LLVM 20.0.0git
blake3.c
Go to the documentation of this file.
1/*===-- blake3.c - BLAKE3 C Implementation ------------------------*- C -*-===*\
2|* *|
3|* Released into the public domain with CC0 1.0 *|
4|* See 'llvm/lib/Support/BLAKE3/LICENSE' for info. *|
5|* SPDX-License-Identifier: CC0-1.0 *|
6|* *|
7\*===----------------------------------------------------------------------===*/
8
9#include <assert.h>
10#include <stdbool.h>
11#include <string.h>
12
13#include "blake3_impl.h"
14
15const char *llvm_blake3_version(void) { return BLAKE3_VERSION_STRING; }
16
18 uint8_t flags) {
19 memcpy(self->cv, key, BLAKE3_KEY_LEN);
20 self->chunk_counter = 0;
21 memset(self->buf, 0, BLAKE3_BLOCK_LEN);
22 self->buf_len = 0;
23 self->blocks_compressed = 0;
24 self->flags = flags;
25}
26
28 uint64_t chunk_counter) {
29 memcpy(self->cv, key, BLAKE3_KEY_LEN);
30 self->chunk_counter = chunk_counter;
31 self->blocks_compressed = 0;
32 memset(self->buf, 0, BLAKE3_BLOCK_LEN);
33 self->buf_len = 0;
34}
35
37 return (BLAKE3_BLOCK_LEN * (size_t)self->blocks_compressed) +
38 ((size_t)self->buf_len);
39}
40
42 const uint8_t *input, size_t input_len) {
43 size_t take = BLAKE3_BLOCK_LEN - ((size_t)self->buf_len);
44 if (take > input_len) {
45 take = input_len;
46 }
47 uint8_t *dest = self->buf + ((size_t)self->buf_len);
48 memcpy(dest, input, take);
49 self->buf_len += (uint8_t)take;
50 return take;
51}
52
54 if (self->blocks_compressed == 0) {
55 return CHUNK_START;
56 } else {
57 return 0;
58 }
59}
60
61typedef struct {
62 uint32_t input_cv[8];
67} output_t;
68
71 uint8_t block_len, uint64_t counter,
72 uint8_t flags) {
73 output_t ret;
74 memcpy(ret.input_cv, input_cv, 32);
75 memcpy(ret.block, block, BLAKE3_BLOCK_LEN);
76 ret.block_len = block_len;
77 ret.counter = counter;
78 ret.flags = flags;
79 return ret;
80}
81
82// Chaining values within a given chunk (specifically the compress_in_place
83// interface) are represented as words. This avoids unnecessary bytes<->words
84// conversion overhead in the portable implementation. However, the hash_many
85// interface handles both user input and parent node blocks, so it accepts
86// bytes. For that reason, chaining values in the CV stack are represented as
87// bytes.
88INLINE void output_chaining_value(const output_t *self, uint8_t cv[32]) {
89 uint32_t cv_words[8];
90 memcpy(cv_words, self->input_cv, 32);
91 blake3_compress_in_place(cv_words, self->block, self->block_len,
92 self->counter, self->flags);
93 store_cv_words(cv, cv_words);
94}
95
96INLINE void output_root_bytes(const output_t *self, uint64_t seek, uint8_t *out,
97 size_t out_len) {
98 uint64_t output_block_counter = seek / 64;
99 size_t offset_within_block = seek % 64;
100 uint8_t wide_buf[64];
101 while (out_len > 0) {
102 blake3_compress_xof(self->input_cv, self->block, self->block_len,
103 output_block_counter, self->flags | ROOT, wide_buf);
104 size_t available_bytes = 64 - offset_within_block;
105 size_t memcpy_len;
106 if (out_len > available_bytes) {
107 memcpy_len = available_bytes;
108 } else {
109 memcpy_len = out_len;
110 }
111 memcpy(out, wide_buf + offset_within_block, memcpy_len);
112 out += memcpy_len;
113 out_len -= memcpy_len;
114 output_block_counter += 1;
115 offset_within_block = 0;
116 }
117}
118
120 size_t input_len) {
121 if (self->buf_len > 0) {
122 size_t take = chunk_state_fill_buf(self, input, input_len);
123 input += take;
124 input_len -= take;
125 if (input_len > 0) {
