User Guide for NVPTX Back-end¶
Introduction¶
To support GPU programming, the NVPTX back-end supports a subset of LLVM IR along with a defined set of conventions used to represent GPU programming concepts. This document provides an overview of the general usage of the back- end, including a description of the conventions used and the set of accepted LLVM IR.
Note
This document assumes a basic familiarity with CUDA and the PTX assembly language. Information about the CUDA Driver API and the PTX assembly language can be found in the CUDA documentation.
Conventions¶
Marking Functions as Kernels¶
In PTX, there are two types of functions: device functions, which are only
callable by device code, and kernel functions, which are callable by host
code. By default, the back-end will emit device functions. Metadata is used to
declare a function as a kernel function. This metadata is attached to the
nvvm.annotations
named metadata object, and has the following format:
!0 = !{<function-ref>, metadata !"kernel", i32 1}
The first parameter is a reference to the kernel function. The following
example shows a kernel function calling a device function in LLVM IR. The
function @my_kernel
is callable from host code, but @my_fmad
is not.
define float @my_fmad(float %x, float %y, float %z) {
%mul = fmul float %x, %y
%add = fadd float %mul, %z
ret float %add
}
define void @my_kernel(ptr %ptr) {
%val = load float, ptr %ptr
%ret = call float @my_fmad(float %val, float %val, float %val)
store float %ret, ptr %ptr
ret void
}
!nvvm.annotations = !{!1}
!1 = !{ptr @my_kernel, !"kernel", i32 1}
When compiled, the PTX kernel functions are callable by host-side code.
Address Spaces¶
The NVPTX back-end uses the following address space mapping:
Address Space
Memory Space
0
Generic
1
Global
2
Internal Use
3
Shared
4
Constant
5
Local
Every global variable and pointer type is assigned to one of these address spaces, with 0 being the default address space. Intrinsics are provided which can be used to convert pointers between the generic and non-generic address spaces.
As an example, the following IR will define an array @g
that resides in
global device memory.
@g = internal addrspace(1) global [4 x i32] [ i32 0, i32 1, i32 2, i32 3 ]
LLVM IR functions can read and write to this array, and host-side code can copy data to it by name with the CUDA Driver API.
Note that since address space 0 is the generic space, it is illegal to have
global variables in address space 0. Address space 0 is the default address
space in LLVM, so the addrspace(N)
annotation is required for global
variables.
Triples¶
The NVPTX target uses the module triple to select between 32/64-bit code
generation and the driver-compiler interface to use. The triple architecture
can be one of nvptx
(32-bit PTX) or nvptx64
(64-bit PTX). The
operating system should be one of cuda
or nvcl
, which determines the
interface used by the generated code to communicate with the driver. Most
users will want to use cuda
as the operating system, which makes the
generated PTX compatible with the CUDA Driver API.
Example: 32-bit PTX for CUDA Driver API: nvptx-nvidia-cuda
Example: 64-bit PTX for CUDA Driver API: nvptx64-nvidia-cuda
NVPTX Intrinsics¶
Reading PTX Special Registers¶
‘llvm.nvvm.read.ptx.sreg.*
’¶
Syntax:¶
declare i32 @llvm.nvvm.read.ptx.sreg.tid.x()
declare i32 @llvm.nvvm.read.ptx.sreg.tid.y()
declare i32 @llvm.nvvm.read.ptx.sreg.tid.z()
declare i32 @llvm.nvvm.read.ptx.sreg.ntid.x()
declare i32 @llvm.nvvm.read.ptx.sreg.ntid.y()
declare i32 @llvm.nvvm.read.ptx.sreg.ntid.z()
declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.x()
declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.y()
declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.z()
declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.x()
declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.y()
declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.z()
declare i32 @llvm.nvvm.read.ptx.sreg.warpsize()
Overview:¶
The ‘@llvm.nvvm.read.ptx.sreg.*
’ intrinsics provide access to the PTX
special registers, in particular the kernel launch bounds. These registers
map in the following way to CUDA builtins:
CUDA Builtin
PTX Special Register Intrinsic
threadId
@llvm.nvvm.read.ptx.sreg.tid.*
blockIdx
@llvm.nvvm.read.ptx.sreg.ctaid.*
blockDim
@llvm.nvvm.read.ptx.sreg.ntid.*
gridDim
@llvm.nvvm.read.ptx.sreg.nctaid.*
Barriers¶
‘llvm.nvvm.barrier0
’¶
Syntax:¶
declare void @llvm.nvvm.barrier0()
Overview:¶
The ‘@llvm.nvvm.barrier0()
’ intrinsic emits a PTX bar.sync 0
instruction, equivalent to the __syncthreads()
call in CUDA.
Electing a thread¶
‘llvm.nvvm.elect.sync
’¶
Syntax:¶
declare {i32, i1} @llvm.nvvm.elect.sync(i32 %membermask)
Overview:¶
The ‘@llvm.nvvm.elect.sync
’ intrinsic generates the elect.sync
PTX instruction, which elects one predicated active leader thread from
a set of threads specified by membermask
. The behavior is undefined
if the executing thread is not in membermask
. The laneid of the
elected thread is captured in the i32 return value. The i1 return
value is set to True
for the leader thread and False
for all
the other threads. Election of a leader thread happens deterministically,
i.e. the same leader thread is elected for the same membermask
every time. For more information, refer PTX ISA
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-elect-sync.
