35#include "llvm/IR/IntrinsicsAMDGPU.h"
36#include "llvm/IR/IntrinsicsR600.h"
38#define DEBUG_TYPE "amdgpu-legalinfo"
48 "amdgpu-global-isel-new-legality",
49 cl::desc(
"Use GlobalISel desired legality, rather than try to use"
50 "rules compatible with selection patterns"),
65 unsigned Bits = Ty.getSizeInBits();
75 const LLT Ty = Query.Types[TypeIdx];
81 return Ty.getNumElements() % 2 != 0 &&
82 EltSize > 1 && EltSize < 32 &&
83 Ty.getSizeInBits() % 32 != 0;
89 const LLT Ty = Query.Types[TypeIdx];
96 const LLT Ty = Query.Types[TypeIdx];
98 return EltTy.
getSizeInBits() == 16 && Ty.getNumElements() > 2;
104 const LLT Ty = Query.Types[TypeIdx];
106 return std::pair(TypeIdx,
113 const LLT Ty = Query.Types[TypeIdx];
115 unsigned Size = Ty.getSizeInBits();
116 unsigned Pieces = (
Size + 63) / 64;
117 unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces;
127 const LLT Ty = Query.Types[TypeIdx];
130 const int Size = Ty.getSizeInBits();
132 const int NextMul32 = (
Size + 31) / 32;
136 const int NewNumElts = (32 * NextMul32 + EltSize - 1) / EltSize;
144 unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
145 return std::make_pair(TypeIdx,
LLT::scalar(MemSize));
152 const LLT Ty = Query.Types[TypeIdx];
154 const unsigned EltSize = Ty.getElementType().getSizeInBits();
157 assert(EltSize == 32 || EltSize == 64);
162 for (NewNumElts = NumElts; NewNumElts < MaxNumElts; ++NewNumElts) {
166 return std::pair(TypeIdx,
181 const unsigned NumElems = Ty.getElementCount().getFixedValue();
186 const unsigned Size = Ty.getSizeInBits();
199 const LLT Ty = Query.Types[TypeIdx];
206 const LLT Ty = Query.Types[TypeIdx];
207 unsigned Size = Ty.getSizeInBits();
216 const LLT QueryTy = Query.Types[TypeIdx];
223 const LLT QueryTy = Query.Types[TypeIdx];
230 const LLT QueryTy = Query.Types[TypeIdx];
236 return ((ST.useRealTrue16Insts() &&
Size == 16) ||
Size % 32 == 0) &&
242 return EltSize == 16 || EltSize % 32 == 0;
246 const int EltSize = Ty.getElementType().getSizeInBits();
247 return EltSize == 32 || EltSize == 64 ||
248 (EltSize == 16 && Ty.getNumElements() % 2 == 0) ||
249 EltSize == 128 || EltSize == 256;
278 LLT Ty = Query.Types[TypeIdx];
286 const LLT QueryTy = Query.Types[TypeIdx];
370 if (Ty.isPointerOrPointerVector())
371 Ty = Ty.changeElementType(
LLT::scalar(Ty.getScalarSizeInBits()));
375 (ST.useRealTrue16Insts() && Ty ==
S16) ||
390 const LLT Ty = Query.Types[TypeIdx];
391 return !Ty.
isVector() && Ty.getSizeInBits() > 32 &&
392 Query.MMODescrs[0].MemoryTy.getSizeInBits() < Ty.getSizeInBits();
400 unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
410 bool IsLoad,
bool IsAtomic) {
414 return ST.enableFlatScratch() ? 128 : 32;
416 return ST.useDS128() ? 128 : 64;
427 return IsLoad ? 512 : 128;
432 return ST.hasMultiDwordFlatScratchAddressing() || IsAtomic ? 128 : 32;
441 const bool IsLoad = Query.
Opcode != AMDGPU::G_STORE;
443 unsigned RegSize = Ty.getSizeInBits();
446 unsigned AS = Query.
Types[1].getAddressSpace();
453 if (Ty.isVector() && MemSize !=
RegSize)
460 if (IsLoad && MemSize <
Size)
461 MemSize = std::max(MemSize,
Align);
481 if (!ST.hasDwordx3LoadStores())
494 if (AlignBits < MemSize) {
497 Align(AlignBits / 8)))
527 const unsigned Size = Ty.getSizeInBits();
528 if (Ty.isPointerVector())
538 unsigned EltSize = Ty.getScalarSizeInBits();
539 return EltSize != 32 && EltSize != 64;
553 const unsigned Size = Ty.getSizeInBits();
554 if (
Size != MemSizeInBits)
555 return Size <= 32 && Ty.isVector();
561 return Ty.isVector() && (!MemTy.
isVector() || MemTy == Ty) &&
570 uint64_t AlignInBits,
unsigned AddrSpace,
580 if (SizeInBits == 96 && ST.hasDwordx3LoadStores())
591 if (AlignInBits < RoundedSize)
598 RoundedSize, AddrSpace,
Align(AlignInBits / 8),
610 Query.
Types[1].getAddressSpace(), Opcode);
630 const unsigned NumParts =
PointerTy.getSizeInBits() / 32;
633 Register VectorReg =
MRI.createGenericVirtualRegister(VectorTy);
634 std::array<Register, 4> VectorElems;
635 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
636 for (
unsigned I = 0;
I < NumParts; ++
I)
638 B.buildExtractVectorElementConstant(
S32, VectorReg,
I).getReg(0);
639 B.buildMergeValues(MO, VectorElems);
643 Register BitcastReg =
MRI.createGenericVirtualRegister(VectorTy);
644 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
645 auto Scalar =
B.buildBitcast(ScalarTy, BitcastReg);
646 B.buildIntToPtr(MO, Scalar);
666 const unsigned NumParts =
PointerTy.getSizeInBits() / 32;
667 auto Unmerged =
B.buildUnmerge(
LLT::scalar(32), Pointer);
668 for (
unsigned I = 0;
I < NumParts; ++
I)
670 return B.buildBuildVector(VectorTy, PointerParts).getReg(0);
672 Register Scalar =
B.buildPtrToInt(ScalarTy, Pointer).getReg(0);
673 return B.buildBitcast(VectorTy, Scalar).getReg(0);
692 auto GetAddrSpacePtr = [&TM](
unsigned AS) {
705 const LLT BufferStridedPtr =
708 const LLT CodePtr = FlatPtr;
710 const std::initializer_list<LLT> AddrSpaces64 = {
711 GlobalPtr, ConstantPtr, FlatPtr
714 const std::initializer_list<LLT> AddrSpaces32 = {
715 LocalPtr, PrivatePtr, Constant32Ptr, RegionPtr
718 const std::initializer_list<LLT> AddrSpaces128 = {RsrcPtr};
720 const std::initializer_list<LLT> FPTypesBase = {
724 const std::initializer_list<LLT> FPTypes16 = {
728 const std::initializer_list<LLT> FPTypesPK16 = {
732 const LLT MinScalarFPTy = ST.has16BitInsts() ?
S16 :
S32;
753 if (ST.hasVOP3PInsts() && ST.hasAddNoCarry() && ST.hasIntClamp()) {
755 if (ST.hasScalarAddSub64()) {
758 .clampMaxNumElementsStrict(0,
S16, 2)
766 .clampMaxNumElementsStrict(0,
S16, 2)
773 if (ST.hasScalarSMulU64()) {
776 .clampMaxNumElementsStrict(0,
S16, 2)
784 .clampMaxNumElementsStrict(0,
S16, 2)
794 .minScalarOrElt(0,
S16)
799 }
else if (ST.has16BitInsts()) {
833 .widenScalarToNextMultipleOf(0, 32)
843 if (ST.hasMad64_32())
848 if (ST.hasIntClamp()) {
871 {G_SDIV, G_UDIV, G_SREM, G_UREM, G_SDIVREM, G_UDIVREM})
881 if (ST.hasVOP3PInsts()) {
883 .clampMaxNumElements(0,
S8, 2)
904 {G_UADDO, G_USUBO, G_UADDE, G_SADDE, G_USUBE, G_SSUBE})
916 LocalPtr, ConstantPtr, PrivatePtr, FlatPtr })
923 .clampScalar(0,
S16,
S64);
956 { G_FADD, G_FMUL, G_FMA, G_FCANONICALIZE,
957 G_STRICT_FADD, G_STRICT_FMUL, G_STRICT_FMA})
964 if (ST.has16BitInsts()) {
965 if (ST.hasVOP3PInsts())
968 FPOpActions.legalFor({
S16});
970 TrigActions.customFor({
S16});
971 FDIVActions.customFor({
S16});
974 if (ST.hasPackedFP32Ops()) {
975 FPOpActions.legalFor({
V2S32});
976 FPOpActions.clampMaxNumElementsStrict(0,
S32, 2);
980 {G_FMINNUM, G_FMAXNUM, G_FMINIMUMNUM, G_FMAXIMUMNUM, G_FMINNUM_IEEE,
983 if (ST.hasVOP3PInsts()) {
984 MinNumMaxNum.customFor(FPTypesPK16)
986 .clampMaxNumElements(0,
S16, 2)
989 }
else if (ST.has16BitInsts()) {
990 MinNumMaxNum.customFor(FPTypes16)
994 MinNumMaxNum.customFor(FPTypesBase)
999 if (ST.hasVOP3PInsts())
1015 .legalFor(FPTypesPK16)
1020 if (ST.has16BitInsts()) {
1049 if (ST.hasFractBug()) {
1078 if (ST.hasCvtPkF16F32Inst()) {
1080 .clampMaxNumElements(0,
S16, 2);
1084 FPTruncActions.scalarize(0).lower();
1092 if (ST.has16BitInsts()) {
1112 if (ST.hasMadF16() && ST.hasMadMacF32Insts())
1113 FMad.customFor({
S32,
S16});
1114 else if (ST.hasMadMacF32Insts())
1115 FMad.customFor({
S32});
1116 else if (ST.hasMadF16())
1117 FMad.customFor({
S16});
1122 if (ST.has16BitInsts()) {
1125 FRem.minScalar(0,
S32)
1134 .clampMaxNumElements(0,
S16, 2)
1153 if (ST.has16BitInsts())
1164 if (ST.has16BitInsts())
1175 .clampScalar(0,
S16,
S64)
1190 .clampScalar(0,
S16,
S64)
1194 if (ST.has16BitInsts()) {
1196 {G_INTRINSIC_TRUNC, G_FCEIL, G_INTRINSIC_ROUNDEVEN})
1198 .clampScalar(0,
S16,
S64)
1202 {G_INTRINSIC_TRUNC, G_FCEIL, G_INTRINSIC_ROUNDEVEN})
1204 .clampScalar(0,
S32,
S64)
1208 {G_INTRINSIC_TRUNC, G_FCEIL, G_INTRINSIC_ROUNDEVEN})
1211 .clampScalar(0,
S32,
S64)
1223 .scalarSameSizeAs(1, 0)
1239 {
S1}, {
S32,
S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr})
1240 .legalForCartesianProduct(
1241 {
S32}, {
S32,
S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr});
1242 if (ST.has16BitInsts()) {
1243 CmpBuilder.legalFor({{
S1,
S16}});
1254 {
S1}, ST.has16BitInsts() ? FPTypes16 : FPTypesBase);
1256 if (ST.hasSALUFloatInsts())
1266 if (ST.has16BitInsts())
1267 ExpOps.customFor({{
S32}, {
S16}});
1269 ExpOps.customFor({
S32});
1270 ExpOps.clampScalar(0, MinScalarFPTy,
S32)
1279 if (ST.has16BitInsts())
1295 .clampScalar(0,
S32,
S32)
1302 if (ST.has16BitInsts())
1305 .widenScalarToNextPow2(1)
1311 .lowerFor({
S1,
S16})
1312 .widenScalarToNextPow2(1)
1339 .clampScalar(0,
S32,
S32)
1349 .clampScalar(0,
S32,
S64)
1353 if (ST.has16BitInsts()) {
1356 .clampMaxNumElementsStrict(0,
S16, 2)
1363 if (ST.hasVOP3PInsts()) {
1366 .clampMaxNumElements(0,
S16, 2)
1371 if (ST.hasIntMinMax64()) {
1374 .clampMaxNumElements(0,
S16, 2)
1382 .clampMaxNumElements(0,
S16, 2)
1391 .widenScalarToNextPow2(0)
1419 .legalForCartesianProduct(AddrSpaces32, {
S32})
1435 .legalForCartesianProduct(AddrSpaces32, {
S32})
1452 const auto needToSplitMemOp = [=](
const LegalityQuery &Query,
1453 bool IsLoad) ->
bool {
1457 unsigned MemSize = Query.
MMODescrs[0].MemoryTy.getSizeInBits();
1471 unsigned NumRegs = (MemSize + 31) / 32;
1473 if (!ST.hasDwordx3LoadStores())
1484 unsigned GlobalAlign32 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 32;
1485 unsigned GlobalAlign16 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 16;
1486 unsigned GlobalAlign8 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 8;
1492 for (
unsigned Op : {G_LOAD, G_STORE}) {
1493 const bool IsStore =
Op == G_STORE;
1498 Actions.legalForTypesWithMemDesc({{
S32, GlobalPtr,
S32, GlobalAlign32},
1501 {
S64, GlobalPtr,
S64, GlobalAlign32},
1504 {
S32, GlobalPtr,
S8, GlobalAlign8},
1505 {
S32, GlobalPtr,
S16, GlobalAlign16},
1507 {
S32, LocalPtr,
S32, 32},
1508 {
S64, LocalPtr,
S64, 32},
1510 {
S32, LocalPtr,
S8, 8},
1511 {
S32, LocalPtr,
S16, 16},
1514 {
S32, PrivatePtr,
S32, 32},
1515 {
S32, PrivatePtr,
S8, 8},
1516 {
S32, PrivatePtr,
S16, 16},
1519 {
S32, ConstantPtr,
S32, GlobalAlign32},
1522 {
S64, ConstantPtr,
S64, GlobalAlign32},
1523 {
V2S32, ConstantPtr,
V2S32, GlobalAlign32}});
1532 Actions.unsupportedIf(
1533 typeInSet(1, {BufferFatPtr, BufferStridedPtr, RsrcPtr}));
1547 Actions.customIf(
typeIs(1, Constant32Ptr));
1573 return !Query.
Types[0].isVector() &&
1574 needToSplitMemOp(Query,
Op == G_LOAD);
1576 [=](
const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
1581 unsigned MemSize = Query.
MMODescrs[0].MemoryTy.getSizeInBits();
1584 if (DstSize > MemSize)
1590 if (MemSize > MaxSize)
1598 return Query.
Types[0].isVector() &&
1599 needToSplitMemOp(Query,
Op == G_LOAD);
1601 [=](
const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
1615 unsigned MemSize = Query.
MMODescrs[0].MemoryTy.getSizeInBits();
1616 if (MemSize > MaxSize) {
1620 if (MaxSize % EltSize == 0) {
1626 unsigned NumPieces = MemSize / MaxSize;
1630 if (NumPieces == 1 || NumPieces >= NumElts ||
1631 NumElts % NumPieces != 0)
1632 return std::pair(0, EltTy);
1640 return std::pair(0, EltTy);
1655 return std::pair(0, EltTy);
1660 .widenScalarToNextPow2(0)
1667 .legalForTypesWithMemDesc({{
S32, GlobalPtr,
S8, 8},
1668 {
S32, GlobalPtr,
S16, 2 * 8},
1669 {
S32, LocalPtr,
S8, 8},
1670 {
S32, LocalPtr,
S16, 16},
1671 {
S32, PrivatePtr,
S8, 8},
1672 {
S32, PrivatePtr,
S16, 16},
1673 {
S32, ConstantPtr,
S8, 8},
1674 {
S32, ConstantPtr,
S16, 2 * 8}})
1680 if (ST.hasFlatAddressSpace()) {
1681 ExtLoads.legalForTypesWithMemDesc(
1682 {{
S32, FlatPtr,
S8, 8}, {
S32, FlatPtr,
S16, 16}});
1697 {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB,
1698 G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR,
1699 G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX,
1700 G_ATOMICRMW_UMIN, G_ATOMICRMW_UINC_WRAP, G_ATOMICRMW_UDEC_WRAP})
1701 .legalFor({{
S32, GlobalPtr}, {
S32, LocalPtr},
1702 {
S64, GlobalPtr}, {
S64, LocalPtr},
1703 {
S32, RegionPtr}, {
S64, RegionPtr}});
1704 if (ST.hasFlatAddressSpace()) {
1705 Atomics.legalFor({{
S32, FlatPtr}, {
S64, FlatPtr}});
1710 if (ST.hasLDSFPAtomicAddF32()) {
1711 Atomic.legalFor({{
S32, LocalPtr}, {
S32, RegionPtr}});
1712 if (ST.hasLdsAtomicAddF64())
1713 Atomic.legalFor({{
S64, LocalPtr}});
1714 if (ST.hasAtomicDsPkAdd16Insts())
1715 Atomic.legalFor({{
V2F16, LocalPtr}, {
V2BF16, LocalPtr}});
1717 if (ST.hasAtomicFaddInsts())
1718 Atomic.legalFor({{
S32, GlobalPtr}});
1719 if (ST.hasFlatAtomicFaddF32Inst())
1720 Atomic.legalFor({{
S32, FlatPtr}});
1722 if (ST.hasGFX90AInsts() || ST.hasGFX1250Insts()) {
1733 if (ST.hasAtomicBufferGlobalPkAddF16NoRtnInsts() ||
1734 ST.hasAtomicBufferGlobalPkAddF16Insts())
1735 Atomic.legalFor({{
V2F16, GlobalPtr}, {
V2F16, BufferFatPtr}});
1736 if (ST.hasAtomicGlobalPkAddBF16Inst())
1737 Atomic.legalFor({{
V2BF16, GlobalPtr}});
1738 if (ST.hasAtomicFlatPkAdd16Insts())
1739 Atomic.legalFor({{
V2F16, FlatPtr}, {
V2BF16, FlatPtr}});
1744 auto &AtomicFMinFMax =
1746 .legalFor({{
F32, LocalPtr}, {
F64, LocalPtr}});
1748 if (ST.hasAtomicFMinFMaxF32GlobalInsts())
1750 if (ST.hasAtomicFMinFMaxF64GlobalInsts())
1751 AtomicFMinFMax.
legalFor({{
F64, GlobalPtr}, {
F64, BufferFatPtr}});
1752 if (ST.hasAtomicFMinFMaxF32FlatInsts())
1754 if (ST.hasAtomicFMinFMaxF64FlatInsts())
1761 {
S32, FlatPtr}, {
S64, FlatPtr}})
1762 .legalFor({{
S32, LocalPtr}, {
S64, LocalPtr},
1763 {
S32, RegionPtr}, {
S64, RegionPtr}});
1769 LocalPtr, FlatPtr, PrivatePtr,
1773 .clampScalar(0,
S16,
S64)
1788 if (ST.has16BitInsts()) {
1789 if (ST.hasVOP3PInsts()) {
1791 .clampMaxNumElements(0,
S16, 2);
1793 Shifts.legalFor({{
S16,
S16}});
1796 Shifts.widenScalarIf(
1801 const LLT AmountTy = Query.
Types[1];
1802 return ValTy.isScalar() && ValTy.getSizeInBits() <= 16 &&
1806 Shifts.clampScalar(1,
S32,
S32);
1807 Shifts.widenScalarToNextPow2(0, 16);
1808 Shifts.clampScalar(0,
S16,
S64);
1818 Shifts.clampScalar(1,
S32,
S32);
1819 Shifts.widenScalarToNextPow2(0, 32);
1820 Shifts.clampScalar(0,
S32,
S64);
1829 for (
unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) {
1830 unsigned VecTypeIdx =
Op == G_EXTRACT_VECTOR_ELT ? 1 : 0;
1831 unsigned EltTypeIdx =
Op == G_EXTRACT_VECTOR_ELT ? 0 : 1;
1832 unsigned IdxTypeIdx = 2;
1836 const LLT EltTy = Query.
Types[EltTypeIdx];
1837 const LLT VecTy = Query.
Types[VecTypeIdx];
1838 const LLT IdxTy = Query.
Types[IdxTypeIdx];
1840 const bool isLegalVecType =
1850 return (EltSize == 32 || EltSize == 64) &&
1866 const LLT EltTy = Query.
Types[EltTypeIdx];
1867 const LLT VecTy = Query.
Types[VecTypeIdx];
1871 const unsigned TargetEltSize =
1872 DstEltSize % 64 == 0 ? 64 : 32;
1873 return std::pair(VecTypeIdx,
1877 .clampScalar(EltTypeIdx,
S32,
S64)
1891 const LLT &EltTy = Query.
Types[1].getElementType();
1892 return Query.
Types[0] != EltTy;
1895 for (
unsigned Op : {G_EXTRACT, G_INSERT}) {
1896 unsigned BigTyIdx =
Op == G_EXTRACT ? 1 : 0;
1897 unsigned LitTyIdx =
Op == G_EXTRACT ? 0 : 1;
1906 const LLT BigTy = Query.
Types[BigTyIdx];
1911 const LLT BigTy = Query.
Types[BigTyIdx];
1912 const LLT LitTy = Query.
Types[LitTyIdx];
1918 const LLT BigTy = Query.
Types[BigTyIdx];
1924 const LLT LitTy = Query.
Types[LitTyIdx];
1943 if (ST.hasScalarPackInsts()) {
1946 .minScalarOrElt(0,
S16)
1953 BuildVector.customFor({
V2S16,
S16});
1954 BuildVector.minScalarOrElt(0,
S32);
1973 for (
unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
1974 unsigned BigTyIdx =
Op == G_MERGE_VALUES ? 0 : 1;
1975 unsigned LitTyIdx =
Op == G_MERGE_VALUES ? 1 : 0;
1977 auto notValidElt = [=](
const LegalityQuery &Query,
unsigned TypeIdx) {
1978 const LLT Ty = Query.
Types[TypeIdx];
1979 if (Ty.isVector()) {
1994 const LLT BigTy = Query.
Types[BigTyIdx];
2014 return notValidElt(Query, LitTyIdx);
2019 return notValidElt(Query, BigTyIdx);
2024 if (
Op == G_MERGE_VALUES) {
2025 Builder.widenScalarIf(
2028 const LLT Ty = Query.
Types[LitTyIdx];
2029 return Ty.getSizeInBits() < 32;
2036 const LLT Ty = Query.
Types[BigTyIdx];
2037 return Ty.getSizeInBits() % 16 != 0;
2042 const LLT &Ty = Query.
