LLVM 20.0.0git
X86PartialReduction.cpp
Go to the documentation of this file.
1//===-- X86PartialReduction.cpp -------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass looks for add instructions used by a horizontal reduction to see
10// if we might be able to use pmaddwd or psadbw. Some cases of this require
11// cross basic block knowledge and can't be done in SelectionDAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86TargetMachine.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/IRBuilder.h"
22#include "llvm/IR/IntrinsicsX86.h"
24#include "llvm/Pass.h"
26
27using namespace llvm;
28
29#define DEBUG_TYPE "x86-partial-reduction"
30
31namespace {
32
33class X86PartialReduction : public FunctionPass {
34 const DataLayout *DL = nullptr;
35 const X86Subtarget *ST = nullptr;
36
37public:
38 static char ID; // Pass identification, replacement for typeid.
39
40 X86PartialReduction() : FunctionPass(ID) { }
41
42 bool runOnFunction(Function &Fn) override;
43
44 void getAnalysisUsage(AnalysisUsage &AU) const override {
45 AU.setPreservesCFG();
46 }
47
48 StringRef getPassName() const override {
49 return "X86 Partial Reduction";
50 }
51
52private:
53 bool tryMAddReplacement(Instruction *Op, bool ReduceInOneBB);
54 bool trySADReplacement(Instruction *Op);
55};
56}
57
59 return new X86PartialReduction();
60}
61
62char X86PartialReduction::ID = 0;
63
64INITIALIZE_PASS(X86PartialReduction, DEBUG_TYPE,
65 "X86 Partial Reduction", false, false)
66
67// This function should be aligned with detectExtMul() in X86ISelLowering.cpp.
68static bool matchVPDPBUSDPattern(const X86Subtarget *ST, BinaryOperator *Mul,
70 if (!ST->hasVNNI() && !ST->hasAVXVNNI())
71 return false;
72
75
76 if (isa<SExtInst>(LHS))
78
79 auto IsFreeTruncation = [&](Value *Op) {
80 if (auto *Cast = dyn_cast<CastInst>(Op)) {
81 if (Cast->getParent() == Mul->getParent() &&
82 (Cast->getOpcode() == Instruction::SExt ||
83 Cast->getOpcode() == Instruction::ZExt) &&
84 Cast->getOperand(0)->getType()->getScalarSizeInBits() <= 8)
85 return true;
86 }
87
88 return isa<Constant>(Op);
89 };
90
91 // (dpbusd (zext a), (sext, b)). Since the first operand should be unsigned
92 // value, we need to check LHS is zero extended value. RHS should be signed
93 // value, so we just check the signed bits.
95 computeKnownBits(LHS, *DL).countMaxActiveBits() <= 8) &&
97 return true;
98
99 return false;
100}
101
102bool X86PartialReduction::tryMAddReplacement(Instruction *Op,
103 bool ReduceInOneBB) {
104 if (!ST->hasSSE2())
105 return false;
106
107 // Need at least 8 elements.
108 if (cast<FixedVectorType>(Op->getType())->getNumElements() < 8)
109 return false;
110
111 // Element type should be i32.
112 if (!cast<VectorType>(Op->getType())->getElementType()->isIntegerTy(32))
113 return false;
114
115 auto *Mul = dyn_cast<BinaryOperator>(Op);
116 if (!Mul || Mul->getOpcode() != Instruction::Mul)
117 return false;
118
119 Value *LHS = Mul->getOperand(0);
120 Value *RHS = Mul->getOperand(1);
121
122 // If the target support VNNI, leave it to ISel to combine reduce operation
123 // to VNNI instruction.
124 // TODO: we can support transforming reduce to VNNI intrinsic for across block
125 // in this pass.
126 if (ReduceInOneBB && matchVPDPBUSDPattern(ST, Mul, DL))
127 return false;
128
129 // LHS and RHS should be only used once or if they are the same then only
130 // used twice. Only check this when SSE4.1 is enabled and we have zext/sext
131 // instructions, otherwise we use punpck to emulate zero extend in stages. The
132 // trunc/ we need to do likely won't introduce new instructions in that case.
