56 "disable-i2p-p2i-opt",
cl::init(
false),
57 cl::desc(
"Disables inttoptr/ptrtoint roundtrip optimization"));
63std::optional<TypeSize>
70 assert(!
Size.isScalable() &&
"Array elements cannot have a scalable size");
80std::optional<TypeSize>
100 return "both values to select must have same type";
103 return "select values cannot have token type";
108 return "vector select condition element type must be i1";
111 return "selected values for vector select must be vectors";
113 return "vector select requires selected vectors to have "
114 "the same vector length as select condition";
116 return "select condition must be i1 or <n x i1>";
125PHINode::PHINode(
const PHINode &PN)
127 ReservedSpace(PN.getNumOperands()) {
149 Op<-1>().set(
nullptr);
162 bool DeletePHIIfEmpty) {
168 if (RemoveIndices.
empty())
173 return RemoveIndices.
contains(U.getOperandNo());
198void PHINode::growOperands() {
200 unsigned NumOps = e + e / 2;
201 if (NumOps < 2) NumOps = 2;
203 ReservedSpace = NumOps;
214 if (ConstantValue !=
this)
219 if (ConstantValue ==
this)
221 return ConstantValue;
230 Value *ConstantValue =
nullptr;
234 if (ConstantValue && ConstantValue !=
Incoming)
246LandingPadInst::LandingPadInst(
Type *
RetTy,
unsigned NumReservedValues,
247 const Twine &NameStr,
250 init(NumReservedValues, NameStr);
255 ReservedSpace(LP.getNumOperands()) {
260 for (
unsigned I = 0, E = ReservedSpace;
I != E; ++
I)
267 const Twine &NameStr,
272void LandingPadInst::init(
unsigned NumReservedValues,
const Twine &NameStr) {
273 ReservedSpace = NumReservedValues;
282void LandingPadInst::growOperands(
unsigned Size) {
284 if (ReservedSpace >= e +
Size)
return;
285 ReservedSpace = (std::max(e, 1U) +
Size / 2) * 2;
292 assert(OpNo < ReservedSpace &&
"Growing didn't work!");
304 case Instruction::Call:
306 case Instruction::Invoke:
308 case Instruction::CallBr:
320 if (ChildOB.getTagName() != OpB.
getTag())
331 return cast<CallBrInst>(
this)->getNumIndirectDests() + 1;
336 if (isa<Function>(V) || isa<Constant>(V))
344 if (
auto *CI = dyn_cast<CallInst>(
this))
345 return CI->isMustTailCall();
351 if (
auto *CI = dyn_cast<CallInst>(
this))
352 return CI->isTailCall();
358 return F->getIntrinsicID();
366 Mask |=
F->getAttributes().getRetNoFPClass();
374 Mask |=
F->getAttributes().getParamNoFPClass(i);
402 if (
F->getAttributes().hasAttrSomewhere(Kind, &Index))
419 if (!
F->getAttributes().hasParamAttr(ArgNo, Kind))
424 case Attribute::ReadNone:
426 case Attribute::ReadOnly:
428 case Attribute::WriteOnly:
437 return F->getAttributes().hasFnAttr(Kind);
442bool CallBase::hasFnAttrOnCalledFunction(
StringRef Kind)
const {
444 return F->getAttributes().hasFnAttr(Kind);
449template <
typename AK>
450Attribute CallBase::getFnAttrOnCalledFunction(AK Kind)
const {
451 if constexpr (std::is_same_v<AK, Attribute::AttrKind>) {
454 assert(Kind != Attribute::Memory &&
"Use getMemoryEffects() instead");
458 return F->getAttributes().getFnAttr(Kind);
467template <
typename AK>
468Attribute CallBase::getParamAttrOnCalledFunction(
unsigned ArgNo,
472 if (
auto *
F = dyn_cast<Function>(V))
473 return F->getAttributes().getParamAttr(ArgNo, Kind);
478CallBase::getParamAttrOnCalledFunction(
unsigned ArgNo,
480template Attribute CallBase::getParamAttrOnCalledFunction(
unsigned ArgNo,
491 const unsigned BeginIndex) {
493 for (
auto &
B : Bundles)
494 It = std::copy(
B.input_begin(),
B.input_end(), It);
497 auto BI = Bundles.
begin();
498 unsigned CurrentIndex = BeginIndex;
501 assert(BI != Bundles.
end() &&
"Incorrect allocation?");
503 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
504 BOI.Begin = CurrentIndex;
505 BOI.End = CurrentIndex + BI->input_size();
506 CurrentIndex = BOI.End;
510 assert(BI == Bundles.
end() &&
"Incorrect allocation?");
521 if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
527 assert(OpIdx >=
arg_size() &&
"the Idx is not in the operand bundles");
530 "The Idx isn't in the operand bundle");
534 constexpr unsigned NumberScaling = 1024;
540 while (Begin !=
End) {
541 unsigned ScaledOperandPerBundle =
542 NumberScaling * (std::prev(
End)->End - Begin->
Begin) / (
End - Begin);
543 Current = Begin + (((OpIdx - Begin->
Begin) * NumberScaling) /
544 ScaledOperandPerBundle);
546 Current = std::prev(
End);
547 assert(Current < End && Current >= Begin &&
548 "the operand bundle doesn't cover every value in the range");
549 if (OpIdx >= Current->
Begin && OpIdx < Current->
End)
551 if (OpIdx >= Current->
End)
558 "the operand bundle doesn't cover every value in the range");
571 return Create(CB, Bundles, InsertPt);
577 bool CreateNew =
false;
581 if (Bundle.getTagID() ==
ID) {
588 return CreateNew ?
Create(CB, Bundles, InsertPt) : CB;
686 "NumOperands not set up?");
691 "Calling a function with bad signature!");
693 for (
unsigned i = 0; i != Args.size(); ++i)
696 "Calling a function with a bad signature!");
731 "Wrong number of operands allocated");
746 Args, OpB, CI->
getName(), InsertPt);
760 LLVM_DEBUG(
dbgs() <<
"Attempting to update profile weights will result in "
761 "div by 0. Ignoring. Likely the function "
763 <<
" has 0 entry count, and contains call instructions "
764 "with non-zero prof info.");
777 const Twine &NameStr) {
782 "NumOperands not set up?");
787 "Invoking a function with bad signature");
789 for (
unsigned i = 0, e = Args.size(); i != e; i++)
792 "Invoking a function with a bad signature!");
812 "Wrong number of operands allocated");
815 std::copy(
II.bundle_op_info_begin(),
II.bundle_op_info_end(),
822 std::vector<Value *> Args(
II->arg_begin(),
II->arg_end());
825 II->getFunctionType(),
II->getCalledOperand(),
II->getNormalDest(),
826 II->getUnwindDest(), Args, OpB,
II->getName(), InsertPt);
827 NewII->setCallingConv(
II->getCallingConv());
828 NewII->SubclassOptionalData =
II->SubclassOptionalData;
829 NewII->setAttributes(
II->getAttributes());
830 NewII->setDebugLoc(
II->getDebugLoc());
835 return cast<LandingPadInst>(
getUnwindDest()->getFirstNonPHI());
840 LLVM_DEBUG(
dbgs() <<
"Attempting to update profile weights will result in "
841 "div by 0. Ignoring. Likely the function "
843 <<
" has 0 entry count, and contains call instructions "
844 "with non-zero prof info.");
858 const Twine &NameStr) {
862 IndirectDests.
size(),
864 "NumOperands not set up?");
869 "Calling a function with bad signature");
871 for (
unsigned i = 0, e = Args.size(); i != e; i++)
874 "Calling a function with a bad signature!");
879 std::copy(Args.begin(), Args.end(),
op_begin());
880 NumIndirectDests = IndirectDests.
size();
882 for (
unsigned i = 0; i != NumIndirectDests; ++i)
897 "Wrong number of operands allocated");
903 NumIndirectDests = CBI.NumIndirectDests;
917 NewCBI->NumIndirectDests = CBI->NumIndirectDests;
929 "Wrong number of operands allocated");
955 AllocMarker, InsertBefore) {
967 "Wrong number of operands allocated");
968 setSubclassData<Instruction::OpaqueField>(
977 setSubclassData<UnwindDestField>(
true);
979 Op<0>() = CleanupPad;
984CleanupReturnInst::CleanupReturnInst(
Value *CleanupPad,
BasicBlock *UnwindBB,
989 init(CleanupPad, UnwindBB);
1010 AllocMarker, InsertBefore) {
1018CatchSwitchInst::CatchSwitchInst(
Value *ParentPad,
BasicBlock *UnwindDest,
1019 unsigned NumReservedValues,
1020 const Twine &NameStr,
1025 ++NumReservedValues;
1026 init(ParentPad, UnwindDest, NumReservedValues + 1);
1037 for (
unsigned I = 1, E = ReservedSpace;
I != E; ++
I)
1042 unsigned NumReservedValues) {
1043 assert(ParentPad && NumReservedValues);
1045 ReservedSpace = NumReservedValues;
1049 Op<0>() = ParentPad;
1051 setSubclassData<UnwindDestField>(
true);
1058void CatchSwitchInst::growOperands(
unsigned Size) {
1060 assert(NumOperands >= 1);
1061 if (ReservedSpace >= NumOperands +
Size)
1063 ReservedSpace = (NumOperands +
Size / 2) * 2;
1070 assert(OpNo < ReservedSpace &&
"Growing didn't work!");
1078 for (
Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1079 *CurDst = *(CurDst + 1);
1090 const Twine &NameStr) {
1100 "Wrong number of operands allocated");
1107 const Twine &NameStr,
1110 init(ParentPad, Args, NameStr);
1120 AllocMarker, InsertBefore) {}
1126void BranchInst::AssertOK() {
1129 "May only branch on boolean predicates!");
1136 assert(IfTrue &&
"Branch destination may not be null!");
1157 "Wrong number of operands allocated");
