LLVM  10.0.0svn
PatternMatch.h
Go to the documentation of this file.
1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides a simple and efficient mechanism for performing general
10 // tree-based pattern matches on the LLVM IR. The power of these routines is
11 // that it allows you to write concise patterns that are expressive and easy to
12 // understand. The other major advantage of this is that it allows you to
13 // trivially capture/bind elements in the pattern to variables. For example,
14 // you can do something like this:
15 //
16 // Value *Exp = ...
17 // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18 // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19 // m_And(m_Value(Y), m_ConstantInt(C2))))) {
20 // ... Pattern is matched and variables are bound ...
21 // }
22 //
23 // This is primarily useful to things like the instruction combiner, but can
24 // also be useful for static analysis tools or code generators.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #ifndef LLVM_IR_PATTERNMATCH_H
29 #define LLVM_IR_PATTERNMATCH_H
30 
31 #include "llvm/ADT/APFloat.h"
32 #include "llvm/ADT/APInt.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/InstrTypes.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Support/Casting.h"
42 #include <cstdint>
43 
44 namespace llvm {
45 namespace PatternMatch {
46 
47 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
48  return const_cast<Pattern &>(P).match(V);
49 }
50 
51 template <typename SubPattern_t> struct OneUse_match {
52  SubPattern_t SubPattern;
53 
54  OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
55 
56  template <typename OpTy> bool match(OpTy *V) {
57  return V->hasOneUse() && SubPattern.match(V);
58  }
59 };
60 
61 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
62  return SubPattern;
63 }
64 
65 template <typename Class> struct class_match {
66  template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
67 };
68 
69 /// Match an arbitrary value and ignore it.
71 
72 /// Match an arbitrary binary operation and ignore it.
75 }
76 
77 /// Matches any compare instruction and ignore it.
79 
80 /// Match an arbitrary ConstantInt and ignore it.
82  return class_match<ConstantInt>();
83 }
84 
85 /// Match an arbitrary undef constant.
87 
88 /// Match an arbitrary Constant and ignore it.
90 
91 /// Matching combinators
92 template <typename LTy, typename RTy> struct match_combine_or {
93  LTy L;
94  RTy R;
95 
96  match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
97 
98  template <typename ITy> bool match(ITy *V) {
99  if (L.match(V))
100  return true;
101  if (R.match(V))
102  return true;
103  return false;
104  }
105 };
106 
107 template <typename LTy, typename RTy> struct match_combine_and {
108  LTy L;
109  RTy R;
110 
111  match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
112 
113  template <typename ITy> bool match(ITy *V) {
114  if (L.match(V))
115  if (R.match(V))
116  return true;
117  return false;
118  }
119 };
120 
121 /// Combine two pattern matchers matching L || R
122 template <typename LTy, typename RTy>
123 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
124  return match_combine_or<LTy, RTy>(L, R);
125 }
126 
127 /// Combine two pattern matchers matching L && R
128 template <typename LTy, typename RTy>
129 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
130  return match_combine_and<LTy, RTy>(L, R);
131 }
132 
133 struct apint_match {
134  const APInt *&Res;
135 
136  apint_match(const APInt *&R) : Res(R) {}
137 
138  template <typename ITy> bool match(ITy *V) {
139  if (auto *CI = dyn_cast<ConstantInt>(V)) {
140  Res = &CI->getValue();
141  return true;
142  }
143  if (V->getType()->isVectorTy())
144  if (const auto *C = dyn_cast<Constant>(V))
145  if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
146  Res = &CI->getValue();
147  return true;
148  }
149  return false;
150  }
151 };
152 // Either constexpr if or renaming ConstantFP::getValueAPF to
153 // ConstantFP::getValue is needed to do it via single template
154 // function for both apint/apfloat.
156  const APFloat *&Res;
157  apfloat_match(const APFloat *&R) : Res(R) {}
158  template <typename ITy> bool match(ITy *V) {
159  if (auto *CI = dyn_cast<ConstantFP>(V)) {
160  Res = &CI->getValueAPF();
161  return true;
162  }
163  if (V->getType()->isVectorTy())
164  if (const auto *C = dyn_cast<Constant>(V))
165  if (auto *CI = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) {
166  Res = &CI->getValueAPF();
167  return true;
168  }
169  return false;
170  }
171 };
172 
173 /// Match a ConstantInt or splatted ConstantVector, binding the
174 /// specified pointer to the contained APInt.
175 inline apint_match m_APInt(const APInt *&Res) { return Res; }
176 
177 /// Match a ConstantFP or splatted ConstantVector, binding the
178 /// specified pointer to the contained APFloat.
179 inline apfloat_match m_APFloat(const APFloat *&Res) { return Res; }
180 
181 template <int64_t Val> struct constantint_match {
182  template <typename ITy> bool match(ITy *V) {
183  if (const auto *CI = dyn_cast<ConstantInt>(V)) {
184  const APInt &CIV = CI->getValue();
185  if (Val >= 0)
186  return CIV == static_cast<uint64_t>(Val);
187  // If Val is negative, and CI is shorter than it, truncate to the right
188  // number of bits. If it is larger, then we have to sign extend. Just
189  // compare their negated values.
190  return -CIV == -Val;
191  }
192  return false;
193  }
194 };
195 
196 /// Match a ConstantInt with a specific value.
197 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
198  return constantint_match<Val>();
199 }
200 
201 /// This helper class is used to match scalar and vector integer constants that
202 /// satisfy a specified predicate.
203 /// For vector constants, undefined elements are ignored.
204 template <typename Predicate> struct cst_pred_ty : public Predicate {
205  template <typename ITy> bool match(ITy *V) {
206  if (const auto *CI = dyn_cast<ConstantInt>(V))
207  return this->isValue(CI->getValue());
208  if (V->getType()->isVectorTy()) {
209  if (const auto *C = dyn_cast<Constant>(V)) {
210  if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
211  return this->isValue(CI->getValue());
212 
213  // Non-splat vector constant: check each element for a match.
214  unsigned NumElts = V->getType()->getVectorNumElements();
215  assert(NumElts != 0 && "Constant vector with no elements?");
216  bool HasNonUndefElements = false;
217  for (unsigned i = 0; i != NumElts; ++i) {
218  Constant *Elt = C->getAggregateElement(i);
219  if (!Elt)
220  return false;
221  if (isa<UndefValue>(Elt))
222  continue;
223  auto *CI = dyn_cast<ConstantInt>(Elt);
224  if (!CI || !this->isValue(CI->getValue()))
225  return false;
226  HasNonUndefElements = true;
227  }
228  return HasNonUndefElements;
229  }
230  }
231  return false;
232  }
233 };
234 
235 /// This helper class is used to match scalar and vector constants that
236 /// satisfy a specified predicate, and bind them to an APInt.
237 template <typename Predicate> struct api_pred_ty : public Predicate {
238  const APInt *&Res;
239 
240  api_pred_ty(const APInt *&R) : Res(R) {}
241 
242  template <typename ITy> bool match(ITy *V) {
243  if (const auto *CI = dyn_cast<ConstantInt>(V))
244  if (this->isValue(CI->getValue())) {
245  Res = &CI->getValue();
246  return true;
247  }
248  if (V->getType()->isVectorTy())
249  if (const auto *C = dyn_cast<Constant>(V))
250  if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
251  if (this->isValue(CI->getValue())) {
252  Res = &CI->getValue();
253  return true;
254  }
255 
256  return false;
257  }
258 };
259 
260 /// This helper class is used to match scalar and vector floating-point
261 /// constants that satisfy a specified predicate.
262 /// For vector constants, undefined elements are ignored.
263 template <typename Predicate> struct cstfp_pred_ty : public Predicate {
264  template <typename ITy> bool match(ITy *V) {
265  if (const auto *CF = dyn_cast<ConstantFP>(V))
266  return this->isValue(CF->getValueAPF());
267  if (V->getType()->isVectorTy()) {
268  if (const auto *C = dyn_cast<Constant>(V)) {
269  if (const auto *CF = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
270  return this->isValue(CF->getValueAPF());
271 
272  // Non-splat vector constant: check each element for a match.