Membar/Fences¶
‘llvm.nvvm.fence.proxy.tensormap_generic.*
’¶
Syntax:¶
declare void @llvm.nvvm.fence.proxy.tensormap_generic.release.cta()
declare void @llvm.nvvm.fence.proxy.tensormap_generic.release.cluster()
declare void @llvm.nvvm.fence.proxy.tensormap_generic.release.gpu()
declare void @llvm.nvvm.fence.proxy.tensormap_generic.release.sys()
declare void @llvm.nvvm.fence.proxy.tensormap_generic.acquire.cta(ptr %addr, i32 %size)
declare void @llvm.nvvm.fence.proxy.tensormap_generic.acquire.cluster(ptr %addr, i32 %size)
declare void @llvm.nvvm.fence.proxy.tensormap_generic.acquire.gpu(ptr %addr, i32 %size)
declare void @llvm.nvvm.fence.proxy.tensormap_generic.acquire.sys(ptr %addr, i32 %size)
Overview:¶
The @llvm.nvvm.fence.proxy.tensormap_generic.*
is a uni-directional fence used to establish ordering between a prior memory access performed via the generic proxy<https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#proxies>_ and a subsequent memory access performed via the tensormap proxy. nvvm.fence.proxy.tensormap_generic.release
can form a release sequence that synchronizes with an acquire sequence that contains the nvvm.fence.proxy.tensormap_generic.acquire
proxy fence. The following table describes the mapping between LLVM Intrinsic and the PTX instruction:
NVVM Intrinsic
PTX Instruction
@llvm.nvvm.fence.proxy.tensormap_generic.release.*
fence.proxy.tensormap::generic.release.*
@llvm.nvvm.fence.proxy.tensormap_generic.acquire.*
fence.proxy.tensormap::generic.acquire.* [addr], size
The address operand addr
and the operand size
together specify the memory range [addr, addr+size)
on which the ordering guarantees on the memory accesses across the proxies is to be provided. The only supported value for the size
operand is 128
and must be an immediate. Generic Addressing is used unconditionally, and the address specified by the operand addr must fall within the .global
state space. Otherwise, the behavior is undefined. For more information, see PTX ISA.
Address Space Intrinsics¶
‘llvm.nvvm.isspacep.*
’ Intrinsics¶
Syntax:¶
declare i1 @llvm.nvvm.isspacep.const(ptr %p)
declare i1 @llvm.nvvm.isspacep.global(ptr %p)
declare i1 @llvm.nvvm.isspacep.local(ptr %p)
declare i1 @llvm.nvvm.isspacep.shared(ptr %p)
declare i1 @llvm.nvvm.isspacep.shared.cluster(ptr %p)
Overview:¶
The ‘llvm.nvvm.isspacep.*
’ intrinsics determine whether the provided generic
pointer references memory which falls within a particular address space.
Semantics:¶
If the given pointer in the generic address space refers to memory which falls within the state space of the intrinsic (and therefore could be safely address space casted to this space), 1 is returned, otherwise 0 is returned.
Arithmetic Intrinsics¶
‘llvm.nvvm.idp2a.[us].[us]
’ Intrinsics¶
Syntax:¶
declare i32 @llvm.nvvm.idp2a.s.s(i32 %a, i32 %b, i1 immarg %is.hi, i32 %c)
declare i32 @llvm.nvvm.idp2a.s.u(i32 %a, i32 %b, i1 immarg %is.hi, i32 %c)
declare i32 @llvm.nvvm.idp2a.u.s(i32 %a, i32 %b, i1 immarg %is.hi, i32 %c)
declare i32 @llvm.nvvm.idp2a.u.u(i32 %a, i32 %b, i1 immarg %is.hi, i32 %c)
Overview:¶
The ‘llvm.nvvm.idp2a.[us].[us]
’ intrinsics performs a 2-element vector dot
product followed by addition. They corresponds directly to the dp2a
PTX
instruction.
Semantics:¶
The 32-bit value in %a
is broken into 2 16-bit values which are extended to
32 bits. For the ‘llvm.nvvm.idp2a.u.[us]
’ variants zero-extension is used,
while for the ‘llvm.nvvm.idp2a.s.[us]
’ sign-extension is used. Two bytes are
selected from %b
, if %is.hi
is true, the most significant bytes are
selected, otherwise the least significant bytes are selected. These bytes are
then extended to 32-bits. For the ‘llvm.nvvm.idp2a.[us].u
’ variants
zero-extension is used, while for the ‘llvm.nvvm.idp2a.[us].s
’
sign-extension is used. The dot product of these 2-element vectors is added to
%c
to produce the return.
‘llvm.nvvm.idp4a.[us].[us]
’ Intrinsics¶
Syntax:¶
declare i32 @llvm.nvvm.idp4a.s.s(i32 %a, i32 %b, i32 %c)
declare i32 @llvm.nvvm.idp4a.s.u(i32 %a, i32 %b, i32 %c)
declare i32 @llvm.nvvm.idp4a.u.s(i32 %a, i32 %b, i32 %c)
declare i32 @llvm.nvvm.idp4a.u.u(i32 %a, i32 %b, i32 %c)
Overview:¶
The ‘llvm.nvvm.idp4a.[us].[us]
’ intrinsics perform a 4-element vector dot
product followed by addition. They corresponds directly to the dp4a
PTX
instruction.
Semantics:¶
Each of the 4 bytes in both %a
and %b
are extended to 32-bit integers
forming 2 <4 x i32>
. For %a
, zero-extension is used in the
‘llvm.nvvm.idp4a.u.[us]
’ variants, while sign-extension is used with
‘llvm.nvvm.idp4a.s.[us]
’ variants. Similarly, for %b
, zero-extension is
used in the ‘llvm.nvvm.idp4a.[us].u
’ variants, while sign-extension is used
with ‘llvm.nvvm.idp4a.[us].s
’ variants. The dot product of these 4-element
vectors is added to %c
to produce the return.
Bit Manipulation Intrinsics¶
‘llvm.nvvm.fshl.clamp.*
’ Intrinsic¶
Syntax:¶
declare i32 @llvm.nvvm.fshl.clamp.i32(i32 %hi, i32 %lo, i32 %n)
Overview:¶
The ‘llvm.nvvm.fshl.clamp
’ family of intrinsics performs a clamped funnel
shift left. These intrinsics are very similar to ‘llvm.fshl
’, except the
shift ammont is clamped at the integer width (instead of modulo it). Currently,
only i32
is supported.
Semantics:¶
The ‘llvm.nvvm.fshl.clamp
’ family of intrinsic functions performs a clamped
funnel shift left: the first two values are concatenated as { %hi : %lo } (%hi
is the most significant bits of the wide value), the combined value is shifted
left, and the most significant bits are extracted to produce a result that is
the same size as the original arguments. The shift amount is the minimum of the
value of %n and the bit width of the integer type.