Types[BigTyIdx];
2043 unsigned NewSizeInBits = 1 <<
Log2_32_Ceil(Ty.getSizeInBits() + 1);
2044 if (NewSizeInBits >= 256) {
2045 unsigned RoundedTo =
alignTo<64>(Ty.getSizeInBits() + 1);
2046 if (RoundedTo < NewSizeInBits)
2047 NewSizeInBits = RoundedTo;
2049 return std::pair(BigTyIdx,
LLT::scalar(NewSizeInBits));
2060 .clampScalar(0,
S32,
S64);
2062 if (ST.hasVOP3PInsts()) {
2063 SextInReg.lowerFor({{
V2S16}})
2067 .clampMaxNumElementsStrict(0,
S16, 2);
2068 }
else if (ST.has16BitInsts()) {
2069 SextInReg.lowerFor({{
S32}, {
S64}, {
S16}});
2073 SextInReg.lowerFor({{
S32}, {
S64}});
2086 FSHRActionDefs.legalFor({{
S32,
S32}})
2087 .clampMaxNumElementsStrict(0,
S16, 2);
2088 if (ST.hasVOP3PInsts())
2090 FSHRActionDefs.scalarize(0).lower();
2092 if (ST.hasVOP3PInsts()) {
2095 .clampMaxNumElementsStrict(0,
S16, 2)
2119 .clampScalar(1,
S32,
S32)
2128 G_ATOMIC_CMPXCHG_WITH_SUCCESS, G_ATOMICRMW_NAND, G_ATOMICRMW_FSUB,
2129 G_READ_REGISTER, G_WRITE_REGISTER,
2134 if (ST.hasIEEEMinimumMaximumInsts()) {
2136 .legalFor(FPTypesPK16)
2150 G_INDEXED_LOAD, G_INDEXED_SEXTLOAD,
2151 G_INDEXED_ZEXTLOAD, G_INDEXED_STORE})
2157 {G_VECREDUCE_SMIN, G_VECREDUCE_SMAX, G_VECREDUCE_UMIN, G_VECREDUCE_UMAX,
2158 G_VECREDUCE_ADD, G_VECREDUCE_MUL, G_VECREDUCE_FMUL, G_VECREDUCE_FMIN,
2159 G_VECREDUCE_FMAX, G_VECREDUCE_FMINIMUM, G_VECREDUCE_FMAXIMUM,
2160 G_VECREDUCE_OR, G_VECREDUCE_AND, G_VECREDUCE_XOR})
2166 verify(*ST.getInstrInfo());
2175 switch (
MI.getOpcode()) {
2176 case TargetOpcode::G_ADDRSPACE_CAST:
2178 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2180 case TargetOpcode::G_FCEIL:
2182 case TargetOpcode::G_FREM:
2184 case TargetOpcode::G_INTRINSIC_TRUNC:
2186 case TargetOpcode::G_SITOFP:
2188 case TargetOpcode::G_UITOFP:
2190 case TargetOpcode::G_FPTOSI:
2192 case TargetOpcode::G_FPTOUI:
2194 case TargetOpcode::G_FMINNUM:
2195 case TargetOpcode::G_FMAXNUM:
2196 case TargetOpcode::G_FMINIMUMNUM:
2197 case TargetOpcode::G_FMAXIMUMNUM:
2198 case TargetOpcode::G_FMINNUM_IEEE:
2199 case TargetOpcode::G_FMAXNUM_IEEE:
2201 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
2203 case TargetOpcode::G_INSERT_VECTOR_ELT:
2205 case TargetOpcode::G_FSIN:
2206 case TargetOpcode::G_FCOS:
2208 case TargetOpcode::G_GLOBAL_VALUE:
2210 case TargetOpcode::G_LOAD:
2211 case TargetOpcode::G_SEXTLOAD:
2212 case TargetOpcode::G_ZEXTLOAD:
2214 case TargetOpcode::G_STORE:
2216 case TargetOpcode::G_FMAD:
2218 case TargetOpcode::G_FDIV:
2220 case TargetOpcode::G_FFREXP:
2222 case TargetOpcode::G_FSQRT:
2224 case TargetOpcode::G_UDIV:
2225 case TargetOpcode::G_UREM:
2226 case TargetOpcode::G_UDIVREM:
2228 case TargetOpcode::G_SDIV:
2229 case TargetOpcode::G_SREM:
2230 case TargetOpcode::G_SDIVREM:
2232 case TargetOpcode::G_ATOMIC_CMPXCHG:
2234 case TargetOpcode::G_FLOG2:
2236 case TargetOpcode::G_FLOG:
2237 case TargetOpcode::G_FLOG10:
2239 case TargetOpcode::G_FEXP2:
2241 case TargetOpcode::G_FEXP:
2242 case TargetOpcode::G_FEXP10:
2244 case TargetOpcode::G_FPOW:
2246 case TargetOpcode::G_FFLOOR:
2248 case TargetOpcode::G_BUILD_VECTOR:
2249 case TargetOpcode::G_BUILD_VECTOR_TRUNC:
2251 case TargetOpcode::G_MUL:
2253 case TargetOpcode::G_CTLZ:
2254 case TargetOpcode::G_CTTZ:
2256 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2258 case TargetOpcode::G_STACKSAVE:
2260 case TargetOpcode::G_GET_FPENV:
2262 case TargetOpcode::G_SET_FPENV:
2264 case TargetOpcode::G_TRAP:
2266 case TargetOpcode::G_DEBUGTRAP:
2286 if (ST.hasApertureRegs()) {
2291 ? AMDGPU::SRC_SHARED_BASE
2292 : AMDGPU::SRC_PRIVATE_BASE;
2293 assert((ApertureRegNo != AMDGPU::SRC_PRIVATE_BASE ||
2294 !ST.hasGloballyAddressableScratch()) &&
2295 "Cannot use src_private_base with globally addressable scratch!");
2297 MRI.setRegClass(Dst, &AMDGPU::SReg_64RegClass);
2298 B.buildCopy({Dst}, {
Register(ApertureRegNo)});
2299 return B.buildUnmerge(
S32, Dst).getReg(1);
2304 Register LoadAddr =
MRI.createGenericVirtualRegister(
2314 ST.getTargetLowering()->getImplicitParameterOffset(
B.getMF(), Param);
2316 Register KernargPtrReg =
MRI.createGenericVirtualRegister(
2330 B.buildObjectPtrOffset(LoadAddr, KernargPtrReg,
2333 return B.buildLoad(
S32, LoadAddr, *MMO).getReg(0);
2336 Register QueuePtr =
MRI.createGenericVirtualRegister(
2352 B.buildObjectPtrOffset(
2354 B.buildConstant(
LLT::scalar(64), StructOffset).getReg(0));
2355 return B.buildLoad(
S32, LoadAddr, *MMO).getReg(0);
2363 switch (Def->getOpcode()) {
2364 case AMDGPU::G_FRAME_INDEX:
2365 case AMDGPU::G_GLOBAL_VALUE:
2366 case AMDGPU::G_BLOCK_ADDR:
2368 case AMDGPU::G_CONSTANT: {
2369 const ConstantInt *CI = Def->getOperand(1).getCImm();
2370 return CI->
getSExtValue() != TM.getNullPointerValue(AddrSpace);
2386 assert(
MI.getOpcode() == TargetOpcode::G_ADDRSPACE_CAST ||
2388 Intrinsic::amdgcn_addrspacecast_nonnull));
2393 :
MI.getOperand(1).getReg();
2394 LLT DstTy =
MRI.getType(Dst);
2395 LLT SrcTy =
MRI.getType(Src);
2397 unsigned SrcAS = SrcTy.getAddressSpace();
2406 if (TM.isNoopAddrSpaceCast(SrcAS, DestAS)) {
2407 MI.setDesc(
B.getTII().get(TargetOpcode::G_BITCAST));
2414 auto castFlatToLocalOrPrivate = [&](
const DstOp &Dst) ->
Register {
2416 ST.hasGloballyAddressableScratch()) {
2420 Register SrcLo =
B.buildExtract(
S32, Src, 0).getReg(0);
2422 B.buildInstr(AMDGPU::S_MOV_B32, {
S32},
2423 {
Register(AMDGPU::SRC_FLAT_SCRATCH_BASE_LO)})
2425 MRI.setRegClass(FlatScratchBaseLo, &AMDGPU::SReg_32RegClass);
2427 return B.buildIntToPtr(Dst,
Sub).getReg(0);
2431 return B.buildExtract(Dst, Src, 0).getReg(0);
2437 castFlatToLocalOrPrivate(Dst);
2438 MI.eraseFromParent();
2442 unsigned NullVal = TM.getNullPointerValue(DestAS);
2444 auto SegmentNull =
B.buildConstant(DstTy, NullVal);
2445 auto FlatNull =
B.buildConstant(SrcTy, 0);
2448 auto PtrLo32 = castFlatToLocalOrPrivate(DstTy);
2452 B.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0));
2454 MI.eraseFromParent();
2461 auto castLocalOrPrivateToFlat = [&](
const DstOp &Dst) ->
Register {
2464 Register SrcAsInt =
B.buildPtrToInt(
S32, Src).getReg(0);
2467 ST.hasGloballyAddressableScratch()) {
2472 ThreadID =
B.buildIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {
S32})
2476 if (ST.isWave64()) {
2477 ThreadID =
B.buildIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {
S32})
2483 B.buildConstant(
S32, 57 - 32 - ST.getWavefrontSizeLog2()).getReg(0);
2484 Register SrcHi =
B.buildShl(
S32, ThreadID, ShAmt).getReg(0);
2486 B.buildMergeLikeInstr(DstTy, {SrcAsInt, SrcHi}).
getReg(0);
2490 B.buildInstr(AMDGPU::S_MOV_B64, {
S64},
2491 {
Register(AMDGPU::SRC_FLAT_SCRATCH_BASE)})
2493 MRI.setRegClass(FlatScratchBase, &AMDGPU::SReg_64RegClass);
2494 return B.buildPtrAdd(Dst, CvtPtr, FlatScratchBase).getReg(0);
2503 return B.buildMergeLikeInstr(Dst, {SrcAsInt, ApertureReg}).
getReg(0);
2509 castLocalOrPrivateToFlat(Dst);
2510 MI.eraseFromParent();
2514 Register BuildPtr = castLocalOrPrivateToFlat(DstTy);
2516 auto SegmentNull =
B.buildConstant(SrcTy, TM.getNullPointerValue(SrcAS));
2517 auto FlatNull =
B.buildConstant(DstTy, TM.getNullPointerValue(DestAS));
2520 SegmentNull.getReg(0));
2522 B.buildSelect(Dst, CmpRes, BuildPtr, FlatNull);
2524 MI.eraseFromParent();
2529 SrcTy.getSizeInBits() == 64) {
2531 B.buildExtract(Dst, Src, 0);
2532 MI.eraseFromParent();
2539 uint32_t AddrHiVal = Info->get32BitAddressHighBits();
2540 auto PtrLo =
B.buildPtrToInt(
S32, Src);
2541 auto HighAddr =
B.buildConstant(
S32, AddrHiVal);
2542 B.buildMergeLikeInstr(Dst, {PtrLo, HighAddr});
2543 MI.eraseFromParent();
2550 MI.eraseFromParent();
2558 LLT Ty =
MRI.getType(Src);
2559 assert(Ty.isScalar() && Ty.getSizeInBits() == 64);
2564 auto C1 =
B.buildFConstant(Ty, C1Val);
2565 auto CopySign =
B.buildFCopysign(Ty, C1, Src);
2568 auto Tmp1 =
B.buildFAdd(Ty, Src, CopySign);
2569 auto Tmp2 =
B.buildFSub(Ty, Tmp1, CopySign);
2571 auto C2 =
B.buildFConstant(Ty, C2Val);
2572 auto Fabs =
B.buildFAbs(Ty, Src);
2575 B.buildSelect(
MI.getOperand(0).getReg(),
Cond, Src, Tmp2);
2576 MI.eraseFromParent();
2594 auto Trunc =
B.buildIntrinsicTrunc(
S64, Src);
2596 const auto Zero =
B.buildFConstant(
S64, 0.0);
2597 const auto One =
B.buildFConstant(
S64, 1.0);
2600 auto And =
B.buildAnd(
S1, Lt0, NeTrunc);
2601 auto Add =
B.buildSelect(
S64,
And, One, Zero);
2604 B.buildFAdd(
MI.getOperand(0).getReg(), Trunc,
Add);
2605 MI.eraseFromParent();
2613 Register Src0Reg =
MI.getOperand(1).getReg();
2614 Register Src1Reg =
MI.getOperand(2).getReg();
2615 auto Flags =
MI.getFlags();
2616 LLT Ty =
MRI.getType(DstReg);
2618 auto Div =
B.buildFDiv(Ty, Src0Reg, Src1Reg, Flags);
2619 auto Trunc =
B.buildIntrinsicTrunc(Ty, Div, Flags);
2620 auto Neg =
B.buildFNeg(Ty, Trunc, Flags);
2621 B.buildFMA(DstReg, Neg, Src1Reg, Src0Reg, Flags);
2622 MI.eraseFromParent();
2628 const unsigned FractBits = 52;
2629 const unsigned ExpBits = 11;
2632 auto Const0 =
B.buildConstant(
S32, FractBits - 32);
2633 auto Const1 =
B.buildConstant(
S32, ExpBits);
2635 auto ExpPart =
B.buildIntrinsic(Intrinsic::amdgcn_ubfe, {
S32})
2637 .addUse(Const0.getReg(0))
2638 .addUse(Const1.getReg(0));
2640 return B.buildSub(
S32, ExpPart,
B.buildConstant(
S32, 1023));
2654 auto Unmerge =
B.buildUnmerge({
S32,
S32}, Src);
2661 const unsigned FractBits = 52;
2664 const auto SignBitMask =
B.buildConstant(
S32, UINT32_C(1) << 31);
2665 auto SignBit =
B.buildAnd(
S32,
Hi, SignBitMask);
2667 const auto FractMask =
B.buildConstant(
S64, (UINT64_C(1) << FractBits) - 1);
2669 const auto Zero32 =
B.buildConstant(
S32, 0);
2672 auto SignBit64 =
B.buildMergeLikeInstr(
S64, {Zero32, SignBit});
2674 auto Shr =
B.buildAShr(
S64, FractMask, Exp);
2675 auto Not =
B.buildNot(
S64, Shr);
2676 auto Tmp0 =
B.buildAnd(
S64, Src, Not);
2677 auto FiftyOne =
B.buildConstant(
S32, FractBits - 1);
2682 auto Tmp1 =
B.buildSelect(
S64, ExpLt0, SignBit64, Tmp0);
2683 B.buildSelect(
MI.getOperand(0).getReg(), ExpGt51, Src, Tmp1);
2684 MI.eraseFromParent();
2700 auto Unmerge =
B.buildUnmerge({
S32,
S32}, Src);
2701 auto ThirtyTwo =
B.buildConstant(
S32, 32);
2703 if (
MRI.getType(Dst) ==
S64) {
2704 auto CvtHi =
Signed ?
B.buildSITOFP(
S64, Unmerge.getReg(1))
2705 :
B.buildUITOFP(
S64, Unmerge.getReg(1));
2707 auto CvtLo =
B.buildUITOFP(
S64, Unmerge.getReg(0));
2708 auto LdExp =
B.buildFLdexp(
S64, CvtHi, ThirtyTwo);
2711 B.buildFAdd(Dst, LdExp, CvtLo);
2712 MI.eraseFromParent();
2718 auto One =
B.buildConstant(
S32, 1);
2722 auto ThirtyOne =
B.buildConstant(
S32, 31);
2723 auto X =
B.buildXor(
S32, Unmerge.getReg(0), Unmerge.getReg(1));
2724 auto OppositeSign =
B.buildAShr(
S32,
X, ThirtyOne);
2725 auto MaxShAmt =
B.buildAdd(
S32, ThirtyTwo, OppositeSign);
2726 auto LS =
B.buildIntrinsic(Intrinsic::amdgcn_sffbh, {
S32})
2727 .addUse(Unmerge.getReg(1));
2728 auto LS2 =
B.buildSub(
S32, LS, One);
2729 ShAmt =
B.buildUMin(
S32, LS2, MaxShAmt);
2731 ShAmt =
B.buildCTLZ(
S32, Unmerge.getReg(1));
2732 auto Norm =
B.buildShl(
S64, Src, ShAmt);
2733 auto Unmerge2 =
B.buildUnmerge({
S32,
S32}, Norm);
2734 auto Adjust =
B.buildUMin(
S32, One, Unmerge2.getReg(0));
2735 auto Norm2 =
B.buildOr(
S32, Unmerge2.getReg(1), Adjust);
2736 auto FVal =
Signed ?
B.buildSITOFP(
S32, Norm2) :
B.buildUITOFP(
S32, Norm2);
2737 auto Scale =
B.buildSub(
S32, ThirtyTwo, ShAmt);
2738 B.buildFLdexp(Dst, FVal, Scale);
2739 MI.eraseFromParent();
2756 const LLT SrcLT =
MRI.getType(Src);
2759 unsigned Flags =
MI.getFlags();
2770 auto Trunc =
B.buildIntrinsicTrunc(SrcLT, Src, Flags);
2778 Sign =
B.buildAShr(
S32, Src,
B.buildConstant(
S32, 31));
2779 Trunc =
B.buildFAbs(
S32, Trunc, Flags);
2783 K0 =
B.buildFConstant(
2785 K1 =
B.buildFConstant(
2788 K0 =
B.buildFConstant(
2790 K1 =
B.buildFConstant(
2794 auto Mul =
B.buildFMul(SrcLT, Trunc, K0, Flags);
2795 auto FloorMul =
B.buildFFloor(SrcLT,
Mul, Flags);
2796 auto Fma =
B.buildFMA(SrcLT, FloorMul, K1, Trunc, Flags);
2799 :
B.buildFPTOUI(
S32, FloorMul);
2800 auto Lo =
B.buildFPTOUI(
S32, Fma);
2804 Sign =
B.buildMergeLikeInstr(
S64, {Sign, Sign});
2806 B.buildSub(Dst,
B.buildXor(
S64,
B.buildMergeLikeInstr(
S64, {Lo, Hi}), Sign),
2809 B.buildMergeLikeInstr(Dst, {
Lo,
Hi});
2810 MI.eraseFromParent();
2820 const bool IsIEEEOp =
MI.getOpcode() == AMDGPU::G_FMINNUM_IEEE ||
2821 MI.getOpcode() == AMDGPU::G_FMAXNUM_IEEE;
2829 if (
MI.getOpcode() == AMDGPU::G_FMINIMUMNUM ||
2830 MI.getOpcode() == AMDGPU::G_FMAXIMUMNUM)
2852 LLT VecTy =
MRI.getType(Vec);
2865 auto IntVec =
B.buildPtrToInt(IntVecTy, Vec);
2866 auto IntElt =
B.buildExtractVectorElement(IntTy, IntVec,
MI.getOperand(2));
2867 B.buildIntToPtr(Dst, IntElt);
2869 MI.eraseFromParent();
2876 std::optional<ValueAndVReg> MaybeIdxVal =
2880 const uint64_t IdxVal = MaybeIdxVal->Value.getZExtValue();
2883 auto Unmerge =
B.buildUnmerge(EltTy, Vec);
2884 B.buildCopy(Dst, Unmerge.getReg(IdxVal));
2889 MI.eraseFromParent();
2904 LLT VecTy =
MRI.getType(Vec);
2918 auto IntVecSource =
B.buildPtrToInt(IntVecTy, Vec);
2919 auto IntIns =
B.buildPtrToInt(IntTy, Ins);
2920 auto IntVecDest =
B.buildInsertVectorElement(IntVecTy, IntVecSource, IntIns,
2922 B.buildIntToPtr(Dst, IntVecDest);
2923 MI.eraseFromParent();
2930 std::optional<ValueAndVReg> MaybeIdxVal =
2935 const uint64_t IdxVal = MaybeIdxVal->Value.getZExtValue();
2938 if (IdxVal < NumElts) {
2940 for (
unsigned i = 0; i < NumElts; ++i)
2941 SrcRegs.
push_back(
MRI.createGenericVirtualRegister(EltTy));
2942 B.buildUnmerge(SrcRegs, Vec);
2944 SrcRegs[IdxVal] =
MI.getOperand(2).getReg();
2945 B.buildMergeLikeInstr(Dst, SrcRegs);
2950 MI.eraseFromParent();
2960 LLT Ty =
MRI.getType(DstReg);
2961 unsigned Flags =
MI.getFlags();
2965 if (ST.hasTrigReducedRange()) {
2966 auto MulVal =
B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags);
2967 TrigVal =
B.buildIntrinsic(Intrinsic::amdgcn_fract, {Ty})
2968 .addUse(MulVal.getReg(0))
2972 TrigVal =
B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags).getReg(0);
2975 Intrinsic::amdgcn_sin : Intrinsic::amdgcn_cos;
2979 MI.eraseFromParent();
2987 unsigned GAFlags)
const {
3016 B.getMRI()->createGenericVirtualRegister(ConstPtrTy);
3018 if (ST.has64BitLiterals()) {
3022 B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET64).addDef(PCReg);
3026 B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET).addDef(PCReg);
3035 if (!
B.getMRI()->getRegClassOrNull(PCReg))
3036 B.getMRI()->setRegClass(PCReg, &AMDGPU::SReg_64RegClass);
3039 B.buildExtract(DstReg, PCReg, 0);
3049 if (RequiresHighHalf && ST.has64BitLiterals()) {
3050 if (!
MRI.getRegClassOrNull(DstReg))
3051 MRI.setRegClass(DstReg, &AMDGPU::SReg_64RegClass);
3052 B.buildInstr(AMDGPU::S_MOV_B64)
3062 Register AddrLo = !RequiresHighHalf && !
MRI.getRegClassOrNull(DstReg)
3064 :
MRI.createGenericVirtualRegister(
S32);
3066 if (!
MRI.getRegClassOrNull(AddrLo))
3067 MRI.setRegClass(AddrLo, &AMDGPU::SReg_32RegClass);
3070 B.buildInstr(AMDGPU::S_MOV_B32)
3075 if (RequiresHighHalf) {
3077 "Must provide a 64-bit pointer type!");
3080 MRI.setRegClass(AddrHi, &AMDGPU::SReg_32RegClass);
3082 B.buildInstr(AMDGPU::S_MOV_B32)
3092 if (!