273  unsigned NumElts = V->getType()->getVectorNumElements();
274  assert(NumElts != 0 && "Constant vector with no elements?");
275  bool HasNonUndefElements = false;
276  for (unsigned i = 0; i != NumElts; ++i) {
277  Constant *Elt = C->getAggregateElement(i);
278  if (!Elt)
279  return false;
280  if (isa<UndefValue>(Elt))
281  continue;
282  auto *CF = dyn_cast<ConstantFP>(Elt);
283  if (!CF || !this->isValue(CF->getValueAPF()))
284  return false;
285  HasNonUndefElements = true;
286  }
287  return HasNonUndefElements;
288  }
289  }
290  return false;
291  }
292 };
293 
294 ///////////////////////////////////////////////////////////////////////////////
295 //
296 // Encapsulate constant value queries for use in templated predicate matchers.
297 // This allows checking if constants match using compound predicates and works
298 // with vector constants, possibly with relaxed constraints. For example, ignore
299 // undef values.
300 //
301 ///////////////////////////////////////////////////////////////////////////////
302 
303 struct is_all_ones {
304  bool isValue(const APInt &C) { return C.isAllOnesValue(); }
305 };
306 /// Match an integer or vector with all bits set.
307 /// For vectors, this includes constants with undefined elements.
309  return cst_pred_ty<is_all_ones>();
310 }
311 
313  bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
314 };
315 /// Match an integer or vector with values having all bits except for the high
316 /// bit set (0x7f...).
317 /// For vectors, this includes constants with undefined elements.
320 }
322  return V;
323 }
324 
325 struct is_negative {
326  bool isValue(const APInt &C) { return C.isNegative(); }
327 };
328 /// Match an integer or vector of negative values.
329 /// For vectors, this includes constants with undefined elements.
331  return cst_pred_ty<is_negative>();
332 }
334  return V;
335 }
336 
338  bool isValue(const APInt &C) { return C.isNonNegative(); }
339 };
340 /// Match an integer or vector of nonnegative values.
341 /// For vectors, this includes constants with undefined elements.
344 }
346  return V;
347 }
348 
349 struct is_one {
350  bool isValue(const APInt &C) { return C.isOneValue(); }
351 };
352 /// Match an integer 1 or a vector with all elements equal to 1.
353 /// For vectors, this includes constants with undefined elements.
355  return cst_pred_ty<is_one>();
356 }
357 
358 struct is_zero_int {
359  bool isValue(const APInt &C) { return C.isNullValue(); }
360 };
361 /// Match an integer 0 or a vector with all elements equal to 0.
362 /// For vectors, this includes constants with undefined elements.
364  return cst_pred_ty<is_zero_int>();
365 }
366 
367 struct is_zero {
368  template <typename ITy> bool match(ITy *V) {
369  auto *C = dyn_cast<Constant>(V);
370  return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
371  }
372 };
373 /// Match any null constant or a vector with all elements equal to 0.
374 /// For vectors, this includes constants with undefined elements.
375 inline is_zero m_Zero() {
376  return is_zero();
377 }
378 
379 struct is_power2 {
380  bool isValue(const APInt &C) { return C.isPowerOf2(); }
381 };
382 /// Match an integer or vector power-of-2.
383 /// For vectors, this includes constants with undefined elements.
385  return cst_pred_ty<is_power2>();
386 }
388  return V;
389 }
390 
392  bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
393 };
394 /// Match an integer or vector of 0 or power-of-2 values.
395 /// For vectors, this includes constants with undefined elements.
398 }
400  return V;
401 }
402 
403 struct is_sign_mask {
404  bool isValue(const APInt &C) { return C.isSignMask(); }
405 };
406 /// Match an integer or vector with only the sign bit(s) set.
407 /// For vectors, this includes constants with undefined elements.
409  return cst_pred_ty<is_sign_mask>();
410 }
411 
413  bool isValue(const APInt &C) { return C.isMask(); }
414 };
415 /// Match an integer or vector with only the low bit(s) set.
416 /// For vectors, this includes constants with undefined elements.
419 }
420 
423  const APInt *Thr;
424  bool isValue(const APInt &C) {
425  switch (Pred) {
426  case ICmpInst::Predicate::ICMP_EQ:
427  return C.eq(*Thr);
428  case ICmpInst::Predicate::ICMP_NE:
429  return C.ne(*Thr);
430  case ICmpInst::Predicate::ICMP_UGT:
431  return C.ugt(*Thr);
432  case ICmpInst::Predicate::ICMP_UGE:
433  return C.uge(*Thr);
434  case ICmpInst::Predicate::ICMP_ULT:
435  return C.ult(*Thr);
436  case ICmpInst::Predicate::ICMP_ULE:
437  return C.ule(*Thr);
438  case ICmpInst::Predicate::ICMP_SGT:
439  return C.sgt(*Thr);
440  case ICmpInst::Predicate::ICMP_SGE:
441  return C.sge(*Thr);
442  case ICmpInst::Predicate::ICMP_SLT:
443  return C.slt(*Thr);
444  case ICmpInst::Predicate::ICMP_SLE:
445  return C.sle(*Thr);
446  default:
447  llvm_unreachable("Unhandled ICmp predicate");
448  }
449  }
450 };
451 /// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
452 /// to Threshold. For vectors, this includes constants with undefined elements.
456  P.Pred = Predicate;
457  P.Thr = &Threshold;
458  return P;
459 }
460 
461 struct is_nan {
462  bool isValue(const APFloat &C) { return C.isNaN(); }
463 };
464 /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
465 /// For vectors, this includes constants with undefined elements.
467  return cstfp_pred_ty<is_nan>();
468 }
469 
471  bool isValue(const APFloat &C) { return C.isZero(); }
472 };
473 /// Match a floating-point negative zero or positive zero.
474 /// For vectors, this includes constants with undefined elements.
477 }
478 
480  bool isValue(const APFloat &C) { return C.isPosZero(); }
481 };
482 /// Match a floating-point positive zero.
483 /// For vectors, this includes constants with undefined elements.
486 }
487 
489  bool isValue(const APFloat &C) { return C.isNegZero(); }
490 };
491 /// Match a floating-point negative zero.
492 /// For vectors, this includes constants with undefined elements.
495 }
496 
497 ///////////////////////////////////////////////////////////////////////////////
498 
499 template <typename Class> struct bind_ty {
500  Class *&VR;
501 
502  bind_ty(Class *&V) : VR(V) {}
503 
504  template <typename ITy> bool match(ITy *V) {
505  if (auto *CV = dyn_cast<Class>(V)) {
506  VR = CV;
507  return true;
508  }
509  return false;
510  }
511 };
512 
513 /// Match a value, capturing it if we match.
514 inline bind_ty<Value> m_Value(Value *&V) { return V; }
515 inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
516 
517 /// Match an instruction, capturing it if we match.
519 /// Match a binary operator, capturing it if we match.
521 
522 /// Match a ConstantInt, capturing the value if we match.
523 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
524 
525 /// Match a Constant, capturing the value if we match.
526 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
527 
528 /// Match a ConstantFP, capturing the value if we match.
530 
531 /// Match a specified Value*.
533  const Value *Val;
534 
535  specificval_ty(const Value *V) : Val(V) {}
536 
537  template <typename ITy> bool match(ITy *V) { return V == Val; }
538 };
539 
540 /// Match if we have a specific specified value.
541 inline specificval_ty m_Specific(const Value *V) { return V; }
542 
543 /// Stores a reference to the Value *, not the Value * itself,
544 /// thus can be used in commutative matchers.
545 template <typename Class> struct deferredval_ty {
546  Class *const &Val;
547 
548  deferredval_ty(Class *const &V) : Val(V) {}
549 
550  template <typename ITy> bool match(ITy *const V) { return V == Val; }
551 };
552 
553 /// A commutative-friendly version of m_Specific().
