LLVM 19.0.0git
SIRegisterInfo.cpp
Go to the documentation of this file.
1//===-- SIRegisterInfo.cpp - SI Register Information ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// SI implementation of the TargetRegisterInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AMDGPU.h"
16#include "GCNSubtarget.h"
20#include "SIRegisterInfo.h"
26
27using namespace llvm;
28
29#define GET_REGINFO_TARGET_DESC
30#include "AMDGPUGenRegisterInfo.inc"
31
33 "amdgpu-spill-sgpr-to-vgpr",
34 cl::desc("Enable spilling SGPRs to VGPRs"),
36 cl::init(true));
37
38std::array<std::vector<int16_t>, 16> SIRegisterInfo::RegSplitParts;
39std::array<std::array<uint16_t, 32>, 9> SIRegisterInfo::SubRegFromChannelTable;
40
41// Map numbers of DWORDs to indexes in SubRegFromChannelTable.
42// Valid indexes are shifted 1, such that a 0 mapping means unsupported.
43// e.g. for 8 DWORDs (256-bit), SubRegFromChannelTableWidthMap[8] = 8,
44// meaning index 7 in SubRegFromChannelTable.
45static const std::array<unsigned, 17> SubRegFromChannelTableWidthMap = {
46 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 9};
47
48namespace llvm {
49
50// A temporary struct to spill SGPRs.
51// This is mostly to spill SGPRs to memory. Spilling SGPRs into VGPR lanes emits
52// just v_writelane and v_readlane.
53//
54// When spilling to memory, the SGPRs are written into VGPR lanes and the VGPR
55// is saved to scratch (or the other way around for loads).
56// For this, a VGPR is required where the needed lanes can be clobbered. The
57// RegScavenger can provide a VGPR where currently active lanes can be
58// clobbered, but we still need to save inactive lanes.
59// The high-level steps are:
60// - Try to scavenge SGPR(s) to save exec
61// - Try to scavenge VGPR
62// - Save needed, all or inactive lanes of a TmpVGPR
63// - Spill/Restore SGPRs using TmpVGPR
64// - Restore TmpVGPR
65//
66// To save all lanes of TmpVGPR, exec needs to be saved and modified. If we
67// cannot scavenge temporary SGPRs to save exec, we use the following code:
68// buffer_store_dword TmpVGPR ; only if active lanes need to be saved
69// s_not exec, exec
70// buffer_store_dword TmpVGPR ; save inactive lanes
71// s_not exec, exec
73 struct PerVGPRData {
74 unsigned PerVGPR;
75 unsigned NumVGPRs;
76 int64_t VGPRLanes;
77 };
78
79 // The SGPR to save
83 unsigned NumSubRegs;
84 bool IsKill;
85 const DebugLoc &DL;
86
87 /* When spilling to stack */
88 // The SGPRs are written into this VGPR, which is then written to scratch
89 // (or vice versa for loads).
90 Register TmpVGPR = AMDGPU::NoRegister;
91 // Temporary spill slot to save TmpVGPR to.
92 int TmpVGPRIndex = 0;
93 // If TmpVGPR is live before the spill or if it is scavenged.
94 bool TmpVGPRLive = false;
95 // Scavenged SGPR to save EXEC.
96 Register SavedExecReg = AMDGPU::NoRegister;
97 // Stack index to write the SGPRs to.
98 int Index;
99 unsigned EltSize = 4;
100
109 unsigned MovOpc;
110 unsigned NotOpc;
111
115 : SGPRSpillBuilder(TRI, TII, IsWave32, MI, MI->getOperand(0).getReg(),
116 MI->getOperand(0).isKill(), Index, RS) {}
117
120 bool IsKill, int Index, RegScavenger *RS)
121 : SuperReg(Reg), MI(MI), IsKill(IsKill), DL(MI->getDebugLoc()),
122 Index(Index), RS(RS), MBB(MI->getParent()), MF(*MBB->getParent()),
123 MFI(*MF.getInfo<SIMachineFunctionInfo>()), TII(TII), TRI(TRI),
125 const TargetRegisterClass *RC = TRI.getPhysRegBaseClass(SuperReg);
128
129 if (IsWave32) {
130 ExecReg = AMDGPU::EXEC_LO;
131 MovOpc = AMDGPU::S_MOV_B32;
132 NotOpc = AMDGPU::S_NOT_B32;
133 } else {
134 ExecReg = AMDGPU::EXEC;
135 MovOpc = AMDGPU::S_MOV_B64;
136 NotOpc = AMDGPU::S_NOT_B64;
137 }
138
139 assert(SuperReg != AMDGPU::M0 && "m0 should never spill");
140 assert(SuperReg != AMDGPU::EXEC_LO && SuperReg != AMDGPU::EXEC_HI &&
141 SuperReg != AMDGPU::EXEC && "exec should never spill");
142 }
143
146 Data.PerVGPR = IsWave32 ? 32 : 64;
147 Data.NumVGPRs = (NumSubRegs + (Data.PerVGPR - 1)) / Data.PerVGPR;
148 Data.VGPRLanes = (1LL << std::min(Data.PerVGPR, NumSubRegs)) - 1LL;
149 return Data;
150 }
151
152 // Tries to scavenge SGPRs to save EXEC and a VGPR. Uses v0 if no VGPR is
153 // free.
154 // Writes these instructions if an SGPR can be scavenged:
155 // s_mov_b64 s[6:7], exec ; Save exec
156 // s_mov_b64 exec, 3 ; Wanted lanemask
157 // buffer_store_dword v1 ; Write scavenged VGPR to emergency slot
158 //
159 // Writes these instructions if no SGPR can be scavenged:
160 // buffer_store_dword v0 ; Only if no free VGPR was found
161 // s_not_b64 exec, exec
162 // buffer_store_dword v0 ; Save inactive lanes
163 // ; exec stays inverted, it is flipped back in
164 // ; restore.
165 void prepare() {
166 // Scavenged temporary VGPR to use. It must be scavenged once for any number
167 // of spilled subregs.
168 // FIXME: The liveness analysis is limited and does not tell if a register
169 // is in use in lanes that are currently inactive. We can never be sure if
170 // a register as actually in use in another lane, so we need to save all
171 // used lanes of the chosen VGPR.
