LLVM 20.0.0git
PatternMatch.h
Go to the documentation of this file.
1//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides a simple and efficient mechanism for performing general
10// tree-based pattern matches on the LLVM IR. The power of these routines is
11// that it allows you to write concise patterns that are expressive and easy to
12// understand. The other major advantage of this is that it allows you to
13// trivially capture/bind elements in the pattern to variables. For example,
14// you can do something like this:
15//
16// Value *Exp = ...
17// Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18// if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19// m_And(m_Value(Y), m_ConstantInt(C2))))) {
20// ... Pattern is matched and variables are bound ...
21// }
22//
23// This is primarily useful to things like the instruction combiner, but can
24// also be useful for static analysis tools or code generators.
25//
26//===----------------------------------------------------------------------===//
27
28#ifndef LLVM_IR_PATTERNMATCH_H
29#define LLVM_IR_PATTERNMATCH_H
30
31#include "llvm/ADT/APFloat.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/InstrTypes.h"
37#include "llvm/IR/Instruction.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/Operator.h"
42#include "llvm/IR/Value.h"
44#include <cstdint>
45
46namespace llvm {
47namespace PatternMatch {
48
49template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50 return const_cast<Pattern &>(P).match(V);
51}
52
53template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
54 return const_cast<Pattern &>(P).match(Mask);
55}
56
57template <typename SubPattern_t> struct OneUse_match {
58 SubPattern_t SubPattern;
59
60 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
61
62 template <typename OpTy> bool match(OpTy *V) {
63 return V->hasOneUse() && SubPattern.match(V);
64 }
65};
66
67template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
68 return SubPattern;
69}
70
71template <typename SubPattern_t> struct AllowReassoc_match {
72 SubPattern_t SubPattern;
73
74 AllowReassoc_match(const SubPattern_t &SP) : SubPattern(SP) {}
75
76 template <typename OpTy> bool match(OpTy *V) {
77 auto *I = dyn_cast<FPMathOperator>(V);
78 return I && I->hasAllowReassoc() && SubPattern.match(I);
79 }
80};
81
82template <typename T>
83inline AllowReassoc_match<T> m_AllowReassoc(const T &SubPattern) {
84 return SubPattern;
85}
86
87template <typename Class> struct class_match {
88 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
89};
90
91/// Match an arbitrary value and ignore it.
93
94/// Match an arbitrary unary operation and ignore it.
97}
98
99/// Match an arbitrary binary operation and ignore it.
102}
103
104/// Matches any compare instruction and ignore it.
106
108 static bool check(const Value *V) {
109 if (isa<UndefValue>(V))
110 return true;
111
112 const auto *CA = dyn_cast<ConstantAggregate>(V);
113 if (!CA)
114 return false;
115
118
119 // Either UndefValue, PoisonValue, or an aggregate that only contains
120 // these is accepted by matcher.
121 // CheckValue returns false if CA cannot satisfy this constraint.
122 auto CheckValue = [&](const ConstantAggregate *CA) {
123 for (const Value *Op : CA->operand_values()) {
124 if (isa<UndefValue>(Op))
125 continue;
126
127 const auto *CA = dyn_cast<ConstantAggregate>(Op);
128 if (!CA)
129 return false;
130 if (Seen.insert(CA).second)
131 Worklist.emplace_back(CA);
132 }
133
134 return true;
135 };
136
137 if (!CheckValue(CA))
138 return false;
139
140 while (!Worklist.empty()) {
141 if (!CheckValue(Worklist.pop_back_val()))
142 return false;
143 }
144 return true;
145 }
146 template <typename ITy> bool match(ITy *V) { return check(V); }
147};
148
149/// Match an arbitrary undef constant. This matches poison as well.
150/// If this is an aggregate and contains a non-aggregate element that is
151/// neither undef nor poison, the aggregate is not matched.
152inline auto m_Undef() { return undef_match(); }
153
154/// Match an arbitrary UndefValue constant.
157}
158
159/// Match an arbitrary poison constant.
162}
163
164/// Match an arbitrary Constant and ignore it.
166
167/// Match an arbitrary ConstantInt and ignore it.
170}
171
172/// Match an arbitrary ConstantFP and ignore it.
175}
176
178 template <typename ITy> bool match(ITy *V) {
179 auto *C = dyn_cast<Constant>(V);
180 return C && (isa<ConstantExpr>(C) || C->containsConstantExpression());
181 }
182};
183
184/// Match a constant expression or a constant that contains a constant
185/// expression.
187
188/// Match an arbitrary basic block value and ignore it.
191}
192
193/// Inverting matcher
194template <typename Ty> struct match_unless {
195 Ty M;
196
197 match_unless(const Ty &Matcher) : M(Matcher) {}
198
199 template <typename ITy> bool match(ITy *V) { return !M.match(V); }
200};
201
202/// Match if the inner matcher does *NOT* match.
203template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
204 return match_unless<Ty>(M);
205}
206
207/// Matching combinators
208template <typename LTy, typename RTy> struct match_combine_or {
209 LTy L;
210 RTy R;
211
212 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
213
214 template <typename ITy> bool match(ITy *V) {
215 if (L.match(V))
216 return true;
217 if (R.match(V))
218 return true;
219 return false;
220 }
221};
222
223template <typename LTy, typename RTy> struct match_combine_and {
224 LTy L;
225 RTy R;
226
227 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
228
229 template <typename ITy> bool match(ITy *V) {
230 if (L.match(V))
231 if (R.match(V))
232 return true;
233 return false;
234 }
235};
236
237/// Combine two pattern matchers matching L || R
238template <typename LTy, typename RTy>
239inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
240 return match_combine_or<LTy, RTy>(L, R);
241}
242
243/// Combine two pattern matchers matching L && R
244template <typename LTy, typename RTy>
245inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
246 return match_combine_and<LTy, RTy>(L, R);
247}
248
250 const APInt *&Res;
252
255
256 template <typename ITy> bool match(ITy *V) {
257 if (auto *CI = dyn_cast<ConstantInt>(V)) {
258 Res = &CI->getValue();
259 return true;
260 }
261 if (V->getType()->isVectorTy())
262 if (const auto *C = dyn_cast<Constant>(V))
263 if (auto *CI =
264 dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowPoison))) {
265 Res = &CI->getValue();
266 return true;
267 }
268 return false;
269 }
270};
271// Either constexpr if or renaming ConstantFP::getValueAPF to
272// ConstantFP::getValue is needed to do it via single template
273// function for both apint/apfloat.
275 const APFloat *&Res;
277
280
281 template <typename ITy> bool match(ITy *V) {
282 if (auto *CI = dyn_cast<ConstantFP>(V)) {
283 Res = &CI->getValueAPF();
284 return true;
285 }
286 if (V->getType()->isVectorTy())
287 if (const auto *C = dyn_cast<Constant>(V))
288 if (auto *CI =
289 dyn_cast_or_null<ConstantFP>(C->getSplatValue(AllowPoison))) {
290 Res = &CI->getValueAPF();
291 return true;
292 }
293 return false;
294 }
295};
296
297/// Match a ConstantInt or splatted ConstantVector, binding the
298/// specified pointer to the contained APInt.
299inline apint_match m_APInt(const APInt *&Res) {
300 // Forbid poison by default to maintain previous behavior.
301 return apint_match(Res, /* AllowPoison */ false);
302}
303
304/// Match APInt while allowing poison in splat vector constants.
306 return apint_match(Res, /* AllowPoison */ true);
307}
308
309/// Match APInt while forbidding poison in splat vector constants.
311 return apint_match(Res, /* AllowPoison */ false);
312}
313
314/// Match a ConstantFP or splatted ConstantVector, binding the
315/// specified pointer to the contained APFloat.
316inline apfloat_match m_APFloat(const APFloat *&Res) {
317 // Forbid undefs by default to maintain previous behavior.
318 return apfloat_match(Res, /* AllowPoison */ false);
319}
320
321/// Match APFloat while allowing poison in splat vector constants.
323 return apfloat_match(Res, /* AllowPoison */ true);
324}
325
326/// Match APFloat while forbidding poison in splat vector constants.
328 return apfloat_match(Res, /* AllowPoison */ false);
329}
330
331template <int64_t Val> struct constantint_match {
332 template <typename ITy> bool match(ITy *V) {
333 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
334 const APInt &CIV = CI->getValue();
335 if (Val >= 0)
336 return CIV == static_cast<uint64_t>(Val);
337 // If Val is negative, and CI is shorter than it, truncate to the right
338 // number of bits. If it is larger, then we have to sign extend. Just
339 // compare their negated values.
340 return -CIV == -Val;
341 }
342 return false;
343 }
344};
345
346/// Match a ConstantInt with a specific value.
347template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
348 return constantint_match<Val>();
349}
350
351/// This helper class is used to match constant scalars, vector splats,
352/// and fixed width vectors that satisfy a specified predicate.
353/// For fixed width vector constants, poison elements are ignored if AllowPoison
354/// is true.
355template <typename Predicate, typename ConstantVal, bool AllowPoison>
356struct cstval_pred_ty : public Predicate {
357 const Constant **Res = nullptr;
358 template <typename ITy> bool match_impl(ITy *V) {
359 if (const auto *CV = dyn_cast<ConstantVal>(V))
360 return this->isValue(CV->getValue());
361 if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
362 if (const auto *C = dyn_cast<Constant>(V)) {
363 if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
364 return this->isValue(CV->getValue());
365
366 // Number of elements of a scalable vector unknown at compile time
367 auto *FVTy = dyn_cast<FixedVectorType>(VTy);
368 if (!FVTy)
369 return false;
370
371 // Non-splat vector constant: check each element for a match.
372 unsigned NumElts = FVTy->getNumElements();
373 assert(NumElts != 0 && "Constant vector with no elements?");
374 bool HasNonPoisonElements = false;
375 for (unsigned i = 0; i != NumElts; ++i) {
376 Constant *Elt = C->getAggregateElement(i);
377 if (!Elt)
378 return false;
379 if (AllowPoison && isa<PoisonValue>(Elt))
380 continue;
381 auto *CV = dyn_cast<ConstantVal>(Elt);
382 if (!CV || !this->isValue(CV->getValue()))
383 return false;
384 HasNonPoisonElements = true;
385 }
386 return HasNonPoisonElements;
387 }
388 }
389 return false;
390 }
391
392 template <typename ITy> bool match(ITy *V) {
393 if (this->match_impl(V)) {
394 if (Res)
395 *Res = cast<Constant>(V);
396 return true;
397 }
398 return false;
399 }
400};
401
402/// specialization of cstval_pred_ty for ConstantInt
403template <typename Predicate, bool AllowPoison = true>
405
406/// specialization of cstval_pred_ty for ConstantFP
407template <typename Predicate>
409 /*AllowPoison=*/true>;
410
411/// This helper class is used to match scalar and vector constants that
412/// satisfy a specified predicate, and bind them to an APInt.
413template <typename Predicate> struct api_pred_ty : public Predicate {
414 const APInt *&Res;
415
416 api_pred_ty(const APInt *&R) : Res(R) {}
417
418 template <typename ITy> bool match(ITy *V) {
419 if (const auto *CI = dyn_cast<ConstantInt>(V))
420 if (this->isValue(CI->getValue())) {
421 Res = &CI->getValue();
422 return true;
423 }
424 if (V->getType()->isVectorTy())
425 if (const auto *C = dyn_cast<Constant>(V))
426 if (auto *CI = dyn_cast_or_null<ConstantInt>(
427 C->getSplatValue(/*AllowPoison=*/true)))
428 if (this->isValue(CI->getValue())) {
429 Res = &CI->getValue();
430 return true;
431 }
432
433 return false;
434 }
435};
436
437/// This helper class is used to match scalar and vector constants that
438/// satisfy a specified predicate, and bind them to an APFloat.
439/// Poison is allowed in splat vector constants.
440template <typename Predicate> struct apf_pred_ty : public Predicate {
441 const APFloat *&Res;
442
443 apf_pred_ty(const APFloat *&R) : Res(R) {}
444
445 template <typename ITy> bool match(ITy *V) {
446 if (const auto *CI = dyn_cast<ConstantFP>(V))
447 if (this->isValue(CI->getValue())) {
448 Res = &CI->getValue();
449 return true;
450 }
451 if (V->getType()->isVectorTy())
452 if (const auto *C = dyn_cast<Constant>(V))
453 if (auto *CI = dyn_cast_or_null<ConstantFP>(
454 C->getSplatValue(/* AllowPoison */ true)))
455 if (this->isValue(CI->getValue())) {
456 Res = &CI->getValue();
457 return true;
458 }
459
460 return false;
461 }
462};
463
464///////////////////////////////////////////////////////////////////////////////
465//
466// Encapsulate constant value queries for use in templated predicate matchers.
