41 cl::desc(
"Use ConstantInt's native fixed-length vector splat support."));
44 cl::desc(
"Use ConstantFP's native fixed-length vector splat support."));
47 cl::desc(
"Use ConstantInt's native scalable vector splat support."));
50 cl::desc(
"Use ConstantFP's native scalable vector splat support."));
59 return CFP->isZero() && CFP->isNegative();
64 return SplatCFP->isNegativeZeroValue();
67 if (
getType()->isFPOrFPVectorTy())
84 return SplatCFP->isZero();
99 return CFP->isExactlyValue(+0.0);
110 return CI->isMinusOne();
114 return CFP->getValueAPF().bitcastToAPInt().isAllOnes();
119 return SplatVal->isAllOnesValue();
131 return CFP->getValueAPF().bitcastToAPInt().isOne();
136 return SplatVal->isOneValue();
144 return !CI->isOneValue();
148 return !CFP->getValueAPF().bitcastToAPInt().isOne();
152 for (
unsigned I = 0, E = VTy->getNumElements();
I != E; ++
I) {
163 return SplatVal->isNotOneValue();
172 return CI->isMinValue(
true);
176 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
181 return SplatVal->isMinSignedValue();
189 return !CI->isMinValue(
true);
193 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
197 for (
unsigned I = 0, E = VTy->getNumElements();
I != E; ++
I) {
208 return SplatVal->isNotMinSignedValue();
216 return CFP->getValueAPF().isFiniteNonZero();
219 for (
unsigned I = 0, E = VTy->getNumElements();
I != E; ++
I) {
221 if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
229 return SplatCFP->isFiniteNonZeroFP();
237 return CFP->getValueAPF().isNormal();
240 for (
unsigned I = 0, E = VTy->getNumElements();
I != E; ++
I) {
242 if (!CFP || !CFP->getValueAPF().isNormal())
250 return SplatCFP->isNormalFP();
258 return CFP->getValueAPF().getExactInverse(
nullptr);
261 for (
unsigned I = 0, E = VTy->getNumElements();
I != E; ++
I) {
263 if (!CFP || !CFP->getValueAPF().getExactInverse(
nullptr))
271 return SplatCFP->hasExactInverseFP();
282 for (
unsigned I = 0, E = VTy->getNumElements();
I != E; ++
I) {
284 if (!CFP || !CFP->isNaN())
292 return SplatCFP->isNaN();
309 if (!(VTy->getElementType()->isIntegerTy() ||
310 VTy->getElementType()->isFloatingPointTy()))
335 if (
Constant *Elem =
C->getAggregateElement(i))
365 for (
unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
374 switch (Ty->getTypeID()) {
376 return ConstantInt::get(Ty, 0);
384 return ConstantFP::get(Ty->getContext(),
407 Constant *
C = ConstantInt::get(Ty->getContext(), V);
422 return ConstantInt::get(Ty->getContext(),
425 if (Ty->isFloatingPointTy()) {
427 return ConstantFP::get(Ty->getContext(), FL);
437 "Must be an aggregate/vector constant");
440 return Elt < CC->getNumOperands() ? CC->getOperand(Elt) :
nullptr;
443 return Elt < CAZ->getElementCount().getKnownMinValue()
444 ? CAZ->getElementValue(Elt)
448 return Elt < cast<VectorType>(
getType())
451 ? ConstantInt::get(
getContext(), CI->getValue())
455 return Elt < cast<VectorType>(
getType())
458 ? ConstantFP::get(
getContext(), CFP->getValue())
466 return Elt < PV->getNumElements() ? PV->getElementValue(Elt) :
nullptr;
469 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) :
nullptr;
472 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
482 if (CI->getValue().getActiveBits() > 64)
495#define HANDLE_CONSTANT(Name) \
496 case Value::Name##Val: \
497 cast<Name>(this)->destroyConstantImpl(); \
499#include "llvm/IR/Value.def"
513 dbgs() <<
"While deleting: " << *
this
514 <<
"\n\nUse still stuck around after Def is destroyed: " << *V
530 switch (
C->getValueID()) {
531 case Constant::ConstantIntVal:
534 case Constant::ConstantFPVal:
537 case Constant::ConstantAggregateZeroVal:
540 case Constant::ConstantArrayVal:
543 case Constant::ConstantStructVal:
546 case Constant::ConstantVectorVal:
549 case Constant::ConstantPointerNullVal:
552 case Constant::ConstantDataArrayVal:
555 case Constant::ConstantDataVectorVal:
558 case Constant::ConstantTokenNoneVal:
561 case Constant::BlockAddressVal:
564 case Constant::DSOLocalEquivalentVal:
567 case Constant::NoCFIValueVal:
570 case Constant::ConstantPtrAuthVal:
573 case Constant::UndefValueVal:
576 case Constant::PoisonValueVal:
579 case Constant::ConstantExprVal:
609 while (!WorkList.
empty()) {
618 if (Visited.
insert(ConstOp).second)
626 auto DLLImportPredicate = [](
const GlobalValue *GV) {
627 return GV->isThreadLocal();
633 auto DLLImportPredicate = [](
const GlobalValue *GV) {
634 return GV->hasDLLImportStorageClass();
652 return getRelocationInfo() == GlobalRelocation;
656 return getRelocationInfo() != NoRelocation;
659Constant::PossibleRelocationsTy Constant::getRelocationInfo()
const {
661 return GlobalRelocation;
664 return BA->getFunction()->getRelocationInfo();
667 if (CE->getOpcode() == Instruction::Sub) {
671 (LHS->getOpcode() == Instruction::PtrToInt ||
672 LHS->getOpcode() == Instruction::PtrToAddr) &&
673 (RHS->getOpcode() == Instruction::PtrToInt ||
674 RHS->getOpcode() == Instruction::PtrToAddr)) {
692 if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal())
693 return LocalRelocation;
695 if (RHSGV->isDSOLocal())
696 return LocalRelocation;
703 PossibleRelocationsTy
Result = NoRelocation;
719 if (!
User)
return false;
732 if (RemoveDeadUsers) {
736 const_cast<Constant *
>(
C)->destroyConstant();
762 if (LastNonDeadUser == E)
765 I = std::next(LastNonDeadUser);
773bool Constant::hasNLiveUses(
unsigned N)
const {
774 unsigned NumUses = 0;
788 assert(
C && Replacement &&
"Expected non-nullptr constant arguments");
789 Type *Ty =
C->getType();
791 assert(Ty == Replacement->
getType() &&
"Expected matching types");
800 unsigned NumElts = VTy->getNumElements();
802 for (
unsigned i = 0; i != NumElts; ++i) {
803 Constant *EltC =
C->getAggregateElement(i);
805 "Expected matching types");
806 NewC[i] = EltC &&
match(EltC,
m_Undef()) ? Replacement : EltC;
812 assert(
C &&
Other &&
"Expected non-nullptr constant arguments");
816 Type *Ty =
C->getType();
824 Type *EltTy = VTy->getElementType();
825 unsigned NumElts = VTy->getNumElements();
830 bool FoundExtraUndef =
false;
832 for (
unsigned I = 0;
I != NumElts; ++
I) {
833 NewC[
I] =
C->getAggregateElement(
I);
835 assert(NewC[
I] && OtherEltC &&
"Unknown vector element");
838 FoundExtraUndef =
true;
864ConstantInt::ConstantInt(
Type *Ty,
const APInt &V)
868 "Invalid constant for type");
890 assert(Ty->isIntOrIntVectorTy(1) &&
"Type not i1 or vector of i1.");
898 assert(Ty->isIntOrIntVectorTy(1) &&
"Type not i1 or vector of i1.");
913 std::unique_ptr<ConstantInt> &Slot =
920 Slot.reset(
new ConstantInt(ITy, V));
930 std::unique_ptr<ConstantInt> &Slot =
931 Context.pImpl->IntSplatConstants[std::make_pair(EC, V)];
941 assert(Slot->getType() == VTy);
959 return get(Ty->getContext(),
964 ConstantInt *
C = get(Ty->getContext(), V);
965 assert(
C->getType() == Ty->getScalarType() &&
966 "ConstantInt type doesn't match the type implied by its value!");
976 return get(Ty->getContext(),
APInt(Ty->getBitWidth(), Str, radix));