172 assert(RS && "Cannot spill SGPR to memory without RegScavenger");
173 TmpVGPR = RS->scavengeRegisterBackwards(AMDGPU::VGPR_32RegClass, MI, false,
174 0, false);
175
176 // Reserve temporary stack slot
178 if (TmpVGPR) {
179 // Found a register that is dead in the currently active lanes, we only
180 // need to spill inactive lanes.
181 TmpVGPRLive = false;
182 } else {
183 // Pick v0 because it doesn't make a difference.
184 TmpVGPR = AMDGPU::VGPR0;
185 TmpVGPRLive = true;
186 }
187
188 if (TmpVGPRLive) {
189 // We need to inform the scavenger that this index is already in use until
190 // we're done with the custom emergency spill.
192 }
193
194 // We may end up recursively calling the scavenger, and don't want to re-use
195 // the same register.
197
198 // Try to scavenge SGPRs to save exec
199 assert(!SavedExecReg && "Exec is already saved, refuse to save again");
200 const TargetRegisterClass &RC =
201 IsWave32 ? AMDGPU::SGPR_32RegClass : AMDGPU::SGPR_64RegClass;
203 SavedExecReg = RS->scavengeRegisterBackwards(RC, MI, false, 0, false);
204
205 int64_t VGPRLanes = getPerVGPRData().VGPRLanes;
206
207 if (SavedExecReg) {
209 // Set exec to needed lanes
211 auto I =
212 BuildMI(*MBB, MI, DL, TII.get(MovOpc), ExecReg).addImm(VGPRLanes);
213 if (!TmpVGPRLive)
215 // Spill needed lanes
216 TRI.buildVGPRSpillLoadStore(*this, TmpVGPRIndex, 0, /*IsLoad*/ false);
217 } else {
218 // The modify and restore of exec clobber SCC, which we would have to save
219 // and restore. FIXME: We probably would need to reserve a register for
220 // this.
221 if (RS->isRegUsed(AMDGPU::SCC))
222 MI->emitError("unhandled SGPR spill to memory");
223
224 // Spill active lanes
225 if (TmpVGPRLive)
226 TRI.buildVGPRSpillLoadStore(*this, TmpVGPRIndex, 0, /*IsLoad*/ false,
227 /*IsKill*/ false);
228 // Spill inactive lanes
229 auto I = BuildMI(*MBB, MI, DL, TII.get(NotOpc), ExecReg).addReg(ExecReg);
230 if (!TmpVGPRLive)
232 I->getOperand(2).setIsDead(); // Mark SCC as dead.
233 TRI.buildVGPRSpillLoadStore(*this, TmpVGPRIndex, 0, /*IsLoad*/ false);
234 }
235 }
236
237 // Writes these instructions if an SGPR can be scavenged:
238 // buffer_load_dword v1 ; Write scavenged VGPR to emergency slot
239 // s_waitcnt vmcnt(0) ; If a free VGPR was found
240 // s_mov_b64 exec, s[6:7] ; Save exec
241 //
242 // Writes these instructions if no SGPR can be scavenged:
243 // buffer_load_dword v0 ; Restore inactive lanes
244 // s_waitcnt vmcnt(0) ; If a free VGPR was found
245 // s_not_b64 exec, exec
246 // buffer_load_dword v0 ; Only if no free VGPR was found
247 void restore() {
248 if (SavedExecReg) {
249 // Restore used lanes
250 TRI.buildVGPRSpillLoadStore(*this, TmpVGPRIndex, 0, /*IsLoad*/ true,
251 /*IsKill*/ false);
252 // Restore exec
253 auto I = BuildMI(*MBB, MI, DL, TII.get(MovOpc), ExecReg)
255 // Add an implicit use of the load so it is not dead.
256 // FIXME This inserts an unnecessary waitcnt
257 if (!TmpVGPRLive) {
259 }
260 } else {
261 // Restore inactive lanes
262 TRI.buildVGPRSpillLoadStore(*this, TmpVGPRIndex, 0, /*IsLoad*/ true,
263 /*IsKill*/ false);
264 auto I = BuildMI(*MBB, MI, DL, TII.get(NotOpc), ExecReg).addReg(ExecReg);
265 if (!TmpVGPRLive)
267 I->getOperand(2).setIsDead(); // Mark SCC as dead.
268
269 // Restore active lanes
270 if (TmpVGPRLive)
271 TRI.buildVGPRSpillLoadStore(*this, TmpVGPRIndex, 0, /*IsLoad*/ true);
272 }
273
274 // Inform the scavenger where we're releasing our custom scavenged register.
275 if (TmpVGPRLive) {
276 MachineBasicBlock::iterator RestorePt = std::prev(MI);
278 }
279 }
280
281 // Write TmpVGPR to memory or read TmpVGPR from memory.
282 // Either using a single buffer_load/store if exec is set to the needed mask
283 // or using
284 // buffer_load
285 // s_not exec, exec
286 // buffer_load
287 // s_not exec, exec
288 void readWriteTmpVGPR(unsigned Offset, bool IsLoad) {
289 if (SavedExecReg) {
290 // Spill needed lanes
291 TRI.buildVGPRSpillLoadStore(*this, Index, Offset, IsLoad);
292 } else {
293 // The modify and restore of exec clobber SCC, which we would have to save
294 // and restore. FIXME: We probably would need to reserve a register for
295 // this.