1161 Op<-3>() = BI.
Op<-3>();
1162 Op<-2>() = BI.
Op<-2>();
1164 Op<-1>() = BI.
Op<-1>();
1170 "Cannot swap successors of an unconditional branch");
1186 assert(!isa<BasicBlock>(Amt) &&
1187 "Passed basic block into allocation size parameter! Use other ctor");
1189 "Allocation array size is not an integer!");
1196 "Insertion position cannot be null when alignment not provided!");
1199 "BB must be in a Function when alignment not provided!");
1201 return DL.getPrefTypeAlign(Ty);
1218 getAISize(Ty->getContext(), ArraySize), InsertBefore),
1227 return !CI->isOne();
1247void LoadInst::AssertOK() {
1249 "Ptr must have pointer type.");
1254 "Insertion position cannot be null when alignment not provided!");
1257 "BB must be in a Function when alignment not provided!");
1259 return DL.getABITypeAlign(Ty);
1274 SyncScope::System, InsertBef) {}
1291void StoreInst::AssertOK() {
1294 "Ptr must have pointer type!");
1309 SyncScope::System, InsertBefore) {}
1341 "All operands must be non-null!");
1343 "Ptr must have pointer type!");
1345 "Cmp type and NewVal type must be same!");
1356 AtomicCmpXchg, AllocMarker, InsertBefore) {
1357 Init(
Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1368 "atomicrmw instructions can only be atomic.");
1370 "atomicrmw instructions cannot be unordered.");
1380 "Ptr must have pointer type!");
1382 "AtomicRMW instructions must be atomic!");
1433 return "<invalid operation>";
1457 "NumOperands not initialized?");
1466 SourceElementType(GEPI.SourceElementType),
1467 ResultElementType(GEPI.ResultElementType) {
1469 "Wrong number of operands allocated");
1475 if (
auto *
Struct = dyn_cast<StructType>(Ty)) {
1480 if (!
Idx->getType()->isIntOrIntVectorTy())
1482 if (
auto *Array = dyn_cast<ArrayType>(Ty))
1483 return Array->getElementType();
1484 if (
auto *
Vector = dyn_cast<VectorType>(Ty))
1485 return Vector->getElementType();
1490 if (
auto *
Struct = dyn_cast<StructType>(Ty)) {
1495 if (
auto *Array = dyn_cast<ArrayType>(Ty))
1496 return Array->getElementType();
1497 if (
auto *
Vector = dyn_cast<VectorType>(Ty))
1498 return Vector->getElementType();
1502template <
typename IndexTy>
1504 if (IdxList.
empty())
1506 for (IndexTy V : IdxList.
slice(1)) {
1533 if (!CI->isZero())
return false;
1566 return cast<GEPOperator>(
this)->getNoWrapFlags();
1570 return cast<GEPOperator>(
this)->isInBounds();
1574 return cast<GEPOperator>(
this)->hasNoUnsignedSignedWrap();
1578 return cast<GEPOperator>(
this)->hasNoUnsignedWrap();
1584 return cast<GEPOperator>(
this)->accumulateConstantOffset(
DL,
Offset);
1590 APInt &ConstantOffset)
const {
1592 return cast<GEPOperator>(
this)->collectOffset(
DL,
BitWidth, VariableOffsets,
1600ExtractElementInst::ExtractElementInst(
Value *Val,
Value *Index,
1604 ExtractElement, AllocMarker, InsertBef) {
1605 assert(isValidOperands(Val, Index) &&
1606 "Invalid extractelement instruction operands!");
1622InsertElementInst::InsertElementInst(
Value *Vec,
Value *Elt,
Value *Index,
1627 "Invalid insertelement instruction operands!");
1635 const Value *Index) {
1639 if (Elt->
getType() != cast<VectorType>(Vec->
getType())->getElementType())
1642 if (!Index->getType()->isIntegerTy())
1652 assert(V &&
"Cannot create placeholder of nullptr V");
1673 ShuffleVector, AllocMarker, InsertBefore) {
1675 "Invalid shuffle vector instruction operands!");
1691 ShuffleVector, AllocMarker, InsertBefore) {
1693 "Invalid shuffle vector instruction operands!");
1701 int NumOpElts = cast<FixedVectorType>(
Op<0>()->
getType())->getNumElements();
1702 int NumMaskElts = ShuffleMask.
size();
1704 for (
int i = 0; i != NumMaskElts; ++i) {
1710 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts &&
"Out-of-range mask");
1711 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1712 NewMask[i] = MaskElt;
1721 if (!isa<VectorType>(V1->
getType()) || V1->
getType() != V2->getType())
1726 cast<VectorType>(V1->
getType())->getElementCount().getKnownMinValue();
1727 for (
int Elem : Mask)
1731 if (isa<ScalableVectorType>(V1->
getType()))
1739 const Value *Mask) {
1746 auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1747 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
1748 isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->
getType()))
1752 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1757 if (isa<ScalableVectorType>(MaskTy))
1760 unsigned V1Size = cast<FixedVectorType>(V1->
getType())->getNumElements();
1762 if (
const auto *CI = dyn_cast<ConstantInt>(Mask))
1763 return !CI->uge(V1Size * 2);
1765 if (
const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1766 for (
Value *
Op : MV->operands()) {
1767 if (
auto *CI = dyn_cast<ConstantInt>(
Op)) {
1768 if (CI->uge(V1Size*2))
1770 }
else if (!isa<UndefValue>(
Op)) {
1777 if (
const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1778 for (
unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->
getNumElements();
1780 if (CDS->getElementAsInteger(i) >= V1Size*2)
1790 ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
1792 if (isa<ConstantAggregateZero>(Mask)) {
1793 Result.resize(EC.getKnownMinValue(), 0);
1797 Result.reserve(EC.getKnownMinValue());
1799 if (EC.isScalable()) {
1800 assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
1801 "Scalable vector shuffle mask must be undef or zeroinitializer");
1802 int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
1803 for (
unsigned I = 0;
I < EC.getKnownMinValue(); ++
I)
1804 Result.emplace_back(MaskVal);
1808 unsigned NumElts = EC.getKnownMinValue();
1810 if (
auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1811 for (
unsigned i = 0; i != NumElts; ++i)
1812 Result.push_back(CDS->getElementAsInteger(i));
1815 for (
unsigned i = 0; i != NumElts; ++i) {
1816 Constant *
C = Mask->getAggregateElement(i);
1817 Result.push_back(isa<UndefValue>(
C) ? -1 :
1818 cast<ConstantInt>(
C)->getZExtValue());
1823 ShuffleMask.
assign(Mask.begin(), Mask.end());