127 self->cv, self->buf, BLAKE3_BLOCK_LEN, self->chunk_counter,
128 self->flags | chunk_state_maybe_start_flag(self));
129 self->blocks_compressed += 1;
130 self->buf_len = 0;
131 memset(self->buf, 0, BLAKE3_BLOCK_LEN);
132 }
133 }
134
135 while (input_len > BLAKE3_BLOCK_LEN) {
137 self->chunk_counter,
138 self->flags | chunk_state_maybe_start_flag(self));
139 self->blocks_compressed += 1;
140 input += BLAKE3_BLOCK_LEN;
141 input_len -= BLAKE3_BLOCK_LEN;
142 }
143
144 chunk_state_fill_buf(self, input, input_len);
145}
146
148 uint8_t block_flags =
149 self->flags | chunk_state_maybe_start_flag(self) | CHUNK_END;
150 return make_output(self->cv, self->buf, self->buf_len, self->chunk_counter,
151 block_flags);
152}
153
155 const uint32_t key[8], uint8_t flags) {
156 return make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags | PARENT);
157}
158
159// Given some input larger than one chunk, return the number of bytes that
160// should go in the left subtree. This is the largest power-of-2 number of
161// chunks that leaves at least 1 byte for the right subtree.
162INLINE size_t left_len(size_t content_len) {
163 // Subtract 1 to reserve at least one byte for the right side. content_len
164 // should always be greater than BLAKE3_CHUNK_LEN.
165 size_t full_chunks = (content_len - 1) / BLAKE3_CHUNK_LEN;
166 return round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN;
167}
168
169// Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time
170// on a single thread. Write out the chunk chaining values and return the
171// number of chunks hashed. These chunks are never the root and never empty;
172// those cases use a different codepath.
173INLINE size_t compress_chunks_parallel(const uint8_t *input, size_t input_len,
174 const uint32_t key[8],
175 uint64_t chunk_counter, uint8_t flags,
176 uint8_t *out) {
177#if defined(BLAKE3_TESTING)
178 assert(0 < input_len);
180#endif
181
182 const uint8_t *chunks_array[MAX_SIMD_DEGREE];
183 size_t input_position = 0;
184 size_t chunks_array_len = 0;
185 while (input_len - input_position >= BLAKE3_CHUNK_LEN) {
186 chunks_array[chunks_array_len] = &input[input_position];
187 input_position += BLAKE3_CHUNK_LEN;
188 chunks_array_len += 1;
189 }
190
191 blake3_hash_many(chunks_array, chunks_array_len,
192 BLAKE3_CHUNK_LEN / BLAKE3_BLOCK_LEN, key, chunk_counter,
193 true, flags, CHUNK_START, CHUNK_END, out);
194
195 // Hash the remaining partial chunk, if there is one. Note that the empty
196 // chunk (meaning the empty message) is a different codepath.
197 if (input_len > input_position) {
198 uint64_t counter = chunk_counter + (uint64_t)chunks_array_len;
199 blake3_chunk_state chunk_state;
200 chunk_state_init(&chunk_state, key, flags);
201 chunk_state.chunk_counter = counter;
202 chunk_state_update(&chunk_state, &input[input_position],
203 input_len - input_position);
204 output_t output = chunk_state_output(&chunk_state);
205 output_chaining_value(&output, &out[chunks_array_len * BLAKE3_OUT_LEN]);
206 return chunks_array_len + 1;
207 } else {
208 return chunks_array_len;
209 }
210}
211
212// Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time
213// on a single thread. Write out the parent chaining values and return the
214// number of parents hashed. (If there's an odd input chaining value left over,
215// return it as an additional output.) These parents are never the root and
216// never empty; those cases use a different codepath.