296 if (RS->isRegUsed(AMDGPU::SCC))
297 MI->emitError("unhandled SGPR spill to memory");
298
299 // Spill active lanes
300 TRI.buildVGPRSpillLoadStore(*this, Index, Offset, IsLoad,
301 /*IsKill*/ false);
302 // Spill inactive lanes
303 auto Not0 = BuildMI(*MBB, MI, DL, TII.get(NotOpc), ExecReg).addReg(ExecReg);
304 Not0->getOperand(2).setIsDead(); // Mark SCC as dead.
305 TRI.buildVGPRSpillLoadStore(*this, Index, Offset, IsLoad);
306 auto Not1 = BuildMI(*MBB, MI, DL, TII.get(NotOpc), ExecReg).addReg(ExecReg);
307 Not1->getOperand(2).setIsDead(); // Mark SCC as dead.
308 }
309 }
310
312 assert(MBB->getParent() == &MF);
313 MI = NewMI;
314 MBB = NewMBB;
315 }
316};
317
318} // namespace llvm
319
321 : AMDGPUGenRegisterInfo(AMDGPU::PC_REG, ST.getAMDGPUDwarfFlavour(),
322 ST.getAMDGPUDwarfFlavour()),
323 ST(ST), SpillSGPRToVGPR(EnableSpillSGPRToVGPR), isWave32(ST.isWave32()) {
324
325 assert(getSubRegIndexLaneMask(AMDGPU::sub0).getAsInteger() == 3 &&
326 getSubRegIndexLaneMask(AMDGPU::sub31).getAsInteger() == (3ULL << 62) &&
327 (getSubRegIndexLaneMask(AMDGPU::lo16) |
328 getSubRegIndexLaneMask(AMDGPU::hi16)).getAsInteger() ==
329 getSubRegIndexLaneMask(AMDGPU::sub0).getAsInteger() &&
330 "getNumCoveredRegs() will not work with generated subreg masks!");
331
332 RegPressureIgnoredUnits.resize(getNumRegUnits());
333 RegPressureIgnoredUnits.set(*regunits(MCRegister::from(AMDGPU::M0)).begin());
334 for (auto Reg : AMDGPU::VGPR_16RegClass) {
335 if (AMDGPU::isHi(Reg, *this))
336 RegPressureIgnoredUnits.set(*regunits(Reg).begin());
337 }
338
339 // HACK: Until this is fully tablegen'd.
340 static llvm::once_flag InitializeRegSplitPartsFlag;
341
342 static auto InitializeRegSplitPartsOnce = [this]() {
343 for (unsigned Idx = 1, E = getNumSubRegIndices() - 1; Idx < E; ++Idx) {
344 unsigned Size = getSubRegIdxSize(Idx);
345 if (Size & 31)
346 continue;
347 std::vector<int16_t> &Vec = RegSplitParts[Size / 32 - 1];
348 unsigned Pos = getSubRegIdxOffset(Idx);
349 if (Pos % Size)
350 continue;
351 Pos /= Size;
352 if (Vec.empty()) {
353 unsigned MaxNumParts = 1024 / Size; // Maximum register is 1024 bits.
354 Vec.resize(MaxNumParts);
355 }
356 Vec[Pos] = Idx;
357 }
358 };
359
360 static llvm::once_flag InitializeSubRegFromChannelTableFlag;
361
362 static auto InitializeSubRegFromChannelTableOnce = [this]() {
363 for (auto &Row : SubRegFromChannelTable)
364 Row.fill(AMDGPU::NoSubRegister);
365 for (unsigned Idx = 1; Idx < getNumSubRegIndices(); ++Idx) {
366 unsigned Width = getSubRegIdxSize(Idx) / 32;
367 unsigned Offset = getSubRegIdxOffset(Idx) / 32;
369 Width = SubRegFromChannelTableWidthMap[Width];
370 if (Width == 0)
371 continue;
372 unsigned TableIdx = Width - 1;
373 assert(TableIdx < SubRegFromChannelTable.size());
374 assert(Offset < SubRegFromChannelTable[TableIdx].size());
375 SubRegFromChannelTable[TableIdx][Offset] = Idx;
376 }
377 };
378
379 llvm::call_once(InitializeRegSplitPartsFlag, InitializeRegSplitPartsOnce);
380 llvm::call_once(InitializeSubRegFromChannelTableFlag,
381 InitializeSubRegFromChannelTableOnce);
382}
383
384void SIRegisterInfo::reserveRegisterTuples(BitVector &Reserved,
385 MCRegister Reg) const {
386 for (MCRegAliasIterator R(Reg, this, true); R.isValid(); ++R)
387 Reserved.set(*R);
388}
389
390// Forced to be here by one .inc
392 const MachineFunction *MF) const {
394 switch (CC) {
395 case CallingConv::C:
398 return ST.hasGFX90AInsts() ? CSR_AMDGPU_GFX90AInsts_SaveList
399 : CSR_AMDGPU_SaveList;
401 return ST.hasGFX90AInsts() ? CSR_AMDGPU_SI_Gfx_GFX90AInsts_SaveList
402 : CSR_AMDGPU_SI_Gfx_SaveList;
404 return CSR_AMDGPU_CS_ChainPreserve_SaveList;
405 default: {
406 // Dummy to not crash RegisterClassInfo.
407 static const MCPhysReg NoCalleeSavedReg = AMDGPU::NoRegister;
408 return &NoCalleeSavedReg;
409 }
410 }
411}
412
413const MCPhysReg *
415 return nullptr;
416}
417
419 CallingConv::ID CC) const {
420 switch (CC) {
421 case CallingConv::C:
424 return ST.hasGFX90AInsts() ? CSR_AMDGPU_GFX90AInsts_RegMask
425 : CSR_AMDGPU_RegMask;
427 return ST.hasGFX90AInsts() ? CSR_AMDGPU_SI_Gfx_GFX90AInsts_RegMask
428 : CSR_AMDGPU_SI_Gfx_RegMask;
431 // Calls to these functions never return, so we can pretend everything is
432 // preserved.
433 return AMDGPU_AllVGPRs_RegMask;
434 default:
435 return nullptr;
436 }
437}
438
440 return CSR_AMDGPU_NoRegs_RegMask;
441}
442
444 return VGPR >= AMDGPU::VGPR0 && VGPR < AMDGPU::VGPR8;
445}
446
449 const MachineFunction &MF) const {
450 // FIXME: Should have a helper function like getEquivalentVGPRClass to get the
451 // equivalent AV class. If used one, the verifier will crash after
452 // RegBankSelect in the GISel flow. The aligned regclasses are not fully given
453 // until Instruction selection.