133 if (ST->hasSSE41()) {
134 if (LHS == RHS) {
135 if (!isa<Constant>(LHS) && !LHS->hasNUses(2))
136 return false;
137 } else {
138 if (!isa<Constant>(LHS) && !LHS->hasOneUse())
139 return false;
140 if (!isa<Constant>(RHS) && !RHS->hasOneUse())
141 return false;
142 }
143 }
144
145 auto CanShrinkOp = [&](Value *Op) {
146 auto IsFreeTruncation = [&](Value *Op) {
147 if (auto *Cast = dyn_cast<CastInst>(Op)) {
148 if (Cast->getParent() == Mul->getParent() &&
149 (Cast->getOpcode() == Instruction::SExt ||
150 Cast->getOpcode() == Instruction::ZExt) &&
151 Cast->getOperand(0)->getType()->getScalarSizeInBits() <= 16)
152 return true;
153 }
154
155 return isa<Constant>(Op);
156 };
157
158 // If the operation can be freely truncated and has enough sign bits we
159 // can shrink.
160 if (IsFreeTruncation(Op) &&
161 ComputeNumSignBits(Op, *DL, 0, nullptr, Mul) > 16)
162 return true;
163
164 // SelectionDAG has limited support for truncating through an add or sub if
165 // the inputs are freely truncatable.
166 if (auto *BO = dyn_cast<BinaryOperator>(Op)) {
167 if (BO->getParent() == Mul->getParent() &&
168 IsFreeTruncation(BO->getOperand(0)) &&
169 IsFreeTruncation(BO->getOperand(1)) &&
170 ComputeNumSignBits(Op, *DL, 0, nullptr, Mul) > 16)
171 return true;
172 }
173
174 return false;
175 };
176
177 // Both Ops need to be shrinkable.
178 if (!CanShrinkOp(LHS) && !CanShrinkOp(RHS))
179 return false;
180
181 IRBuilder<> Builder(Mul);
182
183 auto *MulTy = cast<FixedVectorType>(Op->getType());
184 unsigned NumElts = MulTy->getNumElements();
185
186 // Extract even elements and odd elements and add them together. This will
187 // be pattern matched by SelectionDAG to pmaddwd. This instruction will be
188 // half the original width.
189 SmallVector<int, 16> EvenMask(NumElts / 2);
190 SmallVector<int, 16> OddMask(NumElts / 2);
191 for (int i = 0, e = NumElts / 2; i != e; ++i) {
192 EvenMask[i] = i * 2;
193 OddMask[i] = i * 2 + 1;
194 }
195 // Creating a new mul so the replaceAllUsesWith below doesn't replace the
196 // uses in the shuffles we're creating.
197 Value *NewMul = Builder.CreateMul(Mul->getOperand(0), Mul->getOperand(1));
198 Value *EvenElts = Builder.CreateShuffleVector(NewMul, NewMul, EvenMask);
199 Value *OddElts = Builder.CreateShuffleVector(NewMul, NewMul, OddMask);
200 Value *MAdd = Builder.CreateAdd(EvenElts, OddElts);
201
202 // Concatenate zeroes to extend back to the original type.
203 SmallVector<int, 32> ConcatMask(NumElts);
204 std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
205 Value *Zero = Constant::getNullValue(MAdd->getType());
206 Value *Concat = Builder.CreateShuffleVector(MAdd, Zero, ConcatMask);
207
210
211 return true;
212}
213
214bool X86PartialReduction::trySADReplacement(Instruction *Op) {
215 if (!ST->hasSSE2())
216 return false;
217
218 // TODO: There's nothing special about i32, any integer type above i16 should
219 // work just as well.
220 if (!cast<VectorType>(Op->getType())->getElementType()->isIntegerTy(32))
221 return false;
222
223 Value *LHS;
224 if (match(Op, PatternMatch::m_Intrinsic<Intrinsic::abs>())) {
225 LHS = Op->getOperand(0);
226 } else {
227 // Operand should be a select.
228 auto *SI = dyn_cast<SelectInst>(Op);
229 if (!SI)
230 return false;
231
232 Value *RHS;
233 // Select needs to implement absolute value.
234 auto SPR = matchSelectPattern(SI, LHS, RHS);
235 if (SPR.Flavor != SPF_ABS)
236 return false;
237 }
238
239 // Need a subtract of two values.
240 auto *Sub = dyn_cast<BinaryOperator>(LHS);
241 if (!Sub || Sub->getOpcode() != Instruction::Sub)
242 return false;
243
244 // Look for zero extend from i8.
245 auto getZeroExtendedVal = [](Value *Op) -> Value * {
246 if (auto *ZExt = dyn_cast<ZExtInst>(Op))
247 if (cast<VectorType>(ZExt->getOperand(0)->getType())
248 ->getElementType()
249 ->isIntegerTy(8))
250 return ZExt->getOperand(0);
251
252 return nullptr;
253 };
254
255 // Both operands of the subtract should be extends from vXi8.