467// This allows checking if constants match using compound predicates and works
468// with vector constants, possibly with relaxed constraints. For example, ignore
469// undef values.
470//
471///////////////////////////////////////////////////////////////////////////////
472
473template <typename APTy> struct custom_checkfn {
474 function_ref<bool(const APTy &)> CheckFn;
475 bool isValue(const APTy &C) { return CheckFn(C); }
476};
477
478/// Match an integer or vector where CheckFn(ele) for each element is true.
479/// For vectors, poison elements are assumed to match.
481m_CheckedInt(function_ref<bool(const APInt &)> CheckFn) {
482 return cst_pred_ty<custom_checkfn<APInt>>{{CheckFn}};
483}
484
486m_CheckedInt(const Constant *&V, function_ref<bool(const APInt &)> CheckFn) {
487 return cst_pred_ty<custom_checkfn<APInt>>{{CheckFn}, &V};
488}
489
490/// Match a float or vector where CheckFn(ele) for each element is true.
491/// For vectors, poison elements are assumed to match.
493m_CheckedFp(function_ref<bool(const APFloat &)> CheckFn) {
494 return cstfp_pred_ty<custom_checkfn<APFloat>>{{CheckFn}};
495}
496
498m_CheckedFp(const Constant *&V, function_ref<bool(const APFloat &)> CheckFn) {
499 return cstfp_pred_ty<custom_checkfn<APFloat>>{{CheckFn}, &V};
500}
501
503 bool isValue(const APInt &C) { return true; }
504};
505/// Match an integer or vector with any integral constant.
506/// For vectors, this includes constants with undefined elements.
509}
510
512 bool isValue(const APInt &C) { return C.isShiftedMask(); }
513};
514
517}
518
520 bool isValue(const APInt &C) { return C.isAllOnes(); }
521};
522/// Match an integer or vector with all bits set.
523/// For vectors, this includes constants with undefined elements.
526}
527
530}
531
533 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
534};
535/// Match an integer or vector with values having all bits except for the high
536/// bit set (0x7f...).
537/// For vectors, this includes constants with undefined elements.
540}
542 return V;
543}
544
546 bool isValue(const APInt &C) { return C.isNegative(); }
547};
548/// Match an integer or vector of negative values.
549/// For vectors, this includes constants with undefined elements.
552}
553inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { return V; }
554
556 bool isValue(const APInt &C) { return C.isNonNegative(); }
557};
558/// Match an integer or vector of non-negative values.
559/// For vectors, this includes constants with undefined elements.
562}
563inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { return V; }
564
566 bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
567};
568/// Match an integer or vector of strictly positive values.
569/// For vectors, this includes constants with undefined elements.
572}
574 return V;
575}
576
578 bool isValue(const APInt &C) { return C.isNonPositive(); }
579};
580/// Match an integer or vector of non-positive values.
581/// For vectors, this includes constants with undefined elements.
584}
585inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
586
587struct is_one {
588 bool isValue(const APInt &C) { return C.isOne(); }
589};
590/// Match an integer 1 or a vector with all elements equal to 1.
591/// For vectors, this includes constants with undefined elements.
593
595 bool isValue(const APInt &C) { return C.isZero(); }
596};
597/// Match an integer 0 or a vector with all elements equal to 0.
598/// For vectors, this includes constants with undefined elements.
601}
602
603struct is_zero {
604 template <typename ITy> bool match(ITy *V) {
605 auto *C = dyn_cast<Constant>(V);
606 // FIXME: this should be able to do something for scalable vectors
607 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
608 }
609};
610/// Match any null constant or a vector with all elements equal to 0.
611/// For vectors, this includes constants with undefined elements.
612inline is_zero m_Zero() { return is_zero(); }
613
614struct is_power2 {
615 bool isValue(const APInt &C) { return C.isPowerOf2(); }
616};
617/// Match an integer or vector power-of-2.
618/// For vectors, this includes constants with undefined elements.
620inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
621
623 bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); }
624};
625/// Match a integer or vector negated power-of-2.
626/// For vectors, this includes constants with undefined elements.
629}
631 return V;
632}
633
635 bool isValue(const APInt &C) { return !C || C.isNegatedPowerOf2(); }
636};
637/// Match a integer or vector negated power-of-2.
638/// For vectors, this includes constants with undefined elements.
641}
644 return V;
645}
646
648 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
649};
650/// Match an integer or vector of 0 or power-of-2 values.
651/// For vectors, this includes constants with undefined elements.
654}
656 return V;
657}
658
660 bool isValue(const APInt &C) { return C.isSignMask(); }
661};
662/// Match an integer or vector with only the sign bit(s) set.
663/// For vectors, this includes constants with undefined elements.
666}
667
669 bool isValue(const APInt &C) { return C.isMask(); }
670};
671/// Match an integer or vector with only the low bit(s) set.
672/// For vectors, this includes constants with undefined elements.
675}
676inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) { return V; }
677
679 bool isValue(const APInt &C) { return !C || C.isMask(); }
680};
681/// Match an integer or vector with only the low bit(s) set.
682/// For vectors, this includes constants with undefined elements.
685}
687 return V;
688}
689
692 const APInt *Thr;
693 bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); }
694};
695/// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
696/// to Threshold. For vectors, this includes constants with undefined elements.
698m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
700 P.Pred = Predicate;
701 P.Thr = &Threshold;
702 return P;
703}
704
705struct is_nan {
706 bool isValue(const APFloat &C) { return C.isNaN(); }
707};
708/// Match an arbitrary NaN constant. This includes quiet and signalling nans.
709/// For vectors, this includes constants with undefined elements.
711
712struct is_nonnan {
713 bool isValue(const APFloat &C) { return !C.isNaN(); }
714};
715/// Match a non-NaN FP constant.
716/// For vectors, this includes constants with undefined elements.
719}
720
721struct is_inf {
722 bool isValue(const APFloat &C) { return C.isInfinity(); }
723};
724/// Match a positive or negative infinity FP constant.
725/// For vectors, this includes constants with undefined elements.
727
728struct is_noninf {
729 bool isValue(const APFloat &C) { return !C.isInfinity(); }
730};
731/// Match a non-infinity FP constant, i.e. finite or NaN.
732/// For vectors, this includes constants with undefined elements.
735}
736
737struct is_finite {
738 bool isValue(const APFloat &C) { return C.isFinite(); }
739};
740/// Match a finite FP constant, i.e. not infinity or NaN.
741/// For vectors, this includes constants with undefined elements.
744}
745inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
746
748 bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
749};
750/// Match a finite non-zero FP constant.
751/// For vectors, this includes constants with undefined elements.
754}
756 return V;
757}
758
760 bool isValue(const APFloat &C) { return C.isZero(); }
761};
762/// Match a floating-point negative zero or positive zero.
763/// For vectors, this includes constants with undefined elements.
766}
767
769 bool isValue(const APFloat &C) { return C.isPosZero(); }
770};
771/// Match a floating-point positive zero.
772/// For vectors, this includes constants with undefined elements.
775}
776
778 bool isValue(const APFloat &C) { return C.isNegZero(); }
779};
780/// Match a floating-point negative zero.
781/// For vectors, this includes constants with undefined elements.
784}
785
787 bool isValue(const APFloat &C) { return C.isNonZero(); }
788};
789/// Match a floating-point non-zero.
790/// For vectors, this includes constants with undefined elements.
793}
794
796 bool isValue(const APFloat &C) { return !C.isDenormal() && C.isNonZero(); }
797};
798
799/// Match a floating-point non-zero that is not a denormal.
800/// For vectors, this includes constants with undefined elements.
803}
804
805///////////////////////////////////////////////////////////////////////////////
806
807template <typename Class> struct bind_ty {
808 Class *&VR;
809
810 bind_ty(Class *&V) : VR(V) {}
811
812 template <typename ITy> bool match(ITy *V) {
813 if (auto *CV = dyn_cast<Class>(V)) {
814 VR = CV;
815 return true;
816 }
817 return false;
818 }
819};
820
821/// Match a value, capturing it if we match.
822inline bind_ty<Value> m_Value(Value *&V) { return V; }
823inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
824
825/// Match an instruction, capturing it if we match.
827/// Match a unary operator, capturing it if we match.
829/// Match a binary operator, capturing it if we match.
831/// Match a with overflow intrinsic, capturing it if we match.
833 return I;
834}
837 return I;
838}
839
840/// Match an UndefValue, capturing the value if we match.
842
843/// Match a Constant, capturing the value if we match.
845
846/// Match a ConstantInt, capturing the value if we match.
848
849/// Match a ConstantFP, capturing the value if we match.
851
852/// Match a ConstantExpr, capturing the value if we match.
854
855/// Match a basic block value, capturing it if we match.
858 return V;
859}
860
861/// Match an arbitrary immediate Constant and ignore it.
866}
867
868/// Match an immediate Constant, capturing the value if we match.
873}
874
875/// Match a specified Value*.
877 const Value *Val;
878
879 specificval_ty(const Value *V) : Val(V) {}
880
881 template <typename ITy> bool match(ITy *V) { return V == Val; }
882};
883
884/// Match if we have a specific specified value.
885inline specificval_ty m_Specific(const Value *V) { return V; }
886
887/// Stores a reference to the Value *, not the Value * itself,
888/// thus can be used in commutative matchers.
889template <typename Class> struct deferredval_ty {
890 Class *const &Val;
891
892 deferredval_ty(Class *const &V) : Val(V) {}
893
894 template <typename ITy> bool match(ITy *const V) { return V == Val; }
895};
896
897/// Like m_Specific(), but works if the specific value to match is determined
898/// as part of the same match() expression. For example:
899/// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will
900/// bind X before the pattern match starts.
901/// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against
902/// whichever value m_Value(X) populated.
903inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
905 return V;
906}
907
908/// Match a specified floating point value or vector of all elements of
909/// that value.
911 double Val;
912
913 specific_fpval(double V) : Val(V) {}
914
915 template <typename ITy> bool match(ITy *V) {
916 if (const auto *CFP = dyn_cast<ConstantFP>(V))
917 return CFP->isExactlyValue(Val);
918 if (V->getType()->isVectorTy())
919 if (const auto *C = dyn_cast<Constant>(V))
920 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
921 return CFP->isExactlyValue(Val);
922 return false;
923 }
924};
925
926/// Match a specific floating point value or vector with all elements
927/// equal to the value.
928inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
929
930/// Match a float 1.0 or vector with all elements equal to 1.0.
931inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
932
935
937
938 template <typename ITy> bool match(ITy *V) {
939 if (const auto *CV = dyn_cast<ConstantInt>(V))
940 if (CV->getValue().ule(UINT64_MAX)) {
941 VR = CV->getZExtValue();
942 return true;
943 }
944 return false;
945 }
946};
947
948/// Match a specified integer value or vector of all elements of that
949/// value.
950template <bool AllowPoison> struct specific_intval {
951 const APInt &Val;
952
953 specific_intval(const APInt &V) : Val(V) {}
954
955 template <typename ITy> bool match(ITy *V) {
956 const auto *CI = dyn_cast<ConstantInt>(V);
957 if (!CI && V->getType()->isVectorTy())
958 if (const auto *C = dyn_cast<Constant>(V))
959 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowPoison));
960
961 return CI && APInt::isSameValue(CI->getValue(), Val);
962 }
963};
964
965template <bool AllowPoison> struct specific_intval64 {
967
969
970 template <typename ITy> bool match(ITy *V) {
971 const auto *CI = dyn_cast<ConstantInt>(V);
972 if (!CI && V->getType()->isVectorTy())
973 if (const auto *C = dyn_cast<Constant>(V))
974 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowPoison));
975
976 return CI && CI->getValue() == Val;
977 }
978};
979
980/// Match a specific integer value or vector with all elements equal to
981/// the value.
983 return specific_intval<false>(V);
984}
985
987 return specific_intval64<false>(V);
988}
989
991 return specific_intval<true>(V);
992}
993
995 return specific_intval64<true>(V);
996}
997
998/// Match a ConstantInt and bind to its value. This does not match
999/// ConstantInts wider than 64-bits.
1001
1002/// Match a specified basic block value.
1005
1007
1008 template <typename ITy> bool match(ITy *V) {
1009 const auto *BB = dyn_cast<BasicBlock>(V);
1010 return BB && BB == Val;
1011 }
1012};
1013
1014/// Match a specific basic block value.
1016 return specific_bbval(BB);
1017}
1018
1019/// A commutative-friendly version of m_Specific().
1021 return BB;
1022}
1024m_Deferred(const BasicBlock *const &BB) {
1025 return BB;
1026}
1027
1028//===----------------------------------------------------------------------===//
1029// Matcher for any binary operator.