‘llvm.nvvm.fshr.clamp.*
’ Intrinsic¶
Syntax:¶
declare i32 @llvm.nvvm.fshr.clamp.i32(i32 %hi, i32 %lo, i32 %n)
Overview:¶
The ‘llvm.nvvm.fshr.clamp
’ family of intrinsics perform a clamped funnel
shift right. These intrinsics are very similar to ‘llvm.fshr
’, except the
shift ammont is clamped at the integer width (instead of modulo it). Currently,
only i32
is supported.
Semantics:¶
The ‘llvm.nvvm.fshr.clamp
’ family of intrinsic functions performs a clamped
funnel shift right: the first two values are concatenated as { %hi : %lo } (%hi
is the most significant bits of the wide value), the combined value is shifted
right, and the least significant bits are extracted to produce a result that is
the same size as the original arguments. The shift amount is the minimum of the
value of %n and the bit width of the integer type.
‘llvm.nvvm.flo.u.*
’ Intrinsic¶
Syntax:¶
declare i32 @llvm.nvvm.flo.u.i32(i32 %a, i1 %shiftamt)
declare i32 @llvm.nvvm.flo.u.i64(i64 %a, i1 %shiftamt)
Overview:¶
The ‘llvm.nvvm.flo.u
’ family of intrinsics identifies the bit position of the
leading one, returning either it’s offset from the most or least significant bit.
Semantics:¶
The ‘llvm.nvvm.flo.u
’ family of intrinsics returns the bit position of the
most significant 1. If %shiftamt is true, The result is the shift amount needed
to left-shift the found bit into the most-significant bit position, otherwise
the result is the shift amount needed to right-shift the found bit into the
least-significant bit position. 0xffffffff is returned if no 1 bit is found.
‘llvm.nvvm.flo.s.*
’ Intrinsic¶
Syntax:¶
declare i32 @llvm.nvvm.flo.s.i32(i32 %a, i1 %shiftamt)
declare i32 @llvm.nvvm.flo.s.i64(i64 %a, i1 %shiftamt)
Overview:¶
The ‘llvm.nvvm.flo.s
’ family of intrinsics identifies the bit position of the
leading non-sign bit, returning either it’s offset from the most or least
significant bit.
Semantics:¶
The ‘llvm.nvvm.flo.s
’ family of intrinsics returns the bit position of the
most significant 0 for negative inputs and the most significant 1 for
non-negative inputs. If %shiftamt is true, The result is the shift amount needed
to left-shift the found bit into the most-significant bit position, otherwise
the result is the shift amount needed to right-shift the found bit into the
least-significant bit position. 0xffffffff is returned if no 1 bit is found.
TMA family of Intrinsics¶
‘llvm.nvvm.cp.async.bulk.tensor.g2s.tile.[1-5]d
’¶
Syntax:¶
declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.tile.1d(ptr addrspace(3) %dst, ptr addrspace(3) %bar, ptr %tensor_map, i32 %d0, i16 %mc, i64 %ch, i1 %flag_mc, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.tile.2d(..., i32 %d0, i32 %d1, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.tile.3d(..., i32 %d0, i32 %d1, i32 %d2, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.tile.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.tile.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
Overview:¶
The ‘@llvm.nvvm.cp.async.bulk.tensor.g2s.tile.[1-5]d
’ intrinsics
correspond to the cp.async.bulk.tensor.[1-5]d.*
set of PTX instructions.
These instructions initiate an asynchronous copy of tensor data from
global memory to shared::cluster memory (indicated by the g2s
prefix)
in tile
mode. In tile mode, the multi-dimensional layout of the
source tensor is preserved at the destination. The dimension of the
tensor data ranges from 1d to 5d with the coordinates specified
by the i32 %d0 ... i32 %d4
arguments.
The last two arguments to these intrinsics are boolean flags indicating support for cache_hint and/or multicast modifiers. These flag arguments must be compile-time constants. The backend looks through these flags and lowers the intrinsics appropriately.
The Nth argument (denoted by
i1 flag_ch
) when set, indicates a valid cache_hint (i64 %ch
) and generates the.L2::cache_hint
variant of the PTX instruction.The [N-1]th argument (denoted by
i1 flag_mc
) when set, indicates the presence of a multicast mask (i16 %mc
) and generates the PTX instruction with the.multicast::cluster
modifier.
For more information, refer PTX ISA https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk-tensor.
‘llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.[3-5]d
’¶
Syntax:¶
declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.3d(ptr addrspace(3) %dst, ptr addrspace(3) %bar, ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i16 %im2col0, i16 %mc, i64 %ch, i1 %flag_mc, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i16 %im2col0, i16 %im2col1, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, i16 %im2col0, i16 %im2col1, i16 %im2col2, ...)
Overview:¶
The ‘@llvm.nvvm.cp.async.bulk.tensor.g2s.im2col.[3-5]d
’ intrinsics
correspond to the cp.async.bulk.tensor.[1-5]d.*
set of PTX instructions.
These instructions initiate an asynchronous copy of tensor data from
global memory to shared::cluster memory (indicated by the g2s
prefix)
in im2col
mode. In im2col mode, some dimensions of the source tensor
are unrolled into a single dimensional column at the destination. In this
mode, the tensor has to be at least three-dimensional. Along with the tensor
coordinates, im2col offsets are also specified (denoted by
i16 im2col0...i16 %im2col2
). The number of im2col offsets is two less
than the number of dimensions of the tensor operation. The last two arguments
to these intrinsics are boolean flags, with the same functionality as described
in the tile
mode intrinsics above.
For more information, refer PTX ISA https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk-tensor.
‘llvm.nvvm.cp.async.bulk.tensor.s2g.tile.[1-5]d
’¶
Syntax:¶
declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.tile.2d(..., i32 %d0, i32 %d1, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.tile.3d(..., i32 %d0, i32 %d1, i32 %d2, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.tile.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.tile.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
Overview:¶
The ‘@llvm.nvvm.cp.async.bulk.tensor.s2g.tile.[1-5]d
’ intrinsics
correspond to the cp.async.bulk.tensor.[1-5]d.*
set of PTX instructions.