554 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
556  return V;
557 }
558 
559 /// Match a specified floating point value or vector of all elements of
560 /// that value.
562  double Val;
563 
564  specific_fpval(double V) : Val(V) {}
565 
566  template <typename ITy> bool match(ITy *V) {
567  if (const auto *CFP = dyn_cast<ConstantFP>(V))
568  return CFP->isExactlyValue(Val);
569  if (V->getType()->isVectorTy())
570  if (const auto *C = dyn_cast<Constant>(V))
571  if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
572  return CFP->isExactlyValue(Val);
573  return false;
574  }
575 };
576 
577 /// Match a specific floating point value or vector with all elements
578 /// equal to the value.
579 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
580 
581 /// Match a float 1.0 or vector with all elements equal to 1.0.
582 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
583 
585  uint64_t &VR;
586 
587  bind_const_intval_ty(uint64_t &V) : VR(V) {}
588 
589  template <typename ITy> bool match(ITy *V) {
590  if (const auto *CV = dyn_cast<ConstantInt>(V))
591  if (CV->getValue().ule(UINT64_MAX)) {
592  VR = CV->getZExtValue();
593  return true;
594  }
595  return false;
596  }
597 };
598 
599 /// Match a specified integer value or vector of all elements of that
600 // value.
602  uint64_t Val;
603 
604  specific_intval(uint64_t V) : Val(V) {}
605 
606  template <typename ITy> bool match(ITy *V) {
607  const auto *CI = dyn_cast<ConstantInt>(V);
608  if (!CI && V->getType()->isVectorTy())
609  if (const auto *C = dyn_cast<Constant>(V))
610  CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());
611 
612  return CI && CI->getValue() == Val;
613  }
614 };
615 
616 /// Match a specific integer value or vector with all elements equal to
617 /// the value.
618 inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); }
619 
620 /// Match a ConstantInt and bind to its value. This does not match
621 /// ConstantInts wider than 64-bits.
622 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
623 
624 //===----------------------------------------------------------------------===//
625 // Matcher for any binary operator.
626 //
627 template <typename LHS_t, typename RHS_t, bool Commutable = false>
629  LHS_t L;
630  RHS_t R;
631 
632  // The evaluation order is always stable, regardless of Commutability.
633  // The LHS is always matched first.
634  AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
635 
636  template <typename OpTy> bool match(OpTy *V) {
637  if (auto *I = dyn_cast<BinaryOperator>(V))
638  return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
639  (Commutable && L.match(I->getOperand(1)) &&
640  R.match(I->getOperand(0)));
641  return false;
642  }
643 };
644 
645 template <typename LHS, typename RHS>
646 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
647  return AnyBinaryOp_match<LHS, RHS>(L, R);
648 }
649 
650 //===----------------------------------------------------------------------===//
651 // Matchers for specific binary operators.
652 //
653 
654 template <typename LHS_t, typename RHS_t, unsigned Opcode,
655  bool Commutable = false>
657  LHS_t L;
658  RHS_t R;
659 
660  // The evaluation order is always stable, regardless of Commutability.
661  // The LHS is always matched first.
662  BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
663 
664  template <typename OpTy> bool match(OpTy *V) {
665  if (V->getValueID() == Value::InstructionVal + Opcode) {
666  auto *I = cast<BinaryOperator>(V);
667  return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
668  (Commutable && L.match(I->getOperand(1)) &&
669  R.match(I->getOperand(0)));
670  }
671  if (auto *CE = dyn_cast<ConstantExpr>(V))
672  return CE->getOpcode() == Opcode &&
673  ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
674  (Commutable && L.match(CE->getOperand(1)) &&
675  R.match(CE->getOperand(0))));
676  return false;
677  }
678 };
679 
680 template <typename LHS, typename RHS>
682  const RHS &R) {
684 }
685 
686 template <typename LHS, typename RHS>
688  const RHS &R) {
690 }
691 
692 template <typename LHS, typename RHS>
694  const RHS &R) {
696 }
697 
698 template <typename LHS, typename RHS>
700  const RHS &R) {
702 }
703 
704 template <typename Op_t> struct FNeg_match {
705  Op_t X;
706 
707  FNeg_match(const Op_t &Op) : X(Op) {}
708  template <typename OpTy> bool match(OpTy *V) {
709  auto *FPMO = dyn_cast<FPMathOperator>(V);
710  if (!FPMO) return false;
711 
712  if (FPMO->getOpcode() == Instruction::FNeg)
713  return X.match(FPMO->getOperand(0));
714 
715  if (FPMO->getOpcode() == Instruction::FSub) {
716  if (FPMO->hasNoSignedZeros()) {
717  // With 'nsz', any zero goes.
718  if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
719  return false;
720  } else {
721  // Without 'nsz', we need fsub -0.0, X exactly.
722  if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
723  return false;
724  }
725 
726  return X.match(FPMO->getOperand(1));
727  }
728 
729  return false;
730  }
731 };
732 
733 /// Match 'fneg X' as 'fsub -0.0, X'.
734 template <typename OpTy>
735 inline FNeg_match<OpTy>
736 m_FNeg(const OpTy &X) {
737  return FNeg_match<OpTy>(X);
738 }
739 
740 /// Match 'fneg X' as 'fsub +-0.0, X'.
741 template <typename RHS>
742 inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
743 m_FNegNSZ(const RHS &X) {
744  return m_FSub(m_AnyZeroFP(), X);
745 }
746 
747 template <typename LHS, typename RHS>
749  const RHS &R) {
751 }
752 
753 template <typename LHS, typename RHS>
755  const RHS &R) {
757 }
758 
759 template <typename LHS, typename RHS>
761  const RHS &R) {
763 }
764 
765 template <typename LHS, typename RHS>
767  const RHS &R) {
769 }
770 
771 template <typename LHS, typename RHS>
773  const RHS &R) {
775 }
776 
777 template <typename LHS, typename RHS>
779  const RHS &R) {
781 }
782 
783 template <typename LHS, typename RHS>
785  const RHS &R) {
787 }
788 
789 template <typename LHS, typename RHS>
791  const RHS &R) {
793 }
794 
795 template <typename LHS, typename RHS>
797  const RHS &R) {
799 }
800 
801 template <typename LHS, typename RHS>
803  const RHS &R) {
805 }
806 
807 template <typename LHS, typename RHS>
809  const RHS &R) {
811 }
812 
813 template <typename LHS, typename RHS>
815  const RHS &R) {
817 }
818 
819 template <typename LHS, typename RHS>
821  const RHS &R) {
823 }
824 
825 template <typename LHS, typename RHS>
827  const RHS &R) {
829 }
830 
831 template <typename LHS_t, typename RHS_t, unsigned Opcode,
832  unsigned WrapFlags = 0>
834  LHS_t L;
835  RHS_t R;
836 
837  OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
838  : L(LHS), R(RHS) {}
839 
840  template <typename OpTy> bool match(OpTy *V) {
841  if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
842  if (Op->getOpcode() != Opcode)
843  return false;
845  !Op->hasNoUnsignedWrap())
846  return false;
847  if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
848  !Op->hasNoSignedWrap())
849  return false;
850  return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
851  }
852  return false;
853  }
854 };
855 
856 template <typename LHS, typename RHS>
859 m_NSWAdd(const LHS &L, const RHS &R) {
862  L, R);
863 }
864 template <typename LHS, typename RHS>
865 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
867 m_NSWSub(const LHS &L, const RHS &R) {
868  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
870  L, R);
871 }
872 template <typename LHS, typename RHS>
873 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
875 m_NSWMul(const LHS &L, const RHS &R) {
876  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
878  L, R);
879 }
880 template <typename LHS, typename RHS>
881 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
883 m_NSWShl(const LHS &L, const RHS &R) {
884  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
886  L, R);
887 }
888 
889 template <typename LHS, typename RHS>
892 m_NUWAdd(const LHS &L, const RHS &R) {
895  L, R);
896 }
897 template <typename LHS, typename RHS>
898 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
900 m_NUWSub(const LHS &L, const RHS &R) {
901  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
903  L, R);
904 }
905 template <typename LHS, typename RHS>
906 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
908 m_NUWMul(const LHS &L, const RHS &R) {
909  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
911  L, R);
912 }
913 template <typename LHS, typename RHS>
914 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
916 m_NUWShl(const LHS &L, const RHS &R) {
917  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
919  L, R);
920 }
921 
922 //===----------------------------------------------------------------------===//
923 // Class that matches a group of binary opcodes.