256 Value *Op0 = getZeroExtendedVal(Sub->getOperand(0));
257 Value *Op1 = getZeroExtendedVal(Sub->getOperand(1));
258 if (!Op0 || !Op1)
259 return false;
260
261 IRBuilder<> Builder(Op);
262
263 auto *OpTy = cast<FixedVectorType>(Op->getType());
264 unsigned NumElts = OpTy->getNumElements();
265
266 unsigned IntrinsicNumElts;
267 Intrinsic::ID IID;
268 if (ST->hasBWI() && NumElts >= 64) {
269 IID = Intrinsic::x86_avx512_psad_bw_512;
270 IntrinsicNumElts = 64;
271 } else if (ST->hasAVX2() && NumElts >= 32) {
272 IID = Intrinsic::x86_avx2_psad_bw;
273 IntrinsicNumElts = 32;
274 } else {
275 IID = Intrinsic::x86_sse2_psad_bw;
276 IntrinsicNumElts = 16;
277 }
278
279 Function *PSADBWFn = Intrinsic::getOrInsertDeclaration(Op->getModule(), IID);
280
281 if (NumElts < 16) {
282 // Pad input with zeroes.
283 SmallVector<int, 32> ConcatMask(16);
284 for (unsigned i = 0; i != NumElts; ++i)
285 ConcatMask[i] = i;
286 for (unsigned i = NumElts; i != 16; ++i)
287 ConcatMask[i] = (i % NumElts) + NumElts;
288
290 Op0 = Builder.CreateShuffleVector(Op0, Zero, ConcatMask);
291 Op1 = Builder.CreateShuffleVector(Op1, Zero, ConcatMask);
292 NumElts = 16;
293 }
294
295 // Intrinsics produce vXi64 and need to be casted to vXi32.
296 auto *I32Ty =
297 FixedVectorType::get(Builder.getInt32Ty(), IntrinsicNumElts / 4);
298
299 assert(NumElts % IntrinsicNumElts == 0 && "Unexpected number of elements!");
300 unsigned NumSplits = NumElts / IntrinsicNumElts;
301
302 // First collect the pieces we need.
303 SmallVector<Value *, 4> Ops(NumSplits);
304 for (unsigned i = 0; i != NumSplits; ++i) {
305 SmallVector<int, 64> ExtractMask(IntrinsicNumElts);
306 std::iota(ExtractMask.begin(), ExtractMask.end(), i * IntrinsicNumElts);
307 Value *ExtractOp0 = Builder.CreateShuffleVector(Op0, Op0, ExtractMask);
308 Value *ExtractOp1 = Builder.CreateShuffleVector(Op1, Op0, ExtractMask);
309 Ops[i] = Builder.CreateCall(PSADBWFn, {ExtractOp0, ExtractOp1});
310 Ops[i] = Builder.CreateBitCast(Ops[i], I32Ty);
311 }
312
313 assert(isPowerOf2_32(NumSplits) && "Expected power of 2 splits");
314 unsigned Stages = Log2_32(NumSplits);
315 for (unsigned s = Stages; s > 0; --s) {
316 unsigned NumConcatElts =
317 cast<FixedVectorType>(Ops[0]->getType())->getNumElements() * 2;
318 for (unsigned i = 0; i != 1U << (s - 1); ++i) {
319 SmallVector<int, 64> ConcatMask(NumConcatElts);
320 std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
321 Ops[i] = Builder.CreateShuffleVector(Ops[i*2], Ops[i*2+1], ConcatMask);
322 }
323 }
324
325 // At this point the final value should be in Ops[0]. Now we need to adjust
326 // it to the final original type.
327 NumElts = cast<FixedVectorType>(OpTy)->getNumElements();
328 if (NumElts == 2) {
329 // Extract down to 2 elements.
330 Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{0, 1});
331 } else if (NumElts >= 8) {
332 SmallVector<int, 32> ConcatMask(NumElts);
333 unsigned SubElts =
334 cast<FixedVectorType>(Ops[0]->getType())->getNumElements();
335 for (unsigned i = 0; i != SubElts; ++i)
336 ConcatMask[i] = i;
337 for (unsigned i = SubElts; i != NumElts; ++i)
338 ConcatMask[i] = (i % SubElts) + SubElts;
339
341 Ops[0] = Builder.CreateShuffleVector(Ops[0], Zero, ConcatMask);
342 }
343
344 Op->replaceAllUsesWith(Ops[0]);
345 Op->eraseFromParent();
346
347 return true;
348}
349
350// Walk backwards from the ExtractElementInst and determine if it is the end of
351// a horizontal reduction. Return the input to the reduction if we find one.
