 case Intrinsic::vector_reduce_smax:
2117 case Intrinsic::vector_reduce_smin:
2118 computeKnownBits(I->getOperand(0), Known, Q, Depth + 1);
2119 break;
2120 case Intrinsic::vector_reduce_xor: {
2121 computeKnownBits(I->getOperand(0), Known, Q, Depth + 1);
2122 // The zeros common to all vecs are zero in the output.
2123 // If the number of elements is odd, then the common ones remain. If the
2124 // number of elements is even, then the common ones becomes zeros.
2125 auto *VecTy = cast<VectorType>(I->getOperand(0)->getType());
2126 // Even, so the ones become zeros.
2127 bool EvenCnt = VecTy->getElementCount().isKnownEven();
2128 if (EvenCnt)
2129 Known.Zero |= Known.One;
2130 // Maybe even element count so need to clear ones.
2131 if (VecTy->isScalableTy() || EvenCnt)
2132 Known.One.clearAllBits();
2133 break;
2134 }
2135 case Intrinsic::umin:
2136 computeKnownBits(I->getOperand(0), DemandedElts, Known, Q, Depth + 1);
2137 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Q, Depth + 1);
2138 Known = KnownBits::umin(Known, Known2);
2139 break;
2140 case Intrinsic::umax:
2141 computeKnownBits(I->getOperand(0), DemandedElts, Known, Q, Depth + 1);
2142 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Q, Depth + 1);
2143 Known = KnownBits::umax(Known, Known2);
2144 break;
2145 case Intrinsic::smin:
2146 computeKnownBits(I->getOperand(0), DemandedElts, Known, Q, Depth + 1);
2147 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Q, Depth + 1);
2148 Known = KnownBits::smin(Known, Known2);
2150 break;
2151 case Intrinsic::smax:
2152 computeKnownBits(I->getOperand(0), DemandedElts, Known, Q, Depth + 1);
2153 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Q, Depth + 1);
2154 Known = KnownBits::smax(Known, Known2);
2156 break;
2157 case Intrinsic::ptrmask: {
2158 computeKnownBits(I->getOperand(0), DemandedElts, Known, Q, Depth + 1);
2159
2160 const Value *Mask = I->getOperand(1);
2161 Known2 = KnownBits(Mask->getType()->getScalarSizeInBits());
2162 computeKnownBits(Mask, DemandedElts, Known2, Q, Depth + 1);
2163 // TODO: 1-extend would be more precise.
2164 Known &= Known2.anyextOrTrunc(BitWidth);
2165 break;
2166 }
2167 case Intrinsic::x86_sse2_pmulh_w:
2168 case Intrinsic::x86_avx2_pmulh_w:
2169 case Intrinsic::x86_avx512_pmulh_w_512:
2170 computeKnownBits(I->getOperand(0), DemandedElts, Known, Q, Depth + 1);
2171 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Q, Depth + 1);
2172 Known = KnownBits::mulhs(Known, Known2);
2173 break;
2174 case Intrinsic::x86_sse2_pmulhu_w:
2175 case Intrinsic::x86_avx2_pmulhu_w:
2176 case Intrinsic::x86_avx512_pmulhu_w_512:
2177 computeKnownBits(I->getOperand(0), DemandedElts, Known, Q, Depth + 1);
2178 computeKnownBits(I->getOperand(1), DemandedElts, Known2, Q, Depth + 1);
2179 Known = KnownBits::mulhu(Known, Known2);
2180 break;
2181 case Intrinsic::x86_sse42_crc32_64_64:
2182 Known.Zero.setBitsFrom(32);
2183 break;
2184 case Intrinsic::x86_ssse3_phadd_d_128:
2185 case Intrinsic::x86_ssse3_phadd_w_128:
2186 case Intrinsic::x86_avx2_phadd_d:
2187 case Intrinsic::x86_avx2_phadd_w: {
2189 I, DemandedElts, Q, Depth,
2190 [](const KnownBits &KnownLHS, const KnownBits &KnownRHS) {
2191 return KnownBits::add(KnownLHS, KnownRHS);
2192 });
2193 break;
2194 }
2195 case Intrinsic::x86_ssse3_phadd_sw_128:
2196 case Intrinsic::x86_avx2_phadd_sw: {
2198 I, DemandedElts, Q, Depth, KnownBits::sadd_sat);
2199 break;
2200 }
2201 case Intrinsic::x86_ssse3_phsub_d_128:
2202 case Intrinsic::x86_ssse3_phsub_w_128:
2203 case Intrinsic::x86_avx2_phsub_d:
2204 case Intrinsic::x86_avx2_phsub_w: {
2206 I, DemandedElts, Q, Depth,
2207 [](const KnownBits &KnownLHS, const KnownBits &KnownRHS) {
2208 return KnownBits::sub(KnownLHS, KnownRHS);
2209 });
2210 break;
2211 }
2212 case Intrinsic::x86_ssse3_phsub_sw_128:
2213 case Intrinsic::x86_avx2_phsub_sw: {
2215 I, DemandedElts, Q, Depth, KnownBits::ssub_sat);
2216 break;
2217 }
2218 case Intrinsic::riscv_vsetvli:
2219 case Intrinsic::riscv_vsetvlimax: {
2220 bool HasAVL = II->getIntrinsicID() == Intrinsic::riscv_vsetvli;
2221 const ConstantRange Range = getVScaleRange(II->getFunction(), BitWidth);
2223 cast<ConstantInt>(II->getArgOperand(HasAVL))->getZExtValue());
2224 RISCVVType::VLMUL VLMUL = static_cast<RISCVVType::VLMUL>(
2225 cast<ConstantInt>(II->getArgOperand(1 + HasAVL))->getZExtValue());
2226 uint64_t MaxVLEN =
2227 Range.getUnsignedMax().getZExtValue() * RISCV::RVVBitsPerBlock;
2228 uint64_t MaxVL = MaxVLEN / RISCVVType::getSEWLMULRatio(SEW, VLMUL);
2229
2230 // Result of vsetvli must be not larger than AVL.
2231 if (HasAVL)
2232 if (auto *CI = dyn_cast<ConstantInt>(II->getArgOperand(0)))
2233 MaxVL = std::min(MaxVL, CI->getZExtValue());
2234
2235 unsigned KnownZeroFirstBit = Log2_32(MaxVL) + 1;
2236 if (BitWidth > KnownZeroFirstBit)
2237 Known.Zero.setBitsFrom(KnownZeroFirstBit);
2238 break;
2239 }
2240 case Intrinsic::vscale: {
2241 if (!II->getParent() || !II->getFunction())
2242 break;
2243
2244 Known = getVScaleRange(II->getFunction(), BitWidth).toKnownBits();
2245 break;
2246 }
2247 }
2248 }
2249 break;
2250 }
2251 case Instruction::ShuffleVector: {
2252 if (auto *Splat = getSplatValue(I)) {
2253 computeKnownBits(Splat, Known, Q, Depth + 1);
2254 break;
2255 }
2256
2257 auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
2258 // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
2259 if (!Shuf) {
2260 Known.resetAll();
2261 return;
2262 }
2263 // For undef elements, we don't know anything about the common state of
2264 // the shuffle result.
2265 APInt DemandedLHS, DemandedRHS;
2266 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
2267 Known.resetAll();
2268 return;
2269 }
2270 Known.setAllConflict();
2271 if (!!DemandedLHS) {
2272 const Value *LHS = Shuf->getOperand(0);
2273 computeKnownBits(LHS, DemandedLHS, Known, Q, Depth + 1);
2274 // If we don't know any bits, early out.
2275 if (Known.isUnknown())
2276 break;
2277 }
2278 if (!!DemandedRHS) {
2279 const Value *RHS = Shuf->getOperand(1);
2280 computeKnownBits(RHS, DemandedRHS, Known2, Q, Depth + 1);
2281 Known = Known.intersectWith(Known2);
2282 }
2283 break;
2284 }
2285 case Instruction::InsertElement: {
2286 if (isa<ScalableVectorType>(I->getType())) {
2287 Known.resetAll();
2288 return;
2289 }
2290 const Value *Vec = I->getOperand(0);
2291 const Value *Elt = I->getOperand(1);
2292 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
2293 unsigned NumElts = DemandedElts.getBitWidth();
2294 APInt DemandedVecElts = DemandedElts;
2295 bool NeedsElt = true;
2296 // If we know the index we are inserting too, clear it from Vec check.
2297 if (CIdx && CIdx->getValue().ult(NumElts)) {
2298 DemandedVecElts.clearBit(CIdx->getZExtValue());
2299 NeedsElt = DemandedElts[CIdx->getZExtValue()];
2300 }
2301
2302 Known.setAllConflict();
2303 if (NeedsElt) {
2304 computeKnownBits(Elt, Known, Q, Depth + 1);
2305 // If we don't know any bits, early out.
2306 if (Known.isUnknown())
2307 break;
2308 }
2309
2310 if (!DemandedVecElts.isZero()) {
2311 computeKnownBits(Vec, DemandedVecElts, Known2, Q, Depth + 1);
2312 Known = Known.intersectWith(Known2);
2313 }
2314 break;
2315 }
2316 case Instruction::ExtractElement: {
2317 // Look through extract element. If the index is non-constant or
2318 // out-of-range demand all elements, otherwise just the extracted element.
2319 const Value *Vec = I->getOperand(0);
2320 const Value *Idx = I->getOperand(1);
2321 auto *CIdx = dyn_cast<ConstantInt>(Idx);
2322 if (isa<ScalableVectorType>(Vec->getType())) {
2323 // FIXME: there's probably *something* we can do with scalable vectors
2324 Known.resetAll();
2325 break;
2326 }
2327 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
2328 APInt DemandedVecElts = APInt::getAllOnes(NumElts);
2329 if (CIdx && CIdx->getValue().ult(NumElts))
2330 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2331 computeKnownBits(Vec, DemandedVecElts, Known, Q, Depth + 1);
2332 break;
2333 }
2334 case Instruction::ExtractValue:
2335 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
2337 if (EVI->getNumIndices() != 1) break;
2338 if (EVI->getIndices()[0] == 0) {
2339 switch (II->getIntrinsicID()) {
2340 default: break;
2341 case Intrinsic::uadd_with_overflow:
2342 case Intrinsic::sadd_with_overflow:
2344 true, II->getArgOperand(0), II->getArgOperand(1), /*NSW=*/false,
2345 /* NUW=*/false, DemandedElts, Known, Known2, Q, Depth);
2346 break;
2347 case Intrinsic::usub_with_overflow:
2348 case Intrinsic::ssub_with_overflow:
2350 false, II->getArgOperand(0), II->getArgOperand(1), /*NSW=*/false,
2351 /* NUW=*/false, DemandedElts, Known, Known2, Q, Depth);
2352 break;
2353 case Intrinsic::umul_with_overflow:
2354 case Intrinsic::smul_with_overflow:
2355 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
2356 false, DemandedElts, Known, Known2, Q, Depth);
2357 break;
2358 }
2359 }
2360 }
2361 break;
2362 case Instruction::Freeze:
2363 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
2364 Depth + 1))
2365 computeKnownBits(I->getOperand(0), Known, Q, Depth + 1);
2366 break;
2367 }
2368}
2369
2370/// Determine which bits of V are known to be either zero or one and return
2371/// them.
2372KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
2373 const SimplifyQuery &Q, unsigned Depth) {
2374 KnownBits Known(getBitWidth(V->getType(), Q.DL));
2375 ::computeKnownBits(V, DemandedElts, Known, Q, Depth);
2376 return Known;
2377}
2378
2379/// Determine which bits of V are known to be either zero or one and return
2380/// them.
2382 unsigned Depth) {
2383 KnownBits Known(getBitWidth(V->getType(), Q.DL));
2384 computeKnownBits(V, Known, Q, Depth);
2385 return Known;
2386}
2387
2388/// Determine which bits of V are known to be either zero or one and return
2389/// them in the Known bit set.
2390///
2391/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
2392/// we cannot optimize based on the assumption that it is zero without changing
2393/// it to be an explicit zero. If we don't change it to zero, other code could
2394/// optimized based on the contradictory assumption that it is non-zero.
2395/// Because instcombine aggressively folds operations with undef args anyway,
2396/// this won't lose us code quality.
2397///
2398/// This function is defined on values with integer type, values with pointer
2399/// type, and vectors of integers. In the case
2400/// where V is a vector, known zero, and known one values are the
2401/// same width as the vector element, and the bit is set only if it is true
2402/// for all of the demanded elements in the vector specified by DemandedElts.
2403void computeKnownBits(const Value *V, const APInt &DemandedElts,
2404 KnownBits &Known, const SimplifyQuery &Q,
2405 unsigned Depth) {
2406 if (!DemandedElts) {
2407 // No demanded elts, better to assume we don't know anything.
2408 Known.resetAll();
2409 return;
2410 }
2411
2412 assert(V && "No Value?");
2413 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2414
2415#ifndef NDEBUG
2416 Type *Ty = V->getType();
2417 unsigned BitWidth = Known.getBitWidth();
2418
2419 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
2420 "Not integer or pointer type!");
2421
2422 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2423 assert(
2424 FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2425 "DemandedElt width should equal the fixed vector number of elements");
2426 } else {
2427 assert(DemandedElts == APInt(1, 1) &&
2428 "DemandedElt width should be 1 for scalars or scalable vectors");
2429 }
2430
2431 Type *ScalarTy = Ty->getScalarType();
2432 if (ScalarTy->isPointerTy()) {
2433 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
2434 "V and Known should have same BitWidth");
2435 } else {
2436 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
2437 "V and Known should have same BitWidth");
2438 }
2439#endif
2440
2441 const APInt *C;
2442 if (match(V, m_APInt(C))) {
2443 // We know all of the bits for a scalar constant or a splat vector constant!
2444 Known = KnownBits::makeConstant(*C);
2445 return;
2446 }
2447 // Null and aggregate-zero are all-zeros.
2449 Known.setAllZero();
2450 return;
2451 }
2452 // Handle a constant vector by taking the intersection of the known bits of
2453 // each element.
2455 assert(!isa<ScalableVectorType>(V->getType()));
2456 // We know that CDV must be a vector of integers. Take the intersection of
2457 // each element.
2458 Known.setAllConflict();
2459 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
2460 if (!DemandedElts[i])
2461 continue;
2462 APInt Elt = CDV->getElementAsAPInt(i);
2463 Known.Zero &= ~Elt;
2464 Known.One &= Elt;
2465 }
2466 if (Known.hasConflict())
2467 Known.resetAll();
2468 return;
2469 }
2470
2471 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
2472 assert(!isa<ScalableVectorType>(V->getType()));
2473 // We know that CV must be a vector of integers. Take the intersection of
2474 // each element.
2475 Known.setAllConflict();
2476 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
2477 if (!DemandedElts[i])
2478 continue;
2479 Constant *Element = CV->getAggregateElement(i);
2480 if (isa<PoisonValue>(Element))
2481 continue;
2482 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
2483 if (!ElementCI) {
2484 Known.resetAll();
2485 return;
2486 }
2487 const APInt &Elt = ElementCI->getValue();
2488 Known.Zero &= ~Elt;
2489 Known.One &= Elt;
2490 }
2491 if (Known.hasConflict())
2492 Known.resetAll();
2493 return;
2494 }
2495
2496 // Start out not knowing anything.
2497 Known.resetAll();
2498
2499 // We can't imply anything about undefs.
2500 if (isa<UndefValue>(V))
2501 return;
2502
2503 // There's no point in looking through other users of ConstantData for
2504 // assumptions. Confirm that we've handled them all.
2505 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
2506
2507 if (const auto *A = dyn_cast<Argument>(V))
2508 if (std::optional<ConstantRange> Range = A->getRange())
2509 Known = Range->toKnownBits();
2510
2511 // All recursive calls that increase depth must come after this.
2513 return;
2514
2515 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
2516 // the bits of its aliasee.
2517 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2518 if (!GA->isInterposable())
2519 computeKnownBits(GA->getAliasee(), Known, Q, Depth + 1);
2520 return;
2521 }
2522
2523 if (const Operator *I = dyn_cast<Operator>(V))
2524 computeKnownBitsFromOperator(I, DemandedElts, Known, Q, Depth);
2525 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2526 if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange())
2527 Known = CR->toKnownBits();
2528 }
2529
2530 // Aligned pointers have trailing zeros - refine Known.Zero set
2531 if (isa<PointerType>(V->getType())) {
2532 Align Alignment = V->getPointerAlignment(Q.DL);
2533 Known.Zero.setLowBits(Log2(Alignment));
2534 }
2535
2536 // computeKnownBitsFromContext strictly refines Known.
2537 // Therefore, we run them after computeKnownBitsFromOperator.
2538
2539 // Check whether we can determine known bits from context such as assumes.
2540 computeKnownBitsFromContext(V, Known, Q, Depth);
2541}
2542
2543/// Try to detect a recurrence that the value of the induction variable is
2544/// always a power of two (or zero).
2545static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero,
2546 SimplifyQuery &Q, unsigned Depth) {
2547 BinaryOperator *BO = nullptr;
2548 Value *Start = nullptr, *Step = nullptr;
2549 if (!matchSimpleRecurrence(PN, BO, Start, Step))
2550 return false;
2551
2552 // Initial value must be a power of two.
2553 for (const Use &U : PN->operands()) {
2554 if (U.get() == Start) {
2555 // Initial value comes from a different BB, need to adjust context
2556 // instruction for analysis.
2557 Q.CxtI = PN->getIncomingBlock(U)->getTerminator();
2558 if (!isKnownToBeAPowerOfTwo(Start, OrZero, Q, Depth))
2559 return false;
2560 }
2561 }
2562
2563 // Except for Mul, the induction variable must be on the left side of the
2564 // increment expression, otherwise its value can be arbitrary.
2565 if (BO->getOpcode() != Instruction::Mul && BO->getOperand(1) != Step)
2566 return false;
2567
2568 Q.CxtI = BO->getParent()->getTerminator();
2569 switch (BO->getOpcode()) {
2570 case Instruction::Mul:
2571 // Power of two is closed under multiplication.
2572 return (OrZero || Q.IIQ.hasNoUnsignedWrap(BO) ||
2573 Q.IIQ.hasNoSignedWrap(BO)) &&
2574 isKnownToBeAPowerOfTwo(Step, OrZero, Q, Depth);
2575 case Instruction::SDiv:
2576 // Start value must not be signmask for signed division, so simply being a
2577 // power of two is not sufficient, and it has to be a constant.
2578 if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
2579 return false;
2580 [[fallthrough]];
2581 case Instruction::UDiv:
2582 // Divisor must be a power of two.
2583 // If OrZero is false, cannot guarantee induction variable is non-zero after
2584 // division, same for Shr, unless it is exact division.
2585 return (OrZero || Q.IIQ.isExact(BO)) &&
2586 isKnownToBeAPowerOfTwo(Step, false, Q, Depth);
2587 case Instruction::Shl:
2588 return OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO);
2589 case Instruction::AShr:
2590 if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
2591 return false;
2592 [[fallthrough]];
2593 case Instruction::LShr:
2594 return OrZero || Q.IIQ.isExact(BO);
2595 default:
2596 return false;
2597 }
2598}
2599
2600/// Return true if we can infer that \p V is known to be a power of 2 from
2601/// dominating condition \p Cond (e.g., ctpop(V) == 1).
2602static bool isImpliedToBeAPowerOfTwoFromCond(const Value *V, bool OrZero,
2603 const Value *Cond,
2604 bool CondIsTrue) {
2605 CmpPredicate Pred;
2606 const APInt *RHSC;
2608 m_APInt(RHSC))))
2609 return false;
2610 if (!CondIsTrue)
2611 Pred = ICmpInst::getInversePredicate(Pred);
2612 // ctpop(V) u< 2
2613 if (OrZero && Pred == ICmpInst::ICMP_ULT && *RHSC == 2)
2614 return true;
2615 // ctpop(V) == 1
2616 return Pred == ICmpInst::ICMP_EQ && *RHSC == 1;
2617}
2618
2619/// Return true if the given value is known to have exactly one
2620/// bit set when defined. For vectors return true if every element is known to
2621/// be a power of two when defined. Supports values with integer or pointer
2622/// types and vectors of integers.
2623bool llvm::isKnownToBeAPowerOfTwo(const Value *V, bool OrZero,
2624 const SimplifyQuery &Q, unsigned Depth) {
2625 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2626
2627 if (isa<Constant>(V))
2628 return OrZero ? match(V, m_Power2OrZero()) : match(V, m_Power2());
2629
2630 // i1 is by definition a power of 2 or zero.
2631 if (OrZero && V->getType()->getScalarSizeInBits() == 1)
2632 return true;
2633
2634 // Try to infer from assumptions.
2635 if (Q.AC && Q.CxtI) {
2636 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
2637 if (!AssumeVH)
2638 continue;
2639 CallInst *I = cast<CallInst>(AssumeVH);
2640 if (isImpliedToBeAPowerOfTwoFromCond(V, OrZero, I->getArgOperand(0),
2641 /*CondIsTrue=*/true) &&
2643 return true;
2644 }
2645 }
2646
2647 // Handle dominating conditions.
2648 if (Q.DC && Q.CxtI && Q.DT) {
2649 for (BranchInst *BI : Q.DC->conditionsFor(V)) {
2650 Value *Cond = BI->getCondition();
2651
2652 BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0));
2654 /*CondIsTrue=*/true) &&
2655 Q.DT->dominates(Edge0, Q.CxtI->getParent()))
2656 return true;
2657
2658 BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1));
2660 /*CondIsTrue=*/false) &&
2661 Q.DT->dominates(Edge1, Q.CxtI->getParent()))
2662 return true;
2663 }
2664 }
2665
2666 auto *I = dyn_cast<Instruction>(V);
2667 if (!I)
2668 return false;
2669
2670 if (Q.CxtI && match(V, m_VScale())) {
2671 const Function *F = Q.CxtI->getFunction();
2672 // The vscale_range indicates vscale is a power-of-two.
2673 return F->hasFnAttribute(Attribute::VScaleRange);
2674 }
2675
2676 // 1 << X is clearly a power of two if the one is not shifted off the end. If
2677 // it is shifted off the end then the result is undefined.
2678 if (match(I, m_Shl(m_One(), m_Value())))
2679 return true;
2680
2681 // (signmask) >>l X is clearly a power of two if the one is not shifted off
2682 // the bottom. If it is shifted off the bottom then the result is undefined.
2683 if (match(I, m_LShr(m_SignMask(), m_Value())))
2684 return true;
2685
2686 // The remaining tests are all recursive, so bail out if we hit the limit.
2688 return false;
2689
2690 switch (I->getOpcode()) {
2691 case Instruction::ZExt:
2692 return isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Q, Depth);
2693 case Instruction::Trunc:
2694 return OrZero && isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Q, Depth);
2695 case Instruction::Shl:
2696 if (OrZero || Q.IIQ.hasNoUnsignedWrap(I) || Q.IIQ.hasNoSignedWrap(I))
2697 return isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Q, Depth);
2698 return false;
2699 case Instruction::LShr:
2700 if (OrZero || Q.IIQ.isExact(cast<BinaryOperator>(I)))
2701 return isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Q, Depth);
2702 return false;
2703 case Instruction::UDiv:
2705 return isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Q, Depth);
2706 return false;
2707 case Instruction::Mul:
2708 return isKnownToBeAPowerOfTwo(I->getOperand(1), OrZero, Q, Depth) &&
2709 isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Q, Depth) &&
2710 (OrZero || isKnownNonZero(I, Q, Depth));
2711 case Instruction::And:
2712 // A power of two and'd with anything is a power of two or zero.
2713 if (OrZero &&
2714 (isKnownToBeAPowerOfTwo(I->getOperand(1), /*OrZero*/ true, Q, Depth) ||
2715 isKnownToBeAPowerOfTwo(I->getOperand(0), /*OrZero*/ true, Q, Depth)))
2716 return true;
2717 // X & (-X) is always a power of two or zero.
2718 if (match(I->getOperand(0), m_Neg(m_Specific(I->getOperand(1)))) ||
2719 match(I->getOperand(1), m_Neg(m_Specific(I->getOperand(0)))))
2720 return OrZero || isKnownNonZero(I->getOperand(0), Q, Depth);
2721 return false;
2722 case Instruction::Add: {
2723 // Adding a power-of-two or zero to the same power-of-two or zero yields
2724 // either the original power-of-two, a larger power-of-two or zero.
2726 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2727 Q.IIQ.hasNoSignedWrap(VOBO)) {
2728 if (match(I->getOperand(0),
2729 m_c_And(m_Specific(I->getOperand(1)), m_Value())) &&
2730 isKnownToBeAPowerOfTwo(I->getOperand(1), OrZero, Q, Depth))
2731 return true;
2732 if (match(I->getOperand(1),
2733 m_c_And(m_Specific(I->getOperand(0)), m_Value())) &&
2734 isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Q, Depth))
2735 return true;
2736
2737 unsigned BitWidth = V->getType()->getScalarSizeInBits();
2738 KnownBits LHSBits(BitWidth);
2739 computeKnownBits(I->getOperand(0), LHSBits, Q, Depth);
2740
2741 KnownBits RHSBits(BitWidth);
2742 computeKnownBits(I->getOperand(1), RHSBits, Q, Depth);
2743 // If i8 V is a power of two or zero:
2744 // ZeroBits: 1 1 1 0 1 1 1 1
2745 // ~ZeroBits: 0 0 0 1 0 0 0 0
2746 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2747 // If OrZero isn't set, we cannot give back a zero result.
2748 // Make sure either the LHS or RHS has a bit set.
2749 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2750 return true;
2751 }
2752
2753 // LShr(UINT_MAX, Y) + 1 is a power of two (if add is nuw) or zero.
2754 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO))
2755 if (match(I, m_Add(m_LShr(m_AllOnes(), m_Value()), m_One())))
2756 return true;
2757 return false;
2758 }
2759 case Instruction::Select:
2760 return isKnownToBeAPowerOfTwo(I->getOperand(1), OrZero, Q, Depth) &&
2761 isKnownToBeAPowerOfTwo(I->getOperand(2), OrZero, Q, Depth);
2762 case Instruction::PHI: {
2763 // A PHI node is power of two if all incoming values are power of two, or if
2764 // it is an induction variable where in each step its value is a power of
2765 // two.
2766 auto *PN = cast<PHINode>(I);
2768
2769 // Check if it is an induction variable and always power of two.
2770 if (isPowerOfTwoRecurrence(PN, OrZero, RecQ, Depth))
2771 return true;
2772
2773 // Recursively check all incoming values. Limit recursion to 2 levels, so
2774 // that search complexity is limited to number of operands^2.
2775 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2776 return llvm::all_of(PN->operands(), [&](const Use &U) {
2777 // Value is power of 2 if it is coming from PHI node itself by induction.
2778 if (U.get() == PN)
2779 return true;
2780
2781 // Change the context instruction to the incoming block where it is
2782 // evaluated.
2783 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2784 return isKnownToBeAPowerOfTwo(U.get(), OrZero, RecQ, NewDepth);
2785 });
2786 }
2787 case Instruction::Invoke:
2788 case Instruction::Call: {
2789 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
2790 switch (II->getIntrinsicID()) {
2791 case Intrinsic::umax:
2792 case Intrinsic::smax:
2793 case Intrinsic::umin:
2794 case Intrinsic::smin:
2795 return isKnownToBeAPowerOfTwo(II->getArgOperand(1), OrZero, Q, Depth) &&
2796 isKnownToBeAPowerOfTwo(II->getArgOperand(0), OrZero, Q, Depth);
2797 // bswap/bitreverse just move around bits, but don't change any 1s/0s
2798 // thus dont change pow2/non-pow2 status.
2799 case Intrinsic::bitreverse:
2800 case Intrinsic::bswap:
2801 return isKnownToBeAPowerOfTwo(II->getArgOperand(0), OrZero, Q, Depth);
2802 case Intrinsic::fshr:
2803 case Intrinsic::fshl:
2804 // If Op0 == Op1, this is a rotate. is_pow2(rotate(x, y)) == is_pow2(x)
2805 if (II->getArgOperand(0) == II->getArgOperand(1))
2806 return isKnownToBeAPowerOfTwo(II->getArgOperand(0), OrZero, Q, Depth);
2807 break;
2808 default:
2809 break;
2810 }
2811 }
2812 return false;
2813 }
2814 default:
2815 return false;
2816 }
2817}
2818
2819/// Test whether a GEP's result is known to be non-null.
2820///
2821/// Uses properties inherent in a GEP to try to determine whether it is known
2822/// to be non-null.
2823///
2824/// Currently this routine does not support vector GEPs.
2825static bool isGEPKnownNonNull(const GEPOperator *GEP, const SimplifyQuery &Q,
2826 unsigned Depth) {
2827 const Function *F = nullptr;
2828 if (const Instruction *I = dyn_cast<Instruction>(GEP))
2829 F = I->getFunction();
2830
2831 // If the gep is nuw or inbounds with invalid null pointer, then the GEP
2832 // may be null iff the base pointer is null and the offset is zero.
2833 if (!GEP->hasNoUnsignedWrap() &&
2834 !(GEP->isInBounds() &&
2835 !NullPointerIsDefined(F, GEP->getPointerAddressSpace())))
2836 return false;
2837
2838 // FIXME: Support vector-GEPs.
2839 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2840
2841 // If the base pointer is non-null, we cannot walk to a null address with an
2842 // inbounds GEP in address space zero.
2843 if (isKnownNonZero(GEP->getPointerOperand(), Q, Depth))
2844 return true;
2845
2846 // Walk the GEP operands and see if any operand introduces a non-zero offset.
2847 // If so, then the GEP cannot produce a null pointer, as doing so would
2848 // inherently violate the inbounds contract within address space zero.
2850 GTI != GTE; ++GTI) {
2851 // Struct types are easy -- they must always be indexed by a constant.
2852 if (StructType *STy = GTI.getStructTypeOrNull()) {
2853 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2854 unsigned ElementIdx = OpC->getZExtValue();
2855 const StructLayout *SL = Q.DL.getStructLayout(STy);
2856 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2857 if (ElementOffset > 0)
2858 return true;
2859 continue;
2860 }
2861
2862 // If we have a zero-sized type, the index doesn't matter. Keep looping.
2863 if (GTI.getSequentialElementStride(Q.DL).isZero())
2864 continue;
2865
2866 // Fast path the constant operand case both for efficiency and so we don't
2867 // increment Depth when just zipping down an all-constant GEP.
2868 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2869 if (!OpC->isZero())
2870 return true;
2871 continue;
2872 }
2873
2874 // We post-increment Depth here because while isKnownNonZero increments it
2875 // as well, when we pop back up that increment won't persist. We don't want
2876 // to recurse 10k times just because we have 10k GEP operands. We don't
2877 // bail completely out because we want to handle constant GEPs regardless
2878 // of depth.
2880 continue;
2881
2882 if (isKnownNonZero(GTI.getOperand(), Q, Depth))
2883 return true;
2884 }
2885
2886 return false;
2887}
2888
2890 const Instruction *CtxI,
2891 const DominatorTree *DT) {
2892 assert(!isa<Constant>(V) && "Called for constant?");
2893
2894 if (!CtxI || !DT)
2895 return false;
2896
2897 unsigned NumUsesExplored = 0;
2898 for (auto &U : V->uses()) {
2899 // Avoid massive lists
2900 if (NumUsesExplored >= DomConditionsMaxUses)
2901 break;
2902 NumUsesExplored++;
2903
2904 const Instruction *UI = cast<Instruction>(U.getUser());
2905 // If the value is used as an argument to a call or invoke, then argument
2906 // attributes may provide an answer about null-ness.
2907 if (V->getType()->isPointerTy()) {
2908 if (const auto *CB = dyn_cast<CallBase>(UI)) {
2909 if (CB->isArgOperand(&U) &&
2910 CB->paramHasNonNullAttr(CB->getArgOperandNo(&U),
2911 /*AllowUndefOrPoison=*/false) &&
2912 DT->dominates(CB, CtxI))
2913 return true;
2914 }
2915 }
2916
2917 // If the value is used as a load/store, then the pointer must be non null.
2918 if (V == getLoadStorePointerOperand(UI)) {
2921 DT->dominates(UI, CtxI))
2922 return true;
2923 }
2924
2925 if ((match(UI, m_IDiv(m_Value(), m_Specific(V))) ||
2926 match(UI, m_IRem(m_Value(), m_Specific(V)))) &&
2927 isValidAssumeForContext(UI, CtxI, DT))
2928 return true;
2929
2930 // Consider only compare instructions uniquely controlling a branch
2931 Value *RHS;
2932 CmpPredicate Pred;
2933 if (!match(UI, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
2934 continue;
2935
2936 bool NonNullIfTrue;
2937 if (cmpExcludesZero(Pred, RHS))
2938 NonNullIfTrue = true;
2940 NonNullIfTrue = false;
2941 else
2942 continue;
2943
2946 for (const auto *CmpU : UI->users()) {
2947 assert(WorkList.empty() && "Should be!");
2948 if (Visited.insert(CmpU).second)
2949 WorkList.push_back(CmpU);
2950
2951 while (!WorkList.empty()) {
2952 auto *Curr = WorkList.pop_back_val();
2953
2954 // If a user is an AND, add all its users to the work list. We only
2955 // propagate "pred != null" condition through AND because it is only
2956 // correct to assume that all conditions of AND are met in true branch.
2957 // TODO: Support similar logic of OR and EQ predicate?
2958 if (NonNullIfTrue)
2959 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
2960 for (const auto *CurrU : Curr->users())
2961 if (Visited.insert(CurrU).second)
2962 WorkList.push_back(CurrU);
2963 continue;
2964 }
2965
2966 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2967 assert(BI->isConditional() && "uses a comparison!");
2968
2969 BasicBlock *NonNullSuccessor =
2970 BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2971 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2972 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2973 return true;
2974 } else if (NonNullIfTrue && isGuard(Curr) &&
2975 DT->dominates(cast<Instruction>(Curr), CtxI)) {
2976 return true;
2977 }
2978 }
2979 }
2980 }
2981
2982 return false;
2983}
2984
2985/// Does the 'Range' metadata (which must be a valid MD_range operand list)
2986/// ensure that the value it's attached to is never Value? 'RangeType' is
2987/// is the type of the value described by the range.
2988static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2989 const unsigned NumRanges = Ranges->getNumOperands() / 2;
2990 assert(NumRanges >= 1);
2991 for (unsigned i = 0; i < NumRanges; ++i) {
2993 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2995 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2996 ConstantRange Range(Lower->getValue(), Upper->getValue());
2997 if (Range.contains(Value))
2998 return false;
2999 }
3000 return true;
3001}
3002
3003/// Try to detect a recurrence that monotonically increases/decreases from a
3004/// non-zero starting value. These are common as induction variables.
3005static bool isNonZeroRecurrence(const PHINode *PN) {
3006 BinaryOperator *BO = nullptr;
3007 Value *Start = nullptr, *Step = nullptr;
3008 const APInt *StartC, *StepC;
3009 if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
3010 !match(Start, m_APInt(StartC)) || StartC->isZero())
3011 return false;
3012
3013 switch (BO->getOpcode()) {
3014 case Instruction::Add:
3015 // Starting from non-zero and stepping away from zero can never wrap back
3016 // to zero.
3017 return BO->hasNoUnsignedWrap() ||
3018 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
3019 StartC->isNegative() == StepC->isNegative());
3020 case Instruction::Mul:
3021 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
3022 match(Step, m_APInt(StepC)) && !StepC->isZero();
3023 case Instruction::Shl:
3024 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
3025 case Instruction::AShr:
3026 case Instruction::LShr:
3027 return BO->isExact();
3028 default:
3029 return false;
3030 }
3031}
3032
3033static bool matchOpWithOpEqZero(Value *Op0, Value *Op1) {
3035 m_Specific(Op1), m_Zero()))) ||
3037 m_Specific(Op0), m_Zero())));
3038}
3039
3040static bool isNonZeroAdd(const APInt &DemandedElts, const SimplifyQuery &Q,
3041 unsigned BitWidth, Value *X, Value *Y, bool NSW,
3042 bool NUW, unsigned Depth) {
3043 // (X + (X != 0)) is non zero
3044 if (matchOpWithOpEqZero(X, Y))
3045 return true;
3046
3047 if (NUW)
3048 return isKnownNonZero(Y, DemandedElts, Q, Depth) ||
3049 isKnownNonZero(X, DemandedElts, Q, Depth);
3050
3051 KnownBits XKnown = computeKnownBits(X, DemandedElts, Q, Depth);
3052 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Q, Depth);
3053
3054 // If X and Y are both non-negative (as signed values) then their sum is not
3055 // zero unless both X and Y are zero.
3056 if (XKnown.isNonNegative() && YKnown.isNonNegative())
3057 if (isKnownNonZero(Y, DemandedElts, Q, Depth) ||
3058 isKnownNonZero(X, DemandedElts, Q, Depth))
3059 return true;
3060
3061 // If X and Y are both negative (as signed values) then their sum is not
3062 // zero unless both X and Y equal INT_MIN.
3063 if (XKnown.isNegative() && YKnown.isNegative()) {
3065 // The sign bit of X is set. If some other bit is set then X is not equal
3066 // to INT_MIN.
3067 if (XKnown.One.intersects(Mask))
3068 return true;
3069 // The sign bit of Y is set. If some other bit is set then Y is not equal
3070 // to INT_MIN.
3071 if (YKnown.One.intersects(Mask))
3072 return true;
3073 }
3074
3075 // The sum of a non-negative number and a power of two is not zero.
3076 if (XKnown.isNonNegative() &&
3077 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Q, Depth))
3078 return true;
3079 if (YKnown.isNonNegative() &&
3080 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Q, Depth))
3081 return true;
3082
3083 return KnownBits::add(XKnown, YKnown, NSW, NUW).isNonZero();
3084}
3085
3086static bool isNonZeroSub(const APInt &DemandedElts, const SimplifyQuery &Q,
3087 unsigned BitWidth, Value *X, Value *Y,
3088 unsigned Depth) {
3089 // (X - (X != 0)) is non zero
3090 // ((X != 0) - X) is non zero
3091 if (matchOpWithOpEqZero(X, Y))
3092 return true;
3093
3094 // TODO: Move this case into isKnownNonEqual().
3095 if (auto *C = dyn_cast<Constant>(X))
3096 if (C->isNullValue() && isKnownNonZero(Y, DemandedElts, Q, Depth))
3097 return true;
3098
3099 return ::isKnownNonEqual(X, Y, DemandedElts, Q, Depth);
3100}
3101
3102static bool isNonZeroMul(const APInt &DemandedElts, const SimplifyQuery &Q,
3103 unsigned BitWidth, Value *X, Value *Y, bool NSW,
3104 bool NUW, unsigned Depth) {
3105 // If X and Y are non-zero then so is X * Y as long as the multiplication
3106 // does not overflow.
3107 if (NSW || NUW)
3108 return isKnownNonZero(X, DemandedElts, Q, Depth) &&
3109 isKnownNonZero(Y, DemandedElts, Q, Depth);
3110
3111 // If either X or Y is odd, then if the other is non-zero the result can't
3112 // be zero.
3113 KnownBits XKnown = computeKnownBits(X, DemandedElts, Q, Depth);
3114 if (XKnown.One[0])
3115 return isKnownNonZero(Y, DemandedElts, Q, Depth);
3116
3117 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Q, Depth);
3118 if (YKnown.One[0])
3119 return XKnown.isNonZero() || isKnownNonZero(X, DemandedElts, Q, Depth);
3120
3121 // If there exists any subset of X (sX) and subset of Y (sY) s.t sX * sY is
3122 // non-zero, then X * Y is non-zero. We can find sX and sY by just taking
3123 // the lowest known One of X and Y. If they are non-zero, the result
3124 // must be non-zero. We can check if LSB(X) * LSB(Y) != 0 by doing
3125 // X.CountLeadingZeros + Y.CountLeadingZeros < BitWidth.
3126 return (XKnown.countMaxTrailingZeros() + YKnown.countMaxTrailingZeros()) <
3127 BitWidth;
3128}
3129
3130static bool isNonZeroShift(const Operator *I, const APInt &DemandedElts,
3131 const SimplifyQuery &Q, const KnownBits &KnownVal,
3132 unsigned Depth) {
3133 auto ShiftOp = [&](const APInt &Lhs, const APInt &Rhs) {
3134 switch (I->getOpcode()) {
3135 case Instruction::Shl:
3136 return Lhs.shl(Rhs);
3137 case Instruction::LShr:
3138 return Lhs.lshr(Rhs);
3139 case Instruction::AShr:
3140 return Lhs.ashr(Rhs);
3141 default:
3142 llvm_unreachable("Unknown Shift Opcode");
3143 }
3144 };
3145
3146 auto InvShiftOp = [&](const APInt &Lhs, const APInt &Rhs) {
3147 switch (I->getOpcode()) {
3148 case Instruction::Shl:
3149 return Lhs.lshr(Rhs);
3150 case Instruction::LShr:
3151 case Instruction::AShr:
3152 return Lhs.shl(Rhs);
3153 default:
3154 llvm_unreachable("Unknown Shift Opcode");
3155 }
3156 };
3157
3158 if (KnownVal.isUnknown())
3159 return false;
3160
3161 KnownBits KnownCnt =
3162 computeKnownBits(I->getOperand(1), DemandedElts, Q, Depth);
3163 APInt MaxShift = KnownCnt.getMaxValue();
3164 unsigned NumBits = KnownVal.getBitWidth();
3165 if (MaxShift.uge(NumBits))
3166 return false;
3167
3168 if (!ShiftOp(KnownVal.One, MaxShift).isZero())
3169 return true;
3170
3171 // If all of the bits shifted out are known to be zero, and Val is known
3172 // non-zero then at least one non-zero bit must remain.
3173 if (InvShiftOp(KnownVal.Zero, NumBits - MaxShift)
3174 .eq(InvShiftOp(APInt::getAllOnes(NumBits), NumBits - MaxShift)) &&
3175 isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth))
3176 return true;
3177
3178 return false;
3179}
3180
3182 const APInt &DemandedElts,
3183 const SimplifyQuery &Q, unsigned Depth) {
3184 unsigned BitWidth = getBitWidth(I->getType()->getScalarType(), Q.DL);
3185 switch (I->getOpcode()) {
3186 case Instruction::Alloca:
3187 // Alloca never returns null, malloc might.
3188 return I->getType()->getPointerAddressSpace() == 0;
3189 case Instruction::GetElementPtr:
3190 if (I->getType()->isPointerTy())
3192 break;
3193 case Instruction::BitCast: {
3194 // We need to be a bit careful here. We can only peek through the bitcast
3195 // if the scalar size of elements in the operand are smaller than and a
3196 // multiple of the size they are casting too. Take three cases:
3197 //
3198 // 1) Unsafe:
3199 // bitcast <2 x i16> %NonZero to <4 x i8>
3200 //
3201 // %NonZero can have 2 non-zero i16 elements, but isKnownNonZero on a
3202 // <4 x i8> requires that all 4 i8 elements be non-zero which isn't
3203 // guranteed (imagine just sign bit set in the 2 i16 elements).
3204 //
3205 // 2) Unsafe:
3206 // bitcast <4 x i3> %NonZero to <3 x i4>
3207 //
3208 // Even though the scalar size of the src (`i3`) is smaller than the
3209 // scalar size of the dst `i4`, because `i3` is not a multiple of `i4`
3210 // its possible for the `3 x i4` elements to be zero because there are
3211 // some elements in the destination that don't contain any full src
3212 // element.
3213 //
3214 // 3) Safe:
3215 // bitcast <4 x i8> %NonZero to <2 x i16>
3216 //
3217 // This is always safe as non-zero in the 4 i8 elements implies
3218 // non-zero in the combination of any two adjacent ones. Since i8 is a
3219 // multiple of i16, each i16 is guranteed to have 2 full i8 elements.
3220 // This all implies the 2 i16 elements are non-zero.
3221 Type *FromTy = I->getOperand(0)->getType();
3222 if ((FromTy->isIntOrIntVectorTy() || FromTy->isPtrOrPtrVectorTy()) &&
3223 (BitWidth % getBitWidth(FromTy->getScalarType(), Q.DL)) == 0)
3224 return isKnownNonZero(I->getOperand(0), Q, Depth);
3225 } break;
3226 case Instruction::IntToPtr:
3227 // Note that we have to take special care to avoid looking through
3228 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
3229 // as casts that can alter the value, e.g., AddrSpaceCasts.