924 //
925 template <typename LHS_t, typename RHS_t, typename Predicate>
927  LHS_t L;
928  RHS_t R;
929 
930  BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
931 
932  template <typename OpTy> bool match(OpTy *V) {
933  if (auto *I = dyn_cast<Instruction>(V))
934  return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
935  R.match(I->getOperand(1));
936  if (auto *CE = dyn_cast<ConstantExpr>(V))
937  return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
938  R.match(CE->getOperand(1));
939  return false;
940  }
941 };
942 
943 struct is_shift_op {
944  bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
945 };
946 
948  bool isOpType(unsigned Opcode) {
949  return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
950  }
951 };
952 
954  bool isOpType(unsigned Opcode) {
955  return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
956  }
957 };
958 
960  bool isOpType(unsigned Opcode) {
961  return Instruction::isBitwiseLogicOp(Opcode);
962  }
963 };
964 
965 struct is_idiv_op {
966  bool isOpType(unsigned Opcode) {
967  return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
968  }
969 };
970 
971 /// Matches shift operations.
972 template <typename LHS, typename RHS>
974  const RHS &R) {
976 }
977 
978 /// Matches logical shift operations.
979 template <typename LHS, typename RHS>
981  const RHS &R) {
983 }
984 
985 /// Matches logical shift operations.
986 template <typename LHS, typename RHS>
988 m_LogicalShift(const LHS &L, const RHS &R) {
990 }
991 
992 /// Matches bitwise logic operations.
993 template <typename LHS, typename RHS>
995 m_BitwiseLogic(const LHS &L, const RHS &R) {
997 }
998 
999 /// Matches integer division operations.
1000 template <typename LHS, typename RHS>
1002  const RHS &R) {
1004 }
1005 
1006 //===----------------------------------------------------------------------===//
1007 // Class that matches exact binary ops.
1008 //
1009 template <typename SubPattern_t> struct Exact_match {
1010  SubPattern_t SubPattern;
1011 
1012  Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1013 
1014  template <typename OpTy> bool match(OpTy *V) {
1015  if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1016  return PEO->isExact() && SubPattern.match(V);
1017  return false;
1018  }
1019 };
1020 
1021 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1022  return SubPattern;
1023 }
1024 
1025 //===----------------------------------------------------------------------===//
1026 // Matchers for CmpInst classes
1027 //
1028 
1029 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1030  bool Commutable = false>
1032  PredicateTy &Predicate;
1033  LHS_t L;
1034  RHS_t R;
1035 
1036  // The evaluation order is always stable, regardless of Commutability.
1037  // The LHS is always matched first.
1038  CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1039  : Predicate(Pred), L(LHS), R(RHS) {}
1040 
1041  template <typename OpTy> bool match(OpTy *V) {
1042  if (auto *I = dyn_cast<Class>(V))
1043  if ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
1044  (Commutable && L.match(I->getOperand(1)) &&
1045  R.match(I->getOperand(0)))) {
1046  Predicate = I->getPredicate();
1047  return true;
1048  }
1049  return false;
1050  }
1051 };
1052 
1053 template <typename LHS, typename RHS>
1055 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1057 }
1058 
1059 template <typename LHS, typename RHS>
1061 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1063 }
1064 
1065 template <typename LHS, typename RHS>
1067 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1069 }
1070 
1071 //===----------------------------------------------------------------------===//
1072 // Matchers for instructions with a given opcode and number of operands.
1073 //
1074 
1075 /// Matches instructions with Opcode and three operands.
1076 template <typename T0, unsigned Opcode> struct OneOps_match {
1077  T0 Op1;
1078 
1079  OneOps_match(const T0 &Op1) : Op1(Op1) {}
1080 
1081  template <typename OpTy> bool match(OpTy *V) {
1082  if (V->getValueID() == Value::InstructionVal + Opcode) {
1083  auto *I = cast<Instruction>(V);
1084  return Op1.match(I->getOperand(0));
1085  }
1086  return false;
1087  }
1088 };
1089 
1090 /// Matches instructions with Opcode and three operands.
1091 template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1092  T0 Op1;
1094 
1095  TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1096 
1097  template <typename OpTy> bool match(OpTy *V) {
1098  if (V->getValueID() == Value::InstructionVal + Opcode) {
1099  auto *I = cast<Instruction>(V);
1100  return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1101  }
1102  return false;
1103  }
1104 };
1105 
1106 /// Matches instructions with Opcode and three operands.
1107 template <typename T0, typename T1, typename T2, unsigned Opcode>
1109  T0 Op1;
1111  T2 Op3;
1112 
1113  ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1114  : Op1(Op1), Op2(Op2), Op3(Op3) {}
1115 
1116  template <typename OpTy> bool match(OpTy *V) {
1117  if (V->getValueID() == Value::InstructionVal + Opcode) {
1118  auto *I = cast<Instruction>(V);
1119  return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1120  Op3.match(I->getOperand(2));
1121  }
1122  return false;
1123  }
1124 };
1125 
1126 /// Matches SelectInst.
1127 template <typename Cond, typename LHS, typename RHS>
1129 m_Select(const Cond &C, const LHS &L, const RHS &R) {
1131 }
1132 
1133 /// This matches a select of two constants, e.g.:
1134 /// m_SelectCst<-1, 0>(m_Value(V))
1135 template <int64_t L, int64_t R, typename Cond>
1138 m_SelectCst(const Cond &C) {
1139  return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1140 }
1141 
1142 /// Matches InsertElementInst.
1143 template <typename Val_t, typename Elt_t, typename Idx_t>
1145 m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1147  Val, Elt, Idx);
1148 }
1149 
1150 /// Matches ExtractElementInst.
1151 template <typename Val_t, typename Idx_t>
1153 m_ExtractElement(const Val_t &Val, const Idx_t &Idx) {
1155 }
1156 
1157 /// Matches ShuffleVectorInst.
1158 template <typename V1_t, typename V2_t, typename Mask_t>
1160 m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m) {
1162  m);
1163 }
1164 
1165 /// Matches LoadInst.
1166 template <typename OpTy>
1169 }
1170 
1171 /// Matches StoreInst.
1172 template <typename ValueOpTy, typename PointerOpTy>
1174 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1176  PointerOp);
1177 }
1178 
1179 //===----------------------------------------------------------------------===//
1180 // Matchers for CastInst classes
1181 //
1182 
1183 template <typename Op_t, unsigned Opcode> struct CastClass_match {
1184  Op_t Op;
1185 
1186  CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1187 
1188  template <typename OpTy> bool match(OpTy *V) {
1189  if (auto *O = dyn_cast<Operator>(V))
1190  return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1191  return false;
1192  }
1193 };
1194 
1195 /// Matches BitCast.
1196 template <typename OpTy>
1199 }
1200 
1201 /// Matches PtrToInt.
1202 template <typename OpTy>
1205 }
1206 
1207 /// Matches Trunc.
1208 template <typename OpTy>
1211 }
1212 
1213 /// Matches SExt.
1214 template <typename OpTy>
1217 }
1218 
1219 /// Matches ZExt.
1220 template <typename OpTy>
1223 }
1224 
1225 template <typename OpTy>
1228 m_ZExtOrSExt(const OpTy &Op) {
1229  return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1230 }
1231 
1232 /// Matches UIToFP.
1233 template <typename OpTy>
1236 }
1237 
1238 /// Matches SIToFP.