These instructions initiate an asynchronous copy of tensor data from
shared::cta to global memory (indicated by the s2g
prefix)
in tile
mode. The dimension of the tensor data ranges from 1d to 5d
with the coordinates specified by the i32 %d0 ... i32 %d4
arguments.
The last argument to these intrinsics is a boolean flag indicating support for cache_hint. This flag argument must be a compile-time constant. When set, it indicates a valid cache_hint (
i64 %ch
) and generates the.L2::cache_hint
variant of the PTX instruction.
For more information, refer PTX ISA https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk-tensor.
‘llvm.nvvm.cp.async.bulk.tensor.s2g.im2col.[3-5]d
’¶
Syntax:¶
declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.im2col.3d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.im2col.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.s2g.im2col.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
Overview:¶
The ‘@llvm.nvvm.cp.async.bulk.tensor.s2g.im2col.[1-5]d
’ intrinsics
correspond to the cp.async.bulk.tensor.[1-5]d.*
set of PTX instructions.
These instructions initiate an asynchronous copy of tensor data from
shared::cta to global memory (indicated by the s2g
prefix)
in im2col
mode. In this mode, the tensor has to be at least
three-dimensional. Unlike the g2s
variants, there are no
im2col_offsets for these intrinsics. The last argument to these
intrinsics is a boolean flag, with the same functionality as
described in the s2g.tile
mode intrinsics above.
For more information, refer PTX ISA https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk-tensor.
‘llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.[1-5]d
’¶
Syntax:¶
declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.1d(ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.2d(..., i32 %d0, i32 %d1, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.3d(..., i32 %d0, i32 %d1, i32 %d2, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
Overview:¶
The ‘@llvm.nvvm.cp.async.bulk.tensor.prefetch.tile.[1-5]d
’ intrinsics
correspond to the cp.async.bulk.prefetch.tensor.[1-5]d.L2.global*
set
of PTX instructions. These instructions initiate an asynchronous prefetch
of tensor data from global memory to the L2 cache. In tile mode, the
multi-dimensional layout of the source tensor is preserved at the destination.
The dimension of the tensor data ranges from 1d to 5d with the coordinates
specified by the i32 %d0 ... i32 %d4
arguments.
The last argument to these intrinsics is a boolean flag indicating support for cache_hint. This flag argument must be a compile-time constant. When set, it indicates a valid cache_hint (
i64 %ch
) and generates the.L2::cache_hint
variant of the PTX instruction.
For more information, refer PTX ISA https://docs.nvidia.com/cuda/parallel-thread-execution/#data-movement-and-conversion-instructions-cp-async-bulk-prefetch-tensor.
‘llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.[3-5]d
’¶
Syntax:¶
declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.3d(ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i16 %im2col0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i16 %im2col0, i16 %im2col1, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, i16 %im2col0, i16 %im2col1, i16 %im2col2, ...)
Overview:¶
The ‘@llvm.nvvm.cp.async.bulk.tensor.prefetch.im2col.[3-5]d
’ intrinsics
correspond to the cp.async.bulk.prefetch.tensor.[1-5]d.L2.global*
set
of PTX instructions. These instructions initiate an asynchronous prefetch
of tensor data from global memory to the L2 cache. In im2col mode, some
dimensions of the source tensor are unrolled into a single dimensional
column at the destination. In this mode, the tensor has to be at least
three-dimensional. Along with the tensor coordinates, im2col offsets are
also specified (denoted by i16 im2col0...i16 %im2col2
). The number
of im2col offsets is two less than the number of dimensions of the tensor
operation. The last argument to these intrinsics is a boolean flag, with
the same functionality as described in the tile
mode intrinsics above.
For more information, refer PTX ISA https://docs.nvidia.com/cuda/parallel-thread-execution/#data-movement-and-conversion-instructions-cp-async-bulk-prefetch-tensor.
‘llvm.nvvm.cp.async.bulk.tensor.reduce.[red_op].tile.[1-5]d
’¶
Syntax:¶
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.add.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.min.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.max.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.inc.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.dec.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.and.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.or.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.xor.tile.1d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.tile.2d(..., i32 %d0, i32 %d1, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.tile.3d(..., i32 %d0, i32 %d1, i32 %d2, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.tile.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.tile.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
Overview:¶
The ‘@llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.tile.[1-5]d
’ intrinsics
correspond to the cp.reduce.async.bulk.tensor.[1-5]d.*
set of PTX instructions.
These instructions initiate an asynchronous reduction operation of tensor data
in global memory with the tensor data in shared{::cta} memory, using tile
mode.
The dimension of the tensor data ranges from 1d to 5d with the coordinates
specified by the i32 %d0 ... i32 %d4
arguments. The supported reduction
operations are {add, min, max, inc, dec, and, or, xor} as described in the
tile.1d
intrinsics.
The last argument to these intrinsics is a boolean flag indicating support for cache_hint. This flag argument must be a compile-time constant. When set, it indicates a valid cache_hint (
i64 %ch
) and generates the.L2::cache_hint
variant of the PTX instruction.
For more information, refer PTX ISA https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-reduce-async-bulk-tensor.
‘llvm.nvvm.cp.async.bulk.tensor.reduce.[red_op].im2col.[3-5]d
’¶
Syntax:¶
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.im2col.3d(ptr addrspace(3) %src, ptr %tensor_map, i32 %d0, i32 %d1, i32 %d2, i64 %ch, i1 %flag_ch)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.im2col.4d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, ...)
declare void @llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.im2col.5d(..., i32 %d0, i32 %d1, i32 %d2, i32 %d3, i32 %d4, ...)
Overview:¶
The ‘@llvm.nvvm.cp.async.bulk.tensor.reduce.<red_op>.im2col.[3-5]d
’ intrinsics
correspond to the cp.reduce.async.bulk.tensor.[3-5]d.*
set of PTX instructions.