980void ConstantInt::destroyConstantImpl() {
993 FV.
convert(Ty->getScalarType()->getFltSemantics(),
1005 ConstantFP *
C = get(Ty->getContext(), V);
1006 assert(
C->getType() == Ty->getScalarType() &&
1007 "ConstantFP type doesn't match the type implied by its value!");
1019 APFloat FV(Ty->getScalarType()->getFltSemantics(), Str);
1030 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1032 Constant *
C = get(Ty->getContext(), NaN);
1041 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1043 Constant *
C = get(Ty->getContext(), NaN);
1052 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1054 Constant *
C = get(Ty->getContext(), NaN);
1063 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1065 Constant *
C = get(Ty->getContext(), NegZero);
1078 std::unique_ptr<ConstantFP> &Slot = pImpl->
FPConstants[V];
1082 Slot.reset(
new ConstantFP(Ty, V));
1092 std::unique_ptr<ConstantFP> &Slot =
1093 Context.pImpl->FPSplatConstants[std::make_pair(EC, V)];
1103 assert(Slot->getType() == VTy);
1109 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1120 assert(&V.getSemantics() == &Ty->getScalarType()->getFltSemantics() &&
1121 "FP type Mismatch");
1125 return Val.bitwiseIsEqual(V);
1129void ConstantFP::destroyConstantImpl() {
1164 return VT->getElementCount();
1197 return AT->getNumElements();
1200 return Ty->getStructNumElements();
1233template <
typename ItTy,
typename EltTy>
1235 for (; Start != End; ++Start)
1241template <
typename SequentialTy,
typename ElementTy>
1243 assert(!V.empty() &&
"Cannot get empty int sequence.");
1251 return SequentialTy::get(V[0]->getContext(), Elts);
1254template <
typename SequentialTy,
typename ElementTy>
1256 assert(!V.empty() &&
"Cannot get empty FP sequence.");
1261 Elts.
push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1264 return SequentialTy::getFP(V[0]->
getType(), Elts);
1267template <
typename SequenceTy>
1274 if (CI->getType()->isIntegerTy(8))
1276 else if (CI->getType()->isIntegerTy(16))
1278 else if (CI->getType()->isIntegerTy(32))
1280 else if (CI->getType()->isIntegerTy(64))
1283 if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy())
1285 else if (CFP->getType()->isFloatTy())
1287 else if (CFP->getType()->isDoubleTy())
1304 for (
unsigned I = 0, E = V.size();
I != E; ++
I)
1306 "Initializer for struct element doesn't match!");
1313 assert(V.size() ==
T->getNumElements() &&
1314 "Invalid initializer for constant array");
1320 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
1329 assert(
C->getType() == Ty->getElementType() &&
1330 "Wrong type in array element initializer");
1359 unsigned VecSize = V.size();
1361 for (
unsigned i = 0; i != VecSize; ++i)
1362 EltTypes[i] = V[i]->
getType();
1371 "ConstantStruct::getTypeForElements cannot be called on empty list");
1378 assert((
T->isOpaque() || V.size() ==
T->getNumElements()) &&
1379 "Invalid initializer for constant struct");
1384 assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
1385 "Incorrect # elements specified to ConstantStruct::get");
1390 bool isPoison =
false;
1395 isZero = V[0]->isNullValue();
1399 if (!
C->isNullValue())
1415 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1422 "Invalid initializer for constant vector");
1430 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1434 assert(!V.empty() &&
"Vectors can't be empty");
1440 bool isZero =
C->isNullValue();
1447 for (
unsigned i = 1, e = V.size(); i != e; ++i)
1449 isZero =
isUndef = isPoison = isSplatFP = isSplatInt =
false;
1461 return ConstantFP::get(
C->getContext(),
T->getElementCount(),
1464 return ConstantInt::get(
C->getContext(),
T->getElementCount(),
1478 if (!EC.isScalable()) {
1480 if (!V->isNullValue()) {
1482 return ConstantInt::get(V->getContext(), EC,
1485 return ConstantFP::get(V->getContext(), EC,
1500 if (!V->isNullValue()) {
1502 return ConstantInt::get(V->getContext(), EC,
1505 return ConstantFP::get(V->getContext(), EC,
1511 if (V->isNullValue())
1532 pImpl->
TheNoneToken.reset(
new ConstantTokenNone(Context));
1537void ConstantTokenNone::destroyConstantImpl() {
1555 bool OnlyIfReduced,
Type *SrcTy)
const {
1562 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty :
nullptr;
1564 case Instruction::Trunc:
1565 case Instruction::ZExt:
1566 case Instruction::SExt:
1567 case Instruction::FPTrunc:
1568 case Instruction::FPExt:
1569 case Instruction::UIToFP:
1570 case Instruction::SIToFP:
1571 case Instruction::FPToUI:
1572 case Instruction::FPToSI:
1573 case Instruction::PtrToAddr:
1574 case Instruction::PtrToInt:
1575 case Instruction::IntToPtr:
1576 case Instruction::BitCast:
1577 case Instruction::AddrSpaceCast:
1579 case Instruction::InsertElement:
1582 case Instruction::ExtractElement:
1584 case Instruction::ShuffleVector:
1587 case Instruction::GetElementPtr: {
1591 SrcTy ? SrcTy : GEPO->getSourceElementType(),
Ops[0],
Ops.slice(1),
1592 GEPO->getNoWrapFlags(), GEPO->getInRange(), OnlyIfReducedTy);
1606 unsigned NumBits = Ty->getIntegerBitWidth();
1607 if (Ty->isIntegerTy(1))
1608 return Val == 0 || Val == 1;
1613 unsigned NumBits = Ty->getIntegerBitWidth();
1614 if (Ty->isIntegerTy(1))
1615 return Val == 0 || Val == 1 || Val == -1;
1616 return isIntN(NumBits, Val);
1623 switch (Ty->getTypeID()) {
1681 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1682 "Cannot create an aggregate zero of non-aggregate type!");
1684 std::unique_ptr<ConstantAggregateZero> &Entry =
1685 Ty->getContext().pImpl->CAZConstants[Ty];
1687 Entry.reset(
new ConstantAggregateZero(Ty));
1693void ConstantAggregateZero::destroyConstantImpl() {
1698void ConstantArray::destroyConstantImpl() {
1707void ConstantStruct::destroyConstantImpl() {
1712void ConstantVector::destroyConstantImpl() {
1717 assert(this->
getType()->isVectorTy() &&
"Only valid for vectors!");
1723 return ConstantInt::get(
getContext(), CI->getValue());
1725 return ConstantFP::get(
getContext(), CFP->getValue());
1727 return CV->getSplatValue();
1729 return CV->getSplatValue(AllowPoison);
1734 if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector &&
1738 if (IElt && IElt->getOpcode() == Instruction::InsertElement &&
1742 Constant *SplatVal = IElt->getOperand(1);
1745 if (Index && Index->getValue() == 0 &&
1783 return CI->getValue();
1801 return ConstantRange::getFull(
BitWidth);
1809 for (
unsigned I = 0, E = CDV->getNumElements();
I < E; ++
I)
