LLVM 22.0.0git
SparseMultiSet.h
Go to the documentation of this file.
1//===- llvm/ADT/SparseMultiSet.h - Sparse multiset --------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file defines the SparseMultiSet class, which adds multiset behavior to
11/// the SparseSet.
12///
13/// A sparse multiset holds a small number of objects identified by integer keys
14/// from a moderately sized universe. The sparse multiset uses more memory than
15/// other containers in order to provide faster operations. Any key can map to
16/// multiple values. A SparseMultiSetNode class is provided, which serves as a
17/// convenient base class for the contents of a SparseMultiSet.
18///
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ADT_SPARSEMULTISET_H
22#define LLVM_ADT_SPARSEMULTISET_H
23
26#include "llvm/ADT/SparseSet.h"
27#include <cassert>
28#include <cstdint>
29#include <cstdlib>
30#include <iterator>
31#include <limits>
32#include <utility>
33
34namespace llvm {
35
36/// Fast multiset implementation for objects that can be identified by small
37/// unsigned keys.
38///
39/// SparseMultiSet allocates memory proportional to the size of the key
40/// universe, so it is not recommended for building composite data structures.
41/// It is useful for algorithms that require a single set with fast operations.
42///
43/// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
44/// fast clear() as fast as a vector. The find(), insert(), and erase()
45/// operations are all constant time, and typically faster than a hash table.
46/// The iteration order doesn't depend on numerical key values, it only depends
47/// on the order of insert() and erase() operations. Iteration order is the
48/// insertion order. Iteration is only provided over elements of equivalent
49/// keys, but iterators are bidirectional.
50///
51/// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
52/// offers constant-time clear() and size() operations as well as fast iteration
53/// independent on the size of the universe.
54///
55/// SparseMultiSet contains a dense vector holding all the objects and a sparse
56/// array holding indexes into the dense vector. Most of the memory is used by
57/// the sparse array which is the size of the key universe. The SparseT template
58/// parameter provides a space/speed tradeoff for sets holding many elements.
59///
60/// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
61/// sparse array uses 4 x Universe bytes.
62///
63/// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
64/// lines, but the sparse array is 4x smaller. N is the number of elements in
65/// the set.
66///
67/// For sets that may grow to thousands of elements, SparseT should be set to
68/// uint16_t or uint32_t.
69///
70/// Multiset behavior is provided by providing doubly linked lists for values
71/// that are inlined in the dense vector. SparseMultiSet is a good choice when
72/// one desires a growable number of entries per key, as it will retain the
73/// SparseSet algorithmic properties despite being growable. Thus, it is often a
74/// better choice than a SparseSet of growable containers or a vector of
75/// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
76/// the iterators don't point to the element erased), allowing for more
77/// intuitive and fast removal.
78///
79/// @tparam ValueT The type of objects in the set.
80/// @tparam KeyT The type of the key that identifies objects in the set.
81/// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
82/// @tparam SparseT An unsigned integer type. See above.
83///
84template <typename ValueT, typename KeyT = unsigned,
85 typename KeyFunctorT = identity, typename SparseT = uint8_t>
87 static_assert(std::is_unsigned_v<SparseT>,
88 "SparseT must be an unsigned integer type");
89
90 /// The actual data that's stored, as a doubly-linked list implemented via
91 /// indices into the DenseVector. The doubly linked list is implemented
92 /// circular in Prev indices, and INVALID-terminated in Next indices. This
93 /// provides efficient access to list tails. These nodes can also be
94 /// tombstones, in which case they are actually nodes in a single-linked
95 /// freelist of recyclable slots.
96 struct SMSNode {
97 static constexpr unsigned INVALID = ~0U;
98
99 ValueT Data;
100 unsigned Prev;
101 unsigned Next;
102
103 SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) {}
104
105 /// List tails have invalid Nexts.
106 bool isTail() const { return Next == INVALID; }
107
108 /// Whether this node is a tombstone node, and thus is in our freelist.
109 bool isTombstone() const { return Prev == INVALID; }
110
111 /// Since the list is circular in Prev, all non-tombstone nodes have a valid
112 /// Prev.
113 bool isValid() const { return Prev != INVALID; }
114 };
115
116 using DenseT = SmallVector<SMSNode, 8>;
117 DenseT Dense;
118 SparseT *Sparse = nullptr;
119 unsigned Universe = 0;
120 KeyFunctorT KeyIndexOf;
122
123 /// We have a built-in recycler for reusing tombstone slots. This recycler
124 /// puts a singly-linked free list into tombstone slots, allowing us quick
125 /// erasure, iterator preservation, and dense size.