454 if (ST.hasMAIInsts() && (isVGPRClass(RC) || isAGPRClass(RC))) {
455 if (RC == &AMDGPU::VGPR_32RegClass || RC == &AMDGPU::AGPR_32RegClass)
456 return &AMDGPU::AV_32RegClass;
457 if (RC == &AMDGPU::VReg_64RegClass || RC == &AMDGPU::AReg_64RegClass)
458 return &AMDGPU::AV_64RegClass;
459 if (RC == &AMDGPU::VReg_64_Align2RegClass ||
460 RC == &AMDGPU::AReg_64_Align2RegClass)
461 return &AMDGPU::AV_64_Align2RegClass;
462 if (RC == &AMDGPU::VReg_96RegClass || RC == &AMDGPU::AReg_96RegClass)
463 return &AMDGPU::AV_96RegClass;
464 if (RC == &AMDGPU::VReg_96_Align2RegClass ||
465 RC == &AMDGPU::AReg_96_Align2RegClass)
466 return &AMDGPU::AV_96_Align2RegClass;
467 if (RC == &AMDGPU::VReg_128RegClass || RC == &AMDGPU::AReg_128RegClass)
468 return &AMDGPU::AV_128RegClass;
469 if (RC == &AMDGPU::VReg_128_Align2RegClass ||
470 RC == &AMDGPU::AReg_128_Align2RegClass)
471 return &AMDGPU::AV_128_Align2RegClass;
472 if (RC == &AMDGPU::VReg_160RegClass || RC == &AMDGPU::AReg_160RegClass)
473 return &AMDGPU::AV_160RegClass;
474 if (RC == &AMDGPU::VReg_160_Align2RegClass ||
475 RC == &AMDGPU::AReg_160_Align2RegClass)
476 return &AMDGPU::AV_160_Align2RegClass;
477 if (RC == &AMDGPU::VReg_192RegClass || RC == &AMDGPU::AReg_192RegClass)
478 return &AMDGPU::AV_192RegClass;
479 if (RC == &AMDGPU::VReg_192_Align2RegClass ||
480 RC == &AMDGPU::AReg_192_Align2RegClass)
481 return &AMDGPU::AV_192_Align2RegClass;
482 if (RC == &AMDGPU::VReg_256RegClass || RC == &AMDGPU::AReg_256RegClass)
483 return &AMDGPU::AV_256RegClass;
484 if (RC == &AMDGPU::VReg_256_Align2RegClass ||
485 RC == &AMDGPU::AReg_256_Align2RegClass)
486 return &AMDGPU::AV_256_Align2RegClass;
487 if (RC == &AMDGPU::VReg_512RegClass || RC == &AMDGPU::AReg_512RegClass)
488 return &AMDGPU::AV_512RegClass;
489 if (RC == &AMDGPU::VReg_512_Align2RegClass ||
490 RC == &AMDGPU::AReg_512_Align2RegClass)
491 return &AMDGPU::AV_512_Align2RegClass;
492 if (RC == &AMDGPU::VReg_1024RegClass || RC == &AMDGPU::AReg_1024RegClass)
493 return &AMDGPU::AV_1024RegClass;
494 if (RC == &AMDGPU::VReg_1024_Align2RegClass ||
495 RC == &AMDGPU::AReg_1024_Align2RegClass)
496 return &AMDGPU::AV_1024_Align2RegClass;
497 }
498
500}
501
503 const SIFrameLowering *TFI = ST.getFrameLowering();
505 // During ISel lowering we always reserve the stack pointer in entry and chain
506 // functions, but never actually want to reference it when accessing our own
507 // frame. If we need a frame pointer we use it, but otherwise we can just use
508 // an immediate "0" which we represent by returning NoRegister.
509 if (FuncInfo->isBottomOfStack()) {
510 return TFI->hasFP(MF) ? FuncInfo->getFrameOffsetReg() : Register();
511 }
512 return TFI->hasFP(MF) ? FuncInfo->getFrameOffsetReg()
513 : FuncInfo->getStackPtrOffsetReg();
514}
515
517 // When we need stack realignment, we can't reference off of the
518 // stack pointer, so we reserve a base pointer.
519 const MachineFrameInfo &MFI = MF.getFrameInfo();
520 return MFI.getNumFixedObjects() && shouldRealignStack(MF);
521}
522
523Register SIRegisterInfo::getBaseRegister() const { return AMDGPU::SGPR34; }
524
526 return AMDGPU_AllVGPRs_RegMask;
527}
528
530 return AMDGPU_AllAGPRs_RegMask;
531}
532
534 return AMDGPU_AllVectorRegs_RegMask;
535}
536
538 return AMDGPU_AllAllocatableSRegs_RegMask;
539}
540
541unsigned SIRegisterInfo::getSubRegFromChannel(unsigned Channel,
542 unsigned NumRegs) {
543 assert(NumRegs < SubRegFromChannelTableWidthMap.size());
544 unsigned NumRegIndex = SubRegFromChannelTableWidthMap[NumRegs];
545 assert(NumRegIndex && "Not implemented");
546 assert(Channel < SubRegFromChannelTable[NumRegIndex - 1].size());
547 return SubRegFromChannelTable[NumRegIndex - 1][Channel];
548}
549
552 const unsigned Align,
553 const TargetRegisterClass *RC) const {
554 unsigned BaseIdx = alignDown(ST.getMaxNumSGPRs(MF), Align) - Align;
555 MCRegister BaseReg(AMDGPU::SGPR_32RegClass.getRegister(BaseIdx));
556 return getMatchingSuperReg(BaseReg, AMDGPU::sub0, RC);
557}
558
560 const MachineFunction &MF) const {
561 return getAlignedHighSGPRForRC(MF, /*Align=*/4, &AMDGPU::SGPR_128RegClass);
562}
563
565 BitVector Reserved(getNumRegs());
566 Reserved.set(AMDGPU::MODE);
567
569
570 // Reserve special purpose registers.
571 //
572 // EXEC_LO and EXEC_HI could be allocated and used as regular register, but
573 // this seems likely to result in bugs, so I'm marking them as reserved.
574 reserveRegisterTuples(Reserved, AMDGPU::EXEC);
575 reserveRegisterTuples(Reserved, AMDGPU::FLAT_SCR);
576
577 // M0 has to be reserved so that llvm accepts it as a live-in into a block.
578 reserveRegisterTuples(Reserved, AMDGPU::M0);
579
580 // Reserve src_vccz, src_execz, src_scc.