1810 CR = CR.
unionWith(CDV->getElementAsAPInt(
I));
1816 for (
unsigned I = 0, E = CV->getNumOperands();
I < E; ++
I) {
1819 return ConstantRange::getFull(
BitWidth);
1824 return ConstantRange::getFull(
BitWidth);
1830 return ConstantRange::getFull(
BitWidth);
1837 std::unique_ptr<ConstantPointerNull> &Entry =
1840 Entry.reset(
new ConstantPointerNull(Ty));
1846void ConstantPointerNull::destroyConstantImpl() {
1855 "Target extension type not allowed to have a zeroinitializer");
1856 std::unique_ptr<ConstantTargetNone> &Entry =
1857 Ty->getContext().pImpl->CTNConstants[Ty];
1859 Entry.reset(
new ConstantTargetNone(Ty));
1865void ConstantTargetNone::destroyConstantImpl() {
1872 Entry.reset(
new UndefValue(Ty));
1878void UndefValue::destroyConstantImpl() {
1891 Entry.reset(
new PoisonValue(Ty));
1897void PoisonValue::destroyConstantImpl() {
1905 BA =
new BlockAddress(Ty, BB);
1922 BB->setHasAddressTaken(
true);
1930 assert(BA &&
"Refcount and block address map disagree!");
1935void BlockAddress::destroyConstantImpl() {
1967 Equiv =
new DSOLocalEquivalent(GV);
1970 "DSOLocalFunction does not match the expected global value");
1974DSOLocalEquivalent::DSOLocalEquivalent(
GlobalValue *GV)
1980void DSOLocalEquivalent::destroyConstantImpl() {
1985Value *DSOLocalEquivalent::handleOperandChangeImpl(
Value *From,
Value *To) {
1991 DSOLocalEquivalent *&NewEquiv =
2025 NC =
new NoCFIValue(GV);
2027 assert(
NC->getGlobalValue() == GV &&
2028 "NoCFIValue does not match the expected global value");
2038void NoCFIValue::destroyConstantImpl() {
2047 assert(GV &&
"Can only replace the operands with a global value");
2092void ConstantPtrAuth::destroyConstantImpl() {
2096Value *ConstantPtrAuth::handleOperandChangeImpl(
Value *From,
Value *ToV) {
2103 unsigned NumUpdated = 0;
2106 unsigned OperandNo = 0;
2110 OperandNo = (
O - OperandList);
2118 Values,
this, From, To, NumUpdated, OperandNo);
2123 if (!CastV || CastV->getOpcode() != Instruction::IntToPtr)
2130 return IntVal->getValue() ==
Value;
2134 const Value *Discriminator,
2152 const Value *AddrDiscriminator =
nullptr;
2158 if (!
match(Discriminator,
2164 AddrDiscriminator = Discriminator;
2171 AddrDiscriminator = Cast->getPointerOperand();
2186 APInt Off2(
DL.getIndexTypeSizeInBits(AddrDiscriminator->
getType()), 0);
2190 return Base1 == Base2 && Off1 == Off2;
2199 bool OnlyIfReduced =
false) {
2200 assert(Ty->isFirstClassType() &&
"Cannot cast to an aggregate type!");
2217 bool OnlyIfReduced) {
2221 "Cast opcode not supported as constant expression");
2222 assert(
C && Ty &&
"Null arguments to getCast");
2228 case Instruction::Trunc:
2230 case Instruction::PtrToAddr:
2232 case Instruction::PtrToInt:
2234 case Instruction::IntToPtr:
2236 case Instruction::BitCast:
2238 case Instruction::AddrSpaceCast:
2244 if (
C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2251 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2254 if (Ty->isIntOrIntVectorTy())
2258 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
2267 assert(Ty->isPtrOrPtrVectorTy() &&
"Invalid cast");
2280 assert((fromVec == toVec) &&
"Cannot convert from scalar to/from vector");
2281 assert(
C->getType()->isIntOrIntVectorTy() &&
"Trunc operand must be integer");
2282 assert(Ty->isIntOrIntVectorTy() &&
"Trunc produces only integral");
2283 assert(
C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
2284 "SrcTy must be larger than DestTy for Trunc!");
2290 bool OnlyIfReduced) {
2291 assert(
C->getType()->isPtrOrPtrVectorTy() &&
2292 "PtrToAddr source must be pointer or pointer vector");
2294 "PtrToAddr destination must be integer or integer vector");
2299 "Invalid cast between a different number of vector elements");
2300 return getFoldedCast(Instruction::PtrToAddr,
C, DstTy, OnlyIfReduced);
2304 bool OnlyIfReduced) {
2305 assert(
C->getType()->isPtrOrPtrVectorTy() &&
2306 "PtrToInt source must be pointer or pointer vector");
2308 "PtrToInt destination must be integer or integer vector");
2313 "Invalid cast between a different number of vector elements");
2314 return getFoldedCast(Instruction::PtrToInt,
C, DstTy, OnlyIfReduced);
2318 bool OnlyIfReduced) {
2319 assert(
C->getType()->isIntOrIntVectorTy() &&
2320 "IntToPtr source must be integer or integer vector");
2322 "IntToPtr destination must be a pointer or pointer vector");
2327 "Invalid cast between a different number of vector elements");
2328 return getFoldedCast(Instruction::IntToPtr,
C, DstTy, OnlyIfReduced);
2332 bool OnlyIfReduced) {
2334 "Invalid constantexpr bitcast!");
2338 if (
C->getType() == DstTy)
return C;
2340 return getFoldedCast(Instruction::BitCast,
C, DstTy, OnlyIfReduced);
2344 bool OnlyIfReduced) {
2346 "Invalid constantexpr addrspacecast!");
2347 return getFoldedCast(Instruction::AddrSpaceCast,
C, DstTy, OnlyIfReduced);
2351 unsigned Flags,
Type *OnlyIfReducedTy) {
2354 "Invalid opcode in binary constant expression");
2356 "Binop not supported as constant expression");
2358 "Operand types in binary constant expression should match");
2362 case Instruction::Add:
2363 case Instruction::Sub:
2364 case Instruction::Mul:
2366 "Tried to create an integer operation on a non-integer type!");
2368 case Instruction::And:
2369 case Instruction::Or:
2370 case Instruction::Xor:
2372 "Tried to create a logical operation on a non-integral type!");
2382 if (OnlyIfReducedTy == C1->
getType())
2394 case Instruction::UDiv:
2395 case Instruction::SDiv:
2396 case Instruction::URem:
2397 case Instruction::SRem:
2398 case Instruction::FAdd:
2399 case Instruction::FSub:
2400 case Instruction::FMul:
2401 case Instruction::FDiv:
2402 case Instruction::FRem:
2403 case Instruction::And:
2404 case Instruction::Or:
2405 case Instruction::LShr:
2406 case Instruction::AShr:
2407 case Instruction::Shl:
2408 case Instruction::Mul:
2410 case Instruction::Add:
2411 case Instruction::Sub:
2412 case Instruction::Xor:
2421 case Instruction::UDiv:
2422 case Instruction::SDiv:
2423 case Instruction::URem:
2424 case Instruction::SRem:
2425 case Instruction::FAdd:
2426 case Instruction::FSub:
2427 case Instruction::FMul:
2428 case Instruction::FDiv:
2429 case Instruction::FRem:
2430 case Instruction::And:
2431 case Instruction::Or:
2432 case Instruction::LShr:
2433 case Instruction::AShr:
2434 case Instruction::Shl:
2435 case Instruction::Mul:
2437 case Instruction::Add:
2438 case Instruction::Sub:
2439 case Instruction::Xor:
2448 case Instruction::ZExt:
2449 case Instruction::SExt:
2450 case Instruction::FPTrunc:
2451 case Instruction::FPExt:
2452 case Instruction::UIToFP:
2453 case Instruction::SIToFP:
2454 case Instruction::FPToUI:
2455 case Instruction::FPToSI:
2457 case Instruction::Trunc:
2458 case Instruction::PtrToAddr:
2459 case Instruction::PtrToInt:
2460 case Instruction::IntToPtr:
2461 case Instruction::BitCast:
2462 case Instruction::AddrSpaceCast:
2471 case Instruction::ZExt:
2472 case Instruction::SExt:
2473 case Instruction::FPTrunc:
2474 case Instruction::FPExt:
2475 case Instruction::UIToFP:
2476 case Instruction::SIToFP:
2477 case Instruction::FPToUI:
2478 case Instruction::FPToSI:
2480 case Instruction::Trunc:
2481 case Instruction::PtrToAddr:
2482 case Instruction::PtrToInt:
2483 case Instruction::IntToPtr:
2484 case Instruction::BitCast:
2485 case Instruction::AddrSpaceCast:
2511 Constant *Indices[2] = {Zero, One};
2519 std::optional<ConstantRange>
InRange,
2520 Type *OnlyIfReducedTy) {
2521 assert(Ty &&
"Must specify element type");
2532 if (OnlyIfReducedTy == ReqTy)
2537 EltCount = VecTy->getElementCount();
2540 std::vector<Constant*> ArgVec;
