This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
More...
|
| SmallVector () |
|
| ~SmallVector () |
|
| SmallVector (size_t Size) |
|
| SmallVector (size_t Size, const T &Value) |
|
template<typename ItTy , typename = EnableIfConvertibleToInputIterator<ItTy>> |
| SmallVector (ItTy S, ItTy E) |
|
template<typename RangeTy > |
| SmallVector (const iterator_range< RangeTy > &R) |
|
| SmallVector (std::initializer_list< T > IL) |
|
template<typename U , typename = std::enable_if_t<std::is_convertible<U, T>::value>> |
| SmallVector (ArrayRef< U > A) |
|
| SmallVector (const SmallVector &RHS) |
|
SmallVector & | operator= (const SmallVector &RHS) |
|
| SmallVector (SmallVector &&RHS) |
|
| SmallVector (SmallVectorImpl< T > &&RHS) |
|
SmallVector & | operator= (SmallVector &&RHS) |
|
SmallVector & | operator= (SmallVectorImpl< T > &&RHS) |
|
SmallVector & | operator= (std::initializer_list< T > IL) |
|
| SmallVectorImpl (const SmallVectorImpl &)=delete |
|
void | clear () |
|
void | resize (size_type N) |
|
void | resize_for_overwrite (size_type N) |
| Like resize, but T is POD, the new values won't be initialized.
|
|
void | truncate (size_type N) |
| Like resize, but requires that N is less than size().
|
|
void | resize (size_type N, ValueParamT NV) |
|
void | reserve (size_type N) |
|
void | pop_back_n (size_type NumItems) |
|
T | pop_back_val () |
|
void | swap (SmallVectorImpl &RHS) |
|
template<typename ItTy , typename = EnableIfConvertibleToInputIterator<ItTy>> |
void | append (ItTy in_start, ItTy in_end) |
| Add the specified range to the end of the SmallVector.
|
|
void | append (size_type NumInputs, ValueParamT Elt) |
| Append NumInputs copies of Elt to the end.
|
|
void | append (std::initializer_list< T > IL) |
|
void | append (const SmallVectorImpl &RHS) |
|
void | assign (size_type NumElts, ValueParamT Elt) |
|
template<typename ItTy , typename = EnableIfConvertibleToInputIterator<ItTy>> |
void | assign (ItTy in_start, ItTy in_end) |
|
void | assign (std::initializer_list< T > IL) |
|
void | assign (const SmallVectorImpl &RHS) |
|
iterator | erase (const_iterator CI) |
|
iterator | erase (const_iterator CS, const_iterator CE) |
|
iterator | insert (iterator I, T &&Elt) |
|
iterator | insert (iterator I, const T &Elt) |
|
iterator | insert (iterator I, size_type NumToInsert, ValueParamT Elt) |
|
template<typename ItTy , typename = EnableIfConvertibleToInputIterator<ItTy>> |
iterator | insert (iterator I, ItTy From, ItTy To) |
|
void | insert (iterator I, std::initializer_list< T > IL) |
|
template<typename... ArgTypes> |
reference | emplace_back (ArgTypes &&... Args) |
|
SmallVectorImpl & | operator= (const SmallVectorImpl &RHS) |
|
SmallVectorImpl & | operator= (SmallVectorImpl &&RHS) |
|
bool | operator== (const SmallVectorImpl &RHS) const |
|
bool | operator!= (const SmallVectorImpl &RHS) const |
|
bool | operator< (const SmallVectorImpl &RHS) const |
|
bool | operator> (const SmallVectorImpl &RHS) const |
|
bool | operator<= (const SmallVectorImpl &RHS) const |
|
bool | operator>= (const SmallVectorImpl &RHS) const |
|
void | push_back (const T &Elt) |
|
void | push_back (T &&Elt) |
|
void | pop_back () |
|
iterator | begin () |
|
const_iterator | begin () const |
|
iterator | end () |
|
const_iterator | end () const |
|
reverse_iterator | rbegin () |
|
const_reverse_iterator | rbegin () const |
|
reverse_iterator | rend () |
|
const_reverse_iterator | rend () const |
|
size_type | size_in_bytes () const |
|
size_type | max_size () const |
|
size_t | capacity_in_bytes () const |
|
pointer | data () |
| Return a pointer to the vector's buffer, even if empty().
|
|
const_pointer | data () const |
| Return a pointer to the vector's buffer, even if empty().
|
|
reference | operator[] (size_type idx) |
|
const_reference | operator[] (size_type idx) const |
|
reference | front () |
|
const_reference | front () const |
|
reference | back () |
|
const_reference | back () const |
|
size_t | size () const |
|
size_t | capacity () const |
|
bool | empty () const |
|
|
using | iterator = typename SuperClass::iterator |
|
using | const_iterator = typename SuperClass::const_iterator |
|
using | reference = typename SuperClass::reference |
|
using | size_type = typename SuperClass::size_type |
|
using | size_type = size_t |
|
using | difference_type = ptrdiff_t |
|
using | value_type = T |
|
using | iterator = T * |
|
using | const_iterator = const T * |
|
using | const_reverse_iterator = std::reverse_iterator< const_iterator > |
|
using | reverse_iterator = std::reverse_iterator< iterator > |
|
using | reference = T & |
|
using | const_reference = const T & |
|
using | pointer = T * |
|
using | const_pointer = const T * |
|
using | ValueParamT = typename SuperClass::ValueParamT |
|
using | ValueParamT = const T & |
|
| SmallVectorImpl (unsigned N) |
|
void | assignRemote (SmallVectorImpl &&RHS) |
|
| ~SmallVectorImpl () |
|
| SmallVectorTemplateBase (size_t Size) |
|
void | grow (size_t MinSize=0) |
| Grow the allocated memory (without initializing new elements), doubling the size of the allocated memory.