These instructions initiate an asynchronous reduction operation of tensor data
in global memory with the tensor data in shared{::cta} memory, using im2col
mode.
In this mode, the tensor has to be at least three-dimensional. The supported reduction
operations supported are the same as the ones in the tile mode. The last argument to
these intrinsics is a boolean flag, with the same functionality as described in the
tile
mode intrinsics above.
For more information, refer PTX ISA https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-reduce-async-bulk-tensor.
Warp Group Intrinsics¶
‘llvm.nvvm.wgmma.fence.sync.aligned
’¶
Syntax:¶
declare void @llvm.nvvm.wgmma.fence.sync.aligned()
Overview:¶
The ‘@llvm.nvvm.wgmma.fence.sync.aligned
’ intrinsic generates the
wgmma.fence.sync.aligned
PTX instruction, which establishes an ordering
between prior accesses to any warpgroup registers and subsequent accesses to
the same registers by a wgmma.mma_async
instruction.
The wgmma.fence
instruction must be issued by all warps of the warpgroup in
the following locations:
Before the first
wgmma.mma_async
operation in a warpgroup.Between a register access by a thread in the warpgroup and any
wgmma.mma_async
instruction that accesses the same registers, except when these are accumulator register accesses across multiplewgmma.mma_async
instructions of the same shape in which case an ordering guarantee is provided by default.
For more information, refer PTX ISA https://docs.nvidia.com/cuda/parallel-thread-execution/#asynchronous-warpgroup-level-matrix-instructions-wgmma-fence.
‘llvm.nvvm.wgmma.commit_group.sync.aligned
’¶
Syntax:¶
declare void @llvm.nvvm.wgmma.commit_group.sync.aligned()
Overview:¶
The ‘@llvm.nvvm.wgmma.commit_group.sync.aligned
’ intrinsic generates the
wgmma.commit_group.sync.aligned
PTX instruction, which creates a new
wgmma-group per warpgroup and batches all prior wgmma.mma_async
instructions initiated by the executing warp but not committed to any
wgmma-group into the new wgmma-group. If there are no uncommitted wgmma
mma_async
instructions then, wgmma.commit_group
results in an empty
wgmma-group.
An executing thread can wait for the completion of all wgmma.mma_async
operations in a wgmma-group by using wgmma.wait_group
.
For more information, refer PTX ISA https://docs.nvidia.com/cuda/parallel-thread-execution/#asynchronous-warpgroup-level-matrix-instructions-wgmma-commit-group.
‘llvm.nvvm.wgmma.wait_group.sync.aligned
’¶
Syntax:¶
declare void @llvm.nvvm.wgmma.wait_group.sync.aligned(i64 immarg N)
Overview:¶
The ‘@llvm.nvvm.wgmma.wait_group.sync.aligned
’ intrinsic generates the
wgmma.commit_group.sync.aligned N
PTX instruction, which will cause the
executing thread to wait until only N
or fewer of the most recent
wgmma-groups are pending and all the prior wgmma-groups committed by the
executing threads are complete. For example, when N
is 0, the executing
thread waits on all the prior wgmma-groups to complete. Operand N
is an
integer constant.
Accessing the accumulator register or the input register containing the
fragments of matrix A of a wgmma.mma_async
instruction without first
performing a wgmma.wait_group
instruction that waits on a wgmma-group
including that wgmma.mma_async
instruction is undefined behavior.
For more information, refer PTX ISA https://docs.nvidia.com/cuda/parallel-thread-execution/#asynchronous-warpgroup-level-matrix-instructions-wgmma-wait-group.
Other Intrinsics¶
For the full set of NVPTX intrinsics, please see the
include/llvm/IR/IntrinsicsNVVM.td
file in the LLVM source tree.
Linking with Libdevice¶
The CUDA Toolkit comes with an LLVM bitcode library called libdevice
that
implements many common mathematical functions. This library can be used as a
high-performance math library for any compilers using the LLVM NVPTX target.
The library can be found under nvvm/libdevice/
in the CUDA Toolkit and
there is a separate version for each compute architecture.
For a list of all math functions implemented in libdevice, see libdevice Users Guide.
To accommodate various math-related compiler flags that can affect code
generation of libdevice code, the library code depends on a special LLVM IR
pass (NVVMReflect
) to handle conditional compilation within LLVM IR. This
pass looks for calls to the @__nvvm_reflect
function and replaces them
with constants based on the defined reflection parameters. Such conditional
code often follows a pattern:
float my_function(float a) {
if (__nvvm_reflect("FASTMATH"))
return my_function_fast(a);
else
return my_function_precise(a);
}
The default value for all unspecified reflection parameters is zero.
The NVVMReflect
pass should be executed early in the optimization
pipeline, immediately after the link stage. The internalize
pass is also
recommended to remove unused math functions from the resulting PTX. For an
input IR module module.bc
, the following compilation flow is recommended:
The NVVMReflect
pass will attempt to remove dead code even without
optimizations. This allows potentially incompatible instructions to be avoided
at all optimizations levels by using the __CUDA_ARCH
argument.
Save list of external functions in
module.bc
Link
module.bc
withlibdevice.compute_XX.YY.bc
Internalize all functions not in list from (1)
Eliminate all unused internal functions
Run
NVVMReflect
passRun standard optimization pipeline
Note
linkonce
and linkonce_odr
linkage types are not suitable for the
libdevice functions. It is possible to link two IR modules that have been
linked against libdevice using different reflection variables.
Since the NVVMReflect
pass replaces conditionals with constants, it will
often leave behind dead code of the form:
entry:
..
br i1 true, label %foo, label %bar
foo:
..
bar:
; Dead code
..
Therefore, it is recommended that NVVMReflect
is executed early in the
optimization pipeline before dead-code elimination.