1239 template <typename OpTy>
1242 }
1243 
1244 /// Matches FPTrunc
1245 template <typename OpTy>
1248 }
1249 
1250 /// Matches FPExt
1251 template <typename OpTy>
1254 }
1255 
1256 //===----------------------------------------------------------------------===//
1257 // Matchers for control flow.
1258 //
1259 
1260 struct br_match {
1262 
1263  br_match(BasicBlock *&Succ) : Succ(Succ) {}
1264 
1265  template <typename OpTy> bool match(OpTy *V) {
1266  if (auto *BI = dyn_cast<BranchInst>(V))
1267  if (BI->isUnconditional()) {
1268  Succ = BI->getSuccessor(0);
1269  return true;
1270  }
1271  return false;
1272  }
1273 };
1274 
1275 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1276 
1277 template <typename Cond_t> struct brc_match {
1278  Cond_t Cond;
1280 
1281  brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
1282  : Cond(C), T(t), F(f) {}
1283 
1284  template <typename OpTy> bool match(OpTy *V) {
1285  if (auto *BI = dyn_cast<BranchInst>(V))
1286  if (BI->isConditional() && Cond.match(BI->getCondition())) {
1287  T = BI->getSuccessor(0);
1288  F = BI->getSuccessor(1);
1289  return true;
1290  }
1291  return false;
1292  }
1293 };
1294 
1295 template <typename Cond_t>
1296 inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1297  return brc_match<Cond_t>(C, T, F);
1298 }
1299 
1300 //===----------------------------------------------------------------------===//
1301 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1302 //
1303 
1304 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1305  bool Commutable = false>
1307  LHS_t L;
1308  RHS_t R;
1309 
1310  // The evaluation order is always stable, regardless of Commutability.
1311  // The LHS is always matched first.
1312  MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1313 
1314  template <typename OpTy> bool match(OpTy *V) {
1315  // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1316  auto *SI = dyn_cast<SelectInst>(V);
1317  if (!SI)
1318  return false;
1319  auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1320  if (!Cmp)
1321  return false;
1322  // At this point we have a select conditioned on a comparison. Check that
1323  // it is the values returned by the select that are being compared.
1324  Value *TrueVal = SI->getTrueValue();
1325  Value *FalseVal = SI->getFalseValue();
1326  Value *LHS = Cmp->getOperand(0);
1327  Value *RHS = Cmp->getOperand(1);
1328  if ((TrueVal != LHS || FalseVal != RHS) &&
1329  (TrueVal != RHS || FalseVal != LHS))
1330  return false;
1331  typename CmpInst_t::Predicate Pred =
1332  LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1333  // Does "(x pred y) ? x : y" represent the desired max/min operation?
1334  if (!Pred_t::match(Pred))
1335  return false;
1336  // It does! Bind the operands.
1337  return (L.match(LHS) && R.match(RHS)) ||
1338  (Commutable && L.match(RHS) && R.match(LHS));
1339  }
1340 };
1341 
1342 /// Helper class for identifying signed max predicates.
1344  static bool match(ICmpInst::Predicate Pred) {
1345  return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1346  }
1347 };
1348 
1349 /// Helper class for identifying signed min predicates.
1351  static bool match(ICmpInst::Predicate Pred) {
1352  return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1353  }
1354 };
1355 
1356 /// Helper class for identifying unsigned max predicates.
1358  static bool match(ICmpInst::Predicate Pred) {
1359  return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1360  }
1361 };
1362 
1363 /// Helper class for identifying unsigned min predicates.
1365  static bool match(ICmpInst::Predicate Pred) {
1366  return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1367  }
1368 };
1369 
1370 /// Helper class for identifying ordered max predicates.
1372  static bool match(FCmpInst::Predicate Pred) {
1373  return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1374  }
1375 };
1376 
1377 /// Helper class for identifying ordered min predicates.
1379  static bool match(FCmpInst::Predicate Pred) {
1380  return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1381  }
1382 };
1383 
1384 /// Helper class for identifying unordered max predicates.
1386  static bool match(FCmpInst::Predicate Pred) {
1387  return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1388  }
1389 };
1390 
1391 /// Helper class for identifying unordered min predicates.
1393  static bool match(FCmpInst::Predicate Pred) {
1394  return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1395  }
1396 };
1397 
1398 template <typename LHS, typename RHS>
1400  const RHS &R) {
1402 }
1403 
1404 template <typename LHS, typename RHS>
1406  const RHS &R) {
1408 }
1409 
1410 template <typename LHS, typename RHS>
1412  const RHS &R) {
1414 }
1415 
1416 template <typename LHS, typename RHS>
1418  const RHS &R) {
1420 }
1421 
1422 /// Match an 'ordered' floating point maximum function.
1423 /// Floating point has one special value 'NaN'. Therefore, there is no total
1424 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1425 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1426 /// semantics. In the presence of 'NaN' we have to preserve the original
1427 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1428 ///
1429 /// max(L, R) iff L and R are not NaN
1430 /// m_OrdFMax(L, R) = R iff L or R are NaN
1431 template <typename LHS, typename RHS>
1433  const RHS &R) {
1435 }
1436 
1437 /// Match an 'ordered' floating point minimum function.
1438 /// Floating point has one special value 'NaN'. Therefore, there is no total
1439 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1440 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1441 /// semantics. In the presence of 'NaN' we have to preserve the original
1442 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1443 ///
1444 /// min(L, R) iff L and R are not NaN
1445 /// m_OrdFMin(L, R) = R iff L or R are NaN
1446 template <typename LHS, typename RHS>
1448  const RHS &R) {
1450 }
1451 
1452 /// Match an 'unordered' floating point maximum function.
1453 /// Floating point has one special value 'NaN'. Therefore, there is no total
1454 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1455 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1456 /// semantics. In the presence of 'NaN' we have to preserve the original
1457 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1458 ///
1459 /// max(L, R) iff L and R are not NaN
1460 /// m_UnordFMax(L, R) = L iff L or R are NaN
1461 template <typename LHS, typename RHS>
1463 m_UnordFMax(const LHS &L, const RHS &R) {
1465 }
1466 
1467 /// Match an 'unordered' floating point minimum function.
1468 /// Floating point has one special value 'NaN'. Therefore, there is no total
1469 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1470 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1471 /// semantics. In the presence of 'NaN' we have to preserve the original
1472 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1473 ///
1474 /// min(L, R) iff L and R are not NaN
1475 /// m_UnordFMin(L, R) = L iff L or R are NaN
1476 template <typename LHS, typename RHS>
1478 m_UnordFMin(const LHS &L, const RHS &R) {
1480 }
1481 
1482 //===----------------------------------------------------------------------===//
1483 // Matchers for overflow check patterns: e.g. (a + b) u< a
1484 //
1485 
1486 template <typename LHS_t, typename RHS_t, typename Sum_t>
1488  LHS_t L;
1489  RHS_t R;
1490  Sum_t S;
1491 
1492  UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1493  : L(L), R(R), S(S) {}
1494 
1495  template <typename OpTy> bool match(OpTy *V) {
1496  Value *ICmpLHS, *ICmpRHS;
1497  ICmpInst::Predicate Pred;
1498  if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1499  return false;
1500 
1501  Value *AddLHS, *AddRHS;
1502  auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1503 
1504  // (a + b) u< a, (a + b) u< b
1505  if (Pred == ICmpInst::ICMP_ULT)
1506  if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1507  return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1508 
1509  // a >u (a + b), b >u (a + b)
1510  if (Pred == ICmpInst::ICMP_UGT)
1511  if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1512  return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1513 
1514  // Match special-case for increment-by-1.
1515  if (Pred == ICmpInst::ICMP_EQ) {
1516  // (a + 1) == 0
1517  // (1 + a) == 0
1518  if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
1519  (m_One().match(AddLHS) || m_One().match(AddRHS)))
1520  return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1521  // 0 == (a + 1)
1522  // 0 == (1 + a)
1523  if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
1524  (m_One().match(AddLHS) || m_One().match(AddRHS)))
1525  return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1526  }
1527 
1528  return false;
1529  }
1530 };
1531 
1532 /// Match an icmp instruction checking for unsigned overflow on addition.