|
|
T * | mallocForGrow (size_t MinSize, size_t &NewCapacity) |
| Create a new allocation big enough for MinSize and pass back its size in NewCapacity .
|
|
void | moveElementsForGrow (T *NewElts) |
| Move existing elements over to the new allocation NewElts , the middle section of grow().
|
|
void | takeAllocationForGrow (T *NewElts, size_t NewCapacity) |
| Transfer ownership of the allocation, finishing up grow().
|
|
const T * | reserveForParamAndGetAddress (const T &Elt, size_t N=1) |
| Reserve enough space to add one element, and return the updated element pointer in case it was a reference to the storage.
|
|
T * | reserveForParamAndGetAddress (T &Elt, size_t N=1) |
| Reserve enough space to add one element, and return the updated element pointer in case it was a reference to the storage.
|
|
void | growAndAssign (size_t NumElts, const T &Elt) |
|
template<typename... ArgTypes> |
T & | growAndEmplaceBack (ArgTypes &&... Args) |
|
void * | getFirstEl () const |
| Find the address of the first element.
|
|
| SmallVectorTemplateCommon (size_t Size) |
|
void | grow_pod (size_t MinSize, size_t TSize) |
|
bool | isSmall () const |
| Return true if this is a smallvector which has not had dynamic memory allocated for it.
|
|
void | resetToSmall () |
| Put this vector in a state of being small.
|
|
bool | isReferenceToRange (const void *V, const void *First, const void *Last) const |
| Return true if V is an internal reference to the given range.
|
|
bool | isReferenceToStorage (const void *V) const |
| Return true if V is an internal reference to this vector.
|
|
bool | isRangeInStorage (const void *First, const void *Last) const |
| Return true if First and Last form a valid (possibly empty) range in this vector's storage.
|
|
bool | isSafeToReferenceAfterResize (const void *Elt, size_t NewSize) |
| Return true unless Elt will be invalidated by resizing the vector to NewSize.
|
|
void | assertSafeToReferenceAfterResize (const void *Elt, size_t NewSize) |
| Check whether Elt will be invalidated by resizing the vector to NewSize.
|
|
void | assertSafeToAdd (const void *Elt, size_t N=1) |
| Check whether Elt will be invalidated by increasing the size of the vector by N.
|
|
void | assertSafeToReferenceAfterClear (const T *From, const T *To) |
| Check whether any part of the range will be invalidated by clearing.
|
|
template<class ItTy , std::enable_if_t<!std::is_same< std::remove_const_t< ItTy >, T * >::value, bool > = false> |
void | assertSafeToReferenceAfterClear (ItTy, ItTy) |
|
void | assertSafeToAddRange (const T *From, const T *To) |
| Check whether any part of the range will be invalidated by growing.
|
|
template<class ItTy , std::enable_if_t<!std::is_same< std::remove_const_t< ItTy >, T * >::value, bool > = false> |
void | assertSafeToAddRange (ItTy, ItTy) |
|
| SmallVectorBase ()=delete |
|
| SmallVectorBase (void *FirstEl, size_t TotalCapacity) |
|
void * | mallocForGrow (void *FirstEl, size_t MinSize, size_t TSize, size_t &NewCapacity) |
| This is a helper for grow() that's out of line to reduce code duplication.
|
|
void | grow_pod (void *FirstEl, size_t MinSize, size_t TSize) |
| This is an implementation of the grow() method which only works on POD-like data types and is out of line to reduce code duplication.
|
|
void * | replaceAllocation (void *NewElts, size_t TSize, size_t NewCapacity, size_t VSize=0) |
| If vector was first created with capacity 0, getFirstEl() points to the memory right after, an area unallocated.
|
|
void | set_size (size_t N) |
| Set the array size to N , which the current array must have enough capacity for.
|
|
void | set_allocation_range (void *Begin, size_t N) |
| Set the array data pointer to Begin and capacity to N .
|
|
static void | destroy_range (T *S, T *E) |
|
template<typename It1 , typename It2 > |
static void | uninitialized_move (It1 I, It1 E, It2 Dest) |
| Move the range [I, E) into the uninitialized memory starting with "Dest", constructing elements as needed.
|
|
template<typename It1 , typename It2 > |
static void | uninitialized_copy (It1 I, It1 E, It2 Dest) |
| Copy the range [I, E) onto the uninitialized memory starting with "Dest", constructing elements as needed.
|
|
static T && | forward_value_param (T &&V) |
|
static const T & | forward_value_param (const T &V) |
|
template<class U > |
static const T * | reserveForParamAndGetAddressImpl (U *This, const T &Elt, size_t N) |
| Reserve enough space to add one element, and return the updated element pointer in case it was a reference to the storage.
|
|
static constexpr size_t | SizeTypeMax () |
| The maximum value of the Size_T used.
|
|
void * | BeginX |
|
SmallVectorSizeType< T > | Size |
|
SmallVectorSizeType< T > | Capacity |
|
static constexpr bool | TakesParamByValue = false |
|
template<typename
T,
unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value>
class llvm::SmallVector< T, N >
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
It contains some number of elements in-place, which allows it to avoid heap allocation when the actual number of elements is below that threshold. This allows normal "small" cases to be fast without losing generality for large inputs.
- Note
- In the absence of a well-motivated choice for the number of inlined elements
N
, it is recommended to use SmallVector<T>
(that is, omitting the N
). This will choose a default number of inlined elements reasonable for allocation on the stack (for example, trying to keep sizeof(SmallVector<T>)
around 64 bytes).
- Warning
- This does not attempt to be exception safe.
- See also
- https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h
Definition at line 1208 of file SmallVector.h.