The NVPTX TargetMachine knows how to schedule NVVMReflect
at the beginning
of your pass manager; just use the following code when setting up your pass
manager and the PassBuilder will use registerPassBuilderCallbacks
to let
NVPTXTargetMachine::registerPassBuilderCallbacks add the pass to the
pass manager:
std::unique_ptr<TargetMachine> TM = ...;
PassBuilder PB(TM);
ModulePassManager MPM;
PB.parsePassPipeline(MPM, ...);
Reflection Parameters¶
The libdevice library currently uses the following reflection parameters to control code generation:
Flag |
Description |
---|---|
|
Use optimized code paths that flush subnormals to zero |
The value of this flag is determined by the “nvvm-reflect-ftz” module flag. The following sets the ftz flag to 1.
!llvm.module.flags = !{!0}
!0 = !{i32 4, !"nvvm-reflect-ftz", i32 1}
(i32 4
indicates that the value set here overrides the value in another
module we link with. See the LangRef <LangRef.html#module-flags-metadata>
for details.)
Executing PTX¶
The most common way to execute PTX assembly on a GPU device is to use the CUDA Driver API. This API is a low-level interface to the GPU driver and allows for JIT compilation of PTX code to native GPU machine code.
Initializing the Driver API:
CUdevice device;
CUcontext context;
// Initialize the driver API
cuInit(0);
// Get a handle to the first compute device
cuDeviceGet(&device, 0);
// Create a compute device context
cuCtxCreate(&context, 0, device);
JIT compiling a PTX string to a device binary:
CUmodule module;
CUfunction function;
// JIT compile a null-terminated PTX string
cuModuleLoadData(&module, (void*)PTXString);
// Get a handle to the "myfunction" kernel function
cuModuleGetFunction(&function, module, "myfunction");
For full examples of executing PTX assembly, please see the CUDA Samples distribution.
Common Issues¶
ptxas complains of undefined function: __nvvm_reflect¶
When linking with libdevice, the NVVMReflect
pass must be used. See
Linking with Libdevice for more information.
Tutorial: A Simple Compute Kernel¶
To start, let us take a look at a simple compute kernel written directly in LLVM IR. The kernel implements vector addition, where each thread computes one element of the output vector C from the input vectors A and B. To make this easier, we also assume that only a single CTA (thread block) will be launched, and that it will be one dimensional.
The Kernel¶
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
target triple = "nvptx64-nvidia-cuda"
; Intrinsic to read X component of thread ID
declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
define void @kernel(ptr addrspace(1) %A,
ptr addrspace(1) %B,
ptr addrspace(1) %C) {
entry:
; What is my ID?
%id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
; Compute pointers into A, B, and C
%ptrA = getelementptr float, ptr addrspace(1) %A, i32 %id
%ptrB = getelementptr float, ptr addrspace(1) %B, i32 %id
%ptrC = getelementptr float, ptr addrspace(1) %C, i32 %id
; Read A, B
%valA = load float, ptr addrspace(1) %ptrA, align 4
%valB = load float, ptr addrspace(1) %ptrB, align 4
; Compute C = A + B
%valC = fadd float %valA, %valB
; Store back to C
store float %valC, ptr addrspace(1) %ptrC, align 4
ret void
}
!nvvm.annotations = !{!0}
!0 = !{ptr @kernel, !"kernel", i32 1}
We can use the LLVM llc
tool to directly run the NVPTX code generator:
# llc -mcpu=sm_20 kernel.ll -o kernel.ptx
Note
If you want to generate 32-bit code, change p:64:64:64
to p:32:32:32
in the module data layout string and use nvptx-nvidia-cuda
as the
target triple.
The output we get from llc
(as of LLVM 3.4):
//
// Generated by LLVM NVPTX Back-End
//
.version 3.1
.target sm_20
.address_size 64
// .globl kernel
// @kernel
.visible .entry kernel(
.param .u64 kernel_param_0,
.param .u64 kernel_param_1,
.param .u64 kernel_param_2
)
{
.reg .f32 %f<4>;
.reg .s32 %r<2>;
.reg .s64 %rl<8>;
// %bb.0: // %entry
ld.param.u64 %rl1, [kernel_param_0];
mov.u32 %r1, %tid.x;
mul.wide.s32 %rl2, %r1, 4;
add.s64 %rl3, %rl1, %rl2;
ld.param.u64 %rl4, [kernel_param_1];
add.s64 %rl5, %rl4, %rl2;
ld.param.u64 %rl6, [kernel_param_2];
add.s64 %rl7, %rl6, %rl2;
ld.global.f32 %f1, [%rl3];
ld.global.f32 %f2, [%rl5];
add.f32 %f3, %f1, %f2;
st.global.f32 [%rl7], %f3;
ret;
}
Dissecting the Kernel¶
Now let us dissect the LLVM IR that makes up this kernel.
Data Layout¶
The data layout string determines the size in bits of common data types, their ABI alignment, and their storage size. For NVPTX, you should use one of the following:
32-bit PTX:
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
64-bit PTX:
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
Target Intrinsics¶
In this example, we use the @llvm.nvvm.read.ptx.sreg.tid.x
intrinsic to
read the X component of the current thread’s ID, which corresponds to a read
of register %tid.x
in PTX. The NVPTX back-end supports a large set of
intrinsics. A short list is shown below; please see
include/llvm/IR/IntrinsicsNVVM.td
for the full list.
Intrinsic |
CUDA Equivalent |
---|---|
|
threadIdx.{x,y,z} |
|
blockIdx.{x,y,z} |
|
blockDim.{x,y,z} |
|
gridDim.{x,y,z} |
|
__syncthreads() |
Address Spaces¶
You may have noticed that all of the pointer types in the LLVM IR example had an explicit address space specifier. What is address space 1? NVIDIA GPU devices (generally) have four types of memory:
Global: Large, off-chip memory
Shared: Small, on-chip memory shared among all threads in a CTA
Local: Per-thread, private memory
Constant: Read-only memory shared across all threads
These different types of memory are represented in LLVM IR as address spaces. There is also a fifth address space used by the NVPTX code generator that corresponds to the “generic” address space. This address space can represent addresses in any other address space (with a few exceptions). This allows users to write IR functions that can load/store memory using the same instructions. Intrinsics are provided to convert pointers between the generic and non-generic address spaces.
See Address Spaces and NVPTX Intrinsics for more information.