581 reserveRegisterTuples(Reserved, AMDGPU::SRC_VCCZ);
582 reserveRegisterTuples(Reserved, AMDGPU::SRC_EXECZ);
583 reserveRegisterTuples(Reserved, AMDGPU::SRC_SCC);
584
585 // Reserve the memory aperture registers
586 reserveRegisterTuples(Reserved, AMDGPU::SRC_SHARED_BASE);
587 reserveRegisterTuples(Reserved, AMDGPU::SRC_SHARED_LIMIT);
588 reserveRegisterTuples(Reserved, AMDGPU::SRC_PRIVATE_BASE);
589 reserveRegisterTuples(Reserved, AMDGPU::SRC_PRIVATE_LIMIT);
590
591 // Reserve src_pops_exiting_wave_id - support is not implemented in Codegen.
592 reserveRegisterTuples(Reserved, AMDGPU::SRC_POPS_EXITING_WAVE_ID);
593
594 // Reserve xnack_mask registers - support is not implemented in Codegen.
595 reserveRegisterTuples(Reserved, AMDGPU::XNACK_MASK);
596
597 // Reserve lds_direct register - support is not implemented in Codegen.
598 reserveRegisterTuples(Reserved, AMDGPU::LDS_DIRECT);
599
600 // Reserve Trap Handler registers - support is not implemented in Codegen.
601 reserveRegisterTuples(Reserved, AMDGPU::TBA);
602 reserveRegisterTuples(Reserved, AMDGPU::TMA);
603 reserveRegisterTuples(Reserved, AMDGPU::TTMP0_TTMP1);
604 reserveRegisterTuples(Reserved, AMDGPU::TTMP2_TTMP3);
605 reserveRegisterTuples(Reserved, AMDGPU::TTMP4_TTMP5);
606 reserveRegisterTuples(Reserved, AMDGPU::TTMP6_TTMP7);
607 reserveRegisterTuples(Reserved, AMDGPU::TTMP8_TTMP9);
608 reserveRegisterTuples(Reserved, AMDGPU::TTMP10_TTMP11);
609 reserveRegisterTuples(Reserved, AMDGPU::TTMP12_TTMP13);
610 reserveRegisterTuples(Reserved, AMDGPU::TTMP14_TTMP15);
611
612 // Reserve null register - it shall never be allocated
613 reserveRegisterTuples(Reserved, AMDGPU::SGPR_NULL64);
614
615 // Reserve SGPRs.
616 //
617 unsigned MaxNumSGPRs = ST.getMaxNumSGPRs(MF);
618 unsigned TotalNumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
619 for (const TargetRegisterClass *RC : regclasses()) {
620 if (RC->isBaseClass() && isSGPRClass(RC)) {
621 unsigned NumRegs = divideCeil(getRegSizeInBits(*RC), 32);
622 for (MCPhysReg Reg : *RC) {
623 unsigned Index = getHWRegIndex(Reg);
624 if (Index + NumRegs > MaxNumSGPRs && Index < TotalNumSGPRs)
625 Reserved.set(Reg);
626 }
627 }
628 }
629
630 Register ScratchRSrcReg = MFI->getScratchRSrcReg();
631 if (ScratchRSrcReg != AMDGPU::NoRegister) {
632 // Reserve 4 SGPRs for the scratch buffer resource descriptor in case we
633 // need to spill.
634 // TODO: May need to reserve a VGPR if doing LDS spilling.
635 reserveRegisterTuples(Reserved, ScratchRSrcReg);
636 }
637
638 Register LongBranchReservedReg = MFI->getLongBranchReservedReg();
639 if (LongBranchReservedReg)
640 reserveRegisterTuples(Reserved, LongBranchReservedReg);
641
642 // We have to assume the SP is needed in case there are calls in the function,
643 // which is detected after the function is lowered. If we aren't really going
644 // to need SP, don't bother reserving it.
645 MCRegister StackPtrReg = MFI->getStackPtrOffsetReg();
646 if (StackPtrReg) {
647 reserveRegisterTuples(Reserved, StackPtrReg);
648 assert(!isSubRegister(ScratchRSrcReg, StackPtrReg));
649 }
650
651 MCRegister FrameReg = MFI->getFrameOffsetReg();
652 if (FrameReg) {
653 reserveRegisterTuples(Reserved, FrameReg);
654 assert(!isSubRegister(ScratchRSrcReg, FrameReg));
655 }
656
657 if (hasBasePointer(MF)) {
658 MCRegister BasePtrReg = getBaseRegister();
659 reserveRegisterTuples(Reserved, BasePtrReg);
660 assert(!isSubRegister(ScratchRSrcReg, BasePtrReg));
661 }
662
663 // FIXME: Use same reserved register introduced in D149775
664 // SGPR used to preserve EXEC MASK around WWM spill/copy instructions.
665 Register ExecCopyReg = MFI->getSGPRForEXECCopy();
666 if (ExecCopyReg)
667 reserveRegisterTuples(Reserved, ExecCopyReg);
668
669 // Reserve VGPRs/AGPRs.
670 //
671 unsigned MaxNumVGPRs = ST.getMaxNumVGPRs(MF);
672 unsigned MaxNumAGPRs = MaxNumVGPRs;
673 unsigned TotalNumVGPRs = AMDGPU::VGPR_32RegClass.getNumRegs();
674
675 // On GFX90A, the number of VGPRs and AGPRs need not be equal. Theoretically,
676 // a wave may have up to 512 total vector registers combining together both
677 // VGPRs and AGPRs. Hence, in an entry function without calls and without
678 // AGPRs used within it, it is possible to use the whole vector register
679 // budget for VGPRs.
680 //
681 // TODO: it shall be possible to estimate maximum AGPR/VGPR pressure and split
682 // register file accordingly.
683 if (ST.hasGFX90AInsts()) {
684 if (MFI->usesAGPRs(MF)) {
685 MaxNumVGPRs /= 2;
686 MaxNumAGPRs = MaxNumVGPRs;
687 } else {
688 if (MaxNumVGPRs > TotalNumVGPRs) {
689 MaxNumAGPRs = MaxNumVGPRs - TotalNumVGPRs;
690 MaxNumVGPRs = TotalNumVGPRs;
691 } else
692 MaxNumAGPRs = 0;
693 }
694 }
695
696 for (const TargetRegisterClass *RC : regclasses()) {
697 if (RC->isBaseClass() && isVGPRClass(RC)) {
698 unsigned NumRegs = divideCeil(getRegSizeInBits(*RC), 32);
699 for (MCPhysReg Reg : *RC) {
700 unsigned Index = getHWRegIndex(Reg);
701 if (Index + NumRegs > MaxNumVGPRs)
702 Reserved.set(Reg);
703 }
704 }
705 }
706
707 // Reserve all the AGPRs if there are no instructions to use it.