1030//
1031template <typename LHS_t, typename RHS_t, bool Commutable = false>
1035
1036 // The evaluation order is always stable, regardless of Commutability.
1037 // The LHS is always matched first.
1038 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1039
1040 template <typename OpTy> bool match(OpTy *V) {
1041 if (auto *I = dyn_cast<BinaryOperator>(V))
1042 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
1043 (Commutable && L.match(I->getOperand(1)) &&
1044 R.match(I->getOperand(0)));
1045 return false;
1046 }
1047};
1048
1049template <typename LHS, typename RHS>
1050inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
1051 return AnyBinaryOp_match<LHS, RHS>(L, R);
1052}
1053
1054//===----------------------------------------------------------------------===//
1055// Matcher for any unary operator.
1056// TODO fuse unary, binary matcher into n-ary matcher
1057//
1058template <typename OP_t> struct AnyUnaryOp_match {
1059 OP_t X;
1060
1061 AnyUnaryOp_match(const OP_t &X) : X(X) {}
1062
1063 template <typename OpTy> bool match(OpTy *V) {
1064 if (auto *I = dyn_cast<UnaryOperator>(V))
1065 return X.match(I->getOperand(0));
1066 return false;
1067 }
1068};
1069
1070template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
1071 return AnyUnaryOp_match<OP_t>(X);
1072}
1073
1074//===----------------------------------------------------------------------===//
1075// Matchers for specific binary operators.
1076//
1077
1078template <typename LHS_t, typename RHS_t, unsigned Opcode,
1079 bool Commutable = false>
1083
1084 // The evaluation order is always stable, regardless of Commutability.
1085 // The LHS is always matched first.
1086 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1087
1088 template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) {
1089 if (V->getValueID() == Value::InstructionVal + Opc) {
1090 auto *I = cast<BinaryOperator>(V);
1091 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
1092 (Commutable && L.match(I->getOperand(1)) &&
1093 R.match(I->getOperand(0)));
1094 }
1095 return false;
1096 }
1097
1098 template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); }
1099};
1100
1101template <typename LHS, typename RHS>
1103 const RHS &R) {
1105}
1106
1107template <typename LHS, typename RHS>
1109 const RHS &R) {
1111}
1112
1113template <typename LHS, typename RHS>
1115 const RHS &R) {
1117}
1118
1119template <typename LHS, typename RHS>
1121 const RHS &R) {
1123}
1124
1125template <typename Op_t> struct FNeg_match {
1126 Op_t X;
1127
1128 FNeg_match(const Op_t &Op) : X(Op) {}
1129 template <typename OpTy> bool match(OpTy *V) {
1130 auto *FPMO = dyn_cast<FPMathOperator>(V);
1131 if (!FPMO)
1132 return false;
1133
1134 if (FPMO->getOpcode() == Instruction::FNeg)
1135 return X.match(FPMO->getOperand(0));
1136
1137 if (FPMO->getOpcode() == Instruction::FSub) {
1138 if (FPMO->hasNoSignedZeros()) {
1139 // With 'nsz', any zero goes.
1140 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
1141 return false;
1142 } else {
1143 // Without 'nsz', we need fsub -0.0, X exactly.
1144 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
1145 return false;
1146 }
1147
1148 return X.match(FPMO->getOperand(1));
1149 }
1150
1151 return false;
1152 }
1153};
1154
1155/// Match 'fneg X' as 'fsub -0.0, X'.
1156template <typename OpTy> inline FNeg_match<OpTy> m_FNeg(const OpTy &X) {
1157 return FNeg_match<OpTy>(X);
1158}
1159
1160/// Match 'fneg X' as 'fsub +-0.0, X'.
1161template <typename RHS>
1162inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
1163m_FNegNSZ(const RHS &X) {
1164 return m_FSub(m_AnyZeroFP(), X);
1165}
1166
1167template <typename LHS, typename RHS>
1169 const RHS &R) {
1171}
1172
1173template <typename LHS, typename RHS>
1175 const RHS &R) {
1177}
1178
1179template <typename LHS, typename RHS>
1181 const RHS &R) {
1183}
1184
1185template <typename LHS, typename RHS>
1187 const RHS &R) {
1189}
1190
1191template <typename LHS, typename RHS>
1193 const RHS &R) {
1195}
1196
1197template <typename LHS, typename RHS>
1199 const RHS &R) {
1201}
1202
1203template <typename LHS, typename RHS>
1205 const RHS &R) {
1207}
1208
1209template <typename LHS, typename RHS>
1211 const RHS &R) {
1213}
1214
1215template <typename LHS, typename RHS>
1217 const RHS &R) {
1219}
1220
1221template <typename LHS, typename RHS>
1223 const RHS &R) {
1225}
1226
1227template <typename LHS, typename RHS>
1229 const RHS &R) {
1231}
1232
1233template <typename LHS, typename RHS>
1235 const RHS &R) {
1237}
1238
1239template <typename LHS, typename RHS>
1241 const RHS &R) {
1243}
1244
1245template <typename LHS, typename RHS>
1247 const RHS &R) {
1249}
1250
1251template <typename LHS_t, typename RHS_t, unsigned Opcode,
1252 unsigned WrapFlags = 0, bool Commutable = false>
1256
1258 : L(LHS), R(RHS) {}
1259
1260 template <typename OpTy> bool match(OpTy *V) {
1261 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
1262 if (Op->getOpcode() != Opcode)
1263 return false;
1265 !Op->hasNoUnsignedWrap())
1266 return false;
1267 if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) &&
1268 !Op->hasNoSignedWrap())
1269 return false;
1270 return (L.match(Op->getOperand(0)) && R.match(Op->getOperand(1))) ||
1271 (Commutable && L.match(Op->getOperand(1)) &&
1272 R.match(Op->getOperand(0)));
1273 }
1274 return false;
1275 }
1276};
1277
1278template <typename LHS, typename RHS>
1279inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1281m_NSWAdd(const LHS &L, const RHS &R) {
1282 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1284 R);
1285}
1286template <typename LHS, typename RHS>
1287inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1289m_NSWSub(const LHS &L, const RHS &R) {
1290 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1292 R);
1293}
1294template <typename LHS, typename RHS>
1295inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1297m_NSWMul(const LHS &L, const RHS &R) {
1298 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1300 R);
1301}
1302template <typename LHS, typename RHS>
1303inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1305m_NSWShl(const LHS &L, const RHS &R) {
1306 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1308 R);
1309}
1310
1311template <typename LHS, typename RHS>
1312inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1314m_NUWAdd(const LHS &L, const RHS &R) {
1315 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1317 L, R);
1318}
1319
1320template <typename LHS, typename RHS>
1322 LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, true>
1323m_c_NUWAdd(const LHS &L, const RHS &R) {
1324 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1326 true>(L, R);
1327}
1328
1329template <typename LHS, typename RHS>
1330inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1332m_NUWSub(const LHS &L, const RHS &R) {
1333 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1335 L, R);
1336}
1337template <typename LHS, typename RHS>
1338inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1340m_NUWMul(const LHS &L, const RHS &R) {
1341 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1343 L, R);
1344}
1345template <typename LHS, typename RHS>
1346inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1348m_NUWShl(const LHS &L, const RHS &R) {
1349 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1351 L, R);
1352}
1353
1354template <typename LHS_t, typename RHS_t, bool Commutable = false>
1356 : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> {
1357 unsigned Opcode;
1358
1360 : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {}
1361
1362 template <typename OpTy> bool match(OpTy *V) {
1364 }
1365};
1366
1367/// Matches a specific opcode.
1368template <typename LHS, typename RHS>
1369inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L,
1370 const RHS &R) {
1371 return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R);
1372}
1373
1374template <typename LHS, typename RHS, bool Commutable = false>
1378
1379 DisjointOr_match(const LHS &L, const RHS &R) : L(L), R(R) {}
1380
1381 template <typename OpTy> bool match(OpTy *V) {
1382 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) {
1383 assert(PDI->getOpcode() == Instruction::Or && "Only or can be disjoint");
1384 if (!PDI->isDisjoint())
1385 return false;
1386 return (L.match(PDI->getOperand(0)) && R.match(PDI->getOperand(1))) ||
1387 (Commutable && L.match(PDI->getOperand(1)) &&
1388 R.match(PDI->getOperand(0)));
1389 }
1390 return false;
1391 }
1392};
1393
1394template <typename LHS, typename RHS>
1396 return DisjointOr_match<LHS, RHS>(L, R);
1397}
1398
1399template <typename LHS, typename RHS>
1401 const RHS &R) {
1403}
1404
1405/// Match either "add" or "or disjoint".
1406template <typename LHS, typename RHS>
1409m_AddLike(const LHS &L, const RHS &R) {
1410 return m_CombineOr(m_Add(L, R), m_DisjointOr(L, R));
1411}
1412
1413/// Match either "add nsw" or "or disjoint"
1414template <typename LHS, typename RHS>
1415inline match_combine_or<
1416 OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1419m_NSWAddLike(const LHS &L, const RHS &R) {
1420 return m_CombineOr(m_NSWAdd(L, R), m_DisjointOr(L, R));
1421}
1422
1423/// Match either "add nuw" or "or disjoint"
1424template <typename LHS, typename RHS>
1425inline match_combine_or<
1426 OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1429m_NUWAddLike(const LHS &L, const RHS &R) {
1430 return m_CombineOr(m_NUWAdd(L, R), m_DisjointOr(L, R));
1431}
1432
1433//===----------------------------------------------------------------------===//
1434// Class that matches a group of binary opcodes.
1435//
1436template <typename LHS_t, typename RHS_t, typename Predicate,
1437 bool Commutable = false>
1438struct BinOpPred_match : Predicate {
1441
1442 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1443
1444 template <typename OpTy> bool match(OpTy *V) {
1445 if (auto *I = dyn_cast<Instruction>(V))
1446 return this->isOpType(I->getOpcode()) &&
1447 ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
1448 (Commutable && L.match(I->getOperand(1)) &&
1449 R.match(I->getOperand(0))));
1450 return false;
1451 }
1452};
1453
1455 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1456};
1457
1459 bool isOpType(unsigned Opcode) {
1460 return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1461 }
1462};
1463
1465 bool isOpType(unsigned Opcode) {
1466 return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1467 }
1468};
1469
1471 bool isOpType(unsigned Opcode) {
1472 return Instruction::isBitwiseLogicOp(Opcode);
1473 }
1474};
1475
1477 bool isOpType(unsigned Opcode) {
1478 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1479 }
1480};
1481
1483 bool isOpType(unsigned Opcode) {
1484 return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1485 }
1486};
1487
1488/// Matches shift operations.
1489template <typename LHS, typename RHS>
1491 const RHS &R) {
1493}
1494
1495/// Matches logical shift operations.
1496template <typename LHS, typename RHS>
1498 const RHS &R) {
1500}
1501
1502/// Matches logical shift operations.
1503template <typename LHS, typename RHS>
1505m_LogicalShift(const LHS &L, const RHS &R) {
1507}
1508
1509/// Matches bitwise logic operations.
1510template <typename LHS, typename RHS>
1512m_BitwiseLogic(const LHS &L, const RHS &R) {
1514}
1515
1516/// Matches bitwise logic operations in either order.
1517template <typename LHS, typename RHS>
1519m_c_BitwiseLogic(const LHS &L, const RHS &R) {
1521}
1522
1523/// Matches integer division operations.
1524template <typename LHS, typename RHS>
1526 const RHS &R) {
1528}
1529
1530/// Matches integer remainder operations.
1531template <typename LHS, typename RHS>
1533 const RHS &R) {
1535}
1536
1537//===----------------------------------------------------------------------===//
1538// Class that matches exact binary ops.
1539//
1540template <typename SubPattern_t> struct Exact_match {
1541 SubPattern_t SubPattern;
1542
1543 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1544
1545 template <typename OpTy> bool match(OpTy *V) {
1546 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1547 return PEO->isExact() && SubPattern.match(V);
1548 return false;
1549 }
1550};
1551
1552template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1553 return SubPattern;
1554}
1555
1556//===----------------------------------------------------------------------===//
1557// Matchers for CmpInst classes
1558//
1559
1560template <typename LHS_t, typename RHS_t, typename Class,
1561 bool Commutable = false>
1566
1567 // The evaluation order is always stable, regardless of Commutability.
1568 // The LHS is always matched first.