126 unsigned FreelistIdx = SMSNode::INVALID;
127 unsigned NumFree = 0;
128
129 unsigned sparseIndex(const ValueT &Val) const {
130 assert(ValIndexOf(Val) < Universe &&
131 "Invalid key in set. Did object mutate?");
132 return ValIndexOf(Val);
133 }
134 unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
135
136 /// Whether the given entry is the head of the list. List heads's previous
137 /// pointers are to the tail of the list, allowing for efficient access to the
138 /// list tail. D must be a valid entry node.
139 bool isHead(const SMSNode &D) const {
140 assert(D.isValid() && "Invalid node for head");
141 return Dense[D.Prev].isTail();
142 }
143
144 /// Whether the given entry is a singleton entry, i.e. the only entry with
145 /// that key.
146 bool isSingleton(const SMSNode &N) const {
147 assert(N.isValid() && "Invalid node for singleton");
148 // Is N its own predecessor?
149 return &Dense[N.Prev] == &N;
150 }
151
152 /// Add in the given SMSNode. Uses a free entry in our freelist if
153 /// available. Returns the index of the added node.
154 unsigned addValue(const ValueT &V, unsigned Prev, unsigned Next) {
155 if (NumFree == 0) {
156 Dense.push_back(SMSNode(V, Prev, Next));
157 return Dense.size() - 1;
158 }
159
160 // Peel off a free slot
161 unsigned Idx = FreelistIdx;
162 unsigned NextFree = Dense[Idx].Next;
163 assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
164
165 Dense[Idx] = SMSNode(V, Prev, Next);
166 FreelistIdx = NextFree;
167 --NumFree;
168 return Idx;
169 }
170
171 /// Make the current index a new tombstone. Pushes it onto the freelist.
172 void makeTombstone(unsigned Idx) {
173 Dense[Idx].Prev = SMSNode::INVALID;
174 Dense[Idx].Next = FreelistIdx;
175 FreelistIdx = Idx;
176 ++NumFree;
177 }
178
179public:
180 using value_type = ValueT;
181 using reference = ValueT &;
182 using const_reference = const ValueT &;
183 using pointer = ValueT *;
184 using const_pointer = const ValueT *;
186
187 SparseMultiSet() = default;
190 ~SparseMultiSet() { free(Sparse); }
191
192 /// Set the universe size which determines the largest key the set can hold.
193 /// The universe must be sized before any elements can be added.
194 ///
195 /// @param U Universe size. All object keys must be less than U.
196 ///
197 void setUniverse(unsigned U) {
198 // It's not hard to resize the universe on a non-empty set, but it doesn't
199 // seem like a likely use case, so we can add that code when we need it.
200 assert(empty() && "Can only resize universe on an empty map");
201 // Hysteresis prevents needless reallocations.
202 if (U >= Universe / 4 && U <= Universe)
203 return;
204 free(Sparse);
205 // The Sparse array doesn't actually need to be initialized, so malloc
206 // would be enough here, but that will cause tools like valgrind to
207 // complain about branching on uninitialized data.
208 Sparse = static_cast<SparseT *>(safe_calloc(U, sizeof(SparseT)));
209 Universe = U;
210 }
211
212 /// Our iterators are iterators over the collection of objects that share a
213 /// key.
214 template <typename SMSPtrTy> class iterator_base {
215 friend class SparseMultiSet;
216
217 public:
218 using iterator_category = std::bidirectional_iterator_tag;
219 using value_type = ValueT;
220 using difference_type = std::ptrdiff_t;
223
224 private:
225 SMSPtrTy SMS;
226 unsigned Idx;
227 unsigned SparseIdx;
228
229 iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
230 : SMS(P), Idx(I), SparseIdx(SI) {}
231
232 /// Whether our iterator has fallen outside our dense vector.
233 bool isEnd() const {
234 if (Idx == SMSNode::INVALID)
235 return true;
236
237 assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
238 return false;
239 }
240
241 /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
242 bool isKeyed() const { return SparseIdx < SMS->Universe; }
243
244 unsigned Prev() const { return SMS->Dense[Idx].Prev; }
245 unsigned Next() const { return SMS->Dense[Idx].Next; }
246
247 void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
248 void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
249
250 public:
252 assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
253 "Dereferencing iterator of invalid key or index");
254
255 return SMS->Dense[Idx].Data;
256 }
257 pointer operator->() const { return &operator*(); }
258
259 /// Comparison operators
260 bool operator==(const iterator_base &RHS) const {
261 // end compares equal
262 if (SMS == RHS.SMS && Idx == RHS.Idx) {
263 assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
264 "Same dense entry, but different keys?");
265 return true;
266 }
267
268 return false;
269 }
270
271 bool operator!=(const iterator_base &RHS) const { return !operator==(RHS); }
272
273 /// Increment and decrement operators
274 iterator_base &operator--() { // predecrement - Back up
275 assert(isKeyed() && "Decrementing an invalid iterator");
276 assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
277 "Decrementing head of list");
278
279 // If we're at the end, then issue a new find()
280 if (isEnd())
281 Idx = SMS->findIndex(SparseIdx).Prev();
282 else
283 Idx = Prev();
284
285 return *this;
286 }
287 iterator_base &operator++() { // preincrement - Advance
288 assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
289 Idx = Next();
290 return *this;
291 }
292 iterator_base operator--(int) { // postdecrement
293 iterator_base I(*this);
294 --*this;
295 return I;
296 }
297 iterator_base operator++(int) { // postincrement
298 iterator_base I(*this);
299 ++*this;
300 return I;
301 }
302 };
303
306
307 // Convenience types
308 using RangePair = std::pair<iterator, iterator>;
309
310 /// Returns an iterator past this container. Note that such an iterator cannot
311 /// be decremented, but will compare equal to other end iterators.