708 if (!ST.hasMAIInsts())
709 MaxNumAGPRs = 0;
710 for (const TargetRegisterClass *RC : regclasses()) {
711 if (RC->isBaseClass() && isAGPRClass(RC)) {
712 unsigned NumRegs = divideCeil(getRegSizeInBits(*RC), 32);
713 for (MCPhysReg Reg : *RC) {
714 unsigned Index = getHWRegIndex(Reg);
715 if (Index + NumRegs > MaxNumAGPRs)
716 Reserved.set(Reg);
717 }
718 }
719 }
720
721 // On GFX908, in order to guarantee copying between AGPRs, we need a scratch
722 // VGPR available at all times.
723 if (ST.hasMAIInsts() && !ST.hasGFX90AInsts()) {
724 reserveRegisterTuples(Reserved, MFI->getVGPRForAGPRCopy());
725 }
726
727 for (Register Reg : MFI->getWWMReservedRegs())
728 reserveRegisterTuples(Reserved, Reg);
729
730 // FIXME: Stop using reserved registers for this.
731 for (MCPhysReg Reg : MFI->getAGPRSpillVGPRs())
732 reserveRegisterTuples(Reserved, Reg);
733
734 for (MCPhysReg Reg : MFI->getVGPRSpillAGPRs())
735 reserveRegisterTuples(Reserved, Reg);
736
737 return Reserved;
738}
739
741 MCRegister PhysReg) const {
742 return !MF.getRegInfo().isReserved(PhysReg);
743}
744
747 // On entry or in chain functions, the base address is 0, so it can't possibly
748 // need any more alignment.
749
750 // FIXME: Should be able to specify the entry frame alignment per calling
751 // convention instead.
752 if (Info->isBottomOfStack())
753 return false;
754
756}
757
760 if (Info->isEntryFunction()) {
761 const MachineFrameInfo &MFI = Fn.getFrameInfo();
762 return MFI.hasStackObjects() || MFI.hasCalls();
763 }
764
765 // May need scavenger for dealing with callee saved registers.
766 return true;
767}
768
770 const MachineFunction &MF) const {
771 // Do not use frame virtual registers. They used to be used for SGPRs, but
772 // once we reach PrologEpilogInserter, we can no longer spill SGPRs. If the
773 // scavenger fails, we can increment/decrement the necessary SGPRs to avoid a
774 // spill.
775 return false;
776}
777
779 const MachineFunction &MF) const {
780 const MachineFrameInfo &MFI = MF.getFrameInfo();
781 return MFI.hasStackObjects();
782}
783
785 const MachineFunction &) const {
786 // There are no special dedicated stack or frame pointers.
787 return true;
788}
789
792
793 int OffIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
794 AMDGPU::OpName::offset);
795 return MI->getOperand(OffIdx).getImm();
796}
797
799 int Idx) const {
801 return 0;
802
803 assert((Idx == AMDGPU::getNamedOperandIdx(MI->getOpcode(),
804 AMDGPU::OpName::vaddr) ||
805 (Idx == AMDGPU::getNamedOperandIdx(MI->getOpcode(),
806 AMDGPU::OpName::saddr))) &&
807 "Should never see frame index on non-address operand");
808
810}
811
814 return false;
815
816 int64_t FullOffset = Offset + getScratchInstrOffset(MI);
817
818 const SIInstrInfo *TII = ST.getInstrInfo();
820 return !TII->isLegalMUBUFImmOffset(FullOffset);
821
822 return !TII->isLegalFLATOffset(FullOffset, AMDGPUAS::PRIVATE_ADDRESS,
824}
825
827 int FrameIdx,
828 int64_t Offset) const {
830 DebugLoc DL; // Defaults to "unknown"
831
832 if (Ins != MBB->end())
833 DL = Ins->getDebugLoc();
834
836 const SIInstrInfo *TII = ST.getInstrInfo();
838 unsigned MovOpc = ST.enableFlatScratch() ? AMDGPU::S_MOV_B32
839 : AMDGPU::V_MOV_B32_e32;
840
841 Register BaseReg = MRI.createVirtualRegister(
842 ST.enableFlatScratch() ? &AMDGPU::SReg_32_XEXEC_HIRegClass
843 : &AMDGPU::VGPR_32RegClass);
844
845 if (Offset == 0) {
846 BuildMI(*MBB, Ins, DL, TII->get(MovOpc), BaseReg)
847 .addFrameIndex(FrameIdx);
848 return BaseReg;
849 }
850
851 Register OffsetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
852
853 Register FIReg = MRI.createVirtualRegister(
854 ST.enableFlatScratch() ? &AMDGPU::SReg_32_XM0RegClass
855 : &AMDGPU::VGPR_32RegClass);
856
857 BuildMI(*MBB, Ins, DL, TII->get(AMDGPU::S_MOV_B32), OffsetReg)
858 .addImm(Offset);
859 BuildMI(*MBB, Ins, DL, TII->get(MovOpc), FIReg)
860 .addFrameIndex(FrameIdx);
861
862 if (ST.enableFlatScratch() ) {
863 BuildMI(*MBB, Ins, DL, TII->get(AMDGPU::S_ADD_I32), BaseReg)
864 .addReg(OffsetReg, RegState::Kill)
865 .addReg(FIReg);
866 return BaseReg;
867 }
868
869 TII->getAddNoCarry(*MBB, Ins, DL, BaseReg)
870 .addReg(OffsetReg, RegState::Kill)
871 .addReg(FIReg)
872 .addImm(0); // clamp bit
873
874 return BaseReg;
875}
876
878 int64_t Offset) const {
879 const SIInstrInfo *TII = ST.getInstrInfo();
880 bool IsFlat = TII->isFLATScratch(MI);
881
882#ifndef NDEBUG
883 // FIXME: Is it possible to be storing a frame index to itself?