353 bool &ReduceInOneBB) {
354 ReduceInOneBB = true;
355 // Make sure we're extracting index 0.
356 auto *Index = dyn_cast<ConstantInt>(EE.getIndexOperand());
357 if (!Index || !Index->isNullValue())
358 return nullptr;
359
360 const auto *BO = dyn_cast<BinaryOperator>(EE.getVectorOperand());
361 if (!BO || BO->getOpcode() != Instruction::Add || !BO->hasOneUse())
362 return nullptr;
363 if (EE.getParent() != BO->getParent())
364 ReduceInOneBB = false;
365
366 unsigned NumElems = cast<FixedVectorType>(BO->getType())->getNumElements();
367 // Ensure the reduction size is a power of 2.
368 if (!isPowerOf2_32(NumElems))
369 return nullptr;
370
371 const Value *Op = BO;
372 unsigned Stages = Log2_32(NumElems);
373 for (unsigned i = 0; i != Stages; ++i) {
374 const auto *BO = dyn_cast<BinaryOperator>(Op);
375 if (!BO || BO->getOpcode() != Instruction::Add)
376 return nullptr;
377 if (EE.getParent() != BO->getParent())
378 ReduceInOneBB = false;
379
380 // If this isn't the first add, then it should only have 2 users, the
381 // shuffle and another add which we checked in the previous iteration.
382 if (i != 0 && !BO->hasNUses(2))
383 return nullptr;
384
385 Value *LHS = BO->getOperand(0);
386 Value *RHS = BO->getOperand(1);
387
388 auto *Shuffle = dyn_cast<ShuffleVectorInst>(LHS);
389 if (Shuffle) {
390 Op = RHS;
391 } else {
392 Shuffle = dyn_cast<ShuffleVectorInst>(RHS);
393 Op = LHS;
394 }
395
396 // The first operand of the shuffle should be the same as the other operand
397 // of the bin op.
398 if (!Shuffle || Shuffle->getOperand(0) != Op)
399 return nullptr;
400
401 // Verify the shuffle has the expected (at this stage of the pyramid) mask.
402 unsigned MaskEnd = 1 << i;
403 for (unsigned Index = 0; Index < MaskEnd; ++Index)
404 if (Shuffle->getMaskValue(Index) != (int)(MaskEnd + Index))
405 return nullptr;
406 }
407
408 return const_cast<Value *>(Op);
409}
410
411// See if this BO is reachable from this Phi by walking forward through single
412// use BinaryOperators with the same opcode. If we get back then we know we've
413// found a loop and it is safe to step through this Add to find more leaves.
415 // The PHI itself should only have one use.
416 if (!Phi->hasOneUse())
417 return false;
418
419 Instruction *U = cast<Instruction>(*Phi->user_begin());
420 if (U == BO)
421 return true;
422
423 while (U->hasOneUse() && U->getOpcode() == BO->getOpcode())
424 U = cast<Instruction>(*U->user_begin());
425
426 return U == BO;
427}
428
429// Collect all the leaves of the tree of adds that feeds into the horizontal
430// reduction. Root is the Value that is used by the horizontal reduction.
431// We look through single use phis, single use adds, or adds that are used by
432// a phi that forms a loop with the add.
436 Worklist.push_back(Root);
437
438 while (!Worklist.empty()) {
439 Value *V = Worklist.pop_back_val();
440 if (!Visited.insert(V).second)
441 continue;
442
443 if (auto *PN = dyn_cast<PHINode>(V)) {
444 // PHI node should have single use unless it is the root node, then it
445 // has 2 uses.
446 if (!PN->hasNUses(PN == Root ? 2 : 1))
447 break;
448
449 // Push incoming values to the worklist.
450 append_range(Worklist, PN->incoming_values());
451
452 continue;
453 }
454
455 if (auto *BO = dyn_cast<BinaryOperator>(V)) {
456 if (BO->getOpcode() == Instruction::Add) {
457 // Simple case. Single use, just push its operands to the worklist.