1533 ///
1534 /// S is matched to the addition whose result is being checked for overflow, and
1535 /// L and R are matched to the LHS and RHS of S.
1536 template <typename LHS_t, typename RHS_t, typename Sum_t>
1538 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
1540 }
1541 
1542 template <typename Opnd_t> struct Argument_match {
1543  unsigned OpI;
1544  Opnd_t Val;
1545 
1546  Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
1547 
1548  template <typename OpTy> bool match(OpTy *V) {
1549  // FIXME: Should likely be switched to use `CallBase`.
1550  if (const auto *CI = dyn_cast<CallInst>(V))
1551  return Val.match(CI->getArgOperand(OpI));
1552  return false;
1553  }
1554 };
1555 
1556 /// Match an argument.
1557 template <unsigned OpI, typename Opnd_t>
1558 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1559  return Argument_match<Opnd_t>(OpI, Op);
1560 }
1561 
1562 /// Intrinsic matchers.
1564  unsigned ID;
1565 
1566  IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
1567 
1568  template <typename OpTy> bool match(OpTy *V) {
1569  if (const auto *CI = dyn_cast<CallInst>(V))
1570  if (const auto *F = CI->getCalledFunction())
1571  return F->getIntrinsicID() == ID;
1572  return false;
1573  }
1574 };
1575 
1576 /// Intrinsic matches are combinations of ID matchers, and argument
1577 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
1578 /// them with lower arity matchers. Here's some convenient typedefs for up to
1579 /// several arguments, and more can be added as needed
1580 template <typename T0 = void, typename T1 = void, typename T2 = void,
1581  typename T3 = void, typename T4 = void, typename T5 = void,
1582  typename T6 = void, typename T7 = void, typename T8 = void,
1583  typename T9 = void, typename T10 = void>
1585 template <typename T0> struct m_Intrinsic_Ty<T0> {
1587 };
1588 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
1589  using Ty =
1591 };
1592 template <typename T0, typename T1, typename T2>
1593 struct m_Intrinsic_Ty<T0, T1, T2> {
1594  using Ty =
1597 };
1598 template <typename T0, typename T1, typename T2, typename T3>
1599 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
1600  using Ty =
1603 };
1604 
1605 /// Match intrinsic calls like this:
1606 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
1607 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
1608  return IntrinsicID_match(IntrID);
1609 }
1610 
1611 template <Intrinsic::ID IntrID, typename T0>
1612 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
1613  return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
1614 }
1615 
1616 template <Intrinsic::ID IntrID, typename T0, typename T1>
1617 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
1618  const T1 &Op1) {
1619  return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
1620 }
1621 
1622 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
1623 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
1624 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
1625  return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
1626 }
1627 
1628 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
1629  typename T3>
1630 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
1631 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
1632  return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
1633 }
1634 
1635 // Helper intrinsic matching specializations.
1636 template <typename Opnd0>
1637 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
1638  return m_Intrinsic<Intrinsic::bitreverse>(Op0);
1639 }
1640 
1641 template <typename Opnd0>
1642 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
1643  return m_Intrinsic<Intrinsic::bswap>(Op0);
1644 }
1645 
1646 template <typename Opnd0>
1647 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
1648  return m_Intrinsic<Intrinsic::fabs>(Op0);
1649 }
1650 
1651 template <typename Opnd0>
1652 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
1653  return m_Intrinsic<Intrinsic::canonicalize>(Op0);
1654 }
1655 
1656 template <typename Opnd0, typename Opnd1>
1657 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
1658  const Opnd1 &Op1) {
1659  return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
1660 }
1661 
1662 template <typename Opnd0, typename Opnd1>
1663 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
1664  const Opnd1 &Op1) {
1665  return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
1666 }
1667 
1668 //===----------------------------------------------------------------------===//
1669 // Matchers for two-operands operators with the operators in either order
1670 //
1671 
1672 /// Matches a BinaryOperator with LHS and RHS in either order.
1673 template <typename LHS, typename RHS>
1674 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
1675  return AnyBinaryOp_match<LHS, RHS, true>(L, R);
1676 }
1677 
1678 /// Matches an ICmp with a predicate over LHS and RHS in either order.
1679 /// Does not swap the predicate.
1680 template <typename LHS, typename RHS>
1682 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1684  R);
1685 }
1686 
1687 /// Matches a Add with LHS and RHS in either order.
1688 template <typename LHS, typename RHS>
1690  const RHS &R) {
1692 }
1693 
1694 /// Matches a Mul with LHS and RHS in either order.
1695 template <typename LHS, typename RHS>
1697  const RHS &R) {
1699 }
1700 
1701 /// Matches an And with LHS and RHS in either order.
1702 template <typename LHS, typename RHS>
1704  const RHS &R) {
1706 }
1707 
1708 /// Matches an Or with LHS and RHS in either order.
1709 template <typename LHS, typename RHS>
1711  const RHS &R) {
1713 }
1714 
1715 /// Matches an Xor with LHS and RHS in either order.
1716 template <typename LHS, typename RHS>
1718  const RHS &R) {
1720 }
1721 
1722 /// Matches a 'Neg' as 'sub 0, V'.
1723 template <typename ValTy>
1724 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
1725 m_Neg(const ValTy &V) {
1726  return m_Sub(m_ZeroInt(), V);
1727 }
1728 
1729 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
1730 template <typename ValTy>
1731 inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
1732 m_Not(const ValTy &V) {
1733  return m_c_Xor(V, m_AllOnes());
1734 }
1735 
1736 /// Matches an SMin with LHS and RHS in either order.
1737 template <typename LHS, typename RHS>
1739 m_c_SMin(const LHS &L, const RHS &R) {
1741 }
1742 /// Matches an SMax with LHS and RHS in either order.
1743 template <typename LHS, typename RHS>
1745 m_c_SMax(const LHS &L, const RHS &R) {
1747 }
1748 /// Matches a UMin with LHS and RHS in either order.
1749 template <typename LHS, typename RHS>
1751 m_c_UMin(const LHS &L, const RHS &R) {
1753 }
1754 /// Matches a UMax with LHS and RHS in either order.
1755 template <typename LHS, typename RHS>
1757 m_c_UMax(const LHS &L, const RHS &R) {
1759 }
1760 
1761 /// Matches FAdd with LHS and RHS in either order.
1762 template <typename LHS, typename RHS>
1764 m_c_FAdd(const LHS &L, const RHS &R) {
1766 }
1767 
1768 /// Matches FMul with LHS and RHS in either order.
1769 template <typename LHS, typename RHS>
1771 m_c_FMul(const LHS &L, const RHS &R) {
1773 }
1774 
1775 template <typename Opnd_t> struct Signum_match {
1776  Opnd_t Val;
1777  Signum_match(const Opnd_t &V) : Val(V) {}
1778 
1779  template <typename OpTy> bool match(OpTy *V) {
1780  unsigned TypeSize = V->getType()->getScalarSizeInBits();
1781  if (TypeSize == 0)
1782  return false;
1783 
1784  unsigned ShiftWidth = TypeSize - 1;
1785  Value *OpL = nullptr, *OpR = nullptr;
1786 
1787  // This is the representation of signum we match:
1788  //
1789  // signum(x) == (x >> 63) | (-x >>u 63)
1790  //
1791  // An i1 value is its own signum, so it's correct to match
1792  //
1793  // signum(x) == (x >> 0) | (-x >>u 0)
1794  //
1795  // for i1 values.
1796 
1797  auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
1798  auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
1799  auto Signum = m_Or(LHS, RHS);
1800 
1801  return Signum.match(V) && OpL == OpR && Val.match(OpL);
1802  }
1803 };
1804 
1805 /// Matches a signum pattern.