312 iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
314 return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
315 }
316
317 /// Returns true if the set is empty.
318 ///
319 /// This is not the same as BitVector::empty().
320 ///
321 bool empty() const { return size() == 0; }
322
323 /// Returns the number of elements in the set.
324 ///
325 /// This is not the same as BitVector::size() which returns the size of the
326 /// universe.
327 ///
328 size_type size() const {
329 assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
330 return Dense.size() - NumFree;
331 }
332
333 /// Clears the set. This is a very fast constant time operation.
334 ///
335 void clear() {
336 // Sparse does not need to be cleared, see find().
337 Dense.clear();
338 NumFree = 0;
339 FreelistIdx = SMSNode::INVALID;
340 }
341
342 /// Find an element by its index.
343 ///
344 /// @param Idx A valid index to find.
345 /// @returns An iterator to the element identified by key, or end().
346 ///
347 iterator findIndex(unsigned Idx) {
348 assert(Idx < Universe && "Key out of range");
349 const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
350 for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
351 const unsigned FoundIdx = sparseIndex(Dense[i]);
352 // Check that we're pointing at the correct entry and that it is the head
353 // of a valid list.
354 if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i]))
355 return iterator(this, i, Idx);
356 // Stride is 0 when SparseT >= unsigned. We don't need to loop.
357 if (!Stride)
358 break;
359 }
360 return end();
361 }
362
363 /// Find an element by its key.
364 ///
365 /// @param Key A valid key to find.
366 /// @returns An iterator to the element identified by key, or end().
367 ///
368 iterator find(const KeyT &Key) { return findIndex(KeyIndexOf(Key)); }
369
370 const_iterator find(const KeyT &Key) const {
371 iterator I = const_cast<SparseMultiSet *>(this)->findIndex(KeyIndexOf(Key));
372 return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
373 }
374
375 /// Returns the number of elements identified by Key. This will be linear in
376 /// the number of elements of that key.
377 size_type count(const KeyT &Key) const {
378 unsigned Ret = 0;
379 for (const_iterator It = find(Key); It != end(); ++It)
380 ++Ret;
381
382 return Ret;
383 }
384
385 /// Returns true if this set contains an element identified by Key.
386 bool contains(const KeyT &Key) const { return find(Key) != end(); }
387
388 /// Return the head and tail of the subset's list, otherwise returns end().
389 iterator getHead(const KeyT &Key) { return find(Key); }
391 iterator I = find(Key);
392 if (I != end())
393 I = iterator(this, I.Prev(), KeyIndexOf(Key));
394 return I;
395 }
396
397 /// The bounds of the range of items sharing Key K. First member is the head
398 /// of the list, and the second member is a decrementable end iterator for
399 /// that key.
401 iterator B = find(K);
402 iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
403 return {B, E};
404 }
405
406 /// Insert a new element at the tail of the subset list. Returns an iterator
407 /// to the newly added entry.
408 iterator insert(const ValueT &Val) {
409 unsigned Idx = sparseIndex(Val);
410 iterator I = findIndex(Idx);
411
412 unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID);
413
414 if (I == end()) {
415 // Make a singleton list
416 Sparse[Idx] = NodeIdx;
417 Dense[NodeIdx].Prev = NodeIdx;
418 return iterator(this, NodeIdx, Idx);
419 }
420
421 // Stick it at the end.
422 unsigned HeadIdx = I.Idx;
423 unsigned TailIdx = I.Prev();
424 Dense[TailIdx].Next = NodeIdx;
425 Dense[HeadIdx].Prev = NodeIdx;
426 Dense[NodeIdx].Prev = TailIdx;
427
428 return iterator(this, NodeIdx, Idx);
429 }
430
431 /// Erases an existing element identified by a valid iterator.