217INLINE size_t compress_parents_parallel(const uint8_t *child_chaining_values,
218 size_t num_chaining_values,
219 const uint32_t key[8], uint8_t flags,
220 uint8_t *out) {
221#if defined(BLAKE3_TESTING)
222 assert(2 <= num_chaining_values);
223 assert(num_chaining_values <= 2 * MAX_SIMD_DEGREE_OR_2);
224#endif
225
226 const uint8_t *parents_array[MAX_SIMD_DEGREE_OR_2];
227 size_t parents_array_len = 0;
228 while (num_chaining_values - (2 * parents_array_len) >= 2) {
229 parents_array[parents_array_len] =
230 &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN];
231 parents_array_len += 1;
232 }
233
234 blake3_hash_many(parents_array, parents_array_len, 1, key,
235 0, // Parents always use counter 0.
236 false, flags | PARENT,
237 0, // Parents have no start flags.
238 0, // Parents have no end flags.
239 out);
240
241 // If there's an odd child left over, it becomes an output.
242 if (num_chaining_values > 2 * parents_array_len) {
243 memcpy(&out[parents_array_len * BLAKE3_OUT_LEN],
244 &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN],
246 return parents_array_len + 1;
247 } else {
248 return parents_array_len;
249 }
250}
251
252// The wide helper function returns (writes out) an array of chaining values
253// and returns the length of that array. The number of chaining values returned
254// is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer,
255// if the input is shorter than that many chunks. The reason for maintaining a
256// wide array of chaining values going back up the tree, is to allow the
257// implementation to hash as many parents in parallel as possible.
258//
259// As a special case when the SIMD degree is 1, this function will still return
260// at least 2 outputs. This guarantees that this function doesn't perform the
261// root compression. (If it did, it would use the wrong flags, and also we
262// wouldn't be able to implement exendable ouput.) Note that this function is
263// not used when the whole input is only 1 chunk long; that's a different
264// codepath.
265//
266// Why not just have the caller split the input on the first update(), instead
267// of implementing this special rule? Because we don't want to limit SIMD or
268// multi-threading parallelism for that update().
269static size_t blake3_compress_subtree_wide(const uint8_t *input,
270 size_t input_len,
271 const uint32_t key[8],
272 uint64_t chunk_counter,
273 uint8_t flags, uint8_t *out) {
274 // Note that the single chunk case does *not* bump the SIMD degree up to 2
275 // when it is 1. If this implementation adds multi-threading in the future,
276 // this gives us the option of multi-threading even the 2-chunk case, which
277 // can help performance on smaller platforms.
278 if (input_len <= blake3_simd_degree() * BLAKE3_CHUNK_LEN) {
279 return compress_chunks_parallel(input, input_len, key, chunk_counter, flags,
280 out);
281 }
282
283 // With more than simd_degree chunks, we need to recurse. Start by dividing
284 // the input into left and right subtrees. (Note that this is only optimal
285 // as long as the SIMD degree is a power of 2. If we ever get a SIMD degree
286 // of 3 or something, we'll need a more complicated strategy.)
287 size_t left_input_len = left_len(input_len);
288 size_t right_input_len = input_len - left_input_len;
289 const uint8_t *right_input = &input[left_input_len];
290 uint64_t right_chunk_counter =
291 chunk_counter + (uint64_t)(left_input_len / BLAKE3_CHUNK_LEN);
292
293 // Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 to
294 // account for the special case of returning 2 outputs when the SIMD degree
295 // is 1.
297 size_t degree = blake3_simd_degree();
298 if (left_input_len > BLAKE3_CHUNK_LEN && degree == 1) {
299 // The special case: We always use a degree of at least two, to make
300 // sure there are two outputs. Except, as noted above, at the chunk
301 // level, where we allow degree=1. (Note that the 1-chunk-input case is
302 // a different codepath.)
303 degree = 2;
304 }
305 uint8_t *right_cvs = &cv_array[degree * BLAKE3_OUT_LEN];
306
307 // Recurse! If this implementation adds multi-threading support in the
308 // future, this is where it will go.
309 size_t left_n = blake3_compress_subtree_wide(input, left_input_len, key,
310 chunk_counter, flags, cv_array);
311 size_t right_n = blake3_compress_subtree_wide(
312 right_input, right_input_len, key, right_chunk_counter, flags, right_cvs);
313
314 // The special case again. If simd_degree=1, then we'll have left_n=1 and
315 // right_n=1. Rather than compressing them into a single output, return
316 // them directly, to make sure we always have at least two outputs.