2541 ArgVec.reserve(1 + Idxs.
size());
2542 ArgVec.push_back(
C);
2544 for (; GTI != GTE; ++GTI) {
2549 "getelementptr index type missmatch");
2551 if (GTI.isStruct() && Idx->getType()->isVectorTy()) {
2552 Idx = Idx->getSplatValue();
2553 }
else if (GTI.isSequential() && EltCount.isNonZero() &&
2554 !Idx->getType()->isVectorTy()) {
2557 ArgVec.push_back(Idx);
2568 Type *OnlyIfReducedTy) {
2570 "Tried to create extractelement operation on non-vector type!");
2572 "Extractelement index must be an integer type!");
2578 if (OnlyIfReducedTy == ReqTy)
2592 "Tried to create insertelement operation on non-vector type!");
2594 "Insertelement types must match!");
2596 "Insertelement index must be i32 type!");
2601 if (OnlyIfReducedTy == Val->
getType())
2605 Constant *ArgVec[] = { Val, Elt, Idx };
2614 Type *OnlyIfReducedTy) {
2616 "Invalid shuffle vector constant expr operands!");
2621 unsigned NElts = Mask.size();
2623 Type *EltTy = V1VTy->getElementType();
2627 if (OnlyIfReducedTy == ShufTy)
2639 assert(
C->getType()->isIntOrIntVectorTy() &&
2640 "Cannot NEG a nonintegral value!");
2641 return getSub(ConstantInt::get(
C->getType(), 0),
C,
false, HasNSW);
2645 assert(
C->getType()->isIntOrIntVectorTy() &&
2646 "Cannot NOT a nonintegral value!");
2651 bool HasNUW,
bool HasNSW) {
2654 return get(Instruction::Add, C1, C2, Flags);
2658 bool HasNUW,
bool HasNSW) {
2661 return get(Instruction::Sub, C1, C2, Flags);
2665 return get(Instruction::Xor, C1, C2);
2669 Type *Ty =
C->getType();
2672 return ConstantInt::get(Ty, IVal->
logBase2());
2680 for (
unsigned I = 0, E = VecTy->getNumElements();
I != E; ++
I) {
2698 bool AllowRHSConstant,
bool NSZ) {
2704 case Instruction::Add:
2705 case Instruction::Or:
2706 case Instruction::Xor:
2708 case Instruction::Mul:
2709 return ConstantInt::get(Ty, 1);
2710 case Instruction::And:
2712 case Instruction::FAdd:
2714 case Instruction::FMul:
2715 return ConstantFP::get(Ty, 1.0);
2722 if (!AllowRHSConstant)
2726 case Instruction::Sub:
2727 case Instruction::Shl:
2728 case Instruction::LShr:
2729 case Instruction::AShr:
2730 case Instruction::FSub:
2732 case Instruction::SDiv:
2733 case Instruction::UDiv:
2734 return ConstantInt::get(Ty, 1);
2735 case Instruction::FDiv:
2736 return ConstantFP::get(Ty, 1.0);
2744 case Intrinsic::umax:
2746 case Intrinsic::umin:
2748 case Intrinsic::smax:
2751 case Intrinsic::smin:
2760 bool AllowRHSConstant,
bool NSZ) {
2761 if (
I->isBinaryOp())
2769 bool AllowLHSConstant) {
2774 case Instruction::Or:
2777 case Instruction::And:
2778 case Instruction::Mul:
2783 if (!AllowLHSConstant)
2789 case Instruction::Shl:
2790 case Instruction::LShr:
2791 case Instruction::AShr:
2792 case Instruction::SDiv:
2793 case Instruction::UDiv:
2794 case Instruction::URem:
2795 case Instruction::SRem:
2801void ConstantExpr::destroyConstantImpl() {
2809GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2813 SrcElementTy(SrcElementTy),
2818 for (
unsigned i = 0, E = IdxList.
size(); i != E; ++i)
2819 OperandList[i+1] = IdxList[i];
2823 return SrcElementTy;
2827 return ResElementTy;
2839 return ATy->getElementType();
2848 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2851 switch (
IT->getBitWidth()) {
2865 return AT->getNumElements();
2874const char *ConstantDataSequential::getElementPointer(
uint64_t Elt)
const {
2905 *Ty->getContext().pImpl->CDSConstants.try_emplace(Elements).first;
2911 std::unique_ptr<ConstantDataSequential> *Entry = &Slot.second;
2912 for (; *Entry; Entry = &(*Entry)->Next)
2913 if ((*Entry)->getType() == Ty)
2914 return Entry->get();
2921 return Entry->get();
2927 return Entry->get();
2930void ConstantDataSequential::destroyConstantImpl() {
2937 assert(Slot != CDSConstants.
end() &&
"CDS not found in uniquing table");
2939 std::unique_ptr<ConstantDataSequential> *Entry = &Slot->getValue();
2942 if (!(*Entry)->Next) {
2945 assert(Entry->get() ==
this &&
"Hash mismatch in ConstantDataSequential");
2953 std::unique_ptr<ConstantDataSequential> &
Node = *Entry;
2954 assert(
Node &&
"Didn't find entry in its uniquing hash table!");
2956 if (
Node.get() ==
this) {
2972 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
2973 "Element type is not a 16-bit float type");
2975 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
2979 assert(ElementType->isFloatTy() &&
"Element type is not a 32-bit float type");
2981 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
2985 assert(ElementType->isDoubleTy() &&
2986 "Element type is not a 64-bit float type");
2988 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3000 ElementVals.