432 ///
433 /// This invalidates iterators pointing at the same entry, but erase() returns
434 /// an iterator pointing to the next element in the subset's list. This makes
435 /// it possible to erase selected elements while iterating over the subset:
436 ///
437 /// tie(I, E) = Set.equal_range(Key);
438 /// while (I != E)
439 /// if (test(*I))
440 /// I = Set.erase(I);
441 /// else
442 /// ++I;
443 ///
444 /// Note that if the last element in the subset list is erased, this will
445 /// return an end iterator which can be decremented to get the new tail (if it
446 /// exists):
447 ///
448 /// tie(B, I) = Set.equal_range(Key);
449 /// for (bool isBegin = B == I; !isBegin; /* empty */) {
450 /// isBegin = (--I) == B;
451 /// if (test(I))
452 /// break;
453 /// I = erase(I);
454 /// }
456 assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
457 "erasing invalid/end/tombstone iterator");
458
459 // First, unlink the node from its list. Then swap the node out with the
460 // dense vector's last entry
461 iterator NextI = unlink(Dense[I.Idx]);
462
463 // Put in a tombstone.
464 makeTombstone(I.Idx);
465
466 return NextI;
467 }
468
469 /// Erase all elements with the given key. This invalidates all
470 /// iterators of that key.
471 void eraseAll(const KeyT &K) {
472 for (iterator I = find(K); I != end(); /* empty */)
473 I = erase(I);
474 }
475
476private:
477 /// Unlink the node from its list. Returns the next node in the list.
478 iterator unlink(const SMSNode &N) {
479 if (isSingleton(N)) {
480 // Singleton is already unlinked
481 assert(N.Next == SMSNode::INVALID && "Singleton has next?");
482 return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
483 }
484
485 if (isHead(N)) {
486 // If we're the head, then update the sparse array and our next.
487 Sparse[sparseIndex(N)] = N.Next;
488 Dense[N.Next].Prev = N.Prev;
489 return iterator(this, N.Next, ValIndexOf(N.Data));
490 }
491
492 if (N.isTail()) {
493 // If we're the tail, then update our head and our previous.
494 findIndex(sparseIndex(N)).setPrev(N.Prev);
495 Dense[N.Prev].Next = N.Next;
496
497 // Give back an end iterator that can be decremented
498 iterator I(this, N.Prev, ValIndexOf(N.Data));
499 return ++I;
500 }
501
502 // Otherwise, just drop us
503 Dense[N.Next].Prev = N.Prev;
504 Dense[N.Prev].Next = N.Next;
505 return iterator(this, N.Next, ValIndexOf(N.Data));
506 }
507};
508
509} // namespace llvm
510
511#endif // LLVM_ADT_SPARSEMULTISET_H
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define I(x, y, z)
Definition MD5.cpp:58
#define P(N)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
This file contains library features backported from future STL versions.
This file defines the SmallVector class.
This file defines the SparseSet class derived from the version described in Briggs,...
Value * RHS
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Our iterators are iterators over the collection of objects that share a key.
iterator_base & operator--()
Increment and decrement operators.
bool operator!=(const iterator_base &RHS) const
std::bidirectional_iterator_tag iterator_category
bool operator==(const iterator_base &RHS) const
Comparison operators.
void clear()
Clears the set.
iterator end()
Returns an iterator past this container.
const_iterator end() const
iterator find(const KeyT &Key)
Find an element by its key.
bool contains(const KeyT &Key) const
Returns true if this set contains an element identified by Key.
iterator getTail(const KeyT &Key)
RangePair equal_range(const KeyT &K)
The bounds of the range of items sharing Key K.
const ValueT & const_reference
iterator findIndex(unsigned Idx)
Find an element by its index.
iterator erase(iterator I)
Erases an existing element identified by a valid iterator.
SparseMultiSet()=default
bool empty() const
Returns true if the set is empty.
iterator insert(const ValueT &Val)
Insert a new element at the tail of the subset list.
const_iterator find(const KeyT &Key) const
void setUniverse(unsigned U)
Set the universe size which determines the largest key the set can hold.
SparseMultiSet & operator=(const SparseMultiSet &)=delete
iterator_base< const SparseMultiSet * > const_iterator
size_type size() const
Returns the number of elements in the set.
void eraseAll(const KeyT &K)
Erase all elements with the given key.
size_type count(const KeyT &Key) const
Returns the number of elements identified by Key.
std::pair< iterator, iterator > RangePair
iterator_base< SparseMultiSet * > iterator
const ValueT * const_pointer
SparseMultiSet(const SparseMultiSet &)=delete
iterator getHead(const KeyT &Key)
Return the head and tail of the subset's list, otherwise returns end().
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ATTRIBUTE_RETURNS_NONNULL void * safe_calloc(size_t Count, size_t Sz)
Definition MemAlloc.h:38
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
FunctionAddr VTableAddr Next
Definition InstrProf.h:141
#define N
SparseSetValFunctor - Helper class for getting a value's index.
Definition SparseSet.h:67