MRI.getRegClassOrNull(AddrDst))
3093 MRI.setRegClass(AddrDst, &AMDGPU::SReg_64RegClass);
3095 B.buildMergeValues(AddrDst, {AddrLo, AddrHi});
3099 if (AddrDst != DstReg)
3100 B.buildCast(DstReg, AddrDst);
3101 }
else if (AddrLo != DstReg) {
3104 B.buildCast(DstReg, AddrLo);
3112 LLT Ty =
MRI.getType(DstReg);
3113 unsigned AS = Ty.getAddressSpace();
3121 GV->
getName() !=
"llvm.amdgcn.module.lds" &&
3125 Fn,
"local memory global used by non-kernel function",
3134 B.buildUndef(DstReg);
3135 MI.eraseFromParent();
3155 if (
B.getDataLayout().getTypeAllocSize(Ty).isZero()) {
3159 auto Sz =
B.buildIntrinsic(Intrinsic::amdgcn_groupstaticsize, {
S32});
3160 B.buildIntToPtr(DstReg, Sz);
3161 MI.eraseFromParent();
3168 MI.eraseFromParent();
3172 if (ST.isAmdPalOS() || ST.isMesa3DOS()) {
3174 MI.eraseFromParent();
3182 MI.eraseFromParent();
3188 MI.eraseFromParent();
3193 Register GOTAddr =
MRI.createGenericVirtualRegister(PtrTy);
3204 if (Ty.getSizeInBits() == 32) {
3206 auto Load =
B.buildLoad(PtrTy, GOTAddr, *GOTMMO);
3207 B.buildExtract(DstReg, Load, 0);
3209 B.buildLoad(DstReg, GOTAddr, *GOTMMO);
3211 MI.eraseFromParent();
3229 LLT PtrTy =
MRI.getType(PtrReg);
3234 auto Cast =
B.buildAddrSpaceCast(ConstPtr, PtrReg);
3236 MI.getOperand(1).setReg(Cast.getReg(0));
3241 if (
MI.getOpcode() != AMDGPU::G_LOAD)
3245 LLT ValTy =
MRI.getType(ValReg);
3255 const unsigned ValSize = ValTy.getSizeInBits();
3267 if (WideMemSize == ValSize) {
3273 MI.setMemRefs(MF, {WideMMO});
3279 if (ValSize > WideMemSize)
3286 WideLoad =
B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
3287 B.buildTrunc(ValReg, WideLoad).getReg(0);
3294 WideLoad =
B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
3295 B.buildExtract(ValReg, WideLoad, 0);
3299 WideLoad =
B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
3300 B.buildDeleteTrailingVectorElements(ValReg, WideLoad);
3304 MI.eraseFromParent();
3317 Register DataReg =
MI.getOperand(0).getReg();
3318 LLT DataTy =
MRI.getType(DataReg);
3332 LLT Ty =
MRI.getType(
MI.getOperand(0).getReg());
3361 "this should not have been custom lowered");
3363 LLT ValTy =
MRI.getType(CmpVal);
3366 Register PackedVal =
B.buildBuildVector(VecTy, { NewVal, CmpVal }).
getReg(0);
3368 B.buildInstr(AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG)
3372 .setMemRefs(
MI.memoperands());
3374 MI.eraseFromParent();
3382 switch (
DefMI->getOpcode()) {
3383 case TargetOpcode::G_INTRINSIC: {
3385 case Intrinsic::amdgcn_frexp_mant:
3393 case TargetOpcode::G_FFREXP: {
3394 if (
DefMI->getOperand(0).getReg() == Src)
3398 case TargetOpcode::G_FPEXT: {
3419std::pair<Register, Register>
3421 unsigned Flags)
const {
3426 auto SmallestNormal =
B.buildFConstant(
3428 auto IsLtSmallestNormal =
3431 auto Scale32 =
B.buildFConstant(
F32, 0x1.0p+32);
3432 auto One =
B.buildFConstant(
F32, 1.0);
3434 B.buildSelect(
F32, IsLtSmallestNormal, Scale32, One, Flags);
3435 auto ScaledInput =
B.buildFMul(
F32, Src, ScaleFactor, Flags);
3437 return {ScaledInput.getReg(0), IsLtSmallestNormal.getReg(0)};
3450 LLT Ty =
B.getMRI()->getType(Dst);
3451 unsigned Flags =
MI.getFlags();
3456 auto Ext =
B.buildFPExt(
F32, Src, Flags);
3457 auto Log2 =
B.buildIntrinsic(Intrinsic::amdgcn_log, {
F32})
3458 .addUse(Ext.getReg(0))
3460 B.buildFPTrunc(Dst,
Log2, Flags);
3461 MI.eraseFromParent();
3469 B.buildIntrinsic(Intrinsic::amdgcn_log, {
MI.getOperand(0)})
3472 MI.eraseFromParent();
3476 auto Log2 =
B.buildIntrinsic(Intrinsic::amdgcn_log, {Ty})
3477 .addUse(ScaledInput)
3480 auto ThirtyTwo =
B.buildFConstant(Ty, 32.0);
3481 auto Zero =
B.buildFConstant(Ty, 0.0);
3483 B.buildSelect(Ty, IsLtSmallestNormal, ThirtyTwo, Zero, Flags);
3484 B.buildFSub(Dst,
Log2, ResultOffset, Flags);
3486 MI.eraseFromParent();
3492 auto FMul =
B.buildFMul(Ty,
X,
Y, Flags);
3493 return B.buildFAdd(Ty,
FMul, Z, Flags).getReg(0);
3498 const bool IsLog10 =
MI.getOpcode() == TargetOpcode::G_FLOG10;
3499 assert(IsLog10 ||
MI.getOpcode() == TargetOpcode::G_FLOG);
3504 unsigned Flags =
MI.getFlags();
3505 const LLT Ty =
MRI.getType(
X);
3515 if (Ty == F16 && !ST.has16BitInsts()) {
3517 auto PromoteSrc =
B.buildFPExt(
F32,
X);
3519 B.buildFPTrunc(Dst, LogVal);
3524 MI.eraseFromParent();
3533 B.buildIntrinsic(Intrinsic::amdgcn_log, {Ty}).addUse(
X).setMIFlags(Flags);
3536 if (ST.hasFastFMAF32()) {
3538 const float c_log10 = 0x1.344134p-2f;
3539 const float cc_log10 = 0x1.09f79ep-26f;
3542 const float c_log = 0x1.62e42ep-1f;
3543 const float cc_log = 0x1.efa39ep-25f;
3545 auto C =
B.buildFConstant(Ty, IsLog10 ? c_log10 : c_log);
3546 auto CC =
B.buildFConstant(Ty, IsLog10 ? cc_log10 : cc_log);
3548 R =
B.buildFMul(Ty,
Y,
C, Flags).getReg(0);
3549 auto NegR =
B.buildFNeg(Ty, R, Flags);
3550 auto FMA0 =
B.buildFMA(Ty,
Y,
C, NegR, Flags);
3551 auto FMA1 =
B.buildFMA(Ty,
Y, CC, FMA0, Flags);
3552 R =
B.buildFAdd(Ty, R, FMA1, Flags).getReg(0);
3555 const float ch_log10 = 0x1.344000p-2f;
3556 const float ct_log10 = 0x1.3509f6p-18f;
3559 const float ch_log = 0x1.62e000p-1f;
3560 const float ct_log = 0x1.0bfbe8p-15f;
3562 auto CH =
B.buildFConstant(Ty, IsLog10 ? ch_log10 : ch_log);
3563 auto CT =
B.buildFConstant(Ty, IsLog10 ? ct_log10 : ct_log);
3565 auto MaskConst =
B.buildConstant(Ty, 0xfffff000);
3566 auto YH =
B.buildAnd(Ty,
Y, MaskConst);
3567 auto YT =
B.buildFSub(Ty,
Y, YH, Flags);
3568 auto YTCT =
B.buildFMul(Ty, YT, CT, Flags);
3571 getMad(
B, Ty, YH.getReg(0), CT.getReg(0), YTCT.getReg(0), Flags);
3573 R =
getMad(
B, Ty, YH.getReg(0),
CH.getReg(0), Mad1, Flags);
3576 const bool IsFiniteOnly =
3580 if (!IsFiniteOnly) {
3583 auto Fabs =
B.buildFAbs(Ty,
Y);
3586 R =
B.buildSelect(Ty, IsFinite, R,
Y, Flags).getReg(0);
3590 auto Zero =
B.buildFConstant(Ty, 0.0);
3592 B.buildFConstant(Ty, IsLog10 ? 0x1.344136p+3f : 0x1.62e430p+4f);
3593 auto Shift =
B.buildSelect(Ty, IsScaled, ShiftK, Zero, Flags);
3594 B.buildFSub(Dst, R, Shift, Flags);
3596 B.buildCopy(Dst, R);
3599 MI.eraseFromParent();
3605 unsigned Flags)
const {
3606 const double Log2BaseInverted =
3609 LLT Ty =
B.getMRI()->getType(Dst);
3614 auto LogSrc =
B.buildIntrinsic(Intrinsic::amdgcn_log, {Ty})
3617 auto ScaledResultOffset =
B.buildFConstant(Ty, -32.0 * Log2BaseInverted);
3618 auto Zero =
B.buildFConstant(Ty, 0.0);
3620 B.buildSelect(Ty, IsScaled, ScaledResultOffset, Zero, Flags);
3621 auto Log2Inv =
B.buildFConstant(Ty, Log2BaseInverted);
3623 if (ST.hasFastFMAF32())
3624 B.buildFMA(Dst, LogSrc, Log2Inv, ResultOffset, Flags);
3626 auto Mul =
B.buildFMul(Ty, LogSrc, Log2Inv, Flags);
3627 B.buildFAdd(Dst,
Mul, ResultOffset, Flags);
3635 ?
B.buildFLog2(Ty, Src, Flags)
3636 :
B.buildIntrinsic(Intrinsic::amdgcn_log, {Ty})
3639 auto Log2BaseInvertedOperand =
B.buildFConstant(Ty, Log2BaseInverted);
3640 B.buildFMul(Dst, Log2Operand, Log2BaseInvertedOperand, Flags);
3651 unsigned Flags =
MI.getFlags();
3652 LLT Ty =
B.getMRI()->getType(Dst);
3658 auto Ext =
B.buildFPExt(
F32, Src, Flags);
3659 auto Log2 =
B.buildIntrinsic(Intrinsic::amdgcn_exp2, {
F32})
3660 .addUse(Ext.getReg(0))
3662 B.buildFPTrunc(Dst,
Log2, Flags);
3663 MI.eraseFromParent();
3673 MI.eraseFromParent();
3681 auto RangeCheckConst =
B.buildFConstant(Ty, -0x1.f80000p+6f);
3683 RangeCheckConst, Flags);
3685 auto SixtyFour =
B.buildFConstant(Ty, 0x1.0p+6f);
3686 auto Zero =
B.buildFConstant(Ty, 0.0);
3687 auto AddOffset =
B.buildSelect(
F32, NeedsScaling, SixtyFour, Zero, Flags);
3688 auto AddInput =
B.buildFAdd(
F32, Src, AddOffset, Flags);
3690 auto Exp2 =
B.buildIntrinsic(Intrinsic::amdgcn_exp2, {Ty})
3691 .addUse(AddInput.getReg(0))
3694 auto TwoExpNeg64 =
B.buildFConstant(Ty, 0x1.0p-64f);
3695 auto One =
B.buildFConstant(Ty, 1.0);
3696 auto ResultScale =
B.buildSelect(
F32, NeedsScaling, TwoExpNeg64, One, Flags);
3697 B.buildFMul(Dst, Exp2, ResultScale, Flags);
3698 MI.eraseFromParent();
3704 LLT Ty =
B.getMRI()->getType(Dst);
3709 auto Mul =
B.buildFMul(Ty,
X, Log2E, Flags);
3713 .addUse(
Mul.getReg(0))
3716 B.buildFExp2(Dst,
Mul.getReg(0), Flags);
3722 auto Threshold =
B.buildFConstant(Ty, -0x1.5d58a0p+6f);
3725 auto ScaleOffset =
B.buildFConstant(Ty, 0x1.0p+6f);
3726 auto ScaledX =
B.buildFAdd(Ty,
X, ScaleOffset, Flags);
3727 auto AdjustedX =
B.buildSelect(Ty, NeedsScaling, ScaledX,
X, Flags);
3730 auto ExpInput =
B.buildFMul(Ty, AdjustedX, Log2E, Flags);
3732 auto Exp2 =
B.buildIntrinsic(Intrinsic::amdgcn_exp2, {Ty})
3733 .addUse(ExpInput.getReg(0))
3736 auto ResultScaleFactor =
B.buildFConstant(Ty, 0x1.969d48p-93f);
3737 auto AdjustedResult =
B.buildFMul(Ty, Exp2, ResultScaleFactor, Flags);
3738 B.buildSelect(Dst, NeedsScaling, AdjustedResult, Exp2, Flags);
3746 const unsigned Flags =
MI.getFlags();
3749 LLT Ty =
MRI.getType(Dst);
3752 const bool IsExp10 =
MI.getOpcode() == TargetOpcode::G_FEXP10;
3759 MI.eraseFromParent();
3767 auto Ext =
B.buildFPExt(
F32,
X, Flags);
3770 B.buildFPTrunc(Dst, Lowered, Flags);
3771 MI.eraseFromParent();
3781 MI.eraseFromParent();
3809 const unsigned FlagsNoContract = Flags &
~MachineInstr::FmContract;
3812 if (ST.hasFastFMAF32()) {
3814 const float cc_exp = 0x1.4ae0bep-26f;
3815 const float c_exp10 = 0x1.a934f0p+1f;
3816 const float cc_exp10 = 0x1.2f346ep-24f;
3818 auto C =
B.buildFConstant(Ty, IsExp10 ? c_exp10 : c_exp);
3819 PH =
B.buildFMul(Ty,
X,
C, Flags).getReg(0);
3820 auto NegPH =
B.buildFNeg(Ty, PH, Flags);
3821 auto FMA0 =
B.buildFMA(Ty,
X,
C, NegPH, Flags);
3823 auto CC =
B.buildFConstant(Ty, IsExp10 ? cc_exp10 : cc_exp);
3824 PL =
B.buildFMA(Ty,
X, CC, FMA0, Flags).getReg(0);
3826 const float ch_exp = 0x1.714000p+0f;
3827 const float cl_exp = 0x1.47652ap-12f;
3829 const float ch_exp10 = 0x1.a92000p+1f;
3830 const float cl_exp10 = 0x1.4f0978p-11f;
3832 auto MaskConst =
B.buildConstant(Ty, 0xfffff000);
3833 auto XH =
B.buildAnd(Ty,
X, MaskConst);
3834 auto XL =
B.buildFSub(Ty,
X, XH, Flags);
3836 auto CH =
B.buildFConstant(Ty, IsExp10 ? ch_exp10 : ch_exp);
3837 PH =
B.buildFMul(Ty, XH,
CH, Flags).getReg(0);
3839 auto CL =
B.buildFConstant(Ty, IsExp10 ? cl_exp10 : cl_exp);
3840 auto XLCL =
B.buildFMul(Ty, XL, CL, Flags);
3843 getMad(
B, Ty, XL.getReg(0),
CH.getReg(0), XLCL.getReg(0), Flags);
3844 PL =
getMad(
B, Ty, XH.getReg(0), CL.getReg(0), Mad0, Flags);
3847 auto E =
B.buildIntrinsicRoundeven(Ty, PH, Flags);
3850 auto PHSubE =
B.buildFSub(Ty, PH, E, FlagsNoContract);
3851 auto A =
B.buildFAdd(Ty, PHSubE, PL, Flags);
3854 auto Exp2 =
B.buildIntrinsic(Intrinsic::amdgcn_exp2, {Ty})
3855 .addUse(
A.getReg(0))
3857 auto R =
B.buildFLdexp(Ty, Exp2, IntE, Flags);
3859 auto UnderflowCheckConst =
3860 B.buildFConstant(Ty, IsExp10 ? -0x1.66d3e8p+5f : -0x1.9d1da0p+6f);
3861 auto Zero =
B.buildFConstant(Ty, 0.0);
3865 R =
B.buildSelect(Ty, Underflow, Zero, R);
3868 auto OverflowCheckConst =
3869 B.buildFConstant(Ty, IsExp10 ? 0x1.344136p+5f : 0x1.62e430p+6f);
3874 R =
B.buildSelect(Ty, Overflow, Inf, R, Flags);
3877 B.buildCopy(Dst, R);
3878 MI.eraseFromParent();
3887 unsigned Flags =
MI.getFlags();
3888 LLT Ty =
B.getMRI()->getType(Dst);
3893 auto Log =
B.buildFLog2(
F32, Src0, Flags);
3894 auto Mul =
B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {
F32})
3895 .addUse(Log.getReg(0))
3898 B.buildFExp2(Dst,
Mul, Flags);
3899 }
else if (Ty == F16) {
3901 auto Log =
B.buildFLog2(F16, Src0, Flags);
3902 auto Ext0 =
B.buildFPExt(
F32, Log, Flags);
3903 auto Ext1 =
B.buildFPExt(
F32, Src1, Flags);
3904 auto Mul =
B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {
F32})
3905 .addUse(Ext0.getReg(0))
3906 .addUse(Ext1.getReg(0))
3908 B.buildFExp2(Dst,
B.buildFPTrunc(F16,
Mul), Flags);
3912 MI.eraseFromParent();
3920 ModSrc = SrcFNeg->getOperand(1).getReg();
3922 ModSrc = SrcFAbs->getOperand(1).getReg();
3924 ModSrc = SrcFAbs->getOperand(1).getReg();
3935 Register OrigSrc =
MI.getOperand(1).getReg();
3936 unsigned Flags =
MI.getFlags();
3938 "this should not have been custom lowered");
3948 auto Fract =
B.buildIntrinsic(Intrinsic::amdgcn_fract, {
F64})
3968 B.buildFMinNumIEEE(Min, Fract, Const, Flags);
3970 B.buildFMinNum(Min, Fract, Const, Flags);
3975 CorrectedFract =
B.buildSelect(
F64, IsNan, ModSrc, Min, Flags).getReg(0);
3978 auto NegFract =
B.buildFNeg(
F64, CorrectedFract, Flags);
3979 B.buildFAdd(Dst, OrigSrc, NegFract, Flags);
3981 MI.eraseFromParent();
3997 if (
MI.getOpcode() == AMDGPU::G_BUILD_VECTOR_TRUNC) {
3999 Src0 =
B.buildTrunc(
S16,
MI.getOperand(1).getReg()).getReg(0);
4000 Src1 =
B.buildTrunc(
S16,
MI.getOperand(2).getReg()).getReg(0);
4003 auto Merge =
B.buildMergeLikeInstr(
S32, {Src0, Src1});
4004 B.buildBitcast(Dst,
Merge);
4006 MI.eraseFromParent();
4023 bool UsePartialMad64_32,
4024 bool SeparateOddAlignedProducts)
const {
4039 auto getZero32 = [&]() ->
Register {
4041 Zero32 =
B.buildConstant(
S32, 0).getReg(0);
4044 auto getZero64 = [&]() ->
Register {
4046 Zero64 =
B.buildConstant(
S64, 0).getReg(0);
4051 for (
unsigned i = 0; i < Src0.
size(); ++i) {
4062 if (CarryIn.empty())
4065 bool HaveCarryOut =
true;
4067 if (CarryIn.size() == 1) {
4069 LocalAccum =
B.buildZExt(
S32, CarryIn[0]).getReg(0);
4073 CarryAccum = getZero32();
4075 CarryAccum =
B.buildZExt(
S32, CarryIn[0]).getReg(0);
4076 for (
unsigned i = 1; i + 1 < CarryIn.size(); ++i) {
4078 B.buildUAdde(
S32,
S1, CarryAccum, getZero32(), CarryIn[i])
4083 LocalAccum = getZero32();
4084 HaveCarryOut =
false;
4089 B.buildUAdde(
S32,
S1, CarryAccum, LocalAccum, CarryIn.back());
4090 LocalAccum =
Add.getReg(0);
4104 auto buildMadChain =
4107 assert((DstIndex + 1 < Accum.
size() && LocalAccum.size() == 2) ||
4108 (DstIndex + 1 >= Accum.
size() && LocalAccum.size() == 1));
4115 if (LocalAccum.size() == 1 &&
4116 (!UsePartialMad64_32 || !CarryIn.empty())) {
4119 unsigned j1 = DstIndex - j0;
4120 if (Src0KnownZeros[j0] || Src1KnownZeros[j1]) {
4124 auto Mul =
B.buildMul(
S32, Src0[j0], Src1[j1]);
4126 LocalAccum[0] =
Mul.getReg(0);
4128 if (CarryIn.empty()) {
4129 LocalAccum[0] =
B.buildAdd(
S32, LocalAccum[0],
Mul).getReg(0);
4132 B.buildUAdde(
S32,
S1, LocalAccum[0],
Mul, CarryIn.back())
4138 }
while (j0 <= DstIndex && (!UsePartialMad64_32 || !CarryIn.empty()));
4142 if (j0 <= DstIndex) {
4143 bool HaveSmallAccum =
false;
4146 if (LocalAccum[0]) {
4147 if (LocalAccum.size() == 1) {
4148 Tmp =
B.buildAnyExt(
S64, LocalAccum[0]).getReg(0);
4149 HaveSmallAccum =
true;
4150 }
else if (LocalAccum[1]) {
4151 Tmp =
B.buildMergeLikeInstr(
S64, LocalAccum).getReg(0);
4152 HaveSmallAccum =
false;
4154 Tmp =
B.buildZExt(
S64, LocalAccum[0]).getReg(0);
4155 HaveSmallAccum =
true;
4158 assert(LocalAccum.size() == 1 || !LocalAccum[1]);
4160 HaveSmallAccum =
true;
4164 unsigned j1 = DstIndex - j0;
4165 if (Src0KnownZeros[j0] || Src1KnownZeros[j1]) {
4169 auto Mad =
B.buildInstr(AMDGPU::G_AMDGPU_MAD_U64_U32, {
S64,
S1},
4170 {Src0[j0], Src1[j1], Tmp});
4171 Tmp = Mad.getReg(0);
4172 if (!HaveSmallAccum)
4173 CarryOut.push_back(Mad.getReg(1));
4174 HaveSmallAccum =
false;
4177 }
while (j0 <= DstIndex);
4179 auto Unmerge =
B.buildUnmerge(
S32, Tmp);
4180 LocalAccum[0] = Unmerge.getReg(0);
4181 if (LocalAccum.size() > 1)
4182 LocalAccum[1] = Unmerge.getReg(1);
4209 for (
unsigned i = 0; i <= Accum.
size() / 2; ++i) {
4210 Carry OddCarryIn = std::move(OddCarry);
4211 Carry EvenCarryIn = std::move(EvenCarry);
4216 if (2 * i < Accum.
size()) {
4217 auto LocalAccum = Accum.
drop_front(2 * i).take_front(2);
4218 EvenCarry = buildMadChain(LocalAccum, 2 * i, EvenCarryIn);
4223 if (!SeparateOddAlignedProducts) {
4224 auto LocalAccum = Accum.
drop_front(2 * i - 1).take_front(2);
4225 OddCarry = buildMadChain(LocalAccum, 2 * i - 1, OddCarryIn);
4227 bool IsHighest = 2 * i >= Accum.
size();
4230 .take_front(IsHighest ? 1 : 2);
4231 OddCarry = buildMadChain(LocalAccum, 2 * i - 1, OddCarryIn);
4237 Lo =
B.buildUAddo(
S32,
S1, Accum[2 * i - 1], SeparateOddOut[0]);
4239 Lo =
B.buildAdd(
S32, Accum[2 * i - 1], SeparateOddOut[0]);
4241 Lo =
B.buildUAdde(
S32,
S1, Accum[2 * i - 1], SeparateOddOut[0],
4244 Accum[2 * i - 1] =
Lo->getOperand(0).getReg();
4247 auto Hi =
B.buildUAdde(
S32,
S1, Accum[2 * i], SeparateOddOut[1],
4248 Lo->getOperand(1).getReg());
4249 Accum[2 * i] =
Hi.getReg(0);
4250 SeparateOddCarry =
Hi.getReg(1);
4257 if (
Register CarryOut = mergeCarry(Accum[2 * i - 1], OddCarryIn))
4258 EvenCarryIn.push_back(CarryOut);
4260 if (2 * i < Accum.
size()) {
4261 if (
Register CarryOut = mergeCarry(Accum[2 * i], EvenCarryIn))
4262 OddCarry.push_back(CarryOut);
4274 assert(ST.hasMad64_32());
4275 assert(
MI.getOpcode() == TargetOpcode::G_MUL);
4284 LLT Ty =
MRI.getType(DstReg);
4287 unsigned Size = Ty.getSizeInBits();
4288 if (ST.hasVectorMulU64() &&
Size == 64)
4291 unsigned NumParts =
Size / 32;
4303 const bool SeparateOddAlignedProducts = ST.hasFullRate64Ops();
4307 for (
unsigned i = 0; i < NumParts; ++i) {
4311 B.buildUnmerge(Src0Parts, Src0);
4312 B.buildUnmerge(Src1Parts, Src1);
4315 buildMultiply(Helper, AccumRegs, Src0Parts, Src1Parts, UsePartialMad64_32,
4316 SeparateOddAlignedProducts);
4318 B.buildMergeLikeInstr(DstReg, AccumRegs);
4319 MI.eraseFromParent();
4331 LLT DstTy =
MRI.getType(Dst);
4332 LLT SrcTy =
MRI.getType(Src);
4334 unsigned NewOpc =
MI.getOpcode() == AMDGPU::G_CTLZ
4335 ? AMDGPU::G_AMDGPU_FFBH_U32
4336 : AMDGPU::G_AMDGPU_FFBL_B32;
4337 auto Tmp =
B.buildInstr(NewOpc, {DstTy}, {Src});
4340 MI.eraseFromParent();
4349 LLT SrcTy =
MRI.getType(Src);
4350 TypeSize NumBits = SrcTy.getSizeInBits();
4354 auto ShiftAmt =
B.buildConstant(
S32, 32u - NumBits);
4355 auto Extend =
B.buildAnyExt(
S32, {Src}).
getReg(0u);
4356 auto Shift =
B.buildShl(
S32, Extend, ShiftAmt);
4357 auto Ctlz =
B.buildInstr(AMDGPU::G_AMDGPU_FFBH_U32, {
S32}, {Shift});
4358 B.buildTrunc(Dst, Ctlz);
4359 MI.eraseFromParent();
4365 if (
MI.getOpcode() != TargetOpcode::G_XOR)
4368 return ConstVal == -1;
4375 Register CondDef =
MI.getOperand(0).getReg();
4376 if (!