Kernel Metadata¶
In PTX, a function can be either a kernel function (callable from the host
program), or a device function (callable only from GPU code). You can think
of kernel functions as entry-points in the GPU program. To mark an LLVM IR
function as a kernel function, we make use of special LLVM metadata. The
NVPTX back-end will look for a named metadata node called
nvvm.annotations
. This named metadata must contain a list of metadata that
describe the IR. For our purposes, we need to declare a metadata node that
assigns the “kernel” attribute to the LLVM IR function that should be emitted
as a PTX kernel function. These metadata nodes take the form:
!{<function ref>, metadata !"kernel", i32 1}
For the previous example, we have:
!nvvm.annotations = !{!0}
!0 = !{ptr @kernel, !"kernel", i32 1}
Here, we have a single metadata declaration in nvvm.annotations
. This
metadata annotates our @kernel
function with the kernel
attribute.
Running the Kernel¶
Generating PTX from LLVM IR is all well and good, but how do we execute it on a real GPU device? The CUDA Driver API provides a convenient mechanism for loading and JIT compiling PTX to a native GPU device, and launching a kernel. The API is similar to OpenCL. A simple example showing how to load and execute our vector addition code is shown below. Note that for brevity this code does not perform much error checking!
Note
You can also use the ptxas
tool provided by the CUDA Toolkit to offline
compile PTX to machine code (SASS) for a specific GPU architecture. Such
binaries can be loaded by the CUDA Driver API in the same way as PTX. This
can be useful for reducing startup time by precompiling the PTX kernels.
#include <iostream>
#include <fstream>
#include <cassert>
#include "cuda.h"
void checkCudaErrors(CUresult err) {
assert(err == CUDA_SUCCESS);
}
/// main - Program entry point
int main(int argc, char **argv) {
CUdevice device;
CUmodule cudaModule;
CUcontext context;
CUfunction function;
CUlinkState linker;
int devCount;
// CUDA initialization
checkCudaErrors(cuInit(0));
checkCudaErrors(cuDeviceGetCount(&devCount));
checkCudaErrors(cuDeviceGet(&device, 0));
char name[128];
checkCudaErrors(cuDeviceGetName(name, 128, device));
std::cout << "Using CUDA Device [0]: " << name << "\n";
int devMajor, devMinor;
checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
std::cout << "Device Compute Capability: "
<< devMajor << "." << devMinor << "\n";
if (devMajor < 2) {
std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
return 1;
}
std::ifstream t("kernel.ptx");
if (!t.is_open()) {
std::cerr << "kernel.ptx not found\n";
return 1;
}
std::string str((std::istreambuf_iterator<char>(t)),
std::istreambuf_iterator<char>());
// Create driver context
checkCudaErrors(cuCtxCreate(&context, 0, device));
// Create module for object
checkCudaErrors(cuModuleLoadDataEx(&cudaModule, str.c_str(), 0, 0, 0));
// Get kernel function
checkCudaErrors(cuModuleGetFunction(&function, cudaModule, "kernel"));
// Device data
CUdeviceptr devBufferA;
CUdeviceptr devBufferB;
CUdeviceptr devBufferC;
checkCudaErrors(cuMemAlloc(&devBufferA, sizeof(float)*16));
checkCudaErrors(cuMemAlloc(&devBufferB, sizeof(float)*16));
checkCudaErrors(cuMemAlloc(&devBufferC, sizeof(float)*16));
float* hostA = new float[16];
float* hostB = new float[16];
float* hostC = new float[16];
// Populate input
for (unsigned i = 0; i != 16; ++i) {
hostA[i] = (float)i;
hostB[i] = (float)(2*i);
hostC[i] = 0.0f;
}
checkCudaErrors(cuMemcpyHtoD(devBufferA, &hostA[0], sizeof(float)*16));
checkCudaErrors(cuMemcpyHtoD(devBufferB, &hostB[0], sizeof(float)*16));
unsigned blockSizeX = 16;
unsigned blockSizeY = 1;
unsigned blockSizeZ = 1;
unsigned gridSizeX = 1;
unsigned gridSizeY = 1;
unsigned gridSizeZ = 1;
// Kernel parameters
void *KernelParams[] = { &devBufferA, &devBufferB, &devBufferC };
std::cout << "Launching kernel\n";
// Kernel launch
checkCudaErrors(cuLaunchKernel(function, gridSizeX, gridSizeY, gridSizeZ,
blockSizeX, blockSizeY, blockSizeZ,
0, NULL, KernelParams, NULL));
// Retrieve device data
checkCudaErrors(cuMemcpyDtoH(&hostC[0], devBufferC, sizeof(float)*16));
std::cout << "Results:\n";
for (unsigned i = 0; i != 16; ++i) {
std::cout << hostA[i] << " + " << hostB[i] << " = " << hostC[i] << "\n";
}
// Clean up after ourselves
delete [] hostA;
delete [] hostB;
delete [] hostC;
// Clean-up
checkCudaErrors(cuMemFree(devBufferA));
checkCudaErrors(cuMemFree(devBufferB));
checkCudaErrors(cuMemFree(devBufferC));
checkCudaErrors(cuModuleUnload(cudaModule));
checkCudaErrors(cuCtxDestroy(context));
return 0;
}
You will need to link with the CUDA driver and specify the path to cuda.h.
# clang++ sample.cpp -o sample -O2 -g -I/usr/local/cuda-5.5/include -lcuda
We don’t need to specify a path to libcuda.so
since this is installed in a
system location by the driver, not the CUDA toolkit.
If everything goes as planned, you should see the following output when running the compiled program:
Using CUDA Device [0]: GeForce GTX 680
Device Compute Capability: 3.0
Launching kernel
Results:
0 + 0 = 0
1 + 2 = 3
2 + 4 = 6
3 + 6 = 9
4 + 8 = 12
5 + 10 = 15
6 + 12 = 18
7 + 14 = 21
8 + 16 = 24
9 + 18 = 27
10 + 20 = 30
11 + 22 = 33
12 + 24 = 36
13 + 26 = 39
14 + 28 = 42
15 + 30 = 45
Note
You will likely see a different device identifier based on your hardware
Tutorial: Linking with Libdevice¶
In this tutorial, we show a simple example of linking LLVM IR with the
libdevice library. We will use the same kernel as the previous tutorial,
except that we will compute C = pow(A, B)
instead of C = A + B
.