1830 if (isa<ScalableVectorType>(ResultTy)) {
1838 for (
int Elem : Mask) {
1842 MaskConst.
push_back(ConstantInt::get(Int32Ty, Elem));
1848 assert(!Mask.empty() &&
"Shuffle mask must contain elements");
1849 bool UsesLHS =
false;
1850 bool UsesRHS =
false;
1851 for (
int I : Mask) {
1854 assert(
I >= 0 &&
I < (NumOpElts * 2) &&
1855 "Out-of-bounds shuffle mask element");
1856 UsesLHS |= (
I < NumOpElts);
1857 UsesRHS |= (
I >= NumOpElts);
1858 if (UsesLHS && UsesRHS)
1862 return UsesLHS || UsesRHS;
1874 for (
int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1877 if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1884 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
1892 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
1901 for (
int I = 0, E = Mask.size();
I < E; ++
I) {
1904 if (Mask[
I] != (NumSrcElts - 1 -
I) &&
1905 Mask[
I] != (NumSrcElts + NumSrcElts - 1 -
I))
1912 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
1916 for (
int I = 0, E = Mask.size();
I < E; ++
I) {
1919 if (Mask[
I] != 0 && Mask[
I] != NumSrcElts)
1926 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
1931 for (
int I = 0, E = Mask.size();
I < E; ++
I) {
1934 if (Mask[
I] !=
I && Mask[
I] != (NumSrcElts +
I))
1947 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
1950 int Sz = Mask.size();
1955 if (Mask[0] != 0 && Mask[0] != 1)
1960 if ((Mask[1] - Mask[0]) != NumSrcElts)
1965 for (
int I = 2;
I < Sz; ++
I) {
1966 int MaskEltVal = Mask[
I];
1967 if (MaskEltVal == -1)
1969 int MaskEltPrevVal = Mask[
I - 2];
1970 if (MaskEltVal - MaskEltPrevVal != 2)
1978 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
1981 int StartIndex = -1;
1982 for (
int I = 0, E = Mask.size();
I != E; ++
I) {
1983 int MaskEltVal = Mask[
I];
1984 if (MaskEltVal == -1)
1987 if (StartIndex == -1) {
1990 if (MaskEltVal <
I || NumSrcElts <= (MaskEltVal -
I))
1993 StartIndex = MaskEltVal -
I;
1998 if (MaskEltVal != (StartIndex +
I))
2002 if (StartIndex == -1)
2011 int NumSrcElts,
int &Index) {
2017 if (NumSrcElts <= (
int)Mask.size())
2022 for (
int i = 0, e = Mask.size(); i != e; ++i) {
2026 int Offset = (M % NumSrcElts) - i;
2027 if (0 <= SubIndex && SubIndex !=
Offset)
2032 if (0 <= SubIndex && SubIndex + (
int)Mask.size() <= NumSrcElts) {
2040 int NumSrcElts,
int &NumSubElts,
2042 int NumMaskElts = Mask.size();
2045 if (NumMaskElts < NumSrcElts)
2056 bool Src0Identity =
true;
2057 bool Src1Identity =
true;
2059 for (
int i = 0; i != NumMaskElts; ++i) {
2065 if (M < NumSrcElts) {
2067 Src0Identity &= (M == i);
2071 Src1Identity &= (M == (i + NumSrcElts));
2073 assert((Src0Elts | Src1Elts | UndefElts).isAllOnes() &&
2074 "unknown shuffle elements");
2076 "2-source shuffle not found");
2082 int Src0Hi = NumMaskElts - Src0Elts.
countl_zero();
2083 int Src1Hi = NumMaskElts - Src1Elts.
countl_zero();
2088 int NumSub1Elts = Src1Hi - Src1Lo;
2091 NumSubElts = NumSub1Elts;
2100 int NumSub0Elts = Src0Hi - Src0Lo;
2103 NumSubElts = NumSub0Elts;
2115 if (isa<ScalableVectorType>(
getType()))
2118 int NumOpElts = cast<FixedVectorType>(
Op<0>()->
getType())->getNumElements();
2119 int NumMaskElts = cast<FixedVectorType>(
getType())->getNumElements();
2120 if (NumMaskElts <= NumOpElts)
2129 for (
int i = NumOpElts; i < NumMaskElts; ++i)
2139 if (isa<ScalableVectorType>(
getType()))
2142 int NumOpElts = cast<FixedVectorType>(
Op<0>()->
getType())->getNumElements();
2143 int NumMaskElts = cast<FixedVectorType>(
getType())->getNumElements();
2144 if (NumMaskElts >= NumOpElts)
2152 if (isa<UndefValue>(
Op<0>()) || isa<UndefValue>(
Op<1>()))
2157 if (isa<ScalableVectorType>(
getType()))
2160 int NumOpElts = cast<FixedVectorType>(
Op<0>()->
getType())->getNumElements();
2161 int NumMaskElts = cast<FixedVectorType>(
getType())->getNumElements();
2162 if (NumMaskElts != NumOpElts * 2)
2173 int ReplicationFactor,
int VF) {
2174 assert(Mask.size() == (
unsigned)ReplicationFactor * VF &&
2175 "Unexpected mask size.");
2177 for (
int CurrElt :
seq(VF)) {
2178 ArrayRef<int> CurrSubMask = Mask.take_front(ReplicationFactor);
2179 assert(CurrSubMask.
size() == (
unsigned)ReplicationFactor &&
2180 "Run out of mask?");
2181 Mask = Mask.drop_front(ReplicationFactor);
2182 if (!
all_of(CurrSubMask, [CurrElt](
int MaskElt) {
2187 assert(Mask.empty() &&
"Did not consume the whole mask?");
2193 int &ReplicationFactor,
int &VF) {
2197 Mask.take_while([](
int MaskElt) {
return MaskElt == 0; }).
size();
2198 if (ReplicationFactor == 0 || Mask.size() % ReplicationFactor != 0)
2200 VF = Mask.size() / ReplicationFactor;
2212 for (
int MaskElt : Mask) {
2216 if (MaskElt < Largest)
2218 Largest = std::max(Largest, MaskElt);
2222 for (
int PossibleReplicationFactor :
2223 reverse(seq_inclusive<unsigned>(1, Mask.size()))) {
2224 if (Mask.size() % PossibleReplicationFactor != 0)
2226 int PossibleVF = Mask.size() / PossibleReplicationFactor;
2230 ReplicationFactor = PossibleReplicationFactor;
2242 if (isa<ScalableVectorType>(
getType()))
2245 VF = cast<FixedVectorType>(
Op<0>()->
getType())->getNumElements();
2246 if (ShuffleMask.
size() % VF != 0)
2248 ReplicationFactor = ShuffleMask.
size() / VF;
2254 if (VF <= 0 || Mask.size() <
static_cast<unsigned>(VF) ||
2255 Mask.size() % VF != 0)
2257 for (
unsigned K = 0, Sz = Mask.size(); K < Sz; K += VF) {
2262 for (
int Idx : SubMask) {
2276 if (isa<ScalableVectorType>(
getType()))
2298 unsigned NumElts = Mask.size();
2299 if (NumElts % Factor)
2302 unsigned LaneLen = NumElts / Factor;
2306 StartIndexes.
resize(Factor);
2312 for (;
I < Factor;
I++) {
2313 unsigned SavedLaneValue;
2314 unsigned SavedNoUndefs = 0;
2317 for (J = 0; J < LaneLen - 1; J++) {
2319 unsigned Lane = J * Factor +
I;
2320 unsigned NextLane = Lane + Factor;
2321 int LaneValue = Mask[Lane];
2322 int NextLaneValue = Mask[NextLane];
2325 if (LaneValue >= 0 && NextLaneValue >= 0 &&
2326 LaneValue + 1 != NextLaneValue)
2330 if (LaneValue >= 0 && NextLaneValue < 0) {
2331 SavedLaneValue = LaneValue;
2340 if (SavedNoUndefs > 0 && LaneValue < 0) {
2342 if (NextLaneValue >= 0 &&
2343 SavedLaneValue + SavedNoUndefs != (
unsigned)NextLaneValue)
2348 if (J < LaneLen - 1)
2354 StartMask = Mask[
I];
2355 }
else if (Mask[(LaneLen - 1) * Factor +
I] >= 0) {
2357 StartMask = Mask[(LaneLen - 1) * Factor +
I] - J;
2358 }
else if (SavedNoUndefs > 0) {
2360 StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
2367 if (StartMask + LaneLen > NumInputElts)
2370 StartIndexes[
I] = StartMask;
2383 for (
unsigned Idx = 0;
Idx < Factor;
Idx++) {
2388 for (;
I < Mask.size();
I++)
2389 if (Mask[
I] >= 0 &&
static_cast<unsigned>(Mask[
I]) !=
Idx +
I * Factor)
2392 if (
I == Mask.size()) {
2406 int NumElts = Mask.size();
2407 assert((NumElts % NumSubElts) == 0 &&
"Illegal shuffle mask");
2410 for (
int i = 0; i != NumElts; i += NumSubElts) {
2411 for (
int j = 0; j != NumSubElts; ++j) {
2412 int M = Mask[i + j];
2415 if (M < i || M >= i + NumSubElts)
2417 int Offset = (NumSubElts - (M - (i + j))) % NumSubElts;
2418 if (0 <= RotateAmt &&
Offset != RotateAmt)
2427 ArrayRef<int> Mask,
unsigned EltSizeInBits,
unsigned MinSubElts,
2428 unsigned MaxSubElts,
unsigned &NumSubElts,
unsigned &RotateAmt) {
2429 for (NumSubElts = MinSubElts; NumSubElts <= MaxSubElts; NumSubElts *= 2) {
2431 if (EltRotateAmt < 0)
2433 RotateAmt = EltRotateAmt * EltSizeInBits;
2452 assert(!Idxs.
empty() &&
"InsertValueInst must have at least one index");
2455 Val->
getType() &&
"Inserted value must match indexed type!");
2465 Indices(IVI.Indices) {
2480 assert(!Idxs.