3230 if (!isa<ScalableVectorType>(I->getType()) &&
3231 Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <=
3232 Q.DL.getTypeSizeInBits(I->getType()).getFixedValue())
3233 return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
3234 break;
3235 case Instruction::PtrToInt:
3236 // Similar to int2ptr above, we can look through ptr2int here if the cast
3237 // is a no-op or an extend and not a truncate.
3238 if (!isa<ScalableVectorType>(I->getType()) &&
3239 Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <=
3240 Q.DL.getTypeSizeInBits(I->getType()).getFixedValue())
3241 return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
3242 break;
3243 case Instruction::Trunc:
3244 // nuw/nsw trunc preserves zero/non-zero status of input.
3245 if (auto *TI = dyn_cast<TruncInst>(I))
3246 if (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap())
3247 return isKnownNonZero(TI->getOperand(0), DemandedElts, Q, Depth);
3248 break;
3249
3250 // Iff x - y != 0, then x ^ y != 0
3251 // Therefore we can do the same exact checks
3252 case Instruction::Xor:
3253 case Instruction::Sub:
3254 return isNonZeroSub(DemandedElts, Q, BitWidth, I->getOperand(0),
3255 I->getOperand(1), Depth);
3256 case Instruction::Or:
3257 // (X | (X != 0)) is non zero
3258 if (matchOpWithOpEqZero(I->getOperand(0), I->getOperand(1)))
3259 return true;
3260 // X | Y != 0 if X != Y.
3261 if (isKnownNonEqual(I->getOperand(0), I->getOperand(1), DemandedElts, Q,
3262 Depth))
3263 return true;
3264 // X | Y != 0 if X != 0 or Y != 0.
3265 return isKnownNonZero(I->getOperand(1), DemandedElts, Q, Depth) ||
3266 isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
3267 case Instruction::SExt:
3268 case Instruction::ZExt:
3269 // ext X != 0 if X != 0.
3270 return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
3271
3272 case Instruction::Shl: {
3273 // shl nsw/nuw can't remove any non-zero bits.
3275 if (Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO))
3276 return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
3277
3278 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
3279 // if the lowest bit is shifted off the end.
3280 KnownBits Known(BitWidth);
3281 computeKnownBits(I->getOperand(0), DemandedElts, Known, Q, Depth);
3282 if (Known.One[0])
3283 return true;
3284
3285 return isNonZeroShift(I, DemandedElts, Q, Known, Depth);
3286 }
3287 case Instruction::LShr:
3288 case Instruction::AShr: {
3289 // shr exact can only shift out zero bits.
3291 if (BO->isExact())
3292 return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
3293
3294 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
3295 // defined if the sign bit is shifted off the end.
3296 KnownBits Known =
3297 computeKnownBits(I->getOperand(0), DemandedElts, Q, Depth);
3298 if (Known.isNegative())
3299 return true;
3300
3301 return isNonZeroShift(I, DemandedElts, Q, Known, Depth);
3302 }
3303 case Instruction::UDiv:
3304 case Instruction::SDiv: {
3305 // X / Y
3306 // div exact can only produce a zero if the dividend is zero.
3307 if (cast<PossiblyExactOperator>(I)->isExact())
3308 return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
3309
3310 KnownBits XKnown =
3311 computeKnownBits(I->getOperand(0), DemandedElts, Q, Depth);
3312 // If X is fully unknown we won't be able to figure anything out so don't
3313 // both computing knownbits for Y.
3314 if (XKnown.isUnknown())
3315 return false;
3316
3317 KnownBits YKnown =
3318 computeKnownBits(I->getOperand(1), DemandedElts, Q, Depth);
3319 if (I->getOpcode() == Instruction::SDiv) {
3320 // For signed division need to compare abs value of the operands.
3321 XKnown = XKnown.abs(/*IntMinIsPoison*/ false);
3322 YKnown = YKnown.abs(/*IntMinIsPoison*/ false);
3323 }
3324 // If X u>= Y then div is non zero (0/0 is UB).
3325 std::optional<bool> XUgeY = KnownBits::uge(XKnown, YKnown);
3326 // If X is total unknown or X u< Y we won't be able to prove non-zero
3327 // with compute known bits so just return early.
3328 return XUgeY && *XUgeY;
3329 }
3330 case Instruction::Add: {
3331 // X + Y.
3332
3333 // If Add has nuw wrap flag, then if either X or Y is non-zero the result is
3334 // non-zero.
3336 return isNonZeroAdd(DemandedElts, Q, BitWidth, I->getOperand(0),
3337 I->getOperand(1), Q.IIQ.hasNoSignedWrap(BO),
3338 Q.IIQ.hasNoUnsignedWrap(BO), Depth);
3339 }
3340 case Instruction::Mul: {
3342 return isNonZeroMul(DemandedElts, Q, BitWidth, I->getOperand(0),
3343 I->getOperand(1), Q.IIQ.hasNoSignedWrap(BO),
3344 Q.IIQ.hasNoUnsignedWrap(BO), Depth);
3345 }
3346 case Instruction::Select: {
3347 // (C ? X : Y) != 0 if X != 0 and Y != 0.
3348
3349 // First check if the arm is non-zero using `isKnownNonZero`. If that fails,
3350 // then see if the select condition implies the arm is non-zero. For example
3351 // (X != 0 ? X : Y), we know the true arm is non-zero as the `X` "return" is
3352 // dominated by `X != 0`.
3353 auto SelectArmIsNonZero = [&](bool IsTrueArm) {
3354 Value *Op;
3355 Op = IsTrueArm ? I->getOperand(1) : I->getOperand(2);
3356 // Op is trivially non-zero.
3357 if (isKnownNonZero(Op, DemandedElts, Q, Depth))
3358 return true;
3359
3360 // The condition of the select dominates the true/false arm. Check if the
3361 // condition implies that a given arm is non-zero.
3362 Value *X;
3363 CmpPredicate Pred;
3364 if (!match(I->getOperand(0), m_c_ICmp(Pred, m_Specific(Op), m_Value(X))))
3365 return false;
3366
3367 if (!IsTrueArm)
3368 Pred = ICmpInst::getInversePredicate(Pred);
3369
3370 return cmpExcludesZero(Pred, X);
3371 };
3372
3373 if (SelectArmIsNonZero(/* IsTrueArm */ true) &&
3374 SelectArmIsNonZero(/* IsTrueArm */ false))
3375 return true;
3376 break;
3377 }
3378 case Instruction::PHI: {
3379 auto *PN = cast<PHINode>(I);
3381 return true;
3382
3383 // Check if all incoming values are non-zero using recursion.
3385 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
3386 return llvm::all_of(PN->operands(), [&](const Use &U) {
3387 if (U.get() == PN)
3388 return true;
3389 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
3390 // Check if the branch on the phi excludes zero.
3391 CmpPredicate Pred;
3392 Value *X;
3393 BasicBlock *TrueSucc, *FalseSucc;
3394 if (match(RecQ.CxtI,
3395 m_Br(m_c_ICmp(Pred, m_Specific(U.get()), m_Value(X)),
3396 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
3397 // Check for cases of duplicate successors.
3398 if ((TrueSucc == PN->getParent()) != (FalseSucc == PN->getParent())) {
3399 // If we're using the false successor, invert the predicate.
3400 if (FalseSucc == PN->getParent())
3401 Pred = CmpInst::getInversePredicate(Pred);
3402 if (cmpExcludesZero(Pred, X))
3403 return true;
3404 }
3405 }
3406 // Finally recurse on the edge and check it directly.
3407 return isKnownNonZero(U.get(), DemandedElts, RecQ, NewDepth);
3408 });
3409 }
3410 case Instruction::InsertElement: {
3411 if (isa<ScalableVectorType>(I->getType()))
3412 break;
3413
3414 const Value *Vec = I->getOperand(0);
3415 const Value *Elt = I->getOperand(1);
3416 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
3417
3418 unsigned NumElts = DemandedElts.getBitWidth();
3419 APInt DemandedVecElts = DemandedElts;
3420 bool SkipElt = false;
3421 // If we know the index we are inserting too, clear it from Vec check.
3422 if (CIdx && CIdx->getValue().ult(NumElts)) {
3423 DemandedVecElts.clearBit(CIdx->getZExtValue());
3424 SkipElt = !DemandedElts[CIdx->getZExtValue()];
3425 }
3426
3427 // Result is zero if Elt is non-zero and rest of the demanded elts in Vec
3428 // are non-zero.
3429 return (SkipElt || isKnownNonZero(Elt, Q, Depth)) &&
3430 (DemandedVecElts.isZero() ||
3431 isKnownNonZero(Vec, DemandedVecElts, Q, Depth));
3432 }
3433 case Instruction::ExtractElement:
3434 if (const auto *EEI = dyn_cast<ExtractElementInst>(I)) {
3435 const Value *Vec = EEI->getVectorOperand();
3436 const Value *Idx = EEI->getIndexOperand();
3437 auto *CIdx = dyn_cast<ConstantInt>(Idx);
3438 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
3439 unsigned NumElts = VecTy->getNumElements();
3440 APInt DemandedVecElts = APInt::getAllOnes(NumElts);
3441 if (CIdx && CIdx->getValue().ult(NumElts))
3442 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
3443 return isKnownNonZero(Vec, DemandedVecElts, Q, Depth);
3444 }
3445 }
3446 break;
3447 case Instruction::ShuffleVector: {
3448 auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
3449 if (!Shuf)
3450 break;
3451 APInt DemandedLHS, DemandedRHS;
3452 // For undef elements, we don't know anything about the common state of
3453 // the shuffle result.
3454 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3455 break;
3456 // If demanded elements for both vecs are non-zero, the shuffle is non-zero.
3457 return (DemandedRHS.isZero() ||
3458 isKnownNonZero(Shuf->getOperand(1), DemandedRHS, Q, Depth)) &&
3459 (DemandedLHS.isZero() ||
3460 isKnownNonZero(Shuf->getOperand(0), DemandedLHS, Q, Depth));
3461 }
3462 case Instruction::Freeze:
3463 return isKnownNonZero(I->getOperand(0), Q, Depth) &&
3464 isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
3465 Depth);
3466 case Instruction::Load: {
3467 auto *LI = cast<LoadInst>(I);
3468 // A Load tagged with nonnull or dereferenceable with null pointer undefined
3469 // is never null.
3470 if (auto *PtrT = dyn_cast<PointerType>(I->getType())) {
3471 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull) ||
3472 (Q.IIQ.getMetadata(LI, LLVMContext::MD_dereferenceable) &&
3473 !NullPointerIsDefined(LI->getFunction(), PtrT->getAddressSpace())))
3474 return true;
3475 } else if (MDNode *Ranges = Q.IIQ.getMetadata(LI, LLVMContext::MD_range)) {
3477 }
3478
3479 // No need to fall through to computeKnownBits as range metadata is already
3480 // handled in isKnownNonZero.
3481 return false;
3482 }
3483 case Instruction::ExtractValue: {
3484 const WithOverflowInst *WO;
3486 switch (WO->getBinaryOp()) {
3487 default:
3488 break;
3489 case Instruction::Add:
3490 return isNonZeroAdd(DemandedElts, Q, BitWidth, WO->getArgOperand(0),
3491 WO->getArgOperand(1),
3492 /*NSW=*/false,
3493 /*NUW=*/false, Depth);
3494 case Instruction::Sub:
3495 return isNonZeroSub(DemandedElts, Q, BitWidth, WO->getArgOperand(0),
3496 WO->getArgOperand(1), Depth);
3497 case Instruction::Mul:
3498 return isNonZeroMul(DemandedElts, Q, BitWidth, WO->getArgOperand(0),
3499 WO->getArgOperand(1),
3500 /*NSW=*/false, /*NUW=*/false, Depth);
3501 break;
3502 }
3503 }
3504 break;
3505 }
3506 case Instruction::Call:
3507 case Instruction::Invoke: {
3508 const auto *Call = cast<CallBase>(I);
3509 if (I->getType()->isPointerTy()) {
3510 if (Call->isReturnNonNull())
3511 return true;
3512 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
3513 return isKnownNonZero(RP, Q, Depth);
3514 } else {
3515 if (MDNode *Ranges = Q.IIQ.getMetadata(Call, LLVMContext::MD_range))
3517 if (std::optional<ConstantRange> Range = Call->getRange()) {
3518 const APInt ZeroValue(Range->getBitWidth(), 0);
3519 if (!Range->contains(ZeroValue))
3520 return true;
3521 }
3522 if (const Value *RV = Call->getReturnedArgOperand())
3523 if (RV->getType() == I->getType() && isKnownNonZero(RV, Q, Depth))
3524 return true;
3525 }
3526
3527 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
3528 switch (II->getIntrinsicID()) {
3529 case Intrinsic::sshl_sat:
3530 case Intrinsic::ushl_sat:
3531 case Intrinsic::abs:
3532 case Intrinsic::bitreverse:
3533 case Intrinsic::bswap:
3534 case Intrinsic::ctpop:
3535 return isKnownNonZero(II->getArgOperand(0), DemandedElts, Q, Depth);
3536 // NB: We don't do usub_sat here as in any case we can prove its
3537 // non-zero, we will fold it to `sub nuw` in InstCombine.
3538 case Intrinsic::ssub_sat:
3539 return isNonZeroSub(DemandedElts, Q, BitWidth, II->getArgOperand(0),
3540 II->getArgOperand(1), Depth);
3541 case Intrinsic::sadd_sat:
3542 return isNonZeroAdd(DemandedElts, Q, BitWidth, II->getArgOperand(0),
3543 II->getArgOperand(1),
3544 /*NSW=*/true, /* NUW=*/false, Depth);
3545 // Vec reverse preserves zero/non-zero status from input vec.
3546 case Intrinsic::vector_reverse:
3547 return isKnownNonZero(II->getArgOperand(0), DemandedElts.reverseBits(),
3548 Q, Depth);
3549 // umin/smin/smax/smin/or of all non-zero elements is always non-zero.
3550 case Intrinsic::vector_reduce_or:
3551 case Intrinsic::vector_reduce_umax:
3552 case Intrinsic::vector_reduce_umin:
3553 case Intrinsic::vector_reduce_smax:
3554 case Intrinsic::vector_reduce_smin:
3555 return isKnownNonZero(II->getArgOperand(0), Q, Depth);
3556 case Intrinsic::umax:
3557 case Intrinsic::uadd_sat:
3558 // umax(X, (X != 0)) is non zero
3559 // X +usat (X != 0) is non zero
3560 if (matchOpWithOpEqZero(II->getArgOperand(0), II->getArgOperand(1)))
3561 return true;
3562
3563 return isKnownNonZero(II->getArgOperand(1), DemandedElts, Q, Depth) ||
3564 isKnownNonZero(II->getArgOperand(0), DemandedElts, Q, Depth);
3565 case Intrinsic::smax: {
3566 // If either arg is strictly positive the result is non-zero. Otherwise
3567 // the result is non-zero if both ops are non-zero.
3568 auto IsNonZero = [&](Value *Op, std::optional<bool> &OpNonZero,
3569 const KnownBits &OpKnown) {
3570 if (!OpNonZero.has_value())
3571 OpNonZero = OpKnown.isNonZero() ||
3572 isKnownNonZero(Op, DemandedElts, Q, Depth);
3573 return *OpNonZero;
3574 };
3575 // Avoid re-computing isKnownNonZero.
3576 std::optional<bool> Op0NonZero, Op1NonZero;
3577 KnownBits Op1Known =
3578 computeKnownBits(II->getArgOperand(1), DemandedElts, Q, Depth);
3579 if (Op1Known.isNonNegative() &&
3580 IsNonZero(II->getArgOperand(1), Op1NonZero, Op1Known))
3581 return true;
3582 KnownBits Op0Known =
3583 computeKnownBits(II->getArgOperand(0), DemandedElts, Q, Depth);
3584 if (Op0Known.isNonNegative() &&
3585 IsNonZero(II->getArgOperand(0), Op0NonZero, Op0Known))
3586 return true;
3587 return IsNonZero(II->getArgOperand(1), Op1NonZero, Op1Known) &&
3588 IsNonZero(II->getArgOperand(0), Op0NonZero, Op0Known);
3589 }
3590 case Intrinsic::smin: {
3591 // If either arg is negative the result is non-zero. Otherwise
3592 // the result is non-zero if both ops are non-zero.
3593 KnownBits Op1Known =
3594 computeKnownBits(II->getArgOperand(1), DemandedElts, Q, Depth);
3595 if (Op1Known.isNegative())
3596 return true;
3597 KnownBits Op0Known =
3598 computeKnownBits(II->getArgOperand(0), DemandedElts, Q, Depth);
3599 if (Op0Known.isNegative())
3600 return true;
3601
3602 if (Op1Known.isNonZero() && Op0Known.isNonZero())
3603 return true;
3604 }
3605 [[fallthrough]];
3606 case Intrinsic::umin:
3607 return isKnownNonZero(II->getArgOperand(0), DemandedElts, Q, Depth) &&
3608 isKnownNonZero(II->getArgOperand(1), DemandedElts, Q, Depth);
3609 case Intrinsic::cttz:
3610 return computeKnownBits(II->getArgOperand(0), DemandedElts, Q, Depth)
3611 .Zero[0];
3612 case Intrinsic::ctlz:
3613 return computeKnownBits(II->getArgOperand(0), DemandedElts, Q, Depth)
3614 .isNonNegative();
3615 case Intrinsic::fshr:
3616 case Intrinsic::fshl:
3617 // If Op0 == Op1, this is a rotate. rotate(x, y) != 0 iff x != 0.
3618 if (II->getArgOperand(0) == II->getArgOperand(1))
3619 return isKnownNonZero(II->getArgOperand(0), DemandedElts, Q, Depth);
3620 break;
3621 case Intrinsic::vscale:
3622 return true;
3623 case Intrinsic::experimental_get_vector_length:
3624 return isKnownNonZero(I->getOperand(0), Q, Depth);
3625 default:
3626 break;
3627 }
3628 break;
3629 }
3630
3631 return false;
3632 }
3633 }
3634
3635 KnownBits Known(BitWidth);
3636 computeKnownBits(I, DemandedElts, Known, Q, Depth);
3637 return Known.One != 0;
3638}
3639
3640/// Return true if the given value is known to be non-zero when defined. For
3641/// vectors, return true if every demanded element is known to be non-zero when
3642/// defined. For pointers, if the context instruction and dominator tree are
3643/// specified, perform context-sensitive analysis and return true if the
3644/// pointer couldn't possibly be null at the specified instruction.
3645/// Supports values with integer or pointer type and vectors of integers.
3646bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
3647 const SimplifyQuery &Q, unsigned Depth) {
3648 Type *Ty = V->getType();
3649
3650#ifndef NDEBUG
3651 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3652
3653 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
3654 assert(
3655 FVTy->getNumElements() == DemandedElts.getBitWidth() &&
3656 "DemandedElt width should equal the fixed vector number of elements");
3657 } else {
3658 assert(DemandedElts == APInt(1, 1) &&
3659 "DemandedElt width should be 1 for scalars");
3660 }
3661#endif
3662
3663 if (auto *C = dyn_cast<Constant>(V)) {
3664 if (C->isNullValue())
3665 return false;
3666 if (isa<ConstantInt>(C))
3667 // Must be non-zero due to null test above.
3668 return true;
3669
3670 // For constant vectors, check that all elements are poison or known
3671 // non-zero to determine that the whole vector is known non-zero.
3672 if (auto *VecTy = dyn_cast<FixedVectorType>(Ty)) {
3673 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
3674 if (!DemandedElts[i])
3675 continue;
3676 Constant *Elt = C->getAggregateElement(i);
3677 if (!Elt || Elt->isNullValue())
3678 return false;
3679 if (!isa<PoisonValue>(Elt) && !isa<ConstantInt>(Elt))
3680 return false;
3681 }
3682 return true;
3683 }
3684
3685 // Constant ptrauth can be null, iff the base pointer can be.
3686 if (auto *CPA = dyn_cast<ConstantPtrAuth>(V))
3687 return isKnownNonZero(CPA->getPointer(), DemandedElts, Q, Depth);
3688
3689 // A global variable in address space 0 is non null unless extern weak
3690 // or an absolute symbol reference. Other address spaces may have null as a
3691 // valid address for a global, so we can't assume anything.
3692 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
3693 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
3694 GV->getType()->getAddressSpace() == 0)
3695 return true;
3696 }
3697
3698 // For constant expressions, fall through to the Operator code below.
3699 if (!isa<ConstantExpr>(V))
3700 return false;
3701 }
3702
3703 if (const auto *A = dyn_cast<Argument>(V))
3704 if (std::optional<ConstantRange> Range = A->getRange()) {
3705 const APInt ZeroValue(Range->getBitWidth(), 0);
3706 if (!Range->contains(ZeroValue))
3707 return true;
3708 }
3709
3710 if (!isa<Constant>(V) && isKnownNonZeroFromAssume(V, Q))
3711 return true;
3712
3713 // Some of the tests below are recursive, so bail out if we hit the limit.
3715 return false;
3716
3717 // Check for pointer simplifications.
3718
3719 if (PointerType *PtrTy = dyn_cast<PointerType>(Ty)) {
3720 // A byval, inalloca may not be null in a non-default addres space. A
3721 // nonnull argument is assumed never 0.
3722 if (const Argument *A = dyn_cast<Argument>(V)) {
3723 if (((A->hasPassPointeeByValueCopyAttr() &&
3724 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
3725 A->hasNonNullAttr()))
3726 return true;
3727 }
3728 }
3729
3730 if (const auto *I = dyn_cast<Operator>(V))
3731 if (isKnownNonZeroFromOperator(I, DemandedElts, Q, Depth))
3732 return true;
3733
3734 if (!isa<Constant>(V) &&
3736 return true;
3737
3738 if (const Value *Stripped = stripNullTest(V))
3739 return isKnownNonZero(Stripped, DemandedElts, Q, Depth);
3740
3741 return false;
3742}
3743
3745 unsigned Depth) {
3746 auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
3747 APInt DemandedElts =
3748 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
3749 return ::isKnownNonZero(V, DemandedElts, Q, Depth);
3750}
3751
3752/// If the pair of operators are the same invertible function, return the
3753/// the operands of the function corresponding to each input. Otherwise,
3754/// return std::nullopt. An invertible function is one that is 1-to-1 and maps
3755/// every input value to exactly one output value. This is equivalent to
3756/// saying that Op1 and Op2 are equal exactly when the specified pair of
3757/// operands are equal, (except that Op1 and Op2 may be poison more often.)
3758static std::optional<std::pair<Value*, Value*>>
3760 const Operator *Op2) {
3761 if (Op1->getOpcode() != Op2->getOpcode())
3762 return std::nullopt;
3763
3764 auto getOperands = [&](unsigned OpNum) -> auto {
3765 return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum));
3766 };
3767
3768 switch (Op1->getOpcode()) {
3769 default:
3770 break;
3771 case Instruction::Or:
3772 if (!cast<PossiblyDisjointInst>(Op1)->isDisjoint() ||
3773 !cast<PossiblyDisjointInst>(Op2)->isDisjoint())
3774 break;
3775 [[fallthrough]];
3776 case Instruction::Xor:
3777 case Instruction::Add: {
3778 Value *Other;
3779 if (match(Op2, m_c_BinOp(m_Specific(Op1->getOperand(0)), m_Value(Other))))
3780 return std::make_pair(Op1->getOperand(1), Other);
3781 if (match(Op2, m_c_BinOp(m_Specific(Op1->getOperand(1)), m_Value(Other))))
3782 return std::make_pair(Op1->getOperand(0), Other);
3783 break;
3784 }
3785 case Instruction::Sub:
3786 if (Op1->getOperand(0) == Op2->getOperand(0))
3787 return getOperands(1);
3788 if (Op1->getOperand(1) == Op2->getOperand(1))
3789 return getOperands(0);
3790 break;
3791 case Instruction::Mul: {
3792 // invertible if A * B == (A * B) mod 2^N where A, and B are integers
3793 // and N is the bitwdith. The nsw case is non-obvious, but proven by
3794 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
3795 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
3796 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
3797 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3798 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3799 break;
3800
3801 // Assume operand order has been canonicalized
3802 if (Op1->getOperand(1) == Op2->getOperand(1) &&
3803 isa<ConstantInt>(Op1->getOperand(1)) &&
3804 !cast<ConstantInt>(Op1->getOperand(1))->isZero())
3805 return getOperands(0);
3806 break;
3807 }
3808 case Instruction::Shl: {
3809 // Same as multiplies, with the difference that we don't need to check
3810 // for a non-zero multiply. Shifts always multiply by non-zero.
3811 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
3812 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
3813 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3814 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3815 break;
3816
3817 if (Op1->getOperand(1) == Op2->getOperand(1))
3818 return getOperands(0);
3819 break;
3820 }
3821 case Instruction::AShr:
3822 case Instruction::LShr: {
3823 auto *PEO1 = cast<PossiblyExactOperator>(Op1);
3824 auto *PEO2 = cast<PossiblyExactOperator>(Op2);
3825 if (!PEO1->isExact() || !PEO2->isExact())
3826 break;
3827
3828 if (Op1->getOperand(1) == Op2->getOperand(1))
3829 return getOperands(0);
3830 break;
3831 }
3832 case Instruction::SExt:
3833 case Instruction::ZExt:
3834 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
3835 return getOperands(0);
3836 break;
3837 case Instruction::PHI: {
3838 const PHINode *PN1 = cast<PHINode>(Op1);
3839 const PHINode *PN2 = cast<PHINode>(Op2);
3840
3841 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences
3842 // are a single invertible function of the start values? Note that repeated
3843 // application of an invertible function is also invertible
3844 BinaryOperator *BO1 = nullptr;
3845 Value *Start1 = nullptr, *Step1 = nullptr;
3846 BinaryOperator *BO2 = nullptr;
3847 Value *Start2 = nullptr, *Step2 = nullptr;
3848 if (PN1->getParent() != PN2->getParent() ||
3849 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) ||
3850 !matchSimpleRecurrence(PN2, BO2, Start2, Step2))
3851 break;
3852
3853 auto Values = getInvertibleOperands(cast<Operator>(BO1),
3854 cast<Operator>(BO2));
3855 if (!Values)
3856 break;
3857
3858 // We have to be careful of mutually defined recurrences here. Ex:
3859 // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V
3860 // * X_i = Y_i = X_(i-1) OP Y_(i-1)
3861 // The invertibility of these is complicated, and not worth reasoning
3862 // about (yet?).
3863 if (Values->first != PN1 || Values->second != PN2)
3864 break;
3865
3866 return std::make_pair(Start1, Start2);
3867 }
3868 }
3869 return std::nullopt;
3870}
3871
3872/// Return true if V1 == (binop V2, X), where X is known non-zero.
3873/// Only handle a small subset of binops where (binop V2, X) with non-zero X
3874/// implies V2 != V1.
3875static bool isModifyingBinopOfNonZero(const Value *V1, const Value *V2,
3876 const APInt &DemandedElts,
3877 const SimplifyQuery &Q, unsigned Depth) {
3879 if (!BO)
3880 return false;
3881 switch (BO->getOpcode()) {
3882 default:
3883 break;
3884 case Instruction::Or:
3885 if (!cast<PossiblyDisjointInst>(V1)->isDisjoint())
3886 break;
3887 [[fallthrough]];
3888 case Instruction::Xor:
3889 case Instruction::Add:
3890 Value *Op = nullptr;
3891 if (V2 == BO->getOperand(0))
3892 Op = BO->getOperand(1);
3893 else if (V2 == BO->getOperand(1))
3894 Op = BO->getOperand(0);
3895 else
3896 return false;
3897 return isKnownNonZero(Op, DemandedElts, Q, Depth + 1);
3898 }
3899 return false;
3900}
3901
3902/// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
3903/// the multiplication is nuw or nsw.
3904static bool isNonEqualMul(const Value *V1, const Value *V2,
3905 const APInt &DemandedElts, const SimplifyQuery &Q,
3906 unsigned Depth) {
3907 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
3908 const APInt *C;
3909 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
3910 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3911 !C->isZero() && !C->isOne() &&
3912 isKnownNonZero(V1, DemandedElts, Q, Depth + 1);
3913 }
3914 return false;
3915}
3916
3917/// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
3918/// the shift is nuw or nsw.
3919static bool isNonEqualShl(const Value *V1, const Value *V2,
3920 const APInt &DemandedElts, const SimplifyQuery &Q,
3921 unsigned Depth) {
3922 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
3923 const APInt *C;
3924 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
3925 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3926 !C->isZero() && isKnownNonZero(V1, DemandedElts, Q, Depth + 1);
3927 }
3928 return false;
3929}
3930
3931static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
3932 const APInt &DemandedElts, const SimplifyQuery &Q,
3933 unsigned Depth) {
3934 // Check two PHIs are in same block.
3935 if (PN1->getParent() != PN2->getParent())
3936 return false;
3937
3939 bool UsedFullRecursion = false;
3940 for (const BasicBlock *IncomBB : PN1->blocks()) {
3941 if (!VisitedBBs.insert(IncomBB).second)
3942 continue; // Don't reprocess blocks that we have dealt with already.
3943 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
3944 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
3945 const APInt *C1, *C2;
3946 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
3947 continue;
3948
3949 // Only one pair of phi operands is allowed for full recursion.
3950 if (UsedFullRecursion)
3951 return false;
3952
3954 RecQ.CxtI = IncomBB->getTerminator();
3955 if (!isKnownNonEqual(IV1, IV2, DemandedElts, RecQ, Depth + 1))
3956 return false;
3957 UsedFullRecursion = true;
3958 }
3959 return true;
3960}
3961
3962static bool isNonEqualSelect(const Value *V1, const Value *V2,
3963 const APInt &DemandedElts, const SimplifyQuery &Q,
3964 unsigned Depth) {
3965 const SelectInst *SI1 = dyn_cast<SelectInst>(V1);
3966 if (!SI1)
3967 return false;
3968
3969 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) {
3970 const Value *Cond1 = SI1->getCondition();
3971 const Value *Cond2 = SI2->getCondition();
3972 if (Cond1 == Cond2)
3973 return isKnownNonEqual(SI1->getTrueValue(), SI2->getTrueValue(),
3974 DemandedElts, Q, Depth + 1) &&
3975 isKnownNonEqual(SI1->getFalseValue(), SI2->getFalseValue(),
3976 DemandedElts, Q, Depth + 1);
3977 }
3978 return isKnownNonEqual(SI1->getTrueValue(), V2, DemandedElts, Q, Depth + 1) &&
3979 isKnownNonEqual(SI1->getFalseValue(), V2, DemandedElts, Q, Depth + 1);
3980}
3981
3982// Check to see if A is both a GEP and is the incoming value for a PHI in the
3983// loop, and B is either a ptr or another GEP. If the PHI has 2 incoming values,
3984// one of them being the recursive GEP A and the other a ptr at same base and at
3985// the same/higher offset than B we are only incrementing the pointer further in
3986// loop if offset of recursive GEP is greater than 0.
3988 const SimplifyQuery &Q) {
3989 if (!A->getType()->isPointerTy() || !B->getType()->isPointerTy())
3990 return false;
3991
3992 auto *GEPA = dyn_cast<GEPOperator>(A);
3993 if (!GEPA || GEPA->getNumIndices() != 1 || !isa<Constant>(GEPA->idx_begin()))
3994 return false;
3995
3996 // Handle 2 incoming PHI values with one being a recursive GEP.
3997 auto *PN = dyn_cast<PHINode>(GEPA->getPointerOperand());
3998 if (!PN || PN->getNumIncomingValues() != 2)
3999 return false;
4000
4001 // Search for the recursive GEP as an incoming operand, and record that as
4002 // Step.
4003 Value *Start = nullptr;
4004 Value *Step = const_cast<Value *>(A);
4005 if (PN->getIncomingValue(0) == Step)
4006 Start = PN->getIncomingValue(1);
4007 else if (PN->getIncomingValue(1) == Step)
4008 Start = PN->getIncomingValue(0);
4009 else
4010 return false;
4011
4012 // Other incoming node base should match the B base.
4013 // StartOffset >= OffsetB && StepOffset > 0?
4014 // StartOffset <= OffsetB && StepOffset < 0?
4015 // Is non-equal if above are true.
4016 // We use stripAndAccumulateInBoundsConstantOffsets to restrict the
4017 // optimisation to inbounds GEPs only.
4018 unsigned IndexWidth = Q.DL.getIndexTypeSizeInBits(Start->getType());
4019 APInt StartOffset(IndexWidth, 0);
4020 Start = Start->stripAndAccumulateInBoundsConstantOffsets(Q.DL, StartOffset);
4021 APInt StepOffset(IndexWidth, 0);
4022 Step = Step->stripAndAccumulateInBoundsConstantOffsets(Q.DL, StepOffset);
4023
4024 // Check if Base Pointer of Step matches the PHI.
4025 if (Step != PN)
4026 return false;
4027 APInt OffsetB(IndexWidth, 0);
4028 B = B->stripAndAccumulateInBoundsConstantOffsets(Q.DL, OffsetB);
4029 return Start == B &&
4030 ((StartOffset.sge(OffsetB) && StepOffset.isStrictlyPositive()) ||
4031 (StartOffset.sle(OffsetB) && StepOffset.isNegative()));
4032}
4033
4034static bool isKnownNonEqualFromContext(const Value *V1, const Value *V2,
4035 const SimplifyQuery &Q, unsigned Depth) {
4036 if (!Q.CxtI)
4037 return false;
4038
4039 // Try to infer NonEqual based on information from dominating conditions.
4040 if (Q.DC && Q.DT) {
4041 auto IsKnownNonEqualFromDominatingCondition = [&](const Value *V) {
4042 for (BranchInst *BI : Q.DC->conditionsFor(V)) {
4043 Value *Cond = BI->getCondition();
4044 BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0));
4045 if (Q.DT->dominates(Edge0, Q.CxtI->getParent()) &&
4047 /*LHSIsTrue=*/true, Depth)
4048 .value_or(false))
4049 return true;
4050
4051 BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1));
4052 if (Q.DT->dominates(Edge1, Q.CxtI->getParent()) &&
4054 /*LHSIsTrue=*/false, Depth)
4055 .value_or(false))
4056 return true;
4057 }
4058
4059 return false;
4060 };
4061
4062 if (IsKnownNonEqualFromDominatingCondition(V1) ||
4063 IsKnownNonEqualFromDominatingCondition(V2))
4064 return true;
4065 }
4066
4067 if (!Q.AC)
4068 return false;
4069
4070 // Try to infer NonEqual based on information from assumptions.
4071 for (auto &AssumeVH : Q.AC->assumptionsFor(V1)) {
4072 if (!AssumeVH)
4073 continue;
4074 CallInst *I = cast<CallInst>(AssumeVH);
4075
4076 assert(I->getFunction() == Q.CxtI->getFunction() &&
4077 "Got assumption for the wrong function!");
4078 assert(I->getIntrinsicID() == Intrinsic::assume &&
4079 "must be an assume intrinsic");
4080
4081 if (isImpliedCondition(I->getArgOperand(0), ICmpInst::ICMP_NE, V1, V2, Q.DL,
4082 /*LHSIsTrue=*/true, Depth)
4083 .value_or(false) &&
4085 return true;
4086 }
4087
4088 return false;
4089}
4090
4091/// Return true if it is known that V1 != V2.
4092static bool isKnownNonEqual(const Value *V1, const Value *V2,
4093 const APInt &DemandedElts, const SimplifyQuery &Q,
4094 unsigned Depth) {
4095 if (V1 == V2)
4096 return false;
4097 if (V1->getType() != V2->getType())
4098 // We can't look through casts yet.
4099 return false;
4100
4102 return false;
4103
4104 // See if we can recurse through (exactly one of) our operands. This
4105 // requires our operation be 1-to-1 and map every input value to exactly
4106 // one output value. Such an operation is invertible.
4107 auto *O1 = dyn_cast<Operator>(V1);
4108 auto *O2 = dyn_cast<Operator>(V2);
4109 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
4110 if (auto Values = getInvertibleOperands(O1, O2))
4111 return isKnownNonEqual(Values->first, Values->second, DemandedElts, Q,
4112 Depth + 1);
4113
4114 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
4115 const PHINode *PN2 = cast<PHINode>(V2);
4116 // FIXME: This is missing a generalization to handle the case where one is
4117 // a PHI and another one isn't.
4118 if (isNonEqualPHIs(PN1, PN2, DemandedElts, Q, Depth))
4119 return true;
4120 };
4121 }
4122
4123 if (isModifyingBinopOfNonZero(V1, V2, DemandedElts, Q, Depth) ||
4124 isModifyingBinopOfNonZero(V2, V1, DemandedElts, Q, Depth))
4125 return true;
4126
4127 if (isNonEqualMul(V1, V2, DemandedElts, Q, Depth) ||
4128 isNonEqualMul(V2, V1, DemandedElts, Q, Depth))
4129 return true;
4130
4131 if (isNonEqualShl(V1, V2, DemandedElts, Q, Depth) ||
4132 isNonEqualShl(V2, V1, DemandedElts, Q, Depth))
4133 return true;
4134
4135 if (V1->getType()->isIntOrIntVectorTy()) {
4136 // Are any known bits in V1 contradictory to known bits in V2? If V1
4137 // has a known zero where V2 has a known one, they must not be equal.
4138 KnownBits Known1 = computeKnownBits(V1, DemandedElts, Q, Depth);
4139 if (!Known1.isUnknown()) {
4140 KnownBits Known2 = computeKnownBits(V2, DemandedElts, Q, Depth);
4141 if (Known1.Zero.intersects(Known2.One) ||
4142 Known2.Zero.intersects(Known1.One))
4143 return true;
4144 }
4145 }
4146
4147 if (isNonEqualSelect(V1, V2, DemandedElts, Q, Depth) ||
4148 isNonEqualSelect(V2, V1, DemandedElts, Q, Depth))
4149 return true;
4150
4151 if (isNonEqualPointersWithRecursiveGEP(V1, V2, Q) ||
4153 return true;
4154
4155 Value *A, *B;
4156 // PtrToInts are NonEqual if their Ptrs are NonEqual.
4157 // Check PtrToInt type matches the pointer size.
4158 if (match(V1, m_PtrToIntSameSize(Q.DL, m_Value(A))) &&
4160 return isKnownNonEqual(A, B, DemandedElts, Q, Depth + 1);
4161
4162 if (isKnownNonEqualFromContext(V1, V2, Q, Depth))
4163 return true;
4164
4165 return false;
4166}
4167
4168/// For vector constants, loop over the elements and find the constant with the
4169/// minimum number of sign bits. Return 0 if the value is not a vector constant
4170/// or if any element was not analyzed; otherwise, return the count for the
4171/// element with the minimum number of sign bits.
4173 const APInt &DemandedElts,
4174 unsigned TyBits) {
4175 const auto *CV = dyn_cast<Constant>(V);
4176 if (!CV || !isa<FixedVectorType>(CV->getType()))
4177 return 0;
4178
4179 unsigned MinSignBits = TyBits;
4180 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
4181 for (unsigned i = 0; i != NumElts; ++i) {
4182 if (!DemandedElts[i])
4183 continue;
4184 // If we find a non-ConstantInt, bail out.
4185 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
4186 if (!Elt)
4187 return 0;
4188
4189 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
4190 }
4191
4192 return MinSignBits;
4193}
4194
4195static unsigned ComputeNumSignBitsImpl(const Value *V,
4196 const APInt &DemandedElts,
4197 const SimplifyQuery &Q, unsigned Depth);
4198
4199static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
4200 const SimplifyQuery &Q, unsigned Depth) {
4201 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Q, Depth);
4202 assert(Result > 0 && "At least one sign bit needs to be present!");
4203 return Result;
4204}
4205
4206/// Return the number of times the sign bit of the register is replicated into
4207/// the other bits. We know that at least 1 bit is always equal to the sign bit
4208/// (itself), but other cases can give us information. For example, immediately
4209/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
4210/// other, so we return 3. For vectors, return the number of sign bits for the
4211/// vector element with the minimum number of known sign bits of the demanded
4212/// elements in the vector specified by DemandedElts.
4213static unsigned ComputeNumSignBitsImpl(const Value *V,
4214 const APInt &DemandedElts,
4215 const SimplifyQuery &Q, unsigned Depth) {
4216 Type *Ty = V->getType();
4217#ifndef NDEBUG
4218 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
4219
4220 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
4221 assert(
4222 FVTy->getNumElements() == DemandedElts.getBitWidth() &&
4223 "DemandedElt width should equal the fixed vector number of elements");
4224 } else {
4225 assert(DemandedElts == APInt(1, 1) &&
4226 "DemandedElt width should be 1 for scalars");
4227 }
4228#endif
4229
4230 // We return the minimum number of sign bits that are guaranteed to be present
4231 // in V, so for undef we have to conservatively return 1. We don't have the
4232 // same behavior for poison though -- that's a FIXME today.
4233
4234 Type *ScalarTy = Ty->getScalarType();
4235 unsigned TyBits = ScalarTy->isPointerTy() ?
4236 Q.DL.getPointerTypeSizeInBits(ScalarTy) :
4237 Q.DL.getTypeSizeInBits(ScalarTy);
4238
4239 unsigned Tmp, Tmp2;
4240 unsigned FirstAnswer = 1;
4241
4242 // Note that ConstantInt is handled by the general computeKnownBits case
4243 // below.
4244
4246 return 1;
4247
4248 if (auto *U = dyn_cast<Operator>(V)) {
4249 switch (Operator::getOpcode(V)) {
4250 default: break;
4251 case Instruction::BitCast: {
4252 Value *Src = U->getOperand(0);
4253 Type *SrcTy = Src->getType();
4254
4255 // Skip if the source type is not an integer or integer vector type
4256 // This ensures we only process integer-like types
4257 if (!SrcTy->isIntOrIntVectorTy())
4258 break;
4259
4260 unsigned SrcBits = SrcTy->getScalarSizeInBits();
4261
4262 // Bitcast 'large element' scalar/vector to 'small element' vector.
4263 if ((SrcBits % TyBits) != 0)
4264 break;
4265
4266 // Only proceed if the destination type is a fixed-size vector
4267 if (isa<FixedVectorType>(Ty)) {
4268 // Fast case - sign splat can be simply split across the small elements.
4269 // This works for both vector and scalar sources
4270 Tmp = ComputeNumSignBits(Src, Q, Depth + 1);
4271 if (Tmp == SrcBits)
4272 return TyBits;
4273 }
4274 break;
4275 }
4276 case Instruction::SExt:
4277 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
4278 return ComputeNumSignBits(U->getOperand(0), DemandedElts, Q, Depth + 1) +
4279 Tmp;
4280
4281 case Instruction::SDiv: {
4282 const APInt *Denominator;
4283 // sdiv X, C -> adds log(C) sign bits.
4284 if (match(U->getOperand(1), m_APInt(Denominator))) {
4285
4286 // Ignore non-positive denominator.
4287 if (!Denominator->isStrictlyPositive())
4288 break;
4289
4290 // Calculate the incoming numerator bits.
4291 unsigned NumBits =
4292 ComputeNumSignBits(U->getOperand(0), DemandedElts, Q, Depth + 1);
4293
4294 // Add floor(log(C)) bits to the numerator bits.
4295 return std::min(TyBits, NumBits + Denominator->logBase2());
4296 }
4297 break;
4298 }
4299
4300 case Instruction::SRem: {
4301 Tmp = ComputeNumSignBits(U->getOperand(0), DemandedElts, Q, Depth + 1);
4302
4303 const APInt *Denominator;
4304 // srem X, C -> we know that the result is within [-C+1,C) when C is a
4305 // positive constant. This let us put a lower bound on the number of sign
4306 // bits.
4307 if (match(U->getOperand(1), m_APInt(Denominator))) {
4308
4309 // Ignore non-positive denominator.
4310 if (Denominator->isStrictlyPositive()) {
4311 // Calculate the leading sign bit constraints by examining the
4312 // denominator. Given that the denominator is positive, there are two
4313 // cases:
4314 //
4315 // 1. The numerator is positive. The result range is [0,C) and
4316 // [0,C) u< (1 << ceilLogBase2(C)).
4317 //
4318 // 2. The numerator is negative. Then the result range is (-C,0] and
4319 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
4320 //
4321 // Thus a lower bound on the number of sign bits is `TyBits -
4322 // ceilLogBase2(C)`.
4323
4324 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
4325 Tmp = std::max(Tmp, ResBits);
4326 }
4327 }
4328 return Tmp;
4329 }
4330
4331 case Instruction::AShr: {
4332 Tmp = ComputeNumSignBits(U->getOperand(0), DemandedElts, Q, Depth + 1);
4333 // ashr X, C -> adds C sign bits. Vectors too.