append(Str.begin(), Str.end());
3002 return get(Context, ElementVals);
3010 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3015 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3020 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3025 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3030 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3035 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3047 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
3048 "Element type is not a 16-bit float type");
3050 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3055 assert(ElementType->isFloatTy() &&
"Element type is not a 32-bit float type");
3057 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3062 assert(ElementType->isDoubleTy() &&
3063 "Element type is not a 64-bit float type");
3065 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3071 "Element type not compatible with ConstantData");
3073 if (CI->getType()->isIntegerTy(8)) {
3075 return get(V->getContext(), Elts);
3077 if (CI->getType()->isIntegerTy(16)) {
3079 return get(V->getContext(), Elts);
3081 if (CI->getType()->isIntegerTy(32)) {
3083 return get(V->getContext(), Elts);
3085 assert(CI->getType()->isIntegerTy(64) &&
"Unsupported ConstantData type");
3087 return get(V->getContext(), Elts);
3091 if (CFP->getType()->isHalfTy()) {
3093 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3094 return getFP(V->getType(), Elts);
3096 if (CFP->getType()->isBFloatTy()) {
3098 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3099 return getFP(V->getType(), Elts);
3101 if (CFP->getType()->isFloatTy()) {
3103 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3104 return getFP(V->getType(), Elts);
3106 if (CFP->getType()->isDoubleTy()) {
3108 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3109 return getFP(V->getType(), Elts);
3117 "Accessor can only be used when element is an integer");
3118 const char *EltPtr = getElementPointer(Elt);
3125 return *
reinterpret_cast<const uint8_t *
>(EltPtr);
3127 return *
reinterpret_cast<const uint16_t *
>(EltPtr);
3129 return *
reinterpret_cast<const uint32_t *
>(EltPtr);
3131 return *
reinterpret_cast<const uint64_t *
>(EltPtr);
3137 "Accessor can only be used when element is an integer");
3138 const char *EltPtr = getElementPointer(Elt);
3145 auto EltVal = *
reinterpret_cast<const uint8_t *
>(EltPtr);
3146 return APInt(8, EltVal);
3149 auto EltVal = *
reinterpret_cast<const uint16_t *
>(EltPtr);
3150 return APInt(16, EltVal);
3153 auto EltVal = *
reinterpret_cast<const uint32_t *
>(EltPtr);
3154 return APInt(32, EltVal);
3157 auto EltVal = *
reinterpret_cast<const uint64_t *
>(EltPtr);
3158 return APInt(64, EltVal);
3164 const char *EltPtr = getElementPointer(Elt);
3168 llvm_unreachable(
"Accessor can only be used when element is float/double!");
3170 auto EltVal = *
reinterpret_cast<const uint16_t *
>(EltPtr);
3174 auto EltVal = *
reinterpret_cast<const uint16_t *
>(EltPtr);
3178 auto EltVal = *
reinterpret_cast<const uint32_t *
>(EltPtr);
3182 auto EltVal = *
reinterpret_cast<const uint64_t *
>(EltPtr);
3190 "Accessor can only be used when element is a 'float'");
3191 return *
reinterpret_cast<const float *
>(getElementPointer(Elt));
3196 "Accessor can only be used when element is a 'float'");
3197 return *
reinterpret_cast<const double *
>(getElementPointer(Elt));
3219 if (Str.back() != 0)
return false;
3222 return !Str.drop_back().contains(0);
3225bool ConstantDataVector::isSplatData()
const {
3240 IsSplat = isSplatData();
3265 Value *Replacement =
nullptr;
3269#define HANDLE_CONSTANT(Name) \
3270 case Value::Name##Val: \
3271 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \
3273#include "llvm/IR/Value.def"
3282 assert(Replacement !=
this &&
"I didn't contain From!");
3291Value *ConstantArray::handleOperandChangeImpl(
Value *From,
Value *To) {
3300 unsigned NumUpdated = 0;
3303 bool AllSame =
true;
3305 unsigned OperandNo = 0;
3309 OperandNo = (O - OperandList);
3314 AllSame &= Val == ToC;
3329 Values,
this, From, ToC, NumUpdated, OperandNo);
3332Value *ConstantStruct::handleOperandChangeImpl(
Value *From,
Value *To) {
3343 unsigned NumUpdated = 0;
3344 bool AllSame =
true;
3345 unsigned OperandNo = 0;
3349 OperandNo = (
O - OperandList);
3354 AllSame &= Val == ToC;
3365 Values,
this, From, ToC, NumUpdated, OperandNo);
3368Value *ConstantVector::handleOperandChangeImpl(
Value *From,
Value *To) {
3374 unsigned NumUpdated = 0;
3375 unsigned OperandNo = 0;
3391 Values,
this, From, ToC, NumUpdated, OperandNo);
3394Value *ConstantExpr::handleOperandChangeImpl(
Value *From,
Value *ToV) {
3399 unsigned NumUpdated = 0;
3400 unsigned OperandNo = 0;
3410 assert(NumUpdated &&
"I didn't contain From!");
3417 NewOps,
this, From, To, NumUpdated, OperandNo);
3425 case Instruction::Trunc:
3426 case Instruction::PtrToAddr:
3427 case Instruction::PtrToInt:
3428 case Instruction::IntToPtr:
3429 case Instruction::BitCast:
3430 case Instruction::AddrSpaceCast:
3433 case Instruction::InsertElement:
3435 case Instruction::ExtractElement:
3437 case Instruction::ShuffleVector:
3440 case Instruction::GetElementPtr: {
3443 Ops.slice(1), GO->getNoWrapFlags(),
"");
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file defines the StringMap class.
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static bool isAllZeros(StringRef Arr)
Return true if the array is empty or all zeros.
static cl::opt< bool > UseConstantIntForScalableSplat("use-constant-int-for-scalable-splat", cl::init(false), cl::Hidden, cl::desc("Use ConstantInt's native scalable vector splat support."))
static cl::opt< bool > UseConstantIntForFixedLengthSplat("use-constant-int-for-fixed-length-splat", cl::init(false), cl::Hidden, cl::desc("Use ConstantInt's native fixed-length vector splat support."))
static Constant * getFPSequenceIfElementsMatch(ArrayRef< Constant * > V)
static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt)
static Constant * getIntSequenceIfElementsMatch(ArrayRef< Constant * > V)
static Constant * getSequenceIfElementsMatch(Constant *C, ArrayRef< Constant * > V)
static bool ConstHasGlobalValuePredicate(const Constant *C, bool(*Predicate)(const GlobalValue *))
Check if C contains a GlobalValue for which Predicate is true.
static cl::opt< bool > UseConstantFPForScalableSplat("use-constant-fp-for-scalable-splat", cl::init(false), cl::Hidden, cl::desc("Use ConstantFP's native scalable vector splat support."))
static bool constantIsDead(const Constant *C, bool RemoveDeadUsers)
Return true if the specified constantexpr is dead.
static bool containsUndefinedElement(const Constant *C, function_ref< bool(const Constant *)> HasFn)
static Constant * getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty, bool OnlyIfReduced=false)
This is a utility function to handle folding of casts and lookup of the cast in the ExprConstants map...
static cl::opt< bool > UseConstantFPForFixedLengthSplat("use-constant-fp-for-fixed-length-splat", cl::init(false), cl::Hidden, cl::desc("Use ConstantFP's native fixed-length vector splat support."))