empty() &&
"ExtractValueInst must have at least one index");
2489 Indices(EVI.Indices) {
2501 for (
unsigned Index : Idxs) {
2508 if (
ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2509 if (Index >= AT->getNumElements())
2511 Agg = AT->getElementType();
2512 }
else if (
StructType *ST = dyn_cast<StructType>(Agg)) {
2513 if (Index >= ST->getNumElements())
2515 Agg = ST->getElementType(Index);
2521 return const_cast<Type*
>(Agg);
2541void UnaryOperator::AssertOK() {
2548 "Unary operation should return same type as operand!");
2550 "Tried to create a floating-point operation on a "
2551 "non-floating-point type!");
2564 :
Instruction(Ty, iType, AllocMarker, InsertBefore) {
2571void BinaryOperator::AssertOK() {
2573 (void)LHS; (void)RHS;
2575 "Binary operator operand types must match!");
2581 "Arithmetic operation should return same type as operands!");
2583 "Tried to create an integer operation on a non-integer type!");
2585 case FAdd:
case FSub:
2588 "Arithmetic operation should return same type as operands!");
2590 "Tried to create a floating-point operation on a "
2591 "non-floating-point type!");
2596 "Arithmetic operation should return same type as operands!");
2598 "Incorrect operand type (not integer) for S/UDIV");
2602 "Arithmetic operation should return same type as operands!");
2604 "Incorrect operand type (not floating point) for FDIV");
2609 "Arithmetic operation should return same type as operands!");
2611 "Incorrect operand type (not integer) for S/UREM");
2615 "Arithmetic operation should return same type as operands!");
2617 "Incorrect operand type (not floating point) for FREM");
2623 "Shift operation should return same type as operands!");
2625 "Tried to create a shift operation on a non-integral type!");
2630 "Logical operation should return same type as operands!");
2632 "Tried to create a logical operation on a non-integral type!");
2643 "Cannot create binary operator with two operands of differing type!");
2649 Value *Zero = ConstantInt::get(
Op->getType(), 0);
2656 Value *Zero = ConstantInt::get(
Op->getType(), 0);
2657 return BinaryOperator::CreateNSWSub(Zero,
Op,
Name, InsertBefore);
2664 Op->getType(),
Name, InsertBefore);
2684 cast<Instruction>(
this)->getMetadata(LLVMContext::MD_fpmath);
2698 default:
return false;
2699 case Instruction::ZExt:
2700 case Instruction::SExt:
2701 case Instruction::Trunc:
2703 case Instruction::BitCast:
2724 case Instruction::Trunc:
2725 case Instruction::ZExt:
2726 case Instruction::SExt:
2727 case Instruction::FPTrunc:
2728 case Instruction::FPExt:
2729 case Instruction::UIToFP:
2730 case Instruction::SIToFP:
2731 case Instruction::FPToUI:
2732 case Instruction::FPToSI:
2733 case Instruction::AddrSpaceCast:
2736 case Instruction::BitCast:
2738 case Instruction::PtrToInt:
2739 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2741 case Instruction::IntToPtr:
2742 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2762 Type *DstIntPtrTy) {
2793 const unsigned numCastOps =
2794 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2795 static const uint8_t CastResults[numCastOps][numCastOps] = {
2801 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0},
2802 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0},
2803 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0},
2804 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0},
2805 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0},
2806 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0},
2807 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0},
2808 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0},
2809 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0},
2810 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0},
2811 { 99,99,99,99,99,99,99,99,99,11,99,15, 0},
2812 { 5, 5, 5, 0, 0, 5, 5, 0, 0,16, 5, 1,14},
2813 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12},
2820 bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2821 bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2822 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2825 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2826 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2827 if (!AreBothBitcasts)
2830 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2831 [secondOp-Instruction::CastOpsBegin];
2876 return Instruction::BitCast;
2879 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2882 if (MidSize >= PtrSize)
2883 return Instruction::BitCast;
2893 return Instruction::BitCast;
2894 if (SrcSize < DstSize)
2896 if (SrcSize > DstSize)
2902 return Instruction::ZExt;
2910 if (SrcSize <= PtrSize && SrcSize == DstSize)
2911 return Instruction::BitCast;
2918 return Instruction::AddrSpaceCast;
2919 return Instruction::BitCast;
2930 "Illegal addrspacecast, bitcast sequence!");
2935 return Instruction::AddrSpaceCast;
2945 "Illegal inttoptr, bitcast sequence!");
2957 "Illegal bitcast, ptrtoint sequence!");
2962 return Instruction::UIToFP;
2977 case Trunc:
return new TruncInst (S, Ty,
Name, InsertBefore);
2978 case ZExt:
return new ZExtInst (S, Ty,
Name, InsertBefore);
2979 case SExt:
return new SExtInst (S, Ty,
Name, InsertBefore);
2981 case FPExt:
return new FPExtInst (S, Ty,
Name, InsertBefore);
3000 return Create(Instruction::BitCast, S, Ty,
Name, InsertBefore);
3001 return Create(Instruction::ZExt, S, Ty,
Name, InsertBefore);
3007 return Create(Instruction::BitCast, S, Ty,
Name, InsertBefore);
3008 return Create(Instruction::SExt, S, Ty,
Name, InsertBefore);
3014 return Create(Instruction::BitCast, S, Ty,
Name, InsertBefore);
3015 return Create(Instruction::Trunc, S, Ty,
Name, InsertBefore);
3026 cast<VectorType>(Ty)->getElementCount() ==
3027 cast<VectorType>(S->
getType())->getElementCount()) &&
3031 return Create(Instruction::PtrToInt, S, Ty,
Name, InsertBefore);
3042 return Create(Instruction::AddrSpaceCast, S, Ty,
Name, InsertBefore);
3044 return Create(Instruction::BitCast, S, Ty,
Name, InsertBefore);
3051 return Create(Instruction::PtrToInt, S, Ty,
Name, InsertBefore);
3053 return Create(Instruction::IntToPtr, S, Ty,
Name, InsertBefore);
3055 return Create(Instruction::BitCast, S, Ty,
Name, InsertBefore);
3062 "Invalid integer cast");
3063 unsigned SrcBits =
C->getType()->getScalarSizeInBits();
3066 (SrcBits == DstBits ? Instruction::BitCast :
3067 (SrcBits > DstBits ? Instruction::Trunc :
3068 (
isSigned ? Instruction::SExt : Instruction::ZExt)));
3076 unsigned SrcBits =
C->getType()->getScalarSizeInBits();
3078 assert((
C->getType() == Ty || SrcBits != DstBits) &&
"Invalid cast");
3080 (SrcBits == DstBits ? Instruction::BitCast :
3081 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3089 if (SrcTy == DestTy)
3092 if (
VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3093 if (
VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3094 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3096 SrcTy = SrcVecTy->getElementType();
3097 DestTy = DestVecTy->getElementType();
3102 if (
PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3103 if (
PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3104 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3116 if (SrcBits != DestBits)
3125 if (
auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3126 if (
auto *IntTy = dyn_cast<IntegerType>(DestTy))
3127 return (IntTy->getBitWidth() ==
DL.getPointerTypeSizeInBits(PtrTy) &&
3128 !
DL.isNonIntegralPointerType(PtrTy));
3129 if (
auto *PtrTy = dyn_cast<PointerType>(DestTy))
3130 if (
auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3131 return (IntTy->getBitWidth() ==
DL.getPointerTypeSizeInBits(PtrTy) &&
3132 !
DL.isNonIntegralPointerType(PtrTy));
3145 const Value *Src,
bool SrcIsSigned,
Type *DestTy,
bool DestIsSigned) {
3146 Type *SrcTy = Src->getType();
3149 "Only first class types are castable!");
3151 if (SrcTy == DestTy)
3155 if (
VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3156 if (
VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3157 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3160 SrcTy = SrcVecTy->getElementType();
3161 DestTy = DestVecTy->getElementType();
3171 if (DestBits < SrcBits)
3173 else if (DestBits > SrcBits) {
3187 assert(DestBits == SrcBits &&
3188 "Casting vector to integer of different width");
3192 "Casting from a value that is not first-class type");
3202 if (DestBits < SrcBits) {
3204 }
else if (DestBits > SrcBits) {
3210 assert(DestBits == SrcBits &&
3211 "Casting vector to floating point of different width");
3216 assert(DestBits == SrcBits &&
3217 "Illegal cast to vector (wrong type or size)");
3222 return AddrSpaceCast;
3248 bool SrcIsVec = isa<VectorType>(SrcTy);
3249 bool DstIsVec = isa<VectorType>(DstTy);
3256 ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3258 ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3263 default:
return false;
3264 case Instruction::Trunc:
3266 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3267 case Instruction::ZExt:
3269 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3270 case Instruction::SExt:
3272 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3273 case Instruction::FPTrunc:
3275 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3276 case Instruction::FPExt:
3278 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3279 case Instruction::UIToFP:
3280 case Instruction::SIToFP:
3283 case Instruction::FPToUI:
3284 case Instruction::FPToSI:
3287 case Instruction::PtrToInt:
3291 case Instruction::IntToPtr:
3295 case Instruction::BitCast: {
3301 if (!SrcPtrTy != !DstPtrTy)
3314 if (SrcIsVec && DstIsVec)
3315 return SrcEC == DstEC;
3323 case Instruction::AddrSpaceCast: {
3335 return SrcEC == DstEC;
3436 if (
Op == Instruction::ICmp) {
3464 if (
ICmpInst *IC = dyn_cast<ICmpInst>(
this))
3467 cast<FCmpInst>(
this)->swapOperands();
3471 if (
const ICmpInst *IC = dyn_cast<ICmpInst>(
this))
3472 return IC->isCommutative();
3473 return cast<FCmpInst>(
this)->isCommutative();
3487 auto *
LHS = dyn_cast<Constant>(Cmp->getOperand(0));
3488 auto *
RHS = dyn_cast<Constant>(Cmp->getOperand(1));
3549 default:
return "unknown";
3730 switch (predicate) {
3731 default:
return false;
3738 switch (predicate) {
3739 default:
return false;
3856 switch (predicate) {
3857 default:
return false;
3865 switch (predicate) {
3866 default:
return false;
3875 default:
return false;
3885 default:
return false;
3924 if (
A.Pred ==
B.Pred)
3926 if (
A.HasSameSign &&
3929 if (
B.HasSameSign &&
3936 if (
auto *ICI = dyn_cast<ICmpInst>(Cmp))
3937 return ICI->getCmpPredicate();
3938 return Cmp->getPredicate();
3955 ReservedSpace = NumReserved;
3970 AllocMarker, InsertBefore) {
3976 init(
SI.getCondition(),
SI.getDefaultDest(),
SI.getNumOperands());
3977 setNumHungOffUseOperands(
SI.getNumOperands());
3978 Use *OL = getOperandList();
3979 const Use *InOL =
SI.getOperandList();
3980 for (
unsigned i = 2, E =
SI.getNumOperands(); i != E; i += 2) {
3982 OL[i+1] = InOL[i+1];
3984 SubclassOptionalData =
SI.SubclassOptionalData;
3992 if (OpNo+2 > ReservedSpace)
3995 assert(OpNo+1 < ReservedSpace &&
"Growing didn't work!");
4005 unsigned idx =
I->getCaseIndex();