4334 const APInt *ShAmt;
4335 if (match(U->getOperand(1), m_APInt(ShAmt))) {
4336 if (ShAmt->uge(TyBits))
4337 break; // Bad shift.
4338 unsigned ShAmtLimited = ShAmt->getZExtValue();
4339 Tmp += ShAmtLimited;
4340 if (Tmp > TyBits) Tmp = TyBits;
4341 }
4342 return Tmp;
4343 }
4344 case Instruction::Shl: {
4345 const APInt *ShAmt;
4346 Value *X = nullptr;
4347 if (match(U->getOperand(1), m_APInt(ShAmt))) {
4348 // shl destroys sign bits.
4349 if (ShAmt->uge(TyBits))
4350 break; // Bad shift.
4351 // We can look through a zext (more or less treating it as a sext) if
4352 // all extended bits are shifted out.
4353 if (match(U->getOperand(0), m_ZExt(m_Value(X))) &&
4354 ShAmt->uge(TyBits - X->getType()->getScalarSizeInBits())) {
4355 Tmp = ComputeNumSignBits(X, DemandedElts, Q, Depth + 1);
4356 Tmp += TyBits - X->getType()->getScalarSizeInBits();
4357 } else
4358 Tmp =
4359 ComputeNumSignBits(U->getOperand(0), DemandedElts, Q, Depth + 1);
4360 if (ShAmt->uge(Tmp))
4361 break; // Shifted all sign bits out.
4362 Tmp2 = ShAmt->getZExtValue();
4363 return Tmp - Tmp2;
4364 }
4365 break;
4366 }
4367 case Instruction::And:
4368 case Instruction::Or:
4369 case Instruction::Xor: // NOT is handled here.
4370 // Logical binary ops preserve the number of sign bits at the worst.
4371 Tmp = ComputeNumSignBits(U->getOperand(0), DemandedElts, Q, Depth + 1);
4372 if (Tmp != 1) {
4373 Tmp2 = ComputeNumSignBits(U->getOperand(1), DemandedElts, Q, Depth + 1);
4374 FirstAnswer = std::min(Tmp, Tmp2);
4375 // We computed what we know about the sign bits as our first
4376 // answer. Now proceed to the generic code that uses
4377 // computeKnownBits, and pick whichever answer is better.
4378 }
4379 break;
4380
4381 case Instruction::Select: {
4382 // If we have a clamp pattern, we know that the number of sign bits will
4383 // be the minimum of the clamp min/max range.
4384 const Value *X;
4385 const APInt *CLow, *CHigh;
4386 if (isSignedMinMaxClamp(U, X, CLow, CHigh))
4387 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
4388
4389 Tmp = ComputeNumSignBits(U->getOperand(1), DemandedElts, Q, Depth + 1);
4390 if (Tmp == 1)
4391 break;
4392 Tmp2 = ComputeNumSignBits(U->getOperand(2), DemandedElts, Q, Depth + 1);
4393 return std::min(Tmp, Tmp2);
4394 }
4395
4396 case Instruction::Add:
4397 // Add can have at most one carry bit. Thus we know that the output
4398 // is, at worst, one more bit than the inputs.
4399 Tmp = ComputeNumSignBits(U->getOperand(0), Q, Depth + 1);
4400 if (Tmp == 1) break;
4401
4402 // Special case decrementing a value (ADD X, -1):
4403 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
4404 if (CRHS->isAllOnesValue()) {
4405 KnownBits Known(TyBits);
4406 computeKnownBits(U->getOperand(0), DemandedElts, Known, Q, Depth + 1);
4407
4408 // If the input is known to be 0 or 1, the output is 0/-1, which is
4409 // all sign bits set.
4410 if ((Known.Zero | 1).isAllOnes())
4411 return TyBits;
4412
4413 // If we are subtracting one from a positive number, there is no carry
4414 // out of the result.
4415 if (Known.isNonNegative())
4416 return Tmp;
4417 }
4418
4419 Tmp2 = ComputeNumSignBits(U->getOperand(1), DemandedElts, Q, Depth + 1);
4420 if (Tmp2 == 1)
4421 break;
4422 return std::min(Tmp, Tmp2) - 1;
4423
4424 case Instruction::Sub:
4425 Tmp2 = ComputeNumSignBits(U->getOperand(1), DemandedElts, Q, Depth + 1);
4426 if (Tmp2 == 1)
4427 break;
4428
4429 // Handle NEG.
4430 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
4431 if (CLHS->isNullValue()) {
4432 KnownBits Known(TyBits);
4433 computeKnownBits(U->getOperand(1), DemandedElts, Known, Q, Depth + 1);
4434 // If the input is known to be 0 or 1, the output is 0/-1, which is
4435 // all sign bits set.
4436 if ((Known.Zero | 1).isAllOnes())
4437 return TyBits;
4438
4439 // If the input is known to be positive (the sign bit is known clear),
4440 // the output of the NEG has the same number of sign bits as the
4441 // input.
4442 if (Known.isNonNegative())
4443 return Tmp2;
4444
4445 // Otherwise, we treat this like a SUB.
4446 }
4447
4448 // Sub can have at most one carry bit. Thus we know that the output
4449 // is, at worst, one more bit than the inputs.
4450 Tmp = ComputeNumSignBits(U->getOperand(0), DemandedElts, Q, Depth + 1);
4451 if (Tmp == 1)
4452 break;
4453 return std::min(Tmp, Tmp2) - 1;
4454
4455 case Instruction::Mul: {
4456 // The output of the Mul can be at most twice the valid bits in the
4457 // inputs.
4458 unsigned SignBitsOp0 =
4459 ComputeNumSignBits(U->getOperand(0), DemandedElts, Q, Depth + 1);
4460 if (SignBitsOp0 == 1)
4461 break;
4462 unsigned SignBitsOp1 =
4463 ComputeNumSignBits(U->getOperand(1), DemandedElts, Q, Depth + 1);
4464 if (SignBitsOp1 == 1)
4465 break;
4466 unsigned OutValidBits =
4467 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
4468 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
4469 }
4470
4471 case Instruction::PHI: {
4472 const PHINode *PN = cast<PHINode>(U);
4473 unsigned NumIncomingValues = PN->getNumIncomingValues();
4474 // Don't analyze large in-degree PHIs.
4475 if (NumIncomingValues > 4) break;
4476 // Unreachable blocks may have zero-operand PHI nodes.
4477 if (NumIncomingValues == 0) break;
4478
4479 // Take the minimum of all incoming values. This can't infinitely loop
4480 // because of our depth threshold.
4482 Tmp = TyBits;
4483 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
4484 if (Tmp == 1) return Tmp;
4485 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
4486 Tmp = std::min(Tmp, ComputeNumSignBits(PN->getIncomingValue(i),
4487 DemandedElts, RecQ, Depth + 1));
4488 }
4489 return Tmp;
4490 }
4491
4492 case Instruction::Trunc: {
4493 // If the input contained enough sign bits that some remain after the
4494 // truncation, then we can make use of that. Otherwise we don't know
4495 // anything.
4496 Tmp = ComputeNumSignBits(U->getOperand(0), Q, Depth + 1);
4497 unsigned OperandTyBits = U->getOperand(0)->getType()->getScalarSizeInBits();
4498 if (Tmp > (OperandTyBits - TyBits))
4499 return Tmp - (OperandTyBits - TyBits);
4500
4501 return 1;
4502 }
4503
4504 case Instruction::ExtractElement:
4505 // Look through extract element. At the moment we keep this simple and
4506 // skip tracking the specific element. But at least we might find
4507 // information valid for all elements of the vector (for example if vector
4508 // is sign extended, shifted, etc).
4509 return ComputeNumSignBits(U->getOperand(0), Q, Depth + 1);
4510
4511 case Instruction::ShuffleVector: {
4512 // Collect the minimum number of sign bits that are shared by every vector
4513 // element referenced by the shuffle.
4514 auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
4515 if (!Shuf) {
4516 // FIXME: Add support for shufflevector constant expressions.
4517 return 1;
4518 }
4519 APInt DemandedLHS, DemandedRHS;
4520 // For undef elements, we don't know anything about the common state of
4521 // the shuffle result.
4522 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
4523 return 1;
4524 Tmp = std::numeric_limits<unsigned>::max();
4525 if (!!DemandedLHS) {
4526 const Value *LHS = Shuf->getOperand(0);
4527 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Q, Depth + 1);
4528 }
4529 // If we don't know anything, early out and try computeKnownBits
4530 // fall-back.
4531 if (Tmp == 1)
4532 break;
4533 if (!!DemandedRHS) {
4534 const Value *RHS = Shuf->getOperand(1);
4535 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Q, Depth + 1);
4536 Tmp = std::min(Tmp, Tmp2);
4537 }
4538 // If we don't know anything, early out and try computeKnownBits
4539 // fall-back.
4540 if (Tmp == 1)
4541 break;
4542 assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
4543 return Tmp;
4544 }
4545 case Instruction::Call: {
4546 if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
4547 switch (II->getIntrinsicID()) {
4548 default:
4549 break;
4550 case Intrinsic::abs:
4551 Tmp =
4552 ComputeNumSignBits(U->getOperand(0), DemandedElts, Q, Depth + 1);
4553 if (Tmp == 1)
4554 break;
4555
4556 // Absolute value reduces number of sign bits by at most 1.
4557 return Tmp - 1;
4558 case Intrinsic::smin:
4559 case Intrinsic::smax: {
4560 const APInt *CLow, *CHigh;
4561 if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh))
4562 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
4563 }
4564 }
4565 }
4566 }
4567 }
4568 }
4569
4570 // Finally, if we can prove that the top bits of the result are 0's or 1's,
4571 // use this information.
4572
4573 // If we can examine all elements of a vector constant successfully, we're
4574 // done (we can't do any better than that). If not, keep trying.
4575 if (unsigned VecSignBits =
4576 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
4577 return VecSignBits;
4578
4579 KnownBits Known(TyBits);
4580 computeKnownBits(V, DemandedElts, Known, Q, Depth);
4581
4582 // If we know that the sign bit is either zero or one, determine the number of
4583 // identical bits in the top of the input value.
4584 return std::max(FirstAnswer, Known.countMinSignBits());
4585}
4586
4588 const TargetLibraryInfo *TLI) {
4589 const Function *F = CB.getCalledFunction();
4590 if (!F)
4592
4593 if (F->isIntrinsic())
4594 return F->getIntrinsicID();
4595
4596 // We are going to infer semantics of a library function based on mapping it
4597 // to an LLVM intrinsic. Check that the library function is available from
4598 // this callbase and in this environment.
4599 LibFunc Func;
4600 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
4601 !CB.onlyReadsMemory())
4603
4604 switch (Func) {
4605 default:
4606 break;
4607 case LibFunc_sin:
4608 case LibFunc_sinf:
4609 case LibFunc_sinl:
4610 return Intrinsic::sin;
4611 case LibFunc_cos:
4612 case LibFunc_cosf:
4613 case LibFunc_cosl:
4614 return Intrinsic::cos;
4615 case LibFunc_tan:
4616 case LibFunc_tanf:
4617 case LibFunc_tanl:
4618 return Intrinsic::tan;
4619 case LibFunc_asin:
4620 case LibFunc_asinf:
4621 case LibFunc_asinl:
4622 return Intrinsic::asin;
4623 case LibFunc_acos:
4624 case LibFunc_acosf:
4625 case LibFunc_acosl:
4626 return Intrinsic::acos;
4627 case LibFunc_atan:
4628 case LibFunc_atanf:
4629 case LibFunc_atanl:
4630 return Intrinsic::atan;
4631 case LibFunc_atan2:
4632 case LibFunc_atan2f:
4633 case LibFunc_atan2l:
4634 return Intrinsic::atan2;
4635 case LibFunc_sinh:
4636 case LibFunc_sinhf:
4637 case LibFunc_sinhl:
4638 return Intrinsic::sinh;
4639 case LibFunc_cosh:
4640 case LibFunc_coshf:
4641 case LibFunc_coshl:
4642 return Intrinsic::cosh;
4643 case LibFunc_tanh:
4644 case LibFunc_tanhf:
4645 case LibFunc_tanhl:
4646 return Intrinsic::tanh;
4647 case LibFunc_exp:
4648 case LibFunc_expf:
4649 case LibFunc_expl:
4650 return Intrinsic::exp;
4651 case LibFunc_exp2:
4652 case LibFunc_exp2f:
4653 case LibFunc_exp2l:
4654 return Intrinsic::exp2;
4655 case LibFunc_exp10:
4656 case LibFunc_exp10f:
4657 case LibFunc_exp10l:
4658 return Intrinsic::exp10;
4659 case LibFunc_log:
4660 case LibFunc_logf:
4661 case LibFunc_logl:
4662 return Intrinsic::log;
4663 case LibFunc_log10:
4664 case LibFunc_log10f:
4665 case LibFunc_log10l:
4666 return Intrinsic::log10;
4667 case LibFunc_log2:
4668 case LibFunc_log2f:
4669 case LibFunc_log2l:
4670 return Intrinsic::log2;
4671 case LibFunc_fabs:
4672 case LibFunc_fabsf:
4673 case LibFunc_fabsl:
4674 return Intrinsic::fabs;
4675 case LibFunc_fmin:
4676 case LibFunc_fminf:
4677 case LibFunc_fminl:
4678 return Intrinsic::minnum;
4679 case LibFunc_fmax:
4680 case LibFunc_fmaxf:
4681 case LibFunc_fmaxl:
4682 return Intrinsic::maxnum;
4683 case LibFunc_copysign:
4684 case LibFunc_copysignf:
4685 case LibFunc_copysignl:
4686 return Intrinsic::copysign;
4687 case LibFunc_floor:
4688 case LibFunc_floorf:
4689 case LibFunc_floorl:
4690 return Intrinsic::floor;
4691 case LibFunc_ceil:
4692 case LibFunc_ceilf:
4693 case LibFunc_ceill:
4694 return Intrinsic::ceil;
4695 case LibFunc_trunc:
4696 case LibFunc_truncf:
4697 case LibFunc_truncl:
4698 return Intrinsic::trunc;
4699 case LibFunc_rint:
4700 case LibFunc_rintf:
4701 case LibFunc_rintl:
4702 return Intrinsic::rint;
4703 case LibFunc_nearbyint:
4704 case LibFunc_nearbyintf:
4705 case LibFunc_nearbyintl:
4706 return Intrinsic::nearbyint;
4707 case LibFunc_round:
4708 case LibFunc_roundf:
4709 case LibFunc_roundl:
4710 return Intrinsic::round;
4711 case LibFunc_roundeven:
4712 case LibFunc_roundevenf:
4713 case LibFunc_roundevenl:
4714 return Intrinsic::roundeven;
4715 case LibFunc_pow:
4716 case LibFunc_powf:
4717 case LibFunc_powl:
4718 return Intrinsic::pow;
4719 case LibFunc_sqrt:
4720 case LibFunc_sqrtf:
4721 case LibFunc_sqrtl:
4722 return Intrinsic::sqrt;
4723 }
4724
4726}
4727
4728static bool outputDenormalIsIEEEOrPosZero(const Function &F, const Type *Ty) {
4729 Ty = Ty->getScalarType();
4730 DenormalMode Mode = F.getDenormalMode(Ty->getFltSemantics());
4731 return Mode.Output == DenormalMode::IEEE ||
4733}
4734/// Given an exploded icmp instruction, return true if the comparison only
4735/// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if
4736/// the result of the comparison is true when the input value is signed.
4738 bool &TrueIfSigned) {
4739 switch (Pred) {
4740 case ICmpInst::ICMP_SLT: // True if LHS s< 0
4741 TrueIfSigned = true;
4742 return RHS.isZero();
4743 case ICmpInst::ICMP_SLE: // True if LHS s<= -1
4744 TrueIfSigned = true;
4745 return RHS.isAllOnes();
4746 case ICmpInst::ICMP_SGT: // True if LHS s> -1
4747 TrueIfSigned = false;
4748 return RHS.isAllOnes();
4749 case ICmpInst::ICMP_SGE: // True if LHS s>= 0
4750 TrueIfSigned = false;
4751 return RHS.isZero();
4752 case ICmpInst::ICMP_UGT:
4753 // True if LHS u> RHS and RHS == sign-bit-mask - 1
4754 TrueIfSigned = true;
4755 return RHS.isMaxSignedValue();
4756 case ICmpInst::ICMP_UGE:
4757 // True if LHS u>= RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc)
4758 TrueIfSigned = true;
4759 return RHS.isMinSignedValue();
4760 case ICmpInst::ICMP_ULT:
4761 // True if LHS u< RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc)
4762 TrueIfSigned = false;
4763 return RHS.isMinSignedValue();
4764 case ICmpInst::ICMP_ULE:
4765 // True if LHS u<= RHS and RHS == sign-bit-mask - 1
4766 TrueIfSigned = false;
4767 return RHS.isMaxSignedValue();
4768 default:
4769 return false;
4770 }
4771}
4772
4774 bool CondIsTrue,
4775 const Instruction *CxtI,
4776 KnownFPClass &KnownFromContext,
4777 unsigned Depth = 0) {
4778 Value *A, *B;
4780 (CondIsTrue ? match(Cond, m_LogicalAnd(m_Value(A), m_Value(B)))
4781 : match(Cond, m_LogicalOr(m_Value(A), m_Value(B))))) {
4782 computeKnownFPClassFromCond(V, A, CondIsTrue, CxtI, KnownFromContext,
4783 Depth + 1);
4784 computeKnownFPClassFromCond(V, B, CondIsTrue, CxtI, KnownFromContext,
4785 Depth + 1);
4786 return;
4787 }
4789 computeKnownFPClassFromCond(V, A, !CondIsTrue, CxtI, KnownFromContext,
4790 Depth + 1);
4791 return;
4792 }
4793 CmpPredicate Pred;
4794 Value *LHS;
4795 uint64_t ClassVal = 0;
4796 const APFloat *CRHS;
4797 const APInt *RHS;
4798 if (match(Cond, m_FCmp(Pred, m_Value(LHS), m_APFloat(CRHS)))) {
4799 auto [CmpVal, MaskIfTrue, MaskIfFalse] = fcmpImpliesClass(
4800 Pred, *CxtI->getParent()->getParent(), LHS, *CRHS, LHS != V);
4801 if (CmpVal == V)
4802 KnownFromContext.knownNot(~(CondIsTrue ? MaskIfTrue : MaskIfFalse));
4804 m_Specific(V), m_ConstantInt(ClassVal)))) {
4805 FPClassTest Mask = static_cast<FPClassTest>(ClassVal);
4806 KnownFromContext.knownNot(CondIsTrue ? ~Mask : Mask);
4807 } else if (match(Cond, m_ICmp(Pred, m_ElementWiseBitCast(m_Specific(V)),
4808 m_APInt(RHS)))) {
4809 bool TrueIfSigned;
4810 if (!isSignBitCheck(Pred, *RHS, TrueIfSigned))
4811 return;
4812 if (TrueIfSigned == CondIsTrue)
4813 KnownFromContext.signBitMustBeOne();
4814 else
4815 KnownFromContext.signBitMustBeZero();
4816 }
4817}
4818
4820 const SimplifyQuery &Q) {
4821 KnownFPClass KnownFromContext;
4822
4823 if (Q.CC && Q.CC->AffectedValues.contains(V))
4825 KnownFromContext);
4826
4827 if (!Q.CxtI)
4828 return KnownFromContext;
4829
4830 if (Q.DC && Q.DT) {
4831 // Handle dominating conditions.
4832 for (BranchInst *BI : Q.DC->conditionsFor(V)) {
4833 Value *Cond = BI->getCondition();
4834
4835 BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0));
4836 if (Q.DT->dominates(Edge0, Q.CxtI->getParent()))
4837 computeKnownFPClassFromCond(V, Cond, /*CondIsTrue=*/true, Q.CxtI,
4838 KnownFromContext);
4839
4840 BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1));
4841 if (Q.DT->dominates(Edge1, Q.CxtI->getParent()))
4842 computeKnownFPClassFromCond(V, Cond, /*CondIsTrue=*/false, Q.CxtI,
4843 KnownFromContext);
4844 }
4845 }
4846
4847 if (!Q.AC)
4848 return KnownFromContext;
4849
4850 // Try to restrict the floating-point classes based on information from
4851 // assumptions.
4852 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
4853 if (!AssumeVH)
4854 continue;
4855 CallInst *I = cast<CallInst>(AssumeVH);
4856
4857 assert(I->getFunction() == Q.CxtI->getParent()->getParent() &&
4858 "Got assumption for the wrong function!");
4859 assert(I->getIntrinsicID() == Intrinsic::assume &&
4860 "must be an assume intrinsic");
4861
4862 if (!isValidAssumeForContext(I, Q.CxtI, Q.DT))
4863 continue;
4864
4865 computeKnownFPClassFromCond(V, I->getArgOperand(0),
4866 /*CondIsTrue=*/true, Q.CxtI, KnownFromContext);
4867 }
4868
4869 return KnownFromContext;
4870}
4871
4872void computeKnownFPClass(const Value *V, const APInt &DemandedElts,
4873 FPClassTest InterestedClasses, KnownFPClass &Known,
4874 const SimplifyQuery &Q, unsigned Depth);
4875
4876static void computeKnownFPClass(const Value *V, KnownFPClass &Known,
4877 FPClassTest InterestedClasses,
4878 const SimplifyQuery &Q, unsigned Depth) {
4879 auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
4880 APInt DemandedElts =
4881 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
4882 computeKnownFPClass(V, DemandedElts, InterestedClasses, Known, Q, Depth);
4883}
4884
4886 const APInt &DemandedElts,
4887 FPClassTest InterestedClasses,
4888 KnownFPClass &Known,
4889 const SimplifyQuery &Q,
4890 unsigned Depth) {
4891 if ((InterestedClasses &
4893 return;
4894
4895 KnownFPClass KnownSrc;
4896 computeKnownFPClass(Op->getOperand(0), DemandedElts, InterestedClasses,
4897 KnownSrc, Q, Depth + 1);
4898
4899 // Sign should be preserved
4900 // TODO: Handle cannot be ordered greater than zero
4901 if (KnownSrc.cannotBeOrderedLessThanZero())
4903
4904 Known.propagateNaN(KnownSrc, true);
4905
4906 // Infinity needs a range check.
4907}
4908
4909void computeKnownFPClass(const Value *V, const APInt &DemandedElts,
4910 FPClassTest InterestedClasses, KnownFPClass &Known,
4911 const SimplifyQuery &Q, unsigned Depth) {
4912 assert(Known.isUnknown() && "should not be called with known information");
4913
4914 if (!DemandedElts) {
4915 // No demanded elts, better to assume we don't know anything.
4916 Known.resetAll();
4917 return;
4918 }
4919
4920 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
4921
4922 if (auto *CFP = dyn_cast<ConstantFP>(V)) {
4923 Known.KnownFPClasses = CFP->getValueAPF().classify();
4924 Known.SignBit = CFP->isNegative();
4925 return;
4926 }
4927
4929 Known.KnownFPClasses = fcPosZero;
4930 Known.SignBit = false;
4931 return;
4932 }
4933
4934 if (isa<PoisonValue>(V)) {
4935 Known.KnownFPClasses = fcNone;
4936 Known.SignBit = false;
4937 return;
4938 }
4939
4940 // Try to handle fixed width vector constants
4941 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
4942 const Constant *CV = dyn_cast<Constant>(V);
4943 if (VFVTy && CV) {
4944 Known.KnownFPClasses = fcNone;
4945 bool SignBitAllZero = true;
4946 bool SignBitAllOne = true;
4947
4948 // For vectors, verify that each element is not NaN.
4949 unsigned NumElts = VFVTy->getNumElements();
4950 for (unsigned i = 0; i != NumElts; ++i) {
4951 if (!DemandedElts[i])
4952 continue;
4953
4954 Constant *Elt = CV->getAggregateElement(i);
4955 if (!Elt) {
4956 Known = KnownFPClass();
4957 return;
4958 }
4959 if (isa<PoisonValue>(Elt))
4960 continue;
4961 auto *CElt = dyn_cast<ConstantFP>(Elt);
4962 if (!CElt) {
4963 Known = KnownFPClass();
4964 return;
4965 }
4966
4967 const APFloat &C = CElt->getValueAPF();
4968 Known.KnownFPClasses |= C.classify();
4969 if (C.isNegative())
4970 SignBitAllZero = false;
4971 else
4972 SignBitAllOne = false;
4973 }
4974 if (SignBitAllOne != SignBitAllZero)
4975 Known.SignBit = SignBitAllOne;
4976 return;
4977 }
4978
4979 FPClassTest KnownNotFromFlags = fcNone;
4980 if (const auto *CB = dyn_cast<CallBase>(V))
4981 KnownNotFromFlags |= CB->getRetNoFPClass();
4982 else if (const auto *Arg = dyn_cast<Argument>(V))
4983 KnownNotFromFlags |= Arg->getNoFPClass();
4984
4985 const Operator *Op = dyn_cast<Operator>(V);
4987 if (FPOp->hasNoNaNs())
4988 KnownNotFromFlags |= fcNan;
4989 if (FPOp->hasNoInfs())
4990 KnownNotFromFlags |= fcInf;
4991 }
4992
4993 KnownFPClass AssumedClasses = computeKnownFPClassFromContext(V, Q);
4994 KnownNotFromFlags |= ~AssumedClasses.KnownFPClasses;
4995
4996 // We no longer need to find out about these bits from inputs if we can
4997 // assume this from flags/attributes.
4998 InterestedClasses &= ~KnownNotFromFlags;
4999
5000 auto ClearClassesFromFlags = make_scope_exit([=, &Known] {
5001 Known.knownNot(KnownNotFromFlags);
5002 if (!Known.SignBit && AssumedClasses.SignBit) {
5003 if (*AssumedClasses.SignBit)
5004 Known.signBitMustBeOne();
5005 else
5006 Known.signBitMustBeZero();
5007 }
5008 });
5009
5010 if (!Op)
5011 return;
5012
5013 // All recursive calls that increase depth must come after this.
5015 return;
5016
5017 const unsigned Opc = Op->getOpcode();
5018 switch (Opc) {
5019 case Instruction::FNeg: {
5020 computeKnownFPClass(Op->getOperand(0), DemandedElts, InterestedClasses,
5021 Known, Q, Depth + 1);
5022 Known.fneg();
5023 break;
5024 }
5025 case Instruction::Select: {
5026 Value *Cond = Op->getOperand(0);
5027 Value *LHS = Op->getOperand(1);
5028 Value *RHS = Op->getOperand(2);
5029
5030 FPClassTest FilterLHS = fcAllFlags;
5031 FPClassTest FilterRHS = fcAllFlags;
5032
5033 Value *TestedValue = nullptr;
5034 FPClassTest MaskIfTrue = fcAllFlags;
5035 FPClassTest MaskIfFalse = fcAllFlags;
5036 uint64_t ClassVal = 0;
5037 const Function *F = cast<Instruction>(Op)->getFunction();
5038 CmpPredicate Pred;
5039 Value *CmpLHS, *CmpRHS;
5040 if (F && match(Cond, m_FCmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) {
5041 // If the select filters out a value based on the class, it no longer
5042 // participates in the class of the result
5043
5044 // TODO: In some degenerate cases we can infer something if we try again
5045 // without looking through sign operations.
5046 bool LookThroughFAbsFNeg = CmpLHS != LHS && CmpLHS != RHS;
5047 std::tie(TestedValue, MaskIfTrue, MaskIfFalse) =
5048 fcmpImpliesClass(Pred, *F, CmpLHS, CmpRHS, LookThroughFAbsFNeg);
5049 } else if (match(Cond,
5051 m_Value(TestedValue), m_ConstantInt(ClassVal)))) {
5052 FPClassTest TestedMask = static_cast<FPClassTest>(ClassVal);
5053 MaskIfTrue = TestedMask;
5054 MaskIfFalse = ~TestedMask;
5055 }
5056
5057 if (TestedValue == LHS) {
5058 // match !isnan(x) ? x : y
5059 FilterLHS = MaskIfTrue;
5060 } else if (TestedValue == RHS) { // && IsExactClass
5061 // match !isnan(x) ? y : x
5062 FilterRHS = MaskIfFalse;
5063 }
5064
5065 KnownFPClass Known2;
5066 computeKnownFPClass(LHS, DemandedElts, InterestedClasses & FilterLHS, Known,
5067 Q, Depth + 1);
5068 Known.KnownFPClasses &= FilterLHS;
5069
5070 computeKnownFPClass(RHS, DemandedElts, InterestedClasses & FilterRHS,
5071 Known2, Q, Depth + 1);
5072 Known2.KnownFPClasses &= FilterRHS;
5073
5074 Known |= Known2;
5075 break;
5076 }
5077 case Instruction::Call: {
5078 const CallInst *II = cast<CallInst>(Op);
5079 const Intrinsic::ID IID = II->getIntrinsicID();
5080 switch (IID) {
5081 case Intrinsic::fabs: {
5082 if ((InterestedClasses & (fcNan | fcPositive)) != fcNone) {
5083 // If we only care about the sign bit we don't need to inspect the
5084 // operand.
5085 computeKnownFPClass(II->getArgOperand(0), DemandedElts,
5086 InterestedClasses, Known, Q, Depth + 1);
5087 }
5088
5089 Known.fabs();
5090 break;
5091 }
5092 case Intrinsic::copysign: {
5093 KnownFPClass KnownSign;
5094
5095 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5096 Known, Q, Depth + 1);
5097 computeKnownFPClass(II->getArgOperand(1), DemandedElts, InterestedClasses,
5098 KnownSign, Q, Depth + 1);
5099 Known.copysign(KnownSign);
5100 break;
5101 }
5102 case Intrinsic::fma:
5103 case Intrinsic::fmuladd: {
5104 if ((InterestedClasses & fcNegative) == fcNone)
5105 break;
5106
5107 if (II->getArgOperand(0) != II->getArgOperand(1))
5108 break;
5109
5110 // The multiply cannot be -0 and therefore the add can't be -0
5111 Known.knownNot(fcNegZero);
5112
5113 // x * x + y is non-negative if y is non-negative.
5114 KnownFPClass KnownAddend;
5115 computeKnownFPClass(II->getArgOperand(2), DemandedElts, InterestedClasses,
5116 KnownAddend, Q, Depth + 1);
5117
5118 if (KnownAddend.cannotBeOrderedLessThanZero())
5119 Known.knownNot(fcNegative);
5120 break;
5121 }
5122 case Intrinsic::sqrt:
5123 case Intrinsic::experimental_constrained_sqrt: {
5124 KnownFPClass KnownSrc;
5125 FPClassTest InterestedSrcs = InterestedClasses;
5126 if (InterestedClasses & fcNan)
5127 InterestedSrcs |= KnownFPClass::OrderedLessThanZeroMask;
5128
5129 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedSrcs,
5130 KnownSrc, Q, Depth + 1);
5131
5132 if (KnownSrc.isKnownNeverPosInfinity())
5133 Known.knownNot(fcPosInf);
5134 if (KnownSrc.isKnownNever(fcSNan))
5135 Known.knownNot(fcSNan);
5136
5137 // Any negative value besides -0 returns a nan.
5138 if (KnownSrc.isKnownNeverNaN() && KnownSrc.cannotBeOrderedLessThanZero())
5139 Known.knownNot(fcNan);
5140
5141 // The only negative value that can be returned is -0 for -0 inputs.
5143
5144 // If the input denormal mode could be PreserveSign, a negative
5145 // subnormal input could produce a negative zero output.
5146 const Function *F = II->getFunction();
5147 const fltSemantics &FltSem =
5148 II->getType()->getScalarType()->getFltSemantics();
5149
5150 if (Q.IIQ.hasNoSignedZeros(II) ||
5151 (F &&
5152 KnownSrc.isKnownNeverLogicalNegZero(F->getDenormalMode(FltSem))))
5153 Known.knownNot(fcNegZero);
5154
5155 break;
5156 }
5157 case Intrinsic::sin:
5158 case Intrinsic::cos: {
5159 // Return NaN on infinite inputs.
5160 KnownFPClass KnownSrc;
5161 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5162 KnownSrc, Q, Depth + 1);
5163 Known.knownNot(fcInf);
5164 if (KnownSrc.isKnownNeverNaN() && KnownSrc.isKnownNeverInfinity())
5165 Known.knownNot(fcNan);
5166 break;
5167 }
5168 case Intrinsic::maxnum:
5169 case Intrinsic::minnum:
5170 case Intrinsic::minimum:
5171 case Intrinsic::maximum:
5172 case Intrinsic::minimumnum:
5173 case Intrinsic::maximumnum: {
5174 KnownFPClass KnownLHS, KnownRHS;
5175 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5176 KnownLHS, Q, Depth + 1);
5177 computeKnownFPClass(II->getArgOperand(1), DemandedElts, InterestedClasses,
5178 KnownRHS, Q, Depth + 1);
5179
5180 bool NeverNaN = KnownLHS.isKnownNeverNaN() || KnownRHS.isKnownNeverNaN();
5181 Known = KnownLHS | KnownRHS;
5182
5183 // If either operand is not NaN, the result is not NaN.
5184 if (NeverNaN &&
5185 (IID == Intrinsic::minnum || IID == Intrinsic::maxnum ||
5186 IID == Intrinsic::minimumnum || IID == Intrinsic::maximumnum))
5187 Known.knownNot(fcNan);
5188
5189 if (IID == Intrinsic::maxnum || IID == Intrinsic::maximumnum) {
5190 // If at least one operand is known to be positive, the result must be
5191 // positive.
5192 if ((KnownLHS.cannotBeOrderedLessThanZero() &&
5193 KnownLHS.isKnownNeverNaN()) ||
5194 (KnownRHS.cannotBeOrderedLessThanZero() &&
5195 KnownRHS.isKnownNeverNaN()))
5197 } else if (IID == Intrinsic::maximum) {
5198 // If at least one operand is known to be positive, the result must be
5199 // positive.
5200 if (KnownLHS.cannotBeOrderedLessThanZero() ||
5201 KnownRHS.cannotBeOrderedLessThanZero())
5203 } else if (IID == Intrinsic::minnum || IID == Intrinsic::minimumnum) {
5204 // If at least one operand is known to be negative, the result must be
5205 // negative.
5206 if ((KnownLHS.cannotBeOrderedGreaterThanZero() &&
5207 KnownLHS.isKnownNeverNaN()) ||
5208 (KnownRHS.cannotBeOrderedGreaterThanZero() &&
5209 KnownRHS.isKnownNeverNaN()))
5211 } else if (IID == Intrinsic::minimum) {
5212 // If at least one operand is known to be negative, the result must be
5213 // negative.
5214 if (KnownLHS.cannotBeOrderedGreaterThanZero() ||
5217 } else
5218 llvm_unreachable("unhandled intrinsic");
5219
5220 // Fixup zero handling if denormals could be returned as a zero.
5221 //
5222 // As there's no spec for denormal flushing, be conservative with the
5223 // treatment of denormals that could be flushed to zero. For older
5224 // subtargets on AMDGPU the min/max instructions would not flush the
5225 // output and return the original value.
5226 //
5227 if ((Known.KnownFPClasses & fcZero) != fcNone &&
5228 !Known.isKnownNeverSubnormal()) {
5229 const Function *Parent = II->getFunction();
5230 if (!Parent)
5231 break;
5232
5234 II->getType()->getScalarType()->getFltSemantics());
5235 if (Mode != DenormalMode::getIEEE())
5236 Known.KnownFPClasses |= fcZero;
5237 }
5238
5239 if (Known.isKnownNeverNaN()) {
5240 if (KnownLHS.SignBit && KnownRHS.SignBit &&
5241 *KnownLHS.SignBit == *KnownRHS.SignBit) {
5242 if (*KnownLHS.SignBit)
5243 Known.signBitMustBeOne();
5244 else
5245 Known.signBitMustBeZero();
5246 } else if ((IID == Intrinsic::maximum || IID == Intrinsic::minimum ||
5247 IID == Intrinsic::maximumnum ||
5248 IID == Intrinsic::minimumnum) ||
5249 // FIXME: Should be using logical zero versions
5250 ((KnownLHS.isKnownNeverNegZero() ||
5251 KnownRHS.isKnownNeverPosZero()) &&
5252 (KnownLHS.isKnownNeverPosZero() ||
5253 KnownRHS.isKnownNeverNegZero()))) {
5254 // Don't take sign bit from NaN operands.
5255 if (!KnownLHS.isKnownNeverNaN())
5256 KnownLHS.SignBit = std::nullopt;
5257 if (!KnownRHS.isKnownNeverNaN())
5258 KnownRHS.SignBit = std::nullopt;
5259 if ((IID == Intrinsic::maximum || IID == Intrinsic::maximumnum ||
5260 IID == Intrinsic::maxnum) &&
5261 (KnownLHS.SignBit == false || KnownRHS.SignBit == false))
5262 Known.signBitMustBeZero();
5263 else if ((IID == Intrinsic::minimum || IID == Intrinsic::minimumnum ||
5264 IID == Intrinsic::minnum) &&
5265 (KnownLHS.SignBit == true || KnownRHS.SignBit == true))
5266 Known.signBitMustBeOne();
5267 }
5268 }
5269 break;
5270 }
5271 case Intrinsic::canonicalize: {
5272 KnownFPClass KnownSrc;
5273 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5274 KnownSrc, Q, Depth + 1);
5275
5276 // This is essentially a stronger form of
5277 // propagateCanonicalizingSrc. Other "canonicalizing" operations don't
5278 // actually have an IR canonicalization guarantee.
5279
5280 // Canonicalize may flush denormals to zero, so we have to consider the
5281 // denormal mode to preserve known-not-0 knowledge.
5282 Known.KnownFPClasses = KnownSrc.KnownFPClasses | fcZero | fcQNan;
5283
5284 // Stronger version of propagateNaN
5285 // Canonicalize is guaranteed to quiet signaling nans.
5286 if (KnownSrc.isKnownNeverNaN())
5287 Known.knownNot(fcNan);
5288 else
5289 Known.knownNot(fcSNan);
5290
5291 const Function *F = II->getFunction();
5292 if (!F)
5293 break;
5294
5295 // If the parent function flushes denormals, the canonical output cannot
5296 // be a denormal.
5297 const fltSemantics &FPType =
5298 II->getType()->getScalarType()->getFltSemantics();
5299 DenormalMode DenormMode = F->getDenormalMode(FPType);
5300 if (DenormMode == DenormalMode::getIEEE()) {
5301 if (KnownSrc.isKnownNever(fcPosZero))
5302 Known.knownNot(fcPosZero);
5303 if (KnownSrc.isKnownNever(fcNegZero))
5304 Known.knownNot(fcNegZero);
5305 break;
5306 }
5307
5308 if (DenormMode.inputsAreZero() || DenormMode.outputsAreZero())
5309 Known.knownNot(fcSubnormal);
5310
5311 if (DenormMode.Input == DenormalMode::PositiveZero ||
5312 (DenormMode.Output == DenormalMode::PositiveZero &&
5313 DenormMode.Input == DenormalMode::IEEE))
5314 Known.knownNot(fcNegZero);
5315
5316 break;
5317 }
5318 case Intrinsic::vector_reduce_fmax:
5319 case Intrinsic::vector_reduce_fmin:
5320 case Intrinsic::vector_reduce_fmaximum:
5321 case Intrinsic::vector_reduce_fminimum: {
5322 // reduce min/max will choose an element from one of the vector elements,
5323 // so we can infer and class information that is common to all elements.
5324 Known = computeKnownFPClass(II->getArgOperand(0), II->getFastMathFlags(),
5325 InterestedClasses, Q, Depth + 1);
5326 // Can only propagate sign if output is never NaN.
5327 if (!Known.isKnownNeverNaN())
5328 Known.SignBit.reset();
5329 break;
5330 }
5331 // reverse preserves all characteristics of the input vec's element.
5332 case Intrinsic::vector_reverse:
5333 Known = computeKnownFPClass(
5334 II->getArgOperand(0), DemandedElts.reverseBits(),
5335 II->getFastMathFlags(), InterestedClasses, Q, Depth + 1);
5336 break;
5337 case Intrinsic::trunc:
5338 case Intrinsic::floor:
5339 case Intrinsic::ceil:
5340 case Intrinsic::rint:
5341 case Intrinsic::nearbyint:
5342 case Intrinsic::round:
5343 case Intrinsic::roundeven: {
5344 KnownFPClass KnownSrc;
5345 FPClassTest InterestedSrcs = InterestedClasses;
5346 if (InterestedSrcs & fcPosFinite)
5347 InterestedSrcs |= fcPosFinite;
5348 if (InterestedSrcs & fcNegFinite)
5349 InterestedSrcs |= fcNegFinite;
5350 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedSrcs,
5351 KnownSrc, Q, Depth + 1);
5352
5353 // Integer results cannot be subnormal.
5354 Known.knownNot(fcSubnormal);
5355
5356 Known.propagateNaN(KnownSrc, true);
5357
5358 // Pass through infinities, except PPC_FP128 is a special case for
5359 // intrinsics other than trunc.
5360 if (IID == Intrinsic::trunc || !V->getType()->isMultiUnitFPType()) {
5361 if (KnownSrc.isKnownNeverPosInfinity())
5362 Known.knownNot(fcPosInf);
5363 if (KnownSrc.isKnownNeverNegInfinity())
5364 Known.knownNot(fcNegInf);
5365 }
5366
5367 // Negative round ups to 0 produce -0
5368 if (KnownSrc.isKnownNever(fcPosFinite))
5369 Known.knownNot(fcPosFinite);
5370 if (KnownSrc.isKnownNever(fcNegFinite))
5371 Known.knownNot(fcNegFinite);
5372
5373 break;
5374 }
5375 case Intrinsic::exp:
5376 case Intrinsic::exp2:
5377 case Intrinsic::exp10:
5378 case Intrinsic::amdgcn_exp2: {
5379 Known.knownNot(fcNegative);
5380
5381 Type *EltTy = II->getType()->getScalarType();
5382 if (IID == Intrinsic::amdgcn_exp2 && EltTy->isFloatTy())
5383 Known.knownNot(fcSubnormal);
5384
5385 if ((InterestedClasses & fcNan) == fcNone)
5386 break;
5387
5388 KnownFPClass KnownSrc;
5389 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5390 KnownSrc, Q, Depth + 1);
5391 if (KnownSrc.isKnownNeverNaN()) {
5392 Known.knownNot(fcNan);
5393 Known.signBitMustBeZero();
5394 }
5395
5396 break;
5397 }
5398 case Intrinsic::fptrunc_round: {
5399 computeKnownFPClassForFPTrunc(Op, DemandedElts, InterestedClasses, Known,
5400 Q, Depth);
5401 break;
5402 }
5403 case Intrinsic::log:
5404 case Intrinsic::log10:
5405 case Intrinsic::log2:
5406 case Intrinsic::experimental_constrained_log:
5407 case Intrinsic::experimental_constrained_log10:
5408 case Intrinsic::experimental_constrained_log2:
5409 case Intrinsic::amdgcn_log: {
5410 Type *EltTy = II->getType()->getScalarType();
5411 if (IID == Intrinsic::amdgcn_log && EltTy->isFloatTy())
5412 Known.knownNot(fcSubnormal);
5413
5414 // log(+inf) -> +inf
5415 // log([+-]0.0) -> -inf
5416 // log(-inf) -> nan
5417 // log(-x) -> nan
5418 if ((InterestedClasses & (fcNan | fcInf)) == fcNone)
5419 break;
5420
5421 FPClassTest InterestedSrcs = InterestedClasses;
5422 if ((InterestedClasses & fcNegInf) != fcNone)
5423 InterestedSrcs |= fcZero | fcSubnormal;
5424 if ((InterestedClasses & fcNan) != fcNone)
5425 InterestedSrcs |= fcNan | (fcNegative & ~fcNan);
5426
5427 KnownFPClass KnownSrc;
5428 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedSrcs,
5429 KnownSrc, Q, Depth + 1);
5430
5431 if (KnownSrc.isKnownNeverPosInfinity())
5432 Known.knownNot(fcPosInf);
5433
5434 if (KnownSrc.isKnownNeverNaN() && KnownSrc.cannotBeOrderedLessThanZero())
5435 Known.knownNot(fcNan);
5436
5437 const Function *F = II->getFunction();
5438 if (!F)
5439 break;
5440
5441 const fltSemantics &FltSem = EltTy->getFltSemantics();
5442 DenormalMode Mode = F->getDenormalMode(FltSem);
5443
5444 if (KnownSrc.isKnownNeverLogicalZero(Mode))
5445 Known.knownNot(fcNegInf);
5446
5447 break;
5448 }
5449 case Intrinsic::powi: {
5450 if ((InterestedClasses & fcNegative) == fcNone)
5451 break;
5452
5453 const Value *Exp = II->getArgOperand(1);
5454 Type *ExpTy = Exp->getType();
5455 unsigned BitWidth = ExpTy->getScalarType()->getIntegerBitWidth();
5456 KnownBits ExponentKnownBits(BitWidth);
5457 computeKnownBits(Exp, isa<VectorType>(ExpTy) ? DemandedElts : APInt(1, 1),
5458 ExponentKnownBits, Q, Depth + 1);
5459
5460 if (ExponentKnownBits.Zero[0]) { // Is even
5461 Known.knownNot(fcNegative);
5462 break;
5463 }
5464
5465 // Given that exp is an integer, here are the
5466 // ways that pow can return a negative value:
5467 //
5468 // pow(-x, exp) --> negative if exp is odd and x is negative.