317 if (left_n == 1) {
318 memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
319 return 2;
320 }
321
322 // Otherwise, do one layer of parent node compression.
323 size_t num_chaining_values = left_n + right_n;
324 return compress_parents_parallel(cv_array, num_chaining_values, key, flags,
325 out);
326}
327
328// Hash a subtree with compress_subtree_wide(), and then condense the resulting
329// list of chaining values down to a single parent node. Don't compress that
330// last parent node, however. Instead, return its message bytes (the
331// concatenated chaining values of its children). This is necessary when the
332// first call to update() supplies a complete subtree, because the topmost
333// parent node of that subtree could end up being the root. It's also necessary
334// for extended output in the general case.
335//
336// As with compress_subtree_wide(), this function is not used on inputs of 1
337// chunk or less. That's a different codepath.
339 const uint8_t *input, size_t input_len, const uint32_t key[8],
340 uint64_t chunk_counter, uint8_t flags, uint8_t out[2 * BLAKE3_OUT_LEN]) {
341#if defined(BLAKE3_TESTING)
342 assert(input_len > BLAKE3_CHUNK_LEN);
343#endif
344
346 size_t num_cvs = blake3_compress_subtree_wide(input, input_len, key,
347 chunk_counter, flags, cv_array);
348 assert(num_cvs <= MAX_SIMD_DEGREE_OR_2);
349
350 // If MAX_SIMD_DEGREE is greater than 2 and there's enough input,
351 // compress_subtree_wide() returns more than 2 chaining values. Condense
352 // them into 2 by forming parent nodes repeatedly.
354 // The second half of this loop condition is always true, and we just
355 // asserted it above. But GCC can't tell that it's always true, and if NDEBUG
356 // is set on platforms where MAX_SIMD_DEGREE_OR_2 == 2, GCC emits spurious
357 // warnings here. GCC 8.5 is particularly sensitive, so if you're changing
358 // this code, test it against that version.
359 while (num_cvs > 2 && num_cvs <= MAX_SIMD_DEGREE_OR_2) {
360 num_cvs =
361 compress_parents_parallel(cv_array, num_cvs, key, flags, out_array);
362 memcpy(cv_array, out_array, num_cvs * BLAKE3_OUT_LEN);
363 }
364 memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
365}
366
368 uint8_t flags) {
369 memcpy(self->key, key, BLAKE3_KEY_LEN);
370 chunk_state_init(&self->chunk, key, flags);
371 self->cv_stack_len = 0;
372}
373
375
377 const uint8_t key[BLAKE3_KEY_LEN]) {
378 uint32_t key_words[8];
379 load_key_words(key, key_words);
380 hasher_init_base(self, key_words, KEYED_HASH);
381}
382
384 size_t context_len) {
385 blake3_hasher context_hasher;
386 hasher_init_base(&context_hasher, IV, DERIVE_KEY_CONTEXT);
387 llvm_blake3_hasher_update(&context_hasher, context, context_len);
388 uint8_t context_key[BLAKE3_KEY_LEN];
389 llvm_blake3_hasher_finalize(&context_hasher, context_key, BLAKE3_KEY_LEN);
390 uint32_t context_key_words[8];
391 load_key_words(context_key, context_key_words);
392 hasher_init_base(self, context_key_words, DERIVE_KEY_MATERIAL);
393}
394
395void llvm_blake3_hasher_init_derive_key(blake3_hasher *self, const char *context) {
396 llvm_blake3_hasher_init_derive_key_raw(self, context, strlen(context));
397}
398
399// As described in hasher_push_cv() below, we do "lazy merging", delaying
400// merges until right before the next CV is about to be added. This is
401// different from the reference implementation. Another difference is that we
402// aren't always merging 1 chunk at a time. Instead, each CV might represent
403// any power-of-two number of chunks, as long as the smaller-above-larger stack
404// order is maintained. Instead of the "count the trailing 0-bits" algorithm
405// described in the spec, we use a "count the total number of 1-bits" variant
406// that doesn't require us to retain the subtree size of the CV on top of the
407// stack. The principle is the same: each CV that should remain in the stack is
408// represented by a 1-bit in the total number of chunks (or bytes) so far.