4013 if (2 + (idx + 1) * 2 != NumOps) {
4014 OL[2 + idx * 2] = OL[NumOps - 2];
4015 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
4019 OL[NumOps-2].
set(
nullptr);
4020 OL[NumOps-2+1].
set(
nullptr);
4023 return CaseIt(
this, idx);
4029void SwitchInst::growOperands() {
4031 unsigned NumOps = e*3;
4033 ReservedSpace = NumOps;
4038 assert(Changed &&
"called only if metadata has changed");
4043 assert(SI.getNumSuccessors() == Weights->size() &&
4044 "num of prof branch_weights must accord with num of successors");
4046 bool AllZeroes =
all_of(*Weights, [](
uint32_t W) {
return W == 0; });
4048 if (AllZeroes || Weights->size() < 2)
4061 "not correspond to number of succesors");
4067 this->Weights = std::move(Weights);
4073 assert(SI.getNumSuccessors() == Weights->size() &&
4074 "num of prof branch_weights must accord with num of successors");
4079 (*Weights)[
I->getCaseIndex() + 1] = Weights->back();
4080 Weights->pop_back();
4082 return SI.removeCase(
I);
4088 SI.addCase(OnVal, Dest);
4090 if (!Weights && W && *W) {
4093 (*Weights)[SI.getNumSuccessors() - 1] = *W;
4094 }
else if (Weights) {
4096 Weights->push_back(W.value_or(0));
4099 assert(SI.getNumSuccessors() == Weights->size() &&
4100 "num of prof branch_weights must accord with num of successors");
4109 return SI.eraseFromParent();
4115 return std::nullopt;
4116 return (*Weights)[idx];
4128 auto &OldW = (*Weights)[idx];
4140 if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4141 return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4145 return std::nullopt;
4152void IndirectBrInst::init(
Value *
Address,
unsigned NumDests) {
4154 "Address of indirectbr must be a pointer");
4155 ReservedSpace = 1+NumDests;
4166void IndirectBrInst::growOperands() {
4168 unsigned NumOps = e*2;
4170 ReservedSpace = NumOps;
4174IndirectBrInst::IndirectBrInst(
Value *
Address,
unsigned NumCases,
4177 Instruction::IndirectBr, AllocMarker, InsertBefore) {
4186 Use *OL = getOperandList();
4197 if (OpNo+1 > ReservedSpace)
4200 assert(OpNo < ReservedSpace &&
"Growing didn't work!");
4214 OL[idx+1] = OL[NumOps-1];
4217 OL[NumOps-1].
set(
nullptr);
4289 Result->setWeak(
isWeak());
4362 return new (AllocMarker)
CallInst(*
this, AllocMarker);
4365 return new (AllocMarker)
CallInst(*
this, AllocMarker);
4396 return new (AllocMarker)
ReturnInst(*
this, AllocMarker);
4401 return new (AllocMarker)
BranchInst(*
this, AllocMarker);
4415 return new (AllocMarker)
InvokeInst(*
this, AllocMarker);
4418 return new (AllocMarker)
InvokeInst(*
this, AllocMarker);
4426 return new (AllocMarker)
CallBrInst(*
this, AllocMarker);
4429 return new (AllocMarker)
CallBrInst(*
this, AllocMarker);
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
static bool isSigned(unsigned int Opcode)
Module.h This file contains the declarations for the Module class.
static Align computeLoadStoreDefaultAlign(Type *Ty, InsertPosition Pos)
static Value * createPlaceholderForShuffleVector(Value *V)
static Align computeAllocaDefaultAlign(Type *Ty, InsertPosition Pos)
static cl::opt< bool > DisableI2pP2iOpt("disable-i2p-p2i-opt", cl::init(false), cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"))
static bool hasNonZeroFPOperands(const CmpInst *Cmp)
static int matchShuffleAsBitRotate(ArrayRef< int > Mask, int NumSubElts)
Try to lower a vector shuffle as a bit rotation.
static Type * getIndexedTypeInternal(Type *Ty, ArrayRef< IndexTy > IdxList)
static bool isReplicationMaskWithParams(ArrayRef< int > Mask, int ReplicationFactor, int VF)
static bool isIdentityMaskImpl(ArrayRef< int > Mask, int NumOpElts)
static bool isSingleSourceMaskImpl(ArrayRef< int > Mask, int NumOpElts)
static Value * getAISize(LLVMContext &Context, Value *Amt)
uint64_t IntrinsicInst * II
PowerPC Reduce CR logical Operation
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static unsigned getNumElements(Type *Ty)
This file implements the SmallBitVector class.
This file defines the SmallVector class.
static SymbolRef::Type getType(const Symbol *Sym)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
float convertToFloat() const
Converts this APFloat to host float value.
Class for arbitrary precision integers.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
This class represents a conversion between pointers from one address space to another.
AddrSpaceCastInst * cloneImpl() const
Clone an identical AddrSpaceCastInst.
AddrSpaceCastInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
an instruction to allocate memory on the stack
std::optional< TypeSize > getAllocationSizeInBits(const DataLayout &DL) const
Get allocation size in bits.
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
AllocaInst * cloneImpl() const
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
bool isUsedWithInAlloca() const
Return true if this alloca is used as an inalloca argument to a call.
unsigned getAddressSpace() const
Return the address space for the allocation.
std::optional< TypeSize > getAllocationSize(const DataLayout &DL) const
Get allocation size in bytes.
bool isArrayAllocation() const
Return true if there is an allocation size parameter to the allocation instruction that is not 1.
void setAlignment(Align Align)
const Value * getArraySize() const
Get the number of elements allocated.
AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, const Twine &Name, InsertPosition InsertBefore)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Class to represent array types.
An instruction that atomically checks whether a specified value is in a memory location,...
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this cmpxchg instruction.
bool isVolatile() const
Return true if this is a cmpxchg from a volatile memory location.
void setFailureOrdering(AtomicOrdering Ordering)
Sets the failure ordering constraint of this cmpxchg instruction.
AtomicOrdering getFailureOrdering() const
Returns the failure ordering constraint of this cmpxchg instruction.
void setSuccessOrdering(AtomicOrdering Ordering)
Sets the success ordering constraint of this cmpxchg instruction.
AtomicCmpXchgInst * cloneImpl() const
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
bool isWeak() const
Return true if this cmpxchg may spuriously fail.
void setAlignment(Align Align)
AtomicOrdering getSuccessOrdering() const
Returns the success ordering constraint of this cmpxchg instruction.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this cmpxchg instruction.
AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID, InsertPosition InsertBefore=nullptr)
an instruction that atomically reads a memory location, combines it with another value,...
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
AtomicRMWInst * cloneImpl() const
bool isVolatile() const
Return true if this is a RMW on a volatile memory location.
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ USubCond
Subtract only if no unsigned overflow.
@ Min
*p = old <signed v ? old : v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this rmw instruction.
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this rmw instruction.
void setOperation(BinOp Operation)
BinOp getOperation() const
AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, AtomicOrdering Ordering, SyncScope::ID SSID, InsertPosition InsertBefore=nullptr)
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this rmw instruction.
void setAlignment(Align Align)
static StringRef getOperationName(BinOp Op)
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
bool hasAttrSomewhere(Attribute::AttrKind Kind, unsigned *Index=nullptr) const
Return true if the specified attribute is set for at least one parameter or for the return value.