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static bool isSigned(unsigned int Opcode)
static char getTypeID(Type *Ty)
This file contains the declaration of the GlobalIFunc class, which represents a single indirect funct...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
static bool isUndef(const MachineInstr &MI)
Merge contiguous icmps into a memcmp
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
uint64_t IntrinsicInst * II
static unsigned getNumElements(Type *Ty)
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static SymbolRef::Type getType(const Symbol *Sym)
static Function * getFunction(FunctionType *Ty, const Twine &Name, Module *M)
static const fltSemantics & IEEEsingle()
static const fltSemantics & BFloat()
static constexpr roundingMode rmNearestTiesToEven
static const fltSemantics & IEEEquad()
static const fltSemantics & IEEEdouble()
static const fltSemantics & x87DoubleExtended()
static const fltSemantics & IEEEhalf()
static const fltSemantics & PPCDoubleDouble()
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
static APFloat getSNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for SNaN values.
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
static LLVM_ABI APFloat getAllOnesValue(const fltSemantics &Semantics)
Returns a float which is bitcasted from an all one value int.
const fltSemantics & getSemantics() const
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
unsigned logBase2() const
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
Class to represent array types.
static LLVM_ABI ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches,...
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
BinaryConstantExpr - This class is private to Constants.cpp, and is used behind the scenes to impleme...
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
The address of a basic block.
static LLVM_ABI BlockAddress * lookup(const BasicBlock *BB)
Lookup an existing BlockAddress constant for the given BasicBlock.
BasicBlock * getBasicBlock() const
static LLVM_ABI BlockAddress * get(Function *F, BasicBlock *BB)
Return a BlockAddress for the specified function and basic block.
CastConstantExpr - This class is private to Constants.cpp, and is used behind the scenes to implement...
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
All zero aggregate value.
LLVM_ABI ElementCount getElementCount() const
Return the number of elements in the array, vector, or struct.
LLVM_ABI Constant * getSequentialElement() const
If this CAZ has array or vector type, return a zero with the right element type.
LLVM_ABI Constant * getElementValue(Constant *C) const
Return a zero of the right value for the specified GEP index if we can, otherwise return null (e....
LLVM_ABI Constant * getStructElement(unsigned Elt) const
If this CAZ has struct type, return a zero with the right element type for the specified element.
static LLVM_ABI ConstantAggregateZero * get(Type *Ty)
Base class for aggregate constants (with operands).
LLVM_ABI ConstantAggregate(Type *T, ValueTy VT, ArrayRef< Constant * > V, AllocInfo AllocInfo)
ConstantArray - Constant Array Declarations.
static LLVM_ABI Constant * get(ArrayType *T, ArrayRef< Constant * > V)
ArrayType * getType() const
Specialize the getType() method to always return an ArrayType, which reduces the amount of casting ne...
An array constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
static LLVM_ABI Constant * getString(LLVMContext &Context, StringRef Initializer, bool AddNull=true)
This method constructs a CDS and initializes it with a text string.
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
static LLVM_ABI Constant * getFP(Type *ElementType, ArrayRef< uint16_t > Elts)
getFP() constructors - Return a constant of array type with a float element type taken from argument ...
LLVM_ABI APFloat getElementAsAPFloat(uint64_t i) const
If this is a sequential container of floating point type, return the specified element as an APFloat.
LLVM_ABI uint64_t getElementAsInteger(uint64_t i) const
If this is a sequential container of integers (of any size), return the specified element in the low ...
StringRef getAsString() const
If this array is isString(), then this method returns the array as a StringRef.
LLVM_ABI Constant * getElementAsConstant(uint64_t i) const
Return a Constant for a specified index's element.
LLVM_ABI uint64_t getElementByteSize() const
Return the size (in bytes) of each element in the array/vector.
LLVM_ABI float getElementAsFloat(uint64_t i) const
If this is an sequential container of floats, return the specified element as a float.
LLVM_ABI bool isString(unsigned CharSize=8) const
This method returns true if this is an array of CharSize integers.
LLVM_ABI uint64_t getNumElements() const
Return the number of elements in the array or vector.
LLVM_ABI APInt getElementAsAPInt(uint64_t i) const
If this is a sequential container of integers (of any size), return the specified element as an APInt...
static LLVM_ABI Constant * getImpl(StringRef Bytes, Type *Ty)
This is the underlying implementation of all of the ConstantDataSequential::get methods.
LLVM_ABI double getElementAsDouble(uint64_t i) const
If this is an sequential container of doubles, return the specified element as a double.
LLVM_ABI Type * getElementType() const
Return the element type of the array/vector.
LLVM_ABI bool isCString() const
This method returns true if the array "isString", ends with a null byte, and does not contains any ot...
LLVM_ABI StringRef getRawDataValues() const
Return the raw, underlying, bytes of this data.
static LLVM_ABI bool isElementTypeCompatible(Type *Ty)
Return true if a ConstantDataSequential can be formed with a vector or array of the specified element...
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
LLVM_ABI Constant * getSplatValue() const
If this is a splat constant, meaning that all of the elements have the same value,...
static LLVM_ABI Constant * getSplat(unsigned NumElts, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
LLVM_ABI bool isSplat() const
Returns true if this is a splat constant, meaning that all elements have the same value.
static LLVM_ABI Constant * get(LLVMContext &Context, ArrayRef< uint8_t > Elts)
get() constructors - Return a constant with vector type with an element count and element type matchi...
static LLVM_ABI Constant * getFP(Type *ElementType, ArrayRef< uint16_t > Elts)
getFP() constructors - Return a constant of vector type with a float element type taken from argument...
Base class for constants with no operands.
A constant value that is initialized with an expression using other constant values.
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
ConstantExpr(Type *ty, unsigned Opcode, AllocInfo AllocInfo)
static LLVM_ABI Constant * getAlignOf(Type *Ty)
getAlignOf constant expr - computes the alignment of a type in a target independent way (Note: the re...
friend struct ConstantExprKeyType
static LLVM_ABI Constant * getPointerCast(Constant *C, Type *Ty)
Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant expression.
static LLVM_ABI Constant * getTruncOrBitCast(Constant *C, Type *Ty)
static LLVM_ABI Constant * getPointerBitCastOrAddrSpaceCast(Constant *C, Type *Ty)
Create a BitCast or AddrSpaceCast for a pointer type depending on the address space.
LLVM_ABI bool isCast() const
Return true if this is a convert constant expression.
static LLVM_ABI Constant * getIdentity(Instruction *I, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary or intrinsic Instruction.
static LLVM_ABI bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
LLVM_ABI Constant * getShuffleMaskForBitcode() const
Assert that this is a shufflevector and return the mask.
static LLVM_ABI Constant * getBinOpAbsorber(unsigned Opcode, Type *Ty, bool AllowLHSConstant=false)
Return the absorbing element for the given binary operation, i.e.
static LLVM_ABI Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNot(Constant *C)
LLVM_ABI const char * getOpcodeName() const
Return a string representation for an opcode.
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getPtrToInt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getPtrToAddr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getSizeOf(Type *Ty)
getSizeOf constant expr - computes the (alloc) size of a type (in address-units, not bits) in a targe...
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
static LLVM_ABI Constant * getIntrinsicIdentity(Intrinsic::ID, Type *Ty)
static LLVM_ABI Constant * getXor(Constant *C1, Constant *C2)
static LLVM_ABI Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static LLVM_ABI bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
LLVM_ABI ArrayRef< int > getShuffleMask() const
Assert that this is a shufflevector and return the mask.
static LLVM_ABI bool isSupportedBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is supported.
static LLVM_ABI Constant * getAddrSpaceCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
unsigned getOpcode() const
Return the opcode at the root of this constant expression.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI bool isSupportedCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is supported.
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExactLogBase2(Constant *C)
If C is a scalar/fixed width vector of known powers of 2, then this function returns a new scalar/fix...
Constant * getWithOperands(ArrayRef< Constant * > Ops) const
This returns the current constant expression with the operands replaced with the specified values.