410 size_t post_merge_stack_len = (size_t)popcnt(total_len);
411 while (self->cv_stack_len > post_merge_stack_len) {
412 uint8_t *parent_node =
413 &self->cv_stack[(self->cv_stack_len - 2) * BLAKE3_OUT_LEN];
414 output_t output = parent_output(parent_node, self->key, self->chunk.flags);
415 output_chaining_value(&output, parent_node);
416 self->cv_stack_len -= 1;
417 }
418}
419
420// In reference_impl.rs, we merge the new CV with existing CVs from the stack
421// before pushing it. We can do that because we know more input is coming, so
422// we know none of the merges are root.
423//
424// This setting is different. We want to feed as much input as possible to
425// compress_subtree_wide(), without setting aside anything for the chunk_state.
426// If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once
427// as a single subtree, if at all possible.
428//
429// This leads to two problems:
430// 1) This 64 KiB input might be the only call that ever gets made to update.
431// In this case, the root node of the 64 KiB subtree would be the root node
432// of the whole tree, and it would need to be ROOT finalized. We can't
433// compress it until we know.
434// 2) This 64 KiB input might complete a larger tree, whose root node is
435// similarly going to be the the root of the whole tree. For example, maybe
436// we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the
437// node at the root of the 256 KiB subtree until we know how to finalize it.
438//
439// The second problem is solved with "lazy merging". That is, when we're about
440// to add a CV to the stack, we don't merge it with anything first, as the
441// reference impl does. Instead we do merges using the *previous* CV that was
442// added, which is sitting on top of the stack, and we put the new CV
443// (unmerged) on top of the stack afterwards. This guarantees that we never
444// merge the root node until finalize().
445//
446// Solving the first problem requires an additional tool,
447// compress_subtree_to_parent_node(). That function always returns the top
448// *two* chaining values of the subtree it's compressing. We then do lazy
449// merging with each of them separately, so that the second CV will always
450// remain unmerged. (That also helps us support extendable output when we're
451// hashing an input all-at-once.)
453 uint64_t chunk_counter) {
454 hasher_merge_cv_stack(self, chunk_counter);
455 memcpy(&self->cv_stack[self->cv_stack_len * BLAKE3_OUT_LEN], new_cv,
457 self->cv_stack_len += 1;
458}
459
460void llvm_blake3_hasher_update(blake3_hasher *self, const void *input,
461 size_t input_len) {
462 // Explicitly checking for zero avoids causing UB by passing a null pointer
463 // to memcpy. This comes up in practice with things like:
464 // std::vector<uint8_t> v;
465 // blake3_hasher_update(&hasher, v.data(), v.size());
466 if (input_len == 0) {
467 return;
468 }
469
470 const uint8_t *input_bytes = (const uint8_t *)input;
471
472 // If we have some partial chunk bytes in the internal chunk_state, we need
473 // to finish that chunk first.
474 if (chunk_state_len(&self->chunk) > 0) {
475 size_t take = BLAKE3_CHUNK_LEN - chunk_state_len(&self->chunk);
476 if (take > input_len) {
477 take = input_len;
478 }
479 chunk_state_update(&self->chunk, input_bytes, take);
480 input_bytes += take;
481 input_len -= take;
482 // If we've filled the current chunk and there's more coming, finalize this
483 // chunk and proceed. In this case we know it's not the root.
484 if (input_len > 0) {
485 output_t output = chunk_state_output(&self->chunk);
486 uint8_t chunk_cv[32];
487 output_chaining_value(&output, chunk_cv);
488 hasher_push_cv(self, chunk_cv, self->chunk.chunk_counter);
489 chunk_state_reset(&self->chunk, self->key, self->chunk.chunk_counter + 1);
490 } else {
491 return;
492 }
493 }
494
495 // Now the chunk_state is clear, and we have more input. If there's more than
496 // a single chunk (so, definitely not the root chunk), hash the largest whole
497 // subtree we can, with the full benefits of SIMD (and maybe in the future,
498 // multi-threading) parallelism. Two restrictions:
499 // - The subtree has to be a power-of-2 number of chunks. Only subtrees along
500 // the right edge can be incomplete, and we don't know where the right edge
501 // is going to be until we get to finalize().