458 if (BO->hasNUses(BO == Root ? 2 : 1)) {
459 append_range(Worklist, BO->operands());
460 continue;
461 }
462
463 // If there is additional use, make sure it is an unvisited phi that
464 // gets us back to this node.
465 if (BO->hasNUses(BO == Root ? 3 : 2)) {
466 PHINode *PN = nullptr;
467 for (auto *U : BO->users())
468 if (auto *P = dyn_cast<PHINode>(U))
469 if (!Visited.count(P))
470 PN = P;
471
472 // If we didn't find a 2-input PHI then this isn't a case we can
473 // handle.
474 if (!PN || PN->getNumIncomingValues() != 2)
475 continue;
476
477 // Walk forward from this phi to see if it reaches back to this add.
478 if (!isReachableFromPHI(PN, BO))
479 continue;
480
481 // The phi forms a loop with this Add, push its operands.
482 append_range(Worklist, BO->operands());
483 }
484 }
485 }
486
487 // Not an add or phi, make it a leaf.
488 if (auto *I = dyn_cast<Instruction>(V)) {
489 if (!V->hasNUses(I == Root ? 2 : 1))
490 continue;
491
492 // Add this as a leaf.
493 Leaves.push_back(I);
494 }
495 }
496}
497
498bool X86PartialReduction::runOnFunction(Function &F) {
499 if (skipFunction(F))
500 return false;
501
502 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
503 if (!TPC)
504 return false;
505
506 auto &TM = TPC->getTM<X86TargetMachine>();
507 ST = TM.getSubtargetImpl(F);
508
509 DL = &F.getDataLayout();
510
511 bool MadeChange = false;
512 for (auto &BB : F) {
513 for (auto &I : BB) {
514 auto *EE = dyn_cast<ExtractElementInst>(&I);
515 if (!EE)
516 continue;
517
518 bool ReduceInOneBB;
519 // First find a reduction tree.
520 // FIXME: Do we need to handle other opcodes than Add?
521 Value *Root = matchAddReduction(*EE, ReduceInOneBB);
522 if (!Root)
523 continue;
524
526 collectLeaves(Root, Leaves);
527
528 for (Instruction *I : Leaves) {
529 if (tryMAddReplacement(I, ReduceInOneBB)) {
530 MadeChange = true;
531 continue;
532 }
533
534 // Don't do SAD matching on the root node. SelectionDAG already
535 // has support for that and currently generates better code.
536 if (I != Root && trySADReplacement(I))
537 MadeChange = true;
538 }
539 }
540 }
541
542 return MadeChange;
543}
aarch64 promote const
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the declarations for the subclasses of Constant, which represent the different fla...
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define P(N)
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static SymbolRef::Type getType(const Symbol *Sym)
Definition: TapiFile.cpp:39
Target-Independent Code Generator Pass Configuration Options pass.
static constexpr int Concat[]
static bool isReachableFromPHI(PHINode *Phi, BinaryOperator *BO)
BinaryOperator const DataLayout * DL
Value * RHS
Value * LHS
#define DEBUG_TYPE
BinaryOperator * Mul
if(isa< SExtInst >(LHS)) std auto IsFreeTruncation
static Value * matchAddReduction(const ExtractElementInst &EE, bool &ReduceInOneBB)
static void collectLeaves(Value *Root, SmallVectorImpl< Instruction * > &Leaves)
Represent the analysis usage information of a pass.
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:256
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
BinaryOps getOpcode() const
Definition: InstrTypes.h:370
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:373
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
This instruction extracts a single (scalar) element from a VectorType value.
static FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition: Type.cpp:791
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
virtual bool runOnFunction(Function &F)=0
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2697
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:94
unsigned getNumIncomingValues() const
Return the number of incoming edges.
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:98
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:452
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
bool empty() const
Definition: SmallVector.h:81
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
Value * getOperand(unsigned i) const
Definition: User.h:228
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:434
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
Definition: Value.cpp:149
const ParentTy * getParent() const
Definition: ilist_node.h:32
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
Definition: Intrinsics.cpp:731
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
constexpr double e
Definition: MathExtras.h:47
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2115
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:340
@ SPF_ABS
Floating point maxnum.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:291
SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
FunctionPass * createX86PartialReductionPass()
This pass optimizes arithmetic based on knowledge that is only used by a reduction sequence and is th...
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
DWARFExpression::Operation Op
unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return the number of times the sign bit of the register is replicated into the other bits.
unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr)
Get the upper bound on bit size for this Value Op as a signed integer.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860