LLVM_ABI Instruction * getAsInstruction() const
Returns an Instruction which implements the same operation as this ConstantExpr.
ConstantFP - Floating Point Values [float, double].
static LLVM_ABI Constant * getSNaN(Type *Ty, bool Negative=false, APInt *Payload=nullptr)
static LLVM_ABI Constant * getInfinity(Type *Ty, bool Negative=false)
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
static LLVM_ABI Constant * getNaN(Type *Ty, bool Negative=false, uint64_t Payload=0)
LLVM_ABI bool isExactlyValue(const APFloat &V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
static LLVM_ABI bool isValueValidForType(Type *Ty, const APFloat &V)
Return true if Ty is big enough to represent V.
static LLVM_ABI Constant * getQNaN(Type *Ty, bool Negative=false, APInt *Payload=nullptr)
This is the shared class of boolean and integer constants.
static LLVM_ABI bool isValueValidForType(Type *Ty, uint64_t V)
This static method returns true if the type Ty is big enough to represent the value V.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
A constant pointer value that points to null.
static LLVM_ABI ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
PointerType * getType() const
Specialize the getType() method to always return an PointerType, which reduces the amount of casting ...
A signed pointer, in the ptrauth sense.
Constant * getAddrDiscriminator() const
The address discriminator if any, or the null constant.
friend struct ConstantPtrAuthKeyType
LLVM_ABI bool isKnownCompatibleWith(const Value *Key, const Value *Discriminator, const DataLayout &DL) const
Check whether an authentication operation with key Key and (possibly blended) discriminator Discrimin...
LLVM_ABI bool hasSpecialAddressDiscriminator(uint64_t Value) const
Whether the address uses a special address discriminator.
static LLVM_ABI ConstantPtrAuth * get(Constant *Ptr, ConstantInt *Key, ConstantInt *Disc, Constant *AddrDisc)
Return a pointer signed with the specified parameters.
LLVM_ABI ConstantPtrAuth * getWithSameSchema(Constant *Pointer) const
Produce a new ptrauth expression signing the given value using the same schema as is stored in one.
ConstantInt * getKey() const
The Key ID, an i32 constant.
bool hasAddressDiscriminator() const
Whether there is any non-null address discriminator.
ConstantInt * getDiscriminator() const
The integer discriminator, an i64 constant, or 0.
This class represents a range of values.
LLVM_ABI ConstantRange unionWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the union of this range with another range.
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI StructType * getTypeForElements(ArrayRef< Constant * > V, bool Packed=false)
Return an anonymous struct type to use for a constant with the specified set of elements.
StructType * getType() const
Specialization - reduce amount of casting.
static LLVM_ABI ConstantTargetNone * get(TargetExtType *T)
Static factory methods - Return objects of the specified value.
TargetExtType * getType() const
Specialize the getType() method to always return an TargetExtType, which reduces the amount of castin...
A constant token which is empty.
static LLVM_ABI ConstantTokenNone * get(LLVMContext &Context)
Return the ConstantTokenNone.
void remove(ConstantClass *CP)
Remove this constant from the map.
ConstantClass * replaceOperandsInPlace(ArrayRef< Constant * > Operands, ConstantClass *CP, Value *From, Constant *To, unsigned NumUpdated=0, unsigned OperandNo=~0u)
Constant Vector Declarations.
FixedVectorType * getType() const
Specialize the getType() method to always return a FixedVectorType, which reduces the amount of casti...
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static LLVM_ABI Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
LLVM_ABI bool hasExactInverseFP() const
Return true if this scalar has an exact multiplicative inverse or this vector has an exact multiplica...
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI bool containsUndefElement() const
Return true if this is a vector constant that includes any strictly undef (not poison) elements.
static LLVM_ABI Constant * mergeUndefsWith(Constant *C, Constant *Other)
Merges undefs of a Constant with another Constant, along with the undefs already present.
LLVM_ABI ConstantRange toConstantRange() const
Convert constant to an approximate constant range.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
LLVM_ABI bool hasZeroLiveUses() const
Return true if the constant has no live uses.
LLVM_ABI bool isOneValue() const
Returns true if the value is one.
LLVM_ABI bool isManifestConstant() const
Return true if a constant is ConstantData or a ConstantAggregate or ConstantExpr that contain only Co...
LLVM_ABI bool isNegativeZeroValue() const
Return true if the value is what would be returned by getZeroValueForNegation.
LLVM_ABI bool isAllOnesValue() const
Return true if this is the value that would be returned by getAllOnesValue.
Constant(Type *ty, ValueTy vty, AllocInfo AllocInfo)
LLVM_ABI bool hasOneLiveUse() const
Return true if the constant has exactly one live use.
LLVM_ABI bool needsRelocation() const
This method classifies the entry according to whether or not it may generate a relocation entry (eith...
LLVM_ABI bool isDLLImportDependent() const
Return true if the value is dependent on a dllimport variable.
LLVM_ABI const APInt & getUniqueInteger() const
If C is a constant integer then return its value, otherwise C must be a vector of constant integers,...
LLVM_ABI bool containsConstantExpression() const
Return true if this is a fixed width vector constant that includes any constant expressions.
LLVM_ABI bool isFiniteNonZeroFP() const
Return true if this is a finite and non-zero floating-point scalar constant or a fixed width vector c...
LLVM_ABI void removeDeadConstantUsers() const
If there are any dead constant users dangling off of this constant, remove them.
LLVM_ABI bool isNormalFP() const
Return true if this is a normal (as opposed to denormal, infinity, nan, or zero) floating-point scala...
LLVM_ABI bool needsDynamicRelocation() const
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI bool isNaN() const
Return true if this is a floating-point NaN constant or a vector floating-point constant with all NaN...
LLVM_ABI bool isMinSignedValue() const
Return true if the value is the smallest signed value.
LLVM_ABI bool isConstantUsed() const
Return true if the constant has users other than constant expressions and other dangling things.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isThreadDependent() const
Return true if the value can vary between threads.
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
LLVM_ABI void destroyConstant()
Called if some element of this constant is no longer valid.
LLVM_ABI bool isNotMinSignedValue() const
Return true if the value is not the smallest signed value, or, for vectors, does not contain smallest...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
LLVM_ABI bool isNotOneValue() const
Return true if the value is not the one value, or, for vectors, does not contain one value elements.
LLVM_ABI bool isElementWiseEqual(Value *Y) const
Return true if this constant and a constant 'Y' are element-wise equal.
LLVM_ABI bool containsUndefOrPoisonElement() const
Return true if this is a vector constant that includes any undef or poison elements.
LLVM_ABI bool containsPoisonElement() const
Return true if this is a vector constant that includes any poison elements.
LLVM_ABI void handleOperandChange(Value *, Value *)
This method is a special form of User::replaceUsesOfWith (which does not work on constants) that does...
Wrapper for a function that represents a value that functionally represents the original function.
GlobalValue * getGlobalValue() const
static LLVM_ABI DSOLocalEquivalent * get(GlobalValue *GV)
Return a DSOLocalEquivalent for the specified global value.
A parsed version of the target data layout string in and methods for querying it.
static constexpr ElementCount getFixed(ScalarTy MinVal)
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Represents flags for the getelementptr instruction/expression.
GetElementPtrConstantExpr - This class is private to Constants.cpp, and is used behind the scenes to ...
std::optional< ConstantRange > getInRange() const
Type * getResultElementType() const
Type * getSourceElementType() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static Type * getGEPReturnType(Value *Ptr, ArrayRef< Value * > IdxList)
Returns the pointer type returned by the GEP instruction, which may be a vector of pointers.