1570 : Predicate(&Pred), L(LHS), R(RHS) {}
1572 : Predicate(nullptr), L(LHS), R(RHS) {}
1573
1574 template <typename OpTy> bool match(OpTy *V) {
1575 if (auto *I = dyn_cast<Class>(V)) {
1576 if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
1577 if (Predicate)
1579 return true;
1580 }
1581 if (Commutable && L.match(I->getOperand(1)) &&
1582 R.match(I->getOperand(0))) {
1583 if (Predicate)
1585 return true;
1586 }
1587 }
1588 return false;
1589 }
1590};
1591
1592template <typename LHS, typename RHS>
1594 const RHS &R) {
1595 return CmpClass_match<LHS, RHS, CmpInst>(Pred, L, R);
1596}
1597
1598template <typename LHS, typename RHS>
1600 const LHS &L, const RHS &R) {
1601 return CmpClass_match<LHS, RHS, ICmpInst>(Pred, L, R);
1602}
1603
1604template <typename LHS, typename RHS>
1606 const LHS &L, const RHS &R) {
1607 return CmpClass_match<LHS, RHS, FCmpInst>(Pred, L, R);
1608}
1609
1610template <typename LHS, typename RHS>
1613}
1614
1615template <typename LHS, typename RHS>
1618}
1619
1620template <typename LHS, typename RHS>
1623}
1624
1625// Same as CmpClass, but instead of saving Pred as out output variable, match a
1626// specific input pred for equality.
1627template <typename LHS_t, typename RHS_t, typename Class,
1628 bool Commutable = false>
1633
1635 : Predicate(Pred), L(LHS), R(RHS) {}
1636
1637 template <typename OpTy> bool match(OpTy *V) {
1638 if (auto *I = dyn_cast<Class>(V)) {
1640 L.match(I->getOperand(0)) && R.match(I->getOperand(1)))
1641 return true;
1642 if constexpr (Commutable) {
1645 L.match(I->getOperand(1)) && R.match(I->getOperand(0)))
1646 return true;
1647 }
1648 }
1649
1650 return false;
1651 }
1652};
1653
1654template <typename LHS, typename RHS>
1656m_SpecificCmp(CmpPredicate MatchPred, const LHS &L, const RHS &R) {
1657 return SpecificCmpClass_match<LHS, RHS, CmpInst>(MatchPred, L, R);
1658}
1659
1660template <typename LHS, typename RHS>
1662m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R) {
1663 return SpecificCmpClass_match<LHS, RHS, ICmpInst>(MatchPred, L, R);
1664}
1665
1666template <typename LHS, typename RHS>
1668m_c_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R) {
1670}
1671
1672template <typename LHS, typename RHS>
1674m_SpecificFCmp(CmpPredicate MatchPred, const LHS &L, const RHS &R) {
1675 return SpecificCmpClass_match<LHS, RHS, FCmpInst>(MatchPred, L, R);
1676}
1677
1678//===----------------------------------------------------------------------===//
1679// Matchers for instructions with a given opcode and number of operands.
1680//
1681
1682/// Matches instructions with Opcode and three operands.
1683template <typename T0, unsigned Opcode> struct OneOps_match {
1685
1686 OneOps_match(const T0 &Op1) : Op1(Op1) {}
1687
1688 template <typename OpTy> bool match(OpTy *V) {
1689 if (V->getValueID() == Value::InstructionVal + Opcode) {
1690 auto *I = cast<Instruction>(V);
1691 return Op1.match(I->getOperand(0));
1692 }
1693 return false;
1694 }
1695};
1696
1697/// Matches instructions with Opcode and three operands.
1698template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1701
1702 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1703
1704 template <typename OpTy> bool match(OpTy *V) {
1705 if (V->getValueID() == Value::InstructionVal + Opcode) {
1706 auto *I = cast<Instruction>(V);
1707 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1708 }
1709 return false;
1710 }
1711};
1712
1713/// Matches instructions with Opcode and three operands.
1714template <typename T0, typename T1, typename T2, unsigned Opcode,
1715 bool CommutableOp2Op3 = false>
1720
1721 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1722 : Op1(Op1), Op2(Op2), Op3(Op3) {}
1723
1724 template <typename OpTy> bool match(OpTy *V) {
1725 if (V->getValueID() == Value::InstructionVal + Opcode) {
1726 auto *I = cast<Instruction>(V);
1727 if (!Op1.match(I->getOperand(0)))
1728 return false;
1729 if (Op2.match(I->getOperand(1)) && Op3.match(I->getOperand(2)))
1730 return true;
1731 return CommutableOp2Op3 && Op2.match(I->getOperand(2)) &&
1732 Op3.match(I->getOperand(1));
1733 }
1734 return false;
1735 }
1736};
1737
1738/// Matches instructions with Opcode and any number of operands
1739template <unsigned Opcode, typename... OperandTypes> struct AnyOps_match {
1740 std::tuple<OperandTypes...> Operands;
1741
1742 AnyOps_match(const OperandTypes &...Ops) : Operands(Ops...) {}
1743
1744 // Operand matching works by recursively calling match_operands, matching the
1745 // operands left to right. The first version is called for each operand but
1746 // the last, for which the second version is called. The second version of
1747 // match_operands is also used to match each individual operand.
1748 template <int Idx, int Last>
1749 std::enable_if_t<Idx != Last, bool> match_operands(const Instruction *I) {
1750 return match_operands<Idx, Idx>(I) && match_operands<Idx + 1, Last>(I);
1751 }
1752
1753 template <int Idx, int Last>
1754 std::enable_if_t<Idx == Last, bool> match_operands(const Instruction *I) {
1755 return std::get<Idx>(Operands).match(I->getOperand(Idx));
1756 }
1757
1758 template <typename OpTy> bool match(OpTy *V) {
1759 if (V->getValueID() == Value::InstructionVal + Opcode) {
1760 auto *I = cast<Instruction>(V);
1761 return I->getNumOperands() == sizeof...(OperandTypes) &&
1762 match_operands<0, sizeof...(OperandTypes) - 1>(I);
1763 }
1764 return false;
1765 }
1766};
1767
1768/// Matches SelectInst.
1769template <typename Cond, typename LHS, typename RHS>
1771m_Select(const Cond &C, const LHS &L, const RHS &R) {
1773}
1774
1775/// This matches a select of two constants, e.g.:
1776/// m_SelectCst<-1, 0>(m_Value(V))
1777template <int64_t L, int64_t R, typename Cond>
1779 Instruction::Select>
1781 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1782}
1783
1784/// Match Select(C, LHS, RHS) or Select(C, RHS, LHS)
1785template <typename LHS, typename RHS>
1786inline ThreeOps_match<decltype(m_Value()), LHS, RHS, Instruction::Select, true>
1787m_c_Select(const LHS &L, const RHS &R) {
1788 return ThreeOps_match<decltype(m_Value()), LHS, RHS, Instruction::Select,
1789 true>(m_Value(), L, R);
1790}
1791
1792/// Matches FreezeInst.
1793template <typename OpTy>
1796}
1797
1798/// Matches InsertElementInst.
1799template <typename Val_t, typename Elt_t, typename Idx_t>
1801m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1803 Val, Elt, Idx);
1804}
1805
1806/// Matches ExtractElementInst.
1807template <typename Val_t, typename Idx_t>
1809m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
1811}
1812
1813/// Matches shuffle.
1814template <typename T0, typename T1, typename T2> struct Shuffle_match {
1818
1819 Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
1820 : Op1(Op1), Op2(Op2), Mask(Mask) {}
1821
1822 template <typename OpTy> bool match(OpTy *V) {
1823 if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
1824 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1825 Mask.match(I->getShuffleMask());
1826 }
1827 return false;
1828 }
1829};
1830
1831struct m_Mask {
1835 MaskRef = Mask;
1836 return true;
1837 }
1838};
1839
1842 return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
1843 }
1844};
1845
1849 bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
1850};
1851
1856 const auto *First = find_if(Mask, [](int Elem) { return Elem != -1; });
1857 if (First == Mask.end())
1858 return false;
1859 SplatIndex = *First;
1860 return all_of(Mask,
1861 [First](int Elem) { return Elem == *First || Elem == -1; });
1862 }
1863};
1864
1865template <typename PointerOpTy, typename OffsetOpTy> struct PtrAdd_match {
1866 PointerOpTy PointerOp;
1867 OffsetOpTy OffsetOp;
1868
1869 PtrAdd_match(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp)
1871
1872 template <typename OpTy> bool match(OpTy *V) {
1873 auto *GEP = dyn_cast<GEPOperator>(V);
1874 return GEP && GEP->getSourceElementType()->isIntegerTy(8) &&
1875 PointerOp.match(GEP->getPointerOperand()) &&
1876 OffsetOp.match(GEP->idx_begin()->get());
1877 }
1878};
1879
1880/// Matches ShuffleVectorInst independently of mask value.
1881template <typename V1_t, typename V2_t>
1883m_Shuffle(const V1_t &v1, const V2_t &v2) {
1885}
1886
1887template <typename V1_t, typename V2_t, typename Mask_t>
1889m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
1890 return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
1891}
1892
1893/// Matches LoadInst.
1894template <typename OpTy>
1897}
1898
1899/// Matches StoreInst.
1900template <typename ValueOpTy, typename PointerOpTy>
1902m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1904 PointerOp);
1905}
1906
1907/// Matches GetElementPtrInst.
1908template <typename... OperandTypes>
1909inline auto m_GEP(const OperandTypes &...Ops) {
1910 return AnyOps_match<Instruction::GetElementPtr, OperandTypes...>(Ops...);
1911}
1912
1913/// Matches GEP with i8 source element type
1914template <typename PointerOpTy, typename OffsetOpTy>
1916m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp) {
1917 return PtrAdd_match<PointerOpTy, OffsetOpTy>(PointerOp, OffsetOp);
1918}
1919
1920//===----------------------------------------------------------------------===//
1921// Matchers for CastInst classes
1922//
1923
1924template <typename Op_t, unsigned Opcode> struct CastOperator_match {
1925 Op_t Op;
1926
1927 CastOperator_match(const Op_t &OpMatch) : Op(OpMatch) {}
1928
1929 template <typename OpTy> bool match(OpTy *V) {
1930 if (auto *O = dyn_cast<Operator>(V))
1931 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1932 return false;
1933 }
1934};
1935
1936template <typename Op_t, typename Class> struct CastInst_match {
1937 Op_t Op;
1938
1939 CastInst_match(const Op_t &OpMatch) : Op(OpMatch) {}
1940
1941 template <typename OpTy> bool match(OpTy *V) {
1942 if (auto *I = dyn_cast<Class>(V))
1943 return Op.match(I->getOperand(0));
1944 return false;
1945 }
1946};
1947
1948template <typename Op_t> struct PtrToIntSameSize_match {
1950 Op_t Op;
1951
1952 PtrToIntSameSize_match(const DataLayout &DL, const Op_t &OpMatch)
1953 : DL(DL), Op(OpMatch) {}
1954
1955 template <typename OpTy> bool match(OpTy *V) {
1956 if (auto *O = dyn_cast<Operator>(V))
1957 return O->getOpcode() == Instruction::PtrToInt &&
1958 DL.getTypeSizeInBits(O->getType()) ==
1959 DL.getTypeSizeInBits(O->getOperand(0)->getType()) &&
1960 Op.match(O->getOperand(0));
1961 return false;
1962 }
1963};
1964
1965template <typename Op_t> struct NNegZExt_match {
1966 Op_t Op;
1967
1968 NNegZExt_match(const Op_t &OpMatch) : Op(OpMatch) {}
1969
1970 template <typename OpTy> bool match(OpTy *V) {
1971 if (auto *I = dyn_cast<ZExtInst>(V))
1972 return I->hasNonNeg() && Op.match(I->getOperand(0));
1973 return false;
1974 }
1975};
1976
1977template <typename Op_t, unsigned WrapFlags = 0> struct NoWrapTrunc_match {
1978 Op_t Op;
1979
1980 NoWrapTrunc_match(const Op_t &OpMatch) : Op(OpMatch) {}
1981
1982 template <typename OpTy> bool match(OpTy *V) {
1983 if (auto *I = dyn_cast<TruncInst>(V))
1984 return (I->getNoWrapKind() & WrapFlags) == WrapFlags &&
1985 Op.match(I->getOperand(0));
1986 return false;
1987 }
1988};
1989
1990/// Matches BitCast.
1991template <typename OpTy>
1993m_BitCast(const OpTy &Op) {
1995}
1996
1997template <typename Op_t> struct ElementWiseBitCast_match {
1998 Op_t Op;
1999
2000 ElementWiseBitCast_match(const Op_t &OpMatch) : Op(OpMatch) {}
2001
2002 template <typename OpTy> bool match(OpTy *V) {
2003 auto *I = dyn_cast<BitCastInst>(V);
2004 if (!I)
2005 return false;
2006 Type *SrcType = I->getSrcTy();
2007 Type *DstType = I->getType();
2008 // Make sure the bitcast doesn't change between scalar and vector and
2009 // doesn't change the number of vector elements.