MRI.hasOneNonDBGUse(CondDef))
4384 if (!
MRI.hasOneNonDBGUse(NegatedCond))
4390 UseMI = &*
MRI.use_instr_nodbg_begin(NegatedCond);
4394 if (
UseMI->getParent() != Parent ||
UseMI->getOpcode() != AMDGPU::G_BRCOND)
4403 UncondBrTarget = &*NextMBB;
4405 if (
Next->getOpcode() != AMDGPU::G_BR)
4424 *ArgRC,
B.getDebugLoc(), ArgTy);
4428 const unsigned Mask = Arg->
getMask();
4436 auto ShiftAmt =
B.buildConstant(
S32, Shift);
4437 AndMaskSrc =
B.buildLShr(
S32, LiveIn, ShiftAmt).getReg(0);
4440 B.buildAnd(DstReg, AndMaskSrc,
B.buildConstant(
S32, Mask >> Shift));
4442 B.buildCopy(DstReg, LiveIn);
4452 if (!ST.hasClusters()) {
4455 MI.eraseFromParent();
4468 Register ClusterMaxIdXYZ =
MRI.createGenericVirtualRegister(
S32);
4469 Register ClusterWorkGroupIdXYZ =
MRI.createGenericVirtualRegister(
S32);
4475 auto One =
B.buildConstant(
S32, 1);
4476 auto ClusterSizeXYZ =
B.buildAdd(
S32, ClusterMaxIdXYZ, One);
4477 auto GlobalIdXYZ =
B.buildAdd(
S32, ClusterWorkGroupIdXYZ,
4478 B.buildMul(
S32, ClusterIdXYZ, ClusterSizeXYZ));
4485 B.buildCopy(DstReg, GlobalIdXYZ);
4486 MI.eraseFromParent();
4490 B.buildCopy(DstReg, ClusterIdXYZ);
4491 MI.eraseFromParent();
4496 unsigned ClusterIdField = HwregEncoding::encode(ID_IB_STS2, 6, 4);
4498 MRI.setRegClass(ClusterId, &AMDGPU::SReg_32RegClass);
4499 B.buildInstr(AMDGPU::S_GETREG_B32_const)
4501 .addImm(ClusterIdField);
4502 auto Zero =
B.buildConstant(
S32, 0);
4505 B.buildSelect(DstReg, NoClusters, ClusterIdXYZ, GlobalIdXYZ);
4506 MI.eraseFromParent();
4548 auto LoadConstant = [&](
unsigned N) {
4549 B.buildConstant(DstReg,
N);
4553 if (ST.hasArchitectedSGPRs() &&
4560 Arg = &WorkGroupIDX;
4561 ArgRC = &AMDGPU::SReg_32RegClass;
4565 Arg = &WorkGroupIDY;
4566 ArgRC = &AMDGPU::SReg_32RegClass;
4570 Arg = &WorkGroupIDZ;
4571 ArgRC = &AMDGPU::SReg_32RegClass;
4575 if (HasFixedDims && ClusterDims.
getDims()[0] == 1)
4576 return LoadConstant(0);
4577 Arg = &ClusterWorkGroupIDX;
4578 ArgRC = &AMDGPU::SReg_32RegClass;
4582 if (HasFixedDims && ClusterDims.
getDims()[1] == 1)
4583 return LoadConstant(0);
4584 Arg = &ClusterWorkGroupIDY;
4585 ArgRC = &AMDGPU::SReg_32RegClass;
4589 if (HasFixedDims && ClusterDims.
getDims()[2] == 1)
4590 return LoadConstant(0);
4591 Arg = &ClusterWorkGroupIDZ;
4592 ArgRC = &AMDGPU::SReg_32RegClass;
4597 return LoadConstant(ClusterDims.
getDims()[0] - 1);
4598 Arg = &ClusterWorkGroupMaxIDX;
4599 ArgRC = &AMDGPU::SReg_32RegClass;
4604 return LoadConstant(ClusterDims.
getDims()[1] - 1);
4605 Arg = &ClusterWorkGroupMaxIDY;
4606 ArgRC = &AMDGPU::SReg_32RegClass;
4611 return LoadConstant(ClusterDims.
getDims()[2] - 1);
4612 Arg = &ClusterWorkGroupMaxIDZ;
4613 ArgRC = &AMDGPU::SReg_32RegClass;
4617 Arg = &ClusterWorkGroupMaxFlatID;
4618 ArgRC = &AMDGPU::SReg_32RegClass;
4633 return LoadConstant(0);
4638 B.buildUndef(DstReg);
4642 if (!Arg->isRegister() || !Arg->getRegister().isValid())
4654 MI.eraseFromParent();
4660 B.buildConstant(
MI.getOperand(0).getReg(),
C);
4661 MI.eraseFromParent();
4668 unsigned MaxID = ST.getMaxWorkitemID(
B.getMF().getFunction(), Dim);
4682 B.buildUndef(DstReg);
4683 MI.eraseFromParent();
4687 if (Arg->isMasked()) {
4701 MI.eraseFromParent();
4708 Register KernArgReg =
B.getMRI()->createGenericVirtualRegister(PtrTy);
4717 return B.buildObjectPtrOffset(PtrTy, KernArgReg, COffset).getReg(0);
4725 Align Alignment)
const {
4729 "unexpected kernarg parameter type");
4733 B.buildLoad(DstReg,
Ptr, PtrInfo,
Align(4),
4736 MI.eraseFromParent();
4744 LLT DstTy =
MRI.getType(Dst);
4771 auto FloatY =
B.buildUITOFP(
S32,
Y);
4772 auto RcpIFlag =
B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {
S32}, {FloatY});
4774 auto ScaledY =
B.buildFMul(
S32, RcpIFlag, Scale);
4775 auto Z =
B.buildFPTOUI(
S32, ScaledY);
4778 auto NegY =
B.buildSub(
S32,
B.buildConstant(
S32, 0),
Y);
4779 auto NegYZ =
B.buildMul(
S32, NegY, Z);
4780 Z =
B.buildAdd(
S32, Z,
B.buildUMulH(
S32, Z, NegYZ));
4783 auto Q =
B.buildUMulH(
S32,
X, Z);
4784 auto R =
B.buildSub(
S32,
X,
B.buildMul(
S32, Q,
Y));
4787 auto One =
B.buildConstant(
S32, 1);
4790 Q =
B.buildSelect(
S32,
Cond,
B.buildAdd(
S32, Q, One), Q);
4796 B.buildSelect(DstDivReg,
Cond,
B.buildAdd(
S32, Q, One), Q);
4799 B.buildSelect(DstRemReg,
Cond,
B.buildSub(
S32, R,
Y), R);
4818 auto Unmerge =
B.buildUnmerge(
S32, Val);
4820 auto CvtLo =
B.buildUITOFP(
S32, Unmerge.getReg(0));
4821 auto CvtHi =
B.buildUITOFP(
S32, Unmerge.getReg(1));
4823 auto Mad =
B.buildFMAD(
4827 auto Rcp =
B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {
S32}, {Mad});
4828 auto Mul1 =
B.buildFMul(
4832 auto Mul2 =
B.buildFMul(
4834 auto Trunc =
B.buildIntrinsicTrunc(
S32, Mul2);
4837 auto Mad2 =
B.buildFMAD(
4841 auto ResultLo =
B.buildFPTOUI(
S32, Mad2);
4842 auto ResultHi =
B.buildFPTOUI(
S32, Trunc);
4844 return {ResultLo.getReg(0), ResultHi.getReg(0)};
4859 auto Rcp =
B.buildMergeLikeInstr(
S64, {RcpLo, RcpHi});
4861 auto Zero64 =
B.buildConstant(
S64, 0);
4862 auto NegDenom =
B.buildSub(
S64, Zero64, Denom);
4864 auto MulLo1 =
B.buildMul(
S64, NegDenom, Rcp);
4865 auto MulHi1 =
B.buildUMulH(
S64, Rcp, MulLo1);
4867 auto UnmergeMulHi1 =
B.buildUnmerge(
S32, MulHi1);
4868 Register MulHi1_Lo = UnmergeMulHi1.getReg(0);
4869 Register MulHi1_Hi = UnmergeMulHi1.getReg(1);
4871 auto Add1_Lo =
B.buildUAddo(
S32,
S1, RcpLo, MulHi1_Lo);
4872 auto Add1_Hi =
B.buildUAdde(
S32,
S1, RcpHi, MulHi1_Hi, Add1_Lo.getReg(1));
4873 auto Add1 =
B.buildMergeLikeInstr(
S64, {Add1_Lo, Add1_Hi});
4875 auto MulLo2 =
B.buildMul(
S64, NegDenom, Add1);
4876 auto MulHi2 =
B.buildUMulH(
S64, Add1, MulLo2);
4877 auto UnmergeMulHi2 =
B.buildUnmerge(
S32, MulHi2);
4878 Register MulHi2_Lo = UnmergeMulHi2.getReg(0);
4879 Register MulHi2_Hi = UnmergeMulHi2.getReg(1);
4881 auto Zero32 =
B.buildConstant(
S32, 0);
4882 auto Add2_Lo =
B.buildUAddo(
S32,
S1, Add1_Lo, MulHi2_Lo);
4883 auto Add2_Hi =
B.buildUAdde(
S32,
S1, Add1_Hi, MulHi2_Hi, Add2_Lo.getReg(1));
4884 auto Add2 =
B.buildMergeLikeInstr(
S64, {Add2_Lo, Add2_Hi});
4886 auto UnmergeNumer =
B.buildUnmerge(
S32, Numer);
4887 Register NumerLo = UnmergeNumer.getReg(0);
4888 Register NumerHi = UnmergeNumer.getReg(1);
4890 auto MulHi3 =
B.buildUMulH(
S64, Numer, Add2);
4891 auto Mul3 =
B.buildMul(
S64, Denom, MulHi3);
4892 auto UnmergeMul3 =
B.buildUnmerge(
S32, Mul3);
4893 Register Mul3_Lo = UnmergeMul3.getReg(0);
4894 Register Mul3_Hi = UnmergeMul3.getReg(1);
4895 auto Sub1_Lo =
B.buildUSubo(
S32,
S1, NumerLo, Mul3_Lo);
4896 auto Sub1_Hi =
B.buildUSube(
S32,
S1, NumerHi, Mul3_Hi, Sub1_Lo.getReg(1));
4897 auto Sub1_Mi =
B.buildSub(
S32, NumerHi, Mul3_Hi);
4898 auto Sub1 =
B.buildMergeLikeInstr(
S64, {Sub1_Lo, Sub1_Hi});
4900 auto UnmergeDenom =
B.buildUnmerge(
S32, Denom);
4901 Register DenomLo = UnmergeDenom.getReg(0);
4902 Register DenomHi = UnmergeDenom.getReg(1);
4905 auto C1 =
B.buildSExt(
S32, CmpHi);
4908 auto C2 =
B.buildSExt(
S32, CmpLo);
4911 auto C3 =
B.buildSelect(
S32, CmpEq, C2, C1);
4918 auto Sub2_Lo =
B.buildUSubo(
S32,
S1, Sub1_Lo, DenomLo);
4919 auto Sub2_Mi =
B.buildUSube(
S32,
S1, Sub1_Mi, DenomHi, Sub1_Lo.getReg(1));
4920 auto Sub2_Hi =
B.buildUSube(
S32,
S1, Sub2_Mi, Zero32, Sub2_Lo.getReg(1));
4921 auto Sub2 =
B.buildMergeLikeInstr(
S64, {Sub2_Lo, Sub2_Hi});
4923 auto One64 =
B.buildConstant(
S64, 1);
4924 auto Add3 =
B.buildAdd(
S64, MulHi3, One64);
4930 auto C6 =
B.buildSelect(
4934 auto Add4 =
B.buildAdd(
S64, Add3, One64);
4935 auto Sub3_Lo =
B.buildUSubo(
S32,
S1, Sub2_Lo, DenomLo);
4937 auto Sub3_Mi =
B.buildUSube(
S32,
S1, Sub2_Mi, DenomHi, Sub2_Lo.getReg(1));
4938 auto Sub3_Hi =
B.buildUSube(
S32,
S1, Sub3_Mi, Zero32, Sub3_Lo.getReg(1));
4939 auto Sub3 =
B.buildMergeLikeInstr(
S64, {Sub3_Lo, Sub3_Hi});
4945 auto Sel1 =
B.buildSelect(
4952 auto Sel2 =
B.buildSelect(
4963 switch (
MI.getOpcode()) {
4966 case AMDGPU::G_UDIV: {
4967 DstDivReg =
MI.getOperand(0).getReg();
4970 case AMDGPU::G_UREM: {
4971 DstRemReg =
MI.getOperand(0).getReg();
4974 case AMDGPU::G_UDIVREM: {
4975 DstDivReg =
MI.getOperand(0).getReg();
4976 DstRemReg =
MI.getOperand(1).getReg();
4983 const unsigned FirstSrcOpIdx =
MI.getNumExplicitDefs();
4984 Register Num =
MI.getOperand(FirstSrcOpIdx).getReg();
4985 Register Den =
MI.getOperand(FirstSrcOpIdx + 1).getReg();
4986 LLT Ty =
MRI.getType(
MI.getOperand(0).getReg());
4995 MI.eraseFromParent();
5005 LLT Ty =
MRI.getType(
MI.getOperand(0).getReg());
5006 if (Ty !=
S32 && Ty !=
S64)
5009 const unsigned FirstSrcOpIdx =
MI.getNumExplicitDefs();
5010 Register LHS =
MI.getOperand(FirstSrcOpIdx).getReg();
5011 Register RHS =
MI.getOperand(FirstSrcOpIdx + 1).getReg();
5013 auto SignBitOffset =
B.buildConstant(
S32, Ty.getSizeInBits() - 1);
5014 auto LHSign =
B.buildAShr(Ty, LHS, SignBitOffset);
5015 auto RHSign =
B.buildAShr(Ty, RHS, SignBitOffset);
5017 LHS =
B.buildAdd(Ty, LHS, LHSign).getReg(0);
5018 RHS =
B.buildAdd(Ty, RHS, RHSign).getReg(0);
5020 LHS =
B.buildXor(Ty, LHS, LHSign).getReg(0);
5021 RHS =
B.buildXor(Ty, RHS, RHSign).getReg(0);
5023 Register DstDivReg, DstRemReg, TmpDivReg, TmpRemReg;
5024 switch (
MI.getOpcode()) {
5027 case AMDGPU::G_SDIV: {
5028 DstDivReg =
MI.getOperand(0).getReg();
5029 TmpDivReg =
MRI.createGenericVirtualRegister(Ty);
5032 case AMDGPU::G_SREM: {
5033 DstRemReg =
MI.getOperand(0).getReg();
5034 TmpRemReg =
MRI.createGenericVirtualRegister(Ty);
5037 case AMDGPU::G_SDIVREM: {
5038 DstDivReg =
MI.getOperand(0).getReg();
5039 DstRemReg =
MI.getOperand(1).getReg();
5040 TmpDivReg =
MRI.createGenericVirtualRegister(Ty);
5041 TmpRemReg =
MRI.createGenericVirtualRegister(Ty);
5052 auto Sign =
B.buildXor(Ty, LHSign, RHSign).getReg(0);
5053 auto SignXor =
B.buildXor(Ty, TmpDivReg, Sign).getReg(0);
5054 B.buildSub(DstDivReg, SignXor, Sign);
5058 auto Sign = LHSign.getReg(0);
5059 auto SignXor =
B.buildXor(Ty, TmpRemReg, Sign).getReg(0);
5060 B.buildSub(DstRemReg, SignXor, Sign);
5063 MI.eraseFromParent();
5074 LLT ResTy =
MRI.getType(Res);
5079 if (!AllowInaccurateRcp && ResTy !=
LLT::scalar(16))
5090 if (CLHS->isExactlyValue(1.0)) {
5091 B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res)
5095 MI.eraseFromParent();
5100 if (CLHS->isExactlyValue(-1.0)) {
5101 auto FNeg =
B.buildFNeg(ResTy, RHS, Flags);
5102 B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res)
5103 .addUse(FNeg.getReg(0))
5106 MI.eraseFromParent();
5113 if (!AllowInaccurateRcp && (ResTy !=
LLT::scalar(16) ||
5118 auto RCP =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy})
5121 B.buildFMul(Res, LHS, RCP, Flags);
5123 MI.eraseFromParent();
5134 LLT ResTy =
MRI.getType(Res);
5138 if (!AllowInaccurateRcp)
5141 auto NegY =
B.buildFNeg(ResTy,
Y);
5142 auto One =
B.buildFConstant(ResTy, 1.0);
5144 auto R =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy})
5148 auto Tmp0 =
B.buildFMA(ResTy, NegY, R, One);
5149 R =
B.buildFMA(ResTy, Tmp0, R, R);
5151 auto Tmp1 =
B.buildFMA(ResTy, NegY, R, One);
5152 R =
B.buildFMA(ResTy, Tmp1, R, R);
5154 auto Ret =
B.buildFMul(ResTy,
X, R);
5155 auto Tmp2 =
B.buildFMA(ResTy, NegY, Ret,
X);
5157 B.buildFMA(Res, Tmp2, R, Ret);
5158 MI.eraseFromParent();
5190 auto LHSExt =
B.buildFPExt(
S32, LHS, Flags);
5191 auto RHSExt =
B.buildFPExt(
S32, RHS, Flags);
5192 auto NegRHSExt =
B.buildFNeg(
S32, RHSExt);
5193 auto Rcp =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {
S32})
5194 .addUse(RHSExt.getReg(0))
5196 auto Quot =
B.buildFMul(
S32, LHSExt, Rcp, Flags);
5198 if (ST.hasMadMacF32Insts()) {
5199 Err =
B.buildFMAD(
S32, NegRHSExt, Quot, LHSExt, Flags);
5200 Quot =
B.buildFMAD(
S32, Err, Rcp, Quot, Flags);
5201 Err =
B.buildFMAD(
S32, NegRHSExt, Quot, LHSExt, Flags);
5203 Err =
B.buildFMA(
S32, NegRHSExt, Quot, LHSExt, Flags);
5204 Quot =
B.buildFMA(
S32, Err, Rcp, Quot, Flags);
5205 Err =
B.buildFMA(
S32, NegRHSExt, Quot, LHSExt, Flags);
5207 auto Tmp =
B.buildFMul(
S32, Err, Rcp, Flags);
5208 Tmp =
B.buildAnd(
S32, Tmp,
B.buildConstant(
S32, 0xff800000));
5209 Quot =
B.buildFAdd(
S32, Tmp, Quot, Flags);
5210 auto RDst =
B.buildFPTrunc(
S16, Quot, Flags);
5211 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res)
5212 .addUse(RDst.getReg(0))
5217 MI.eraseFromParent();
5230 unsigned SPDenormMode =
5233 if (ST.hasDenormModeInst()) {
5235 uint32_t DPDenormModeDefault =
Mode.fpDenormModeDPValue();
5237 uint32_t NewDenormModeValue = SPDenormMode | (DPDenormModeDefault << 2);
5238 B.buildInstr(AMDGPU::S_DENORM_MODE)
5239 .addImm(NewDenormModeValue);
5242 B.buildInstr(AMDGPU::S_SETREG_IMM32_B32)
5243 .addImm(SPDenormMode)
5265 auto One =
B.buildFConstant(
S32, 1.0f);
5267 auto DenominatorScaled =
5268 B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {
S32,
S1})
5273 auto NumeratorScaled =
5274 B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {
S32,
S1})
5280 auto ApproxRcp =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {
S32})
5281 .addUse(DenominatorScaled.getReg(0))
5283 auto NegDivScale0 =
B.buildFNeg(
S32, DenominatorScaled, Flags);
5286 const bool HasDynamicDenormals =
5291 if (!PreservesDenormals) {
5292 if (HasDynamicDenormals) {
5293 SavedSPDenormMode =
MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5294 B.buildInstr(AMDGPU::S_GETREG_B32)
5295 .addDef(SavedSPDenormMode)
5301 auto Fma0 =
B.buildFMA(
S32, NegDivScale0, ApproxRcp, One, Flags);
5302 auto Fma1 =
B.buildFMA(
S32, Fma0, ApproxRcp, ApproxRcp, Flags);
5303 auto Mul =
B.buildFMul(
S32, NumeratorScaled, Fma1, Flags);
5304 auto Fma2 =
B.buildFMA(
S32, NegDivScale0,
Mul, NumeratorScaled, Flags);
5305 auto Fma3 =
B.buildFMA(
S32, Fma2, Fma1,
Mul, Flags);
5306 auto Fma4 =
B.buildFMA(
S32, NegDivScale0, Fma3, NumeratorScaled, Flags);
5308 if (!PreservesDenormals) {
5309 if (HasDynamicDenormals) {
5310 assert(SavedSPDenormMode);
5311 B.buildInstr(AMDGPU::S_SETREG_B32)
5312 .addReg(SavedSPDenormMode)
5318 auto Fmas =
B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {
S32})
5319 .addUse(Fma4.getReg(0))
5320 .addUse(Fma1.getReg(0))
5321 .addUse(Fma3.getReg(0))
5322 .addUse(NumeratorScaled.getReg(1))
5325 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res)
5326 .addUse(Fmas.getReg(0))
5331 MI.eraseFromParent();
5350 auto One =
B.buildFConstant(
S64, 1.0);
5352 auto DivScale0 =
B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {
S64,
S1})
5358 auto NegDivScale0 =
B.buildFNeg(
S64, DivScale0.getReg(0), Flags);
5360 auto Rcp =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {
S64})
5361 .addUse(DivScale0.getReg(0))
5364 auto Fma0 =
B.buildFMA(
S64, NegDivScale0, Rcp, One, Flags);
5365 auto Fma1 =
B.buildFMA(
S64, Rcp, Fma0, Rcp, Flags);
5366 auto Fma2 =
B.buildFMA(
S64, NegDivScale0, Fma1, One, Flags);
5368 auto DivScale1 =
B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {
S64,
S1})
5374 auto Fma3 =
B.buildFMA(
S64, Fma1, Fma2, Fma1, Flags);
5375 auto Mul =
B.buildFMul(
S64, DivScale1.getReg(0), Fma3, Flags);
5376 auto Fma4 =
B.buildFMA(
S64, NegDivScale0,
Mul, DivScale1.getReg(0), Flags);
5379 if (!ST.hasUsableDivScaleConditionOutput()) {
5385 auto NumUnmerge =
B.buildUnmerge(
S32, LHS);
5386 auto DenUnmerge =
B.buildUnmerge(
S32, RHS);
5387 auto Scale0Unmerge =
B.buildUnmerge(
S32, DivScale0);
5388 auto Scale1Unmerge =
B.buildUnmerge(
S32, DivScale1);
5391 Scale1Unmerge.getReg(1));
5393 Scale0Unmerge.getReg(1));
5394 Scale =
B.buildXor(
S1, CmpNum, CmpDen).getReg(0);