502 // - The subtree must evenly divide the total number of chunks up until this
503 // point (if total is not 0). If the current incomplete subtree is only
504 // waiting for 1 more chunk, we can't hash a subtree of 4 chunks. We have
505 // to complete the current subtree first.
506 // Because we might need to break up the input to form powers of 2, or to
507 // evenly divide what we already have, this part runs in a loop.
508 while (input_len > BLAKE3_CHUNK_LEN) {
509 size_t subtree_len = round_down_to_power_of_2(input_len);
510 uint64_t count_so_far = self->chunk.chunk_counter * BLAKE3_CHUNK_LEN;
511 // Shrink the subtree_len until it evenly divides the count so far. We know
512 // that subtree_len itself is a power of 2, so we can use a bitmasking
513 // trick instead of an actual remainder operation. (Note that if the caller
514 // consistently passes power-of-2 inputs of the same size, as is hopefully
515 // typical, this loop condition will always fail, and subtree_len will
516 // always be the full length of the input.)
517 //
518 // An aside: We don't have to shrink subtree_len quite this much. For
519 // example, if count_so_far is 1, we could pass 2 chunks to
520 // compress_subtree_to_parent_node. Since we'll get 2 CVs back, we'll still
521 // get the right answer in the end, and we might get to use 2-way SIMD
522 // parallelism. The problem with this optimization, is that it gets us
523 // stuck always hashing 2 chunks. The total number of chunks will remain
524 // odd, and we'll never graduate to higher degrees of parallelism. See
525 // https://github.com/BLAKE3-team/BLAKE3/issues/69.
526 while ((((uint64_t)(subtree_len - 1)) & count_so_far) != 0) {
527 subtree_len /= 2;
528 }
529 // The shrunken subtree_len might now be 1 chunk long. If so, hash that one
530 // chunk by itself. Otherwise, compress the subtree into a pair of CVs.
531 uint64_t subtree_chunks = subtree_len / BLAKE3_CHUNK_LEN;
532 if (subtree_len <= BLAKE3_CHUNK_LEN) {
533 blake3_chunk_state chunk_state;
534 chunk_state_init(&chunk_state, self->key, self->chunk.flags);
535 chunk_state.chunk_counter = self->chunk.chunk_counter;
536 chunk_state_update(&chunk_state, input_bytes, subtree_len);
537 output_t output = chunk_state_output(&chunk_state);
539 output_chaining_value(&output, cv);
540 hasher_push_cv(self, cv, chunk_state.chunk_counter);
541 } else {
542 // This is the high-performance happy path, though getting here depends
543 // on the caller giving us a long enough input.
544 uint8_t cv_pair[2 * BLAKE3_OUT_LEN];
545 compress_subtree_to_parent_node(input_bytes, subtree_len, self->key,
546 self->chunk.chunk_counter,
547 self->chunk.flags, cv_pair);
548 hasher_push_cv(self, cv_pair, self->chunk.chunk_counter);
549 hasher_push_cv(self, &cv_pair[BLAKE3_OUT_LEN],
550 self->chunk.chunk_counter + (subtree_chunks / 2));
551 }
552 self->chunk.chunk_counter += subtree_chunks;
553 input_bytes += subtree_len;
554 input_len -= subtree_len;
555 }
556
557 // If there's any remaining input less than a full chunk, add it to the chunk
558 // state. In that case, also do a final merge loop to make sure the subtree
559 // stack doesn't contain any unmerged pairs. The remaining input means we
560 // know these merges are non-root. This merge loop isn't strictly necessary
561 // here, because hasher_push_chunk_cv already does its own merge loop, but it
562 // simplifies blake3_hasher_finalize below.
563 if (input_len > 0) {
564 chunk_state_update(&self->chunk, input_bytes, input_len);
565 hasher_merge_cv_stack(self, self->chunk.chunk_counter);
566 }
567}
568
570 size_t out_len) {
571 llvm_blake3_hasher_finalize_seek(self, 0, out, out_len);
572#if LLVM_MEMORY_SANITIZER_BUILD
573 // Avoid false positives due to uninstrumented assembly code.