2010 if (SrcType->isVectorTy() != DstType->isVectorTy())
2011 return false;
2012 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcType);
2013 SrcVecTy && SrcVecTy->getElementCount() !=
2014 cast<VectorType>(DstType)->getElementCount())
2015 return false;
2016 return Op.match(I->getOperand(0));
2017 }
2018};
2019
2020template <typename OpTy>
2023}
2024
2025/// Matches PtrToInt.
2026template <typename OpTy>
2028m_PtrToInt(const OpTy &Op) {
2030}
2031
2032template <typename OpTy>
2034 const OpTy &Op) {
2036}
2037
2038/// Matches IntToPtr.
2039template <typename OpTy>
2041m_IntToPtr(const OpTy &Op) {
2043}
2044
2045/// Matches Trunc.
2046template <typename OpTy>
2049}
2050
2051/// Matches trunc nuw.
2052template <typename OpTy>
2054m_NUWTrunc(const OpTy &Op) {
2056}
2057
2058/// Matches trunc nsw.
2059template <typename OpTy>
2061m_NSWTrunc(const OpTy &Op) {
2063}
2064
2065template <typename OpTy>
2067m_TruncOrSelf(const OpTy &Op) {
2068 return m_CombineOr(m_Trunc(Op), Op);
2069}
2070
2071/// Matches SExt.
2072template <typename OpTy>
2075}
2076
2077/// Matches ZExt.
2078template <typename OpTy>
2081}
2082
2083template <typename OpTy>
2085 return NNegZExt_match<OpTy>(Op);
2086}
2087
2088template <typename OpTy>
2090m_ZExtOrSelf(const OpTy &Op) {
2091 return m_CombineOr(m_ZExt(Op), Op);
2092}
2093
2094template <typename OpTy>
2096m_SExtOrSelf(const OpTy &Op) {
2097 return m_CombineOr(m_SExt(Op), Op);
2098}
2099
2100/// Match either "sext" or "zext nneg".
2101template <typename OpTy>
2103m_SExtLike(const OpTy &Op) {
2104 return m_CombineOr(m_SExt(Op), m_NNegZExt(Op));
2105}
2106
2107template <typename OpTy>
2110m_ZExtOrSExt(const OpTy &Op) {
2111 return m_CombineOr(m_ZExt(Op), m_SExt(Op));
2112}
2113
2114template <typename OpTy>
2117 OpTy>
2119 return m_CombineOr(m_ZExtOrSExt(Op), Op);
2120}
2121
2122template <typename OpTy>
2125}
2126
2127template <typename OpTy>
2130}
2131
2132template <typename OpTy>
2135}
2136
2137template <typename OpTy>
2140}
2141
2142template <typename OpTy>
2145}
2146
2147template <typename OpTy>
2150}
2151
2152//===----------------------------------------------------------------------===//
2153// Matchers for control flow.
2154//
2155
2156struct br_match {
2158
2160
2161 template <typename OpTy> bool match(OpTy *V) {
2162 if (auto *BI = dyn_cast<BranchInst>(V))
2163 if (BI->isUnconditional()) {
2164 Succ = BI->getSuccessor(0);
2165 return true;
2166 }
2167 return false;
2168 }
2169};
2170
2171inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
2172
2173template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
2175 Cond_t Cond;
2176 TrueBlock_t T;
2177 FalseBlock_t F;
2178
2179 brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
2180 : Cond(C), T(t), F(f) {}
2181
2182 template <typename OpTy> bool match(OpTy *V) {
2183 if (auto *BI = dyn_cast<BranchInst>(V))
2184 if (BI->isConditional() && Cond.match(BI->getCondition()))
2185 return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
2186 return false;
2187 }
2188};
2189
2190template <typename Cond_t>
2192m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
2195}
2196
2197template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
2199m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
2201}
2202
2203//===----------------------------------------------------------------------===//
2204// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
2205//
2206
2207template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
2208 bool Commutable = false>
2210 using PredType = Pred_t;
2213
2214 // The evaluation order is always stable, regardless of Commutability.
2215 // The LHS is always matched first.
2216 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
2217
2218 template <typename OpTy> bool match(OpTy *V) {
2219 if (auto *II = dyn_cast<IntrinsicInst>(V)) {
2220 Intrinsic::ID IID = II->getIntrinsicID();
2221 if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
2222 (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
2223 (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
2224 (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
2225 Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
2226 return (L.match(LHS) && R.match(RHS)) ||
2227 (Commutable && L.match(RHS) && R.match(LHS));
2228 }
2229 }
2230 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
2231 auto *SI = dyn_cast<SelectInst>(V);
2232 if (!SI)
2233 return false;
2234 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
2235 if (!Cmp)
2236 return false;
2237 // At this point we have a select conditioned on a comparison. Check that
2238 // it is the values returned by the select that are being compared.
2239 auto *TrueVal = SI->getTrueValue();
2240 auto *FalseVal = SI->getFalseValue();
2241 auto *LHS = Cmp->getOperand(0);
2242 auto *RHS = Cmp->getOperand(1);
2243 if ((TrueVal != LHS || FalseVal != RHS) &&
2244 (TrueVal != RHS || FalseVal != LHS))
2245 return false;
2246 typename CmpInst_t::Predicate Pred =
2247 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
2248 // Does "(x pred y) ? x : y" represent the desired max/min operation?
2249 if (!Pred_t::match(Pred))
2250 return false;
2251 // It does! Bind the operands.
2252 return (L.match(LHS) && R.match(RHS)) ||
2253 (Commutable && L.match(RHS) && R.match(LHS));
2254 }
2255};
2256
2257/// Helper class for identifying signed max predicates.
2259 static bool match(ICmpInst::Predicate Pred) {
2260 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
2261 }
2262};
2263
2264/// Helper class for identifying signed min predicates.
2266 static bool match(ICmpInst::Predicate Pred) {
2267 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
2268 }
2269};
2270
2271/// Helper class for identifying unsigned max predicates.
2273 static bool match(ICmpInst::Predicate Pred) {
2274 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
2275 }
2276};
2277
2278/// Helper class for identifying unsigned min predicates.
2280 static bool match(ICmpInst::Predicate Pred) {
2281 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
2282 }
2283};
2284
2285/// Helper class for identifying ordered max predicates.
2287 static bool match(FCmpInst::Predicate Pred) {
2288 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
2289 }
2290};
2291
2292/// Helper class for identifying ordered min predicates.
2294 static bool match(FCmpInst::Predicate Pred) {
2295 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
2296 }
2297};
2298
2299/// Helper class for identifying unordered max predicates.
2301 static bool match(FCmpInst::Predicate Pred) {
2302 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
2303 }
2304};
2305
2306/// Helper class for identifying unordered min predicates.
2308 static bool match(FCmpInst::Predicate Pred) {
2309 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
2310 }
2311};
2312
2313template <typename LHS, typename RHS>
2315 const RHS &R) {
2317}
2318
2319template <typename LHS, typename RHS>
2321 const RHS &R) {
2323}
2324
2325template <typename LHS, typename RHS>
2327 const RHS &R) {
2329}
2330
2331template <typename LHS, typename RHS>
2333 const RHS &R) {
2335}
2336
2337template <typename LHS, typename RHS>
2338inline match_combine_or<
2343m_MaxOrMin(const LHS &L, const RHS &R) {
2344 return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
2345 m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
2346}
2347
2348/// Match an 'ordered' floating point maximum function.
2349/// Floating point has one special value 'NaN'. Therefore, there is no total
2350/// order. However, if we can ignore the 'NaN' value (for example, because of a
2351/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
2352/// semantics. In the presence of 'NaN' we have to preserve the original
2353/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
2354///
2355/// max(L, R) iff L and R are not NaN
2356/// m_OrdFMax(L, R) = R iff L or R are NaN
2357template <typename LHS, typename RHS>
2359 const RHS &R) {
2361}
2362
2363/// Match an 'ordered' floating point minimum function.
2364/// Floating point has one special value 'NaN'. Therefore, there is no total
2365/// order. However, if we can ignore the 'NaN' value (for example, because of a
2366/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
2367/// semantics. In the presence of 'NaN' we have to preserve the original
2368/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
2369///
2370/// min(L, R) iff L and R are not NaN
2371/// m_OrdFMin(L, R) = R iff L or R are NaN
2372template <typename LHS, typename RHS>
2374 const RHS &R) {
2376}
2377
2378/// Match an 'unordered' floating point maximum function.
2379/// Floating point has one special value 'NaN'. Therefore, there is no total
2380/// order. However, if we can ignore the 'NaN' value (for example, because of a
2381/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
2382/// semantics. In the presence of 'NaN' we have to preserve the original
2383/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
2384///
2385/// max(L, R) iff L and R are not NaN
2386/// m_UnordFMax(L, R) = L iff L or R are NaN
2387template <typename LHS, typename RHS>
2389m_UnordFMax(const LHS &L, const RHS &R) {
2391}
2392
2393/// Match an 'unordered' floating point minimum function.
2394/// Floating point has one special value 'NaN'. Therefore, there is no total
2395/// order. However, if we can ignore the 'NaN' value (for example, because of a
2396/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
2397/// semantics. In the presence of 'NaN' we have to preserve the original
2398/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
2399///
2400/// min(L, R) iff L and R are not NaN
2401/// m_UnordFMin(L, R) = L iff L or R are NaN
2402template <typename LHS, typename RHS>
2404m_UnordFMin(const LHS &L, const RHS &R) {
2406}
2407
2408/// Match an 'ordered' or 'unordered' floating point maximum function.
2409/// Floating point has one special value 'NaN'. Therefore, there is no total
2410/// order. However, if we can ignore the 'NaN' value (for example, because of a
2411/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
2412/// semantics.
2413template <typename LHS, typename RHS>
2416m_OrdOrUnordFMax(const LHS &L, const RHS &R) {
2419}
2420
2421/// Match an 'ordered' or 'unordered' floating point minimum function.
2422/// Floating point has one special value 'NaN'. Therefore, there is no total
2423/// order. However, if we can ignore the 'NaN' value (for example, because of a
2424/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
2425/// semantics.
2426template <typename LHS, typename RHS>
2429m_OrdOrUnordFMin(const LHS &L, const RHS &R) {
2432}
2433
2434/// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
2435/// NOTE: we first match the 'Not' (by matching '-1'),
2436/// and only then match the inner matcher!
2437template <typename ValTy>
2438inline BinaryOp_match<cst_pred_ty<is_all_ones>, ValTy, Instruction::Xor, true>
2439m_Not(const ValTy &V) {
2440 return m_c_Xor(m_AllOnes(), V);
2441}
2442
2443template <typename ValTy>
2444inline BinaryOp_match<cst_pred_ty<is_all_ones, false>, ValTy, Instruction::Xor,
2445 true>
2446m_NotForbidPoison(const ValTy &V) {
2447 return m_c_Xor(m_AllOnesForbidPoison(), V);
2448}
2449
2450//===----------------------------------------------------------------------===//
2451// Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
2452// Note that S might be matched to other instructions than AddInst.
2453//
2454
2455template <typename LHS_t, typename RHS_t, typename Sum_t>
2459 Sum_t S;
2460
2461 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
2462 : L(L), R(R), S(S) {}
2463
2464 template <typename OpTy> bool match(OpTy *V) {
2465 Value *ICmpLHS, *ICmpRHS;
2466 CmpPredicate Pred;
2467 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
2468 return false;
2469
2470 Value *AddLHS, *AddRHS;
2471 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
2472
2473 // (a + b) u< a, (a + b) u< b
2474 if (Pred == ICmpInst::ICMP_ULT)
2475 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
2476 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
2477
2478 // a >u (a + b), b >u (a + b)
2479 if (Pred == ICmpInst::ICMP_UGT)
2480 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
2481 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
2482
2483 Value *Op1;
2484 auto XorExpr = m_OneUse(m_Not(m_Value(Op1)));
2485 // (~a) <u b
2486 if (Pred == ICmpInst::ICMP_ULT) {
2487 if (XorExpr.match(ICmpLHS))
2488 return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
2489 }
2490 // b > u (~a)
2491 if (Pred == ICmpInst::ICMP_UGT) {
2492 if (XorExpr.match(ICmpRHS))
2493 return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
2494 }
2495
2496 // Match special-case for increment-by-1.
2497 if (Pred == ICmpInst::ICMP_EQ) {
2498 // (a + 1) == 0
2499 // (1 + a) == 0
2500 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
2501 (m_One().match(AddLHS) || m_One().match(AddRHS)))
2502 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
2503 // 0 == (a + 1)
2504 // 0 == (1 + a)
2505 if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
2506 (m_One().match(AddLHS) || m_One().match(AddRHS)))
2507 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
2508 }
2509
2510 return false;
2511 }
2512};
2513
2514/// Match an icmp instruction checking for unsigned overflow on addition.
2515///
2516/// S is matched to the addition whose result is being checked for overflow, and
2517/// L and R are matched to the LHS and RHS of S.