5396 Scale = DivScale1.getReg(1);
5399 auto Fmas =
B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {
S64})
5400 .addUse(Fma4.getReg(0))
5401 .addUse(Fma3.getReg(0))
5402 .addUse(
Mul.getReg(0))
5406 B.buildIntrinsic(Intrinsic::amdgcn_div_fixup,
ArrayRef(Res))
5407 .addUse(Fmas.getReg(0))
5412 MI.eraseFromParent();
5424 LLT Ty =
MRI.getType(Res0);
5427 auto Mant =
B.buildIntrinsic(Intrinsic::amdgcn_frexp_mant, {Ty})
5430 auto Exp =
B.buildIntrinsic(Intrinsic::amdgcn_frexp_exp, {InstrExpTy})
5434 if (ST.hasFractBug()) {
5435 auto Fabs =
B.buildFAbs(Ty, Val);
5439 auto Zero =
B.buildConstant(InstrExpTy, 0);
5440 Exp =
B.buildSelect(InstrExpTy, IsFinite, Exp, Zero);
5441 Mant =
B.buildSelect(Ty, IsFinite, Mant, Val);
5444 B.buildCopy(Res0, Mant);
5445 B.buildSExtOrTrunc(Res1, Exp);
5447 MI.eraseFromParent();
5462 auto Abs =
B.buildFAbs(
S32, RHS, Flags);
5465 auto C0 =
B.buildFConstant(
S32, 0x1p+96f);
5466 auto C1 =
B.buildFConstant(
S32, 0x1p-32f);
5467 auto C2 =
B.buildFConstant(
S32, 1.0f);
5470 auto Sel =
B.buildSelect(
S32, CmpRes, C1, C2, Flags);
5472 auto Mul0 =
B.buildFMul(
S32, RHS, Sel, Flags);
5474 auto RCP =
B.buildIntrinsic(Intrinsic::amdgcn_rcp, {
S32})
5475 .addUse(Mul0.getReg(0))
5478 auto Mul1 =
B.buildFMul(
S32, LHS, RCP, Flags);
5480 B.buildFMul(Res, Sel, Mul1, Flags);
5482 MI.eraseFromParent();
5491 unsigned Flags =
MI.getFlags();
5492 assert(!ST.has16BitInsts());
5494 auto Ext =
B.buildFPExt(
F32,
MI.getOperand(1), Flags);
5495 auto Log2 =
B.buildIntrinsic(Intrinsic::amdgcn_sqrt, {
F32})
5496 .addUse(Ext.getReg(0))
5498 B.buildFPTrunc(
MI.getOperand(0),
Log2, Flags);
5499 MI.eraseFromParent();
5509 const unsigned Flags =
MI.getFlags();
5518 MI.eraseFromParent();
5522 auto ScaleThreshold =
B.buildFConstant(
F32, 0x1.0p-96f);
5524 auto ScaleUpFactor =
B.buildFConstant(
F32, 0x1.0p+32f);
5525 auto ScaledX =
B.buildFMul(
F32,
X, ScaleUpFactor, Flags);
5526 auto SqrtX =
B.buildSelect(
F32, NeedScale, ScaledX,
X, Flags);
5531 .addUse(SqrtX.getReg(0))
5534 auto NegOne =
B.buildConstant(I32, -1);
5535 auto SqrtSNextDown =
B.buildAdd(I32, SqrtS, NegOne);
5537 auto NegSqrtSNextDown =
B.buildFNeg(
F32, SqrtSNextDown, Flags);
5538 auto SqrtVP =
B.buildFMA(
F32, NegSqrtSNextDown, SqrtS, SqrtX, Flags);
5540 auto PosOne =
B.buildConstant(I32, 1);
5541 auto SqrtSNextUp =
B.buildAdd(I32, SqrtS, PosOne);
5543 auto NegSqrtSNextUp =
B.buildFNeg(
F32, SqrtSNextUp, Flags);
5544 auto SqrtVS =
B.buildFMA(
F32, NegSqrtSNextUp, SqrtS, SqrtX, Flags);
5546 auto Zero =
B.buildFConstant(
F32, 0.0f);
5550 B.buildSelect(
F32, SqrtVPLE0, SqrtSNextDown, SqrtS, Flags).getReg(0);
5554 B.buildSelect(
F32, SqrtVPVSGT0, SqrtSNextUp, SqrtS, Flags).getReg(0);
5557 B.buildIntrinsic(Intrinsic::amdgcn_rsq, {
F32}).addReg(SqrtX.getReg(0));
5558 B.buildFMul(SqrtS, SqrtX, SqrtR, Flags);
5560 auto Half =
B.buildFConstant(
F32, 0.5f);
5561 auto SqrtH =
B.buildFMul(
F32, SqrtR, Half, Flags);
5562 auto NegSqrtH =
B.buildFNeg(
F32, SqrtH, Flags);
5563 auto SqrtE =
B.buildFMA(
F32, NegSqrtH, SqrtS, Half, Flags);
5564 SqrtH =
B.buildFMA(
F32, SqrtH, SqrtE, SqrtH, Flags);
5565 SqrtS =
B.buildFMA(
F32, SqrtS, SqrtE, SqrtS, Flags).getReg(0);
5566 auto NegSqrtS =
B.buildFNeg(
F32, SqrtS, Flags);
5567 auto SqrtD =
B.buildFMA(
F32, NegSqrtS, SqrtS, SqrtX, Flags);
5568 SqrtS =
B.buildFMA(
F32, SqrtD, SqrtH, SqrtS, Flags).getReg(0);
5571 auto ScaleDownFactor =
B.buildFConstant(
F32, 0x1.0p-16f);
5573 auto ScaledDown =
B.buildFMul(
F32, SqrtS, ScaleDownFactor, Flags);
5575 SqrtS =
B.buildSelect(
F32, NeedScale, ScaledDown, SqrtS, Flags).getReg(0);
5578 B.buildSelect(Dst, IsZeroOrInf, SqrtX, SqrtS, Flags);
5580 MI.eraseFromParent();
5612 assert(
MRI.getType(Dst) ==
F64 &&
"only expect to lower f64 sqrt");
5615 unsigned Flags =
MI.getFlags();
5617 auto ScaleConstant =
B.buildFConstant(
F64, 0x1.0p-767);
5619 auto ZeroInt =
B.buildConstant(
S32, 0);
5623 auto ScaleUpFactor =
B.buildConstant(
S32, 256);
5624 auto ScaleUp =
B.buildSelect(
S32, Scaling, ScaleUpFactor, ZeroInt);
5625 auto SqrtX =
B.buildFLdexp(
F64,
X, ScaleUp, Flags);
5628 B.buildIntrinsic(Intrinsic::amdgcn_rsq, {
F64}).addReg(SqrtX.getReg(0));
5630 auto Half =
B.buildFConstant(
F64, 0.5);
5631 auto SqrtH0 =
B.buildFMul(
F64, SqrtY, Half);
5632 auto SqrtS0 =
B.buildFMul(
F64, SqrtX, SqrtY);
5634 auto NegSqrtH0 =
B.buildFNeg(
F64, SqrtH0);
5635 auto SqrtR0 =
B.buildFMA(
F64, NegSqrtH0, SqrtS0, Half);
5637 auto SqrtS1 =
B.buildFMA(
F64, SqrtS0, SqrtR0, SqrtS0);
5638 auto SqrtH1 =
B.buildFMA(
F64, SqrtH0, SqrtR0, SqrtH0);
5640 auto NegSqrtS1 =
B.buildFNeg(
F64, SqrtS1);
5641 auto SqrtD0 =
B.buildFMA(
F64, NegSqrtS1, SqrtS1, SqrtX);
5643 auto SqrtS2 =
B.buildFMA(
F64, SqrtD0, SqrtH1, SqrtS1);
5645 auto NegSqrtS2 =
B.buildFNeg(
F64, SqrtS2);
5646 auto SqrtD1 =
B.buildFMA(
F64, NegSqrtS2, SqrtS2, SqrtX);
5648 auto SqrtRet =
B.buildFMA(
F64, SqrtD1, SqrtH1, SqrtS2);
5651 auto ScaleDownFactor =
B.buildConstant(
S32, -128);
5652 auto ScaleDown =
B.buildSelect(
S32, Scaling, ScaleDownFactor, ZeroInt);
5653 SqrtRet =
B.buildFLdexp(
F64, SqrtRet, ScaleDown, Flags);
5662 B.buildSelect(Dst, IsZeroOrInf, SqrtX, SqrtRet, Flags);
5664 MI.eraseFromParent();
5671 LLT Ty =
MRI.getType(
MI.getOperand(0).getReg());
5695 auto Flags =
MI.getFlags();
5697 LLT Ty =
MRI.getType(Dst);
5707 auto Rsq =
B.buildIntrinsic(Intrinsic::amdgcn_rsq, {Ty})
5717 auto ClampMax = UseIEEE ?
B.buildFMinNumIEEE(Ty, Rsq, MaxFlt, Flags) :
5718 B.buildFMinNum(Ty, Rsq, MaxFlt, Flags);
5723 B.buildFMaxNumIEEE(Dst, ClampMax, MinFlt, Flags);
5725 B.buildFMaxNum(Dst, ClampMax, MinFlt, Flags);
5726 MI.eraseFromParent();
5738 bool IsPermLane16 = IID == Intrinsic::amdgcn_permlane16 ||
5739 IID == Intrinsic::amdgcn_permlanex16;
5740 bool IsSetInactive = IID == Intrinsic::amdgcn_set_inactive ||
5741 IID == Intrinsic::amdgcn_set_inactive_chain_arg;
5745 auto LaneOp =
B.buildIntrinsic(IID, {VT}).addUse(Src0);
5747 case Intrinsic::amdgcn_readfirstlane:
5748 case Intrinsic::amdgcn_permlane64:
5749 return LaneOp.getReg(0);
5750 case Intrinsic::amdgcn_readlane:
5751 case Intrinsic::amdgcn_set_inactive:
5752 case Intrinsic::amdgcn_set_inactive_chain_arg:
5753 return LaneOp.addUse(Src1).getReg(0);
5754 case Intrinsic::amdgcn_writelane:
5755 return LaneOp.addUse(Src1).addUse(Src2).getReg(0);
5756 case Intrinsic::amdgcn_permlane16:
5757 case Intrinsic::amdgcn_permlanex16: {
5759 int64_t Src4 =
MI.getOperand(6).getImm();
5760 int64_t Src5 =
MI.getOperand(7).getImm();
5761 return LaneOp.addUse(Src1)
5768 case Intrinsic::amdgcn_mov_dpp8:
5769 return LaneOp.addImm(
MI.getOperand(3).getImm()).getReg(0);
5770 case Intrinsic::amdgcn_update_dpp:
5771 return LaneOp.addUse(Src1)
5772 .addImm(
MI.getOperand(4).getImm())
5773 .addImm(
MI.getOperand(5).getImm())
5774 .addImm(
MI.getOperand(6).getImm())
5775 .addImm(
MI.getOperand(7).getImm())
5785 if (IID == Intrinsic::amdgcn_readlane || IID == Intrinsic::amdgcn_writelane ||
5786 IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16) {
5787 Src1 =
MI.getOperand(3).getReg();
5788 if (IID == Intrinsic::amdgcn_writelane || IsPermLane16) {
5789 Src2 =
MI.getOperand(4).getReg();
5793 LLT Ty =
MRI.getType(DstReg);
5794 unsigned Size = Ty.getSizeInBits();
5796 unsigned SplitSize = 32;
5797 if (IID == Intrinsic::amdgcn_update_dpp && (
Size % 64 == 0) &&
5798 ST.hasDPALU_DPP() &&
5802 if (
Size == SplitSize) {
5808 Src0 =
B.buildAnyExt(
S32, Src0).getReg(0);
5810 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16)
5813 if (IID == Intrinsic::amdgcn_writelane)
5816 Register LaneOpDst = createLaneOp(Src0, Src1, Src2,
S32);
5817 B.buildTrunc(DstReg, LaneOpDst);
5818 MI.eraseFromParent();
5822 if (
Size % SplitSize != 0)
5826 bool NeedsBitcast =
false;
5827 if (Ty.isVector()) {
5830 if (EltSize == SplitSize) {
5831 PartialResTy = EltTy;
5832 }
else if (EltSize == 16 || EltSize == 32) {
5833 unsigned NElem = SplitSize / EltSize;
5837 NeedsBitcast =
true;
5842 unsigned NumParts =
Size / SplitSize;
5846 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16)
5847 Src1Parts =
B.buildUnmerge(PartialResTy, Src1);
5849 if (IID == Intrinsic::amdgcn_writelane)
5850 Src2Parts =
B.buildUnmerge(PartialResTy, Src2);
5852 for (
unsigned i = 0; i < NumParts; ++i) {
5853 Src0 = Src0Parts.
getReg(i);
5855 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16)
5856 Src1 = Src1Parts.
getReg(i);
5858 if (IID == Intrinsic::amdgcn_writelane)
5859 Src2 = Src2Parts.
getReg(i);
5861 PartialRes.
push_back(createLaneOp(Src0, Src1, Src2, PartialResTy));
5865 B.buildBitcast(DstReg,
B.buildMergeLikeInstr(
5868 B.buildMergeLikeInstr(DstReg, PartialRes);
5870 MI.eraseFromParent();
5878 ST.getTargetLowering()->getImplicitParameterOffset(
5880 LLT DstTy =
MRI.getType(DstReg);
5883 Register KernargPtrReg =
MRI.createGenericVirtualRegister(DstTy);
5888 B.buildObjectPtrOffset(DstReg, KernargPtrReg,
5889 B.buildConstant(IdxTy,
Offset).getReg(0));
5900 Register Pointer =
MI.getOperand(2).getReg();
5902 Register NumRecords =
MI.getOperand(4).getReg();
5908 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
5910 auto ExtStride =
B.buildAnyExt(
S32, Stride);
5912 if (ST.has45BitNumRecordsBufferResource()) {
5917 auto PointerInt =
B.buildPtrToInt(PtrIntTy, Pointer);
5918 auto ExtPointer =
B.buildAnyExtOrTrunc(
S64, PointerInt);
5919 auto NumRecordsLHS =
B.buildShl(
S64, NumRecords,
B.buildConstant(
S32, 57));
5920 Register LowHalf =
B.buildOr(
S64, ExtPointer, NumRecordsLHS).getReg(0);
5924 auto NumRecordsRHS =
B.buildLShr(
S64, NumRecords,
B.buildConstant(
S32, 7));
5925 auto ShiftedStride =
B.buildShl(
S32, ExtStride,
B.buildConstant(
S32, 12));
5926 auto ExtShiftedStride =
5927 B.buildMergeValues(
S64, {Zero, ShiftedStride.getReg(0)});
5928 auto ShiftedFlags =
B.buildShl(
S32, Flags,
B.buildConstant(
S32, 28));
5929 auto ExtShiftedFlags =
5930 B.buildMergeValues(
S64, {Zero, ShiftedFlags.getReg(0)});
5931 auto CombinedFields =
B.buildOr(
S64, NumRecordsRHS, ExtShiftedStride);
5933 B.buildOr(
S64, CombinedFields, ExtShiftedFlags).getReg(0);
5934 B.buildMergeValues(Result, {LowHalf, HighHalf});
5936 NumRecords =
B.buildTrunc(
S32, NumRecords).getReg(0);
5937 auto Unmerge =
B.buildUnmerge(
S32, Pointer);
5938 auto LowHalf = Unmerge.getReg(0);
5939 auto HighHalf = Unmerge.getReg(1);
5941 auto AndMask =
B.buildConstant(
S32, 0x0000ffff);
5942 auto Masked =
B.buildAnd(
S32, HighHalf, AndMask);
5943 auto ShiftConst =
B.buildConstant(
S32, 16);
5944 auto ShiftedStride =
B.buildShl(
S32, ExtStride, ShiftConst);
5945 auto NewHighHalf =
B.buildOr(
S32,
Masked, ShiftedStride);
5946 Register NewHighHalfReg = NewHighHalf.getReg(0);
5947 B.buildMergeValues(Result, {LowHalf, NewHighHalfReg, NumRecords, Flags});
5950 MI.eraseFromParent();
5967 MI.eraseFromParent();
5975 std::optional<uint32_t> KnownSize =
5977 if (KnownSize.has_value())
5978 B.buildConstant(DstReg, *KnownSize);
5996 MI.eraseFromParent();
6003 unsigned AddrSpace)
const {
6005 auto Unmerge =
B.buildUnmerge(
S32,
MI.getOperand(2).getReg());
6009 ST.hasGloballyAddressableScratch()) {
6011 B.buildInstr(AMDGPU::S_MOV_B32, {
S32},
6012 {
Register(AMDGPU::SRC_FLAT_SCRATCH_BASE_HI)})
6014 MRI.setRegClass(FlatScratchBaseHi, &AMDGPU::SReg_32RegClass);
6016 Register XOR =
B.buildXor(
S32, Hi32, FlatScratchBaseHi).getReg(0);
6018 B.buildConstant(
S32, 1u << 26));
6023 MI.eraseFromParent();
6033std::pair<Register, unsigned>
6047 MRI, OrigOffset,
nullptr, CheckNUW);
6050 if (
MRI.getType(BaseReg).isPointer())
6051 BaseReg =
B.buildPtrToInt(
MRI.getType(OrigOffset), BaseReg).getReg(0);
6061 unsigned Overflow = ImmOffset & ~MaxImm;
6062 ImmOffset -= Overflow;
6063 if ((int32_t)Overflow < 0) {
6064 Overflow += ImmOffset;
6068 if (Overflow != 0) {
6070 BaseReg =
B.buildConstant(
S32, Overflow).getReg(0);
6072 auto OverflowVal =
B.buildConstant(
S32, Overflow);
6073 BaseReg =
B.buildAdd(
S32, BaseReg, OverflowVal).getReg(0);
6078 BaseReg =
B.buildConstant(
S32, 0).getReg(0);
6080 return std::pair(BaseReg, ImmOffset);
6087 bool ImageStore)
const {
6090 LLT StoreVT =
MRI.getType(Reg);
6093 if (ST.hasUnpackedD16VMem()) {
6094 auto Unmerge =
B.buildUnmerge(
S16, Reg);
6097 for (
int I = 0, E = Unmerge->getNumOperands() - 1;
I != E; ++
I)
6098 WideRegs.
push_back(
B.buildAnyExt(
S32, Unmerge.getReg(
I)).getReg(0));
6106 if (ImageStore && ST.hasImageStoreD16Bug()) {
6109 Reg =
B.buildBitcast(
S32, Reg).getReg(0);
6111 PackedRegs.
resize(2,
B.buildUndef(
S32).getReg(0));
6118 auto Unmerge =
B.buildUnmerge(
S16, Reg);
6119 for (
int I = 0, E = Unmerge->getNumOperands() - 1;
I != E; ++
I)
6121 PackedRegs.
resize(6,
B.buildUndef(
S16).getReg(0));
6129 auto Unmerge =
B.buildUnmerge(
S32, Reg);
6130 for (
int I = 0, E = Unmerge->getNumOperands() - 1;
I != E; ++
I)
6132 PackedRegs.
resize(4,
B.buildUndef(
S32).getReg(0));
6149 bool IsFormat)
const {
6151 LLT Ty =
MRI->getType(VData);
6161 VData =
B.buildBitcast(Ty, VData).getReg(0);
6169 if (Ty.isVector()) {
6170 if (Ty.getElementType() ==
S16 && Ty.getNumElements() <= 4) {
6182 bool IsFormat)
const {
6187 LLT Ty =
MRI.getType(VData);
6189 const bool IsD16 = IsFormat && (EltTy.
getSizeInBits() == 16);
6204 const unsigned NumVIndexOps = IsTyped ? 8 : 7;
6207 const bool HasVIndex =
MI.getNumOperands() == NumVIndexOps;
6211 VIndex =
MI.getOperand(3).getReg();
6214 VIndex =
B.buildConstant(
S32, 0).getReg(0);
6217 Register VOffset =
MI.getOperand(3 + OpOffset).getReg();
6218 Register SOffset =
MI.getOperand(4 + OpOffset).getReg();
6222 Format =
MI.getOperand(5 + OpOffset).getImm();
6226 unsigned AuxiliaryData =
MI.getOperand(5 + OpOffset).getImm();
6232 Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT_D16 :
6233 AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT;
6234 }
else if (IsFormat) {
6235 Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT_D16 :
6236 AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT;
6240 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_BYTE;
6243 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_SHORT;
6246 Opc = AMDGPU::G_AMDGPU_BUFFER_STORE;
6251 auto MIB =
B.buildInstr(
Opc)
6262 MIB.addImm(AuxiliaryData)
6263 .addImm(HasVIndex ? -1 : 0)
6264 .addMemOperand(MMO);
6266 MI.eraseFromParent();
6272 unsigned ImmOffset,
unsigned Format,
6275 auto MIB =
B.buildInstr(
Opc)
6286 MIB.addImm(AuxiliaryData)
6287 .addImm(HasVIndex ? -1 : 0)
6288 .addMemOperand(MMO);
6294 bool IsTyped)
const {
6308 assert(
MI.getNumExplicitDefs() == 1 ||
MI.getNumExplicitDefs() == 2);
6309 bool IsTFE =
MI.getNumExplicitDefs() == 2;
6311 StatusDst =
MI.getOperand(1).getReg();
6316 Register RSrc =
MI.getOperand(2 + OpOffset).getReg();
6319 const unsigned NumVIndexOps = IsTyped ? 8 : 7;
6322 const bool HasVIndex =
MI.getNumOperands() == NumVIndexOps + OpOffset;
6325 VIndex =
MI.getOperand(3 + OpOffset).getReg();
6328 VIndex =
B.buildConstant(
S32, 0).getReg(0);
6331 Register VOffset =
MI.getOperand(3 + OpOffset).getReg();
6332 Register SOffset =
MI.getOperand(4 + OpOffset).getReg();
6336 Format =
MI.getOperand(5 + OpOffset).getImm();
6340 unsigned AuxiliaryData =
MI.getOperand(5 + OpOffset).getImm();
6343 LLT Ty =
MRI.getType(Dst);
6350 Dst =
MI.getOperand(0).getReg();
6351 B.setInsertPt(
B.getMBB(),
MI);
6358 Dst =
MI.getOperand(0).getReg();
6359 B.setInsertPt(
B.getMBB(),
MI);
6363 const bool IsD16 = IsFormat && (EltTy.