5469 // pow(-0, exp) --> -inf if exp is negative odd.
5470 // pow(-0, exp) --> -0 if exp is positive odd.
5471 // pow(-inf, exp) --> -0 if exp is negative odd.
5472 // pow(-inf, exp) --> -inf if exp is positive odd.
5473 KnownFPClass KnownSrc;
5474 computeKnownFPClass(II->getArgOperand(0), DemandedElts, fcNegative,
5475 KnownSrc, Q, Depth + 1);
5476 if (KnownSrc.isKnownNever(fcNegative))
5477 Known.knownNot(fcNegative);
5478 break;
5479 }
5480 case Intrinsic::ldexp: {
5481 KnownFPClass KnownSrc;
5482 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5483 KnownSrc, Q, Depth + 1);
5484 Known.propagateNaN(KnownSrc, /*PropagateSign=*/true);
5485
5486 // Sign is preserved, but underflows may produce zeroes.
5487 if (KnownSrc.isKnownNever(fcNegative))
5488 Known.knownNot(fcNegative);
5489 else if (KnownSrc.cannotBeOrderedLessThanZero())
5491
5492 if (KnownSrc.isKnownNever(fcPositive))
5493 Known.knownNot(fcPositive);
5494 else if (KnownSrc.cannotBeOrderedGreaterThanZero())
5496
5497 // Can refine inf/zero handling based on the exponent operand.
5498 const FPClassTest ExpInfoMask = fcZero | fcSubnormal | fcInf;
5499 if ((InterestedClasses & ExpInfoMask) == fcNone)
5500 break;
5501 if ((KnownSrc.KnownFPClasses & ExpInfoMask) == fcNone)
5502 break;
5503
5504 const fltSemantics &Flt =
5505 II->getType()->getScalarType()->getFltSemantics();
5506 unsigned Precision = APFloat::semanticsPrecision(Flt);
5507 const Value *ExpArg = II->getArgOperand(1);
5509 ExpArg, true, Q.IIQ.UseInstrInfo, Q.AC, Q.CxtI, Q.DT, Depth + 1);
5510
5511 const int MantissaBits = Precision - 1;
5512 if (ExpRange.getSignedMin().sge(static_cast<int64_t>(MantissaBits)))
5513 Known.knownNot(fcSubnormal);
5514
5515 const Function *F = II->getFunction();
5516 const APInt *ConstVal = ExpRange.getSingleElement();
5517 const fltSemantics &FltSem =
5518 II->getType()->getScalarType()->getFltSemantics();
5519 if (ConstVal && ConstVal->isZero()) {
5520 // ldexp(x, 0) -> x, so propagate everything.
5521 Known.propagateCanonicalizingSrc(KnownSrc, F->getDenormalMode(FltSem));
5522 } else if (ExpRange.isAllNegative()) {
5523 // If we know the power is <= 0, can't introduce inf
5524 if (KnownSrc.isKnownNeverPosInfinity())
5525 Known.knownNot(fcPosInf);
5526 if (KnownSrc.isKnownNeverNegInfinity())
5527 Known.knownNot(fcNegInf);
5528 } else if (ExpRange.isAllNonNegative()) {
5529 // If we know the power is >= 0, can't introduce subnormal or zero
5530 if (KnownSrc.isKnownNeverPosSubnormal())
5531 Known.knownNot(fcPosSubnormal);
5532 if (KnownSrc.isKnownNeverNegSubnormal())
5533 Known.knownNot(fcNegSubnormal);
5534 if (F &&
5535 KnownSrc.isKnownNeverLogicalPosZero(F->getDenormalMode(FltSem)))
5536 Known.knownNot(fcPosZero);
5537 if (F &&
5538 KnownSrc.isKnownNeverLogicalNegZero(F->getDenormalMode(FltSem)))
5539 Known.knownNot(fcNegZero);
5540 }
5541
5542 break;
5543 }
5544 case Intrinsic::arithmetic_fence: {
5545 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5546 Known, Q, Depth + 1);
5547 break;
5548 }
5549 case Intrinsic::experimental_constrained_sitofp:
5550 case Intrinsic::experimental_constrained_uitofp:
5551 // Cannot produce nan
5552 Known.knownNot(fcNan);
5553
5554 // sitofp and uitofp turn into +0.0 for zero.
5555 Known.knownNot(fcNegZero);
5556
5557 // Integers cannot be subnormal
5558 Known.knownNot(fcSubnormal);
5559
5560 if (IID == Intrinsic::experimental_constrained_uitofp)
5561 Known.signBitMustBeZero();
5562
5563 // TODO: Copy inf handling from instructions
5564 break;
5565 case Intrinsic::amdgcn_rcp: {
5566 KnownFPClass KnownSrc;
5567 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5568 KnownSrc, Q, Depth + 1);
5569
5570 Known.propagateNaN(KnownSrc);
5571
5572 Type *EltTy = II->getType()->getScalarType();
5573
5574 // f32 denormal always flushed.
5575 if (EltTy->isFloatTy()) {
5576 Known.knownNot(fcSubnormal);
5577 KnownSrc.knownNot(fcSubnormal);
5578 }
5579
5580 if (KnownSrc.isKnownNever(fcNegative))
5581 Known.knownNot(fcNegative);
5582 if (KnownSrc.isKnownNever(fcPositive))
5583 Known.knownNot(fcPositive);
5584
5585 if (const Function *F = II->getFunction()) {
5586 DenormalMode Mode = F->getDenormalMode(EltTy->getFltSemantics());
5587 if (KnownSrc.isKnownNeverLogicalPosZero(Mode))
5588 Known.knownNot(fcPosInf);
5589 if (KnownSrc.isKnownNeverLogicalNegZero(Mode))
5590 Known.knownNot(fcNegInf);
5591 }
5592
5593 break;
5594 }
5595 case Intrinsic::amdgcn_rsq: {
5596 KnownFPClass KnownSrc;
5597 // The only negative value that can be returned is -inf for -0 inputs.
5599
5600 computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5601 KnownSrc, Q, Depth + 1);
5602
5603 // Negative -> nan
5604 if (KnownSrc.isKnownNeverNaN() && KnownSrc.cannotBeOrderedLessThanZero())
5605 Known.knownNot(fcNan);
5606 else if (KnownSrc.isKnownNever(fcSNan))
5607 Known.knownNot(fcSNan);
5608
5609 // +inf -> +0
5610 if (KnownSrc.isKnownNeverPosInfinity())
5611 Known.knownNot(fcPosZero);
5612
5613 Type *EltTy = II->getType()->getScalarType();
5614
5615 // f32 denormal always flushed.
5616 if (EltTy->isFloatTy())
5617 Known.knownNot(fcPosSubnormal);
5618
5619 if (const Function *F = II->getFunction()) {
5620 DenormalMode Mode = F->getDenormalMode(EltTy->getFltSemantics());
5621
5622 // -0 -> -inf
5623 if (KnownSrc.isKnownNeverLogicalNegZero(Mode))
5624 Known.knownNot(fcNegInf);
5625
5626 // +0 -> +inf
5627 if (KnownSrc.isKnownNeverLogicalPosZero(Mode))
5628 Known.knownNot(fcPosInf);
5629 }
5630
5631 break;
5632 }
5633 default:
5634 break;
5635 }
5636
5637 break;
5638 }
5639 case Instruction::FAdd:
5640 case Instruction::FSub: {
5641 KnownFPClass KnownLHS, KnownRHS;
5642 bool WantNegative =
5643 Op->getOpcode() == Instruction::FAdd &&
5644 (InterestedClasses & KnownFPClass::OrderedLessThanZeroMask) != fcNone;
5645 bool WantNaN = (InterestedClasses & fcNan) != fcNone;
5646 bool WantNegZero = (InterestedClasses & fcNegZero) != fcNone;
5647
5648 if (!WantNaN && !WantNegative && !WantNegZero)
5649 break;
5650
5651 FPClassTest InterestedSrcs = InterestedClasses;
5652 if (WantNegative)
5653 InterestedSrcs |= KnownFPClass::OrderedLessThanZeroMask;
5654 if (InterestedClasses & fcNan)
5655 InterestedSrcs |= fcInf;
5656 computeKnownFPClass(Op->getOperand(1), DemandedElts, InterestedSrcs,
5657 KnownRHS, Q, Depth + 1);
5658
5659 if ((WantNaN && KnownRHS.isKnownNeverNaN()) ||
5660 (WantNegative && KnownRHS.cannotBeOrderedLessThanZero()) ||
5661 WantNegZero || Opc == Instruction::FSub) {
5662
5663 // RHS is canonically cheaper to compute. Skip inspecting the LHS if
5664 // there's no point.
5665 computeKnownFPClass(Op->getOperand(0), DemandedElts, InterestedSrcs,
5666 KnownLHS, Q, Depth + 1);
5667 // Adding positive and negative infinity produces NaN.
5668 // TODO: Check sign of infinities.
5669 if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() &&
5670 (KnownLHS.isKnownNeverInfinity() || KnownRHS.isKnownNeverInfinity()))
5671 Known.knownNot(fcNan);
5672
5673 // FIXME: Context function should always be passed in separately
5674 const Function *F = cast<Instruction>(Op)->getFunction();
5675
5676 if (Op->getOpcode() == Instruction::FAdd) {
5677 if (KnownLHS.cannotBeOrderedLessThanZero() &&
5678 KnownRHS.cannotBeOrderedLessThanZero())
5680 if (!F)
5681 break;
5682
5683 const fltSemantics &FltSem =
5684 Op->getType()->getScalarType()->getFltSemantics();
5685 DenormalMode Mode = F->getDenormalMode(FltSem);
5686
5687 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
5688 if ((KnownLHS.isKnownNeverLogicalNegZero(Mode) ||
5689 KnownRHS.isKnownNeverLogicalNegZero(Mode)) &&
5690 // Make sure output negative denormal can't flush to -0
5691 outputDenormalIsIEEEOrPosZero(*F, Op->getType()))
5692 Known.knownNot(fcNegZero);
5693 } else {
5694 if (!F)
5695 break;
5696
5697 const fltSemantics &FltSem =
5698 Op->getType()->getScalarType()->getFltSemantics();
5699 DenormalMode Mode = F->getDenormalMode(FltSem);
5700
5701 // Only fsub -0, +0 can return -0
5702 if ((KnownLHS.isKnownNeverLogicalNegZero(Mode) ||
5703 KnownRHS.isKnownNeverLogicalPosZero(Mode)) &&
5704 // Make sure output negative denormal can't flush to -0
5705 outputDenormalIsIEEEOrPosZero(*F, Op->getType()))
5706 Known.knownNot(fcNegZero);
5707 }
5708 }
5709
5710 break;
5711 }
5712 case Instruction::FMul: {
5713 // X * X is always non-negative or a NaN.
5714 if (Op->getOperand(0) == Op->getOperand(1))
5715 Known.knownNot(fcNegative);
5716
5717 if ((InterestedClasses & fcNan) != fcNan)
5718 break;
5719
5720 // fcSubnormal is only needed in case of DAZ.
5721 const FPClassTest NeedForNan = fcNan | fcInf | fcZero | fcSubnormal;
5722
5723 KnownFPClass KnownLHS, KnownRHS;
5724 computeKnownFPClass(Op->getOperand(1), DemandedElts, NeedForNan, KnownRHS,
5725 Q, Depth + 1);
5726
5727 const APFloat *CRHS;
5728 if (match(Op->getOperand(1), m_APFloat(CRHS))) {
5729 // Match denormal scaling pattern, similar to the case in ldexp. If the
5730 // constant's exponent is sufficiently large, the result cannot be
5731 // subnormal.
5732
5733 // TODO: Should do general ConstantFPRange analysis.
5734 const fltSemantics &Flt =
5735 Op->getType()->getScalarType()->getFltSemantics();
5736 unsigned Precision = APFloat::semanticsPrecision(Flt);
5737 const int MantissaBits = Precision - 1;
5738
5739 int MinKnownExponent = ilogb(*CRHS);
5740 if (MinKnownExponent >= MantissaBits)
5741 Known.knownNot(fcSubnormal);
5742 }
5743
5744 if (!KnownRHS.isKnownNeverNaN())
5745 break;
5746
5747 computeKnownFPClass(Op->getOperand(0), DemandedElts, NeedForNan, KnownLHS,
5748 Q, Depth + 1);
5749 if (!KnownLHS.isKnownNeverNaN())
5750 break;
5751
5752 if (KnownLHS.SignBit && KnownRHS.SignBit) {
5753 if (*KnownLHS.SignBit == *KnownRHS.SignBit)
5754 Known.signBitMustBeZero();
5755 else
5756 Known.signBitMustBeOne();
5757 }
5758
5759 // If 0 * +/-inf produces NaN.
5760 if (KnownLHS.isKnownNeverInfinity() && KnownRHS.isKnownNeverInfinity()) {
5761 Known.knownNot(fcNan);
5762 break;
5763 }
5764
5765 const Function *F = cast<Instruction>(Op)->getFunction();
5766 if (!F)
5767 break;
5768
5769 Type *OpTy = Op->getType()->getScalarType();
5770 const fltSemantics &FltSem = OpTy->getFltSemantics();
5771 DenormalMode Mode = F->getDenormalMode(FltSem);
5772
5773 if ((KnownRHS.isKnownNeverInfinity() ||
5774 KnownLHS.isKnownNeverLogicalZero(Mode)) &&
5775 (KnownLHS.isKnownNeverInfinity() ||
5776 KnownRHS.isKnownNeverLogicalZero(Mode)))
5777 Known.knownNot(fcNan);
5778
5779 break;
5780 }
5781 case Instruction::FDiv:
5782 case Instruction::FRem: {
5783 if (Op->getOperand(0) == Op->getOperand(1)) {
5784 // TODO: Could filter out snan if we inspect the operand
5785 if (Op->getOpcode() == Instruction::FDiv) {
5786 // X / X is always exactly 1.0 or a NaN.
5788 } else {
5789 // X % X is always exactly [+-]0.0 or a NaN.
5790 Known.KnownFPClasses = fcNan | fcZero;
5791 }
5792
5793 break;
5794 }
5795
5796 const bool WantNan = (InterestedClasses & fcNan) != fcNone;
5797 const bool WantNegative = (InterestedClasses & fcNegative) != fcNone;
5798 const bool WantPositive =
5799 Opc == Instruction::FRem && (InterestedClasses & fcPositive) != fcNone;
5800 if (!WantNan && !WantNegative && !WantPositive)
5801 break;
5802
5803 KnownFPClass KnownLHS, KnownRHS;
5804
5805 computeKnownFPClass(Op->getOperand(1), DemandedElts,
5806 fcNan | fcInf | fcZero | fcNegative, KnownRHS, Q,
5807 Depth + 1);
5808
5809 bool KnowSomethingUseful =
5810 KnownRHS.isKnownNeverNaN() || KnownRHS.isKnownNever(fcNegative);
5811
5812 if (KnowSomethingUseful || WantPositive) {
5813 const FPClassTest InterestedLHS =
5814 WantPositive ? fcAllFlags
5816
5817 computeKnownFPClass(Op->getOperand(0), DemandedElts,
5818 InterestedClasses & InterestedLHS, KnownLHS, Q,
5819 Depth + 1);
5820 }
5821
5822 const Function *F = cast<Instruction>(Op)->getFunction();
5823 const fltSemantics &FltSem =
5824 Op->getType()->getScalarType()->getFltSemantics();
5825
5826 if (Op->getOpcode() == Instruction::FDiv) {
5827 // Only 0/0, Inf/Inf produce NaN.
5828 if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() &&
5829 (KnownLHS.isKnownNeverInfinity() ||
5830 KnownRHS.isKnownNeverInfinity()) &&
5831 ((F &&
5832 KnownLHS.isKnownNeverLogicalZero(F->getDenormalMode(FltSem))) ||
5833 (F &&
5834 KnownRHS.isKnownNeverLogicalZero(F->getDenormalMode(FltSem))))) {
5835 Known.knownNot(fcNan);
5836 }
5837
5838 // X / -0.0 is -Inf (or NaN).
5839 // +X / +X is +X
5840 if (KnownLHS.isKnownNever(fcNegative) && KnownRHS.isKnownNever(fcNegative))
5841 Known.knownNot(fcNegative);
5842 } else {
5843 // Inf REM x and x REM 0 produce NaN.
5844 if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() &&
5845 KnownLHS.isKnownNeverInfinity() && F &&
5846 KnownRHS.isKnownNeverLogicalZero(F->getDenormalMode(FltSem))) {
5847 Known.knownNot(fcNan);
5848 }
5849
5850 // The sign for frem is the same as the first operand.
5851 if (KnownLHS.cannotBeOrderedLessThanZero())
5853 if (KnownLHS.cannotBeOrderedGreaterThanZero())
5855
5856 // See if we can be more aggressive about the sign of 0.
5857 if (KnownLHS.isKnownNever(fcNegative))
5858 Known.knownNot(fcNegative);
5859 if (KnownLHS.isKnownNever(fcPositive))
5860 Known.knownNot(fcPositive);
5861 }
5862
5863 break;
5864 }
5865 case Instruction::FPExt: {
5866 // Infinity, nan and zero propagate from source.
5867 computeKnownFPClass(Op->getOperand(0), DemandedElts, InterestedClasses,
5868 Known, Q, Depth + 1);
5869
5870 const fltSemantics &DstTy =
5871 Op->getType()->getScalarType()->getFltSemantics();
5872 const fltSemantics &SrcTy =
5873 Op->getOperand(0)->getType()->getScalarType()->getFltSemantics();
5874
5875 // All subnormal inputs should be in the normal range in the result type.
5876 if (APFloat::isRepresentableAsNormalIn(SrcTy, DstTy)) {
5877 if (Known.KnownFPClasses & fcPosSubnormal)
5878 Known.KnownFPClasses |= fcPosNormal;
5879 if (Known.KnownFPClasses & fcNegSubnormal)
5880 Known.KnownFPClasses |= fcNegNormal;
5881 Known.knownNot(fcSubnormal);
5882 }
5883
5884 // Sign bit of a nan isn't guaranteed.
5885 if (!Known.isKnownNeverNaN())
5886 Known.SignBit = std::nullopt;
5887 break;
5888 }
5889 case Instruction::FPTrunc: {
5890 computeKnownFPClassForFPTrunc(Op, DemandedElts, InterestedClasses, Known, Q,
5891 Depth);
5892 break;
5893 }
5894 case Instruction::SIToFP:
5895 case Instruction::UIToFP: {
5896 // Cannot produce nan
5897 Known.knownNot(fcNan);
5898
5899 // Integers cannot be subnormal
5900 Known.knownNot(fcSubnormal);
5901
5902 // sitofp and uitofp turn into +0.0 for zero.
5903 Known.knownNot(fcNegZero);
5904 if (Op->getOpcode() == Instruction::UIToFP)
5905 Known.signBitMustBeZero();
5906
5907 if (InterestedClasses & fcInf) {
5908 // Get width of largest magnitude integer (remove a bit if signed).
5909 // This still works for a signed minimum value because the largest FP
5910 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
5911 int IntSize = Op->getOperand(0)->getType()->getScalarSizeInBits();
5912 if (Op->getOpcode() == Instruction::SIToFP)
5913 --IntSize;
5914
5915 // If the exponent of the largest finite FP value can hold the largest
5916 // integer, the result of the cast must be finite.
5917 Type *FPTy = Op->getType()->getScalarType();
5918 if (ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize)
5919 Known.knownNot(fcInf);
5920 }
5921
5922 break;
5923 }
5924 case Instruction::ExtractElement: {
5925 // Look through extract element. If the index is non-constant or
5926 // out-of-range demand all elements, otherwise just the extracted element.
5927 const Value *Vec = Op->getOperand(0);
5928
5929 APInt DemandedVecElts;
5930 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
5931 unsigned NumElts = VecTy->getNumElements();
5932 DemandedVecElts = APInt::getAllOnes(NumElts);
5933 auto *CIdx = dyn_cast<ConstantInt>(Op->getOperand(1));
5934 if (CIdx && CIdx->getValue().ult(NumElts))
5935 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
5936 } else {
5937 DemandedVecElts = APInt(1, 1);
5938 }
5939
5940 return computeKnownFPClass(Vec, DemandedVecElts, InterestedClasses, Known,
5941 Q, Depth + 1);
5942 }
5943 case Instruction::InsertElement: {
5944 if (isa<ScalableVectorType>(Op->getType()))
5945 return;
5946
5947 const Value *Vec = Op->getOperand(0);
5948 const Value *Elt = Op->getOperand(1);
5949 auto *CIdx = dyn_cast<ConstantInt>(Op->getOperand(2));
5950 unsigned NumElts = DemandedElts.getBitWidth();
5951 APInt DemandedVecElts = DemandedElts;
5952 bool NeedsElt = true;
5953 // If we know the index we are inserting to, clear it from Vec check.
5954 if (CIdx && CIdx->getValue().ult(NumElts)) {
5955 DemandedVecElts.clearBit(CIdx->getZExtValue());
5956 NeedsElt = DemandedElts[CIdx->getZExtValue()];
5957 }
5958
5959 // Do we demand the inserted element?
5960 if (NeedsElt) {
5961 computeKnownFPClass(Elt, Known, InterestedClasses, Q, Depth + 1);
5962 // If we don't know any bits, early out.
5963 if (Known.isUnknown())
5964 break;
5965 } else {
5966 Known.KnownFPClasses = fcNone;
5967 }
5968
5969 // Do we need anymore elements from Vec?
5970 if (!DemandedVecElts.isZero()) {
5971 KnownFPClass Known2;
5972 computeKnownFPClass(Vec, DemandedVecElts, InterestedClasses, Known2, Q,
5973 Depth + 1);
5974 Known |= Known2;
5975 }
5976
5977 break;
5978 }
5979 case Instruction::ShuffleVector: {
5980 // Handle vector splat idiom
5981 if (Value *Splat = getSplatValue(V)) {
5982 computeKnownFPClass(Splat, Known, InterestedClasses, Q, Depth + 1);
5983 break;
5984 }
5985
5986 // For undef elements, we don't know anything about the common state of
5987 // the shuffle result.
5988 APInt DemandedLHS, DemandedRHS;
5989 auto *Shuf = dyn_cast<ShuffleVectorInst>(Op);
5990 if (!Shuf || !getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
5991 return;
5992
5993 if (!!DemandedLHS) {
5994 const Value *LHS = Shuf->getOperand(0);
5995 computeKnownFPClass(LHS, DemandedLHS, InterestedClasses, Known, Q,
5996 Depth + 1);
5997
5998 // If we don't know any bits, early out.
5999 if (Known.isUnknown())
6000 break;
6001 } else {
6002 Known.KnownFPClasses = fcNone;
6003 }
6004
6005 if (!!DemandedRHS) {
6006 KnownFPClass Known2;
6007 const Value *RHS = Shuf->getOperand(1);
6008 computeKnownFPClass(RHS, DemandedRHS, InterestedClasses, Known2, Q,
6009 Depth + 1);
6010 Known |= Known2;
6011 }
6012
6013 break;
6014 }
6015 case Instruction::ExtractValue: {
6016 const ExtractValueInst *Extract = cast<ExtractValueInst>(Op);
6017 ArrayRef<unsigned> Indices = Extract->getIndices();
6018 const Value *Src = Extract->getAggregateOperand();
6019 if (isa<StructType>(Src->getType()) && Indices.size() == 1 &&
6020 Indices[0] == 0) {
6021 if (const auto *II = dyn_cast<IntrinsicInst>(Src)) {
6022 switch (II->getIntrinsicID()) {
6023 case Intrinsic::frexp: {
6024 Known.knownNot(fcSubnormal);
6025
6026 KnownFPClass KnownSrc;
6027 computeKnownFPClass(II->getArgOperand(0), DemandedElts,
6028 InterestedClasses, KnownSrc, Q, Depth + 1);
6029
6030 const Function *F = cast<Instruction>(Op)->getFunction();
6031 const fltSemantics &FltSem =
6032 Op->getType()->getScalarType()->getFltSemantics();
6033
6034 if (KnownSrc.isKnownNever(fcNegative))
6035 Known.knownNot(fcNegative);
6036 else {
6037 if (F &&
6038 KnownSrc.isKnownNeverLogicalNegZero(F->getDenormalMode(FltSem)))
6039 Known.knownNot(fcNegZero);
6040 if (KnownSrc.isKnownNever(fcNegInf))
6041 Known.knownNot(fcNegInf);
6042 }
6043
6044 if (KnownSrc.isKnownNever(fcPositive))
6045 Known.knownNot(fcPositive);
6046 else {
6047 if (F &&
6048 KnownSrc.isKnownNeverLogicalPosZero(F->getDenormalMode(FltSem)))
6049 Known.knownNot(fcPosZero);
6050 if (KnownSrc.isKnownNever(fcPosInf))
6051 Known.knownNot(fcPosInf);
6052 }
6053
6054 Known.propagateNaN(KnownSrc);
6055 return;
6056 }
6057 default:
6058 break;
6059 }
6060 }
6061 }
6062
6063 computeKnownFPClass(Src, DemandedElts, InterestedClasses, Known, Q,
6064 Depth + 1);
6065 break;
6066 }
6067 case Instruction::PHI: {
6068 const PHINode *P = cast<PHINode>(Op);
6069 // Unreachable blocks may have zero-operand PHI nodes.
6070 if (P->getNumIncomingValues() == 0)
6071 break;
6072
6073 // Otherwise take the unions of the known bit sets of the operands,
6074 // taking conservative care to avoid excessive recursion.
6075 const unsigned PhiRecursionLimit = MaxAnalysisRecursionDepth - 2;
6076
6077 if (Depth < PhiRecursionLimit) {
6078 // Skip if every incoming value references to ourself.
6079 if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
6080 break;
6081
6082 bool First = true;
6083
6084 for (const Use &U : P->operands()) {
6085 Value *IncValue;
6086 Instruction *CxtI;
6087 breakSelfRecursivePHI(&U, P, IncValue, CxtI);
6088 // Skip direct self references.
6089 if (IncValue == P)
6090 continue;
6091
6092 KnownFPClass KnownSrc;
6093 // Recurse, but cap the recursion to two levels, because we don't want
6094 // to waste time spinning around in loops. We need at least depth 2 to
6095 // detect known sign bits.
6096 computeKnownFPClass(IncValue, DemandedElts, InterestedClasses, KnownSrc,
6098 PhiRecursionLimit);
6099
6100 if (First) {
6101 Known = KnownSrc;
6102 First = false;
6103 } else {
6104 Known |= KnownSrc;
6105 }
6106
6107 if (Known.KnownFPClasses == fcAllFlags)
6108 break;
6109 }
6110 }
6111
6112 break;
6113 }
6114 case Instruction::BitCast: {
6115 const Value *Src;
6116 if (!match(Op, m_ElementWiseBitCast(m_Value(Src))) ||
6117 !Src->getType()->isIntOrIntVectorTy())
6118 break;
6119
6120 const Type *Ty = Op->getType()->getScalarType();
6121 KnownBits Bits(Ty->getScalarSizeInBits());
6122 computeKnownBits(Src, DemandedElts, Bits, Q, Depth + 1);
6123
6124 // Transfer information from the sign bit.
6125 if (Bits.isNonNegative())
6126 Known.signBitMustBeZero();
6127 else if (Bits.isNegative())
6128 Known.signBitMustBeOne();
6129
6130 if (Ty->isIEEELikeFPTy()) {
6131 // IEEE floats are NaN when all bits of the exponent plus at least one of
6132 // the fraction bits are 1. This means:
6133 // - If we assume unknown bits are 0 and the value is NaN, it will
6134 // always be NaN
6135 // - If we assume unknown bits are 1 and the value is not NaN, it can
6136 // never be NaN
6137 // Note: They do not hold for x86_fp80 format.
6138 if (APFloat(Ty->getFltSemantics(), Bits.One).isNaN())
6139 Known.KnownFPClasses = fcNan;
6140 else if (!APFloat(Ty->getFltSemantics(), ~Bits.Zero).isNaN())
6141 Known.knownNot(fcNan);
6142
6143 // Build KnownBits representing Inf and check if it must be equal or
6144 // unequal to this value.
6145 auto InfKB = KnownBits::makeConstant(
6146 APFloat::getInf(Ty->getFltSemantics()).bitcastToAPInt());
6147 InfKB.Zero.clearSignBit();
6148 if (const auto InfResult = KnownBits::eq(Bits, InfKB)) {
6149 assert(!InfResult.value());
6150 Known.knownNot(fcInf);
6151 } else if (Bits == InfKB) {
6152 Known.KnownFPClasses = fcInf;
6153 }
6154
6155 // Build KnownBits representing Zero and check if it must be equal or
6156 // unequal to this value.
6157 auto ZeroKB = KnownBits::makeConstant(
6158 APFloat::getZero(Ty->getFltSemantics()).bitcastToAPInt());
6159 ZeroKB.Zero.clearSignBit();
6160 if (const auto ZeroResult = KnownBits::eq(Bits, ZeroKB)) {
6161 assert(!ZeroResult.value());
6162 Known.knownNot(fcZero);
6163 } else if (Bits == ZeroKB) {
6164 Known.KnownFPClasses = fcZero;
6165 }
6166 }
6167
6168 break;
6169 }
6170 default:
6171 break;
6172 }
6173}
6174
6176 const APInt &DemandedElts,
6177 FPClassTest InterestedClasses,
6178 const SimplifyQuery &SQ,
6179 unsigned Depth) {
6180 KnownFPClass KnownClasses;
6181 ::computeKnownFPClass(V, DemandedElts, InterestedClasses, KnownClasses, SQ,
6182 Depth);
6183 return KnownClasses;
6184}
6185
6187 FPClassTest InterestedClasses,
6188 const SimplifyQuery &SQ,
6189 unsigned Depth) {
6190 KnownFPClass Known;
6191 ::computeKnownFPClass(V, Known, InterestedClasses, SQ, Depth);
6192 return Known;
6193}
6194
6196 const Value *V, const DataLayout &DL, FPClassTest InterestedClasses,
6197 const TargetLibraryInfo *TLI, AssumptionCache *AC, const Instruction *CxtI,
6198 const DominatorTree *DT, bool UseInstrInfo, unsigned Depth) {
6199 return computeKnownFPClass(V, InterestedClasses,
6200 SimplifyQuery(DL, TLI, DT, AC, CxtI, UseInstrInfo),
6201 Depth);
6202}
6203
6205llvm::computeKnownFPClass(const Value *V, const APInt &DemandedElts,
6206 FastMathFlags FMF, FPClassTest InterestedClasses,
6207 const SimplifyQuery &SQ, unsigned Depth) {
6208 if (FMF.noNaNs())
6209 InterestedClasses &= ~fcNan;
6210 if (FMF.noInfs())
6211 InterestedClasses &= ~fcInf;
6212
6213 KnownFPClass Result =
6214 computeKnownFPClass(V, DemandedElts, InterestedClasses, SQ, Depth);
6215
6216 if (FMF.noNaNs())
6217 Result.KnownFPClasses &= ~fcNan;
6218 if (FMF.noInfs())
6219 Result.KnownFPClasses &= ~fcInf;
6220 return Result;
6221}
6222
6224 FPClassTest InterestedClasses,
6225 const SimplifyQuery &SQ,
6226 unsigned Depth) {
6227 auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
6228 APInt DemandedElts =
6229 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
6230 return computeKnownFPClass(V, DemandedElts, FMF, InterestedClasses, SQ,
6231 Depth);
6232}
6233
6235 unsigned Depth) {
6237 return Known.isKnownNeverNegZero();
6238}
6239
6246
6248 unsigned Depth) {
6250 return Known.isKnownNeverInfinity();
6251}
6252
6253/// Return true if the floating-point value can never contain a NaN or infinity.
6255 unsigned Depth) {
6257 return Known.isKnownNeverNaN() && Known.isKnownNeverInfinity();
6258}
6259
6260/// Return true if the floating-point scalar value is not a NaN or if the
6261/// floating-point vector value has no NaN elements. Return false if a value
6262/// could ever be NaN.
6264 unsigned Depth) {
6266 return Known.isKnownNeverNaN();
6267}
6268
6269/// Return false if we can prove that the specified FP value's sign bit is 0.
6270/// Return true if we can prove that the specified FP value's sign bit is 1.
6271/// Otherwise return std::nullopt.
6272std::optional<bool> llvm::computeKnownFPSignBit(const Value *V,
6273 const SimplifyQuery &SQ,
6274 unsigned Depth) {
6276 return Known.SignBit;
6277}
6278
6280 auto *User = cast<Instruction>(U.getUser());
6281 if (auto *FPOp = dyn_cast<FPMathOperator>(User)) {
6282 if (FPOp->hasNoSignedZeros())
6283 return true;
6284 }
6285
6286 switch (User->getOpcode()) {
6287 case Instruction::FPToSI:
6288 case Instruction::FPToUI:
6289 return true;
6290 case Instruction::FCmp:
6291 // fcmp treats both positive and negative zero as equal.
6292 return true;
6293 case Instruction::Call:
6294 if (auto *II = dyn_cast<IntrinsicInst>(User)) {
6295 switch (II->getIntrinsicID()) {
6296 case Intrinsic::fabs:
6297 return true;
6298 case Intrinsic::copysign:
6299 return U.getOperandNo() == 0;
6300 case Intrinsic::is_fpclass:
6301 case Intrinsic::vp_is_fpclass: {
6302 auto Test =
6303 static_cast<FPClassTest>(
6304 cast<ConstantInt>(II->getArgOperand(1))->getZExtValue()) &
6307 }
6308 default:
6309 return false;
6310 }
6311 }
6312 return false;
6313 default:
6314 return false;
6315 }
6316}
6317
6319 auto *User = cast<Instruction>(U.getUser());
6320 if (auto *FPOp = dyn_cast<FPMathOperator>(User)) {
6321 if (FPOp->hasNoNaNs())
6322 return true;
6323 }
6324
6325 switch (User->getOpcode()) {
6326 case Instruction::FPToSI:
6327 case Instruction::FPToUI:
6328 return true;
6329 // Proper FP math operations ignore the sign bit of NaN.
6330 case Instruction::FAdd:
6331 case Instruction::FSub:
6332 case Instruction::FMul:
6333 case Instruction::FDiv:
6334 case Instruction::FRem:
6335 case Instruction::FPTrunc:
6336 case Instruction::FPExt:
6337 case Instruction::FCmp:
6338 return true;
6339 // Bitwise FP operations should preserve the sign bit of NaN.
6340 case Instruction::FNeg:
6341 case Instruction::Select:
6342 case Instruction::PHI:
6343 return false;
6344 case Instruction::Ret:
6345 return User->getFunction()->getAttributes().getRetNoFPClass() &
6347 case Instruction::Call:
6348 case Instruction::Invoke: {
6349 if (auto *II = dyn_cast<IntrinsicInst>(User)) {
6350 switch (II->getIntrinsicID()) {
6351 case Intrinsic::fabs:
6352 return true;
6353 case Intrinsic::copysign:
6354 return U.getOperandNo() == 0;
6355 // Other proper FP math intrinsics ignore the sign bit of NaN.
6356 case Intrinsic::maxnum:
6357 case Intrinsic::minnum:
6358 case Intrinsic::maximum:
6359 case Intrinsic::minimum:
6360 case Intrinsic::maximumnum:
6361 case Intrinsic::minimumnum:
6362 case Intrinsic::canonicalize:
6363 case Intrinsic::fma:
6364 case Intrinsic::fmuladd:
6365 case Intrinsic::sqrt:
6366 case Intrinsic::pow:
6367 case Intrinsic::powi:
6368 case Intrinsic::fptoui_sat:
6369 case Intrinsic::fptosi_sat:
6370 case Intrinsic::is_fpclass:
6371 case Intrinsic::vp_is_fpclass:
6372 return true;
6373 default:
6374 return false;
6375 }
6376 }
6377
6378 FPClassTest NoFPClass =
6379 cast<CallBase>(User)->getParamNoFPClass(U.getOperandNo());
6380 return NoFPClass & FPClassTest::fcNan;
6381 }
6382 default:
6383 return false;
6384 }
6385}
6386
6388
6389 // All byte-wide stores are splatable, even of arbitrary variables.
6390 if (V->getType()->isIntegerTy(8))
6391 return V;
6392
6393 LLVMContext &Ctx = V->getContext();
6394
6395 // Undef don't care.
6396 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
6397 if (isa<UndefValue>(V))
6398 return UndefInt8;
6399
6400 // Return poison for zero-sized type.
6401 if (DL.getTypeStoreSize(V->getType()).isZero())
6402 return PoisonValue::get(Type::getInt8Ty(Ctx));
6403
6405 if (!C) {
6406 // Conceptually, we could handle things like:
6407 // %a = zext i8 %X to i16
6408 // %b = shl i16 %a, 8
6409 // %c = or i16 %a, %b
6410 // but until there is an example that actually needs this, it doesn't seem
6411 // worth worrying about.
6412 return nullptr;
6413 }
6414
6415 // Handle 'null' ConstantArrayZero etc.
6416 if (C->isNullValue())
6418
6419 // Constant floating-point values can be handled as integer values if the
6420 // corresponding integer value is "byteable". An important case is 0.0.
6421 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
6422 Type *Ty = nullptr;
6423 if (CFP->getType()->isHalfTy())
6424 Ty = Type::getInt16Ty(Ctx);
6425 else if (CFP->getType()->isFloatTy())
6426 Ty = Type::getInt32Ty(Ctx);
6427 else if (CFP->getType()->isDoubleTy())
6428 Ty = Type::getInt64Ty(Ctx);
6429 // Don't handle long double formats, which have strange constraints.
6430 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
6431 : nullptr;
6432 }
6433
6434 // We can handle constant integers that are multiple of 8 bits.
6435 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
6436 if (CI->getBitWidth() % 8 == 0) {
6437 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
6438 if (!CI->getValue().isSplat(8))
6439 return nullptr;
6440 return ConstantInt::get(Ctx, CI->getValue().trunc(8));
6441 }
6442 }
6443
6444 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
6445 if (CE->getOpcode() == Instruction::IntToPtr) {
6446 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
6447 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
6449 CE->getOperand(0), Type::getIntNTy(Ctx, BitWidth), false, DL))
6450 return isBytewiseValue(Op, DL);
6451 }
6452 }
6453 }
6454
6455 auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
6456 if (LHS == RHS)
6457 return LHS;
6458 if (!LHS || !RHS)
6459 return nullptr;
6460 if (LHS == UndefInt8)
6461 return RHS;
6462 if (RHS == UndefInt8)
6463 return LHS;
6464 return nullptr;
6465 };
6466
6468 Value *Val = UndefInt8;
6469 for (uint64_t I = 0, E = CA->getNumElements(); I != E; ++I)
6470 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
6471 return nullptr;
6472 return Val;
6473 }
6474
6476 Value *Val = UndefInt8;
6477 for (Value *Op : C->operands())
6478 if (!(Val = Merge(Val, isBytewiseValue(Op, DL))))
6479 return nullptr;
6480 return Val;
6481 }
6482
6483 // Don't try to handle the handful of other constants.
6484 return nullptr;
6485}
6486
6487// This is the recursive version of BuildSubAggregate. It takes a few different
6488// arguments. Idxs is the index within the nested struct From that we are
6489// looking at now (which is of type IndexedType). IdxSkip is the number of
6490// indices from Idxs that should be left out when inserting into the resulting
6491// struct. To is the result struct built so far, new insertvalue instructions
6492// build on that.
6493static Value *BuildSubAggregate(Value *From, Value *To, Type *IndexedType,
6495 unsigned IdxSkip,
6496 BasicBlock::iterator InsertBefore) {
6497 StructType *STy = dyn_cast<StructType>(IndexedType);
6498 if (STy) {
6499 // Save the original To argument so we can modify it
6500 Value *OrigTo = To;
6501 // General case, the type indexed by Idxs is a struct
6502 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
6503 // Process each struct element recursively
6504 Idxs.push_back(i);
6505 Value *PrevTo = To;
6506 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
6507 InsertBefore);
6508 Idxs.pop_back();
6509 if (!To) {
6510 // Couldn't find any inserted value for this index? Cleanup
6511 while (PrevTo != OrigTo) {
6513 PrevTo = Del->getAggregateOperand();
6514 Del->eraseFromParent();
6515 }
6516 // Stop processing elements
6517 break;
6518 }
6519 }
6520 // If we successfully found a value for each of our subaggregates
6521 if (To)
6522 return To;
6523 }
6524 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
6525 // the struct's elements had a value that was inserted directly. In the latter
6526 // case, perhaps we can't determine each of the subelements individually, but
6527 // we might be able to find the complete struct somewhere.
6528
6529 // Find the value that is at that particular spot
6530 Value *V = FindInsertedValue(From, Idxs);
6531
6532 if (!V)
6533 return nullptr;
6534
6535 // Insert the value in the new (sub) aggregate
6536 return InsertValueInst::Create(To, V, ArrayRef(Idxs).slice(IdxSkip), "tmp",
6537 InsertBefore);
6538}
6539
6540// This helper takes a nested struct and extracts a part of it (which is again a
6541// struct) into a new value. For example, given the struct:
6542// { a, { b, { c, d }, e } }
6543// and the indices "1, 1" this returns
6544// { c, d }.
6545//
6546// It does this by inserting an insertvalue for each element in the resulting
6547// struct, as opposed to just inserting a single struct. This will only work if
6548// each of the elements of the substruct are known (ie, inserted into From by an
6549// insertvalue instruction somewhere).
6550//
6551// All inserted insertvalue instructions are inserted before InsertBefore
6553 BasicBlock::iterator InsertBefore) {
6554 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
6555 idx_range);
6556 Value *To = PoisonValue::get(IndexedType);
6557 SmallVector<unsigned, 10> Idxs(idx_range);
6558 unsigned IdxSkip = Idxs.size();
6559
6560 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
6561}
6562
6563/// Given an aggregate and a sequence of indices, see if the scalar value
6564/// indexed is already around as a register, for example if it was inserted
6565/// directly into the aggregate.
6566///
6567/// If InsertBefore is not null, this function will duplicate (modified)
6568/// insertvalues when a part of a nested struct is extracted.
6569Value *
6571 std::optional<BasicBlock::iterator> InsertBefore) {
6572 // Nothing to index? Just return V then (this is useful at the end of our
6573 // recursion).
6574 if (idx_range.empty())
6575 return V;
6576 // We have indices, so V should have an indexable type.
6577 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
6578 "Not looking at a struct or array?");
6579 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
6580 "Invalid indices for type?");
6581
6582 if (Constant *C = dyn_cast<Constant>(V)) {
6583 C = C->getAggregateElement(idx_range[0]);
6584 if (!C) return nullptr;
6585 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
6586 }
6587
6589 // Loop the indices for the insertvalue instruction in parallel with the
6590 // requested indices
6591 const unsigned *req_idx = idx_range.begin();
6592 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
6593 i != e; ++i, ++req_idx) {
6594 if (req_idx == idx_range.end()) {
6595 // We can't handle this without inserting insertvalues
6596 if (!InsertBefore)
6597 return nullptr;
6598
6599 // The requested index identifies a part of a nested aggregate. Handle
6600 // this specially. For example,
6601 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
6602 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
6603 // %C = extractvalue {i32, { i32, i32 } } %B, 1
6604 // This can be changed into
6605 // %A = insertvalue {i32, i32 } undef, i32 10, 0
6606 // %C = insertvalue {i32, i32 } %A, i32 11, 1
6607 // which allows the unused 0,0 element from the nested struct to be
6608 // removed.
6609 return BuildSubAggregate(V, ArrayRef(idx_range.begin(), req_idx),
6610 *InsertBefore);
6611 }
6612
6613 // This insert value inserts something else than what we are looking for.