2518template <typename LHS_t, typename RHS_t, typename Sum_t>
2520m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
2522}
2523
2524template <typename Opnd_t> struct Argument_match {
2525 unsigned OpI;
2526 Opnd_t Val;
2527
2528 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
2529
2530 template <typename OpTy> bool match(OpTy *V) {
2531 // FIXME: Should likely be switched to use `CallBase`.
2532 if (const auto *CI = dyn_cast<CallInst>(V))
2533 return Val.match(CI->getArgOperand(OpI));
2534 return false;
2535 }
2536};
2537
2538/// Match an argument.
2539template <unsigned OpI, typename Opnd_t>
2540inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
2541 return Argument_match<Opnd_t>(OpI, Op);
2542}
2543
2544/// Intrinsic matchers.
2546 unsigned ID;
2547
2549
2550 template <typename OpTy> bool match(OpTy *V) {
2551 if (const auto *CI = dyn_cast<CallInst>(V))
2552 if (const auto *F = CI->getCalledFunction())
2553 return F->getIntrinsicID() == ID;
2554 return false;
2555 }
2556};
2557
2558/// Intrinsic matches are combinations of ID matchers, and argument
2559/// matchers. Higher arity matcher are defined recursively in terms of and-ing
2560/// them with lower arity matchers. Here's some convenient typedefs for up to
2561/// several arguments, and more can be added as needed
2562template <typename T0 = void, typename T1 = void, typename T2 = void,
2563 typename T3 = void, typename T4 = void, typename T5 = void,
2564 typename T6 = void, typename T7 = void, typename T8 = void,
2565 typename T9 = void, typename T10 = void>
2567template <typename T0> struct m_Intrinsic_Ty<T0> {
2569};
2570template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
2571 using Ty =
2573};
2574template <typename T0, typename T1, typename T2>
2575struct m_Intrinsic_Ty<T0, T1, T2> {
2578};
2579template <typename T0, typename T1, typename T2, typename T3>
2580struct m_Intrinsic_Ty<T0, T1, T2, T3> {
2583};
2584
2585template <typename T0, typename T1, typename T2, typename T3, typename T4>
2586struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
2589};
2590
2591template <typename T0, typename T1, typename T2, typename T3, typename T4,
2592 typename T5>
2593struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
2596};
2597
2598/// Match intrinsic calls like this:
2599/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
2600template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
2601 return IntrinsicID_match(IntrID);
2602}
2603
2604/// Matches MaskedLoad Intrinsic.
2605template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2607m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2608 const Opnd3 &Op3) {
2609 return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3);
2610}
2611
2612/// Matches MaskedGather Intrinsic.
2613template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2615m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2616 const Opnd3 &Op3) {
2617 return m_Intrinsic<Intrinsic::masked_gather>(Op0, Op1, Op2, Op3);
2618}
2619
2620template <Intrinsic::ID IntrID, typename T0>
2621inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
2622 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
2623}
2624
2625template <Intrinsic::ID IntrID, typename T0, typename T1>
2626inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
2627 const T1 &Op1) {
2628 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
2629}
2630
2631template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
2632inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
2633m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
2634 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
2635}
2636
2637template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2638 typename T3>
2640m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
2641 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
2642}
2643
2644template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2645 typename T3, typename T4>
2647m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2648 const T4 &Op4) {
2649 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
2650 m_Argument<4>(Op4));
2651}
2652
2653template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2654 typename T3, typename T4, typename T5>
2656m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2657 const T4 &Op4, const T5 &Op5) {
2658 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
2659 m_Argument<5>(Op5));
2660}
2661
2662// Helper intrinsic matching specializations.
2663template <typename Opnd0>
2664inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
2665 return m_Intrinsic<Intrinsic::bitreverse>(Op0);
2666}
2667
2668template <typename Opnd0>
2669inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
2670 return m_Intrinsic<Intrinsic::bswap>(Op0);
2671}
2672
2673template <typename Opnd0>
2674inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
2675 return m_Intrinsic<Intrinsic::fabs>(Op0);
2676}
2677
2678template <typename Opnd0>
2679inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
2680 return m_Intrinsic<Intrinsic::canonicalize>(Op0);
2681}
2682
2683template <typename Opnd0, typename Opnd1>
2684inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
2685 const Opnd1 &Op1) {
2686 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
2687}
2688
2689template <typename Opnd0, typename Opnd1>
2690inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
2691 const Opnd1 &Op1) {
2692 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
2693}
2694
2695template <typename Opnd0, typename Opnd1, typename Opnd2>
2697m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2698 return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
2699}
2700
2701template <typename Opnd0, typename Opnd1, typename Opnd2>
2703m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2704 return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
2705}
2706
2707template <typename Opnd0>
2708inline typename m_Intrinsic_Ty<Opnd0>::Ty m_Sqrt(const Opnd0 &Op0) {
2709 return m_Intrinsic<Intrinsic::sqrt>(Op0);
2710}
2711
2712template <typename Opnd0, typename Opnd1>
2713inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_CopySign(const Opnd0 &Op0,
2714 const Opnd1 &Op1) {
2715 return m_Intrinsic<Intrinsic::copysign>(Op0, Op1);
2716}
2717
2718template <typename Opnd0>
2719inline typename m_Intrinsic_Ty<Opnd0>::Ty m_VecReverse(const Opnd0 &Op0) {
2720 return m_Intrinsic<Intrinsic::vector_reverse>(Op0);
2721}
2722
2723//===----------------------------------------------------------------------===//
2724// Matchers for two-operands operators with the operators in either order
2725//
2726
2727/// Matches a BinaryOperator with LHS and RHS in either order.
2728template <typename LHS, typename RHS>
2731}
2732
2733/// Matches an ICmp with a predicate over LHS and RHS in either order.
2734/// Swaps the predicate if operands are commuted.
2735template <typename LHS, typename RHS>
2737m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R) {
2739}
2740
2741template <typename LHS, typename RHS>
2743 const RHS &R) {
2745}
2746
2747/// Matches a specific opcode with LHS and RHS in either order.
2748template <typename LHS, typename RHS>
2750m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) {
2751 return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R);
2752}
2753
2754/// Matches a Add with LHS and RHS in either order.
2755template <typename LHS, typename RHS>
2757 const RHS &R) {
2759}
2760
2761/// Matches a Mul with LHS and RHS in either order.
2762template <typename LHS, typename RHS>
2764 const RHS &R) {
2766}
2767
2768/// Matches an And with LHS and RHS in either order.
2769template <typename LHS, typename RHS>
2771 const RHS &R) {
2773}
2774
2775/// Matches an Or with LHS and RHS in either order.
2776template <typename LHS, typename RHS>
2778 const RHS &R) {
2780}
2781
2782/// Matches an Xor with LHS and RHS in either order.
2783template <typename LHS, typename RHS>
2785 const RHS &R) {
2787}
2788
2789/// Matches a 'Neg' as 'sub 0, V'.
2790template <typename ValTy>
2791inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
2792m_Neg(const ValTy &V) {
2793 return m_Sub(m_ZeroInt(), V);
2794}
2795
2796/// Matches a 'Neg' as 'sub nsw 0, V'.
2797template <typename ValTy>
2799 Instruction::Sub,
2801m_NSWNeg(const ValTy &V) {
2802 return m_NSWSub(m_ZeroInt(), V);
2803}
2804
2805/// Matches an SMin with LHS and RHS in either order.
2806template <typename LHS, typename RHS>
2808m_c_SMin(const LHS &L, const RHS &R) {
2810}
2811/// Matches an SMax with LHS and RHS in either order.
2812template <typename LHS, typename RHS>
2814m_c_SMax(const LHS &L, const RHS &R) {
2816}
2817/// Matches a UMin with LHS and RHS in either order.
2818template <typename LHS, typename RHS>
2820m_c_UMin(const LHS &L, const RHS &R) {
2822}
2823/// Matches a UMax with LHS and RHS in either order.
2824template <typename LHS, typename RHS>
2826m_c_UMax(const LHS &L, const RHS &R) {
2828}
2829
2830template <typename LHS, typename RHS>
2831inline match_combine_or<
2836m_c_MaxOrMin(const LHS &L, const RHS &R) {
2837 return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
2838 m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
2839}
2840
2841template <Intrinsic::ID IntrID, typename T0, typename T1>
2844m_c_Intrinsic(const T0 &Op0, const T1 &Op1) {
2845 return m_CombineOr(m_Intrinsic<IntrID>(Op0, Op1),
2846 m_Intrinsic<IntrID>(Op1, Op0));
2847}
2848
2849/// Matches FAdd with LHS and RHS in either order.
2850template <typename LHS, typename RHS>
2852m_c_FAdd(const LHS &L, const RHS &R) {
2854}
2855
2856/// Matches FMul with LHS and RHS in either order.
2857template <typename LHS, typename RHS>
2859m_c_FMul(const LHS &L, const RHS &R) {
2861}
2862
2863template <typename Opnd_t> struct Signum_match {
2864 Opnd_t Val;
2865 Signum_match(const Opnd_t &V) : Val(V) {}
2866
2867 template <typename OpTy> bool match(OpTy *V) {
2868 unsigned TypeSize = V->getType()->getScalarSizeInBits();
2869 if (TypeSize == 0)
2870 return false;
2871
2872 unsigned ShiftWidth = TypeSize - 1;
2873 Value *OpL = nullptr, *OpR = nullptr;
2874
2875 // This is the representation of signum we match:
2876 //
2877 // signum(x) == (x >> 63) | (-x >>u 63)
2878 //
2879 // An i1 value is its own signum, so it's correct to match
2880 //
2881 // signum(x) == (x >> 0) | (-x >>u 0)
2882 //
2883 // for i1 values.
2884
2885 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
2886 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
2887 auto Signum = m_Or(LHS, RHS);
2888
2889 return Signum.match(V) && OpL == OpR && Val.match(OpL);
2890 }
2891};
2892
2893/// Matches a signum pattern.
2894///
2895/// signum(x) =
2896/// x > 0 -> 1
2897/// x == 0 -> 0
2898/// x < 0 -> -1
2899template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
2900 return Signum_match<Val_t>(V);
2901}
2902
2903template <int Ind, typename Opnd_t> struct ExtractValue_match {
2904 Opnd_t Val;
2905 ExtractValue_match(const Opnd_t &V) : Val(V) {}
2906
2907 template <typename OpTy> bool match(OpTy *V) {
2908 if (auto *I = dyn_cast<ExtractValueInst>(V)) {
2909 // If Ind is -1, don't inspect indices
2910 if (Ind != -1 &&
2911 !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind))
2912 return false;
2913 return Val.match(I->getAggregateOperand());
2914 }
2915 return false;
2916 }
2917};
2918
2919/// Match a single index ExtractValue instruction.
2920/// For example m_ExtractValue<1>(...)
2921template <int Ind, typename Val_t>
2924}
2925
2926/// Match an ExtractValue instruction with any index.
2927/// For example m_ExtractValue(...)
2928template <typename Val_t>
2929inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) {
2930 return ExtractValue_match<-1, Val_t>(V);
2931}
2932
2933/// Matcher for a single index InsertValue instruction.
2934template <int Ind, typename T0, typename T1> struct InsertValue_match {
2937
2938 InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
2939
2940 template <typename OpTy> bool match(OpTy *V) {
2941 if (auto *I = dyn_cast<InsertValueInst>(V)) {
2942 return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
2943 I->getNumIndices() == 1 && Ind == I->getIndices()[0];
2944 }
2945 return false;
2946 }
2947};
2948
2949/// Matches a single index InsertValue instruction.
2950template <int Ind, typename Val_t, typename Elt_t>
2952 const Elt_t &Elt) {
2953 return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
2954}
2955
2956/// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
2957/// the constant expression
2958/// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
2959/// under the right conditions determined by DataLayout.