getSizeInBits() == 16);
6364 const bool Unpacked = ST.hasUnpackedD16VMem();
6374 Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 :
6375 AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT;
6376 }
else if (IsFormat) {
6380 Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT_D16;
6382 Opc = IsTFE ? AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT_TFE
6383 : AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT;
6388 Opc = IsTFE ? AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE_TFE
6389 : AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE;
6392 Opc = IsTFE ? AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT_TFE
6393 : AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT;
6396 Opc = IsTFE ? AMDGPU::G_AMDGPU_BUFFER_LOAD_TFE
6397 : AMDGPU::G_AMDGPU_BUFFER_LOAD;
6403 unsigned NumValueDWords =
divideCeil(Ty.getSizeInBits(), 32);
6404 unsigned NumLoadDWords = NumValueDWords + 1;
6406 Register LoadDstReg =
B.getMRI()->createGenericVirtualRegister(LoadTy);
6408 Format, AuxiliaryData, MMO, IsTyped, HasVIndex,
B);
6410 Register ExtDst =
B.getMRI()->createGenericVirtualRegister(
S32);
6411 B.buildUnmerge({ExtDst, StatusDst}, LoadDstReg);
6412 B.buildTrunc(Dst, ExtDst);
6413 }
else if (NumValueDWords == 1) {
6414 B.buildUnmerge({Dst, StatusDst}, LoadDstReg);
6417 for (
unsigned I = 0;
I != NumValueDWords; ++
I)
6418 LoadElts.
push_back(
B.getMRI()->createGenericVirtualRegister(
S32));
6420 B.buildUnmerge(LoadElts, LoadDstReg);
6422 B.buildMergeLikeInstr(Dst, LoadElts);
6425 (IsD16 && !Ty.isVector())) {
6426 Register LoadDstReg =
B.getMRI()->createGenericVirtualRegister(
S32);
6428 Format, AuxiliaryData, MMO, IsTyped, HasVIndex,
B);
6429 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
6430 B.buildTrunc(Dst, LoadDstReg);
6431 }
else if (Unpacked && IsD16 && Ty.isVector()) {
6433 Register LoadDstReg =
B.getMRI()->createGenericVirtualRegister(UnpackedTy);
6435 Format, AuxiliaryData, MMO, IsTyped, HasVIndex,
B);
6436 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
6438 auto Unmerge =
B.buildUnmerge(
S32, LoadDstReg);
6440 for (
unsigned I = 0,
N = Unmerge->getNumOperands() - 1;
I !=
N; ++
I)
6441 Repack.
push_back(
B.buildTrunc(EltTy, Unmerge.getReg(
I)).getReg(0));
6442 B.buildMergeLikeInstr(Dst, Repack);
6445 AuxiliaryData, MMO, IsTyped, HasVIndex,
B);
6448 MI.eraseFromParent();
6454 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
6455 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap:
6456 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
6457 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap:
6458 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP;
6459 case Intrinsic::amdgcn_raw_buffer_atomic_add:
6460 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
6461 case Intrinsic::amdgcn_struct_buffer_atomic_add:
6462 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
6463 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD;
6464 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
6465 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
6466 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
6467 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
6468 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB;
6469 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
6470 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
6471 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
6472 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
6473 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN;
6474 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
6475 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
6476 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
6477 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
6478 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN;
6479 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
6480 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
6481 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
6482 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
6483 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX;
6484 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
6485 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
6486 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
6487 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
6488 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX;
6489 case Intrinsic::amdgcn_raw_buffer_atomic_and:
6490 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
6491 case Intrinsic::amdgcn_struct_buffer_atomic_and:
6492 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
6493 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND;
6494 case Intrinsic::amdgcn_raw_buffer_atomic_or:
6495 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
6496 case Intrinsic::amdgcn_struct_buffer_atomic_or:
6497 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
6498 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR;
6499 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
6500 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
6501 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
6502 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
6503 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR;
6504 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
6505 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc:
6506 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
6507 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc:
6508 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC;
6509 case Intrinsic::amdgcn_raw_buffer_atomic_dec:
6510 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec:
6511 case Intrinsic::amdgcn_struct_buffer_atomic_dec:
6512 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec:
6513 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC;
6514 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
6515 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap:
6516 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
6517 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap:
6518 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP;
6519 case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
6520 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd:
6521 case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
6522 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd:
6523 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FADD;
6524 case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
6525 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin:
6526 case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
6527 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin:
6528 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMIN;
6529 case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
6530 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax:
6531 case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
6532 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax:
6533 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMAX;
6534 case Intrinsic::amdgcn_raw_buffer_atomic_cond_sub_u32:
6535 case Intrinsic::amdgcn_struct_buffer_atomic_cond_sub_u32:
6536 return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_COND_SUB_U32;
6545 const bool IsCmpSwap =
6546 IID == Intrinsic::amdgcn_raw_buffer_atomic_cmpswap ||
6547 IID == Intrinsic::amdgcn_struct_buffer_atomic_cmpswap ||
6548 IID == Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap ||
6549 IID == Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap;
6560 CmpVal =
MI.getOperand(3).getReg();
6565 Register RSrc =
MI.getOperand(3 + OpOffset).getReg();
6566 const unsigned NumVIndexOps = IsCmpSwap ? 9 : 8;
6569 const bool HasVIndex =
MI.getNumOperands() == NumVIndexOps;
6572 VIndex =
MI.getOperand(4 + OpOffset).getReg();
6575 VIndex =
B.buildConstant(
LLT::scalar(32), 0).getReg(0);
6578 Register VOffset =
MI.getOperand(4 + OpOffset).getReg();
6579 Register SOffset =
MI.getOperand(5 + OpOffset).getReg();
6580 unsigned AuxiliaryData =
MI.getOperand(6 + OpOffset).getImm();
6599 .addImm(AuxiliaryData)
6600 .addImm(HasVIndex ? -1 : 0)
6601 .addMemOperand(MMO);
6603 MI.eraseFromParent();
6613 bool IsA16,
bool IsG16) {
6629 (
B.getMRI()->getType(AddrReg) ==
S16)) {
6634 B.buildBuildVector(
V2S16, {AddrReg, B.buildUndef(S16).getReg(0)})
6638 "Bias needs to be converted to 16 bit in A16 mode");
6640 AddrReg =
B.buildBitcast(
V2S16, AddrReg).getReg(0);
6646 if (((
I + 1) >= EndIdx) ||
6653 !
MI.getOperand(ArgOffset +
I + 1).isReg()) {
6655 B.buildBuildVector(
V2S16, {AddrReg, B.buildUndef(S16).getReg(0)})
6660 V2S16, {AddrReg, MI.getOperand(ArgOffset + I + 1).getReg()})
6671 int DimIdx,
int NumVAddrs) {
6675 for (
int I = 0;
I != NumVAddrs; ++
I) {
6677 if (
SrcOp.isReg()) {
6683 int NumAddrRegs = AddrRegs.
size();
6684 if (NumAddrRegs != 1) {
6687 MI.getOperand(DimIdx).setReg(VAddr.getReg(0));
6690 for (
int I = 1;
I != NumVAddrs; ++
I) {
6693 MI.getOperand(DimIdx +
I).setReg(AMDGPU::NoRegister);
6715 const unsigned NumDefs =
MI.getNumExplicitDefs();
6716 const unsigned ArgOffset = NumDefs + 1;
6717 bool IsTFE = NumDefs == 2;
6735 VData =
MI.getOperand(NumDefs == 0 ? 1 : 0).getReg();
6736 Ty =
MRI->getType(VData);
6739 const bool IsAtomicPacked16Bit =
6740 (BaseOpcode->
BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_F16 ||
6741 BaseOpcode->
BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_BF16);
6749 ST.hasG16() ? (BaseOpcode->
Gradients && GradTy ==
S16) : GradTy ==
S16;
6750 const bool IsA16 = AddrTy ==
S16;
6751 const bool IsD16 = !IsAtomicPacked16Bit && Ty.getScalarType() ==
S16;
6754 if (!BaseOpcode->
Atomic) {
6755 DMask =
MI.getOperand(ArgOffset + Intr->
DMaskIndex).getImm();
6758 }
else if (DMask != 0) {
6760 }
else if (!IsTFE && !BaseOpcode->
Store) {
6762 B.buildUndef(
MI.getOperand(0));
6763 MI.eraseFromParent();
6771 const unsigned StoreOpcode = IsD16 ? AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE_D16
6772 : AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE;
6773 const unsigned LoadOpcode = IsD16 ? AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD_D16
6774 : AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD;
6775 unsigned NewOpcode = LoadOpcode;
6776 if (BaseOpcode->
Store)
6777 NewOpcode = StoreOpcode;
6779 NewOpcode = AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD_NORET;
6782 MI.setDesc(
B.getTII().get(NewOpcode));
6786 if (IsTFE && DMask == 0) {
6789 MI.getOperand(ArgOffset + Intr->
DMaskIndex).setImm(DMask);
6792 if (BaseOpcode->
Atomic) {
6794 LLT Ty =
MRI->getType(VData0);
6797 if (Ty.isVector() && !IsAtomicPacked16Bit)
6804 auto Concat =
B.buildBuildVector(PackedTy, {VData0, VData1});
6805 MI.getOperand(2).setReg(
Concat.getReg(0));
6806 MI.getOperand(3).setReg(AMDGPU::NoRegister);
6810 unsigned CorrectedNumVAddrs = Intr->
NumVAddrs;
6813 if (BaseOpcode->
Gradients && !ST.hasG16() && (IsA16 != IsG16)) {
6819 if (IsA16 && !ST.hasA16()) {
6824 const unsigned NSAMaxSize = ST.getNSAMaxSize(BaseOpcode->
Sampler);
6825 const unsigned HasPartialNSA = ST.hasPartialNSAEncoding();
6827 if (IsA16 || IsG16) {
6835 const bool UseNSA = ST.hasNSAEncoding() &&
6836 PackedRegs.
size() >= ST.getNSAThreshold(MF) &&
6837 (PackedRegs.
size() <= NSAMaxSize || HasPartialNSA);
6838 const bool UsePartialNSA =
6839 UseNSA && HasPartialNSA && PackedRegs.
size() > NSAMaxSize;
6841 if (UsePartialNSA) {
6845 auto Concat =
B.buildConcatVectors(
6846 PackedAddrTy,
ArrayRef(PackedRegs).slice(NSAMaxSize - 1));
6847 PackedRegs[NSAMaxSize - 1] =
Concat.getReg(0);
6848 PackedRegs.
resize(NSAMaxSize);
6849 }
else if (!UseNSA && PackedRegs.
size() > 1) {
6851 auto Concat =
B.buildConcatVectors(PackedAddrTy, PackedRegs);
6852 PackedRegs[0] =
Concat.getReg(0);
6856 const unsigned NumPacked = PackedRegs.
size();
6859 if (!
SrcOp.isReg()) {
6869 SrcOp.setReg(AMDGPU::NoRegister);
6886 const bool UseNSA = ST.hasNSAEncoding() &&
6887 CorrectedNumVAddrs >= ST.getNSAThreshold(MF) &&
6888 (CorrectedNumVAddrs <= NSAMaxSize || HasPartialNSA);
6889 const bool UsePartialNSA =
6890 UseNSA && HasPartialNSA && CorrectedNumVAddrs > NSAMaxSize;
6892 if (UsePartialNSA) {
6894 ArgOffset + Intr->
VAddrStart + NSAMaxSize - 1,
6896 }
else if (!UseNSA && Intr->
NumVAddrs > 1) {
6911 if (!Ty.isVector() || !IsD16)
6915 if (RepackedReg != VData) {
6916 MI.getOperand(1).setReg(RepackedReg);
6924 const int NumElts = Ty.
isVector() ? Ty.getNumElements() : 1;
6927 if (NumElts < DMaskLanes)
6930 if (NumElts > 4 || DMaskLanes > 4)
6940 const unsigned AdjustedNumElts = DMaskLanes == 0 ? 1 : DMaskLanes;
6941 const LLT AdjustedTy =
6957 if (IsD16 && ST.hasUnpackedD16VMem()) {
6964 unsigned RoundedElts = (AdjustedTy.
getSizeInBits() + 31) / 32;
6965 unsigned RoundedSize = 32 * RoundedElts;
6969 RegTy = !IsTFE && EltSize == 16 ?
V2S16 :
S32;
6974 if (!IsTFE && (RoundedTy == Ty || !Ty.
isVector()))
6980 B.setInsertPt(*
MI.getParent(), ++
MI.getIterator());
6984 const LLT LoadResultTy = IsTFE ? TFETy : RoundedTy;
6985 const int ResultNumRegs = LoadResultTy.
getSizeInBits() / 32;
6987 Register NewResultReg =
MRI->createGenericVirtualRegister(LoadResultTy);
6989 MI.getOperand(0).setReg(NewResultReg);
6997 Dst1Reg =
MI.getOperand(1).getReg();
6998 if (
MRI->getType(Dst1Reg) !=
S32)
7002 MI.removeOperand(1);
7006 B.buildUnmerge({DstReg, Dst1Reg}, NewResultReg);
7015 const int NumDataRegs = IsTFE ? ResultNumRegs - 1 : ResultNumRegs;
7017 if (ResultNumRegs == 1) {
7019 ResultRegs[0] = NewResultReg;
7022 for (
int I = 0;
I != NumDataRegs; ++
I)
7023 ResultRegs[
I] =
MRI->createGenericVirtualRegister(RegTy);
7024 B.buildUnmerge(ResultRegs, NewResultReg);
7029 ResultRegs.
resize(NumDataRegs);
7034 if (IsD16 && !Ty.isVector()) {
7035 B.buildTrunc(DstReg, ResultRegs[0]);
7040 if (Ty ==
V2S16 && NumDataRegs == 1 && !ST.hasUnpackedD16VMem()) {
7041 B.buildBitcast(DstReg, ResultRegs[0]);
7053 if (RegTy !=
V2S16 && !ST.hasUnpackedD16VMem()) {
7055 Reg =
B.buildBitcast(
V2S16, Reg).getReg(0);
7056 }
else if (ST.hasUnpackedD16VMem()) {
7058 Reg =
B.buildTrunc(
S16, Reg).getReg(0);
7062 auto padWithUndef = [&](
LLT Ty,
int NumElts) {
7065 Register Undef =
B.buildUndef(Ty).getReg(0);
7066 for (
int I = 0;
I != NumElts; ++
I)
7071 LLT ResTy =
MRI->getType(ResultRegs[0]);
7073 padWithUndef(ResTy, NumElts - ResultRegs.
size());
7074 B.buildBuildVector(DstReg, ResultRegs);
7078 assert(!ST.hasUnpackedD16VMem() && ResTy ==
V2S16);
7079 const int RegsToCover = (Ty.getSizeInBits() + 31) / 32;
7085 if (ResultRegs.
size() == 1) {
7086 NewResultReg = ResultRegs[0];
7087 }
else if (ResultRegs.
size() == 2) {
7089 NewResultReg =
B.buildConcatVectors(
V4S16, ResultRegs).getReg(0);
7095 if (
MRI->getType(DstReg).getNumElements() <
7096 MRI->getType(NewResultReg).getNumElements()) {
7097 B.buildDeleteTrailingVectorElements(DstReg, NewResultReg);
7099 B.buildPadVectorWithUndefElements(DstReg, NewResultReg);
7104 padWithUndef(ResTy, RegsToCover - ResultRegs.
size());
7105 B.buildConcatVectors(DstReg, ResultRegs);
7114 Register OrigDst =
MI.getOperand(0).getReg();
7116 LLT Ty =
B.getMRI()->getType(OrigDst);
7117 unsigned Size = Ty.getSizeInBits();
7120 if (
Size < 32 && ST.hasScalarSubwordLoads()) {
7122 Opc =
Size == 8 ? AMDGPU::G_AMDGPU_S_BUFFER_LOAD_UBYTE
7123 : AMDGPU::G_AMDGPU_S_BUFFER_LOAD_USHORT;
7126 Dst =
B.getMRI()->createGenericVirtualRegister(
LLT::scalar(32));
7128 Opc = AMDGPU::G_AMDGPU_S_BUFFER_LOAD;
7137 B.setInsertPt(
B.getMBB(),
MI);
7142 B.setInsertPt(
B.getMBB(),
MI);
7148 MI.setDesc(
B.getTII().get(
Opc));
7149 MI.removeOperand(1);
7152 const unsigned MemSize = (
Size + 7) / 8;
7153 const Align MemAlign =
B.getDataLayout().getABITypeAlign(
7160 MI.addMemOperand(MF, MMO);
7161 if (Dst != OrigDst) {
7162 MI.getOperand(0).setReg(Dst);
7163 B.setInsertPt(
B.getMBB(), ++
B.getInsertPt());
7164 B.buildTrunc(OrigDst, Dst);
7186 MI.setDesc(
B.getTII().get(AMDGPU::G_AMDGPU_S_BUFFER_PREFETCH));
7187 MI.removeOperand(0);
7197 if (!ST.isTrapHandlerEnabled() ||
7201 return ST.supportsGetDoorbellID() ?
7214 MI.eraseFromParent();
7224 BuildMI(*TrapBB, TrapBB->
end(),
DL,
B.getTII().get(AMDGPU::S_ENDPGM))
7226 BuildMI(BB, &
MI,
DL,
B.getTII().get(AMDGPU::S_CBRANCH_EXECNZ))
7230 MI.eraseFromParent();
7239 Register SGPR01(AMDGPU::SGPR0_SGPR1);
7246 ST.getTargetLowering()->getImplicitParameterOffset(
B.getMF(), Param);
7248 Register KernargPtrReg =
MRI.createGenericVirtualRegister(
7264 Register LoadAddr =
MRI.createGenericVirtualRegister(
7266 B.buildObjectPtrOffset(LoadAddr, KernargPtrReg,
7269 Register Temp =
B.buildLoad(
S64, LoadAddr, *MMO).getReg(0);
7270 B.buildCopy(SGPR01, Temp);
7271 B.buildInstr(AMDGPU::S_TRAP)
7274 MI.eraseFromParent();
7285 B.buildCopy(SGPR01, LiveIn);
7286 B.buildInstr(AMDGPU::S_TRAP)
7290 MI.eraseFromParent();
7299 if (ST.hasPrivEnabledTrap2NopBug()) {
7300 ST.getInstrInfo()->insertSimulatedTrap(
MRI,
B.getMBB(),
MI,
7302 MI.eraseFromParent();
7306 B.buildInstr(AMDGPU::S_TRAP)
7308 MI.eraseFromParent();
7317 if (!ST.isTrapHandlerEnabled() ||
7321 Fn,
"debugtrap handler not supported",
MI.getDebugLoc(),
DS_Warning));
7324 B.buildInstr(AMDGPU::S_TRAP)
7328 MI.eraseFromParent();
7341 Register NodePtr =
MI.getOperand(2).getReg();
7342 Register RayExtent =
MI.getOperand(3).getReg();
7343 Register RayOrigin =
MI.getOperand(4).getReg();
7345 Register RayInvDir =
MI.getOperand(6).getReg();
7348 if (!ST.hasGFX10_AEncoding()) {
7351 Fn,
"intrinsic not supported on subtarget",
MI.getDebugLoc()));
7358 const bool IsA16 =
MRI.getType(RayDir).getElementType().getSizeInBits() == 16;
7359 const bool Is64 =
MRI.getType(NodePtr).getSizeInBits() == 64;
7360 const unsigned NumVDataDwords = 4;
7361 const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
7362 const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords;
7364 IsGFX12Plus || (ST.hasNSAEncoding() && NumVAddrs <= ST.getNSAMaxSize());
7366 const unsigned BaseOpcodes[2][2] = {
7367 {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
7368 {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
7369 AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
7373 IsGFX12Plus ? AMDGPU::MIMGEncGfx12
7374 : IsGFX11 ? AMDGPU::MIMGEncGfx11NSA
7375 : AMDGPU::MIMGEncGfx10NSA,
7376 NumVDataDwords, NumVAddrDwords);
7380 IsGFX11 ? AMDGPU::MIMGEncGfx11Default
7381 : AMDGPU::MIMGEncGfx10Default,
7382 NumVDataDwords, NumVAddrDwords);
7387 if (UseNSA && IsGFX11Plus) {
7389 auto Unmerge =
B.buildUnmerge({
S32,
S32,
S32}, Src);
7390 auto Merged =
B.buildMergeLikeInstr(
7391 V3S32, {Unmerge.getReg(0), Unmerge.getReg(1), Unmerge.getReg(2)});
7392 Ops.push_back(Merged.getReg(0));
7395 Ops.push_back(NodePtr);
7396 Ops.push_back(RayExtent);
7397 packLanes(RayOrigin);
7400 auto UnmergeRayDir =
B.buildUnmerge({
S16,
S16,
S16}, RayDir);
7401 auto UnmergeRayInvDir =
B.buildUnmerge({
S16,
S16,
S16}, RayInvDir);
7402 auto MergedDir =
B.buildMergeLikeInstr(
7405 S32,
B.buildMergeLikeInstr(
V2S16, {UnmergeRayInvDir.getReg(0),
7406 UnmergeRayDir.getReg(0)}))
7409 S32,
B.buildMergeLikeInstr(
V2S16, {UnmergeRayInvDir.getReg(1),
7410 UnmergeRayDir.getReg(1)}))
7413 S32,
B.buildMergeLikeInstr(
V2S16, {UnmergeRayInvDir.getReg(2),
7414 UnmergeRayDir.getReg(2)}))
7416 Ops.push_back(MergedDir.getReg(0));
7419 packLanes(RayInvDir);
7423 auto Unmerge =
B.buildUnmerge({
S32,
S32}, NodePtr);
7424 Ops.push_back(Unmerge.getReg(0));
7425 Ops.push_back(Unmerge.getReg(1));
7427 Ops.push_back(NodePtr);
7429 Ops.push_back(RayExtent);
7432 auto Unmerge =
B.buildUnmerge({
S32,
S32,
S32}, Src);
7433 Ops.push_back(Unmerge.getReg(0));
7434 Ops.push_back(Unmerge.getReg(1));
7435 Ops.push_back(Unmerge.getReg(2));
7438 packLanes(RayOrigin);
7440 auto UnmergeRayDir =
B.buildUnmerge({
S16,
S16,
S16}, RayDir);
7441 auto UnmergeRayInvDir =
B.buildUnmerge({
S16,
S16,
S16}, RayInvDir);
7445 B.buildMergeLikeInstr(R1,
7446 {UnmergeRayDir.getReg(0), UnmergeRayDir.getReg(1)});
7447 B.buildMergeLikeInstr(
7448 R2, {UnmergeRayDir.getReg(2), UnmergeRayInvDir.getReg(0)});
7449 B.buildMergeLikeInstr(
7450 R3, {UnmergeRayInvDir.getReg(1), UnmergeRayInvDir.getReg(2)});
7456 packLanes(RayInvDir);
7463 Register MergedOps =
B.buildMergeLikeInstr(OpTy,
Ops).getReg(0);
7465 Ops.push_back(MergedOps);
7468 auto MIB =
B.buildInstr(AMDGPU::G_AMDGPU_BVH_INTERSECT_RAY)
7477 .addImm(IsA16 ? 1 : 0)
7480 MI.eraseFromParent();
7490 Register DstOrigin =
MI.getOperand(1).getReg();
7492 Register NodePtr =
MI.getOperand(4).getReg();
7493 Register RayExtent =
MI.getOperand(5).getReg();
7494 Register InstanceMask =
MI.getOperand(6).getReg();
7495 Register RayOrigin =
MI.getOperand(7).getReg();
7497 Register Offsets =
MI.getOperand(9).getReg();
7498 Register TDescr =
MI.getOperand(10).getReg();
7500 if (!ST.hasBVHDualAndBVH8Insts()) {
7503 Fn,
"intrinsic not supported on subtarget",
MI.getDebugLoc()));
7508 Intrinsic::amdgcn_image_bvh8_intersect_ray;
7509 const unsigned NumVDataDwords = 10;
7510 const unsigned NumVAddrDwords = IsBVH8 ? 11 : 12;
7512 IsBVH8 ? AMDGPU::IMAGE_BVH8_INTERSECT_RAY
7513 : AMDGPU::IMAGE_BVH_DUAL_INTERSECT_RAY,
7514 AMDGPU::MIMGEncGfx12, NumVDataDwords, NumVAddrDwords);
7517 auto RayExtentInstanceMaskVec =
B.buildMergeLikeInstr(
7518 V2S32, {RayExtent,
B.buildAnyExt(
S32, InstanceMask)});
7520 B.buildInstr(IsBVH8 ? AMDGPU::G_AMDGPU_BVH8_INTERSECT_RAY
7521 : AMDGPU::G_AMDGPU_BVH_DUAL_INTERSECT_RAY)
7527 .addUse(RayExtentInstanceMaskVec.getReg(0))
7534 MI.eraseFromParent();
7543 B.buildInstr(AMDGPU::G_AMDGPU_WAVE_ADDRESS, {DstReg}, {StackPtr});
7544 MI.eraseFromParent();
7551 if (!ST.hasArchitectedSGPRs())
7555 auto TTMP8 =
B.buildCopy(
S32,
Register(AMDGPU::TTMP8));
7556 auto LSB =
B.buildConstant(
S32, 25);
7557 auto Width =
B.buildConstant(
S32, 5);
7558 B.buildUbfx(DstReg, TTMP8, LSB, Width);
7559 MI.eraseFromParent();
7567 unsigned Width)
const {
7570 if (!