6614 // See if the (aggregate) value inserted into has the value we are
6615 // looking for, then.
6616 if (*req_idx != *i)
6617 return FindInsertedValue(I->getAggregateOperand(), idx_range,
6618 InsertBefore);
6619 }
6620 // If we end up here, the indices of the insertvalue match with those
6621 // requested (though possibly only partially). Now we recursively look at
6622 // the inserted value, passing any remaining indices.
6623 return FindInsertedValue(I->getInsertedValueOperand(),
6624 ArrayRef(req_idx, idx_range.end()), InsertBefore);
6625 }
6626
6628 // If we're extracting a value from an aggregate that was extracted from
6629 // something else, we can extract from that something else directly instead.
6630 // However, we will need to chain I's indices with the requested indices.
6631
6632 // Calculate the number of indices required
6633 unsigned size = I->getNumIndices() + idx_range.size();
6634 // Allocate some space to put the new indices in
6636 Idxs.reserve(size);
6637 // Add indices from the extract value instruction
6638 Idxs.append(I->idx_begin(), I->idx_end());
6639
6640 // Add requested indices
6641 Idxs.append(idx_range.begin(), idx_range.end());
6642
6643 assert(Idxs.size() == size
6644 && "Number of indices added not correct?");
6645
6646 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
6647 }
6648 // Otherwise, we don't know (such as, extracting from a function return value
6649 // or load instruction)
6650 return nullptr;
6651}
6652
6653// If V refers to an initialized global constant, set Slice either to
6654// its initializer if the size of its elements equals ElementSize, or,
6655// for ElementSize == 8, to its representation as an array of unsiged
6656// char. Return true on success.
6657// Offset is in the unit "nr of ElementSize sized elements".
6660 unsigned ElementSize, uint64_t Offset) {
6661 assert(V && "V should not be null.");
6662 assert((ElementSize % 8) == 0 &&
6663 "ElementSize expected to be a multiple of the size of a byte.");
6664 unsigned ElementSizeInBytes = ElementSize / 8;
6665
6666 // Drill down into the pointer expression V, ignoring any intervening
6667 // casts, and determine the identity of the object it references along
6668 // with the cumulative byte offset into it.
6669 const GlobalVariable *GV =
6671 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
6672 // Fail if V is not based on constant global object.
6673 return false;
6674
6675 const DataLayout &DL = GV->getDataLayout();
6676 APInt Off(DL.getIndexTypeSizeInBits(V->getType()), 0);
6677
6678 if (GV != V->stripAndAccumulateConstantOffsets(DL, Off,
6679 /*AllowNonInbounds*/ true))
6680 // Fail if a constant offset could not be determined.
6681 return false;
6682
6683 uint64_t StartIdx = Off.getLimitedValue();
6684 if (StartIdx == UINT64_MAX)
6685 // Fail if the constant offset is excessive.
6686 return false;
6687
6688 // Off/StartIdx is in the unit of bytes. So we need to convert to number of
6689 // elements. Simply bail out if that isn't possible.
6690 if ((StartIdx % ElementSizeInBytes) != 0)
6691 return false;
6692
6693 Offset += StartIdx / ElementSizeInBytes;
6694 ConstantDataArray *Array = nullptr;
6695 ArrayType *ArrayTy = nullptr;
6696
6697 if (GV->getInitializer()->isNullValue()) {
6698 Type *GVTy = GV->getValueType();
6699 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedValue();
6700 uint64_t Length = SizeInBytes / ElementSizeInBytes;
6701
6702 Slice.Array = nullptr;
6703 Slice.Offset = 0;
6704 // Return an empty Slice for undersized constants to let callers
6705 // transform even undefined library calls into simpler, well-defined
6706 // expressions. This is preferable to making the calls although it
6707 // prevents sanitizers from detecting such calls.
6708 Slice.Length = Length < Offset ? 0 : Length - Offset;
6709 return true;
6710 }
6711
6712 auto *Init = const_cast<Constant *>(GV->getInitializer());
6713 if (auto *ArrayInit = dyn_cast<ConstantDataArray>(Init)) {
6714 Type *InitElTy = ArrayInit->getElementType();
6715 if (InitElTy->isIntegerTy(ElementSize)) {
6716 // If Init is an initializer for an array of the expected type
6717 // and size, use it as is.
6718 Array = ArrayInit;
6719 ArrayTy = ArrayInit->getType();
6720 }
6721 }
6722
6723 if (!Array) {
6724 if (ElementSize != 8)
6725 // TODO: Handle conversions to larger integral types.
6726 return false;
6727
6728 // Otherwise extract the portion of the initializer starting
6729 // at Offset as an array of bytes, and reset Offset.
6731 if (!Init)
6732 return false;
6733
6734 Offset = 0;
6736 ArrayTy = dyn_cast<ArrayType>(Init->getType());
6737 }
6738
6739 uint64_t NumElts = ArrayTy->getArrayNumElements();
6740 if (Offset > NumElts)
6741 return false;
6742
6743 Slice.Array = Array;
6744 Slice.Offset = Offset;
6745 Slice.Length = NumElts - Offset;
6746 return true;
6747}
6748
6749/// Extract bytes from the initializer of the constant array V, which need
6750/// not be a nul-terminated string. On success, store the bytes in Str and
6751/// return true. When TrimAtNul is set, Str will contain only the bytes up
6752/// to but not including the first nul. Return false on failure.
6754 bool TrimAtNul) {
6756 if (!getConstantDataArrayInfo(V, Slice, 8))
6757 return false;
6758
6759 if (Slice.Array == nullptr) {
6760 if (TrimAtNul) {
6761 // Return a nul-terminated string even for an empty Slice. This is
6762 // safe because all existing SimplifyLibcalls callers require string
6763 // arguments and the behavior of the functions they fold is undefined
6764 // otherwise. Folding the calls this way is preferable to making
6765 // the undefined library calls, even though it prevents sanitizers
6766 // from reporting such calls.
6767 Str = StringRef();
6768 return true;
6769 }
6770 if (Slice.Length == 1) {
6771 Str = StringRef("", 1);
6772 return true;
6773 }
6774 // We cannot instantiate a StringRef as we do not have an appropriate string
6775 // of 0s at hand.
6776 return false;
6777 }
6778
6779 // Start out with the entire array in the StringRef.
6780 Str = Slice.Array->getAsString();
6781 // Skip over 'offset' bytes.
6782 Str = Str.substr(Slice.Offset);
6783
6784 if (TrimAtNul) {
6785 // Trim off the \0 and anything after it. If the array is not nul
6786 // terminated, we just return the whole end of string. The client may know
6787 // some other way that the string is length-bound.
6788 Str = Str.substr(0, Str.find('\0'));
6789 }
6790 return true;
6791}
6792
6793// These next two are very similar to the above, but also look through PHI
6794// nodes.
6795// TODO: See if we can integrate these two together.
6796
6797/// If we can compute the length of the string pointed to by
6798/// the specified pointer, return 'len+1'. If we can't, return 0.
6801 unsigned CharSize) {
6802 // Look through noop bitcast instructions.
6803 V = V->stripPointerCasts();
6804
6805 // If this is a PHI node, there are two cases: either we have already seen it
6806 // or we haven't.
6807 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
6808 if (!PHIs.insert(PN).second)
6809 return ~0ULL; // already in the set.
6810
6811 // If it was new, see if all the input strings are the same length.
6812 uint64_t LenSoFar = ~0ULL;
6813 for (Value *IncValue : PN->incoming_values()) {
6814 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
6815 if (Len == 0) return 0; // Unknown length -> unknown.
6816
6817 if (Len == ~0ULL) continue;
6818
6819 if (Len != LenSoFar && LenSoFar != ~0ULL)
6820 return 0; // Disagree -> unknown.
6821 LenSoFar = Len;
6822 }
6823
6824 // Success, all agree.
6825 return LenSoFar;
6826 }
6827
6828 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
6829 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
6830 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
6831 if (Len1 == 0) return 0;
6832 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
6833 if (Len2 == 0) return 0;
6834 if (Len1 == ~0ULL) return Len2;
6835 if (Len2 == ~0ULL) return Len1;
6836 if (Len1 != Len2) return 0;
6837 return Len1;
6838 }
6839
6840 // Otherwise, see if we can read the string.
6842 if (!getConstantDataArrayInfo(V, Slice, CharSize))
6843 return 0;
6844
6845 if (Slice.Array == nullptr)
6846 // Zeroinitializer (including an empty one).
6847 return 1;
6848
6849 // Search for the first nul character. Return a conservative result even
6850 // when there is no nul. This is safe since otherwise the string function
6851 // being folded such as strlen is undefined, and can be preferable to
6852 // making the undefined library call.
6853 unsigned NullIndex = 0;
6854 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
6855 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
6856 break;
6857 }
6858
6859 return NullIndex + 1;
6860}
6861
6862/// If we can compute the length of the string pointed to by
6863/// the specified pointer, return 'len+1'. If we can't, return 0.
6864uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
6865 if (!V->getType()->isPointerTy())
6866 return 0;
6867
6869 uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
6870 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
6871 // an empty string as a length.
6872 return Len == ~0ULL ? 1 : Len;
6873}
6874
6875const Value *
6877 bool MustPreserveNullness) {
6878 assert(Call &&
6879 "getArgumentAliasingToReturnedPointer only works on nonnull calls");
6880 if (const Value *RV = Call->getReturnedArgOperand())
6881 return RV;
6882 // This can be used only as a aliasing property.
6884 Call, MustPreserveNullness))
6885 return Call->getArgOperand(0);
6886 return nullptr;
6887}
6888
6890 const CallBase *Call, bool MustPreserveNullness) {
6891 switch (Call->getIntrinsicID()) {
6892 case Intrinsic::launder_invariant_group:
6893 case Intrinsic::strip_invariant_group:
6894 case Intrinsic::aarch64_irg:
6895 case Intrinsic::aarch64_tagp:
6896 // The amdgcn_make_buffer_rsrc function does not alter the address of the
6897 // input pointer (and thus preserve null-ness for the purposes of escape
6898 // analysis, which is where the MustPreserveNullness flag comes in to play).
6899 // However, it will not necessarily map ptr addrspace(N) null to ptr
6900 // addrspace(8) null, aka the "null descriptor", which has "all loads return
6901 // 0, all stores are dropped" semantics. Given the context of this intrinsic
6902 // list, no one should be relying on such a strict interpretation of
6903 // MustPreserveNullness (and, at time of writing, they are not), but we
6904 // document this fact out of an abundance of caution.
6905 case Intrinsic::amdgcn_make_buffer_rsrc:
6906 return true;
6907 case Intrinsic::ptrmask:
6908 return !MustPreserveNullness;
6909 case Intrinsic::threadlocal_address:
6910 // The underlying variable changes with thread ID. The Thread ID may change
6911 // at coroutine suspend points.
6912 return !Call->getParent()->getParent()->isPresplitCoroutine();
6913 default:
6914 return false;
6915 }
6916}
6917
6918/// \p PN defines a loop-variant pointer to an object. Check if the
6919/// previous iteration of the loop was referring to the same object as \p PN.
6921 const LoopInfo *LI) {
6922 // Find the loop-defined value.
6923 Loop *L = LI->getLoopFor(PN->getParent());
6924 if (PN->getNumIncomingValues() != 2)
6925 return true;
6926
6927 // Find the value from previous iteration.
6928 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
6929 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
6930 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
6931 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
6932 return true;
6933
6934 // If a new pointer is loaded in the loop, the pointer references a different
6935 // object in every iteration. E.g.:
6936 // for (i)
6937 // int *p = a[i];
6938 // ...
6939 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
6940 if (!L->isLoopInvariant(Load->getPointerOperand()))
6941 return false;
6942 return true;
6943}
6944
6945const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
6946 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
6947 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
6948 const Value *PtrOp = GEP->getPointerOperand();
6949 if (!PtrOp->getType()->isPointerTy()) // Only handle scalar pointer base.
6950 return V;
6951 V = PtrOp;
6952 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
6953 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
6954 Value *NewV = cast<Operator>(V)->getOperand(0);
6955 if (!NewV->getType()->isPointerTy())
6956 return V;
6957 V = NewV;
6958 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
6959 if (GA->isInterposable())
6960 return V;
6961 V = GA->getAliasee();
6962 } else {
6963 if (auto *PHI = dyn_cast<PHINode>(V)) {
6964 // Look through single-arg phi nodes created by LCSSA.
6965 if (PHI->getNumIncomingValues() == 1) {
6966 V = PHI->getIncomingValue(0);
6967 continue;
6968 }
6969 } else if (auto *Call = dyn_cast<CallBase>(V)) {
6970 // CaptureTracking can know about special capturing properties of some
6971 // intrinsics like launder.invariant.group, that can't be expressed with
6972 // the attributes, but have properties like returning aliasing pointer.
6973 // Because some analysis may assume that nocaptured pointer is not
6974 // returned from some special intrinsic (because function would have to
6975 // be marked with returns attribute), it is crucial to use this function
6976 // because it should be in sync with CaptureTracking. Not using it may
6977 // cause weird miscompilations where 2 aliasing pointers are assumed to
6978 // noalias.
6979 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
6980 V = RP;
6981 continue;
6982 }
6983 }
6984
6985 return V;
6986 }
6987 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
6988 }
6989 return V;
6990}
6991
6994 const LoopInfo *LI, unsigned MaxLookup) {
6997 Worklist.push_back(V);
6998 do {
6999 const Value *P = Worklist.pop_back_val();
7000 P = getUnderlyingObject(P, MaxLookup);
7001
7002 if (!Visited.insert(P).second)
7003 continue;
7004
7005 if (auto *SI = dyn_cast<SelectInst>(P)) {
7006 Worklist.push_back(SI->getTrueValue());
7007 Worklist.push_back(SI->getFalseValue());
7008 continue;
7009 }
7010
7011 if (auto *PN = dyn_cast<PHINode>(P)) {
7012 // If this PHI changes the underlying object in every iteration of the
7013 // loop, don't look through it. Consider:
7014 // int **A;
7015 // for (i) {
7016 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
7017 // Curr = A[i];
7018 // *Prev, *Curr;
7019 //
7020 // Prev is tracking Curr one iteration behind so they refer to different
7021 // underlying objects.
7022 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
7024 append_range(Worklist, PN->incoming_values());
7025 else
7026 Objects.push_back(P);
7027 continue;
7028 }
7029
7030 Objects.push_back(P);
7031 } while (!Worklist.empty());
7032}
7033
7035 const unsigned MaxVisited = 8;
7036
7039 Worklist.push_back(V);
7040 const Value *Object = nullptr;
7041 // Used as fallback if we can't find a common underlying object through
7042 // recursion.
7043 bool First = true;
7044 const Value *FirstObject = getUnderlyingObject(V);
7045 do {
7046 const Value *P = Worklist.pop_back_val();
7047 P = First ? FirstObject : getUnderlyingObject(P);
7048 First = false;
7049
7050 if (!Visited.insert(P).second)
7051 continue;
7052
7053 if (Visited.size() == MaxVisited)
7054 return FirstObject;
7055
7056 if (auto *SI = dyn_cast<SelectInst>(P)) {
7057 Worklist.push_back(SI->getTrueValue());
7058 Worklist.push_back(SI->getFalseValue());
7059 continue;
7060 }
7061
7062 if (auto *PN = dyn_cast<PHINode>(P)) {
7063 append_range(Worklist, PN->incoming_values());
7064 continue;
7065 }
7066
7067 if (!Object)
7068 Object = P;
7069 else if (Object != P)
7070 return FirstObject;
7071 } while (!Worklist.empty());
7072
7073 return Object ? Object : FirstObject;
7074}
7075
7076/// This is the function that does the work of looking through basic
7077/// ptrtoint+arithmetic+inttoptr sequences.
7078static const Value *getUnderlyingObjectFromInt(const Value *V) {
7079 do {
7080 if (const Operator *U = dyn_cast<Operator>(V)) {
7081 // If we find a ptrtoint, we can transfer control back to the
7082 // regular getUnderlyingObjectFromInt.
7083 if (U->getOpcode() == Instruction::PtrToInt)
7084 return U->getOperand(0);
7085 // If we find an add of a constant, a multiplied value, or a phi, it's
7086 // likely that the other operand will lead us to the base
7087 // object. We don't have to worry about the case where the
7088 // object address is somehow being computed by the multiply,
7089 // because our callers only care when the result is an
7090 // identifiable object.
7091 if (U->getOpcode() != Instruction::Add ||
7092 (!isa<ConstantInt>(U->getOperand(1)) &&
7093 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
7094 !isa<PHINode>(U->getOperand(1))))
7095 return V;
7096 V = U->getOperand(0);
7097 } else {
7098 return V;
7099 }
7100 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
7101 } while (true);
7102}
7103
7104/// This is a wrapper around getUnderlyingObjects and adds support for basic
7105/// ptrtoint+arithmetic+inttoptr sequences.
7106/// It returns false if unidentified object is found in getUnderlyingObjects.
7108 SmallVectorImpl<Value *> &Objects) {
7110 SmallVector<const Value *, 4> Working(1, V);
7111 do {
7112 V = Working.pop_back_val();
7113
7115 getUnderlyingObjects(V, Objs);
7116
7117 for (const Value *V : Objs) {
7118 if (!Visited.insert(V).second)
7119 continue;
7120 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
7121 const Value *O =
7122 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
7123 if (O->getType()->isPointerTy()) {
7124 Working.push_back(O);
7125 continue;
7126 }
7127 }
7128 // If getUnderlyingObjects fails to find an identifiable object,
7129 // getUnderlyingObjectsForCodeGen also fails for safety.
7130 if (!isIdentifiedObject(V)) {
7131 Objects.clear();
7132 return false;
7133 }
7134 Objects.push_back(const_cast<Value *>(V));
7135 }
7136 } while (!Working.empty());
7137 return true;
7138}
7139
7141 AllocaInst *Result = nullptr;
7143 SmallVector<Value *, 4> Worklist;
7144
7145 auto AddWork = [&](Value *V) {
7146 if (Visited.insert(V).second)
7147 Worklist.push_back(V);
7148 };
7149
7150 AddWork(V);
7151 do {
7152 V = Worklist.pop_back_val();
7153 assert(Visited.count(V));
7154
7155 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
7156 if (Result && Result != AI)
7157 return nullptr;
7158 Result = AI;
7159 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
7160 AddWork(CI->getOperand(0));
7161 } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
7162 for (Value *IncValue : PN->incoming_values())
7163 AddWork(IncValue);
7164 } else if (auto *SI = dyn_cast<SelectInst>(V)) {
7165 AddWork(SI->getTrueValue());
7166 AddWork(SI->getFalseValue());
7168 if (OffsetZero && !GEP->hasAllZeroIndices())
7169 return nullptr;
7170 AddWork(GEP->getPointerOperand());
7171 } else if (CallBase *CB = dyn_cast<CallBase>(V)) {
7172 Value *Returned = CB->getReturnedArgOperand();
7173 if (Returned)
7174 AddWork(Returned);
7175 else
7176 return nullptr;
7177 } else {
7178 return nullptr;
7179 }
7180 } while (!Worklist.empty());
7181
7182 return Result;
7183}
7184
7186 const Value *V, bool AllowLifetime, bool AllowDroppable) {
7187 for (const User *U : V->users()) {
7189 if (!II)
7190 return false;
7191
7192 if (AllowLifetime && II->isLifetimeStartOrEnd())
7193 continue;
7194
7195 if (AllowDroppable && II->isDroppable())
7196 continue;
7197
7198 return false;
7199 }
7200 return true;
7201}
7202
7205 V, /* AllowLifetime */ true, /* AllowDroppable */ false);
7206}
7209 V, /* AllowLifetime */ true, /* AllowDroppable */ true);
7210}
7211
7213 if (auto *II = dyn_cast<IntrinsicInst>(I))
7214 return isTriviallyVectorizable(II->getIntrinsicID());
7215 auto *Shuffle = dyn_cast<ShuffleVectorInst>(I);
7216 return (!Shuffle || Shuffle->isSelect()) &&
7218}
7219
7221 const Instruction *Inst, const Instruction *CtxI, AssumptionCache *AC,
7222 const DominatorTree *DT, const TargetLibraryInfo *TLI, bool UseVariableInfo,
7223 bool IgnoreUBImplyingAttrs) {
7224 return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI,
7225 AC, DT, TLI, UseVariableInfo,
7226 IgnoreUBImplyingAttrs);
7227}
7228
7230 unsigned Opcode, const Instruction *Inst, const Instruction *CtxI,
7231 AssumptionCache *AC, const DominatorTree *DT, const TargetLibraryInfo *TLI,
7232 bool UseVariableInfo, bool IgnoreUBImplyingAttrs) {
7233#ifndef NDEBUG
7234 if (Inst->getOpcode() != Opcode) {
7235 // Check that the operands are actually compatible with the Opcode override.
7236 auto hasEqualReturnAndLeadingOperandTypes =
7237 [](const Instruction *Inst, unsigned NumLeadingOperands) {
7238 if (Inst->getNumOperands() < NumLeadingOperands)
7239 return false;
7240 const Type *ExpectedType = Inst->getType();
7241 for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
7242 if (Inst->getOperand(ItOp)->getType() != ExpectedType)
7243 return false;
7244 return true;
7245 };
7247 hasEqualReturnAndLeadingOperandTypes(Inst, 2));
7248 assert(!Instruction::isUnaryOp(Opcode) ||
7249 hasEqualReturnAndLeadingOperandTypes(Inst, 1));
7250 }
7251#endif
7252
7253 switch (Opcode) {
7254 default:
7255 return true;
7256 case Instruction::UDiv:
7257 case Instruction::URem: {
7258 // x / y is undefined if y == 0.
7259 const APInt *V;
7260 if (match(Inst->getOperand(1), m_APInt(V)))
7261 return *V != 0;
7262 return false;
7263 }
7264 case Instruction::SDiv:
7265 case Instruction::SRem: {
7266 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
7267 const APInt *Numerator, *Denominator;
7268 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
7269 return false;
7270 // We cannot hoist this division if the denominator is 0.
7271 if (*Denominator == 0)
7272 return false;
7273 // It's safe to hoist if the denominator is not 0 or -1.
7274 if (!Denominator->isAllOnes())
7275 return true;
7276 // At this point we know that the denominator is -1. It is safe to hoist as
7277 // long we know that the numerator is not INT_MIN.
7278 if (match(Inst->getOperand(0), m_APInt(Numerator)))
7279 return !Numerator->isMinSignedValue();
7280 // The numerator *might* be MinSignedValue.
7281 return false;
7282 }
7283 case Instruction::Load: {
7284 if (!UseVariableInfo)
7285 return false;
7286
7287 const LoadInst *LI = dyn_cast<LoadInst>(Inst);
7288 if (!LI)
7289 return false;
7290 if (mustSuppressSpeculation(*LI))
7291 return false;
7292 const DataLayout &DL = LI->getDataLayout();
7294 LI->getType(), LI->getAlign(), DL,
7295 CtxI, AC, DT, TLI);
7296 }
7297 case Instruction::Call: {
7298 auto *CI = dyn_cast<const CallInst>(Inst);
7299 if (!CI)
7300 return false;
7301 const Function *Callee = CI->getCalledFunction();
7302
7303 // The called function could have undefined behavior or side-effects, even
7304 // if marked readnone nounwind.
7305 if (!Callee || !Callee->isSpeculatable())
7306 return false;
7307 // Since the operands may be changed after hoisting, undefined behavior may
7308 // be triggered by some UB-implying attributes.
7309 return IgnoreUBImplyingAttrs || !CI->hasUBImplyingAttrs();
7310 }
7311 case Instruction::VAArg:
7312 case Instruction::Alloca:
7313 case Instruction::Invoke:
7314 case Instruction::CallBr:
7315 case Instruction::PHI:
7316 case Instruction::Store:
7317 case Instruction::Ret:
7318 case Instruction::Br:
7319 case Instruction::IndirectBr:
7320 case Instruction::Switch:
7321 case Instruction::Unreachable:
7322 case Instruction::Fence:
7323 case Instruction::AtomicRMW:
7324 case Instruction::AtomicCmpXchg:
7325 case Instruction::LandingPad:
7326 case Instruction::Resume:
7327 case Instruction::CatchSwitch:
7328 case Instruction::CatchPad:
7329 case Instruction::CatchRet:
7330 case Instruction::CleanupPad:
7331 case Instruction::CleanupRet:
7332 return false; // Misc instructions which have effects
7333 }
7334}
7335
7337 if (I.mayReadOrWriteMemory())
7338 // Memory dependency possible
7339 return true;
7341 // Can't move above a maythrow call or infinite loop. Or if an
7342 // inalloca alloca, above a stacksave call.
7343 return true;
7345 // 1) Can't reorder two inf-loop calls, even if readonly
7346 // 2) Also can't reorder an inf-loop call below a instruction which isn't
7347 // safe to speculative execute. (Inverse of above)
7348 return true;
7349 return false;
7350}
7351
7352/// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
7366
7367/// Combine constant ranges from computeConstantRange() and computeKnownBits().
7370 bool ForSigned,
7371 const SimplifyQuery &SQ) {
7372 ConstantRange CR1 =
7373 ConstantRange::fromKnownBits(V.getKnownBits(SQ), ForSigned);
7374 ConstantRange CR2 = computeConstantRange(V, ForSigned, SQ.IIQ.UseInstrInfo);
7377 return CR1.intersectWith(CR2, RangeType);
7378}
7379
7381 const Value *RHS,
7382 const SimplifyQuery &SQ,
7383 bool IsNSW) {
7384 ConstantRange LHSRange =
7385 computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/false, SQ);
7386 ConstantRange RHSRange =
7387 computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/false, SQ);
7388
7389 // mul nsw of two non-negative numbers is also nuw.
7390 if (IsNSW && LHSRange.isAllNonNegative() && RHSRange.isAllNonNegative())
7392
7393 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
7394}
7395
7397 const Value *RHS,
7398 const SimplifyQuery &SQ) {
7399 // Multiplying n * m significant bits yields a result of n + m significant
7400 // bits. If the total number of significant bits does not exceed the
7401 // result bit width (minus 1), there is no overflow.
7402 // This means if we have enough leading sign bits in the operands
7403 // we can guarantee that the result does not overflow.
7404 // Ref: "Hacker's Delight" by Henry Warren
7405 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
7406
7407 // Note that underestimating the number of sign bits gives a more
7408 // conservative answer.
7409 unsigned SignBits =
7410 ::ComputeNumSignBits(LHS, SQ) + ::ComputeNumSignBits(RHS, SQ);
7411
7412 // First handle the easy case: if we have enough sign bits there's
7413 // definitely no overflow.
7414 if (SignBits > BitWidth + 1)
7416
7417 // There are two ambiguous cases where there can be no overflow:
7418 // SignBits == BitWidth + 1 and
7419 // SignBits == BitWidth
7420 // The second case is difficult to check, therefore we only handle the
7421 // first case.
7422 if (SignBits == BitWidth + 1) {
7423 // It overflows only when both arguments are negative and the true
7424 // product is exactly the minimum negative number.
7425 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
7426 // For simplicity we just check if at least one side is not negative.
7427 KnownBits LHSKnown = computeKnownBits(LHS, SQ);
7428 KnownBits RHSKnown = computeKnownBits(RHS, SQ);
7429 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
7431 }
7433}
7434
7437 const WithCache<const Value *> &RHS,
7438 const SimplifyQuery &SQ) {
7439 ConstantRange LHSRange =
7440 computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/false, SQ);
7441 ConstantRange RHSRange =
7442 computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/false, SQ);
7443 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
7444}
7445
7446static OverflowResult
7449 const AddOperator *Add, const SimplifyQuery &SQ) {
7450 if (Add && Add->hasNoSignedWrap()) {
7452 }
7453
7454 // If LHS and RHS each have at least two sign bits, the addition will look
7455 // like
7456 //
7457 // XX..... +
7458 // YY.....
7459 //
7460 // If the carry into the most significant position is 0, X and Y can't both
7461 // be 1 and therefore the carry out of the addition is also 0.
7462 //
7463 // If the carry into the most significant position is 1, X and Y can't both
7464 // be 0 and therefore the carry out of the addition is also 1.
7465 //
7466 // Since the carry into the most significant position is always equal to
7467 // the carry out of the addition, there is no signed overflow.
7468 if (::ComputeNumSignBits(LHS, SQ) > 1 && ::ComputeNumSignBits(RHS, SQ) > 1)
7470
7471 ConstantRange LHSRange =
7472 computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/true, SQ);
7473 ConstantRange RHSRange =
7474 computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/true, SQ);
7475 OverflowResult OR =
7476 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
7478 return OR;
7479
7480 // The remaining code needs Add to be available. Early returns if not so.
7481 if (!Add)
7483
7484 // If the sign of Add is the same as at least one of the operands, this add
7485 // CANNOT overflow. If this can be determined from the known bits of the
7486 // operands the above signedAddMayOverflow() check will have already done so.
7487 // The only other way to improve on the known bits is from an assumption, so
7488 // call computeKnownBitsFromContext() directly.
7489 bool LHSOrRHSKnownNonNegative =
7490 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
7491 bool LHSOrRHSKnownNegative =
7492 (LHSRange.isAllNegative() || RHSRange.isAllNegative());
7493 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
7494 KnownBits AddKnown(LHSRange.getBitWidth());
7495 computeKnownBitsFromContext(Add, AddKnown, SQ);
7496 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
7497 (AddKnown.isNegative() && LHSOrRHSKnownNegative))
7499 }
7500
7502}
7503
7505 const Value *RHS,
7506 const SimplifyQuery &SQ) {
7507 // X - (X % ?)
7508 // The remainder of a value can't have greater magnitude than itself,
7509 // so the subtraction can't overflow.
7510
7511 // X - (X -nuw ?)
7512 // In the minimal case, this would simplify to "?", so there's no subtract
7513 // at all. But if this analysis is used to peek through casts, for example,
7514 // then determining no-overflow may allow other transforms.
7515
7516 // TODO: There are other patterns like this.
7517 // See simplifyICmpWithBinOpOnLHS() for candidates.
7518 if (match(RHS, m_URem(m_Specific(LHS), m_Value())) ||
7519 match(RHS, m_NUWSub(m_Specific(LHS), m_Value())))
7520 if (isGuaranteedNotToBeUndef(LHS, SQ.AC, SQ.CxtI, SQ.DT))
7522
7523 if (auto C = isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, SQ.CxtI,
7524 SQ.DL)) {
7525 if (*C)
7528 }
7529
7530 ConstantRange LHSRange =
7531 computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/false, SQ);
7532 ConstantRange RHSRange =
7533 computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/false, SQ);
7534 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
7535}
7536
7538 const Value *RHS,
7539 const SimplifyQuery &SQ) {
7540 // X - (X % ?)
7541 // The remainder of a value can't have greater magnitude than itself,
7542 // so the subtraction can't overflow.
7543
7544 // X - (X -nsw ?)
7545 // In the minimal case, this would simplify to "?", so there's no subtract
7546 // at all. But if this analysis is used to peek through casts, for example,
7547 // then determining no-overflow may allow other transforms.
7548 if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) ||
7549 match(RHS, m_NSWSub(m_Specific(LHS), m_Value())))
7550 if (isGuaranteedNotToBeUndef(LHS, SQ.AC, SQ.CxtI, SQ.DT))
7552
7553 // If LHS and RHS each have at least two sign bits, the subtraction
7554 // cannot overflow.
7555 if (::ComputeNumSignBits(LHS, SQ) > 1 && ::ComputeNumSignBits(RHS, SQ) > 1)
7557
7558 ConstantRange LHSRange =
7559 computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/true, SQ);
7560 ConstantRange RHSRange =
7561 computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/true, SQ);
7562 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
7563}
7564
7566 const DominatorTree &DT) {
7567 SmallVector<const BranchInst *, 2> GuardingBranches;
7569
7570 for (const User *U : WO->users()) {
7571 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
7572 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
7573
7574 if (EVI->getIndices()[0] == 0)
7575 Results.push_back(EVI);
7576 else {
7577 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
7578
7579 for (const auto *U : EVI->users())
7580 if (const auto *B = dyn_cast<BranchInst>(U)) {
7581 assert(B->isConditional() && "How else is it using an i1?");
7582 GuardingBranches.push_back(B);
7583 }
7584 }
7585 } else {
7586 // We are using the aggregate directly in a way we don't want to analyze
7587 // here (storing it to a global, say).
7588 return false;
7589 }
7590 }
7591
7592 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
7593 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
7594 if (!NoWrapEdge.isSingleEdge())
7595 return false;
7596
7597 // Check if all users of the add are provably no-wrap.
7598 for (const auto *Result : Results) {
7599 // If the extractvalue itself is not executed on overflow, the we don't
7600 // need to check each use separately, since domination is transitive.
7601 if (DT.dominates(NoWrapEdge, Result->getParent()))
7602 continue;
7603
7604 for (const auto &RU : Result->uses())
7605 if (!DT.dominates(NoWrapEdge, RU))
7606 return false;
7607 }
7608
7609 return true;
7610 };
7611
7612 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
7613}
7614
7615/// Shifts return poison if shiftwidth is larger than the bitwidth.
7616static bool shiftAmountKnownInRange(const Value *ShiftAmount) {
7617 auto *C = dyn_cast<Constant>(ShiftAmount);
7618 if (!C)
7619 return false;
7620
7621 // Shifts return poison if shiftwidth is larger than the bitwidth.
7623 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
7624 unsigned NumElts = FVTy->getNumElements();
7625 for (unsigned i = 0; i < NumElts; ++i)
7626 ShiftAmounts.push_back(C->getAggregateElement(i));
7627 } else if (isa<ScalableVectorType>(C->getType()))
7628 return false; // Can't tell, just return false to be safe
7629 else
7630 ShiftAmounts.push_back(C);
7631
7632 bool Safe = llvm::all_of(ShiftAmounts, [](const Constant *C) {
7633 auto *CI = dyn_cast_or_null<ConstantInt>(C);
7634 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
7635 });
7636
7637 return Safe;
7638}
7639
7645
7647 return (unsigned(Kind) & unsigned(UndefPoisonKind::PoisonOnly)) != 0;
7648}
7649
7651 return (unsigned(Kind) & unsigned(UndefPoisonKind::UndefOnly)) != 0;
7652}
7653
7655 bool ConsiderFlagsAndMetadata) {
7656
7657 if (ConsiderFlagsAndMetadata && includesPoison(Kind) &&
7658 Op->hasPoisonGeneratingAnnotations())
7659 return true;
7660
7661 unsigned Opcode = Op->getOpcode();
7662
7663 // Check whether opcode is a poison/undef-generating operation
7664 switch (Opcode) {
7665 case Instruction::Shl:
7666 case Instruction::AShr:
7667 case Instruction::LShr:
7668 return includesPoison(Kind) && !shiftAmountKnownInRange(Op->getOperand(1));
7669 case Instruction::FPToSI:
7670 case Instruction::FPToUI:
7671 // fptosi/ui yields poison if the resulting value does not fit in the
7672 // destination type.
7673 return true;
7674 case Instruction::Call:
7675 if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
7676 switch (II->getIntrinsicID()) {
7677 // TODO: Add more intrinsics.
7678 case Intrinsic::ctlz:
7679 case Intrinsic::cttz:
7680 case Intrinsic::abs:
7681 if (cast<ConstantInt>(II->getArgOperand(1))->isNullValue())
7682 return false;
7683 break;
7684 case Intrinsic::sshl_sat:
7685 case Intrinsic::ushl_sat:
7686 if (!includesPoison(Kind) ||
7687 shiftAmountKnownInRange(II->getArgOperand(1)))
7688 return false;
7689 break;
7690 }
7691 }
7692 [[fallthrough]];
7693 case Instruction::CallBr:
7694 case Instruction::Invoke: {
7695 const auto *CB = cast<CallBase>(Op);
7696 return !CB->hasRetAttr(Attribute::NoUndef) &&
7697 !CB->hasFnAttr(Attribute::NoCreateUndefOrPoison);
7698 }
7699 case Instruction::InsertElement:
7700 case Instruction::ExtractElement: {
7701 // If index exceeds the length of the vector, it returns poison
7702 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
7703 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
7704 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
7705 if (includesPoison(Kind))
7706 return !Idx ||
7707 Idx->getValue().uge(VTy->getElementCount().getKnownMinValue());
7708 return false;
7709 }
7710 case Instruction::ShuffleVector: {
7712 ? cast<ConstantExpr>(Op)->getShuffleMask()
7713 : cast<ShuffleVectorInst>(Op)->getShuffleMask();
7714 return includesPoison(Kind) && is_contained(Mask, PoisonMaskElem);
7715 }
7716 case Instruction::FNeg:
7717 case Instruction::PHI:
7718 case Instruction::Select:
7719 case Instruction::ExtractValue:
7720 case Instruction::InsertValue:
7721 case Instruction::Freeze:
7722 case Instruction::ICmp:
7723 case Instruction::FCmp:
7724 case Instruction::GetElementPtr:
7725 return false;
7726 case Instruction::AddrSpaceCast:
7727 return true;
7728 default: {
7729 const auto *CE = dyn_cast<ConstantExpr>(Op);
7730 if (isa<CastInst>(Op) || (CE && CE->isCast()))
7731 return false;
7732 else if (Instruction::isBinaryOp(Opcode))
7733 return false;
7734 // Be conservative and return true.
7735 return true;
7736 }
7737 }
7738}
7739
7741 bool ConsiderFlagsAndMetadata) {
7742 return ::canCreateUndefOrPoison(Op, UndefPoisonKind::UndefOrPoison,
7743 ConsiderFlagsAndMetadata);
7744}
7745
7746bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata) {
7747 return ::canCreateUndefOrPoison(Op, UndefPoisonKind::PoisonOnly,
7748 ConsiderFlagsAndMetadata);
7749}
7750
7751static bool directlyImpliesPoison(const Value *ValAssumedPoison, const Value *V,
7752 unsigned Depth) {
7753 if (ValAssumedPoison == V)
7754 return true;
7755
7756 const unsigned MaxDepth = 2;
7757 if (Depth >= MaxDepth)
7758 return false;
7759
7760 if (const auto *I = dyn_cast<Instruction>(V)) {
7761 if (any_of(I->operands(), [=](const Use &Op) {
7762 return propagatesPoison(Op) &&
7763 directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
7764 }))
7765 return true;
7766
7767 // V = extractvalue V0, idx
7768 // V2 = extractvalue V0, idx2
7769 // V0's elements are all poison or not. (e.g., add_with_overflow)
7770 const WithOverflowInst *II;
7772 (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) ||
7773 llvm::is_contained(II->args(), ValAssumedPoison)))
7774 return true;
7775 }
7776 return false;
7777}
7778
7779static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
7780 unsigned Depth) {
7781 if (isGuaranteedNotToBePoison(ValAssumedPoison))
7782 return true;
7783
7784 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
7785 return true;
7786
7787 const unsigned MaxDepth = 2;
7788 if (Depth >= MaxDepth)
7789 return false;
7790
7791 const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
7792 if (I && !canCreatePoison(cast<Operator>(I))) {
7793 return all_of(I->operands(), [=](const Value *Op) {
7794 return impliesPoison(Op, V, Depth + 1);
7795 });
7796 }
7797 return false;
7798}
7799
7800bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
7801 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
7802}
7803
7804static bool programUndefinedIfUndefOrPoison(const Value *V, bool PoisonOnly);
7805
7807 const Value *V, AssumptionCache *AC, const Instruction *CtxI,
7808 const DominatorTree *DT, unsigned Depth, UndefPoisonKind Kind) {
7810 return false;
7811
7812 if (isa<MetadataAsValue>(V))
7813 return false;
7814
7815 if (const auto *A = dyn_cast<Argument>(V)) {
7816 if (A->hasAttribute(Attribute::NoUndef) ||
7817 A->hasAttribute(Attribute::Dereferenceable) ||
7818 A->hasAttribute(Attribute::DereferenceableOrNull))
7819 return true;
7820 }
7821
7822 if (auto *C = dyn_cast<Constant>(V)) {
7823 if (isa<PoisonValue>(C))
7824 return !includesPoison(Kind);
7825
7826 if (isa<UndefValue>(C))
7827 return !includesUndef(Kind);
7828
7831 return true;
7832
7833 if (C->getType()->isVectorTy()) {
7834 if (isa<ConstantExpr>(C)) {
7835 // Scalable vectors can use a ConstantExpr to build a splat.
7836 if (Constant *SplatC = C->getSplatValue())
7837 if (isa<ConstantInt>(SplatC) || isa<ConstantFP>(SplatC))
7838 return true;
7839 } else {
7840 if (includesUndef(Kind) && C->containsUndefElement())
7841 return false;
7842 if (includesPoison(Kind) && C->containsPoisonElement())
7843 return false;
7844 return !C->containsConstantExpression();
7845 }
7846 }
7847 }
7848
7849 // Strip cast operations from a pointer value.
7850 // Note that stripPointerCastsSameRepresentation can strip off getelementptr
7851 // inbounds with zero offset. To guarantee that the result isn't poison, the
7852 // stripped pointer is checked as it has to be pointing into an allocated
7853 // object or be null `null` to ensure `inbounds` getelement pointers with a
7854 // zero offset could not produce poison.
7855 // It can strip off addrspacecast that do not change bit representation as
7856 // well. We believe that such addrspacecast is equivalent to no-op.
7857 auto *StrippedV = V->stripPointerCastsSameRepresentation();
7858 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
7859 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
7860 return true;
7861
7862 auto OpCheck = [&](const Value *V) {
7863 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, Kind);
7864 };
7865
7866 if (auto *Opr = dyn_cast<Operator>(V)) {
7867 // If the value is a freeze instruction, then it can never
7868 // be undef or poison.
7869 if (isa<FreezeInst>(V))
7870 return true;
7871
7872 if (const auto *CB = dyn_cast<CallBase>(V)) {
7873 if (CB->hasRetAttr(Attribute::NoUndef) ||
7874 CB->hasRetAttr(Attribute::Dereferenceable) ||
7875 CB->hasRetAttr(Attribute::DereferenceableOrNull))
7876 return true;
7877 }
7878
7879 if (!::canCreateUndefOrPoison(Opr, Kind,
7880 /*ConsiderFlagsAndMetadata=*/true)) {
7881 if (const auto *PN = dyn_cast<PHINode>(V)) {
7882 unsigned Num = PN->getNumIncomingValues();
7883 bool IsWellDefined = true;
7884 for (unsigned i = 0; i < Num; ++i) {
7885 if (PN == PN->getIncomingValue(i))
7886 continue;
7887 auto *TI = PN->getIncomingBlock(i)->getTerminator();
7888 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
7889 DT, Depth + 1, Kind)) {
7890 IsWellDefined = false;
7891 break;
7892 }
7893 }
7894 if (IsWellDefined)
7895 return true;
7896 } else if (auto *Splat = isa<ShuffleVectorInst>(Opr) ? getSplatValue(Opr)
7897 : nullptr) {
7898 // For splats we only need to check the value being splatted.
7899 if (OpCheck(Splat))
7900 return true;
7901 } else if (all_of(Opr->operands(), OpCheck))
7902 return true;
7903 }
7904 }
7905
7906 if (auto *I = dyn_cast<LoadInst>(V))
7907 if (I->hasMetadata(LLVMContext::MD_noundef) ||
7908 I->hasMetadata(LLVMContext::MD_dereferenceable) ||
7909 I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
7910 return true;
7911
7913 return true;
7914
7915 // CxtI may be null or a cloned instruction.
7916 if (!CtxI || !CtxI->getParent() || !DT)
7917 return false;
7918
7919 auto *DNode = DT->getNode(CtxI->getParent());
7920 if (!DNode)
7921 // Unreachable block
7922 return false;
7923
7924 // If V is used as a branch condition before reaching CtxI, V cannot be
7925 // undef or poison.
7926 // br V, BB1, BB2
7927 // BB1:
7928 // CtxI ; V cannot be undef or poison here
7929 auto *Dominator = DNode->getIDom();
7930 // This check is purely for compile time reasons: we can skip the IDom walk
7931 // if what we are checking for includes undef and the value is not an integer.