574 __msan_unpoison(out, out_len);
575#endif
576}
577
579 uint8_t *out, size_t out_len) {
580 // Explicitly checking for zero avoids causing UB by passing a null pointer
581 // to memcpy. This comes up in practice with things like:
582 // std::vector<uint8_t> v;
583 // blake3_hasher_finalize(&hasher, v.data(), v.size());
584 if (out_len == 0) {
585 return;
586 }
587
588 // If the subtree stack is empty, then the current chunk is the root.
589 if (self->cv_stack_len == 0) {
590 output_t output = chunk_state_output(&self->chunk);
591 output_root_bytes(&output, seek, out, out_len);
592 return;
593 }
594 // If there are any bytes in the chunk state, finalize that chunk and do a
595 // roll-up merge between that chunk hash and every subtree in the stack. In
596 // this case, the extra merge loop at the end of blake3_hasher_update
597 // guarantees that none of the subtrees in the stack need to be merged with
598 // each other first. Otherwise, if there are no bytes in the chunk state,
599 // then the top of the stack is a chunk hash, and we start the merge from
600 // that.
601 output_t output;
602 size_t cvs_remaining;
603 if (chunk_state_len(&self->chunk) > 0) {
604 cvs_remaining = self->cv_stack_len;
605 output = chunk_state_output(&self->chunk);
606 } else {
607 // There are always at least 2 CVs in the stack in this case.
608 cvs_remaining = self->cv_stack_len - 2;
609 output = parent_output(&self->cv_stack[cvs_remaining * 32], self->key,
610 self->chunk.flags);
611 }
612 while (cvs_remaining > 0) {
613 cvs_remaining -= 1;
614 uint8_t parent_block[BLAKE3_BLOCK_LEN];
615 memcpy(parent_block, &self->cv_stack[cvs_remaining * 32], 32);
616 output_chaining_value(&output, &parent_block[32]);
617 output = parent_output(parent_block, self->key, self->chunk.flags);
618 }
619 output_root_bytes(&output, seek, out, out_len);
620}
621
623 chunk_state_reset(&self->chunk, self->key, 0);
624 self->cv_stack_len = 0;
625}
#define __msan_unpoison(p, size)
Definition: Compiler.h:528
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
unify loop Fixup each natural loop to have a single exit block
INLINE void output_root_bytes(const output_t *self, uint64_t seek, uint8_t *out, size_t out_len)
Definition: blake3.c:96
INLINE output_t make_output(const uint32_t input_cv[8], const uint8_t block[BLAKE3_BLOCK_LEN], uint8_t block_len, uint64_t counter, uint8_t flags)
Definition: blake3.c:69
INLINE void chunk_state_update(blake3_chunk_state *self, const uint8_t *input, size_t input_len)
Definition: blake3.c:119
INLINE size_t chunk_state_len(const blake3_chunk_state *self)
Definition: blake3.c:36
void llvm_blake3_hasher_init(blake3_hasher *self)
Definition: blake3.c:374
INLINE void hasher_init_base(blake3_hasher *self, const uint32_t key[8], uint8_t flags)
Definition: blake3.c:367
void llvm_blake3_hasher_reset(blake3_hasher *self)
Definition: blake3.c:622
INLINE void chunk_state_init(blake3_chunk_state *self, const uint32_t key[8], uint8_t flags)
Definition: blake3.c:17
INLINE size_t chunk_state_fill_buf(blake3_chunk_state *self, const uint8_t *input, size_t input_len)
Definition: blake3.c:41
INLINE size_t compress_chunks_parallel(const uint8_t *input, size_t input_len, const uint32_t key[8], uint64_t chunk_counter, uint8_t flags, uint8_t *out)
Definition: blake3.c:173
INLINE void hasher_merge_cv_stack(blake3_hasher *self, uint64_t total_len)
Definition: blake3.c:409