1806 ///
1807 /// signum(x) =
1808 /// x > 0 -> 1
1809 /// x == 0 -> 0
1810 /// x < 0 -> -1
1811 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
1812  return Signum_match<Val_t>(V);
1813 }
1814 
1815 } // end namespace PatternMatch
1816 } // end namespace llvm
1817 
1818 #endif // LLVM_IR_PATTERNMATCH_H
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing &#39;pred&#39; (eg/ne/...) to Threshold.
Definition: PatternMatch.h:454
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
Definition: PatternMatch.h:796
uint64_t CallInst * C
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
Definition: PatternMatch.h:980
bool isValue(const APFloat &C)
Definition: PatternMatch.h:480
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
Definition: PatternMatch.h:867
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of nonnegative values.
Definition: PatternMatch.h:342
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_FMin(const Opnd0 &Op0, const Opnd1 &Op1)
static bool match(FCmpInst::Predicate Pred)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:70
class_match< UndefValue > m_Undef()
Match an arbitrary undef constant.
Definition: PatternMatch.h:86
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
bool isSignMask() const
Check if the APInt&#39;s value is returned by getSignMask.
Definition: APInt.h:472
bool isZero() const
Definition: APFloat.h:1153
Match a specified integer value or vector of all elements of that.
Definition: PatternMatch.h:601
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
Definition: PatternMatch.h:78
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
Definition: PatternMatch.h:693
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
Definition: PatternMatch.h:375
br_match(BasicBlock *&Succ)
This class represents lattice values for constants.
Definition: AllocatorList.h:23
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
Definition: PatternMatch.h:687
Matches instructions with Opcode and three operands.
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
Match a specified floating point value or vector of all elements of that value.
Definition: PatternMatch.h:561
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_FMax(const Opnd0 &Op0, const Opnd1 &Op1)
bool isValue(const APInt &C)
Definition: PatternMatch.h:404
BinaryOp_match< LHS, RHS, Instruction::FDiv > m_FDiv(const LHS &L, const RHS &R)
Definition: PatternMatch.h:772
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
Definition: PatternMatch.h:784
bool isValue(const APInt &C)
Definition: PatternMatch.h:359
Exact_match(const SubPattern_t &SP)
BinaryOp_match< cstfp_pred_ty< is_any_zero_fp >, RHS, Instruction::FSub > m_FNegNSZ(const RHS &X)
Match &#39;fneg X&#39; as &#39;fsub +-0.0, X&#39;.
Definition: PatternMatch.h:743
BinaryOp_match< LHS, RHS, Instruction::FAdd, true > m_c_FAdd(const LHS &L, const RHS &R)
Matches FAdd with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
Definition: PatternMatch.h:748
br_match m_UnconditionalBr(BasicBlock *&Succ)
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition: APInt.h:1203
This helper class is used to match scalar and vector floating-point constants that satisfy a specifie...
Definition: PatternMatch.h:263
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
Definition: PatternMatch.h:408
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
Definition: PatternMatch.h:89
m_Intrinsic_Ty< Opnd0 >::Ty m_BSwap(const Opnd0 &Op0)
unsigned less or equal
Definition: InstrTypes.h:758
unsigned less than
Definition: InstrTypes.h:757
bool isValue(const APInt &C)
Definition: PatternMatch.h:326
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
Definition: PatternMatch.h:826
static bool match(ICmpInst::Predicate Pred)
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:738
CmpClass_match< LHS, RHS, ICmpInst, ICmpInst::Predicate, true > m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
bool sgt(const APInt &RHS) const
Signed greather than comparison.
Definition: APInt.h:1273
match_combine_or(const LTy &Left, const RTy &Right)
Definition: PatternMatch.h:96
F(f)
ThreeOps_match< V1_t, V2_t, Mask_t, Instruction::ShuffleVector > m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m)
Matches ShuffleVectorInst.
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
Definition: PatternMatch.h:699
MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > m_UnordFMax(const LHS &L, const RHS &R)
Match an &#39;unordered&#39; floating point maximum function.
Argument_match(unsigned OpIdx, const Opnd_t &V)
bool sle(const APInt &RHS) const
Signed less or equal comparison.
Definition: APInt.h:1238
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
cst_pred_ty< is_zero_int > m_ZeroInt()
Match an integer 0 or a vector with all elements equal to 0.
Definition: PatternMatch.h:363
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
Definition: PatternMatch.h:988
Matches instructions with Opcode and three operands.
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
Definition: PatternMatch.h:579
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:47
CmpClass_match< LHS, RHS, FCmpInst, FCmpInst::Predicate > m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R)
Helper class for identifying signed min predicates.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
Definition: PatternMatch.h:808
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElement(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
This class represents the LLVM &#39;select&#39; instruction.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition: APInt.h:368
Exact_match< T > m_Exact(const T &SubPattern)
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
Definition: PatternMatch.h:417
bool isValue(const APFloat &C)
Definition: PatternMatch.h:471
CastClass_match< OpTy, Instruction::Trunc > m_Trunc(const OpTy &Op)
Matches Trunc.
bool isValue(const APFloat &C)
Definition: PatternMatch.h:462
cst_pred_ty< is_maxsignedvalue > m_MaxSignedValue()
Match an integer or vector with values having all bits except for the high bit set (0x7f...
Definition: PatternMatch.h:318
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:739
ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > m_UnordFMin(const LHS &L, const RHS &R)
Match an &#39;unordered&#39; floating point minimum function.
This file implements a class to represent arbitrary precision integral constant values and operations...
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
Definition: PatternMatch.h:681
bind_ty< ConstantFP > m_ConstantFP(ConstantFP *&C)
Match a ConstantFP, capturing the value if we match.
Definition: PatternMatch.h:529
bool isBitwiseLogicOp() const
Return true if this is and/or/xor.
Definition: Instruction.h:180
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
Definition: PatternMatch.h:892
#define UINT64_MAX
Definition: DataTypes.h:83
cstfp_pred_ty< is_nan > m_NaN()
Match an arbitrary NaN constant.
Definition: PatternMatch.h:466
apfloat_match m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
Definition: PatternMatch.h:179
CastClass_match< OpTy, Instruction::FPExt > m_FPExt(const OpTy &Op)
Matches FPExt.
bool ne(const APInt &RHS) const
Inequality comparison.
Definition: APInt.h:1176
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
Definition: PatternMatch.h:123
CastClass_match(const Op_t &OpMatch)
CastClass_match< OpTy, Instruction::ZExt > m_ZExt(const OpTy &Op)
Matches ZExt.
CastClass_match< OpTy, Instruction::FPTrunc > m_FPTrunc(const OpTy &Op)
Matches FPTrunc.
MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty > m_OrdFMin(const LHS &L, const RHS &R)
Match an &#39;ordered&#39; floating point minimum function.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:81
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:137
UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
Definition: PatternMatch.h:484
IntrinsicID_match(Intrinsic::ID IntrID)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
Definition: PatternMatch.h:384
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
Definition: PatternMatch.h:908
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > m_c_UMin(const LHS &L, const RHS &R)
Matches a UMin with LHS and RHS in either order.
static bool match(FCmpInst::Predicate Pred)
Helper class for identifying ordered min predicates.
match_combine_and(const LTy &Left, const RTy &Right)
Definition: PatternMatch.h:111
OneUse_match< T > m_OneUse(const T &SubPattern)
Definition: PatternMatch.h:61
bool isNegative() const
Determine sign of this APInt.
Definition: APInt.h:363
#define P(N)
bool isNegZero() const
Definition: APFloat.h:1169
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
Definition: PatternMatch.h:820
Helper class for identifying signed max predicates.
bool isAllOnesValue() const
Determine if all bits are set.
Definition: APInt.h:395
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt...
Definition: PatternMatch.h:175
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
Definition: PatternMatch.h:766
This helper class is used to match scalar and vector integer constants that satisfy a specified predi...
Definition: PatternMatch.h:204
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
Definition: PatternMatch.h:916
BinaryOp_match< LHS, RHS, Instruction::FRem > m_FRem(const LHS &L, const RHS &R)
Definition: PatternMatch.h:790
cst_pred_ty< is_power2_or_zero > m_Power2OrZero()
Match an integer or vector of 0 or power-of-2 values.