7932 if (!includesUndef(Kind) || V->getType()->isIntegerTy())
7933 while (Dominator) {
7934 auto *TI = Dominator->getBlock()->getTerminator();
7935
7936 Value *Cond = nullptr;
7937 if (auto BI = dyn_cast_or_null<BranchInst>(TI)) {
7938 if (BI->isConditional())
7939 Cond = BI->getCondition();
7940 } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) {
7941 Cond = SI->getCondition();
7942 }
7943
7944 if (Cond) {
7945 if (Cond == V)
7946 return true;
7947 else if (!includesUndef(Kind) && isa<Operator>(Cond)) {
7948 // For poison, we can analyze further
7949 auto *Opr = cast<Operator>(Cond);
7950 if (any_of(Opr->operands(), [V](const Use &U) {
7951 return V == U && propagatesPoison(U);
7952 }))
7953 return true;
7954 }
7955 }
7956
7957 Dominator = Dominator->getIDom();
7958 }
7959
7960 if (AC && getKnowledgeValidInContext(V, {Attribute::NoUndef}, *AC, CtxI, DT))
7961 return true;
7962
7963 return false;
7964}
7965
7967 const Instruction *CtxI,
7968 const DominatorTree *DT,
7969 unsigned Depth) {
7970 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth,
7972}
7973
7975 const Instruction *CtxI,
7976 const DominatorTree *DT, unsigned Depth) {
7977 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth,
7979}
7980
7982 const Instruction *CtxI,
7983 const DominatorTree *DT, unsigned Depth) {
7984 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth,
7986}
7987
7988/// Return true if undefined behavior would provably be executed on the path to
7989/// OnPathTo if Root produced a posion result. Note that this doesn't say
7990/// anything about whether OnPathTo is actually executed or whether Root is
7991/// actually poison. This can be used to assess whether a new use of Root can
7992/// be added at a location which is control equivalent with OnPathTo (such as
7993/// immediately before it) without introducing UB which didn't previously
7994/// exist. Note that a false result conveys no information.
7996 Instruction *OnPathTo,
7997 DominatorTree *DT) {
7998 // Basic approach is to assume Root is poison, propagate poison forward
7999 // through all users we can easily track, and then check whether any of those
8000 // users are provable UB and must execute before out exiting block might
8001 // exit.
8002
8003 // The set of all recursive users we've visited (which are assumed to all be
8004 // poison because of said visit)
8007 Worklist.push_back(Root);
8008 while (!Worklist.empty()) {
8009 const Instruction *I = Worklist.pop_back_val();
8010
8011 // If we know this must trigger UB on a path leading our target.
8012 if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
8013 return true;
8014
8015 // If we can't analyze propagation through this instruction, just skip it
8016 // and transitive users. Safe as false is a conservative result.
8017 if (I != Root && !any_of(I->operands(), [&KnownPoison](const Use &U) {
8018 return KnownPoison.contains(U) && propagatesPoison(U);
8019 }))
8020 continue;
8021
8022 if (KnownPoison.insert(I).second)
8023 for (const User *User : I->users())
8024 Worklist.push_back(cast<Instruction>(User));
8025 }
8026
8027 // Might be non-UB, or might have a path we couldn't prove must execute on
8028 // way to exiting bb.
8029 return false;
8030}
8031
8033 const SimplifyQuery &SQ) {
8034 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
8035 Add, SQ);
8036}
8037
8040 const WithCache<const Value *> &RHS,
8041 const SimplifyQuery &SQ) {
8042 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, SQ);
8043}
8044
8046 // Note: An atomic operation isn't guaranteed to return in a reasonable amount
8047 // of time because it's possible for another thread to interfere with it for an
8048 // arbitrary length of time, but programs aren't allowed to rely on that.
8049
8050 // If there is no successor, then execution can't transfer to it.
8051 if (isa<ReturnInst>(I))
8052 return false;
8054 return false;
8055
8056 // Note: Do not add new checks here; instead, change Instruction::mayThrow or
8057 // Instruction::willReturn.
8058 //
8059 // FIXME: Move this check into Instruction::willReturn.
8060 if (isa<CatchPadInst>(I)) {
8061 switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) {
8062 default:
8063 // A catchpad may invoke exception object constructors and such, which
8064 // in some languages can be arbitrary code, so be conservative by default.
8065 return false;
8067 // For CoreCLR, it just involves a type test.
8068 return true;
8069 }
8070 }
8071
8072 // An instruction that returns without throwing must transfer control flow
8073 // to a successor.
8074 return !I->mayThrow() && I->willReturn();
8075}
8076
8078 // TODO: This is slightly conservative for invoke instruction since exiting
8079 // via an exception *is* normal control for them.
8080 for (const Instruction &I : *BB)
8082 return false;
8083 return true;
8084}
8085
8092
8095 assert(ScanLimit && "scan limit must be non-zero");
8096 for (const Instruction &I : Range) {
8097 if (--ScanLimit == 0)
8098 return false;
8100 return false;
8101 }
8102 return true;
8103}
8104
8106 const Loop *L) {
8107 // The loop header is guaranteed to be executed for every iteration.
8108 //
8109 // FIXME: Relax this constraint to cover all basic blocks that are
8110 // guaranteed to be executed at every iteration.
8111 if (I->getParent() != L->getHeader()) return false;
8112
8113 for (const Instruction &LI : *L->getHeader()) {
8114 if (&LI == I) return true;
8115 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
8116 }
8117 llvm_unreachable("Instruction not contained in its own parent basic block.");
8118}
8119
8121 switch (IID) {
8122 // TODO: Add more intrinsics.
8123 case Intrinsic::sadd_with_overflow:
8124 case Intrinsic::ssub_with_overflow:
8125 case Intrinsic::smul_with_overflow:
8126 case Intrinsic::uadd_with_overflow:
8127 case Intrinsic::usub_with_overflow:
8128 case Intrinsic::umul_with_overflow:
8129 // If an input is a vector containing a poison element, the
8130 // two output vectors (calculated results, overflow bits)'
8131 // corresponding lanes are poison.
8132 return true;
8133 case Intrinsic::ctpop:
8134 case Intrinsic::ctlz:
8135 case Intrinsic::cttz:
8136 case Intrinsic::abs:
8137 case Intrinsic::smax:
8138 case Intrinsic::smin:
8139 case Intrinsic::umax:
8140 case Intrinsic::umin:
8141 case Intrinsic::scmp:
8142 case Intrinsic::is_fpclass:
8143 case Intrinsic::ptrmask:
8144 case Intrinsic::ucmp:
8145 case Intrinsic::bitreverse:
8146 case Intrinsic::bswap:
8147 case Intrinsic::sadd_sat:
8148 case Intrinsic::ssub_sat:
8149 case Intrinsic::sshl_sat:
8150 case Intrinsic::uadd_sat:
8151 case Intrinsic::usub_sat:
8152 case Intrinsic::ushl_sat:
8153 case Intrinsic::smul_fix:
8154 case Intrinsic::smul_fix_sat:
8155 case Intrinsic::umul_fix:
8156 case Intrinsic::umul_fix_sat:
8157 case Intrinsic::pow:
8158 case Intrinsic::powi:
8159 case Intrinsic::sin:
8160 case Intrinsic::sinh:
8161 case Intrinsic::cos:
8162 case Intrinsic::cosh:
8163 case Intrinsic::sincos:
8164 case Intrinsic::sincospi:
8165 case Intrinsic::tan:
8166 case Intrinsic::tanh:
8167 case Intrinsic::asin:
8168 case Intrinsic::acos:
8169 case Intrinsic::atan:
8170 case Intrinsic::atan2:
8171 case Intrinsic::canonicalize:
8172 case Intrinsic::sqrt:
8173 case Intrinsic::exp:
8174 case Intrinsic::exp2:
8175 case Intrinsic::exp10:
8176 case Intrinsic::log:
8177 case Intrinsic::log2:
8178 case Intrinsic::log10:
8179 case Intrinsic::modf:
8180 case Intrinsic::floor:
8181 case Intrinsic::ceil:
8182 case Intrinsic::trunc:
8183 case Intrinsic::rint:
8184 case Intrinsic::nearbyint:
8185 case Intrinsic::round:
8186 case Intrinsic::roundeven:
8187 case Intrinsic::lrint:
8188 case Intrinsic::llrint:
8189 return true;
8190 default:
8191 return false;
8192 }
8193}
8194
8195bool llvm::propagatesPoison(const Use &PoisonOp) {
8196 const Operator *I = cast<Operator>(PoisonOp.getUser());
8197 switch (I->getOpcode()) {
8198 case Instruction::Freeze:
8199 case Instruction::PHI:
8200 case Instruction::Invoke:
8201 return false;
8202 case Instruction::Select:
8203 return PoisonOp.getOperandNo() == 0;
8204 case Instruction::Call:
8205 if (auto *II = dyn_cast<IntrinsicInst>(I))
8206 return intrinsicPropagatesPoison(II->getIntrinsicID());
8207 return false;
8208 case Instruction::ICmp:
8209 case Instruction::FCmp:
8210 case Instruction::GetElementPtr:
8211 return true;
8212 default:
8214 return true;
8215
8216 // Be conservative and return false.
8217 return false;
8218 }
8219}
8220
8221/// Enumerates all operands of \p I that are guaranteed to not be undef or
8222/// poison. If the callback \p Handle returns true, stop processing and return
8223/// true. Otherwise, return false.
8224template <typename CallableT>
8226 const CallableT &Handle) {
8227 switch (I->getOpcode()) {
8228 case Instruction::Store:
8229 if (Handle(cast<StoreInst>(I)->getPointerOperand()))
8230 return true;
8231 break;
8232
8233 case Instruction::Load:
8234 if (Handle(cast<LoadInst>(I)->getPointerOperand()))
8235 return true;
8236 break;
8237
8238 // Since dereferenceable attribute imply noundef, atomic operations
8239 // also implicitly have noundef pointers too
8240 case Instruction::AtomicCmpXchg:
8242 return true;
8243 break;
8244
8245 case Instruction::AtomicRMW:
8246 if (Handle(cast<AtomicRMWInst>(I)->getPointerOperand()))
8247 return true;
8248 break;
8249
8250 case Instruction::Call:
8251 case Instruction::Invoke: {
8252 const CallBase *CB = cast<CallBase>(I);
8253 if (CB->isIndirectCall() && Handle(CB->getCalledOperand()))
8254 return true;
8255 for (unsigned i = 0; i < CB->arg_size(); ++i)
8256 if ((CB->paramHasAttr(i, Attribute::NoUndef) ||
8257 CB->paramHasAttr(i, Attribute::Dereferenceable) ||
8258 CB->paramHasAttr(i, Attribute::DereferenceableOrNull)) &&
8259 Handle(CB->getArgOperand(i)))
8260 return true;
8261 break;
8262 }
8263 case Instruction::Ret:
8264 if (I->getFunction()->hasRetAttribute(Attribute::NoUndef) &&
8265 Handle(I->getOperand(0)))
8266 return true;
8267 break;
8268 case Instruction::Switch:
8269 if (Handle(cast<SwitchInst>(I)->getCondition()))
8270 return true;
8271 break;
8272 case Instruction::Br: {
8273 auto *BR = cast<BranchInst>(I);
8274 if (BR->isConditional() && Handle(BR->getCondition()))
8275 return true;
8276 break;
8277 }
8278 default:
8279 break;
8280 }
8281
8282 return false;
8283}
8284
8285/// Enumerates all operands of \p I that are guaranteed to not be poison.
8286template <typename CallableT>
8288 const CallableT &Handle) {
8289 if (handleGuaranteedWellDefinedOps(I, Handle))
8290 return true;
8291 switch (I->getOpcode()) {
8292 // Divisors of these operations are allowed to be partially undef.
8293 case Instruction::UDiv:
8294 case Instruction::SDiv:
8295 case Instruction::URem:
8296 case Instruction::SRem:
8297 return Handle(I->getOperand(1));
8298 default:
8299 return false;
8300 }
8301}
8302
8304 const SmallPtrSetImpl<const Value *> &KnownPoison) {
8306 I, [&](const Value *V) { return KnownPoison.count(V); });
8307}
8308
8310 bool PoisonOnly) {
8311 // We currently only look for uses of values within the same basic
8312 // block, as that makes it easier to guarantee that the uses will be
8313 // executed given that Inst is executed.
8314 //
8315 // FIXME: Expand this to consider uses beyond the same basic block. To do
8316 // this, look out for the distinction between post-dominance and strong
8317 // post-dominance.
8318 const BasicBlock *BB = nullptr;
8320 if (const auto *Inst = dyn_cast<Instruction>(V)) {
8321 BB = Inst->getParent();
8322 Begin = Inst->getIterator();
8323 Begin++;
8324 } else if (const auto *Arg = dyn_cast<Argument>(V)) {
8325 if (Arg->getParent()->isDeclaration())
8326 return false;
8327 BB = &Arg->getParent()->getEntryBlock();
8328 Begin = BB->begin();
8329 } else {
8330 return false;
8331 }
8332
8333 // Limit number of instructions we look at, to avoid scanning through large
8334 // blocks. The current limit is chosen arbitrarily.
8335 unsigned ScanLimit = 32;
8336 BasicBlock::const_iterator End = BB->end();
8337
8338 if (!PoisonOnly) {
8339 // Since undef does not propagate eagerly, be conservative & just check
8340 // whether a value is directly passed to an instruction that must take
8341 // well-defined operands.
8342
8343 for (const auto &I : make_range(Begin, End)) {
8344 if (--ScanLimit == 0)
8345 break;
8346
8347 if (handleGuaranteedWellDefinedOps(&I, [V](const Value *WellDefinedOp) {
8348 return WellDefinedOp == V;
8349 }))
8350 return true;
8351
8353 break;
8354 }
8355 return false;
8356 }
8357
8358 // Set of instructions that we have proved will yield poison if Inst
8359 // does.
8360 SmallPtrSet<const Value *, 16> YieldsPoison;
8362
8363 YieldsPoison.insert(V);
8364 Visited.insert(BB);
8365
8366 while (true) {
8367 for (const auto &I : make_range(Begin, End)) {
8368 if (--ScanLimit == 0)
8369 return false;
8370 if (mustTriggerUB(&I, YieldsPoison))
8371 return true;
8373 return false;
8374
8375 // If an operand is poison and propagates it, mark I as yielding poison.
8376 for (const Use &Op : I.operands()) {
8377 if (YieldsPoison.count(Op) && propagatesPoison(Op)) {
8378 YieldsPoison.insert(&I);
8379 break;
8380 }
8381 }
8382
8383 // Special handling for select, which returns poison if its operand 0 is
8384 // poison (handled in the loop above) *or* if both its true/false operands
8385 // are poison (handled here).
8386 if (I.getOpcode() == Instruction::Select &&
8387 YieldsPoison.count(I.getOperand(1)) &&
8388 YieldsPoison.count(I.getOperand(2))) {
8389 YieldsPoison.insert(&I);
8390 }
8391 }
8392
8393 BB = BB->getSingleSuccessor();
8394 if (!BB || !Visited.insert(BB).second)
8395 break;
8396
8397 Begin = BB->getFirstNonPHIIt();
8398 End = BB->end();
8399 }
8400 return false;
8401}
8402
8404 return ::programUndefinedIfUndefOrPoison(Inst, false);
8405}
8406
8408 return ::programUndefinedIfUndefOrPoison(Inst, true);
8409}
8410
8411static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
8412 if (FMF.noNaNs())
8413 return true;
8414
8415 if (auto *C = dyn_cast<ConstantFP>(V))
8416 return !C->isNaN();
8417
8418 if (auto *C = dyn_cast<ConstantDataVector>(V)) {
8419 if (!C->getElementType()->isFloatingPointTy())
8420 return false;
8421 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
8422 if (C->getElementAsAPFloat(I).isNaN())
8423 return false;
8424 }
8425 return true;
8426 }
8427
8429 return true;
8430
8431 return false;
8432}
8433
8434static bool isKnownNonZero(const Value *V) {
8435 if (auto *C = dyn_cast<ConstantFP>(V))
8436 return !C->isZero();
8437
8438 if (auto *C = dyn_cast<ConstantDataVector>(V)) {
8439 if (!C->getElementType()->isFloatingPointTy())
8440 return false;
8441 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
8442 if (C->getElementAsAPFloat(I).isZero())
8443 return false;
8444 }
8445 return true;
8446 }
8447
8448 return false;
8449}
8450
8451/// Match clamp pattern for float types without care about NaNs or signed zeros.
8452/// Given non-min/max outer cmp/select from the clamp pattern this
8453/// function recognizes if it can be substitued by a "canonical" min/max
8454/// pattern.
8456 Value *CmpLHS, Value *CmpRHS,
8457 Value *TrueVal, Value *FalseVal,
8458 Value *&LHS, Value *&RHS) {
8459 // Try to match
8460 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
8461 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
8462 // and return description of the outer Max/Min.
8463
8464 // First, check if select has inverse order:
8465 if (CmpRHS == FalseVal) {
8466 std::swap(TrueVal, FalseVal);
8467 Pred = CmpInst::getInversePredicate(Pred);
8468 }
8469
8470 // Assume success now. If there's no match, callers should not use these anyway.
8471 LHS = TrueVal;
8472 RHS = FalseVal;
8473
8474 const APFloat *FC1;
8475 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
8476 return {SPF_UNKNOWN, SPNB_NA, false};
8477
8478 const APFloat *FC2;
8479 switch (Pred) {
8480 case CmpInst::FCMP_OLT:
8481 case CmpInst::FCMP_OLE:
8482 case CmpInst::FCMP_ULT:
8483 case CmpInst::FCMP_ULE:
8484 if (match(FalseVal, m_OrdOrUnordFMin(m_Specific(CmpLHS), m_APFloat(FC2))) &&
8485 *FC1 < *FC2)
8486 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
8487 break;
8488 case CmpInst::FCMP_OGT:
8489 case CmpInst::FCMP_OGE:
8490 case CmpInst::FCMP_UGT:
8491 case CmpInst::FCMP_UGE:
8492 if (match(FalseVal, m_OrdOrUnordFMax(m_Specific(CmpLHS), m_APFloat(FC2))) &&
8493 *FC1 > *FC2)
8494 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
8495 break;
8496 default:
8497 break;
8498 }
8499
8500 return {SPF_UNKNOWN, SPNB_NA, false};
8501}
8502
8503/// Recognize variations of:
8504/// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
8506 Value *CmpLHS, Value *CmpRHS,
8507 Value *TrueVal, Value *FalseVal) {
8508 // Swap the select operands and predicate to match the patterns below.
8509 if (CmpRHS != TrueVal) {
8510 Pred = ICmpInst::getSwappedPredicate(Pred);
8511 std::swap(TrueVal, FalseVal);
8512 }
8513 const APInt *C1;
8514 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
8515 const APInt *C2;
8516 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
8517 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
8518 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
8519 return {SPF_SMAX, SPNB_NA, false};
8520
8521 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
8522 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
8523 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
8524 return {SPF_SMIN, SPNB_NA, false};
8525
8526 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
8527 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
8528 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
8529 return {SPF_UMAX, SPNB_NA, false};
8530
8531 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
8532 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
8533 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
8534 return {SPF_UMIN, SPNB_NA, false};
8535 }
8536 return {SPF_UNKNOWN, SPNB_NA, false};
8537}
8538
8539/// Recognize variations of:
8540/// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
8542 Value *CmpLHS, Value *CmpRHS,
8543 Value *TVal, Value *FVal,
8544 unsigned Depth) {
8545 // TODO: Allow FP min/max with nnan/nsz.
8546 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
8547
8548 Value *A = nullptr, *B = nullptr;
8549 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
8550 if (!SelectPatternResult::isMinOrMax(L.Flavor))
8551 return {SPF_UNKNOWN, SPNB_NA, false};
8552
8553 Value *C = nullptr, *D = nullptr;
8554 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
8555 if (L.Flavor != R.Flavor)
8556 return {SPF_UNKNOWN, SPNB_NA, false};
8557
8558 // We have something like: x Pred y ? min(a, b) : min(c, d).
8559 // Try to match the compare to the min/max operations of the select operands.
8560 // First, make sure we have the right compare predicate.
8561 switch (L.Flavor) {
8562 case SPF_SMIN:
8563 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
8564 Pred = ICmpInst::getSwappedPredicate(Pred);
8565 std::swap(CmpLHS, CmpRHS);
8566 }
8567 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
8568 break;
8569 return {SPF_UNKNOWN, SPNB_NA, false};
8570 case SPF_SMAX:
8571 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
8572 Pred = ICmpInst::getSwappedPredicate(Pred);
8573 std::swap(CmpLHS, CmpRHS);
8574 }
8575 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
8576 break;
8577 return {SPF_UNKNOWN, SPNB_NA, false};
8578 case SPF_UMIN:
8579 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
8580 Pred = ICmpInst::getSwappedPredicate(Pred);
8581 std::swap(CmpLHS, CmpRHS);
8582 }
8583 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
8584 break;
8585 return {SPF_UNKNOWN, SPNB_NA, false};
8586 case SPF_UMAX:
8587 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
8588 Pred = ICmpInst::getSwappedPredicate(Pred);
8589 std::swap(CmpLHS, CmpRHS);
8590 }
8591 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
8592 break;
8593 return {SPF_UNKNOWN, SPNB_NA, false};
8594 default:
8595 return {SPF_UNKNOWN, SPNB_NA, false};
8596 }
8597
8598 // If there is a common operand in the already matched min/max and the other
8599 // min/max operands match the compare operands (either directly or inverted),
8600 // then this is min/max of the same flavor.
8601
8602 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
8603 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
8604 if (D == B) {
8605 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
8606 match(A, m_Not(m_Specific(CmpRHS)))))
8607 return {L.Flavor, SPNB_NA, false};
8608 }
8609 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
8610 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
8611 if (C == B) {
8612 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
8613 match(A, m_Not(m_Specific(CmpRHS)))))
8614 return {L.Flavor, SPNB_NA, false};
8615 }
8616 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
8617 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
8618 if (D == A) {
8619 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
8620 match(B, m_Not(m_Specific(CmpRHS)))))
8621 return {L.Flavor, SPNB_NA, false};
8622 }
8623 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
8624 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
8625 if (C == A) {
8626 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
8627 match(B, m_Not(m_Specific(CmpRHS)))))
8628 return {L.Flavor, SPNB_NA, false};
8629 }
8630
8631 return {SPF_UNKNOWN, SPNB_NA, false};
8632}
8633
8634/// If the input value is the result of a 'not' op, constant integer, or vector
8635/// splat of a constant integer, return the bitwise-not source value.
8636/// TODO: This could be extended to handle non-splat vector integer constants.
8638 Value *NotV;
8639 if (match(V, m_Not(m_Value(NotV))))
8640 return NotV;
8641
8642 const APInt *C;
8643 if (match(V, m_APInt(C)))
8644 return ConstantInt::get(V->getType(), ~(*C));
8645
8646 return nullptr;
8647}
8648
8649/// Match non-obvious integer minimum and maximum sequences.
8651 Value *CmpLHS, Value *CmpRHS,
8652 Value *TrueVal, Value *FalseVal,
8653 Value *&LHS, Value *&RHS,
8654 unsigned Depth) {
8655 // Assume success. If there's no match, callers should not use these anyway.
8656 LHS = TrueVal;
8657 RHS = FalseVal;
8658
8659 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
8661 return SPR;
8662
8663 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
8665 return SPR;
8666
8667 // Look through 'not' ops to find disguised min/max.
8668 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
8669 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
8670 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
8671 switch (Pred) {
8672 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
8673 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
8674 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
8675 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
8676 default: break;
8677 }
8678 }
8679
8680 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
8681 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
8682 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
8683 switch (Pred) {
8684 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
8685 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
8686 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
8687 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
8688 default: break;
8689 }
8690 }
8691
8692 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
8693 return {SPF_UNKNOWN, SPNB_NA, false};
8694
8695 const APInt *C1;
8696 if (!match(CmpRHS, m_APInt(C1)))
8697 return {SPF_UNKNOWN, SPNB_NA, false};
8698
8699 // An unsigned min/max can be written with a signed compare.
8700 const APInt *C2;
8701 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
8702 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
8703 // Is the sign bit set?
8704 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
8705 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
8706 if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue())
8707 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
8708
8709 // Is the sign bit clear?
8710 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
8711 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
8712 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue())
8713 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
8714 }
8715
8716 return {SPF_UNKNOWN, SPNB_NA, false};
8717}
8718
8719bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW,
8720 bool AllowPoison) {
8721 assert(X && Y && "Invalid operand");
8722
8723 auto IsNegationOf = [&](const Value *X, const Value *Y) {
8724 if (!match(X, m_Neg(m_Specific(Y))))
8725 return false;
8726
8727 auto *BO = cast<BinaryOperator>(X);
8728 if (NeedNSW && !BO->hasNoSignedWrap())
8729 return false;
8730
8731 auto *Zero = cast<Constant>(BO->getOperand(0));
8732 if (!AllowPoison && !Zero->isNullValue())
8733 return false;
8734
8735 return true;
8736 };
8737
8738 // X = -Y or Y = -X
8739 if (IsNegationOf(X, Y) || IsNegationOf(Y, X))
8740 return true;
8741
8742 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
8743 Value *A, *B;
8744 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
8745 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
8746 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
8748}
8749
8750bool llvm::isKnownInversion(const Value *X, const Value *Y) {
8751 // Handle X = icmp pred A, B, Y = icmp pred A, C.
8752 Value *A, *B, *C;
8753 CmpPredicate Pred1, Pred2;
8754 if (!match(X, m_ICmp(Pred1, m_Value(A), m_Value(B))) ||
8755 !match(Y, m_c_ICmp(Pred2, m_Specific(A), m_Value(C))))
8756 return false;
8757
8758 // They must both have samesign flag or not.
8759 if (Pred1.hasSameSign() != Pred2.hasSameSign())
8760 return false;
8761
8762 if (B == C)
8763 return Pred1 == ICmpInst::getInversePredicate(Pred2);
8764
8765 // Try to infer the relationship from constant ranges.
8766 const APInt *RHSC1, *RHSC2;
8767 if (!match(B, m_APInt(RHSC1)) || !match(C, m_APInt(RHSC2)))
8768 return false;
8769
8770 // Sign bits of two RHSCs should match.
8771 if (Pred1.hasSameSign() && RHSC1->isNonNegative() != RHSC2->isNonNegative())
8772 return false;
8773
8774 const auto CR1 = ConstantRange::makeExactICmpRegion(Pred1, *RHSC1);
8775 const auto CR2 = ConstantRange::makeExactICmpRegion(Pred2, *RHSC2);
8776
8777 return CR1.inverse() == CR2;
8778}
8779
8781 SelectPatternNaNBehavior NaNBehavior,
8782 bool Ordered) {
8783 switch (Pred) {
8784 default:
8785 return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
8786 case ICmpInst::ICMP_UGT:
8787 case ICmpInst::ICMP_UGE:
8788 return {SPF_UMAX, SPNB_NA, false};
8789 case ICmpInst::ICMP_SGT:
8790 case ICmpInst::ICMP_SGE:
8791 return {SPF_SMAX, SPNB_NA, false};
8792 case ICmpInst::ICMP_ULT:
8793 case ICmpInst::ICMP_ULE:
8794 return {SPF_UMIN, SPNB_NA, false};
8795 case ICmpInst::ICMP_SLT:
8796 case ICmpInst::ICMP_SLE:
8797 return {SPF_SMIN, SPNB_NA, false};
8798 case FCmpInst::FCMP_UGT:
8799 case FCmpInst::FCMP_UGE:
8800 case FCmpInst::FCMP_OGT:
8801 case FCmpInst::FCMP_OGE:
8802 return {SPF_FMAXNUM, NaNBehavior, Ordered};
8803 case FCmpInst::FCMP_ULT:
8804 case FCmpInst::FCMP_ULE:
8805 case FCmpInst::FCMP_OLT:
8806 case FCmpInst::FCMP_OLE:
8807 return {SPF_FMINNUM, NaNBehavior, Ordered};
8808 }
8809}
8810
8811std::optional<std::pair<CmpPredicate, Constant *>>
8814 "Only for relational integer predicates.");
8815 if (isa<UndefValue>(C))
8816 return std::nullopt;
8817
8818 Type *Type = C->getType();
8819 bool IsSigned = ICmpInst::isSigned(Pred);
8820
8822 bool WillIncrement =
8823 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
8824
8825 // Check if the constant operand can be safely incremented/decremented
8826 // without overflowing/underflowing.
8827 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
8828 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
8829 };
8830
8831 Constant *SafeReplacementConstant = nullptr;
8832 if (auto *CI = dyn_cast<ConstantInt>(C)) {
8833 // Bail out if the constant can't be safely incremented/decremented.
8834 if (!ConstantIsOk(CI))
8835 return std::nullopt;
8836 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
8837 unsigned NumElts = FVTy->getNumElements();
8838 for (unsigned i = 0; i != NumElts; ++i) {
8839 Constant *Elt = C->getAggregateElement(i);
8840 if (!Elt)
8841 return std::nullopt;
8842
8843 if (isa<UndefValue>(Elt))
8844 continue;
8845
8846 // Bail out if we can't determine if this constant is min/max or if we
8847 // know that this constant is min/max.
8848 auto *CI = dyn_cast<ConstantInt>(Elt);
8849 if (!CI || !ConstantIsOk(CI))
8850 return std::nullopt;
8851
8852 if (!SafeReplacementConstant)
8853 SafeReplacementConstant = CI;
8854 }
8855 } else if (isa<VectorType>(C->getType())) {
8856 // Handle scalable splat
8857 Value *SplatC = C->getSplatValue();
8858 auto *CI = dyn_cast_or_null<ConstantInt>(SplatC);
8859 // Bail out if the constant can't be safely incremented/decremented.
8860 if (!CI || !ConstantIsOk(CI))
8861 return std::nullopt;
8862 } else {
8863 // ConstantExpr?
8864 return std::nullopt;
8865 }
8866
8867 // It may not be safe to change a compare predicate in the presence of
8868 // undefined elements, so replace those elements with the first safe constant
8869 // that we found.
8870 // TODO: in case of poison, it is safe; let's replace undefs only.
8871 if (C->containsUndefOrPoisonElement()) {
8872 assert(SafeReplacementConstant && "Replacement constant not set");
8873 C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
8874 }
8875
8877
8878 // Increment or decrement the constant.
8879 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
8880 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
8881
8882 return std::make_pair(NewPred, NewC);
8883}
8884
8886 FastMathFlags FMF,
8887 Value *CmpLHS, Value *CmpRHS,
8888 Value *TrueVal, Value *FalseVal,
8889 Value *&LHS, Value *&RHS,
8890 unsigned Depth) {
8891 bool HasMismatchedZeros = false;
8892 if (CmpInst::isFPPredicate(Pred)) {
8893 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
8894 // 0.0 operand, set the compare's 0.0 operands to that same value for the
8895 // purpose of identifying min/max. Disregard vector constants with undefined
8896 // elements because those can not be back-propagated for analysis.
8897 Value *OutputZeroVal = nullptr;
8898 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
8899 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
8900 OutputZeroVal = TrueVal;
8901 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
8902 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
8903 OutputZeroVal = FalseVal;
8904
8905 if (OutputZeroVal) {
8906 if (match(CmpLHS, m_AnyZeroFP()) && CmpLHS != OutputZeroVal) {
8907 HasMismatchedZeros = true;
8908 CmpLHS = OutputZeroVal;
8909 }
8910 if (match(CmpRHS, m_AnyZeroFP()) && CmpRHS != OutputZeroVal) {
8911 HasMismatchedZeros = true;
8912 CmpRHS = OutputZeroVal;
8913 }
8914 }
8915 }
8916
8917 LHS = CmpLHS;
8918 RHS = CmpRHS;
8919
8920 // Signed zero may return inconsistent results between implementations.
8921 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
8922 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
8923 // Therefore, we behave conservatively and only proceed if at least one of the
8924 // operands is known to not be zero or if we don't care about signed zero.
8925 switch (Pred) {
8926 default: break;
8929 if (!HasMismatchedZeros)
8930 break;
8931 [[fallthrough]];
8934 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
8935 !isKnownNonZero(CmpRHS))
8936 return {SPF_UNKNOWN, SPNB_NA, false};
8937 }
8938
8939 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
8940 bool Ordered = false;
8941
8942 // When given one NaN and one non-NaN input:
8943 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
8944 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
8945 // ordered comparison fails), which could be NaN or non-NaN.
8946 // so here we discover exactly what NaN behavior is required/accepted.
8947 if (CmpInst::isFPPredicate(Pred)) {
8948 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
8949 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
8950
8951 if (LHSSafe && RHSSafe) {
8952 // Both operands are known non-NaN.
8953 NaNBehavior = SPNB_RETURNS_ANY;
8954 Ordered = CmpInst::isOrdered(Pred);
8955 } else if (CmpInst::isOrdered(Pred)) {
8956 // An ordered comparison will return false when given a NaN, so it
8957 // returns the RHS.
8958 Ordered = true;
8959 if (LHSSafe)
8960 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
8961 NaNBehavior = SPNB_RETURNS_NAN;
8962 else if (RHSSafe)
8963 NaNBehavior = SPNB_RETURNS_OTHER;
8964 else
8965 // Completely unsafe.
8966 return {SPF_UNKNOWN, SPNB_NA, false};
8967 } else {
8968 Ordered = false;
8969 // An unordered comparison will return true when given a NaN, so it
8970 // returns the LHS.
8971 if (LHSSafe)
8972 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
8973 NaNBehavior = SPNB_RETURNS_OTHER;
8974 else if (RHSSafe)
8975 NaNBehavior = SPNB_RETURNS_NAN;
8976 else
8977 // Completely unsafe.
8978 return {SPF_UNKNOWN, SPNB_NA, false};
8979 }
8980 }
8981
8982 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
8983 std::swap(CmpLHS, CmpRHS);
8984 Pred = CmpInst::getSwappedPredicate(Pred);
8985 if (NaNBehavior == SPNB_RETURNS_NAN)
8986 NaNBehavior = SPNB_RETURNS_OTHER;
8987 else if (NaNBehavior == SPNB_RETURNS_OTHER)
8988 NaNBehavior = SPNB_RETURNS_NAN;
8989 Ordered = !Ordered;
8990 }
8991
8992 // ([if]cmp X, Y) ? X : Y
8993 if (TrueVal == CmpLHS && FalseVal == CmpRHS)
8994 return getSelectPattern(Pred, NaNBehavior, Ordered);
8995
8996 if (isKnownNegation(TrueVal, FalseVal)) {
8997 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
8998 // match against either LHS or sext(LHS).
8999 auto MaybeSExtCmpLHS =
9000 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
9001 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
9002 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
9003 if (match(TrueVal, MaybeSExtCmpLHS)) {
9004 // Set the return values. If the compare uses the negated value (-X >s 0),
9005 // swap the return values because the negated value is always 'RHS'.
9006 LHS = TrueVal;
9007 RHS = FalseVal;
9008 if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
9009 std::swap(LHS, RHS);
9010
9011 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
9012 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
9013 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
9014 return {SPF_ABS, SPNB_NA, false};
9015
9016 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
9017 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
9018 return {SPF_ABS, SPNB_NA, false};
9019
9020 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
9021 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
9022 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
9023 return {SPF_NABS, SPNB_NA, false};
9024 }
9025 else if (match(FalseVal, MaybeSExtCmpLHS)) {
9026 // Set the return values. If the compare uses the negated value (-X >s 0),
9027 // swap the return values because the negated value is always 'RHS'.
9028 LHS = FalseVal;
9029 RHS = TrueVal;
9030 if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
9031 std::swap(LHS, RHS);
9032
9033 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
9034 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
9035 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
9036 return {SPF_NABS, SPNB_NA, false};
9037
9038 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
9039 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
9040 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
9041 return {SPF_ABS, SPNB_NA, false};
9042 }
9043 }
9044
9045 if (CmpInst::isIntPredicate(Pred))
9046 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
9047
9048 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
9049 // may return either -0.0 or 0.0, so fcmp/select pair has stricter
9050 // semantics than minNum. Be conservative in such case.
9051 if (NaNBehavior != SPNB_RETURNS_ANY ||
9052 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
9053 !isKnownNonZero(CmpRHS)))
9054 return {SPF_UNKNOWN, SPNB_NA, false};
9055
9056 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
9057}
9058
9060 Instruction::CastOps *CastOp) {
9061 const DataLayout &DL = CmpI->getDataLayout();
9062
9063 Constant *CastedTo = nullptr;
9064 switch (*CastOp) {
9065 case Instruction::ZExt:
9066 if (CmpI->isUnsigned())
9067 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
9068 break;
9069 case Instruction::SExt:
9070 if (CmpI->isSigned())
9071 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
9072 break;
9073 case Instruction::Trunc:
9074 Constant *CmpConst;
9075 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
9076 CmpConst->getType() == SrcTy) {
9077 // Here we have the following case:
9078 //
9079 // %cond = cmp iN %x, CmpConst
9080 // %tr = trunc iN %x to iK
9081 // %narrowsel = select i1 %cond, iK %t, iK C
9082 //
9083 // We can always move trunc after select operation:
9084 //
9085 // %cond = cmp iN %x, CmpConst
9086 // %widesel = select i1 %cond, iN %x, iN CmpConst
9087 // %tr = trunc iN %widesel to iK
9088 //
9089 // Note that C could be extended in any way because we don't care about
9090 // upper bits after truncation. It can't be abs pattern, because it would
9091 // look like:
9092 //
9093 // select i1 %cond, x, -x.
9094 //
9095 // So only min/max pattern could be matched. Such match requires widened C
9096 // == CmpConst. That is why set widened C = CmpConst, condition trunc
9097 // CmpConst == C is checked below.
9098 CastedTo = CmpConst;
9099 } else {
9100 unsigned ExtOp = CmpI->isSigned() ? Instruction::SExt : Instruction::ZExt;
9101 CastedTo = ConstantFoldCastOperand(ExtOp, C, SrcTy, DL);
9102 }
9103 break;
9104 case Instruction::FPTrunc:
9105 CastedTo = ConstantFoldCastOperand(Instruction::FPExt, C, SrcTy, DL);
9106 break;
9107 case Instruction::FPExt:
9108 CastedTo = ConstantFoldCastOperand(Instruction::FPTrunc, C, SrcTy, DL);
9109 break;
9110 case Instruction::FPToUI:
9111 CastedTo = ConstantFoldCastOperand(Instruction::UIToFP, C, SrcTy, DL);
9112 break;
9113 case Instruction::FPToSI:
9114 CastedTo = ConstantFoldCastOperand(Instruction::SIToFP, C, SrcTy, DL);
9115 break;
9116 case Instruction::UIToFP:
9117 CastedTo = ConstantFoldCastOperand(Instruction::FPToUI, C, SrcTy, DL);
9118 break;
9119 case Instruction::SIToFP:
9120 CastedTo = ConstantFoldCastOperand(Instruction::FPToSI, C, SrcTy, DL);
9121 break;
9122 default:
9123 break;
9124 }
9125
9126 if (!CastedTo)
9127 return nullptr;
9128
9129 // Make sure the cast doesn't lose any information.
9130 Constant *CastedBack =
9131 ConstantFoldCastOperand(*CastOp, CastedTo, C->getType(), DL);
9132 if (CastedBack && CastedBack != C)
9133 return nullptr;
9134
9135 return CastedTo;
9136}
9137
9138/// Helps to match a select pattern in case of a type mismatch.
9139///
9140/// The function processes the case when type of true and false values of a
9141/// select instruction differs from type of the cmp instruction operands because
9142/// of a cast instruction. The function checks if it is legal to move the cast
9143/// operation after "select". If yes, it returns the new second value of
9144/// "select" (with the assumption that cast is moved):
9145/// 1. As operand of cast instruction when both values of "select" are same cast
9146/// instructions.
9147/// 2. As restored constant (by applying reverse cast operation) when the first
9148/// value of the "select" is a cast operation and the second value is a
9149/// constant. It is implemented in lookThroughCastConst().
9150/// 3. As one operand is cast instruction and the other is not. The operands in
9151/// sel(cmp) are in different type integer.
9152/// NOTE: We return only the new second value because the first value could be
9153/// accessed as operand of cast instruction.
9154static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
9155 Instruction::CastOps *CastOp) {
9156 auto *Cast1 = dyn_cast<CastInst>(V1);
9157 if (!Cast1)
9158 return nullptr;
9159
9160 *CastOp = Cast1->getOpcode();
9161 Type *SrcTy = Cast1->getSrcTy();
9162 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
9163 // If V1 and V2 are both the same cast from the same type, look through V1.
9164 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
9165 return Cast2->getOperand(0);
9166 return nullptr;
9167 }
9168
9169 auto *C = dyn_cast<Constant>(V2);
9170 if (C)
9171 return lookThroughCastConst(CmpI, SrcTy, C, CastOp);
9172
9173 Value *CastedTo = nullptr;
9174 if (*CastOp == Instruction::Trunc) {
9175 if (match(CmpI->getOperand(1), m_ZExtOrSExt(m_Specific(V2)))) {
9176 // Here we have the following case:
9177 // %y_ext = sext iK %y to iN
9178 // %cond = cmp iN %x, %y_ext
9179 // %tr = trunc iN %x to iK
9180 // %narrowsel = select i1 %cond, iK %tr, iK %y
9181 //
9182 // We can always move trunc after select operation:
9183 // %y_ext = sext iK %y to iN
9184 // %cond = cmp iN %x, %y_ext
9185 // %widesel = select i1 %cond, iN %x, iN %y_ext
9186 // %tr = trunc iN %widesel to iK
9187 assert(V2->getType() == Cast1->getType() &&
9188 "V2 and Cast1 should be the same type.");
9189 CastedTo = CmpI->getOperand(1);
9190 }
9191 }
9192
9193 return CastedTo;
9194}
9196 Instruction::CastOps *CastOp,
9197 unsigned Depth) {
9199 return {SPF_UNKNOWN, SPNB_NA, false};
9200
9202 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
9203
9204 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
9205 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
9206
9207 Value *TrueVal = SI->getTrueValue();
9208 Value *FalseVal = SI->getFalseValue();
9209
9211 CmpI, TrueVal, FalseVal, LHS, RHS,
9212 isa<FPMathOperator>(SI) ? SI->getFastMathFlags() : FastMathFlags(),
9213 CastOp, Depth);
9214}
9215
9217 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
9218 FastMathFlags FMF, Instruction::CastOps *CastOp, unsigned Depth) {
9219 CmpInst::Predicate Pred = CmpI->getPredicate();
9220 Value *CmpLHS = CmpI->getOperand(0);
9221 Value *CmpRHS = CmpI->getOperand(1);
9222 if (isa<FPMathOperator>(CmpI) && CmpI->hasNoNaNs())
9223 FMF.setNoNaNs();
9224
9225 // Bail out early.
9226 if (CmpI->isEquality())
9227 return {SPF_UNKNOWN, SPNB_NA, false};
9228
9229 // Deal with type mismatches.
9230 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
9231 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
9232 // If this is a potential fmin/fmax with a cast to integer, then ignore
9233 // -0.0 because there is no corresponding integer value.
9234 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
9235 FMF.setNoSignedZeros();
9236 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
9237 cast<CastInst>(TrueVal)->getOperand(0), C,
9238 LHS, RHS, Depth);
9239 }
9240 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
9241 // If this is a potential fmin/fmax with a cast to integer, then ignore
9242 // -0.0 because there is no corresponding integer value.
9243 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
9244 FMF.setNoSignedZeros();
9245 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
9246 C, cast<CastInst>(FalseVal)->getOperand(0),
9247 LHS, RHS, Depth);
9248 }
9249 }
9250 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
9251 LHS, RHS, Depth);
9252}
9253
9255 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
9256 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
9257 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
9258 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
9259 if (SPF == SPF_FMINNUM)
9260 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
9261 if (SPF == SPF_FMAXNUM)
9262 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
9263 llvm_unreachable("unhandled!");
9264}
9265
9267 switch (SPF) {
9269 return Intrinsic::umin;
9271 return Intrinsic::umax;
9273 return Intrinsic::smin;
9275 return Intrinsic::smax;
9276 default:
9277 llvm_unreachable("Unexpected SPF");
9278 }
9279}
9280
9282 if (SPF == SPF_SMIN) return SPF_SMAX;
9283 if (SPF == SPF_UMIN) return SPF_UMAX;
9284 if (SPF == SPF_SMAX) return SPF_SMIN;
9285 if (SPF == SPF_UMAX) return SPF_UMIN;
9286 llvm_unreachable("unhandled!");
9287}
9288
9290 switch (MinMaxID) {
9291 case Intrinsic::smax: return Intrinsic::smin;
9292 case Intrinsic::smin: return Intrinsic::smax;
9293 case Intrinsic::umax: return Intrinsic::umin;
9294 case Intrinsic::umin: return Intrinsic::umax;
9295 // Please note that next four intrinsics may produce the same result for
9296 // original and inverted case even if X != Y due to NaN is handled specially.