FPClassTest getRetNoFPClass() const
Get the disallowed floating-point classes of the return value.
bool hasParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Return true if the attribute exists for the given argument.
FPClassTest getParamNoFPClass(unsigned ArgNo) const
Get the disallowed floating-point classes of the argument value.
MemoryEffects getMemoryEffects() const
Returns memory effects of the function.
const ConstantRange & getRange() const
Returns the value of the range attribute.
AttrKind
This enumeration lists the attributes that can be associated with parameters, function results,...
static Attribute getWithMemoryEffects(LLVMContext &Context, MemoryEffects ME)
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM Basic Block Representation.
bool isEntryBlock() const
Return true if this is the entry block of the containing function.
const Function * getParent() const
Return the enclosing method, or null if none.
const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
static BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
bool swapOperands()
Exchange the two operands to this instruction.
static BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty, const Twine &Name, InsertPosition InsertBefore)
static BinaryOperator * CreateNSWNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
BinaryOperator * cloneImpl() const
This class represents a no-op cast from one type to another.
BitCastInst * cloneImpl() const
Clone an identical BitCastInst.
BitCastInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Conditional or Unconditional Branch instruction.
void swapSuccessors()
Swap the successors of this branch instruction.
BranchInst * cloneImpl() const
bool isConditional() const
Value * getCondition() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
FPClassTest getParamNoFPClass(unsigned i) const
Extract a test mask for disallowed floating-point value classes for the parameter.
bool isInlineAsm() const
Check if this call is an inline asm statement.
BundleOpInfo & getBundleOpInfoForOperand(unsigned OpIdx)
Return the BundleOpInfo for the operand at index OpIdx.
Attribute getRetAttr(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind for the return value.
void setCallingConv(CallingConv::ID CC)
FPClassTest getRetNoFPClass() const
Extract a test mask for disallowed floating-point value classes for the return value.
bundle_op_iterator bundle_op_info_begin()
Return the start of the list of BundleOpInfo instances associated with this OperandBundleUser.
MemoryEffects getMemoryEffects() const
void addFnAttr(Attribute::AttrKind Kind)
Adds the attribute to the function.
bool doesNotAccessMemory() const
Determine if the call does not access memory.
void getOperandBundlesAsDefs(SmallVectorImpl< OperandBundleDef > &Defs) const
Return the list of operand bundles attached to this instruction as a vector of OperandBundleDefs.
void setOnlyAccessesArgMemory()
OperandBundleUse getOperandBundleAt(unsigned Index) const
Return the operand bundle at a specific index.
void setOnlyAccessesInaccessibleMemOrArgMem()
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
void setDoesNotAccessMemory()
bool hasRetAttr(Attribute::AttrKind Kind) const
Determine whether the return value has the given attribute.
bool onlyAccessesInaccessibleMemory() const
Determine if the function may only access memory that is inaccessible from the IR.
unsigned getNumOperandBundles() const
Return the number of operand bundles associated with this User.
CallingConv::ID getCallingConv() const
bundle_op_iterator bundle_op_info_end()
Return the end of the list of BundleOpInfo instances associated with this OperandBundleUser.
unsigned getNumSubclassExtraOperandsDynamic() const
Get the number of extra operands for instructions that don't have a fixed number of extra operands.
bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
bool isMustTailCall() const
Tests if this call site must be tail call optimized.
bool isIndirectCall() const
Return true if the callsite is an indirect call.
bool onlyReadsMemory() const
Determine if the call does not access or only reads memory.
iterator_range< bundle_op_iterator > bundle_op_infos()
Return the range [bundle_op_info_begin, bundle_op_info_end).
void setOnlyReadsMemory()
static CallBase * addOperandBundle(CallBase *CB, uint32_t ID, OperandBundleDef OB, InsertPosition InsertPt=nullptr)
Create a clone of CB with operand bundle OB added.
bool onlyAccessesInaccessibleMemOrArgMem() const
Determine if the function may only access memory that is either inaccessible from the IR or pointed t...
Value * getCalledOperand() const
void setOnlyWritesMemory()
op_iterator populateBundleOperandInfos(ArrayRef< OperandBundleDef > Bundles, const unsigned BeginIndex)
Populate the BundleOpInfo instances and the Use& vector from Bundles.
AttributeList Attrs
parameter attributes for callable
bool hasOperandBundlesOtherThan(ArrayRef< uint32_t > IDs) const
Return true if this operand bundle user contains operand bundles with tags other than those specified...
std::optional< ConstantRange > getRange() const
If this return value has a range attribute, return the value range of the argument.
bool isReturnNonNull() const
Return true if the return value is known to be not null.
Value * getArgOperand(unsigned i) const
uint64_t getRetDereferenceableBytes() const
Extract the number of dereferenceable bytes for a call or parameter (0=unknown).
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
FunctionType * getFunctionType() const
Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
static unsigned CountBundleInputs(ArrayRef< OperandBundleDef > Bundles)
Return the total number of values used in Bundles.
Value * getArgOperandWithAttribute(Attribute::AttrKind Kind) const
If one of the arguments has the specified attribute, returns its operand value.
void setOnlyAccessesInaccessibleMemory()
static CallBase * Create(CallBase *CB, ArrayRef< OperandBundleDef > Bundles, InsertPosition InsertPt=nullptr)
Create a clone of CB with a different set of operand bundles and insert it before InsertPt.
bool onlyWritesMemory() const
Determine if the call does not access or only writes memory.
bool hasClobberingOperandBundles() const
Return true if this operand bundle user has operand bundles that may write to the heap.
void setCalledOperand(Value *V)
static CallBase * removeOperandBundle(CallBase *CB, uint32_t ID, InsertPosition InsertPt=nullptr)
Create a clone of CB with operand bundle ID removed.
bool hasReadingOperandBundles() const
Return true if this operand bundle user has operand bundles that may read from the heap.
bool onlyAccessesArgMemory() const
Determine if the call can access memmory only using pointers based on its arguments.
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
void setMemoryEffects(MemoryEffects ME)
bool hasOperandBundles() const
Return true if this User has any operand bundles.
bool isTailCall() const
Tests if this call site is marked as a tail call.
Function * getCaller()
Helper to get the caller (the parent function).
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
SmallVector< BasicBlock *, 16 > getIndirectDests() const
void setDefaultDest(BasicBlock *B)
void setIndirectDest(unsigned i, BasicBlock *B)
BasicBlock * getDefaultDest() const
static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
CallBrInst * cloneImpl() const
This class represents a function call, abstracting a target machine's calling convention.
void updateProfWeight(uint64_t S, uint64_t T)
Updates profile metadata by scaling it by S / T.
TailCallKind getTailCallKind() const
CallInst * cloneImpl() const
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
This is the base class for all instructions that perform data casts.
static Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static CastInst * CreatePointerBitCastOrAddrSpaceCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast or an AddrSpaceCast cast instruction.
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
static CastInst * CreateIntegerCast(Value *S, Type *Ty, bool isSigned, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt, BitCast, or Trunc for int -> int casts.
static CastInst * CreateFPCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create an FPExt, BitCast, or FPTrunc for fp -> fp casts.
static unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, Type *DstIntPtrTy)
Determine how a pair of casts can be eliminated, if they can be at all.
static bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static bool isBitCastable(Type *SrcTy, Type *DestTy)
Check whether a bitcast between these types is valid.
static CastInst * CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a Trunc or BitCast cast instruction.
static CastInst * CreatePointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
static CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
static bool isNoopCast(Instruction::CastOps Opcode, Type *SrcTy, Type *DstTy, const DataLayout &DL)
A no-op cast is one that can be effected without changing any bits.
static CastInst * CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt or BitCast cast instruction.
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
bool isIntegerCast() const
There are several places where we need to know if a cast instruction only deals with integer source a...
static CastInst * CreateSExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a SExt or BitCast cast instruction.
static bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
CatchReturnInst * cloneImpl() const
void setUnwindDest(BasicBlock *UnwindDest)
void addHandler(BasicBlock *Dest)
Add an entry to the switch instruction... Note: This action invalidates handler_end().
CatchSwitchInst * cloneImpl() const
Value * getParentPad() const
void setParentPad(Value *ParentPad)
BasicBlock * getUnwindDest() const
void removeHandler(handler_iterator HI)
bool hasUnwindDest() const
CleanupReturnInst * cloneImpl() const
This class is the base class for the comparison instructions.
Predicate getStrictPredicate() const
For example, SGE -> SGT, SLE -> SLT, ULE -> ULT, UGE -> UGT.
bool isEquality() const
Determine if this is an equals/not equals predicate.
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
bool isFalseWhenEqual() const
This is just a convenience.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
@ ICMP_SGE
signed greater or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
bool isEquivalence(bool Invert=false) const
Determine if one operand of this compare can always be replaced by the other operand,...
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static CmpInst * Create(OtherOps Op, Predicate Pred, Value *S1, Value *S2, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate and the two operands.