Definition: PatternMatch.h:396
LLVM Basic Block Representation.
Definition: BasicBlock.h:57
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
Definition: PatternMatch.h:802
TwoOps_match< ValueOpTy, PointerOpTy, Instruction::Store > m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp)
Matches StoreInst.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.h:1184
bool isNaN() const
Definition: APFloat.h:1155
CastClass_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
This is an important base class in LLVM.
Definition: Constant.h:41
This file contains the declarations for the subclasses of Constant, which represent the different fla...
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:263
bool isMask(unsigned numBits) const
Definition: APInt.h:494
bool isOneValue() const
Determine if this is a value of 1.
Definition: APInt.h:410
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
Definition: PatternMatch.h:308
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:541
brc_match< Cond_t > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
Definition: PatternMatch.h:814
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:732
match_combine_or< CastClass_match< OpTy, Instruction::ZExt >, CastClass_match< OpTy, Instruction::SExt > > m_ZExtOrSExt(const OpTy &Op)
Helper class for identifying unsigned min predicates.
BinOpPred_match< LHS, RHS, is_bitwiselogic_op > m_BitwiseLogic(const LHS &L, const RHS &R)
Matches bitwise logic operations.
Definition: PatternMatch.h:995
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true > m_c_SMax(const LHS &L, const RHS &R)
Matches an SMax with LHS and RHS in either order.
AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
Definition: PatternMatch.h:634
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
Definition: PatternMatch.h:73
bool eq(const APInt &RHS) const
Equality comparison.
Definition: APInt.h:1152
OneOps_match< OpTy, Instruction::Load > m_Load(const OpTy &Op)
Matches LoadInst.
Signum_match< Val_t > m_Signum(const Val_t &V)
Matches a signum pattern.
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
Helper class for identifying unordered min predicates.
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:747
BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
Definition: PatternMatch.h:662
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
deferredval_ty< Value > m_Deferred(Value *const &V)
A commutative-friendly version of m_Specific().
Definition: PatternMatch.h:554
signed greater than
Definition: InstrTypes.h:759
Argument_match< Opnd_t > m_Argument(const Opnd_t &Op)
Match an argument.
CastClass_match< OpTy, Instruction::SExt > m_SExt(const OpTy &Op)
Matches SExt.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true > m_c_UMax(const LHS &L, const RHS &R)
Matches a UMax with LHS and RHS in either order.
OneUse_match(const SubPattern_t &SP)
Definition: PatternMatch.h:54
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:736
cst_pred_ty< is_negative > m_Negative()
Match an integer or vector of negative values.
Definition: PatternMatch.h:330
Intrinsic matches are combinations of ID matchers, and argument matchers.
static bool match(ICmpInst::Predicate Pred)
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
bool isMaxSignedValue() const
Determine if this is the largest signed value.
Definition: APInt.h:426
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
static bool match(ICmpInst::Predicate Pred)
bool isValue(const APInt &C)
Definition: PatternMatch.h:380
Match a specified Value*.
Definition: PatternMatch.h:532
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:746
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition: Operator.h:245
brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
Definition: PatternMatch.h:778
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
Definition: PPCPredicates.h:26
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
Definition: PatternMatch.h:760
signed less than
Definition: InstrTypes.h:761
bool isOpType(unsigned Opcode)
Definition: PatternMatch.h:966
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
Stores a reference to the Value *, not the Value * itself, thus can be used in commutative matchers...
Definition: PatternMatch.h:545
CastClass_match< OpTy, Instruction::UIToFP > m_UIToFP(const OpTy &Op)
Matches UIToFP.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1292
BinaryOp_match< LHS, RHS, Instruction::FMul > m_FMul(const LHS &L, const RHS &R)
Definition: PatternMatch.h:754
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
Definition: PatternMatch.h:859
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a &#39;Neg&#39; as &#39;sub 0, V&#39;.
signed less or equal
Definition: InstrTypes.h:762
Class for arbitrary precision integers.
Definition: APInt.h:69
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1222
cstfp_pred_ty< is_neg_zero_fp > m_NegZeroFP()
Match a floating-point negative zero.
Definition: PatternMatch.h:493
bool isPowerOf2() const
Check if this APInt&#39;s value is a power of two greater than zero.
Definition: APInt.h:463
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition: APInt.h:1308
CastClass_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
Definition: PatternMatch.h:973
static cl::opt< unsigned > Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"), cl::init(100), cl::Hidden)
Helper class for identifying unsigned max predicates.
Helper class for identifying ordered max predicates.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
Definition: PatternMatch.h:900
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
Definition: PatternMatch.h:582
bool ugt(const APInt &RHS) const
Unsigned greather than comparison.
Definition: APInt.h:1254
m_Intrinsic_Ty< Opnd0 >::Ty m_FCanonicalize(const Opnd0 &Op0)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match &#39;fneg X&#39; as &#39;fsub -0.0, X&#39;.
Definition: PatternMatch.h:736
bool isPosZero() const
Definition: APFloat.h:1168
unsigned greater or equal
Definition: InstrTypes.h:756
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > m_c_SMin(const LHS &L, const RHS &R)
Matches an SMin with LHS and RHS in either order.
CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
#define I(x, y, z)
Definition: MD5.cpp:58
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap > m_NSWShl(const LHS &L, const RHS &R)
Definition: PatternMatch.h:883
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
ThreeOps_match< Cond, constantint_match< L >, constantint_match< R >, Instruction::Select > m_SelectCst(const Cond &C)
This matches a select of two constants, e.g.
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:332
CastClass_match< OpTy, Instruction::SIToFP > m_SIToFP(const OpTy &Op)
Matches SIToFP.
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:744
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
Definition: PatternMatch.h:837
Matches instructions with Opcode and three operands.
bool isOpType(unsigned Opcode)
Definition: PatternMatch.h:944
static bool match(FCmpInst::Predicate Pred)
apfloat_match(const APFloat *&R)
Definition: PatternMatch.h:157
MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty > m_OrdFMax(const LHS &L, const RHS &R)
Match an &#39;ordered&#39; floating point maximum function.
Helper class for identifying unordered max predicates.
LLVM Value Representation.
Definition: Value.h:72
bool isValue(const APInt &C)
Definition: PatternMatch.h:304
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:745
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap > m_NSWMul(const LHS &L, const RHS &R)
Definition: PatternMatch.h:875
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
Definition: PatternMatch.h:354
static bool match(ICmpInst::Predicate Pred)
BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS)
Definition: PatternMatch.h:930
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
Definition: PatternMatch.h:129
static bool match(FCmpInst::Predicate Pred)
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
unsigned greater than
Definition: InstrTypes.h:755
specific_intval m_SpecificInt(uint64_t V)
Match a specific integer value or vector with all elements equal to the value.
Definition: PatternMatch.h:618
bool isValue(const APInt &C)
Definition: PatternMatch.h:350
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
Definition: PatternMatch.h:475
MaxMin_match(const LHS_t &LHS, const RHS_t &RHS)
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:737
bool isValue(const APFloat &C)
Definition: PatternMatch.h:489
This helper class is used to match scalar and vector constants that satisfy a specified predicate...
Definition: PatternMatch.h:237
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
Definition: PatternMatch.h:518
#define T1
BinaryOp_match< ValTy, cst_pred_ty< is_all_ones >, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a &#39;Not&#39; as &#39;xor V, -1&#39; or &#39;xor -1, V&#39;.
bool isNullValue() const
Determine if all bits are clear.
Definition: APInt.h:405
signed greater or equal
Definition: InstrTypes.h:760
TwoOps_match(const T0 &Op1, const T1 &Op2)
UAddWithOverflow_match< LHS_t, RHS_t, Sum_t > m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S)
Match an icmp instruction checking for unsigned overflow on addition.
CmpClass_match< LHS, RHS, ICmpInst, ICmpInst::Predicate > m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R)