2961 template <typename ITy> bool match(ITy *V) {
2962 if (m_Intrinsic<Intrinsic::vscale>().match(V))
2963 return true;
2964
2965 Value *Ptr;
2966 if (m_PtrToInt(m_Value(Ptr)).match(V)) {
2967 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
2968 auto *DerefTy =
2969 dyn_cast<ScalableVectorType>(GEP->getSourceElementType());
2970 if (GEP->getNumIndices() == 1 && DerefTy &&
2971 DerefTy->getElementType()->isIntegerTy(8) &&
2972 m_Zero().match(GEP->getPointerOperand()) &&
2973 m_SpecificInt(1).match(GEP->idx_begin()->get()))
2974 return true;
2975 }
2976 }
2977
2978 return false;
2979 }
2980};
2981
2983 return VScaleVal_match();
2984}
2985
2986template <typename Opnd0, typename Opnd1>
2988m_Interleave2(const Opnd0 &Op0, const Opnd1 &Op1) {
2989 return m_Intrinsic<Intrinsic::vector_interleave2>(Op0, Op1);
2990}
2991
2992template <typename Opnd>
2993inline typename m_Intrinsic_Ty<Opnd>::Ty m_Deinterleave2(const Opnd &Op) {
2994 return m_Intrinsic<Intrinsic::vector_deinterleave2>(Op);
2995}
2996
2997template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false>
3001
3002 LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
3003
3004 template <typename T> bool match(T *V) {
3005 auto *I = dyn_cast<Instruction>(V);
3006 if (!I || !I->getType()->isIntOrIntVectorTy(1))
3007 return false;
3008
3009 if (I->getOpcode() == Opcode) {
3010 auto *Op0 = I->getOperand(0);
3011 auto *Op1 = I->getOperand(1);
3012 return (L.match(Op0) && R.match(Op1)) ||
3013 (Commutable && L.match(Op1) && R.match(Op0));
3014 }
3015
3016 if (auto *Select = dyn_cast<SelectInst>(I)) {
3017 auto *Cond = Select->getCondition();
3018 auto *TVal = Select->getTrueValue();
3019 auto *FVal = Select->getFalseValue();
3020
3021 // Don't match a scalar select of bool vectors.
3022 // Transforms expect a single type for operands if this matches.
3023 if (Cond->getType() != Select->getType())
3024 return false;
3025
3026 if (Opcode == Instruction::And) {
3027 auto *C = dyn_cast<Constant>(FVal);
3028 if (C && C->isNullValue())
3029 return (L.match(Cond) && R.match(TVal)) ||
3030 (Commutable && L.match(TVal) && R.match(Cond));
3031 } else {
3032 assert(Opcode == Instruction::Or);
3033 auto *C = dyn_cast<Constant>(TVal);
3034 if (C && C->isOneValue())
3035 return (L.match(Cond) && R.match(FVal)) ||
3036 (Commutable && L.match(FVal) && R.match(Cond));
3037 }
3038 }
3039
3040 return false;
3041 }
3042};
3043
3044/// Matches L && R either in the form of L & R or L ? R : false.
3045/// Note that the latter form is poison-blocking.
3046template <typename LHS, typename RHS>
3048 const RHS &R) {
3050}
3051
3052/// Matches L && R where L and R are arbitrary values.
3053inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); }
3054
3055/// Matches L && R with LHS and RHS in either order.
3056template <typename LHS, typename RHS>
3058m_c_LogicalAnd(const LHS &L, const RHS &R) {
3060}
3061
3062/// Matches L || R either in the form of L | R or L ? true : R.
3063/// Note that the latter form is poison-blocking.
3064template <typename LHS, typename RHS>
3066 const RHS &R) {
3068}
3069
3070/// Matches L || R where L and R are arbitrary values.
3071inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); }
3072
3073/// Matches L || R with LHS and RHS in either order.
3074template <typename LHS, typename RHS>
3076m_c_LogicalOr(const LHS &L, const RHS &R) {
3078}
3079
3080/// Matches either L && R or L || R,
3081/// either one being in the either binary or logical form.
3082/// Note that the latter form is poison-blocking.
3083template <typename LHS, typename RHS, bool Commutable = false>
3084inline auto m_LogicalOp(const LHS &L, const RHS &R) {
3085 return m_CombineOr(
3088}
3089
3090/// Matches either L && R or L || R where L and R are arbitrary values.
3091inline auto m_LogicalOp() { return m_LogicalOp(m_Value(), m_Value()); }
3092
3093/// Matches either L && R or L || R with LHS and RHS in either order.
3094template <typename LHS, typename RHS>
3095inline auto m_c_LogicalOp(const LHS &L, const RHS &R) {
3096 return m_LogicalOp<LHS, RHS, /*Commutable=*/true>(L, R);
3097}
3098
3099} // end namespace PatternMatch
3100} // end namespace llvm
3101
3102#endif // LLVM_IR_PATTERNMATCH_H
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
Hexagon Common GEP
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define T1
uint64_t IntrinsicInst * II
#define P(N)
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition: APInt.h:78
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
Definition: APInt.h:553
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:673
@ ICMP_SLT
signed less than
Definition: InstrTypes.h:702
@ ICMP_SLE
signed less or equal
Definition: InstrTypes.h:703
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:679
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:688
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:677
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:678
@ ICMP_UGE
unsigned greater or equal
Definition: InstrTypes.h:697
@ ICMP_UGT
unsigned greater than
Definition: InstrTypes.h:696
@ ICMP_SGT
signed greater than
Definition: InstrTypes.h:700
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:687
@ ICMP_ULT
unsigned less than
Definition: InstrTypes.h:698
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:685
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:680
@ ICMP_EQ
equal
Definition: InstrTypes.h:694
@ ICMP_SGE
signed greater or equal
Definition: InstrTypes.h:701
@ ICMP_ULE
unsigned less or equal
Definition: InstrTypes.h:699
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:686
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
Definition: CmpPredicate.h:22
static std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
static CmpPredicate get(const CmpInst *Cmp)
Do a ICmpInst::getCmpPredicate() or CmpInst::getPredicate(), as appropriate.
static CmpPredicate getSwapped(CmpPredicate P)
Get the swapped predicate of a CmpPredicate.
Base class for aggregate constants (with operands).
Definition: Constants.h:402
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:1108
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:271
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
This is an important base class in LLVM.
Definition: Constant.h:42
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
Definition: DataLayout.h:617
static bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
bool isBitwiseLogicOp() const
Return true if this is and/or/xor.
Definition: Instruction.h:333
bool isShift() const
Definition: Instruction.h:282
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
bool empty() const
Definition: SmallVector.h:81
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:937
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:270
'undef' values are things that do not have specified contents.
Definition: Constants.h:1412
LLVM Value Representation.
Definition: Value.h:74
Base class of all SIMD vector types.
Definition: DerivedTypes.h:427
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
Definition: DerivedTypes.h:665
Represents an op.with.overflow intrinsic.
An efficient, type-erasing, non-owning reference to a callable.
#define UINT64_MAX
Definition: DataTypes.h:77
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
TwoOps_match< ValueOpTy, PointerOpTy, Instruction::Store > m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp)
Matches StoreInst.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
Definition: PatternMatch.h:524
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
Definition: PatternMatch.h:160
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
Definition: PatternMatch.h:673
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrAdd_match< PointerOpTy, OffsetOpTy > m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp)
Matches GEP with i8 source element type.
apfloat_match m_APFloatForbidPoison(const APFloat *&Res)
Match APFloat while forbidding poison in splat vector constants.
Definition: PatternMatch.h:327
cst_pred_ty< is_negative > m_Negative()
Match an integer or vector of negative values.
Definition: PatternMatch.h:550
BinaryOp_match< cst_pred_ty< is_all_ones, false >, ValTy, Instruction::Xor, true > m_NotForbidPoison(const ValTy &V)
MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > m_UnordFMin(const LHS &L, const RHS &R)
Match an 'unordered' floating point minimum function.
PtrToIntSameSize_match< OpTy > m_PtrToIntSameSize(const DataLayout &DL, const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
Definition: PatternMatch.h:100
m_Intrinsic_Ty< Opnd0 >::Ty m_FCanonicalize(const Opnd0 &Op0)
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
Definition: PatternMatch.h:664
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
cstfp_pred_ty< is_inf > m_Inf()
Match a positive or negative infinity FP constant.
Definition: PatternMatch.h:726
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
Definition: PatternMatch.h:619
BinaryOp_match< cstfp_pred_ty< is_any_zero_fp >, RHS, Instruction::FSub > m_FNegNSZ(const RHS &X)
Match 'fneg X' as 'fsub +-0.0, X'.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
auto m_LogicalOp()
Matches either L && R or L || R where L and R are arbitrary values.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
Definition: PatternMatch.h:165
AllowReassoc_match< T > m_AllowReassoc(const T &SubPattern)
Definition: PatternMatch.h:83
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
cst_pred_ty< is_power2_or_zero > m_Power2OrZero()
Match an integer or vector of 0 or power-of-2 values.
Definition: PatternMatch.h:652
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
br_match m_UnconditionalBr(BasicBlock *&Succ)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
Definition: PatternMatch.h:982
BinaryOp_match< LHS, RHS, Instruction::FMul > m_FMul(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_FMax(const Opnd0 &Op0, const Opnd1 &Op1)
cst_pred_ty< is_shifted_mask > m_ShiftedMask()
Definition: PatternMatch.h:515
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
Definition: PatternMatch.h:826
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
Definition: PatternMatch.h:764
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:885
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
Definition: PatternMatch.h:186
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
Definition: PatternMatch.h:990
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, true > m_c_NUWAdd(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWNeg(const ValTy &V)
Matches a 'Neg' as 'sub nsw 0, V'.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
cstfp_pred_ty< is_finite > m_Finite()
Match a finite FP constant, i.e.
Definition: PatternMatch.h:742
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
Definition: PatternMatch.h:560
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:168
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
Definition: PatternMatch.h:592
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
cstfp_pred_ty< is_neg_zero_fp > m_NegZeroFP()
Match a floating-point negative zero.
Definition: PatternMatch.h:782
match_combine_or< CastInst_match< OpTy, SExtInst >, OpTy > m_SExtOrSelf(const OpTy &Op)
InsertValue_match< Ind, Val_t, Elt_t > m_InsertValue(const Val_t &Val, const Elt_t &Elt)
Matches a single index InsertValue instruction.
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > > m_OrdOrUnordFMin(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point minimum function.
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
Definition: PatternMatch.h:928
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_Interleave2(const Opnd0 &Op0, const Opnd1 &Op1)
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
Definition: PatternMatch.h:245
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
cst_pred_ty< is_any_apint > m_AnyIntegralConstant()
Match an integer or vector with any integral constant.
Definition: PatternMatch.h:507
CastInst_match< OpTy, FPToUIInst > m_FPToUI(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_Sqrt(const Opnd0 &Op0)
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
Definition: PatternMatch.h:832
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
SpecificCmpClass_match< LHS, RHS, CmpInst > m_SpecificCmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
match_combine_or< typename m_Intrinsic_Ty< T0, T1 >::Ty, typename m_Intrinsic_Ty< T1, T0 >::Ty > m_c_Intrinsic(const T0 &Op0, const T1 &Op1)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
Definition: PatternMatch.h:903
cst_pred_ty< is_zero_int > m_ZeroInt()
Match an integer 0 or a vector with all elements equal to 0.
Definition: PatternMatch.h:599
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
Definition: PatternMatch.h:305
NoWrapTrunc_match< OpTy, TruncInst::NoSignedWrap > m_NSWTrunc(const OpTy &Op)
Matches trunc nsw.
match_combine_or< match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > >, OpTy > m_ZExtOrSExtOrSelf(const OpTy &Op)
OneUse_match< T > m_OneUse(const T &SubPattern)
Definition: PatternMatch.h:67
NNegZExt_match< OpTy > m_NNegZExt(const OpTy &Op)
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > m_c_SMin(const LHS &L, const RHS &R)
Matches an SMin with LHS and RHS in either order.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a 'Neg' as 'sub 0, V'.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
match_combine_and< class_match< Constant >, match_unless< constantexpr_match > > m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
Definition: PatternMatch.h:864
specific_bbval m_SpecificBB(BasicBlock *BB)
Match a specific basic block value.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true > m_c_UMax(const LHS &L, const RHS &R)
Matches a UMax with LHS and RHS in either order.
auto m_GEP(const OperandTypes &...Ops)
Matches GetElementPtrInst.
cst_pred_ty< is_strictlypositive > m_StrictlyPositive()
Match an integer or vector of strictly positive values.
Definition: PatternMatch.h:570
ThreeOps_match< decltype(m_Value()), LHS, RHS, Instruction::Select, true > m_c_Select(const LHS &L, const RHS &R)
Match Select(C, LHS, RHS) or Select(C, RHS, LHS)
CastInst_match< OpTy, FPExtInst > m_FPExt(const OpTy &Op)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap > m_NSWShl(const LHS &L, const RHS &R)
class_match< ConstantFP > m_ConstantFP()
Match an arbitrary ConstantFP and ignore it.
Definition: PatternMatch.h:173
cstfp_pred_ty< is_nonnan > m_NonNaN()
Match a non-NaN FP constant.
Definition: PatternMatch.h:717
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2, Opnd3 >::Ty m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, const Opnd3 &Op3)
Matches MaskedLoad Intrinsic.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
OneOps_match< OpTy, Instruction::Load > m_Load(const OpTy &Op)
Matches LoadInst.
apint_match m_APIntForbidPoison(const APInt *&Res)
Match APInt while forbidding poison in splat vector constants.