void llvm_blake3_hasher_update(blake3_hasher *self, const void *input, size_t input_len)
Definition: blake3.c:460
void llvm_blake3_hasher_finalize(const blake3_hasher *self, uint8_t *out, size_t out_len)
Definition: blake3.c:569
static size_t blake3_compress_subtree_wide(const uint8_t *input, size_t input_len, const uint32_t key[8], uint64_t chunk_counter, uint8_t flags, uint8_t *out)
Definition: blake3.c:269
INLINE uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state *self)
Definition: blake3.c:53
INLINE void output_chaining_value(const output_t *self, uint8_t cv[32])
Definition: blake3.c:88
INLINE output_t parent_output(const uint8_t block[BLAKE3_BLOCK_LEN], const uint32_t key[8], uint8_t flags)
Definition: blake3.c:154
void llvm_blake3_hasher_finalize_seek(const blake3_hasher *self, uint64_t seek, uint8_t *out, size_t out_len)
Definition: blake3.c:578
INLINE size_t compress_parents_parallel(const uint8_t *child_chaining_values, size_t num_chaining_values, const uint32_t key[8], uint8_t flags, uint8_t *out)
Definition: blake3.c:217
const char * llvm_blake3_version(void)
Definition: blake3.c:15
INLINE void compress_subtree_to_parent_node(const uint8_t *input, size_t input_len, const uint32_t key[8], uint64_t chunk_counter, uint8_t flags, uint8_t out[2 *BLAKE3_OUT_LEN])
Definition: blake3.c:338
INLINE void chunk_state_reset(blake3_chunk_state *self, const uint32_t key[8], uint64_t chunk_counter)
Definition: blake3.c:27
void llvm_blake3_hasher_init_keyed(blake3_hasher *self, const uint8_t key[BLAKE3_KEY_LEN])
Definition: blake3.c:376
INLINE output_t chunk_state_output(const blake3_chunk_state *self)
Definition: blake3.c:147
void llvm_blake3_hasher_init_derive_key_raw(blake3_hasher *self, const void *context, size_t context_len)
Definition: blake3.c:383
void llvm_blake3_hasher_init_derive_key(blake3_hasher *self, const char *context)
Definition: blake3.c:395
INLINE void hasher_push_cv(blake3_hasher *self, uint8_t new_cv[BLAKE3_OUT_LEN], uint64_t chunk_counter)
Definition: blake3.c:452
INLINE size_t left_len(size_t content_len)
Definition: blake3.c:162
INLINE unsigned int popcnt(uint64_t x)
Definition: blake3_impl.h:124
#define INLINE
Definition: blake3_impl.h:32
#define MAX_SIMD_DEGREE
Definition: blake3_impl.h:71
static const uint32_t IV[8]
Definition: blake3_impl.h:78
INLINE void load_key_words(const uint8_t key[BLAKE3_KEY_LEN], uint32_t key_words[8])
Definition: blake3_impl.h:155
#define MAX_SIMD_DEGREE_OR_2
Definition: blake3_impl.h:76
INLINE void store_cv_words(uint8_t bytes_out[32], uint32_t cv_words[8])
Definition: blake3_impl.h:175
INLINE uint64_t round_down_to_power_of_2(uint64_t x)
Definition: blake3_impl.h:139
@ CHUNK_START
Definition: blake3_impl.h:18
@ PARENT
Definition: blake3_impl.h:20
@ KEYED_HASH
Definition: blake3_impl.h:22
@ DERIVE_KEY_MATERIAL
Definition: blake3_impl.h:24
@ DERIVE_KEY_CONTEXT
Definition: blake3_impl.h:23
@ ROOT
Definition: blake3_impl.h:21
@ CHUNK_END
Definition: blake3_impl.h:19
#define BLAKE3_BLOCK_LEN
#define blake3_compress_xof
#define BLAKE3_OUT_LEN
#define blake3_hash_many
#define blake3_simd_degree
#define blake3_compress_in_place
#define blake3_hasher
#define BLAKE3_KEY_LEN
#define BLAKE3_VERSION_STRING
#define BLAKE3_CHUNK_LEN
#define blake3_chunk_state
uint8_t block_len
Definition: blake3.c:65
uint8_t block[BLAKE3_BLOCK_LEN]
Definition: blake3.c:64
uint64_t counter
Definition: blake3.c:63
uint8_t flags
Definition: blake3.c:66
uint32_t input_cv[8]
Definition: blake3.c:62