Libdevice provides an __nv_powf
function that we will use.
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
target triple = "nvptx64-nvidia-cuda"
; Intrinsic to read X component of thread ID
declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
; libdevice function
declare float @__nv_powf(float, float)
define void @kernel(ptr addrspace(1) %A,
ptr addrspace(1) %B,
ptr addrspace(1) %C) {
entry:
; What is my ID?
%id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
; Compute pointers into A, B, and C
%ptrA = getelementptr float, ptr addrspace(1) %A, i32 %id
%ptrB = getelementptr float, ptr addrspace(1) %B, i32 %id
%ptrC = getelementptr float, ptr addrspace(1) %C, i32 %id
; Read A, B
%valA = load float, ptr addrspace(1) %ptrA, align 4
%valB = load float, ptr addrspace(1) %ptrB, align 4
; Compute C = pow(A, B)
%valC = call float @__nv_powf(float %valA, float %valB)
; Store back to C
store float %valC, ptr addrspace(1) %ptrC, align 4
ret void
}
!nvvm.annotations = !{!0}
!0 = !{ptr @kernel, !"kernel", i32 1}
To compile this kernel, we perform the following steps:
Link with libdevice
Internalize all but the public kernel function
Run
NVVMReflect
and set__CUDA_FTZ
to 0Optimize the linked module
Codegen the module
These steps can be performed by the LLVM llvm-link
, opt
, and llc
tools. In a complete compiler, these steps can also be performed entirely
programmatically by setting up an appropriate pass configuration (see
Linking with Libdevice).
# llvm-link t2.bc libdevice.compute_20.10.bc -o t2.linked.bc
# opt -internalize -internalize-public-api-list=kernel -nvvm-reflect-list=__CUDA_FTZ=0 -nvvm-reflect -O3 t2.linked.bc -o t2.opt.bc
# llc -mcpu=sm_20 t2.opt.bc -o t2.ptx
Note
The -nvvm-reflect-list=_CUDA_FTZ=0
is not strictly required, as any
undefined variables will default to zero. It is shown here for evaluation
purposes.
This gives us the following PTX (excerpt):
//
// Generated by LLVM NVPTX Back-End
//
.version 3.1
.target sm_20
.address_size 64
// .globl kernel
// @kernel
.visible .entry kernel(
.param .u64 kernel_param_0,
.param .u64 kernel_param_1,
.param .u64 kernel_param_2
)
{
.reg .pred %p<30>;
.reg .f32 %f<111>;
.reg .s32 %r<21>;
.reg .s64 %rl<8>;
// %bb.0: // %entry
ld.param.u64 %rl2, [kernel_param_0];
mov.u32 %r3, %tid.x;
ld.param.u64 %rl3, [kernel_param_1];
mul.wide.s32 %rl4, %r3, 4;
add.s64 %rl5, %rl2, %rl4;
ld.param.u64 %rl6, [kernel_param_2];
add.s64 %rl7, %rl3, %rl4;
add.s64 %rl1, %rl6, %rl4;
ld.global.f32 %f1, [%rl5];
ld.global.f32 %f2, [%rl7];
setp.eq.f32 %p1, %f1, 0f3F800000;
setp.eq.f32 %p2, %f2, 0f00000000;
or.pred %p3, %p1, %p2;
@%p3 bra BB0_1;
bra.uni BB0_2;
BB0_1:
mov.f32 %f110, 0f3F800000;
st.global.f32 [%rl1], %f110;
ret;
BB0_2: // %__nv_isnanf.exit.i
abs.f32 %f4, %f1;
setp.gtu.f32 %p4, %f4, 0f7F800000;
@%p4 bra BB0_4;
// %bb.3: // %__nv_isnanf.exit5.i
abs.f32 %f5, %f2;
setp.le.f32 %p5, %f5, 0f7F800000;
@%p5 bra BB0_5;
BB0_4: // %.critedge1.i
add.f32 %f110, %f1, %f2;
st.global.f32 [%rl1], %f110;
ret;
BB0_5: // %__nv_isinff.exit.i
...
BB0_26: // %__nv_truncf.exit.i.i.i.i.i
mul.f32 %f90, %f107, 0f3FB8AA3B;
cvt.rzi.f32.f32 %f91, %f90;
mov.f32 %f92, 0fBF317200;
fma.rn.f32 %f93, %f91, %f92, %f107;
mov.f32 %f94, 0fB5BFBE8E;
fma.rn.f32 %f95, %f91, %f94, %f93;
mul.f32 %f89, %f95, 0f3FB8AA3B;
// inline asm
ex2.approx.ftz.f32 %f88,%f89;
// inline asm
add.f32 %f96, %f91, 0f00000000;
ex2.approx.f32 %f97, %f96;
mul.f32 %f98, %f88, %f97;
setp.lt.f32 %p15, %f107, 0fC2D20000;
selp.f32 %f99, 0f00000000, %f98, %p15;
setp.gt.f32 %p16, %f107, 0f42D20000;
selp.f32 %f110, 0f7F800000, %f99, %p16;
setp.eq.f32 %p17, %f110, 0f7F800000;
@%p17 bra BB0_28;
// %bb.27:
fma.rn.f32 %f110, %f110, %f108, %f110;
BB0_28: // %__internal_accurate_powf.exit.i
setp.lt.f32 %p18, %f1, 0f00000000;
setp.eq.f32 %p19, %f3, 0f3F800000;
and.pred %p20, %p18, %p19;
@!%p20 bra BB0_30;
bra.uni BB0_29;
BB0_29:
mov.b32 %r9, %f110;
xor.b32 %r10, %r9, -2147483648;
mov.b32 %f110, %r10;
BB0_30: // %__nv_powf.exit
st.global.f32 [%rl1], %f110;
ret;
}