9297 case Intrinsic::maximum: return Intrinsic::minimum;
9298 case Intrinsic::minimum: return Intrinsic::maximum;
9299 case Intrinsic::maxnum: return Intrinsic::minnum;
9300 case Intrinsic::minnum: return Intrinsic::maxnum;
9301 case Intrinsic::maximumnum:
9302 return Intrinsic::minimumnum;
9303 case Intrinsic::minimumnum:
9304 return Intrinsic::maximumnum;
9305 default: llvm_unreachable("Unexpected intrinsic");
9306 }
9307}
9308
9310 switch (SPF) {
9313 case SPF_UMAX: return APInt::getMaxValue(BitWidth);
9314 case SPF_UMIN: return APInt::getMinValue(BitWidth);
9315 default: llvm_unreachable("Unexpected flavor");
9316 }
9317}
9318
9319std::pair<Intrinsic::ID, bool>
9321 // Check if VL contains select instructions that can be folded into a min/max
9322 // vector intrinsic and return the intrinsic if it is possible.
9323 // TODO: Support floating point min/max.
9324 bool AllCmpSingleUse = true;
9325 SelectPatternResult SelectPattern;
9326 SelectPattern.Flavor = SPF_UNKNOWN;
9327 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
9328 Value *LHS, *RHS;
9329 auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
9330 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor))
9331 return false;
9332 if (SelectPattern.Flavor != SPF_UNKNOWN &&
9333 SelectPattern.Flavor != CurrentPattern.Flavor)
9334 return false;
9335 SelectPattern = CurrentPattern;
9336 AllCmpSingleUse &=
9338 return true;
9339 })) {
9340 switch (SelectPattern.Flavor) {
9341 case SPF_SMIN:
9342 return {Intrinsic::smin, AllCmpSingleUse};
9343 case SPF_UMIN:
9344 return {Intrinsic::umin, AllCmpSingleUse};
9345 case SPF_SMAX:
9346 return {Intrinsic::smax, AllCmpSingleUse};
9347 case SPF_UMAX:
9348 return {Intrinsic::umax, AllCmpSingleUse};
9349 case SPF_FMAXNUM:
9350 return {Intrinsic::maxnum, AllCmpSingleUse};
9351 case SPF_FMINNUM:
9352 return {Intrinsic::minnum, AllCmpSingleUse};
9353 default:
9354 llvm_unreachable("unexpected select pattern flavor");
9355 }
9356 }
9357 return {Intrinsic::not_intrinsic, false};
9358}
9359
9360template <typename InstTy>
9361static bool matchTwoInputRecurrence(const PHINode *PN, InstTy *&Inst,
9362 Value *&Init, Value *&OtherOp) {
9363 // Handle the case of a simple two-predecessor recurrence PHI.
9364 // There's a lot more that could theoretically be done here, but
9365 // this is sufficient to catch some interesting cases.
9366 // TODO: Expand list -- gep, uadd.sat etc.
9367 if (PN->getNumIncomingValues() != 2)
9368 return false;
9369
9370 for (unsigned I = 0; I != 2; ++I) {
9371 if (auto *Operation = dyn_cast<InstTy>(PN->getIncomingValue(I));
9372 Operation && Operation->getNumOperands() >= 2) {
9373 Value *LHS = Operation->getOperand(0);
9374 Value *RHS = Operation->getOperand(1);
9375 if (LHS != PN && RHS != PN)
9376 continue;
9377
9378 Inst = Operation;
9379 Init = PN->getIncomingValue(!I);
9380 OtherOp = (LHS == PN) ? RHS : LHS;
9381 return true;
9382 }
9383 }
9384 return false;
9385}
9386
9388 Value *&Start, Value *&Step) {
9389 // We try to match a recurrence of the form:
9390 // %iv = [Start, %entry], [%iv.next, %backedge]
9391 // %iv.next = binop %iv, Step
9392 // Or:
9393 // %iv = [Start, %entry], [%iv.next, %backedge]
9394 // %iv.next = binop Step, %iv
9395 return matchTwoInputRecurrence(P, BO, Start, Step);
9396}
9397
9399 Value *&Start, Value *&Step) {
9400 BinaryOperator *BO = nullptr;
9401 P = dyn_cast<PHINode>(I->getOperand(0));
9402 if (!P)
9403 P = dyn_cast<PHINode>(I->getOperand(1));
9404 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
9405}
9406
9408 PHINode *&P, Value *&Init,
9409 Value *&OtherOp) {
9410 // Binary intrinsics only supported for now.
9411 if (I->arg_size() != 2 || I->getType() != I->getArgOperand(0)->getType() ||
9412 I->getType() != I->getArgOperand(1)->getType())
9413 return false;
9414
9415 IntrinsicInst *II = nullptr;
9416 P = dyn_cast<PHINode>(I->getArgOperand(0));
9417 if (!P)
9418 P = dyn_cast<PHINode>(I->getArgOperand(1));
9419
9420 return P && matchTwoInputRecurrence(P, II, Init, OtherOp) && II == I;
9421}
9422
9423/// Return true if "icmp Pred LHS RHS" is always true.
9425 const Value *RHS) {
9426 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
9427 return true;
9428
9429 switch (Pred) {
9430 default:
9431 return false;
9432
9433 case CmpInst::ICMP_SLE: {
9434 const APInt *C;
9435
9436 // LHS s<= LHS +_{nsw} C if C >= 0
9437 // LHS s<= LHS | C if C >= 0
9438 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))) ||
9440 return !C->isNegative();
9441
9442 // LHS s<= smax(LHS, V) for any V
9444 return true;
9445
9446 // smin(RHS, V) s<= RHS for any V
9448 return true;
9449
9450 // Match A to (X +_{nsw} CA) and B to (X +_{nsw} CB)
9451 const Value *X;
9452 const APInt *CLHS, *CRHS;
9453 if (match(LHS, m_NSWAddLike(m_Value(X), m_APInt(CLHS))) &&
9455 return CLHS->sle(*CRHS);
9456
9457 return false;
9458 }
9459
9460 case CmpInst::ICMP_ULE: {
9461 // LHS u<= LHS +_{nuw} V for any V
9462 if (match(RHS, m_c_Add(m_Specific(LHS), m_Value())) &&
9464 return true;
9465
9466 // LHS u<= LHS | V for any V
9467 if (match(RHS, m_c_Or(m_Specific(LHS), m_Value())))
9468 return true;
9469
9470 // LHS u<= umax(LHS, V) for any V
9472 return true;
9473
9474 // RHS >> V u<= RHS for any V
9475 if (match(LHS, m_LShr(m_Specific(RHS), m_Value())))
9476 return true;
9477
9478 // RHS u/ C_ugt_1 u<= RHS
9479 const APInt *C;
9480 if (match(LHS, m_UDiv(m_Specific(RHS), m_APInt(C))) && C->ugt(1))
9481 return true;
9482
9483 // RHS & V u<= RHS for any V
9485 return true;
9486
9487 // umin(RHS, V) u<= RHS for any V
9489 return true;
9490
9491 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
9492 const Value *X;
9493 const APInt *CLHS, *CRHS;
9494 if (match(LHS, m_NUWAddLike(m_Value(X), m_APInt(CLHS))) &&
9496 return CLHS->ule(*CRHS);
9497
9498 return false;
9499 }
9500 }
9501}
9502
9503/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
9504/// ALHS ARHS" is true. Otherwise, return std::nullopt.
9505static std::optional<bool>
9507 const Value *ARHS, const Value *BLHS, const Value *BRHS) {
9508 switch (Pred) {
9509 default:
9510 return std::nullopt;
9511
9512 case CmpInst::ICMP_SLT:
9513 case CmpInst::ICMP_SLE:
9514 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS) &&
9516 return true;
9517 return std::nullopt;
9518
9519 case CmpInst::ICMP_SGT:
9520 case CmpInst::ICMP_SGE:
9521 if (isTruePredicate(CmpInst::ICMP_SLE, ALHS, BLHS) &&
9523 return true;
9524 return std::nullopt;
9525
9526 case CmpInst::ICMP_ULT:
9527 case CmpInst::ICMP_ULE:
9528 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS) &&
9530 return true;
9531 return std::nullopt;
9532
9533 case CmpInst::ICMP_UGT:
9534 case CmpInst::ICMP_UGE:
9535 if (isTruePredicate(CmpInst::ICMP_ULE, ALHS, BLHS) &&
9537 return true;
9538 return std::nullopt;
9539 }
9540}
9541
9542/// Return true if "icmp LPred X, LCR" implies "icmp RPred X, RCR" is true.
9543/// Return false if "icmp LPred X, LCR" implies "icmp RPred X, RCR" is false.
9544/// Otherwise, return std::nullopt if we can't infer anything.
9545static std::optional<bool>
9547 CmpPredicate RPred, const ConstantRange &RCR) {
9548 auto CRImpliesPred = [&](ConstantRange CR,
9549 CmpInst::Predicate Pred) -> std::optional<bool> {
9550 // If all true values for lhs and true for rhs, lhs implies rhs
9551 if (CR.icmp(Pred, RCR))
9552 return true;
9553
9554 // If there is no overlap, lhs implies not rhs
9555 if (CR.icmp(CmpInst::getInversePredicate(Pred), RCR))
9556 return false;
9557
9558 return std::nullopt;
9559 };
9560 if (auto Res = CRImpliesPred(ConstantRange::makeAllowedICmpRegion(LPred, LCR),
9561 RPred))
9562 return Res;
9563 if (LPred.hasSameSign() ^ RPred.hasSameSign()) {
9565 : LPred.dropSameSign();
9567 : RPred.dropSameSign();
9568 return CRImpliesPred(ConstantRange::makeAllowedICmpRegion(LPred, LCR),
9569 RPred);
9570 }
9571 return std::nullopt;
9572}
9573
9574/// Return true if LHS implies RHS (expanded to its components as "R0 RPred R1")
9575/// is true. Return false if LHS implies RHS is false. Otherwise, return
9576/// std::nullopt if we can't infer anything.
9577static std::optional<bool>
9578isImpliedCondICmps(CmpPredicate LPred, const Value *L0, const Value *L1,
9579 CmpPredicate RPred, const Value *R0, const Value *R1,
9580 const DataLayout &DL, bool LHSIsTrue) {
9581 // The rest of the logic assumes the LHS condition is true. If that's not the
9582 // case, invert the predicate to make it so.
9583 if (!LHSIsTrue)
9584 LPred = ICmpInst::getInverseCmpPredicate(LPred);
9585
9586 // We can have non-canonical operands, so try to normalize any common operand
9587 // to L0/R0.
9588 if (L0 == R1) {
9589 std::swap(R0, R1);
9590 RPred = ICmpInst::getSwappedCmpPredicate(RPred);
9591 }
9592 if (R0 == L1) {
9593 std::swap(L0, L1);
9594 LPred = ICmpInst::getSwappedCmpPredicate(LPred);
9595 }
9596 if (L1 == R1) {
9597 // If we have L0 == R0 and L1 == R1, then make L1/R1 the constants.
9598 if (L0 != R0 || match(L0, m_ImmConstant())) {
9599 std::swap(L0, L1);
9600 LPred = ICmpInst::getSwappedCmpPredicate(LPred);
9601 std::swap(R0, R1);
9602 RPred = ICmpInst::getSwappedCmpPredicate(RPred);
9603 }
9604 }
9605
9606 // See if we can infer anything if operand-0 matches and we have at least one
9607 // constant.
9608 const APInt *Unused;
9609 if (L0 == R0 && (match(L1, m_APInt(Unused)) || match(R1, m_APInt(Unused)))) {
9610 // Potential TODO: We could also further use the constant range of L0/R0 to
9611 // further constraint the constant ranges. At the moment this leads to
9612 // several regressions related to not transforming `multi_use(A + C0) eq/ne
9613 // C1` (see discussion: D58633).
9615 L1, ICmpInst::isSigned(LPred), /* UseInstrInfo=*/true, /*AC=*/nullptr,
9616 /*CxtI=*/nullptr, /*DT=*/nullptr, MaxAnalysisRecursionDepth - 1);
9618 R1, ICmpInst::isSigned(RPred), /* UseInstrInfo=*/true, /*AC=*/nullptr,
9619 /*CxtI=*/nullptr, /*DT=*/nullptr, MaxAnalysisRecursionDepth - 1);
9620 // Even if L1/R1 are not both constant, we can still sometimes deduce
9621 // relationship from a single constant. For example X u> Y implies X != 0.
9622 if (auto R = isImpliedCondCommonOperandWithCR(LPred, LCR, RPred, RCR))
9623 return R;
9624 // If both L1/R1 were exact constant ranges and we didn't get anything
9625 // here, we won't be able to deduce this.
9626 if (match(L1, m_APInt(Unused)) && match(R1, m_APInt(Unused)))
9627 return std::nullopt;
9628 }
9629
9630 // Can we infer anything when the two compares have matching operands?
9631 if (L0 == R0 && L1 == R1)
9632 return ICmpInst::isImpliedByMatchingCmp(LPred, RPred);
9633
9634 // It only really makes sense in the context of signed comparison for "X - Y
9635 // must be positive if X >= Y and no overflow".
9636 // Take SGT as an example: L0:x > L1:y and C >= 0
9637 // ==> R0:(x -nsw y) < R1:(-C) is false
9638 CmpInst::Predicate SignedLPred = LPred.getPreferredSignedPredicate();
9639 if ((SignedLPred == ICmpInst::ICMP_SGT ||
9640 SignedLPred == ICmpInst::ICMP_SGE) &&
9641 match(R0, m_NSWSub(m_Specific(L0), m_Specific(L1)))) {
9642 if (match(R1, m_NonPositive()) &&
9643 ICmpInst::isImpliedByMatchingCmp(SignedLPred, RPred) == false)
9644 return false;
9645 }
9646
9647 // Take SLT as an example: L0:x < L1:y and C <= 0
9648 // ==> R0:(x -nsw y) < R1:(-C) is true
9649 if ((SignedLPred == ICmpInst::ICMP_SLT ||
9650 SignedLPred == ICmpInst::ICMP_SLE) &&
9651 match(R0, m_NSWSub(m_Specific(L0), m_Specific(L1)))) {
9652 if (match(R1, m_NonNegative()) &&
9653 ICmpInst::isImpliedByMatchingCmp(SignedLPred, RPred) == true)
9654 return true;
9655 }
9656
9657 // a - b == NonZero -> a != b
9658 // ptrtoint(a) - ptrtoint(b) == NonZero -> a != b
9659 const APInt *L1C;
9660 Value *A, *B;
9661 if (LPred == ICmpInst::ICMP_EQ && ICmpInst::isEquality(RPred) &&
9662 match(L1, m_APInt(L1C)) && !L1C->isZero() &&
9663 match(L0, m_Sub(m_Value(A), m_Value(B))) &&
9664 ((A == R0 && B == R1) || (A == R1 && B == R0) ||
9665 (match(A, m_PtrToInt(m_Specific(R0))) &&
9666 match(B, m_PtrToInt(m_Specific(R1)))) ||
9667 (match(A, m_PtrToInt(m_Specific(R1))) &&
9668 match(B, m_PtrToInt(m_Specific(R0)))))) {
9669 return RPred.dropSameSign() == ICmpInst::ICMP_NE;
9670 }
9671
9672 // L0 = R0 = L1 + R1, L0 >=u L1 implies R0 >=u R1, L0 <u L1 implies R0 <u R1
9673 if (L0 == R0 &&
9674 (LPred == ICmpInst::ICMP_ULT || LPred == ICmpInst::ICMP_UGE) &&
9675 (RPred == ICmpInst::ICMP_ULT || RPred == ICmpInst::ICMP_UGE) &&
9676 match(L0, m_c_Add(m_Specific(L1), m_Specific(R1))))
9677 return CmpPredicate::getMatching(LPred, RPred).has_value();
9678
9679 if (auto P = CmpPredicate::getMatching(LPred, RPred))
9680 return isImpliedCondOperands(*P, L0, L1, R0, R1);
9681
9682 return std::nullopt;
9683}
9684
9685/// Return true if LHS implies RHS (expanded to its components as "R0 RPred R1")
9686/// is true. Return false if LHS implies RHS is false. Otherwise, return
9687/// std::nullopt if we can't infer anything.
9688static std::optional<bool>
9690 FCmpInst::Predicate RPred, const Value *R0, const Value *R1,
9691 const DataLayout &DL, bool LHSIsTrue) {
9692 // The rest of the logic assumes the LHS condition is true. If that's not the
9693 // case, invert the predicate to make it so.
9694 if (!LHSIsTrue)
9695 LPred = FCmpInst::getInversePredicate(LPred);
9696
9697 // We can have non-canonical operands, so try to normalize any common operand
9698 // to L0/R0.
9699 if (L0 == R1) {
9700 std::swap(R0, R1);
9701 RPred = FCmpInst::getSwappedPredicate(RPred);
9702 }
9703 if (R0 == L1) {
9704 std::swap(L0, L1);
9705 LPred = FCmpInst::getSwappedPredicate(LPred);
9706 }
9707 if (L1 == R1) {
9708 // If we have L0 == R0 and L1 == R1, then make L1/R1 the constants.
9709 if (L0 != R0 || match(L0, m_ImmConstant())) {
9710 std::swap(L0, L1);
9711 LPred = ICmpInst::getSwappedCmpPredicate(LPred);
9712 std::swap(R0, R1);
9713 RPred = ICmpInst::getSwappedCmpPredicate(RPred);
9714 }
9715 }
9716
9717 // Can we infer anything when the two compares have matching operands?
9718 if (L0 == R0 && L1 == R1) {
9719 if ((LPred & RPred) == LPred)
9720 return true;
9721 if ((LPred & ~RPred) == LPred)
9722 return false;
9723 }
9724
9725 // See if we can infer anything if operand-0 matches and we have at least one
9726 // constant.
9727 const APFloat *L1C, *R1C;
9728 if (L0 == R0 && match(L1, m_APFloat(L1C)) && match(R1, m_APFloat(R1C))) {
9729 if (std::optional<ConstantFPRange> DomCR =
9731 if (std::optional<ConstantFPRange> ImpliedCR =
9733 if (ImpliedCR->contains(*DomCR))
9734 return true;
9735 }
9736 if (std::optional<ConstantFPRange> ImpliedCR =
9738 FCmpInst::getInversePredicate(RPred), *R1C)) {
9739 if (ImpliedCR->contains(*DomCR))
9740 return false;
9741 }
9742 }
9743 }
9744
9745 return std::nullopt;
9746}
9747
9748/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
9749/// false. Otherwise, return std::nullopt if we can't infer anything. We
9750/// expect the RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select'
9751/// instruction.
9752static std::optional<bool>
9754 const Value *RHSOp0, const Value *RHSOp1,
9755 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
9756 // The LHS must be an 'or', 'and', or a 'select' instruction.
9757 assert((LHS->getOpcode() == Instruction::And ||
9758 LHS->getOpcode() == Instruction::Or ||
9759 LHS->getOpcode() == Instruction::Select) &&
9760 "Expected LHS to be 'and', 'or', or 'select'.");
9761
9762 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
9763
9764 // If the result of an 'or' is false, then we know both legs of the 'or' are
9765 // false. Similarly, if the result of an 'and' is true, then we know both
9766 // legs of the 'and' are true.
9767 const Value *ALHS, *ARHS;
9768 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
9769 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
9770 // FIXME: Make this non-recursion.
9771 if (std::optional<bool> Implication = isImpliedCondition(
9772 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
9773 return Implication;
9774 if (std::optional<bool> Implication = isImpliedCondition(
9775 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
9776 return Implication;
9777 return std::nullopt;
9778 }
9779 return std::nullopt;
9780}
9781
9782std::optional<bool>
9784 const Value *RHSOp0, const Value *RHSOp1,
9785 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
9786 // Bail out when we hit the limit.
9788 return std::nullopt;
9789
9790 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
9791 // example.
9792 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
9793 return std::nullopt;
9794
9795 assert(LHS->getType()->isIntOrIntVectorTy(1) &&
9796 "Expected integer type only!");
9797
9798 // Match not
9799 if (match(LHS, m_Not(m_Value(LHS))))
9800 LHSIsTrue = !LHSIsTrue;
9801
9802 // Both LHS and RHS are icmps.
9803 if (RHSOp0->getType()->getScalarType()->isIntOrPtrTy()) {
9804 if (const auto *LHSCmp = dyn_cast<ICmpInst>(LHS))
9805 return isImpliedCondICmps(LHSCmp->getCmpPredicate(),
9806 LHSCmp->getOperand(0), LHSCmp->getOperand(1),
9807 RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue);
9808 const Value *V;
9809 if (match(LHS, m_NUWTrunc(m_Value(V))))
9811 ConstantInt::get(V->getType(), 0), RHSPred,
9812 RHSOp0, RHSOp1, DL, LHSIsTrue);
9813 } else {
9814 assert(RHSOp0->getType()->isFPOrFPVectorTy() &&
9815 "Expected floating point type only!");
9816 if (const auto *LHSCmp = dyn_cast<FCmpInst>(LHS))
9817 return isImpliedCondFCmps(LHSCmp->getPredicate(), LHSCmp->getOperand(0),
9818 LHSCmp->getOperand(1), RHSPred, RHSOp0, RHSOp1,
9819 DL, LHSIsTrue);
9820 }
9821
9822 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect
9823 /// the RHS to be an icmp.
9824 /// FIXME: Add support for and/or/select on the RHS.
9825 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
9826 if ((LHSI->getOpcode() == Instruction::And ||
9827 LHSI->getOpcode() == Instruction::Or ||
9828 LHSI->getOpcode() == Instruction::Select))
9829 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
9830 Depth);
9831 }
9832 return std::nullopt;
9833}
9834
9835std::optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
9836 const DataLayout &DL,
9837 bool LHSIsTrue, unsigned Depth) {
9838 // LHS ==> RHS by definition
9839 if (LHS == RHS)
9840 return LHSIsTrue;
9841
9842 // Match not
9843 bool InvertRHS = false;
9844 if (match(RHS, m_Not(m_Value(RHS)))) {
9845 if (LHS == RHS)
9846 return !LHSIsTrue;
9847 InvertRHS = true;
9848 }
9849
9850 if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS)) {
9851 if (auto Implied = isImpliedCondition(
9852 LHS, RHSCmp->getCmpPredicate(), RHSCmp->getOperand(0),
9853 RHSCmp->getOperand(1), DL, LHSIsTrue, Depth))
9854 return InvertRHS ? !*Implied : *Implied;
9855 return std::nullopt;
9856 }
9857 if (const FCmpInst *RHSCmp = dyn_cast<FCmpInst>(RHS)) {
9858 if (auto Implied = isImpliedCondition(
9859 LHS, RHSCmp->getPredicate(), RHSCmp->getOperand(0),
9860 RHSCmp->getOperand(1), DL, LHSIsTrue, Depth))
9861 return InvertRHS ? !*Implied : *Implied;
9862 return std::nullopt;
9863 }
9864
9865 const Value *V;
9866 if (match(RHS, m_NUWTrunc(m_Value(V)))) {
9867 if (auto Implied = isImpliedCondition(LHS, CmpInst::ICMP_NE, V,
9868 ConstantInt::get(V->getType(), 0), DL,
9869 LHSIsTrue, Depth))
9870 return InvertRHS ? !*Implied : *Implied;
9871 return std::nullopt;
9872 }
9873
9875 return std::nullopt;
9876
9877 // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2
9878 // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2
9879 const Value *RHS1, *RHS2;
9880 if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) {
9881 if (std::optional<bool> Imp =
9882 isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
9883 if (*Imp == true)
9884 return !InvertRHS;
9885 if (std::optional<bool> Imp =
9886 isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
9887 if (*Imp == true)
9888 return !InvertRHS;
9889 }
9890 if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) {
9891 if (std::optional<bool> Imp =
9892 isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
9893 if (*Imp == false)
9894 return InvertRHS;
9895 if (std::optional<bool> Imp =
9896 isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
9897 if (*Imp == false)
9898 return InvertRHS;
9899 }
9900
9901 return std::nullopt;
9902}
9903
9904// Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
9905// condition dominating ContextI or nullptr, if no condition is found.
9906static std::pair<Value *, bool>
9908 if (!ContextI || !ContextI->getParent())
9909 return {nullptr, false};
9910
9911 // TODO: This is a poor/cheap way to determine dominance. Should we use a
9912 // dominator tree (eg, from a SimplifyQuery) instead?
9913 const BasicBlock *ContextBB = ContextI->getParent();
9914 const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
9915 if (!PredBB)
9916 return {nullptr, false};
9917
9918 // We need a conditional branch in the predecessor.
9919 Value *PredCond;
9920 BasicBlock *TrueBB, *FalseBB;
9921 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
9922 return {nullptr, false};
9923
9924 // The branch should get simplified. Don't bother simplifying this condition.
9925 if (TrueBB == FalseBB)
9926 return {nullptr, false};
9927
9928 assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
9929 "Predecessor block does not point to successor?");
9930
9931 // Is this condition implied by the predecessor condition?
9932 return {PredCond, TrueBB == ContextBB};
9933}
9934
9935std::optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
9936 const Instruction *ContextI,
9937 const DataLayout &DL) {
9938 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
9939 auto PredCond = getDomPredecessorCondition(ContextI);
9940 if (PredCond.first)
9941 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
9942 return std::nullopt;
9943}
9944
9946 const Value *LHS,
9947 const Value *RHS,
9948 const Instruction *ContextI,
9949 const DataLayout &DL) {
9950 auto PredCond = getDomPredecessorCondition(ContextI);
9951 if (PredCond.first)
9952 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
9953 PredCond.second);
9954 return std::nullopt;
9955}
9956
9958 APInt &Upper, const InstrInfoQuery &IIQ,
9959 bool PreferSignedRange) {
9960 unsigned Width = Lower.getBitWidth();
9961 const APInt *C;
9962 switch (BO.getOpcode()) {
9963 case Instruction::Sub:
9964 if (match(BO.getOperand(0), m_APInt(C))) {
9965 bool HasNSW = IIQ.hasNoSignedWrap(&BO);
9966 bool HasNUW = IIQ.hasNoUnsignedWrap(&BO);
9967
9968 // If the caller expects a signed compare, then try to use a signed range.
9969 // Otherwise if both no-wraps are set, use the unsigned range because it
9970 // is never larger than the signed range. Example:
9971 // "sub nuw nsw i8 -2, x" is unsigned [0, 254] vs. signed [-128, 126].
9972 // "sub nuw nsw i8 2, x" is unsigned [0, 2] vs. signed [-125, 127].
9973 if (PreferSignedRange && HasNSW && HasNUW)
9974 HasNUW = false;
9975
9976 if (HasNUW) {
9977 // 'sub nuw c, x' produces [0, C].
9978 Upper = *C + 1;
9979 } else if (HasNSW) {
9980 if (C->isNegative()) {
9981 // 'sub nsw -C, x' produces [SINT_MIN, -C - SINT_MIN].
9983 Upper = *C - APInt::getSignedMaxValue(Width);
9984 } else {
9985 // Note that sub 0, INT_MIN is not NSW. It techically is a signed wrap
9986 // 'sub nsw C, x' produces [C - SINT_MAX, SINT_MAX].
9987 Lower = *C - APInt::getSignedMaxValue(Width);
9989 }
9990 }
9991 }
9992 break;
9993 case Instruction::Add:
9994 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
9995 bool HasNSW = IIQ.hasNoSignedWrap(&BO);
9996 bool HasNUW = IIQ.hasNoUnsignedWrap(&BO);
9997
9998 // If the caller expects a signed compare, then try to use a signed
9999 // range. Otherwise if both no-wraps are set, use the unsigned range
10000 // because it is never larger than the signed range. Example: "add nuw
10001 // nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125].
10002 if (PreferSignedRange && HasNSW && HasNUW)
10003 HasNUW = false;
10004
10005 if (HasNUW) {
10006 // 'add nuw x, C' produces [C, UINT_MAX].
10007 Lower = *C;
10008 } else if (HasNSW) {
10009 if (C->isNegative()) {
10010 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
10012 Upper = APInt::getSignedMaxValue(Width) + *C + 1;
10013 } else {
10014 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
10015 Lower = APInt::getSignedMinValue(Width) + *C;
10016 Upper = APInt::getSignedMaxValue(Width) + 1;
10017 }
10018 }
10019 }
10020 break;
10021
10022 case Instruction::And:
10023 if (match(BO.getOperand(1), m_APInt(C)))
10024 // 'and x, C' produces [0, C].
10025 Upper = *C + 1;
10026 // X & -X is a power of two or zero. So we can cap the value at max power of
10027 // two.
10028 if (match(BO.getOperand(0), m_Neg(m_Specific(BO.getOperand(1)))) ||
10029 match(BO.getOperand(1), m_Neg(m_Specific(BO.getOperand(0)))))
10030 Upper = APInt::getSignedMinValue(Width) + 1;
10031 break;
10032
10033 case Instruction::Or:
10034 if (match(BO.getOperand(1), m_APInt(C)))
10035 // 'or x, C' produces [C, UINT_MAX].
10036 Lower = *C;
10037 break;
10038
10039 case Instruction::AShr:
10040 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
10041 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
10043 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
10044 } else if (match(BO.getOperand(0), m_APInt(C))) {
10045 unsigned ShiftAmount = Width - 1;
10046 if (!C->isZero() && IIQ.isExact(&BO))
10047 ShiftAmount = C->countr_zero();
10048 if (C->isNegative()) {
10049 // 'ashr C, x' produces [C, C >> (Width-1)]
10050 Lower = *C;
10051 Upper = C->ashr(ShiftAmount) + 1;
10052 } else {
10053 // 'ashr C, x' produces [C >> (Width-1), C]
10054 Lower = C->ashr(ShiftAmount);
10055 Upper = *C + 1;
10056 }
10057 }
10058 break;
10059
10060 case Instruction::LShr:
10061 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
10062 // 'lshr x, C' produces [0, UINT_MAX >> C].
10063 Upper = APInt::getAllOnes(Width).lshr(*C) + 1;
10064 } else if (match(BO.getOperand(0), m_APInt(C))) {
10065 // 'lshr C, x' produces [C >> (Width-1), C].
10066 unsigned ShiftAmount = Width - 1;
10067 if (!C->isZero() && IIQ.isExact(&BO))
10068 ShiftAmount = C->countr_zero();
10069 Lower = C->lshr(ShiftAmount);
10070 Upper = *C + 1;
10071 }
10072 break;
10073
10074 case Instruction::Shl:
10075 if (match(BO.getOperand(0), m_APInt(C))) {
10076 if (IIQ.hasNoUnsignedWrap(&BO)) {
10077 // 'shl nuw C, x' produces [C, C << CLZ(C)]
10078 Lower = *C;
10079 Upper = Lower.shl(Lower.countl_zero()) + 1;
10080 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
10081 if (C->isNegative()) {
10082 // 'shl nsw C, x' produces [C << CLO(C)-1, C]
10083 unsigned ShiftAmount = C->countl_one() - 1;
10084 Lower = C->shl(ShiftAmount);
10085 Upper = *C + 1;
10086 } else {
10087 // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
10088 unsigned ShiftAmount = C->countl_zero() - 1;
10089 Lower = *C;
10090 Upper = C->shl(ShiftAmount) + 1;
10091 }
10092 } else {
10093 // If lowbit is set, value can never be zero.
10094 if ((*C)[0])
10095 Lower = APInt::getOneBitSet(Width, 0);
10096 // If we are shifting a constant the largest it can be is if the longest
10097 // sequence of consecutive ones is shifted to the highbits (breaking
10098 // ties for which sequence is higher). At the moment we take a liberal
10099 // upper bound on this by just popcounting the constant.
10100 // TODO: There may be a bitwise trick for it longest/highest
10101 // consecutative sequence of ones (naive method is O(Width) loop).
10102 Upper = APInt::getHighBitsSet(Width, C->popcount()) + 1;
10103 }
10104 } else if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
10105 Upper = APInt::getBitsSetFrom(Width, C->getZExtValue()) + 1;
10106 }
10107 break;
10108
10109 case Instruction::SDiv:
10110 if (match(BO.getOperand(1), m_APInt(C))) {
10111 APInt IntMin = APInt::getSignedMinValue(Width);
10112 APInt IntMax = APInt::getSignedMaxValue(Width);
10113 if (C->isAllOnes()) {
10114 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
10115 // where C != -1 and C != 0 and C != 1
10116 Lower = IntMin + 1;
10117 Upper = IntMax + 1;
10118 } else if (C->countl_zero() < Width - 1) {
10119 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
10120 // where C != -1 and C != 0 and C != 1
10121 Lower = IntMin.sdiv(*C);
10122 Upper = IntMax.sdiv(*C);
10123 if (Lower.sgt(Upper))
10125 Upper = Upper + 1;
10126 assert(Upper != Lower && "Upper part of range has wrapped!");
10127 }
10128 } else if (match(BO.getOperand(0), m_APInt(C))) {
10129 if (C->isMinSignedValue()) {
10130 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
10131 Lower = *C;
10132 Upper = Lower.lshr(1) + 1;
10133 } else {
10134 // 'sdiv C, x' produces [-|C|, |C|].
10135 Upper = C->abs() + 1;
10136 Lower = (-Upper) + 1;
10137 }
10138 }
10139 break;
10140
10141 case Instruction::UDiv:
10142 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
10143 // 'udiv x, C' produces [0, UINT_MAX / C].
10144 Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
10145 } else if (match(BO.getOperand(0), m_APInt(C))) {
10146 // 'udiv C, x' produces [0, C].
10147 Upper = *C + 1;
10148 }
10149 break;
10150
10151 case Instruction::SRem:
10152 if (match(BO.getOperand(1), m_APInt(C))) {
10153 // 'srem x, C' produces (-|C|, |C|).
10154 Upper = C->abs();
10155 Lower = (-Upper) + 1;
10156 } else if (match(BO.getOperand(0), m_APInt(C))) {
10157 if (C->isNegative()) {
10158 // 'srem -|C|, x' produces [-|C|, 0].
10159 Upper = 1;
10160 Lower = *C;
10161 } else {
10162 // 'srem |C|, x' produces [0, |C|].
10163 Upper = *C + 1;
10164 }
10165 }
10166 break;
10167
10168 case Instruction::URem:
10169 if (match(BO.getOperand(1), m_APInt(C)))
10170 // 'urem x, C' produces [0, C).
10171 Upper = *C;
10172 else if (match(BO.getOperand(0), m_APInt(C)))
10173 // 'urem C, x' produces [0, C].
10174 Upper = *C + 1;
10175 break;
10176
10177 default:
10178 break;
10179 }
10180}
10181
10183 bool UseInstrInfo) {
10184 unsigned Width = II.getType()->getScalarSizeInBits();
10185 const APInt *C;
10186 switch (II.getIntrinsicID()) {
10187 case Intrinsic::ctlz:
10188 case Intrinsic::cttz: {
10189 APInt Upper(Width, Width);
10190 if (!UseInstrInfo || !match(II.getArgOperand(1), m_One()))
10191 Upper += 1;
10192 // Maximum of set/clear bits is the bit width.
10194 }
10195 case Intrinsic::ctpop:
10196 // Maximum of set/clear bits is the bit width.
10198 APInt(Width, Width) + 1);
10199 case Intrinsic::uadd_sat:
10200 // uadd.sat(x, C) produces [C, UINT_MAX].
10201 if (match(II.getOperand(0), m_APInt(C)) ||
10202 match(II.getOperand(1), m_APInt(C)))
10204 break;
10205 case Intrinsic::sadd_sat:
10206 if (match(II.getOperand(0), m_APInt(C)) ||
10207 match(II.getOperand(1), m_APInt(C))) {
10208 if (C->isNegative())
10209 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
10211 APInt::getSignedMaxValue(Width) + *C +
10212 1);
10213
10214 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
10216 APInt::getSignedMaxValue(Width) + 1);
10217 }
10218 break;
10219 case Intrinsic::usub_sat:
10220 // usub.sat(C, x) produces [0, C].
10221 if (match(II.getOperand(0), m_APInt(C)))
10222 return ConstantRange::getNonEmpty(APInt::getZero(Width), *C + 1);
10223
10224 // usub.sat(x, C) produces [0, UINT_MAX - C].
10225 if (match(II.getOperand(1), m_APInt(C)))
10227 APInt::getMaxValue(Width) - *C + 1);
10228 break;
10229 case Intrinsic::ssub_sat:
10230 if (match(II.getOperand(0), m_APInt(C))) {
10231 if (C->isNegative())
10232 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
10234 *C - APInt::getSignedMinValue(Width) +
10235 1);
10236
10237 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
10239 APInt::getSignedMaxValue(Width) + 1);
10240 } else if (match(II.getOperand(1), m_APInt(C))) {
10241 if (C->isNegative())
10242 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
10244 APInt::getSignedMaxValue(Width) + 1);
10245
10246 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
10248 APInt::getSignedMaxValue(Width) - *C +
10249 1);
10250 }
10251 break;
10252 case Intrinsic::umin:
10253 case Intrinsic::umax:
10254 case Intrinsic::smin:
10255 case Intrinsic::smax:
10256 if (!match(II.getOperand(0), m_APInt(C)) &&
10257 !match(II.getOperand(1), m_APInt(C)))
10258 break;
10259
10260 switch (II.getIntrinsicID()) {
10261 case Intrinsic::umin:
10262 return ConstantRange::getNonEmpty(APInt::getZero(Width), *C + 1);
10263 case Intrinsic::umax:
10265 case Intrinsic::smin:
10267 *C + 1);
10268 case Intrinsic::smax:
10270 APInt::getSignedMaxValue(Width) + 1);
10271 default:
10272 llvm_unreachable("Must be min/max intrinsic");
10273 }
10274 break;
10275 case Intrinsic::abs:
10276 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
10277 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
10278 if (match(II.getOperand(1), m_One()))
10280 APInt::getSignedMaxValue(Width) + 1);
10281
10283 APInt::getSignedMinValue(Width) + 1);
10284 case Intrinsic::vscale:
10285 if (!II.getParent() || !II.getFunction())
10286 break;
10287 return getVScaleRange(II.getFunction(), Width);
10288 default:
10289 break;
10290 }
10291
10292 return ConstantRange::getFull(Width);
10293}
10294
10296 const InstrInfoQuery &IIQ) {
10297 unsigned BitWidth = SI.getType()->getScalarSizeInBits();
10298 const Value *LHS = nullptr, *RHS = nullptr;
10300 if (R.Flavor == SPF_UNKNOWN)
10301 return ConstantRange::getFull(BitWidth);
10302
10303 if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
10304 // If the negation part of the abs (in RHS) has the NSW flag,
10305 // then the result of abs(X) is [0..SIGNED_MAX],
10306 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
10307 if (match(RHS, m_Neg(m_Specific(LHS))) &&
10311
10314 }
10315
10316 if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
10317 // The result of -abs(X) is <= 0.
10319 APInt(BitWidth, 1));
10320 }
10321
10322 const APInt *C;
10323 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
10324 return ConstantRange::getFull(BitWidth);
10325
10326 switch (R.Flavor) {
10327 case SPF_UMIN:
10329 case SPF_UMAX:
10331 case SPF_SMIN:
10333 *C + 1);
10334 case SPF_SMAX:
10337 default:
10338 return ConstantRange::getFull(BitWidth);
10339 }
10340}
10341
10343 // The maximum representable value of a half is 65504. For floats the maximum
10344 // value is 3.4e38 which requires roughly 129 bits.
10345 unsigned BitWidth = I->getType()->getScalarSizeInBits();
10346 if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy())
10347 return;
10348 if (isa<FPToSIInst>(I) && BitWidth >= 17) {
10349 Lower = APInt(BitWidth, -65504, true);
10350 Upper = APInt(BitWidth, 65505);
10351 }
10352
10353 if (isa<FPToUIInst>(I) && BitWidth >= 16) {
10354 // For a fptoui the lower limit is left as 0.
10355 Upper = APInt(BitWidth, 65505);
10356 }
10357}
10358
10360 bool UseInstrInfo, AssumptionCache *AC,
10361 const Instruction *CtxI,
10362 const DominatorTree *DT,
10363 unsigned Depth) {
10364 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
10365
10367 return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
10368
10369 if (auto *C = dyn_cast<Constant>(V))
10370 return C->toConstantRange();
10371
10372 unsigned BitWidth = V->getType()->getScalarSizeInBits();
10373 InstrInfoQuery IIQ(UseInstrInfo);
10374 ConstantRange CR = ConstantRange::getFull(BitWidth);
10375 if (auto *BO = dyn_cast<BinaryOperator>(V)) {
10376 APInt Lower = APInt(BitWidth, 0);
10377 APInt Upper = APInt(BitWidth, 0);
10378 // TODO: Return ConstantRange.
10379 setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned);
10381 } else if (auto *II = dyn_cast<IntrinsicInst>(V))
10382 CR = getRangeForIntrinsic(*II, UseInstrInfo);
10383 else if (auto *SI = dyn_cast<SelectInst>(V)) {
10385 SI->getTrueValue(), ForSigned, UseInstrInfo, AC, CtxI, DT, Depth + 1);
10387 SI->getFalseValue(), ForSigned, UseInstrInfo, AC, CtxI, DT, Depth + 1);
10388 CR = CRTrue.unionWith(CRFalse);
10390 } else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V)) {
10391 APInt Lower = APInt(BitWidth, 0);
10392 APInt Upper = APInt(BitWidth, 0);
10393 // TODO: Return ConstantRange.
10396 } else if (const auto *A = dyn_cast<Argument>(V))
10397 if (std::optional<ConstantRange> Range = A->getRange())
10398 CR = *Range;
10399
10400 if (auto *I = dyn_cast<Instruction>(V)) {
10401 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
10403
10404 if (const auto *CB = dyn_cast<CallBase>(V))
10405 if (std::optional<ConstantRange> Range = CB->getRange())
10406 CR = CR.intersectWith(*Range);
10407 }
10408
10409 if (CtxI && AC) {
10410 // Try to restrict the range based on information from assumptions.
10411 for (auto &AssumeVH : AC->assumptionsFor(V)) {
10412 if (!AssumeVH)
10413 continue;
10414 CallInst *I = cast<CallInst>(AssumeVH);
10415 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
10416 "Got assumption for the wrong function!");
10417 assert(I->getIntrinsicID() == Intrinsic::assume &&
10418 "must be an assume intrinsic");
10419
10420 if (!isValidAssumeForContext(I, CtxI, DT))
10421 continue;
10422 Value *Arg = I->getArgOperand(0);
10423 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
10424 // Currently we just use information from comparisons.
10425 if (!Cmp || Cmp->getOperand(0) != V)
10426 continue;
10427 // TODO: Set "ForSigned" parameter via Cmp->isSigned()?
10428 ConstantRange RHS =
10429 computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false,
10430 UseInstrInfo, AC, I, DT, Depth + 1);
10431 CR = CR.intersectWith(
10432 ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS));
10433 }
10434 }
10435
10436 return CR;
10437}
10438
10439static void
10441 function_ref<void(Value *)> InsertAffected) {
10442 assert(V != nullptr);
10443 if (isa<Argument>(V) || isa<GlobalValue>(V)) {
10444 InsertAffected(V);
10445 } else if (auto *I = dyn_cast<Instruction>(V)) {
10446 InsertAffected(V);
10447
10448 // Peek through unary operators to find the source of the condition.
10449 Value *Op;
10452 InsertAffected(Op);
10453 }
10454 }
10455}
10456
10458 Value *Cond, bool IsAssume, function_ref<void(Value *)> InsertAffected) {
10459 auto AddAffected = [&InsertAffected](Value *V) {
10460 addValueAffectedByCondition(V, InsertAffected);
10461 };
10462
10463 auto AddCmpOperands = [&AddAffected, IsAssume](Value *LHS, Value *RHS) {
10464 if (IsAssume) {
10465 AddAffected(LHS);
10466 AddAffected(RHS);
10467 } else if (match(RHS, m_Constant()))
10468 AddAffected(LHS);
10469 };
10470
10471 SmallVector<Value *, 8> Worklist;
10473 Worklist.push_back(Cond);
10474 while (!Worklist.empty()) {
10475 Value *V = Worklist.pop_back_val();
10476 if (!Visited.insert(V).second)
10477 continue;
10478
10479 CmpPredicate Pred;
10480 Value *A, *B, *X;
10481
10482 if (IsAssume) {
10483 AddAffected(V);
10484 if (match(V, m_Not(m_Value(X))))
10485 AddAffected(X);
10486 }
10487
10488 if (match(V, m_LogicalOp(m_Value(A), m_Value(B)))) {
10489 // assume(A && B) is split to -> assume(A); assume(B);
10490 // assume(!(A || B)) is split to -> assume(!A); assume(!B);
10491 // Finally, assume(A || B) / assume(!(A && B)) generally don't provide
10492 // enough information to be worth handling (intersection of information as
10493 // opposed to union).