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
PointerType * getType() const
Global values are always pointers.
InsertElementConstantExpr - This class is private to Constants.cpp, and is used behind the scenes to ...
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
const char * getOpcodeName() const
LLVM_ABI void setIsExact(bool b=true)
Set or clear the exact flag on this instruction, which must be an operator which supports this flag.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
A wrapper class for inspecting calls to intrinsic functions.
DenseMap< unsigned, std::unique_ptr< ConstantInt > > IntOneConstants
DenseMap< unsigned, std::unique_ptr< ConstantInt > > IntZeroConstants
DenseMap< APFloat, std::unique_ptr< ConstantFP > > FPConstants
DenseMap< PointerType *, std::unique_ptr< ConstantPointerNull > > CPNConstants
DenseMap< Type *, std::unique_ptr< ConstantAggregateZero > > CAZConstants
ConstantInt * TheFalseVal
DenseMap< Type *, std::unique_ptr< PoisonValue > > PVConstants
DenseMap< APInt, std::unique_ptr< ConstantInt > > IntConstants
std::unique_ptr< ConstantTokenNone > TheNoneToken
VectorConstantsTy VectorConstants
DenseMap< const GlobalValue *, NoCFIValue * > NoCFIValues
DenseMap< const BasicBlock *, BlockAddress * > BlockAddresses
DenseMap< Type *, std::unique_ptr< UndefValue > > UVConstants
StringMap< std::unique_ptr< ConstantDataSequential > > CDSConstants
StructConstantsTy StructConstants
ConstantUniqueMap< ConstantPtrAuth > ConstantPtrAuths
DenseMap< TargetExtType *, std::unique_ptr< ConstantTargetNone > > CTNConstants
ConstantUniqueMap< ConstantExpr > ExprConstants
ArrayConstantsTy ArrayConstants
DenseMap< const GlobalValue *, DSOLocalEquivalent * > DSOLocalEquivalents
This is an important class for using LLVM in a threaded context.
LLVMContextImpl *const pImpl
Wrapper for a value that won't be replaced with a CFI jump table pointer in LowerTypeTestsModule.
static LLVM_ABI NoCFIValue * get(GlobalValue *GV)
Return a NoCFIValue for the specified function.
PointerType * getType() const
NoCFIValue is always a pointer.
GlobalValue * getGlobalValue() const
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
In order to facilitate speculative execution, many instructions do not invoke immediate undefined beh...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
LLVM_ABI PoisonValue * getStructElement(unsigned Elt) const
If this poison has struct type, return a poison with the right element type for the specified element...
LLVM_ABI PoisonValue * getSequentialElement() const
If this poison has array or vector type, return a poison with the right element type.
LLVM_ABI PoisonValue * getElementValue(Constant *C) const
Return an poison of the right value for the specified GEP index if we can, otherwise return null (e....
ShuffleVectorConstantExpr - This class is private to Constants.cpp, and is used behind the scenes to ...
This instruction constructs a fixed permutation of two input vectors.
static LLVM_ABI bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask)
Return true if a shufflevector instruction can be formed with the specified operands.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringMap - This is an unconventional map that is specialized for handling keys that are "strings",...
iterator find(StringRef Key)
StringRef - Represent a constant reference to a string, i.e.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Class to represent struct types.
static LLVM_ABI StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Class to represent target extensions types, which are generally unintrospectable from target-independ...
@ HasZeroInit
zeroinitializer is valid for this target extension type.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ HalfTyID
16-bit floating point type
@ TargetExtTyID
Target extension type.
@ ScalableVectorTyID
Scalable SIMD vector type.
@ FloatTyID
32-bit floating point type
@ IntegerTyID
Arbitrary bit width integers.
@ FixedVectorTyID
Fixed width SIMD vector type.
@ BFloatTyID
16-bit floating point type (7-bit significand)
@ DoubleTyID
64-bit floating point type
@ X86_FP80TyID
80-bit floating point type (X87)
@ PPC_FP128TyID
128-bit floating point type (two 64-bits, PowerPC)
@ FP128TyID
128-bit floating point type (112-bit significand)
static LLVM_ABI Type * getFloatingPointTy(LLVMContext &C, const fltSemantics &S)
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI Type * getDoubleTy(LLVMContext &C)
static LLVM_ABI Type * getFloatTy(LLVMContext &C)
'undef' values are things that do not have specified contents.
LLVM_ABI UndefValue * getElementValue(Constant *C) const
Return an undef of the right value for the specified GEP index if we can, otherwise return null (e....
LLVM_ABI UndefValue * getStructElement(unsigned Elt) const
If this undef has struct type, return a undef with the right element type for the specified element.
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
LLVM_ABI unsigned getNumElements() const
Return the number of elements in the array, vector, or struct.
LLVM_ABI UndefValue * getSequentialElement() const
If this Undef has array or vector type, return a undef with the right element type.
A Use represents the edge between a Value definition and its users.
const Use * getOperandList() const
User(Type *ty, unsigned vty, AllocInfo AllocInfo)
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
iterator_range< value_op_iterator > operand_values()
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
user_iterator_impl< const User > const_user_iterator
user_iterator user_begin()
LLVM_ABI Value(Type *Ty, unsigned scid)
unsigned char SubclassOptionalData
Hold subclass data that can be dropped.
LLVM_ABI const Value * stripPointerCastsAndAliases() const
Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
LLVM_ABI const Value * stripInBoundsConstantOffsets() const
Strip off pointer casts and all-constant inbounds GEPs.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
unsigned getValueID() const
Return an ID for the concrete type of this object.
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
iterator_range< use_iterator > uses()
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
ValueTy
Concrete subclass of this.
Base class of all SIMD vector types.
static VectorType * getInteger(VectorType *VTy)
This static method gets a VectorType with the same number of elements as the input type,...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
constexpr ScalarTy getFixedValue() const
An efficient, type-erasing, non-owning reference to a callable.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_Undef()
Match an arbitrary undef constant.
initializer< Ty > init(const Ty &Val)
NodeAddr< UseNode * > Use
NodeAddr< NodeBase * > Node
NodeAddr< FuncNode * > Func
This is an optimization pass for GlobalISel generic memory operations.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
gep_type_iterator gep_type_end(const User *GEP)
void deleteConstant(Constant *C)
LLVM_ABI Constant * ConstantFoldGetElementPtr(Type *Ty, Constant *C, std::optional< ConstantRange > InRange, ArrayRef< Value * > Idxs)
auto dyn_cast_or_null(const Y &Val)
LLVM_ABI Constant * ConstantFoldInsertElementInstruction(Constant *Val, Constant *Elt, Constant *Idx)
Attempt to constant fold an insertelement instruction with the specified operands and indices.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI Constant * ConstantFoldExtractElementInstruction(Constant *Val, Constant *Idx)
Attempt to constant fold an extractelement instruction with the specified operands and indices.
FunctionAddr VTableAddr uintptr_t uintptr_t Data
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
OutputIt copy(R &&Range, OutputIt Out)
constexpr unsigned BitWidth
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
gep_type_iterator gep_type_begin(const User *GEP)
constexpr bool isIntN(unsigned N, int64_t x)
Checks if an signed integer fits into the given (dynamic) bit width.
LLVM_ABI Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
LLVM_ABI Constant * ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2, ArrayRef< int > Mask)
Attempt to constant fold a shufflevector instruction with the specified operands and mask.
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
Implement std::hash so that hash_code can be used in STL containers.
Summary of memprof metadata on allocations.
Information about how a User object was allocated, to be passed into the User constructor.