Definition: PatternMatch.h:310
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
cstfp_pred_ty< is_non_zero_not_denormal_fp > m_NonZeroNotDenormalFP()
Match a floating-point non-zero that is not a denormal.
Definition: PatternMatch.h:801
cst_pred_ty< is_all_ones, false > m_AllOnesForbidPoison()
Definition: PatternMatch.h:528
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
BinOpPred_match< LHS, RHS, is_bitwiselogic_op, true > m_c_BitwiseLogic(const LHS &L, const RHS &R)
Matches bitwise logic operations in either order.
class_match< UndefValue > m_UndefValue()
Match an arbitrary UndefValue constant.
Definition: PatternMatch.h:155
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
Definition: PatternMatch.h:105
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
cst_pred_ty< is_negated_power2 > m_NegatedPower2()
Match a integer or vector negated power-of-2.
Definition: PatternMatch.h:627
cst_pred_ty< is_negated_power2_or_zero > m_NegatedPower2OrZero()
Match a integer or vector negated power-of-2.
Definition: PatternMatch.h:639
auto m_c_LogicalOp(const LHS &L, const RHS &R)
Matches either L && R or L || R with LHS and RHS in either order.
NoWrapTrunc_match< OpTy, TruncInst::NoUnsignedWrap > m_NUWTrunc(const OpTy &Op)
Matches trunc nuw.
cst_pred_ty< custom_checkfn< APInt > > m_CheckedInt(function_ref< bool(const APInt &)> CheckFn)
Match an integer or vector where CheckFn(ele) for each element is true.
Definition: PatternMatch.h:481
cst_pred_ty< is_lowbit_mask_or_zero > m_LowBitMaskOrZero()
Match an integer or vector with only the low bit(s) set.
Definition: PatternMatch.h:683
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
Definition: PatternMatch.h:931
DisjointOr_match< LHS, RHS, true > m_c_DisjointOr(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > m_c_UMin(const LHS &L, const RHS &R)
Matches a UMin with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, FCmpInst > m_SpecificFCmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
apfloat_match m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
Definition: PatternMatch.h:322
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
CastInst_match< OpTy, UIToFPInst > m_UIToFP(const OpTy &Op)
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > > m_OrdOrUnordFMax(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point maximum function.
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true > m_c_SMax(const LHS &L, const RHS &R)
Matches an SMax with LHS and RHS in either order.
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > m_UnordFMax(const LHS &L, const RHS &R)
Match an 'unordered' floating point maximum function.
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
cstfp_pred_ty< is_finitenonzero > m_FiniteNonZero()
Match a finite non-zero FP constant.
Definition: PatternMatch.h:752
class_match< UnaryOperator > m_UnOp()
Match an arbitrary unary operation and ignore it.
Definition: PatternMatch.h:95
VScaleVal_match m_VScale()
CastInst_match< OpTy, FPToSIInst > m_FPToSI(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
cstfp_pred_ty< custom_checkfn< APFloat > > m_CheckedFp(function_ref< bool(const APFloat &)> CheckFn)
Match a float or vector where CheckFn(ele) for each element is true.
Definition: PatternMatch.h:493
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
Definition: PatternMatch.h:299
cst_pred_ty< is_maxsignedvalue > m_MaxSignedValue()
Match an integer or vector with values having all bits except for the high bit set (0x7f....
Definition: PatternMatch.h:538
MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty > m_OrdFMax(const LHS &L, const RHS &R)
Match an 'ordered' floating point maximum function.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
Signum_match< Val_t > m_Signum(const Val_t &V)
Matches a signum pattern.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
CastInst_match< OpTy, SIToFPInst > m_SIToFP(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Argument_match< Opnd_t > m_Argument(const Opnd_t &Op)
Match an argument.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
Exact_match< T > m_Exact(const T &SubPattern)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
Definition: PatternMatch.h:773
BinaryOp_match< LHS, RHS, Instruction::FAdd, true > m_c_FAdd(const LHS &L, const RHS &R)
Matches FAdd with LHS and RHS in either order.
LogicalOp_match< LHS, RHS, Instruction::And, true > m_c_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
cstfp_pred_ty< is_non_zero_fp > m_NonZeroFP()
Match a floating-point non-zero.
Definition: PatternMatch.h:791
UAddWithOverflow_match< LHS_t, RHS_t, Sum_t > m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S)
Match an icmp instruction checking for unsigned overflow on addition.
BinaryOp_match< LHS, RHS, Instruction::FDiv > m_FDiv(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
apfloat_match m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
Definition: PatternMatch.h:316
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty > m_OrdFMin(const LHS &L, const RHS &R)
Match an 'ordered' floating point minimum function.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
ThreeOps_match< Cond, constantint_match< L >, constantint_match< R >, Instruction::Select > m_SelectCst(const Cond &C)
This matches a select of two constants, e.g.: m_SelectCst<-1, 0>(m_Value(V))
BinaryOp_match< LHS, RHS, Instruction::FRem > m_FRem(const LHS &L, const RHS &R)
CastInst_match< OpTy, FPTruncInst > m_FPTrunc(const OpTy &Op)
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
Definition: PatternMatch.h:189
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
Definition: PatternMatch.h:152
cst_pred_ty< is_nonpositive > m_NonPositive()
Match an integer or vector of non-positive values.
Definition: PatternMatch.h:582
cstfp_pred_ty< is_nan > m_NaN()
Match an arbitrary NaN constant.
Definition: PatternMatch.h:710
BinaryOp_match< cst_pred_ty< is_all_ones >, ValTy, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_FMin(const Opnd0 &Op0, const Opnd1 &Op1)
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_BSwap(const Opnd0 &Op0)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
Definition: PatternMatch.h:612
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
CastOperator_match< OpTy, Instruction::IntToPtr > m_IntToPtr(const OpTy &Op)
Matches IntToPtr.
BinOpPred_match< LHS, RHS, is_bitwiselogic_op > m_BitwiseLogic(const LHS &L, const RHS &R)
Matches bitwise logic operations.
LogicalOp_match< LHS, RHS, Instruction::Or, true > m_c_LogicalOr(const LHS &L, const RHS &R)
Matches L || R with LHS and RHS in either order.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
SpecificCmpClass_match< LHS, RHS, ICmpInst, true > m_c_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_CopySign(const Opnd0 &Op0, const Opnd1 &Op1)
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap > m_NSWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
cstfp_pred_ty< is_noninf > m_NonInf()
Match a non-infinity FP constant, i.e.
Definition: PatternMatch.h:733
m_Intrinsic_Ty< Opnd >::Ty m_Deinterleave2(const Opnd &Op)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2, Opnd3 >::Ty m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, const Opnd3 &Op3)
Matches MaskedGather Intrinsic.
match_unless< Ty > m_Unless(const Ty &M)
Match if the inner matcher does NOT match.
Definition: PatternMatch.h:203
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
Definition: PatternMatch.h:239
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing 'pred' (eg/ne/...) to Threshold.
Definition: PatternMatch.h:698
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1766
AllowReassoc_match(const SubPattern_t &SP)
Definition: PatternMatch.h:74
AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
Matches instructions with Opcode and any number of operands.
std::enable_if_t< Idx==Last, bool > match_operands(const Instruction *I)
std::enable_if_t< Idx !=Last, bool > match_operands(const Instruction *I)
std::tuple< OperandTypes... > Operands
AnyOps_match(const OperandTypes &...Ops)
Argument_match(unsigned OpIdx, const Opnd_t &V)
BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS)
BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
bool match(unsigned Opc, OpTy *V)
CastInst_match(const Op_t &OpMatch)
CmpClass_match(CmpPredicate &Pred, const LHS_t &LHS, const RHS_t &RHS)
CmpClass_match(const LHS_t &LHS, const RHS_t &RHS)
DisjointOr_match(const LHS &L, const RHS &R)
Exact_match(const SubPattern_t &SP)
Matcher for a single index InsertValue instruction.
InsertValue_match(const T0 &Op0, const T1 &Op1)
IntrinsicID_match(Intrinsic::ID IntrID)
LogicalOp_match(const LHS &L, const RHS &R)
MaxMin_match(const LHS_t &LHS, const RHS_t &RHS)
NNegZExt_match(const Op_t &OpMatch)
NoWrapTrunc_match(const Op_t &OpMatch)
Matches instructions with Opcode and three operands.
OneUse_match(const SubPattern_t &SP)
Definition: PatternMatch.h:60
OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
PtrAdd_match(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp)
PtrToIntSameSize_match(const DataLayout &DL, const Op_t &OpMatch)
Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS)
SpecificCmpClass_match(CmpPredicate Pred, const LHS_t &LHS, const RHS_t &RHS)
Matches instructions with Opcode and three operands.
ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
Matches instructions with Opcode and three operands.
TwoOps_match(const T0 &Op1, const T1 &Op2)
UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
Matches patterns for vscale.
This helper class is used to match scalar and vector constants that satisfy a specified predicate,...
Definition: PatternMatch.h:440
apf_pred_ty(const APFloat *&R)
Definition: PatternMatch.h:443
apfloat_match(const APFloat *&Res, bool AllowPoison)
Definition: PatternMatch.h:278
This helper class is used to match scalar and vector constants that satisfy a specified predicate,...
Definition: PatternMatch.h:413
apint_match(const APInt *&Res, bool AllowPoison)
Definition: PatternMatch.h:253
br_match(BasicBlock *&Succ)
brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
This helper class is used to match constant scalars, vector splats, and fixed width vectors that sati...
Definition: PatternMatch.h:356
function_ref< bool(const APTy &)> CheckFn
Definition: PatternMatch.h:474
Stores a reference to the Value *, not the Value * itself, thus can be used in commutative matchers.
Definition: PatternMatch.h:889
bool isValue(const APInt &C)
Definition: PatternMatch.h:520
bool isValue(const APInt &C)
Definition: PatternMatch.h:503
bool isValue(const APFloat &C)
Definition: PatternMatch.h:760
bool isValue(const APFloat &C)
Definition: PatternMatch.h:738
bool isValue(const APFloat &C)
Definition: PatternMatch.h:748
bool isOpType(unsigned Opcode)
bool isValue(const APFloat &C)
Definition: PatternMatch.h:722
bool isOpType(unsigned Opcode)
bool isValue(const APFloat &C)
Definition: PatternMatch.h:706
bool isValue(const APFloat &C)
Definition: PatternMatch.h:778
bool isValue(const APInt &C)
Definition: PatternMatch.h:546
bool isValue(const APFloat &C)
Definition: PatternMatch.h:787
bool isValue(const APFloat &C)
Definition: PatternMatch.h:729
bool isValue(const APFloat &C)
Definition: PatternMatch.h:713
bool isValue(const APInt &C)
Definition: PatternMatch.h:588
bool isValue(const APFloat &C)
Definition: PatternMatch.h:769
bool isValue(const APInt &C)
Definition: PatternMatch.h:615
bool isOpType(unsigned Opcode)
bool isValue(const APInt &C)
Definition: PatternMatch.h:660
bool isValue(const APInt &C)
Definition: PatternMatch.h:595
Intrinsic matches are combinations of ID matchers, and argument matchers.
bool match(ArrayRef< int > Mask)
ArrayRef< int > & MaskRef
m_Mask(ArrayRef< int > &MaskRef)
bool match(ArrayRef< int > Mask)
m_SpecificMask(ArrayRef< int > &MaskRef)
bool match(ArrayRef< int > Mask)
bool match(ArrayRef< int > Mask)
match_combine_and(const LTy &Left, const RTy &Right)
Definition: PatternMatch.h:227
match_combine_or(const LTy &Left, const RTy &Right)
Definition: PatternMatch.h:212
match_unless(const Ty &Matcher)
Definition: PatternMatch.h:197
Helper class for identifying ordered max predicates.
static bool match(FCmpInst::Predicate Pred)
Helper class for identifying ordered min predicates.
static bool match(FCmpInst::Predicate Pred)
Helper class for identifying signed max predicates.
static bool match(ICmpInst::Predicate Pred)
Helper class for identifying signed min predicates.
static bool match(ICmpInst::Predicate Pred)
Match a specified basic block value.
Match a specified floating point value or vector of all elements of that value.
Definition: PatternMatch.h:910
Match a specified integer value or vector of all elements of that value.
Definition: PatternMatch.h:950
Match a specified Value*.
Definition: PatternMatch.h:876
Helper class for identifying unordered max predicates.
static bool match(FCmpInst::Predicate Pred)
Helper class for identifying unordered min predicates.
static bool match(FCmpInst::Predicate Pred)
Helper class for identifying unsigned max predicates.
static bool match(ICmpInst::Predicate Pred)
Helper class for identifying unsigned min predicates.
static bool match(ICmpInst::Predicate Pred)
static bool check(const Value *V)
Definition: PatternMatch.h:108