10494 if (!IsAssume) {
10495 Worklist.push_back(A);
10496 Worklist.push_back(B);
10497 }
10498 } else if (match(V, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
10499 bool HasRHSC = match(B, m_ConstantInt());
10500 if (ICmpInst::isEquality(Pred)) {
10501 AddAffected(A);
10502 if (IsAssume)
10503 AddAffected(B);
10504 if (HasRHSC) {
10505 Value *Y;
10506 // (X << C) or (X >>_s C) or (X >>_u C).
10507 if (match(A, m_Shift(m_Value(X), m_ConstantInt())))
10508 AddAffected(X);
10509 // (X & C) or (X | C).
10510 else if (match(A, m_And(m_Value(X), m_Value(Y))) ||
10511 match(A, m_Or(m_Value(X), m_Value(Y)))) {
10512 AddAffected(X);
10513 AddAffected(Y);
10514 }
10515 // X - Y
10516 else if (match(A, m_Sub(m_Value(X), m_Value(Y)))) {
10517 AddAffected(X);
10518 AddAffected(Y);
10519 }
10520 }
10521 } else {
10522 AddCmpOperands(A, B);
10523 if (HasRHSC) {
10524 // Handle (A + C1) u< C2, which is the canonical form of
10525 // A > C3 && A < C4.
10527 AddAffected(X);
10528
10529 if (ICmpInst::isUnsigned(Pred)) {
10530 Value *Y;
10531 // X & Y u> C -> X >u C && Y >u C
10532 // X | Y u< C -> X u< C && Y u< C
10533 // X nuw+ Y u< C -> X u< C && Y u< C
10534 if (match(A, m_And(m_Value(X), m_Value(Y))) ||
10535 match(A, m_Or(m_Value(X), m_Value(Y))) ||
10536 match(A, m_NUWAdd(m_Value(X), m_Value(Y)))) {
10537 AddAffected(X);
10538 AddAffected(Y);
10539 }
10540 // X nuw- Y u> C -> X u> C
10541 if (match(A, m_NUWSub(m_Value(X), m_Value())))
10542 AddAffected(X);
10543 }
10544 }
10545
10546 // Handle icmp slt/sgt (bitcast X to int), 0/-1, which is supported
10547 // by computeKnownFPClass().
10549 if (Pred == ICmpInst::ICMP_SLT && match(B, m_Zero()))
10550 InsertAffected(X);
10551 else if (Pred == ICmpInst::ICMP_SGT && match(B, m_AllOnes()))
10552 InsertAffected(X);
10553 }
10554 }
10555
10556 if (HasRHSC && match(A, m_Intrinsic<Intrinsic::ctpop>(m_Value(X))))
10557 AddAffected(X);
10558 } else if (match(V, m_FCmp(Pred, m_Value(A), m_Value(B)))) {
10559 AddCmpOperands(A, B);
10560
10561 // fcmp fneg(x), y
10562 // fcmp fabs(x), y
10563 // fcmp fneg(fabs(x)), y
10564 if (match(A, m_FNeg(m_Value(A))))
10565 AddAffected(A);
10566 if (match(A, m_FAbs(m_Value(A))))
10567 AddAffected(A);
10568
10570 m_Value()))) {
10571 // Handle patterns that computeKnownFPClass() support.
10572 AddAffected(A);
10573 } else if (!IsAssume && match(V, m_Trunc(m_Value(X)))) {
10574 // Assume is checked here as X is already added above for assumes in
10575 // addValueAffectedByCondition
10576 AddAffected(X);
10577 } else if (!IsAssume && match(V, m_Not(m_Value(X)))) {
10578 // Assume is checked here to avoid issues with ephemeral values
10579 Worklist.push_back(X);
10580 }
10581 }
10582}
10583
10585 // (X >> C) or/add (X & mask(C) != 0)
10586 if (const auto *BO = dyn_cast<BinaryOperator>(V)) {
10587 if (BO->getOpcode() == Instruction::Add ||
10588 BO->getOpcode() == Instruction::Or) {
10589 const Value *X;
10590 const APInt *C1, *C2;
10591 if (match(BO, m_c_BinOp(m_LShr(m_Value(X), m_APInt(C1)),
10595 m_Zero())))) &&
10596 C2->popcount() == C1->getZExtValue())
10597 return X;
10598 }
10599 }
10600 return nullptr;
10601}
10602
10604 return const_cast<Value *>(stripNullTest(const_cast<const Value *>(V)));
10605}
10606
10609 unsigned MaxCount, bool AllowUndefOrPoison) {
10612 auto Push = [&](const Value *V) -> bool {
10613 Constant *C;
10614 if (match(const_cast<Value *>(V), m_ImmConstant(C))) {
10615 if (!AllowUndefOrPoison && !isGuaranteedNotToBeUndefOrPoison(C))
10616 return false;
10617 // Check existence first to avoid unnecessary allocations.
10618 if (Constants.contains(C))
10619 return true;
10620 if (Constants.size() == MaxCount)
10621 return false;
10622 Constants.insert(C);
10623 return true;
10624 }
10625
10626 if (auto *Inst = dyn_cast<Instruction>(V)) {
10627 if (Visited.insert(Inst).second)
10628 Worklist.push_back(Inst);
10629 return true;
10630 }
10631 return false;
10632 };
10633 if (!Push(V))
10634 return false;
10635 while (!Worklist.empty()) {
10636 const Instruction *CurInst = Worklist.pop_back_val();
10637 switch (CurInst->getOpcode()) {
10638 case Instruction::Select:
10639 if (!Push(CurInst->getOperand(1)))
10640 return false;
10641 if (!Push(CurInst->getOperand(2)))
10642 return false;
10643 break;
10644 case Instruction::PHI:
10645 for (Value *IncomingValue : cast<PHINode>(CurInst)->incoming_values()) {
10646 // Fast path for recurrence PHI.
10647 if (IncomingValue == CurInst)
10648 continue;
10649 if (!Push(IncomingValue))
10650 return false;
10651 }
10652 break;
10653 default:
10654 return false;
10655 }
10656 }
10657 return true;
10658}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
Rewrite undef for PHI
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Utilities for dealing with flags related to floating point properties and mode controls.
static Value * getCondition(Instruction *I)
Hexagon Common GEP
Module.h This file contains the declarations for the Module class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
This file contains the declarations for metadata subclasses.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define P(N)
PowerPC Reduce CR logical Operation
R600 Clause Merge
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
std::pair< BasicBlock *, BasicBlock * > Edge
This file contains some templates that are useful if you are working with the STL at all.
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
static SmallVector< VPValue *, 4 > getOperands(ArrayRef< VPValue * > Values, unsigned OperandIndex)
Definition VPlanSLP.cpp:210
static void computeKnownFPClassFromCond(const Value *V, Value *Cond, bool CondIsTrue, const Instruction *CxtI, KnownFPClass &KnownFromContext, unsigned Depth=0)
static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero, SimplifyQuery &Q, unsigned Depth)
Try to detect a recurrence that the value of the induction variable is always a power of two (or zero...
static cl::opt< unsigned > DomConditionsMaxUses("dom-conditions-max-uses", cl::Hidden, cl::init(20))
static unsigned computeNumSignBitsVectorConstant(const Value *V, const APInt &DemandedElts, unsigned TyBits)
For vector constants, loop over the elements and find the constant with the minimum number of sign bi...
static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, const Value *RHS)
Return true if "icmp Pred LHS RHS" is always true.
static bool isModifyingBinopOfNonZero(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V1 == (binop V2, X), where X is known non-zero.
static bool isGEPKnownNonNull(const GEPOperator *GEP, const SimplifyQuery &Q, unsigned Depth)
Test whether a GEP's result is known to be non-null.
static bool isNonEqualShl(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and the shift is nuw or nsw.
static bool isKnownNonNullFromDominatingCondition(const Value *V, const Instruction *CtxI, const DominatorTree *DT)
static const Value * getUnderlyingObjectFromInt(const Value *V)
This is the function that does the work of looking through basic ptrtoint+arithmetic+inttoptr sequenc...
static bool isNonZeroMul(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, bool NSW, bool NUW, unsigned Depth)
static bool rangeMetadataExcludesValue(const MDNode *Ranges, const APInt &Value)
Does the 'Range' metadata (which must be a valid MD_range operand list) ensure that the value it's at...
static bool outputDenormalIsIEEEOrPosZero(const Function &F, const Type *Ty)
static KnownBits getKnownBitsFromAndXorOr(const Operator *I, const APInt &DemandedElts, const KnownBits &KnownLHS, const KnownBits &KnownRHS, const SimplifyQuery &Q, unsigned Depth)
static void breakSelfRecursivePHI(const Use *U, const PHINode *PHI, Value *&ValOut, Instruction *&CtxIOut, const PHINode **PhiOut=nullptr)
static bool isNonZeroSub(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, unsigned Depth)
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static void addValueAffectedByCondition(Value *V, function_ref< void(Value *)> InsertAffected)
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
static bool haveNoCommonBitsSetSpecialCases(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, APInt &Upper, const InstrInfoQuery &IIQ, bool PreferSignedRange)
static Value * lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, Instruction::CastOps *CastOp)
Helps to match a select pattern in case of a type mismatch.
static std::pair< Value *, bool > getDomPredecessorCondition(const Instruction *ContextI)
static constexpr unsigned MaxInstrsToCheckForFree
Maximum number of instructions to check between assume and context instruction.
static bool isNonZeroShift(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, const KnownBits &KnownVal, unsigned Depth)
static std::optional< bool > isImpliedCondFCmps(FCmpInst::Predicate LPred, const Value *L0, const Value *L1, FCmpInst::Predicate RPred, const Value *R0, const Value *R1, const DataLayout &DL, bool LHSIsTrue)
Return true if LHS implies RHS (expanded to its components as "R0 RPred R1") is true.
UndefPoisonKind
static bool isKnownNonEqualFromContext(const Value *V1, const Value *V2, const SimplifyQuery &Q, unsigned Depth)
static bool includesPoison(UndefPoisonKind Kind)
static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS)
Match clamp pattern for float types without care about NaNs or signed zeros.
static std::optional< bool > isImpliedCondICmps(CmpPredicate LPred, const Value *L0, const Value *L1, CmpPredicate RPred, const Value *R0, const Value *R1, const DataLayout &DL, bool LHSIsTrue)
Return true if LHS implies RHS (expanded to its components as "R0 RPred R1") is true.
static bool includesUndef(UndefPoisonKind Kind)
static std::optional< bool > isImpliedCondCommonOperandWithCR(CmpPredicate LPred, const ConstantRange &LCR, CmpPredicate RPred, const ConstantRange &RCR)
Return true if "icmp LPred X, LCR" implies "icmp RPred X, RCR" is true.
static ConstantRange getRangeForSelectPattern(const SelectInst &SI, const InstrInfoQuery &IIQ)
static void computeKnownBitsFromOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth)
static uint64_t GetStringLengthH(const Value *V, SmallPtrSetImpl< const PHINode * > &PHIs, unsigned CharSize)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
static void computeKnownBitsFromShiftOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth, function_ref< KnownBits(const KnownBits &, const KnownBits &, bool)> KF)
Compute known bits from a shift operator, including those with a non-constant shift amount.
static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(const Value *V, bool AllowLifetime, bool AllowDroppable)
static std::optional< bool > isImpliedCondAndOr(const Instruction *LHS, CmpPredicate RHSPred, const Value *RHSOp0, const Value *RHSOp1, const DataLayout &DL, bool LHSIsTrue, unsigned Depth)
Return true if LHS implies RHS is true.
static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, const APInt *&CLow, const APInt *&CHigh)
static bool isNonZeroAdd(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, bool NSW, bool NUW, unsigned Depth)
static bool directlyImpliesPoison(const Value *ValAssumedPoison, const Value *V, unsigned Depth)
static bool isNonEqualSelect(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static bool matchTwoInputRecurrence(const PHINode *PN, InstTy *&Inst, Value *&Init, Value *&OtherOp)
static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static void computeKnownBitsFromCmp(const Value *V, CmpInst::Predicate Pred, Value *LHS, Value *RHS, KnownBits &Known, const SimplifyQuery &Q)
static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TVal, Value *FVal, unsigned Depth)
Recognize variations of: a < c ?
static void unionWithMinMaxIntrinsicClamp(const IntrinsicInst *II, KnownBits &Known)
static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper)
static bool isSameUnderlyingObjectInLoop(const PHINode *PN, const LoopInfo *LI)
PN defines a loop-variant pointer to an object.
static bool isNonEqualPointersWithRecursiveGEP(const Value *A, const Value *B, const SimplifyQuery &Q)
static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, const APInt *&CLow, const APInt *&CHigh)
static Value * lookThroughCastConst(CmpInst *CmpI, Type *SrcTy, Constant *C, Instruction::CastOps *CastOp)
static bool handleGuaranteedWellDefinedOps(const Instruction *I, const CallableT &Handle)
Enumerates all operands of I that are guaranteed to not be undef or poison.
static void computeKnownBitsFromLerpPattern(const Value *Op0, const Value *Op1, const APInt &DemandedElts, KnownBits &KnownOut, const SimplifyQuery &Q, unsigned Depth)
Try to detect the lerp pattern: a * (b - c) + c * d where a >= 0, b >= 0, c >= 0, d >= 0,...
static KnownFPClass computeKnownFPClassFromContext(const Value *V, const SimplifyQuery &Q)
static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, bool NSW, bool NUW, const APInt &DemandedElts, KnownBits &KnownOut, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth)
static Value * getNotValue(Value *V)
If the input value is the result of a 'not' op, constant integer, or vector splat of a constant integ...
static unsigned ComputeNumSignBitsImpl(const Value *V, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return the number of times the sign bit of the register is replicated into the other bits.
static void computeKnownBitsFromICmpCond(const Value *V, ICmpInst *Cmp, KnownBits &Known, const SimplifyQuery &SQ, bool Invert)
static bool isKnownNonZeroFromOperator(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static bool matchOpWithOpEqZero(Value *Op0, Value *Op1)
static bool isNonZeroRecurrence(const PHINode *PN)
Try to detect a recurrence that monotonically increases/decreases from a non-zero starting value.
static SelectPatternResult matchClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal)
Recognize variations of: CLAMP(v,l,h) ==> ((v) < (l) ?
static bool shiftAmountKnownInRange(const Value *ShiftAmount)
Shifts return poison if shiftwidth is larger than the bitwidth.
static bool isEphemeralValueOf(const Instruction *I, const Value *E)
static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, unsigned Depth)
Match non-obvious integer minimum and maximum sequences.
static KnownBits computeKnownBitsForHorizontalOperation(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth, const function_ref< KnownBits(const KnownBits &, const KnownBits &)> KnownBitsFunc)
static bool handleGuaranteedNonPoisonOps(const Instruction *I, const CallableT &Handle)
Enumerates all operands of I that are guaranteed to not be poison.
static std::optional< std::pair< Value *, Value * > > getInvertibleOperands(const Operator *Op1, const Operator *Op2)
If the pair of operators are the same invertible function, return the the operands of the function co...
static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS)
static void computeKnownBitsFromCond(const Value *V, Value *Cond, KnownBits &Known, const SimplifyQuery &SQ, bool Invert, unsigned Depth)
static bool isKnownNonZeroFromAssume(const Value *V, const SimplifyQuery &Q)
static std::optional< bool > isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, const Value *ARHS, const Value *BLHS, const Value *BRHS)
Return true if "icmp Pred BLHS BRHS" is true whenever "icmp PredALHS ARHS" is true.
static const Instruction * safeCxtI(const Value *V, const Instruction *CxtI)
static bool isNonEqualMul(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and the multiplication is nuw o...
static bool isImpliedToBeAPowerOfTwoFromCond(const Value *V, bool OrZero, const Value *Cond, bool CondIsTrue)
Return true if we can infer that V is known to be a power of 2 from dominating condition Cond (e....
static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, bool NUW, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth)
static bool isKnownNonNaN(const Value *V, FastMathFlags FMF)
static ConstantRange getRangeForIntrinsic(const IntrinsicInst &II, bool UseInstrInfo)
static void computeKnownFPClassForFPTrunc(const Operator *Op, const APInt &DemandedElts, FPClassTest InterestedClasses, KnownFPClass &Known, const SimplifyQuery &Q, unsigned Depth)
static Value * BuildSubAggregate(Value *From, Value *To, Type *IndexedType, SmallVectorImpl< unsigned > &Idxs, unsigned IdxSkip, BasicBlock::iterator InsertBefore)
Value * RHS
Value * LHS
static LLVM_ABI unsigned int semanticsPrecision(const fltSemantics &)
Definition APFloat.cpp:290
static LLVM_ABI bool isRepresentableAsNormalIn(const fltSemantics &Src, const fltSemantics &Dst)
Definition APFloat.cpp:340
bool isFinite() const
Definition APFloat.h:1436
bool isNaN() const
Definition APFloat.h:1429
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Definition APFloat.h:1120
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Definition APFloat.h:1080
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Definition APFloat.h:1061
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1971
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition APInt.cpp:1573
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:235
void clearBit(unsigned BitPosition)
Set a given bit to 0.
Definition APInt.h:1407
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition APInt.h:424
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1541
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition APInt.h:1392
unsigned popcount() const
Count the number of bits set.
Definition APInt.h:1671
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
Definition APInt.h:1386
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition APInt.h:207
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition APInt.h:1331
unsigned ceilLogBase2() const
Definition APInt.h:1765
bool sgt(const APInt &RHS) const
Signed greater than comparison.
Definition APInt.h:1202
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition APInt.h:372
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1183
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:381
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1489
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1112
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:210
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
Definition APInt.h:217
bool isNegative() const
Determine sign of this APInt.
Definition APInt.h:330
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
Definition APInt.h:1250
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
Definition APInt.cpp:1644
void clearAllBits()
Set every bit to 0.
Definition APInt.h:1397
LLVM_ABI APInt reverseBits() const
Definition APInt.cpp:768
bool sle(const APInt &RHS) const
Signed less or equal comparison.
Definition APInt.h:1167
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
Definition APInt.h:1629
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1599
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:220
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1041
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
Definition APInt.h:357
unsigned logBase2() const
Definition APInt.h:1762
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:828
bool getBoolValue() const
Convert APInt to a boolean value.
Definition APInt.h:472
bool isMaxSignedValue() const
Determine if this is the largest signed value.
Definition APInt.h:406
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:335
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition APInt.h:1151
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:874
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition APInt.h:1258
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition APInt.h:1131
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
Definition APInt.h:297
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:201
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
Definition APInt.h:1389
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition APInt.h:1238
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition APInt.h:287
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition APInt.h:240
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:852
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition APInt.h:1222
void clearSignBit()
Set the sign bit to 0.
Definition APInt.h:1450
an instruction to allocate memory on the stack
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
iterator end() const
Definition ArrayRef.h:131
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
iterator begin() const
Definition ArrayRef.h:130
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Definition ArrayRef.h:186
Class to represent array types.
This represents the llvm.assume intrinsic.
A cache of @llvm.assume calls within a function.
MutableArrayRef< ResultElem > assumptionsFor(const Value *V)
Access the list of assumptions which affect this value.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
Definition Attributes.h:69
LLVM_ABI std::optional< unsigned > getVScaleRangeMax() const
Returns the maximum value for the vscale_range attribute or std::nullopt when unknown.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
bool isValid() const
Return true if the attribute is any kind of attribute.
Definition Attributes.h:223
LLVM_ABI bool isSingleEdge() const
Check if this is the only edge between Start and End.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator end()
Definition BasicBlock.h:472
iterator begin()
Instruction iterator methods.
Definition BasicBlock.h:459
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
Definition BasicBlock.h:171
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
BinaryOps getOpcode() const
Definition InstrTypes.h:374
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
bool onlyReadsMemory(unsigned OpNo) const
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
This is the base class for all instructions that perform data casts.
Definition InstrTypes.h:448
This class is the base class for the comparison instructions.
Definition InstrTypes.h:664
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ ICMP_SLT
signed less than
Definition InstrTypes.h:705
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:706
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition InstrTypes.h:682
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition InstrTypes.h:691
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition InstrTypes.h:680
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition InstrTypes.h:681
@ ICMP_UGE
unsigned greater or equal
Definition InstrTypes.h:700
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:703
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition InstrTypes.h:690
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition InstrTypes.h:688
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition InstrTypes.h:683
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ ICMP_SGE
signed greater or equal
Definition InstrTypes.h:704
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:702
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition InstrTypes.h:689
bool isSigned() const
Definition InstrTypes.h:930
static LLVM_ABI bool isEquality(Predicate pred)
Determine if this is an equals/not equals predicate.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:827
bool isTrueWhenEqual() const
This is just a convenience.
Definition InstrTypes.h:942
static bool isFPPredicate(Predicate P)
Definition InstrTypes.h:770
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:789
Predicate getPredicate() const
Return the predicate for this instruction.
Definition InstrTypes.h:765
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
Definition InstrTypes.h:893
static bool isIntPredicate(Predicate P)
Definition InstrTypes.h:776
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
bool isUnsigned() const
Definition InstrTypes.h:936
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
LLVM_ABI CmpInst::Predicate getPreferredSignedPredicate() const
Attempts to return a signed CmpInst::Predicate from the CmpPredicate.
CmpInst::Predicate dropSameSign() const
Drops samesign information.
bool hasSameSign() const
Query samesign information, for optimizations.
An array constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
Definition Constants.h:710
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
Definition Constants.h:601
StringRef getAsString() const
If this array is isString(), then this method returns the array as a StringRef.
Definition Constants.h:676
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
Definition Constants.h:784
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI std::optional< ConstantFPRange > makeExactFCmpRegion(FCmpInst::Predicate Pred, const APFloat &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:285
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:171
This class represents a range of values.
PreferredRangeType
If represented precisely, the result of some range operations may consist of multiple disjoint ranges...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI bool isAllNegative() const
Return true if all values in this range are negative.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI bool isAllNonNegative() const
Return true if all values in this range are non-negative.
static LLVM_ABI ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other)
Produce the smallest range such that all values that may satisfy the given predicate with any value c...
LLVM_ABI ConstantRange unionWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the union of this range with another range.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI OverflowResult signedAddMayOverflow(const ConstantRange &Other) const
Return whether signed add of the two ranges always/never overflows.
LLVM_ABI ConstantRange intersectWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the intersection of this range with another range.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
static ConstantRange getNonEmpty(APInt Lower, APInt Upper)
Create non-empty constant range with the given bounds.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
LLVM_ABI ConstantRange sub(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a subtraction of a value in this r...
This is an important base class in LLVM.
Definition Constant.h:43
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
Definition Constants.cpp:76
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition Constants.cpp:90
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
bool isLittleEndian() const
Layout endianness...
Definition DataLayout.h:214
LLVM_ABI const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
LLVM_ABI unsigned getIndexTypeSizeInBits(Type *Ty) const
The size in bits of the index used in GEP calculation for this type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
Definition DataLayout.h:771
ArrayRef< BranchInst * > conditionsFor(const Value *V) const
Access the list of branches which affect this value.
DomTreeNodeBase * getIDom() const
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction extracts a struct member or array element value from an aggregate value.
ArrayRef< unsigned > getIndices() const
unsigned getNumIndices() const
static LLVM_ABI Type * getIndexedType(Type *Agg, ArrayRef< unsigned > Idxs)
Returns the type of the element that would be extracted with an extractvalue instruction with the spe...
This instruction compares its operands according to the predicate given to the constructor.
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition Operator.h:200
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
bool noSignedZeros() const
Definition FMF.h:67
bool noInfs() const
Definition FMF.h:66
void setNoSignedZeros(bool B=true)
Definition FMF.h:84
void setNoNaNs(bool B=true)
Definition FMF.h:78
bool noNaNs() const
Definition FMF.h:65
const BasicBlock & getEntryBlock() const
Definition Function.h:807
bool hasNoSync() const
Determine if the call can synchroize with other threads.
Definition Function.h:637
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Definition Function.cpp:806
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
Definition Globals.cpp:132
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getSwappedCmpPredicate() const
CmpPredicate getInverseCmpPredicate() const
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
static LLVM_ABI std::optional< bool > isImpliedByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
Determine if Pred1 implies Pred2 is true, false, or if nothing can be inferred about the implication,...
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
This instruction inserts a struct field of array element value into an aggregate value.
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
bool isBinaryOp() const
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI bool comesBefore(const Instruction *Other) const
Given an instruction Other in the same basic block as this instruction, return true if this instructi...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
bool isUnaryOp() const
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
Value * getPointerOperand()
Align getAlign() const
Return the alignment of the access that is being performed.
bool isLoopHeader(const BlockT *BB) const
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
Metadata node.
Definition Metadata.h:1078
This is a utility class that provides an abstraction for the common functionality between Instruction...
Definition Operator.h:33
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Definition Operator.h:43
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
Definition Operator.h:78
iterator_range< const_block_iterator > blocks() const
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A udiv, sdiv, lshr, or ashr instruction, which can be marked as "exact", indicating that no bits are ...
Definition Operator.h:154
bool isExact() const
Test whether this division is known to be exact, with zero remainder.
Definition Operator.h:173
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getCondition() const
const Value * getTrueValue() const
This instruction constructs a fixed permutation of two input vectors.
VectorType * getType() const
Overload to return most specific vector type.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
size_type size() const
Definition SmallPtrSet.h:99
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition StringRef.h:573
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition DataLayout.h:723
TypeSize getElementOffset(unsigned Idx) const
Definition DataLayout.h:754
Class to represent struct types.
unsigned getNumElements() const
Random access to the elements.
Type * getElementType(unsigned N) const
Provides information about what library functions are available for the current target.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:297
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:296
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition Type.h:246
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
Definition Type.h:153
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
LLVM_ABI uint64_t getArrayNumElements() const
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:294
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
Definition Type.cpp:295
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition Type.h:311
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
Definition Type.h:270
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
Definition Type.h:255
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:300
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Definition Type.h:225
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:106
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
Definition Use.cpp:35
User * getUser() const
Returns the User that contains this Use.
Definition Use.h:61
op_range operands()
Definition User.h:292
Value * getOperand(unsigned i) const
Definition User.h:232
unsigned getNumOperands() const
Definition User.h:254
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
Definition Value.h:759
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
const KnownBits & getKnownBits(const SimplifyQuery &Q) const
Definition WithCache.h:59
PointerType getValue() const
Definition WithCache.h:57
Represents an op.with.overflow intrinsic.
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
An efficient, type-erasing, non-owning reference to a callable.
TypeSize getSequentialElementStride(const DataLayout &DL) const
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
A range adaptor for a pair of iterators.
CallInst * Call
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define UINT64_MAX
Definition DataTypes.h:77
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
Definition APInt.cpp:3009
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
Definition APInt.h:2264
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrToIntSameSize_match< OpTy > m_PtrToIntSameSize(const DataLayout &DL, const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
auto m_LogicalOp()
Matches either L && R or L || R where L and R are arbitrary values.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
cst_pred_ty< is_power2_or_zero > m_Power2OrZero()
Match an integer or vector of 0 or power-of-2 values.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, true > m_c_NUWAdd(const LHS &L, const RHS &R)
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > > m_OrdOrUnordFMin(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point minimum function.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > m_c_SMin(const LHS &L, const RHS &R)
Matches an SMin with LHS and RHS in either order.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true > m_c_UMax(const LHS &L, const RHS &R)
Matches a UMax with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
NoWrapTrunc_match< OpTy, TruncInst::NoUnsignedWrap > m_NUWTrunc(const OpTy &Op)
Matches trunc nuw.
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > m_c_UMin(const LHS &L, const RHS &R)
Matches a UMin with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > > m_OrdOrUnordFMax(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point maximum function.
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true > m_c_SMax(const LHS &L, const RHS &R)
Matches an SMax with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
cst_pred_ty< is_nonpositive > m_NonPositive()
Match an integer or vector of non-positive values.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
static unsigned decodeVSEW(unsigned VSEW)
LLVM_ABI unsigned getSEWLMULRatio(unsigned SEW, VLMUL VLMul)
static constexpr unsigned RVVBitsPerBlock
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:667
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool haveNoCommonBitsSet(const WithCache< const Value * > &LHSCache, const WithCache< const Value * > &RHSCache, const SimplifyQuery &SQ)
Return true if LHS and RHS have no common bits set.
LLVM_ABI bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, Instruction *OnPathTo, DominatorTree *DT)
Return true if undefined behavior would provable be executed on the path to OnPathTo if Root produced...
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
LLVM_ABI bool willNotFreeBetween(const Instruction *Assume, const Instruction *CtxI)
Returns true, if no instruction between Assume and CtxI may free memory and the function is marked as...
@ Offset
Definition DWP.cpp:532
@ Length
Definition DWP.cpp:532
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
LLVM_ABI KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, const SimplifyQuery &SQ, unsigned Depth=0)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1667
LLVM_ABI bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
LLVM_ABI bool mustTriggerUB(const Instruction *I, const SmallPtrSetImpl< const Value * > &KnownPoison)
Return true if the given instruction must trigger undefined behavior when I is executed with any oper...
LLVM_ABI bool isKnownNeverInfinity(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not an infinity or if the floating-point vector val...
LLVM_ABI void computeKnownBitsFromContext(const Value *V, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth=0)
Merge bits known from context-dependent facts into Known.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
Definition ScopeExit.h:59
LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
LLVM_ABI const Value * getArgumentAliasingToReturnedPointer(const CallBase *Call, bool MustPreserveNullness)
This function returns call pointer argument that is considered the same by aliasing rules.
LLVM_ABI bool isAssumeLikeIntrinsic(const Instruction *I)
Return true if it is an intrinsic that cannot be speculated but also cannot trap.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2503
LLVM_ABI AllocaInst * findAllocaForValue(Value *V, bool OffsetZero=false)
Returns unique alloca where the value comes from, or nullptr.
LLVM_ABI APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth)
Return the minimum or maximum constant value for the specified integer min/max flavor and type.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool isOnlyUsedInZeroComparison(const Instruction *CxtI)
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
LLVM_ABI bool getConstantStringInfo(const Value *V, StringRef &Str, bool TrimAtNul=true)
This function computes the length of a null-terminated C string pointed to by V.
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
Definition Loads.cpp:229
LLVM_ABI bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V)
Return true if the only users of this pointer are lifetime markers or droppable instructions.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
LLVM_ABI Value * stripNullTest(Value *V)
Returns the inner value X if the expression has the form f(X) where f(X) == 0 if and only if X == 0,...
LLVM_ABI bool getUnderlyingObjectsForCodeGen(const Value *V, SmallVectorImpl< Value * > &Objects)
This is a wrapper around getUnderlyingObjects and adds support for basic ptrtoint+arithmetic+inttoptr...
LLVM_ABI std::pair< Intrinsic::ID, bool > canConvertToMinOrMaxIntrinsic(ArrayRef< Value * > VL)
Check if the values in VL are select instructions that can be converted to a min or max (vector) intr...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
Definition bit.h:303
LLVM_ABI bool isGuaranteedToExecuteForEveryIteration(const Instruction *I, const Loop *L)
Return true if this function can prove that the instruction I is executed for every iteration of the ...
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2157
LLVM_ABI bool mustSuppressSpeculation(const LoadInst &LI)
Return true if speculation of the given load must be suppressed to avoid ordering or interfering with...
Definition Loads.cpp:420
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition MathExtras.h:284
gep_type_iterator gep_type_end(const User *GEP)
constexpr bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
Definition APFloat.h:1516
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:676
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:337
LLVM_ABI bool canIgnoreSignBitOfZero(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is zero.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
std::tuple< Value *, FPClassTest, FPClassTest > fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS, FPClassTest RHSClass, bool LookThroughSrc=true)
LLVM_ABI ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
LLVM_ABI bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition bit.h:202
LLVM_ABI bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, const DominatorTree &DT)
Returns true if the arithmetic part of the WO 's result is used only along the paths control dependen...
LLVM_ABI RetainedKnowledge getKnowledgeFromBundle(AssumeInst &Assume, const CallBase::BundleOpInfo &BOI)
This extracts the Knowledge from an element of an operand bundle.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
LLVM_ABI OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ, bool IsNSW=false)
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:331
bool isGuard(const User *U)
Returns true iff U has semantics of a guard expressed in a form of call of llvm.experimental....
LLVM_ABI SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF)
Return the inverse minimum/maximum flavor of the specified flavor.
constexpr unsigned MaxAnalysisRecursionDepth
LLVM_ABI void adjustKnownBitsForSelectArm(KnownBits &Known, Value *Cond, Value *Arm, bool Invert, const SimplifyQuery &Q, unsigned Depth=0)
Adjust Known for the given select Arm to include information from the select Cond.
LLVM_ABI bool isKnownNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be negative (i.e.
LLVM_ABI OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_UNKNOWN
@ SPF_FMINNUM
Unsigned maximum.
LLVM_ABI bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(const CallBase *Call, bool MustPreserveNullness)
{launder,strip}.invariant.group returns pointer that aliases its argument, and it only captures point...
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI void getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS)
Compute the demanded elements mask of horizontal binary operations.
LLVM_ABI SelectPatternResult getSelectPattern(CmpInst::Predicate Pred, SelectPatternNaNBehavior NaNBehavior=SPNB_NA, bool Ordered=false)
Determine the pattern for predicate X Pred Y ? X : Y.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool programUndefinedIfPoison(const Instruction *Inst)
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool matchSimpleBinaryIntrinsicRecurrence(const IntrinsicInst *I, PHINode *&P, Value *&Init, Value *&OtherOp)
Attempt to match a simple value-accumulating recurrence of the form: llvm.intrinsic....
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
LLVM_ABI bool programUndefinedIfUndefOrPoison(const Instruction *Inst)
Return true if this function can prove that if Inst is executed and yields a poison value or undef bi...
generic_gep_type_iterator<> gep_type_iterator
LLVM_ABI bool collectPossibleValues(const Value *V, SmallPtrSetImpl< const Constant * > &Constants, unsigned MaxCount, bool AllowUndefOrPoison=true)
Enumerates all possible immediate values of V and inserts them into the set Constants.
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
LLVM_ABI uint64_t GetStringLength(const Value *V, unsigned CharSize=8)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
LLVM_ABI OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI RetainedKnowledge getKnowledgeValidInContext(const Value *V, ArrayRef< Attribute::AttrKind > AttrKinds, AssumptionCache &AC, const Instruction *CtxI, const DominatorTree *DT=nullptr)
Return a valid Knowledge associated to the Value V if its Attribute kind is in AttrKinds and the know...
LLVM_ABI bool isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, const Instruction *Inst, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
This returns the same result as isSafeToSpeculativelyExecute if Opcode is the actual opcode of Inst.
LLVM_ABI bool onlyUsedByLifetimeMarkers(const Value *V)
Return true if the only users of this pointer are lifetime markers.
LLVM_ABI Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB, const TargetLibraryInfo *TLI)
Map a call instruction to an intrinsic ID.
@ Other
Any other memory.
Definition ModRef.h:68
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:74
LLVM_ABI const Value * getUnderlyingObjectAggressive(const Value *V)
Like getUnderlyingObject(), but will try harder to find a single underlying object.
LLVM_ABI Intrinsic::ID getMinMaxIntrinsic(SelectPatternFlavor SPF)
Convert given SPF to equivalent min/max intrinsic.
LLVM_ABI SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, FastMathFlags FMF=FastMathFlags(), Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
LLVM_ABI OverflowResult computeOverflowForSignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
LLVM_ABI bool propagatesPoison(const Use &PoisonOp)
Return true if PoisonOp's user yields poison or raises UB if its operand PoisonOp is poison.
@ Add
Sum of integers.
LLVM_ABI ConstantRange computeConstantRangeIncludingKnownBits(const WithCache< const Value * > &V, bool ForSigned, const SimplifyQuery &SQ)
Combine constant ranges from computeConstantRange() and computeKnownBits().
SelectPatternNaNBehavior
Behavior when a floating point min/max is given one NaN and one non-NaN as input.
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
LLVM_ABI bool isKnownNonEqual(const Value *V1, const Value *V2, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the given values are known to be non-equal when defined.
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return the number of times the sign bit of the register is replicated into the other bits.
constexpr unsigned BitWidth
LLVM_ABI KnownBits analyzeKnownBitsFromAndXorOr(const Operator *I, const KnownBits &KnownLHS, const KnownBits &KnownRHS, const SimplifyQuery &SQ, unsigned Depth=0)
Using KnownBits LHS/RHS produce the known bits for logic op (and/xor/or).
LLVM_ABI OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
constexpr bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1748
LLVM_ABI bool isKnownNeverInfOrNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point value can never contain a NaN or infinity.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
gep_type_iterator gep_type_begin(const User *GEP)
LLVM_ABI Value * isBytewiseValue(Value *V, const DataLayout &DL)
If the specified value can be set by repeating the same byte in memory, return the i8 value that it i...
LLVM_ABI std::optional< std::pair< CmpPredicate, Constant * > > getFlippedStrictnessPredicateAndConstant(CmpPredicate Pred, Constant *C)
Convert an integer comparison with a constant RHS into an equivalent form with the strictness flipped...
LLVM_ABI unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Get the upper bound on bit size for this Value Op as a signed integer.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1918
LLVM_ABI OverflowResult computeOverflowForUnsignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition Alignment.h:197
LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return true if the given value is known to have exactly one bit set when defined.
LLVM_ABI std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_ABI Value * FindInsertedValue(Value *V, ArrayRef< unsigned > idx_range, std::optional< BasicBlock::iterator > InsertBefore=std::nullopt)
Given an aggregate and an sequence of indices, see if the scalar value indexed is already around as a...
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI bool isKnownPositive(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be positive (i.e.
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
LLVM_ABI bool cannotBeOrderedLessThanZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is either NaN or never less than -0....
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
LLVM_ABI bool mayHaveNonDefUseDependency(const Instruction &I)
Returns true if the result or effects of the given instructions I depend values not reachable through...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI bool isIdentifiedObject(const Value *V)
Return true if this pointer refers to a distinct and identifiable object.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI std::optional< bool > computeKnownFPSignBit(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return false if we can prove that the specified FP value's sign bit is 0.
LLVM_ABI bool canIgnoreSignBitOfNaN(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is NaN.
LLVM_ABI void findValuesAffectedByCondition(Value *Cond, bool IsAssume, function_ref< void(Value *)> InsertAffected)
Call InsertAffected on all Values whose known bits / value may be affected by the condition Cond.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
SmallPtrSet< Value *, 4 > AffectedValues
Represents offset+length into a ConstantDataArray.
const ConstantDataArray * Array
ConstantDataArray pointer.
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
constexpr bool outputsAreZero() const
Return true if output denormals should be flushed to 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
constexpr bool inputsAreZero() const
Return true if input denormals must be implicitly treated as 0.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getIEEE()
InstrInfoQuery provides an interface to query additional information for instructions like metadata o...
bool isExact(const BinaryOperator *Op) const
MDNode * getMetadata(const Instruction *I, unsigned KindID) const
bool hasNoSignedZeros(const InstT *Op) const
bool hasNoSignedWrap(const InstT *Op) const
bool hasNoUnsignedWrap(const InstT *Op) const
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
Definition KnownBits.h:301
static LLVM_ABI KnownBits sadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.sadd.sat(LHS, RHS)
static LLVM_ABI std::optional< bool > eq(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_EQ result.
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
Definition KnownBits.h:186
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
Definition KnownBits.h:255
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition KnownBits.h:108
LLVM_ABI KnownBits blsi() const
Compute known bits for X & -X, which has only the lowest bit set of X set.
void makeNonNegative()
Make this value non-negative.
Definition KnownBits.h:124
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
Definition KnownBits.h:251
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition KnownBits.h:242
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits ssub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.ssub.sat(LHS, RHS)
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
Definition KnownBits.h:66
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
Definition KnownBits.h:274
LLVM_ABI KnownBits blsmsk() const
Compute known bits for X ^ (X - 1), which has all bits up to and including the lowest set bit of X se...
void makeNegative()
Make this value negative.
Definition KnownBits.h:119
void setAllConflict()
Make all bits known to be both zero and one.
Definition KnownBits.h:99
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
Definition KnownBits.h:161
KnownBits byteSwap() const
Definition KnownBits.h:514
bool hasConflict() const
Returns true if there is conflicting information.
Definition KnownBits.h:51
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
Definition KnownBits.h:289
void setAllZero()
Make all bits known to be zero and discard any previous information.
Definition KnownBits.h:86
KnownBits reverseBits() const
Definition KnownBits.h:518
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
Definition KnownBits.h:172
bool isConstant() const
Returns true if we know the value of all bits.
Definition KnownBits.h:54
void resetAll()
Resets the known state of all bits.
Definition KnownBits.h:74
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
Definition KnownBits.h:321
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
Definition KnownBits.h:111
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
Definition KnownBits.h:225
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
Definition KnownBits.h:311
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
Definition KnownBits.h:180
unsigned countMinTrailingOnes() const
Returns the minimum number of trailing one bits.
Definition KnownBits.h:245
static KnownBits add(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from addition of LHS and RHS.
Definition KnownBits.h:347
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
Definition KnownBits.h:196
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition KnownBits.h:248
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
Definition KnownBits.h:145
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
APInt getMinValue() const
Return the minimal unsigned value possible given these KnownBits.
Definition KnownBits.h:129
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
Definition KnownBits.cpp:60
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
Definition KnownBits.h:326
bool isNegative() const
Returns true if this value is known to be negative.
Definition KnownBits.h:105
static KnownBits sub(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from subtraction of LHS and RHS.
Definition KnownBits.h:353
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
Definition KnownBits.h:280
void setAllOnes()
Make all bits known to be one and discard any previous information.
Definition KnownBits.h:92
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
Definition KnownBits.h:219
static LLVM_ABI KnownBits uadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.uadd.sat(LHS, RHS)
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
Definition KnownBits.h:167
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
KnownBits sextOrTrunc(unsigned BitWidth) const
Return known bits for a sign extension or truncation of the value we're tracking.
Definition KnownBits.h:206
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
bool cannotBeOrderedGreaterThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never greater tha...
static constexpr FPClassTest OrderedGreaterThanZeroMask
static constexpr FPClassTest OrderedLessThanZeroMask
void knownNot(FPClassTest RuleOut)
void copysign(const KnownFPClass &Sign)
bool isKnownNeverSubnormal() const
Return true if it's known this can never be a subnormal.
LLVM_ABI bool isKnownNeverLogicalZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a zero.
bool isUnknown() const
bool isKnownNeverNegInfinity() const
Return true if it's known this can never be -infinity.
bool isKnownNeverNegSubnormal() const
Return true if it's known this can never be a negative subnormal.
bool isKnownNeverPosZero() const
Return true if it's known this can never be a literal positive zero.
std::optional< bool > SignBit
std::nullopt if the sign bit is unknown, true if the sign bit is definitely set or false if the sign ...
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool isKnownNever(FPClassTest Mask) const
Return true if it's known this can never be one of the mask entries.
bool isKnownNeverNegZero() const
Return true if it's known this can never be a negative zero.
void propagateNaN(const KnownFPClass &Src, bool PreserveSign=false)
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
void signBitMustBeOne()
Assume the sign bit is one.
LLVM_ABI void propagateCanonicalizingSrc(const KnownFPClass &Src, DenormalMode Mode)
Report known classes if Src is evaluated through a potentially canonicalizing operation.
void signBitMustBeZero()
Assume the sign bit is zero.
LLVM_ABI bool isKnownNeverLogicalPosZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a positive zero.
bool isKnownNeverPosInfinity() const
Return true if it's known this can never be +infinity.
LLVM_ABI bool isKnownNeverLogicalNegZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a negative zero.
bool isKnownNeverPosSubnormal() const
Return true if it's known this can never be a positive subnormal.
Represent one information held inside an operand bundle of an llvm.assume.
SelectPatternFlavor Flavor
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
const DataLayout & DL
SimplifyQuery getWithoutCondContext() const
const Instruction * CxtI
const DominatorTree * DT
SimplifyQuery getWithInstruction(const Instruction *I) const
AssumptionCache * AC
const DomConditionCache * DC
const InstrInfoQuery IIQ
const CondContext * CC