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
static CmpInst * CreateWithCopiedFlags(OtherOps Op, Predicate Pred, Value *S1, Value *S2, const Instruction *FlagsSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate, the two operands and the instructio...
bool isNonStrictPredicate() const
bool isFPPredicate() const
void swapOperands()
This is just a convenience that dispatches to the subclasses.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
static StringRef getPredicateName(Predicate P)
Predicate getPredicate() const
Return the predicate for this instruction.
bool isStrictPredicate() const
static bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
static bool isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2)
Determine if Pred1 implies Pred2 is true when two compares have matching operands.
bool isIntPredicate() const
static bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred, Value *LHS, Value *RHS, const Twine &Name="", InsertPosition InsertBefore=nullptr, Instruction *FlagsSource=nullptr)
static bool isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2)
Determine if Pred1 implies Pred2 is false when two compares have matching operands.
bool isCommutative() const
This is just a convenience that dispatches to the subclasses.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
CmpPredicate()
Default constructor.
static CmpPredicate get(const CmpInst *Cmp)
Do a ICmpInst::getCmpPredicate() or CmpInst::getPredicate(), as appropriate.
static CmpPredicate getSwapped(CmpPredicate P)
Get the swapped predicate of a CmpPredicate.
ConstantFP - Floating Point Values [float, double].
const APFloat & getValueAPF() const
This is the shared class of boolean and integer constants.
static Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static Constant * getAllOnesValue(Type *Ty)
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
static constexpr ElementCount getFixed(ScalarTy MinVal)
This instruction compares its operands according to the predicate given to the constructor.
static bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
FCmpInst * cloneImpl() const
Clone an identical FCmpInst.
This class represents an extension of floating point types.
FPExtInst * cloneImpl() const
Clone an identical FPExtInst.
FPExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
float getFPAccuracy() const
Get the maximum error permitted by this operation in ULPs.
This class represents a cast from floating point to signed integer.
FPToSIInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
FPToSIInst * cloneImpl() const
Clone an identical FPToSIInst.
This class represents a cast from floating point to unsigned integer.
FPToUIInst * cloneImpl() const
Clone an identical FPToUIInst.
FPToUIInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
This class represents a truncation of floating point types.
FPTruncInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
FPTruncInst * cloneImpl() const
Clone an identical FPTruncInst.
An instruction for ordering other memory operations.
FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System, InsertPosition InsertBefore=nullptr)
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this fence instruction.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this fence instruction.
FenceInst * cloneImpl() const
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this fence instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
This class represents a freeze function that returns random concrete value if an operand is either a ...
FreezeInst(Value *S, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
FreezeInst * cloneImpl() const
Clone an identical FreezeInst.
void setParentPad(Value *ParentPad)
Value * getParentPad() const
Convenience accessors.
FuncletPadInst * cloneImpl() const
Class to represent function types.
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Type * getParamType(unsigned i) const
Parameter type accessors.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutInBounds() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
bool isInBounds() const
Determine whether the GEP has the inbounds flag.
bool hasNoUnsignedSignedWrap() const
Determine whether the GEP has the nusw flag.
static Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
bool hasAllZeroIndices() const
Return true if all of the indices of this GEP are zeros.
bool hasNoUnsignedWrap() const
Determine whether the GEP has the nuw flag.
bool hasAllConstantIndices() const
Return true if all of the indices of this GEP are constant integers.
void setIsInBounds(bool b=true)
Set or clear the inbounds flag on this GEP instruction.
static Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const
Accumulate the constant address offset of this GEP if possible.
GetElementPtrInst * cloneImpl() const
bool collectOffset(const DataLayout &DL, unsigned BitWidth, SmallMapVector< Value *, APInt, 4 > &VariableOffsets, APInt &ConstantOffset) const
void setNoWrapFlags(GEPNoWrapFlags NW)
Set nowrap flags for GEP instruction.
GEPNoWrapFlags getNoWrapFlags() const
Get the nowrap flags for the GEP instruction.
This instruction compares its operands according to the predicate given to the constructor.
static bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
ICmpInst * cloneImpl() const
Clone an identical ICmpInst.
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
Indirect Branch Instruction.
void addDestination(BasicBlock *Dest)
Add a destination.
void removeDestination(unsigned i)
This method removes the specified successor from the indirectbr instruction.
IndirectBrInst * cloneImpl() const
This instruction inserts a single (scalar) element into a VectorType value.
InsertElementInst * cloneImpl() const
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx)
Return true if an insertelement instruction can be formed with the specified operands.
BasicBlock * getBasicBlock()
This instruction inserts a struct field of array element value into an aggregate value.
InsertValueInst * cloneImpl() const
BitfieldElement::Type getSubclassData() const
bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
void swapProfMetadata()
If the instruction has "branch_weights" MD_prof metadata and the MDNode has three operands (including...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
This class represents a cast from an integer to a pointer.
IntToPtrInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
IntToPtrInst * cloneImpl() const
Clone an identical IntToPtrInst.
BasicBlock * getUnwindDest() const
void setNormalDest(BasicBlock *B)
InvokeInst * cloneImpl() const
LandingPadInst * getLandingPadInst() const
Get the landingpad instruction from the landing pad block (the unwind destination).
void setUnwindDest(BasicBlock *B)
void updateProfWeight(uint64_t S, uint64_t T)
Updates profile metadata by scaling it by S / T.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
This is an important class for using LLVM in a threaded context.
LLVMContextImpl *const pImpl
The landingpad instruction holds all of the information necessary to generate correct exception handl...
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
LandingPadInst * cloneImpl() const
static LandingPadInst * Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedClauses is a hint for the number of incoming clauses that this landingpad w...
void addClause(Constant *ClauseVal)
Add a catch or filter clause to the landing pad.
void setCleanup(bool V)
Indicate that this landingpad instruction is a cleanup.
An instruction for reading from memory.
void setAlignment(Align Align)
bool isVolatile() const
Return true if this is a load from a volatile memory location.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this load instruction.
LoadInst * cloneImpl() const
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
void setVolatile(bool V)
Specify whether this is a volatile load or not.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this load instruction.
LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, InsertPosition InsertBefore)
Align getAlign() const
Return the alignment of the access that is being performed.
MDNode * createBranchWeights(uint32_t TrueWeight, uint32_t FalseWeight, bool IsExpected=false)
Return metadata containing two branch weights.
const MDOperand & getOperand(unsigned I) const
static MemoryEffectsBase readOnly()
Create MemoryEffectsBase that can read any memory.
bool onlyWritesMemory() const
Whether this function only (at most) writes memory.
bool doesNotAccessMemory() const
Whether this function accesses no memory.
static MemoryEffectsBase argMemOnly(ModRefInfo MR=ModRefInfo::ModRef)
Create MemoryEffectsBase that can only access argument memory.
static MemoryEffectsBase inaccessibleMemOnly(ModRefInfo MR=ModRefInfo::ModRef)
Create MemoryEffectsBase that can only access inaccessible memory.
bool onlyAccessesInaccessibleMem() const
Whether this function only (at most) accesses inaccessible memory.
bool onlyAccessesArgPointees() const
Whether this function only (at most) accesses argument memory.
bool onlyReadsMemory() const
Whether this function only (at most) reads memory.
static MemoryEffectsBase writeOnly()
Create MemoryEffectsBase that can write any memory.
static MemoryEffectsBase inaccessibleOrArgMemOnly(ModRefInfo MR=ModRefInfo::ModRef)
Create MemoryEffectsBase that can only access inaccessible or argument memory.
static MemoryEffectsBase none()
Create MemoryEffectsBase that cannot read or write any memory.
bool onlyAccessesInaccessibleOrArgMem() const
Whether this function only (at most) accesses argument and inaccessible memory.
A container for an operand bundle being viewed as a set of values rather than a set of uses.
iterator_range< const_block_iterator > blocks() const
void allocHungoffUses(unsigned N)
const_block_iterator block_begin() const
void removeIncomingValueIf(function_ref< bool(unsigned)> Predicate, bool DeletePHIIfEmpty=true)
Remove all incoming values for which the predicate returns true.
Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
bool hasConstantOrUndefValue() const
Whether the specified PHI node always merges together the same value, assuming undefs are equal to a ...
void copyIncomingBlocks(iterator_range< const_block_iterator > BBRange, uint32_t ToIdx=0)
Copies the basic blocks from BBRange to the incoming basic block list of this PHINode,...
const_block_iterator block_end() const
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
Value * hasConstantValue() const
If the specified PHI node always merges together the same value, return the value,...
PHINode * cloneImpl() const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
Class to represent pointers.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class represents a cast from a pointer to an integer.
PtrToIntInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
PtrToIntInst * cloneImpl() const
Clone an identical PtrToIntInst.
Resume the propagation of an exception.
ResumeInst * cloneImpl() const
Return a value (possibly void), from a function.
ReturnInst * cloneImpl() const
This class represents a sign extension of integer types.
SExtInst * cloneImpl() const
Clone an identical SExtInst.
SExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
This class represents a cast from signed integer to floating point.
SIToFPInst * cloneImpl() const
Clone an identical SIToFPInst.
SIToFPInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Class to represent scalable SIMD vectors.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
SelectInst * cloneImpl() const
static const char * areInvalidOperands(Value *Cond, Value *True, Value *False)
Return a string if the specified operands are invalid for a select operation, otherwise return null.
This instruction constructs a fixed permutation of two input vectors.
static bool isZeroEltSplatMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses all elements with the same value as the first element of exa...
ArrayRef< int > getShuffleMask() const
static bool isSpliceMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is a splice mask, concatenating the two inputs together and then ext...
int getMaskValue(unsigned Elt) const
Return the shuffle mask value of this instruction for the given element index.
ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask)
Return true if a shufflevector instruction can be formed with the specified operands.
static bool isSelectMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from its source vectors without lane crossings.
static bool isBitRotateMask(ArrayRef< int > Mask, unsigned EltSizeInBits, unsigned MinSubElts, unsigned MaxSubElts, unsigned &NumSubElts, unsigned &RotateAmt)
Checks if the shuffle is a bit rotation of the first operand across multiple subelements,...
VectorType * getType() const
Overload to return most specific vector type.
bool isIdentityWithExtract() const
Return true if this shuffle extracts the first N elements of exactly one source vector.
static bool isOneUseSingleSourceMask(ArrayRef< int > Mask, int VF)
Return true if this shuffle mask represents "clustered" mask of size VF, i.e.
bool isIdentityWithPadding() const
Return true if this shuffle lengthens exactly one source vector with undefs in the high elements.
static bool isSingleSourceMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector.
bool isConcat() const
Return true if this shuffle concatenates its 2 source vectors.
static bool isDeInterleaveMaskOfFactor(ArrayRef< int > Mask, unsigned Factor, unsigned &Index)
Check if the mask is a DE-interleave mask of the given factor Factor like: <Index,...
ShuffleVectorInst * cloneImpl() const
static bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
static bool isExtractSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is an extract subvector mask.
void setShuffleMask(ArrayRef< int > Mask)
bool isInterleave(unsigned Factor)
Return if this shuffle interleaves its two input vectors together.
static bool isReverseMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask swaps the order of elements from exactly one source vector.
static bool isTransposeMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask is a transpose mask.
void commute()
Swap the operands and adjust the mask to preserve the semantics of the instruction.
static bool isInsertSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &NumSubElts, int &Index)
Return true if this shuffle mask is an insert subvector mask.
static Constant * convertShuffleMaskForBitcode(ArrayRef< int > Mask, Type *ResultTy)
static bool isReplicationMask(ArrayRef< int > Mask, int &ReplicationFactor, int &VF)
Return true if this shuffle mask replicates each of the VF elements in a vector ReplicationFactor tim...
static bool isInterleaveMask(ArrayRef< int > Mask, unsigned Factor, unsigned NumInputElts, SmallVectorImpl< unsigned > &StartIndexes)
Return true if the mask interleaves one or more input vectors together.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
Implements a dense probed hash-table based set with some number of buckets stored inline.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this store instruction.
void setVolatile(bool V)
Specify whether this is a volatile store or not.
void setAlignment(Align Align)
StoreInst * cloneImpl() const
StoreInst(Value *Val, Value *Ptr, InsertPosition InsertBefore)
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this store instruction.
bool isVolatile() const
Return true if this is a store to a volatile memory location.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this store instruction.
StringRef - Represent a constant reference to a string, i.e.
Class to represent struct types.
void setSuccessorWeight(unsigned idx, CaseWeightOpt W)
Instruction::InstListType::iterator eraseFromParent()
Delegate the call to the underlying SwitchInst::eraseFromParent() and mark this object to not touch t...
void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W)
Delegate the call to the underlying SwitchInst::addCase() and set the specified branch weight for the...
CaseWeightOpt getSuccessorWeight(unsigned idx)
MDNode * buildProfBranchWeightsMD()
std::optional< uint32_t > CaseWeightOpt
SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I)
Delegate the call to the underlying SwitchInst::removeCase() and remove correspondent branch weight.
void setValue(ConstantInt *V) const
Sets the new value for current case.
void setSuccessor(BasicBlock *S) const
Sets the new successor for current case.
SwitchInst * cloneImpl() const
void addCase(ConstantInt *OnVal, BasicBlock *Dest)
Add an entry to the switch instruction.
CaseIteratorImpl< CaseHandle > CaseIt
unsigned getNumCases() const
Return the number of 'cases' in this switch instruction, excluding the default case.
CaseIt removeCase(CaseIt I)
This method removes the specified case and its successor from the switch instruction.
This class represents a truncation of integer types.
TruncInst * cloneImpl() const
Clone an identical TruncInst.
TruncInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
static constexpr TypeSize get(ScalarTy Quantity, bool Scalable)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
static IntegerType * getInt1Ty(LLVMContext &C)
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isFirstClassType() const
Return true if the type is "first class", meaning it is a valid type for a Value.
bool isAggregateType() const
Return true if the type is an aggregate type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
static IntegerType * getInt32Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isTokenTy() const
Return true if this is 'token'.
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isVoidTy() const
Return true if this is 'void'.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
This class represents a cast unsigned integer to floating point.
UIToFPInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
UIToFPInst * cloneImpl() const
Clone an identical UIToFPInst.
static UnaryOperator * Create(UnaryOps Op, Value *S, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a unary instruction, given the opcode and an operand.
UnaryOperator(UnaryOps iType, Value *S, Type *Ty, const Twine &Name, InsertPosition InsertBefore)
UnaryOperator * cloneImpl() const
UnaryOps getOpcode() const
This function has undefined behavior.
UnreachableInst(LLVMContext &C, InsertPosition InsertBefore=nullptr)
UnreachableInst * cloneImpl() const
A Use represents the edge between a Value definition and its users.
const Use * getOperandList() const
void allocHungoffUses(unsigned N, bool IsPhi=false)
Allocate the array of Uses, followed by a pointer (with bottom bit set) to the User.
void setNumHungOffUseOperands(unsigned NumOps)
Subclasses with hung off uses need to manage the operand count themselves.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
void growHungoffUses(unsigned N, bool IsPhi=false)
Grow the number of hung off uses.
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
VAArgInst * cloneImpl() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
unsigned char SubclassOptionalData
Hold subclass data that can be dropped.
void setName(const Twine &Name)
Change the name of the value.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
LLVMContext & getContext() const
All values hold a context through their type.
StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
This class represents zero extension of integer types.
ZExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
ZExtInst * cloneImpl() const
Clone an identical ZExtInst.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
base_list_type::iterator iterator
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
@ C
The default llvm calling convention, compatible with C.
bool match(Val *V, const Pattern &P)
cstfp_pred_ty< is_non_zero_not_denormal_fp > m_NonZeroNotDenormalFP()
Match a floating-point non-zero that is not a denormal.
initializer< Ty > init(const Ty &Val)
@ Switch
The "resume-switch" lowering, where there are separate resume and destroy functions that are shared b...
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
unsigned getPointerAddressSpace(const Type *T)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
MDNode * getBranchWeightMDNode(const Instruction &I)
Get the branch weights metadata node.
std::enable_if_t< std::is_unsigned_v< T >, std::optional< T > > checkedMulUnsigned(T LHS, T RHS)
Multiply two unsigned integers LHS and RHS.
auto reverse(ContainerTy &&C)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool isPointerTy(const Type *T)
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
constexpr int PoisonMaskElem
unsigned getNumBranchWeights(const MDNode &ProfileData)
AtomicOrdering
Atomic ordering for LLVM's memory model.
auto remove_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::remove_if which take ranges instead of having to pass begin/end explicitly.
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ And
Bitwise or logical AND of integers.
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
OutputIt copy(R &&Range, OutputIt Out)
constexpr unsigned BitWidth
bool extractBranchWeights(const MDNode *ProfileData, SmallVectorImpl< uint32_t > &Weights)
Extract branch weights from MD_prof metadata.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
@ Default
The result values are uniform if and only if all operands are uniform.
void scaleProfData(Instruction &I, uint64_t S, uint64_t T)
Scaling the profile data attached to 'I' using the ratio of S/T.
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Summary of memprof metadata on allocations.
Describes an element of a Bitfield.
Used to keep track of an operand bundle.
uint32_t End
The index in the Use& vector where operands for this operand bundle ends.
uint32_t Begin
The index in the Use& vector where operands for this operand bundle starts.
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
static std::optional< bool > eq(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_EQ result.
static std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
static std::optional< bool > sge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGE result.
static std::optional< bool > ugt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGT result.
static std::optional< bool > slt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLT result.
static std::optional< bool > ult(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULT result.
static std::optional< bool > ule(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULE result.
static std::optional< bool > sle(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLE result.
static std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
static std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
A MapVector that performs no allocations if smaller than a certain size.
Indicates this User has operands co-allocated.
Indicates this User has operands and a descriptor co-allocated .