MRI.getRegClassOrNull(DstReg))
7571 MRI.setRegClass(DstReg, &AMDGPU::SReg_32RegClass);
7572 B.buildInstr(AMDGPU::S_GETREG_B32_const)
7575 MI.eraseFromParent();
7589 if (
MRI.getType(Src) !=
S64)
7593 B.buildIntrinsic(Intrinsic::amdgcn_s_getreg, {
S32},
7597 B.buildIntrinsic(Intrinsic::amdgcn_s_getreg, {
S32},
7600 B.buildMergeLikeInstr(Src, {ModeReg, TrapReg});
7601 MI.eraseFromParent();
7609 if (
MRI.getType(Src) !=
S64)
7612 auto Unmerge =
B.buildUnmerge({
S32,
S32},
MI.getOperand(0));
7616 .addReg(Unmerge.getReg(0));
7620 .addReg(Unmerge.getReg(1));
7621 MI.eraseFromParent();
7633 case Intrinsic::amdgcn_if:
7634 case Intrinsic::amdgcn_else: {
7637 bool Negated =
false;
7649 std::swap(CondBrTarget, UncondBrTarget);
7651 B.setInsertPt(
B.getMBB(), BrCond->getIterator());
7652 if (IntrID == Intrinsic::amdgcn_if) {
7653 B.buildInstr(AMDGPU::SI_IF)
7656 .addMBB(UncondBrTarget);
7658 B.buildInstr(AMDGPU::SI_ELSE)
7661 .addMBB(UncondBrTarget);
7670 B.buildBr(*CondBrTarget);
7673 MRI.setRegClass(Def,
TRI->getWaveMaskRegClass());
7674 MRI.setRegClass(
Use,
TRI->getWaveMaskRegClass());
7675 MI.eraseFromParent();
7676 BrCond->eraseFromParent();
7682 case Intrinsic::amdgcn_loop: {
7685 bool Negated =
false;
7695 std::swap(CondBrTarget, UncondBrTarget);
7697 B.setInsertPt(
B.getMBB(), BrCond->getIterator());
7698 B.buildInstr(AMDGPU::SI_LOOP)
7700 .addMBB(UncondBrTarget);
7705 B.buildBr(*CondBrTarget);
7707 MI.eraseFromParent();
7708 BrCond->eraseFromParent();
7709 MRI.setRegClass(Reg,
TRI->getWaveMaskRegClass());
7715 case Intrinsic::amdgcn_addrspacecast_nonnull:
7717 case Intrinsic::amdgcn_make_buffer_rsrc:
7719 case Intrinsic::amdgcn_kernarg_segment_ptr:
7722 B.buildConstant(
MI.getOperand(0).getReg(), 0);
7723 MI.eraseFromParent();
7729 case Intrinsic::amdgcn_implicitarg_ptr:
7731 case Intrinsic::amdgcn_workitem_id_x:
7734 case Intrinsic::amdgcn_workitem_id_y:
7737 case Intrinsic::amdgcn_workitem_id_z:
7740 case Intrinsic::amdgcn_workgroup_id_x:
7745 case Intrinsic::amdgcn_workgroup_id_y:
7750 case Intrinsic::amdgcn_workgroup_id_z:
7755 case Intrinsic::amdgcn_cluster_id_x:
7756 return ST.hasClusters() &&
7759 case Intrinsic::amdgcn_cluster_id_y:
7760 return ST.hasClusters() &&
7763 case Intrinsic::amdgcn_cluster_id_z:
7764 return ST.hasClusters() &&
7767 case Intrinsic::amdgcn_cluster_workgroup_id_x:
7768 return ST.hasClusters() &&
7771 case Intrinsic::amdgcn_cluster_workgroup_id_y:
7772 return ST.hasClusters() &&
7775 case Intrinsic::amdgcn_cluster_workgroup_id_z:
7776 return ST.hasClusters() &&
7779 case Intrinsic::amdgcn_cluster_workgroup_flat_id:
7780 return ST.hasClusters() &&
7782 case Intrinsic::amdgcn_cluster_workgroup_max_id_x:
7783 return ST.hasClusters() &&
7786 case Intrinsic::amdgcn_cluster_workgroup_max_id_y:
7787 return ST.hasClusters() &&
7790 case Intrinsic::amdgcn_cluster_workgroup_max_id_z:
7791 return ST.hasClusters() &&
7794 case Intrinsic::amdgcn_cluster_workgroup_max_flat_id:
7795 return ST.hasClusters() &&
7799 case Intrinsic::amdgcn_wave_id:
7801 case Intrinsic::amdgcn_lds_kernel_id:
7804 case Intrinsic::amdgcn_dispatch_ptr:
7807 case Intrinsic::amdgcn_queue_ptr:
7810 case Intrinsic::amdgcn_implicit_buffer_ptr:
7813 case Intrinsic::amdgcn_dispatch_id:
7816 case Intrinsic::r600_read_ngroups_x:
7820 case Intrinsic::r600_read_ngroups_y:
7823 case Intrinsic::r600_read_ngroups_z:
7826 case Intrinsic::r600_read_local_size_x:
7829 case Intrinsic::r600_read_local_size_y:
7833 case Intrinsic::r600_read_local_size_z:
7836 case Intrinsic::amdgcn_fdiv_fast:
7838 case Intrinsic::amdgcn_is_shared:
7840 case Intrinsic::amdgcn_is_private:
7842 case Intrinsic::amdgcn_wavefrontsize: {
7843 B.buildConstant(
MI.getOperand(0), ST.getWavefrontSize());
7844 MI.eraseFromParent();
7847 case Intrinsic::amdgcn_s_buffer_load:
7849 case Intrinsic::amdgcn_raw_buffer_store:
7850 case Intrinsic::amdgcn_raw_ptr_buffer_store:
7851 case Intrinsic::amdgcn_struct_buffer_store:
7852 case Intrinsic::amdgcn_struct_ptr_buffer_store:
7854 case Intrinsic::amdgcn_raw_buffer_store_format:
7855 case Intrinsic::amdgcn_raw_ptr_buffer_store_format:
7856 case Intrinsic::amdgcn_struct_buffer_store_format:
7857 case Intrinsic::amdgcn_struct_ptr_buffer_store_format:
7859 case Intrinsic::amdgcn_raw_tbuffer_store:
7860 case Intrinsic::amdgcn_raw_ptr_tbuffer_store:
7861 case Intrinsic::amdgcn_struct_tbuffer_store:
7862 case Intrinsic::amdgcn_struct_ptr_tbuffer_store:
7864 case Intrinsic::amdgcn_raw_buffer_load:
7865 case Intrinsic::amdgcn_raw_ptr_buffer_load:
7866 case Intrinsic::amdgcn_raw_atomic_buffer_load:
7867 case Intrinsic::amdgcn_raw_ptr_atomic_buffer_load:
7868 case Intrinsic::amdgcn_struct_buffer_load:
7869 case Intrinsic::amdgcn_struct_ptr_buffer_load:
7870 case Intrinsic::amdgcn_struct_atomic_buffer_load:
7871 case Intrinsic::amdgcn_struct_ptr_atomic_buffer_load:
7873 case Intrinsic::amdgcn_raw_buffer_load_format:
7874 case Intrinsic::amdgcn_raw_ptr_buffer_load_format:
7875 case Intrinsic::amdgcn_struct_buffer_load_format:
7876 case Intrinsic::amdgcn_struct_ptr_buffer_load_format:
7878 case Intrinsic::amdgcn_raw_tbuffer_load:
7879 case Intrinsic::amdgcn_raw_ptr_tbuffer_load:
7880 case Intrinsic::amdgcn_struct_tbuffer_load:
7881 case Intrinsic::amdgcn_struct_ptr_tbuffer_load:
7883 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7884 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap:
7885 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7886 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap:
7887 case Intrinsic::amdgcn_raw_buffer_atomic_add:
7888 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
7889 case Intrinsic::amdgcn_struct_buffer_atomic_add:
7890 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
7891 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7892 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
7893 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7894 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
7895 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7896 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
7897 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7898 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
7899 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7900 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
7901 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7902 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
7903 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7904 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
7905 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7906 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
7907 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7908 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
7909 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7910 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
7911 case Intrinsic::amdgcn_raw_buffer_atomic_and:
7912 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
7913 case Intrinsic::amdgcn_struct_buffer_atomic_and:
7914 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
7915 case Intrinsic::amdgcn_raw_buffer_atomic_or:
7916 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
7917 case Intrinsic::amdgcn_struct_buffer_atomic_or:
7918 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
7919 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7920 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
7921 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7922 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
7923 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7924 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc:
7925 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7926 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc:
7927 case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7928 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec:
7929 case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7930 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec:
7931 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
7932 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap:
7933 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
7934 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap:
7935 case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
7936 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin:
7937 case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
7938 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin:
7939 case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
7940 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax:
7941 case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
7942 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax:
7943 case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
7944 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd:
7945 case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
7946 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd:
7948 case Intrinsic::amdgcn_rsq_clamp:
7950 case Intrinsic::amdgcn_image_bvh_intersect_ray:
7952 case Intrinsic::amdgcn_image_bvh_dual_intersect_ray:
7953 case Intrinsic::amdgcn_image_bvh8_intersect_ray:
7955 case Intrinsic::amdgcn_swmmac_f32_16x16x128_fp8_fp8:
7956 case Intrinsic::amdgcn_swmmac_f32_16x16x128_fp8_bf8:
7957 case Intrinsic::amdgcn_swmmac_f32_16x16x128_bf8_fp8:
7958 case Intrinsic::amdgcn_swmmac_f32_16x16x128_bf8_bf8:
7959 case Intrinsic::amdgcn_swmmac_f16_16x16x128_fp8_fp8:
7960 case Intrinsic::amdgcn_swmmac_f16_16x16x128_fp8_bf8:
7961 case Intrinsic::amdgcn_swmmac_f16_16x16x128_bf8_fp8:
7962 case Intrinsic::amdgcn_swmmac_f16_16x16x128_bf8_bf8: {
7965 if (
MRI.getType(Index) !=
S64)
7966 MI.getOperand(5).setReg(
B.buildAnyExt(
S64, Index).getReg(0));
7969 case Intrinsic::amdgcn_swmmac_f16_16x16x32_f16:
7970 case Intrinsic::amdgcn_swmmac_bf16_16x16x32_bf16:
7971 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf16:
7972 case Intrinsic::amdgcn_swmmac_f32_16x16x32_f16:
7973 case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_fp8:
7974 case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_bf8:
7975 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_fp8:
7976 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_bf8: {
7979 if (
MRI.getType(Index) !=
S32)
7980 MI.getOperand(5).setReg(
B.buildAnyExt(
S32, Index).getReg(0));
7983 case Intrinsic::amdgcn_swmmac_f16_16x16x64_f16:
7984 case Intrinsic::amdgcn_swmmac_bf16_16x16x64_bf16:
7985 case Intrinsic::amdgcn_swmmac_f32_16x16x64_bf16:
7986 case Intrinsic::amdgcn_swmmac_bf16f32_16x16x64_bf16:
7987 case Intrinsic::amdgcn_swmmac_f32_16x16x64_f16:
7988 case Intrinsic::amdgcn_swmmac_i32_16x16x128_iu8:
7989 case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu4:
7990 case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu8:
7991 case Intrinsic::amdgcn_swmmac_i32_16x16x64_iu4: {
7993 LLT IdxTy = IntrID == Intrinsic::amdgcn_swmmac_i32_16x16x128_iu8
7996 if (
MRI.getType(Index) != IdxTy)
7997 MI.getOperand(7).setReg(
B.buildAnyExt(IdxTy, Index).getReg(0));
8001 case Intrinsic::amdgcn_fmed3: {
8007 MI.setDesc(
B.getTII().get(AMDGPU::G_AMDGPU_FMED3));
8008 MI.removeOperand(1);
8012 case Intrinsic::amdgcn_readlane:
8013 case Intrinsic::amdgcn_writelane:
8014 case Intrinsic::amdgcn_readfirstlane:
8015 case Intrinsic::amdgcn_permlane16:
8016 case Intrinsic::amdgcn_permlanex16:
8017 case Intrinsic::amdgcn_permlane64:
8018 case Intrinsic::amdgcn_set_inactive:
8019 case Intrinsic::amdgcn_set_inactive_chain_arg:
8020 case Intrinsic::amdgcn_mov_dpp8:
8021 case Intrinsic::amdgcn_update_dpp:
8023 case Intrinsic::amdgcn_s_buffer_prefetch_data:
8025 case Intrinsic::amdgcn_dead: {
8029 MI.eraseFromParent();
8032 case Intrinsic::amdgcn_cooperative_atomic_load_32x4B:
8033 case Intrinsic::amdgcn_cooperative_atomic_load_16x8B:
8034 case Intrinsic::amdgcn_cooperative_atomic_load_8x16B:
8035 assert(
MI.hasOneMemOperand() &&
"Expected IRTranslator to set MemOp!");
8036 B.buildLoad(
MI.getOperand(0),
MI.getOperand(2), **
MI.memoperands_begin());
8037 MI.eraseFromParent();
8039 case Intrinsic::amdgcn_cooperative_atomic_store_32x4B:
8040 case Intrinsic::amdgcn_cooperative_atomic_store_16x8B:
8041 case Intrinsic::amdgcn_cooperative_atomic_store_8x16B:
8042 assert(
MI.hasOneMemOperand() &&
"Expected IRTranslator to set MemOp!");
8043 B.buildStore(
MI.getOperand(2),
MI.getOperand(1), **
MI.memoperands_begin());
8044 MI.eraseFromParent();
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, SelectionDAG &DAG)
static SDValue getMad(SelectionDAG &DAG, const SDLoc &SL, EVT VT, SDValue X, SDValue Y, SDValue C, SDNodeFlags Flags=SDNodeFlags())
static bool valueIsKnownNeverF32Denorm(SDValue Src)
Return true if it's known that Src can never be an f32 denormal value.
Contains the definition of a TargetInstrInfo class that is common to all AMD GPUs.
static void packImage16bitOpsToDwords(MachineIRBuilder &B, MachineInstr &MI, SmallVectorImpl< Register > &PackedAddrs, unsigned ArgOffset, const AMDGPU::ImageDimIntrinsicInfo *Intr, bool IsA16, bool IsG16)
Turn a set of s16 typed registers in AddrRegs into a dword sized vector with s16 typed elements.
static unsigned getBufferAtomicPseudo(Intrinsic::ID IntrID)
static LLT getBufferRsrcScalarType(const LLT Ty)
static LegalityPredicate isIllegalRegisterType(const GCNSubtarget &ST, unsigned TypeIdx)
static cl::opt< bool > EnableNewLegality("amdgpu-global-isel-new-legality", cl::desc("Use GlobalISel desired legality, rather than try to use" "rules compatible with selection patterns"), cl::init(false), cl::ReallyHidden)
static bool needsDenormHandlingF32(const MachineFunction &MF, Register Src, unsigned Flags)
constexpr std::initializer_list< LLT > AllVectors
static LegalizeMutation bitcastToVectorElement32(unsigned TypeIdx)
static LegalityPredicate isSmallOddVector(unsigned TypeIdx)
static LegalizeMutation oneMoreElement(unsigned TypeIdx)
static LegalityPredicate vectorSmallerThan(unsigned TypeIdx, unsigned Size)
static bool allowApproxFunc(const MachineFunction &MF, unsigned Flags)
static bool shouldBitcastLoadStoreType(const GCNSubtarget &ST, const LLT Ty, const LLT MemTy)
Return true if a load or store of the type should be lowered with a bitcast to a different type.
static constexpr unsigned FPEnvModeBitField
static LegalizeMutation getScalarTypeFromMemDesc(unsigned TypeIdx)
static LegalityPredicate vectorWiderThan(unsigned TypeIdx, unsigned Size)
static bool shouldWidenLoad(const GCNSubtarget &ST, LLT MemoryTy, uint64_t AlignInBits, unsigned AddrSpace, unsigned Opcode)
Return true if we should legalize a load by widening an odd sized memory access up to the alignment.
static bool isRegisterVectorElementType(LLT EltTy)
static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx)
static LegalityPredicate isWideVec16(unsigned TypeIdx)
constexpr std::initializer_list< LLT > AllScalarTypes
static LegalityPredicate isTruncStoreToSizePowerOf2(unsigned TypeIdx)
constexpr std::initializer_list< LLT > AllS32Vectors
static LegalizeMutation moreElementsToNextExistingRegClass(unsigned TypeIdx)
static Register castBufferRsrcToV4I32(Register Pointer, MachineIRBuilder &B)
Cast a buffer resource (an address space 8 pointer) into a 4xi32, which is the form in which the valu...
static bool isRegisterClassType(const GCNSubtarget &ST, LLT Ty)
static std::pair< Register, Register > emitReciprocalU64(MachineIRBuilder &B, Register Val)
static LLT getBitcastRegisterType(const LLT Ty)
static LLT getBufferRsrcRegisterType(const LLT Ty)
static LegalizeMutation bitcastToRegisterType(unsigned TypeIdx)
static Register stripAnySourceMods(Register OrigSrc, MachineRegisterInfo &MRI)
static LLT castBufferRsrcFromV4I32(MachineInstr &MI, MachineIRBuilder &B, MachineRegisterInfo &MRI, unsigned Idx)
Mutates IR (typicaly a load instruction) to use a <4 x s32> as the initial type of the operand idx an...
static bool replaceWithConstant(MachineIRBuilder &B, MachineInstr &MI, int64_t C)
static constexpr unsigned SPDenormModeBitField
static unsigned maxSizeForAddrSpace(const GCNSubtarget &ST, unsigned AS, bool IsLoad, bool IsAtomic)
static bool isLoadStoreSizeLegal(const GCNSubtarget &ST, const LegalityQuery &Query)
static MachineInstr * verifyCFIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineInstr *&Br, MachineBasicBlock *&UncondBrTarget, bool &Negated)
static LegalityPredicate numElementsNotEven(unsigned TypeIdx)
constexpr std::initializer_list< LLT > AllS64Vectors
static void castBufferRsrcArgToV4I32(MachineInstr &MI, MachineIRBuilder &B, unsigned Idx)
static constexpr unsigned FPEnvTrapBitField
static constexpr unsigned MaxRegisterSize
static bool isRegisterSize(const GCNSubtarget &ST, unsigned Size)
static LegalityPredicate isWideScalarExtLoadTruncStore(unsigned TypeIdx)
static bool hasBufferRsrcWorkaround(const LLT Ty)
static void toggleSPDenormMode(bool Enable, MachineIRBuilder &B, const GCNSubtarget &ST, SIModeRegisterDefaults Mode)
constexpr std::initializer_list< LLT > AllS16Vectors
static bool loadStoreBitcastWorkaround(const LLT Ty)
static LLT widenToNextPowerOf2(LLT Ty)
static bool isNot(const MachineRegisterInfo &MRI, const MachineInstr &MI)
static void convertImageAddrToPacked(MachineIRBuilder &B, MachineInstr &MI, int DimIdx, int NumVAddrs)
Convert from separate vaddr components to a single vector address register, and replace the remaining...
static bool isLoadStoreLegal(const GCNSubtarget &ST, const LegalityQuery &Query)
static LegalizeMutation moreEltsToNext32Bit(unsigned TypeIdx)
static LLT getPow2VectorType(LLT Ty)
static void buildBufferLoad(unsigned Opc, Register LoadDstReg, Register RSrc, Register VIndex, Register VOffset, Register SOffset, unsigned ImmOffset, unsigned Format, unsigned AuxiliaryData, MachineMemOperand *MMO, bool IsTyped, bool HasVIndex, MachineIRBuilder &B)
static LLT getPow2ScalarType(LLT Ty)
static LegalityPredicate elementTypeIsLegal(unsigned TypeIdx)
static bool isRegisterVectorType(LLT Ty)
static LegalityPredicate sizeIsMultipleOf32(unsigned TypeIdx)
static bool isRegisterType(const GCNSubtarget &ST, LLT Ty)
static bool isKnownNonNull(Register Val, MachineRegisterInfo &MRI, const AMDGPUTargetMachine &TM, unsigned AddrSpace)
Return true if the value is a known valid address, such that a null check is not necessary.
This file declares the targeting of the Machinelegalizer class for AMDGPU.
Provides AMDGPU specific target descriptions.
The AMDGPU TargetMachine interface definition for hw codegen targets.
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Interface for Targets to specify which operations they can successfully select and how the others sho...
Contains matchers for matching SSA Machine Instructions.
This file declares the MachineIRBuilder class.
Register const TargetRegisterInfo * TRI
Promote Memory to Register
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
#define FP_DENORM_FLUSH_NONE
Interface definition for SIInstrInfo.
Interface definition for SIRegisterInfo.
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static constexpr int Concat[]
bool legalizeConstHwRegRead(MachineInstr &MI, MachineIRBuilder &B, AMDGPU::Hwreg::Id HwReg, unsigned LowBit, unsigned Width) const
void buildMultiply(LegalizerHelper &Helper, MutableArrayRef< Register > Accum, ArrayRef< Register > Src0, ArrayRef< Register > Src1, bool UsePartialMad64_32, bool SeparateOddAlignedProducts) const
bool legalizeGlobalValue(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFSQRTF16(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeIntrinsicTrunc(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
std::pair< Register, unsigned > splitBufferOffsets(MachineIRBuilder &B, Register OrigOffset) const
bool legalizeBVHIntersectRayIntrinsic(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeIsAddrSpace(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, unsigned AddrSpace) const
bool legalizeUnsignedDIV_REM(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFSQRTF32(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeAtomicCmpXChg(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeTrapHsa(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeBufferStore(MachineInstr &MI, LegalizerHelper &Helper, bool IsTyped, bool IsFormat) const
bool legalizeMul(LegalizerHelper &Helper, MachineInstr &MI) const
bool legalizeFFREXP(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
Register getSegmentAperture(unsigned AddrSpace, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFDIV64(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizePointerAsRsrcIntrin(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
To create a buffer resource from a 64-bit pointer, mask off the upper 32 bits of the pointer and repl...
bool legalizeFlogCommon(MachineInstr &MI, MachineIRBuilder &B) const
bool getLDSKernelId(Register DstReg, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFExp2(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeTrap(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeBufferAtomic(MachineInstr &MI, MachineIRBuilder &B, Intrinsic::ID IID) const
void legalizeUnsignedDIV_REM32Impl(MachineIRBuilder &B, Register DstDivReg, Register DstRemReg, Register Num, Register Den) const
Register handleD16VData(MachineIRBuilder &B, MachineRegisterInfo &MRI, Register Reg, bool ImageStore=false) const
Handle register layout difference for f16 images for some subtargets.
bool legalizeCTLZ_CTTZ(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeBuildVector(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFFloor(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
AMDGPULegalizerInfo(const GCNSubtarget &ST, const GCNTargetMachine &TM)
bool legalizeFDIV32(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFMad(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFDIV(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeSBufferPrefetch(LegalizerHelper &Helper, MachineInstr &MI) const
bool legalizeFExp(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeIntrinsic(LegalizerHelper &Helper, MachineInstr &MI) const override
bool legalizeFrem(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizePreloadedArgIntrin(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, AMDGPUFunctionArgInfo::PreloadedValue ArgType) const
bool legalizeStore(LegalizerHelper &Helper, MachineInstr &MI) const
bool legalizeCustom(LegalizerHelper &Helper, MachineInstr &MI, LostDebugLocObserver &LocObserver) const override
Called for instructions with the Custom LegalizationAction.
bool buildPCRelGlobalAddress(Register DstReg, LLT PtrTy, MachineIRBuilder &B, const GlobalValue *GV, int64_t Offset, unsigned GAFlags=SIInstrInfo::MO_NONE) const
bool legalizeFDIV16(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeRsqClampIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
std::pair< Register, Register > getScaledLogInput(MachineIRBuilder &B, Register Src, unsigned Flags) const
bool legalizeFDIVFastIntrin(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool loadInputValue(Register DstReg, MachineIRBuilder &B, AMDGPUFunctionArgInfo::PreloadedValue ArgType) const
bool legalizeBVHDualOrBVH8IntersectRayIntrinsic(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeInsertVectorElt(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFExpUnsafe(MachineIRBuilder &B, Register Dst, Register Src, unsigned Flags) const
bool legalizeAddrSpaceCast(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeBufferLoad(MachineInstr &MI, LegalizerHelper &Helper, bool IsFormat, bool IsTyped) const
bool legalizeImplicitArgPtr(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeMinNumMaxNum(LegalizerHelper &Helper, MachineInstr &MI) const
void legalizeUnsignedDIV_REM64Impl(MachineIRBuilder &B, Register DstDivReg, Register DstRemReg, Register Num, Register Den) const
bool legalizeDebugTrap(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFastUnsafeFDIV(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeSinCos(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeWaveID(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeFroundeven(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeLDSKernelId(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeWorkGroupId(MachineInstr &MI, MachineIRBuilder &B, AMDGPUFunctionArgInfo::PreloadedValue ClusterIdPV, AMDGPUFunctionArgInfo::PreloadedValue ClusterMaxIdPV, AMDGPUFunctionArgInfo::PreloadedValue ClusterWorkGroupIdPV) const
bool legalizeSignedDIV_REM(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeITOFP(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, bool Signed) const
bool legalizeFPow(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeFastUnsafeFDIV64(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFPTOI(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, bool Signed) const
bool legalizeStackSave(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeFlogUnsafe(MachineIRBuilder &B, Register Dst, Register Src, bool IsLog10, unsigned Flags) const
bool legalizeKernargMemParameter(MachineInstr &MI, MachineIRBuilder &B, uint64_t Offset, Align Alignment=Align(4)) const
Legalize a value that's loaded from kernel arguments.
bool legalizeImageIntrinsic(MachineInstr &MI, MachineIRBuilder &B, GISelChangeObserver &Observer, const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr) const
Rewrite image intrinsics to use register layouts expected by the subtarget.
void buildAbsGlobalAddress(Register DstReg, LLT PtrTy, MachineIRBuilder &B, const GlobalValue *GV, MachineRegisterInfo &MRI) const
bool legalizeGetFPEnv(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool getImplicitArgPtr(Register DstReg, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFSQRT(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
Register getKernargParameterPtr(MachineIRBuilder &B, int64_t Offset) const
bool legalizeSBufferLoad(LegalizerHelper &Helper, MachineInstr &MI) const
bool legalizeFceil(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFSQRTF64(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeExtractVectorElt(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeLoad(LegalizerHelper &Helper, MachineInstr &MI) const
bool legalizeCTLZ_ZERO_UNDEF(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
Register fixStoreSourceType(MachineIRBuilder &B, Register VData, LLT MemTy, bool IsFormat) const
bool legalizeLaneOp(LegalizerHelper &Helper, MachineInstr &MI, Intrinsic::ID IID) const
bool legalizeSetFPEnv(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeWorkitemIDIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, unsigned Dim, AMDGPUFunctionArgInfo::PreloadedValue ArgType) const
void buildLoadInputValue(Register DstReg, MachineIRBuilder &B, const ArgDescriptor *Arg, const TargetRegisterClass *ArgRC, LLT ArgTy) const
bool legalizeTrapHsaQueuePtr(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
bool legalizeFlog2(MachineInstr &MI, MachineIRBuilder &B) const
bool legalizeTrapEndpgm(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const
static std::optional< uint32_t > getLDSKernelIdMetadata(const Function &F)
void setDynLDSAlign(const Function &F, const GlobalVariable &GV)
unsigned allocateLDSGlobal(const DataLayout &DL, const GlobalVariable &GV)
bool isEntryFunction() const
bool isModuleEntryFunction() const
const std::array< unsigned, 3 > & getDims() const
static const fltSemantics & IEEEsingle()
static const fltSemantics & IEEEdouble()
static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative=false)
Returns the smallest (by magnitude) normalized finite number in the given semantics.
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
@ ICMP_SLT
signed less than
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ ICMP_UGE
unsigned greater or equal
@ ICMP_SGT
signed greater than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ ICMP_ULT
unsigned less than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
This is the shared class of boolean and integer constants.
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Diagnostic information for unsupported feature in backend.
static constexpr ElementCount getFixed(ScalarTy MinVal)
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Abstract class that contains various methods for clients to notify about changes.
virtual void changingInstr(MachineInstr &MI)=0
This instruction is about to be mutated in some way.
virtual void changedInstr(MachineInstr &MI)=0
This instruction was mutated in some way.
Simple wrapper observer that takes several observers, and calls each one for each event.
KnownBits getKnownBits(Register R)
bool hasExternalLinkage() const
Module * getParent()
Get the module that this global value is contained inside of...
Type * getValueType() const
static constexpr LLT float64()
Get a 64-bit IEEE double value.
constexpr unsigned getScalarSizeInBits() const
constexpr LLT changeElementType(LLT NewEltTy) const
If this type is a vector, return a vector with the same number of elements but the new element type.
static constexpr LLT vector(ElementCount EC, unsigned ScalarSizeInBits)
Get a low-level vector of some number of elements and element width.
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
constexpr bool isVector() const
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
constexpr bool isPointer() const
constexpr LLT getElementType() const
Returns the vector's element type. Only valid for vector types.
constexpr LLT changeElementSize(unsigned NewEltSize) const
If this type is a vector, return a vector with the same number of elements but the new element size.
static constexpr LLT float16()
Get a 16-bit IEEE half value.
constexpr unsigned getAddressSpace() const
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
constexpr LLT changeElementCount(ElementCount EC) const
Return a vector or scalar with the same element type and the new element count.
constexpr LLT getScalarType() const
static constexpr LLT scalarOrVector(ElementCount EC, LLT ScalarTy)
static constexpr LLT float32()
Get a 32-bit IEEE float value.
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
LLVM_ABI void computeTables()
Compute any ancillary tables needed to quickly decide how an operation should be handled.
LegalizeRuleSet & minScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at least as wide as Ty.
LegalizeRuleSet & legalFor(std::initializer_list< LLT > Types)
The instruction is legal when type index 0 is any type in the given list.
LegalizeRuleSet & unsupported()
The instruction is unsupported.
LegalizeRuleSet & scalarSameSizeAs(unsigned TypeIdx, unsigned SameSizeIdx)
Change the type TypeIdx to have the same scalar size as type SameSizeIdx.
LegalizeRuleSet & fewerElementsIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Remove elements to reach the type selected by the mutation if the predicate is true.
LegalizeRuleSet & clampScalarOrElt(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the range of scalar sizes to MinTy and MaxTy.
LegalizeRuleSet & bitcastIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
The specified type index is coerced if predicate is true.
LegalizeRuleSet & maxScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at most as wide as Ty.
LegalizeRuleSet & minScalarOrElt(unsigned TypeIdx, const LLT Ty)
Ensure the scalar or element is at least as wide as Ty.
LegalizeRuleSet & clampMaxNumElements(unsigned TypeIdx, const LLT EltTy, unsigned MaxElements)
Limit the number of elements in EltTy vectors to at most MaxElements.
LegalizeRuleSet & unsupportedFor(std::initializer_list< LLT > Types)
LegalizeRuleSet & lower()
The instruction is lowered.
LegalizeRuleSet & moreElementsIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Add more elements to reach the type selected by the mutation if the predicate is true.
LegalizeRuleSet & lowerFor(std::initializer_list< LLT > Types)
The instruction is lowered when type index 0 is any type in the given list.
LegalizeRuleSet & lowerIf(LegalityPredicate Predicate)
The instruction is lowered if predicate is true.
LegalizeRuleSet & clampScalar(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the range of scalar sizes to MinTy and MaxTy.
LegalizeRuleSet & custom()
Unconditionally custom lower.
LegalizeRuleSet & clampMaxNumElementsStrict(unsigned TypeIdx, const LLT EltTy, unsigned NumElts)
Express EltTy vectors strictly using vectors with NumElts elements (or scalars when NumElts equals 1)...
LegalizeRuleSet & unsupportedIf(LegalityPredicate Predicate)
LegalizeRuleSet & widenScalarIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Widen the scalar to the one selected by the mutation if the predicate is true.
LegalizeRuleSet & alwaysLegal()
LegalizeRuleSet & clampNumElements(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the number of elements for the given vectors to at least MinTy's number of elements and at most...
LegalizeRuleSet & maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT Ty)
Conditionally limit the maximum size of the scalar.
LegalizeRuleSet & customIf(LegalityPredicate Predicate)
LegalizeRuleSet & widenScalarToNextPow2(unsigned TypeIdx, unsigned MinSize=0)
Widen the scalar to the next power of two that is at least MinSize.
LegalizeRuleSet & scalarize(unsigned TypeIdx)
LegalizeRuleSet & legalForCartesianProduct(std::initializer_list< LLT > Types)
The instruction is legal when type indexes 0 and 1 are both in the given list.
LegalizeRuleSet & legalIf(LegalityPredicate Predicate)
The instruction is legal if predicate is true.
LegalizeRuleSet & customFor(std::initializer_list< LLT > Types)
LegalizeRuleSet & widenScalarToNextMultipleOf(unsigned TypeIdx, unsigned Size)
Widen the scalar to the next multiple of Size.
LLVM_ABI LegalizeResult lowerFMinNumMaxNum(MachineInstr &MI)
LLVM_ABI void moreElementsVectorDst(MachineInstr &MI, LLT MoreTy, unsigned OpIdx)
Legalize a single operand OpIdx of the machine instruction MI as a Def by performing it with addition...
GISelValueTracking * getValueTracking() const
@ Legalized
Instruction has been legalized and the MachineFunction changed.
GISelChangeObserver & Observer
To keep track of changes made by the LegalizerHelper.
LLVM_ABI void bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx)
Legalize a single operand OpIdx of the machine instruction MI as a def by inserting a G_BITCAST from ...
LLVM_ABI LegalizeResult lowerFMad(MachineInstr &MI)
MachineIRBuilder & MIRBuilder
Expose MIRBuilder so clients can set their own RecordInsertInstruction functions.
LLVM_ABI void widenScalarDst(MachineInstr &MI, LLT WideTy, unsigned OpIdx=0, unsigned TruncOpcode=TargetOpcode::G_TRUNC)
Legalize a single operand OpIdx of the machine instruction MI as a Def by extending the operand's typ...
LegalizeRuleSet & getActionDefinitionsBuilder(unsigned Opcode)
Get the action definition builder for the given opcode.
const LegacyLegalizerInfo & getLegacyLegalizerInfo() const
TypeSize getValue() const
Wrapper class representing physical registers. Should be passed by value.
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
LLVM_ABI MachineBasicBlock * splitAt(MachineInstr &SplitInst, bool UpdateLiveIns=true, LiveIntervals *LIS=nullptr)
Split a basic block into 2 pieces at SplitPoint.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
MachineInstrBundleIterator< MachineInstr > iterator
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
void push_back(MachineBasicBlock *MBB)
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
Helper class to build MachineInstr.
MachineFunction & getMF()
Getter for the function we currently build.
Register getReg(unsigned Idx) const
Get the register for the operand index.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addGlobalAddress(const GlobalValue *GV, int64_t Offset=0, unsigned TargetFlags=0) const
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
LocationSize getSize() const
Return the size in bytes of the memory reference.
LLT getMemoryType() const
Return the memory type of the memory reference.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
LLVM_ABI Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
MachineBasicBlock * getMBB() const
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
void setMBB(MachineBasicBlock *MBB)
static MachineOperand CreateImm(int64_t Val)
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
MutableArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
Wrapper class representing virtual and physical registers.
constexpr bool isValid() const
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
static unsigned getMaxMUBUFImmOffset(const GCNSubtarget &ST)
This class keeps track of the SPI_SP_INPUT_ADDR config register, which tells the hardware which inter...
bool hasWorkGroupIDZ() const
AMDGPU::ClusterDimsAttr getClusterDims() const
SIModeRegisterDefaults getMode() const
std::tuple< const ArgDescriptor *, const TargetRegisterClass *, LLT > getPreloadedValue(AMDGPUFunctionArgInfo::PreloadedValue Value) const
static LLVM_READONLY const TargetRegisterClass * getSGPRClassForBitWidth(unsigned BitWidth)
bool allowsMisalignedMemoryAccessesImpl(unsigned Size, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *IsFast=nullptr) const
bool shouldEmitFixup(const GlobalValue *GV) const
bool shouldUseLDSConstAddress(const GlobalValue *GV) const
bool shouldEmitPCReloc(const GlobalValue *GV) const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void truncate(size_type N)
Like resize, but requires that N is less than size().
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
The instances of the Type class are immutable: once they are created, they are never changed.
A Use represents the edge between a Value definition and its users.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ CONSTANT_ADDRESS_32BIT
Address space for 32-bit constant memory.
@ BUFFER_STRIDED_POINTER
Address space for 192-bit fat buffer pointers with an additional index.
@ REGION_ADDRESS
Address space for region memory. (GDS)
@ LOCAL_ADDRESS
Address space for local memory.
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
@ FLAT_ADDRESS
Address space for flat memory.
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
@ BUFFER_FAT_POINTER
Address space for 160-bit buffer fat pointers.
@ PRIVATE_ADDRESS
Address space for private memory.
@ BUFFER_RESOURCE
Address space for 128-bit buffer resources.
int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, unsigned VDataDwords, unsigned VAddrDwords)
bool isFlatGlobalAddrSpace(unsigned AS)
bool isGFX12Plus(const MCSubtargetInfo &STI)
bool isGFX11(const MCSubtargetInfo &STI)
LLVM_READNONE bool isLegalDPALU_DPPControl(const MCSubtargetInfo &ST, unsigned DC)
unsigned getAMDHSACodeObjectVersion(const Module &M)
LLVM_READNONE constexpr bool isKernel(CallingConv::ID CC)
LLVM_READNONE constexpr bool isEntryFunctionCC(CallingConv::ID CC)
LLVM_READNONE constexpr bool isCompute(CallingConv::ID CC)
TargetExtType * isNamedBarrier(const GlobalVariable &GV)
bool isGFX11Plus(const MCSubtargetInfo &STI)
bool isGFX1250(const MCSubtargetInfo &STI)
LLVM_READONLY const MIMGBaseOpcodeInfo * getMIMGBaseOpcodeInfo(unsigned BaseOpcode)
std::pair< Register, unsigned > getBaseWithConstantOffset(MachineRegisterInfo &MRI, Register Reg, GISelValueTracking *ValueTracking=nullptr, bool CheckNUW=false)
Returns base register and constant offset.
const ImageDimIntrinsicInfo * getImageDimIntrinsicInfo(unsigned Intr)
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ MaxID
The highest possible ID. Must be some 2^k - 1.
@ AMDGPU_Gfx
Used for AMD graphics targets.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI LegalityPredicate scalarOrEltWiderThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar or a vector with an element type that's wider than the ...
LLVM_ABI LegalityPredicate isScalar(unsigned TypeIdx)
True iff the specified type index is a scalar.
LLVM_ABI LegalityPredicate isPointer(unsigned TypeIdx)
True iff the specified type index is a pointer (with any address space).
LLVM_ABI LegalityPredicate typeInSet(unsigned TypeIdx, std::initializer_list< LLT > TypesInit)
True iff the given type index is one of the specified types.
LLVM_ABI LegalityPredicate smallerThan(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the first type index has a smaller total bit size than second type index.
LLVM_ABI LegalityPredicate largerThan(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the first type index has a larger total bit size than second type index.
LLVM_ABI LegalityPredicate elementTypeIs(unsigned TypeIdx, LLT EltTy)
True if the type index is a vector with element type EltTy.
LLVM_ABI LegalityPredicate sameSize(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the specified type indices are both the same bit size.
LLVM_ABI LegalityPredicate scalarOrEltNarrowerThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar or vector with an element type that's narrower than the...
LLVM_ABI LegalityPredicate sizeIs(unsigned TypeIdx, unsigned Size)
True if the total bitwidth of the specified type index is Size bits.
LegalityPredicate typeIsNot(unsigned TypeIdx, LLT Type)
True iff the given type index is not the specified type.
Predicate all(Predicate P0, Predicate P1)
True iff P0 and P1 are true.
LLVM_ABI LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit)
True iff the given type index is the specified type.
LLVM_ABI LegalityPredicate scalarNarrowerThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar that's narrower than the given size.
LLVM_ABI LegalizeMutation scalarize(unsigned TypeIdx)
Break up the vector type for the given type index into the element type.
LLVM_ABI LegalizeMutation widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned Min=0)
Widen the scalar type or vector element type for the given type index to the next power of 2.
LLVM_ABI LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty)
Select this specific type for the given type index.
@ Implicit
Not emitted register (e.g. carry, or temporary result).
Invariant opcodes: All instruction sets have these as their low opcodes.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI Register getFunctionLiveInPhysReg(MachineFunction &MF, const TargetInstrInfo &TII, MCRegister PhysReg, const TargetRegisterClass &RC, const DebugLoc &DL, LLT RegTy=LLT())
Return a virtual register corresponding to the incoming argument register PhysReg.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
LLVM_ABI Type * getTypeForLLT(LLT Ty, LLVMContext &C)
Get the type back from LLT.
LLVM_ABI MachineInstr * getOpcodeDef(unsigned Opcode, Register Reg, const MachineRegisterInfo &MRI)
See if Reg is defined by an single def instruction that is Opcode.
LLVM_ABI const ConstantFP * getConstantFPVRegVal(Register VReg, const MachineRegisterInfo &MRI)
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
LLVM_ABI const llvm::fltSemantics & getFltSemanticForLLT(LLT Ty)
Get the appropriate floating point arithmetic semantic based on the bit size of the given scalar LLT.
std::function< std::pair< unsigned, LLT >(const LegalityQuery &)> LegalizeMutation
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
LLVM_ABI std::optional< int64_t > getIConstantVRegSExtVal(Register VReg, const MachineRegisterInfo &MRI)
If VReg is defined by a G_CONSTANT fits in int64_t returns it.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
constexpr bool has_single_bit(T Value) noexcept
std::function< bool(const LegalityQuery &)> LegalityPredicate
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
To bit_cast(const From &from) noexcept
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI void eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI, LostDebugLocObserver *LocObserver=nullptr)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI std::optional< ValueAndVReg > getIConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs=true)
If VReg is defined by a statically evaluable chain of instructions rooted on a G_CONSTANT returns its...
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
unsigned Log2(Align A)
Returns the log2 of the alignment.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
int popcount(T Value) noexcept
Count the number of set bits in a value.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
@ CLUSTER_WORKGROUP_MAX_ID_X
@ CLUSTER_WORKGROUP_MAX_ID_Z
@ CLUSTER_WORKGROUP_MAX_FLAT_ID
@ CLUSTER_WORKGROUP_MAX_ID_Y
static constexpr uint64_t encode(Fields... Values)
MIMGBaseOpcode BaseOpcode
This struct is a compact representation of a valid (non-zero power of two) alignment.
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
MCRegister getRegister() const
static ArgDescriptor createRegister(Register Reg, unsigned Mask=~0u)
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ Dynamic
Denormals have unknown treatment.
static constexpr DenormalMode getPreserveSign()
static constexpr DenormalMode getIEEE()
bool isZero() const
Returns true if value is all zero.
The LegalityQuery object bundles together all the information that's needed to decide whether a given...
ArrayRef< MemDesc > MMODescrs
Operations which require memory can use this to place requirements on the memory type for each MMO.
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
DenormalMode FP64FP16Denormals
If this is set, neither input or output denormals are flushed for both f64 and f16/v2f16 instructions...
bool IEEE
Floating point opcodes that support exception flag gathering quiet and propagate signaling NaN inputs...
DenormalMode FP32Denormals
If this is set, neither input or output denormals are flushed for most f32 instructions.