884 bool SeenFI = false;
885 for (const MachineOperand &MO: MI.operands()) {
886 if (MO.isFI()) {
887 if (SeenFI)
888 llvm_unreachable("should not see multiple frame indices");
889
890 SeenFI = true;
891 }
892 }
893#endif
894
895 MachineOperand *FIOp =
896 TII->getNamedOperand(MI, IsFlat ? AMDGPU::OpName::saddr
897 : AMDGPU::OpName::vaddr);
898
899 MachineOperand *OffsetOp = TII->getNamedOperand(MI, AMDGPU::OpName::offset);
900 int64_t NewOffset = OffsetOp->getImm() + Offset;
901
902 assert(FIOp && FIOp->isFI() && "frame index must be address operand");
903 assert(TII->isMUBUF(MI) || TII->isFLATScratch(MI));
904
905 if (IsFlat) {
906 assert(TII->isLegalFLATOffset(NewOffset, AMDGPUAS::PRIVATE_ADDRESS,
908 "offset should be legal");
909 FIOp->ChangeToRegister(BaseReg, false);
910 OffsetOp->setImm(NewOffset);
911 return;
912 }
913
914#ifndef NDEBUG
915 MachineOperand *SOffset = TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
916 assert(SOffset->isImm() && SOffset->getImm() == 0);
917#endif
918
919 assert(TII->isLegalMUBUFImmOffset(NewOffset) && "offset should be legal");
920
921 FIOp->ChangeToRegister(BaseReg, false);
922 OffsetOp->setImm(NewOffset);
923}
924
926 Register BaseReg,
927 int64_t Offset) const {
929 return false;
930
931 int64_t NewOffset = Offset + getScratchInstrOffset(MI);
932
933 const SIInstrInfo *TII = ST.getInstrInfo();
935 return TII->isLegalMUBUFImmOffset(NewOffset);
936
937 return TII->isLegalFLATOffset(NewOffset, AMDGPUAS::PRIVATE_ADDRESS,
939}
940
942 const MachineFunction &MF, unsigned Kind) const {
943 // This is inaccurate. It depends on the instruction and address space. The
944 // only place where we should hit this is for dealing with frame indexes /
945 // private accesses, so this is correct in that case.
946 return &AMDGPU::VGPR_32RegClass;
947}
948
951 if (isAGPRClass(RC) && !ST.hasGFX90AInsts())
952 return getEquivalentVGPRClass(RC);
953 if (RC == &AMDGPU::SCC_CLASSRegClass)
954 return getWaveMaskRegClass();
955
956 return RC;
957}
958
959static unsigned getNumSubRegsForSpillOp(unsigned Op) {
960
961 switch (Op) {
962 case AMDGPU::SI_SPILL_S1024_SAVE:
963 case AMDGPU::SI_SPILL_S1024_RESTORE:
964 case AMDGPU::SI_SPILL_V1024_SAVE:
965 case AMDGPU::SI_SPILL_V1024_RESTORE:
966 case AMDGPU::SI_SPILL_A1024_SAVE:
967 case AMDGPU::SI_SPILL_A1024_RESTORE:
968 case AMDGPU::SI_SPILL_AV1024_SAVE:
969 case AMDGPU::SI_SPILL_AV1024_RESTORE:
970 return 32;
971 case AMDGPU::SI_SPILL_S512_SAVE:
972 case AMDGPU::SI_SPILL_S512_RESTORE:
973 case AMDGPU::SI_SPILL_V512_SAVE:
974 case AMDGPU::SI_SPILL_V512_RESTORE:
975 case AMDGPU::SI_SPILL_A512_SAVE:
976 case AMDGPU::SI_SPILL_A512_RESTORE:
977 case AMDGPU::SI_SPILL_AV512_SAVE:
978 case AMDGPU::SI_SPILL_AV512_RESTORE:
979 return 16;
980 case AMDGPU::SI_SPILL_S384_SAVE:
981 case AMDGPU::SI_SPILL_S384_RESTORE:
982 case AMDGPU::SI_SPILL_V384_SAVE:
983 case AMDGPU::SI_SPILL_V384_RESTORE:
984 case AMDGPU::SI_SPILL_A384_SAVE:
985 case AMDGPU::SI_SPILL_A384_RESTORE:
986 case AMDGPU::SI_SPILL_AV384_SAVE:
987 case AMDGPU::SI_SPILL_AV384_RESTORE:
988 return 12;
989 case AMDGPU::SI_SPILL_S352_SAVE:
990 case AMDGPU::SI_SPILL_S352_RESTORE:
991 case AMDGPU::SI_SPILL_V352_SAVE:
992 case AMDGPU::SI_SPILL_V352_RESTORE:
993 case AMDGPU::SI_SPILL_A352_SAVE:
994 case AMDGPU::SI_SPILL_A352_RESTORE:
995 case AMDGPU::SI_SPILL_AV352_SAVE:
996 case AMDGPU::SI_SPILL_AV352_RESTORE:
997 return 11;
998 case AMDGPU::SI_SPILL_S320_SAVE:
999 case AMDGPU::SI_SPILL_S320_RESTORE:
1000 case AMDGPU::SI_SPILL_V320_SAVE:
1001 case AMDGPU::SI_SPILL_V320_RESTORE:
1002 case AMDGPU::SI_SPILL_A320_SAVE:
1003 case AMDGPU::SI_SPILL_A320_RESTORE:
1004 case AMDGPU::SI_SPILL_AV320_SAVE:
1005 case AMDGPU::SI_SPILL_AV320_RESTORE:
1006 return 10;
1007 case AMDGPU::SI_SPILL_S288_SAVE:
1008 case AMDGPU::SI_SPILL_S288_RESTORE:
1009 case AMDGPU::SI_SPILL_V288_SAVE:
1010 case AMDGPU::SI_SPILL_V288_RESTORE:
1011 case AMDGPU::SI_SPILL_A288_SAVE:
1012 case AMDGPU::SI_SPILL_A288_RESTORE:
1013 case AMDGPU::SI_SPILL_AV288_SAVE:
1014 case AMDGPU::SI_SPILL_AV288_RESTORE:
1015 return 9;
1016 case AMDGPU::SI_SPILL_S256_SAVE:
1017 case AMDGPU::SI_SPILL_S256_RESTORE:
1018 case AMDGPU::SI_SPILL_V256_SAVE:
1019 case AMDGPU::SI_SPILL_V256_RESTORE:
1020 case AMDGPU::SI_SPILL_A256_SAVE:
1021 case AMDGPU::SI_SPILL_A256_RESTORE:
1022 case AMDGPU::SI_SPILL_AV256_SAVE:
1023 case AMDGPU::SI_SPILL_AV256_RESTORE:
1024 return 8;
1025 case AMDGPU::SI_SPILL_S224_SAVE:
1026 case AMDGPU::SI_SPILL_S224_RESTORE:
1027 case AMDGPU::SI_SPILL_V224_SAVE:
1028 case AMDGPU::SI_SPILL_V224_RESTORE:
1029 case AMDGPU::SI_SPILL_A224_SAVE:
1030 case AMDGPU::SI_SPILL_A224_RESTORE:
1031 case AMDGPU::SI_SPILL_AV224_SAVE:
1032 case AMDGPU::SI_SPILL_AV224_RESTORE:
1033 return 7;
1034 case AMDGPU::SI_SPILL_S192_SAVE:
1035 case AMDGPU::SI_SPILL_S192_RESTORE:
1036 case AMDGPU::SI_SPILL_V192_SAVE:
1037 case AMDGPU::SI_SPILL_V192_RESTORE:
1038 case AMDGPU::SI_SPILL_A192_SAVE:
1039 case AMDGPU::SI_SPILL_A192_RESTORE:
1040 case AMDGPU::SI_SPILL_AV192_SAVE:
1041 case AMDGPU::SI_SPILL_AV192_RESTORE:
1042 return 6;
1043 case AMDGPU::SI_SPILL_S160_SAVE:
1044 case AMDGPU::SI_SPILL_S160_RESTORE:
1045 case AMDGPU::SI_SPILL_V160_SAVE:
1046 case AMDGPU::SI_SPILL_V160_RESTORE:
1047 case AMDGPU::SI_SPILL_A160_SAVE:
1048 case AMDGPU::SI_SPILL_A160_RESTORE:
1049 case AMDGPU::SI_SPILL_AV160_SAVE:
1050 case AMDGPU::SI_SPILL_AV160_RESTORE:
1051 return 5;
1052 case AMDGPU::SI_SPILL_S128_SAVE:
1053 case AMDGPU::SI_SPILL_S128_RESTORE:
1054 case AMDGPU::SI_SPILL_V128_SAVE:
1055 case AMDGPU::SI_SPILL_V128_RESTORE:
1056 case AMDGPU::SI_SPILL_A128_SAVE:
1057 case AMDGPU::SI_SPILL_A128_RESTORE:
1058 case AMDGPU::SI_SPILL_AV128_SAVE:
1059 case AMDGPU::SI_SPILL_AV128_RESTORE:
1060 return 4;
1061 case AMDGPU::SI_SPILL_S96_SAVE:
1062 case AMDGPU::SI_SPILL_S96_RESTORE:
1063 case AMDGPU::SI_SPILL_V96_SAVE:
1064 case AMDGPU::SI_SPILL_V96_RESTORE:
1065 case AMDGPU::SI_SPILL_A96_SAVE:
1066 case AMDGPU::SI_SPILL_A96_RESTORE:
1067 case AMDGPU::SI_SPILL_AV96_SAVE:
1068 case AMDGPU::SI_SPILL_AV96_RESTORE:
1069 return 3;
1070 case AMDGPU::SI_SPILL_S64_SAVE:
1071 case AMDGPU::SI_SPILL_S64_RESTORE:
1072 case AMDGPU::SI_SPILL_V64_SAVE:
1073 case AMDGPU::SI_SPILL_V64_RESTORE:
1074 case AMDGPU::SI_SPILL_A64_SAVE:
1075 case AMDGPU::SI_SPILL_A64_RESTORE:
1076 case AMDGPU::SI_SPILL_AV64_SAVE:
1077 case AMDGPU::SI_SPILL_AV64_RESTORE:
1078 return 2;
1079 case AMDGPU::SI_SPILL_S32_SAVE:
1080 case AMDGPU::SI_SPILL_S32_RESTORE:
1081 case AMDGPU::SI_SPILL_V32_SAVE:
1082 case AMDGPU::SI_SPILL_V32_RESTORE:
1083 case AMDGPU::SI_SPILL_A32_SAVE:
1084 case AMDGPU::SI_SPILL_A32_RESTORE:
1085 case AMDGPU::SI_SPILL_AV32_SAVE:
1086 case AMDGPU::SI_SPILL_AV32_RESTORE:
1087 case AMDGPU::SI_SPILL_WWM_V32_SAVE:
1088 case AMDGPU::SI_SPILL_WWM_V32_RESTORE:
1089 case AMDGPU::SI_SPILL_WWM_AV32_SAVE:
1090 case AMDGPU::SI_SPILL_WWM_AV32_RESTORE:
1091 return 1;
1092 default: llvm_unreachable("Invalid spill opcode");
1093 }
1094}
1095
1096static int getOffsetMUBUFStore(unsigned Opc) {
1097 switch (Opc) {
1098 case AMDGPU::BUFFER_STORE_DWORD_OFFEN:
1099 return AMDGPU::BUFFER_STORE_DWORD_OFFSET;
1100 case AMDGPU::BUFFER_STORE_BYTE_OFFEN:
1101 return AMDGPU::BUFFER_STORE_BYTE_OFFSET;
1102 case AMDGPU::BUFFER_STORE_SHORT_OFFEN:
1103 return AMDGPU::BUFFER_STORE_SHORT_OFFSET;
1104 case AMDGPU::BUFFER_STORE_DWORDX2_OFFEN:
1105 return AMDGPU::BUFFER_STORE_DWORDX2_OFFSET;
1106 case AMDGPU::BUFFER_STORE_DWORDX3_OFFEN:
1107 return AMDGPU::BUFFER_STORE_DWORDX3_OFFSET;
1108 case AMDGPU::BUFFER_STORE_DWORDX4_OFFEN:
1109 return AMDGPU::BUFFER_STORE_DWORDX4_OFFSET;
1110 case AMDGPU::BUFFER_STORE_SHORT_D16_HI_OFFEN:
1111 return AMDGPU::BUFFER_STORE_SHORT_D16_HI_OFFSET;
1112 case AMDGPU::BUFFER_STORE_BYTE_D16_HI_OFFEN:
1113 return AMDGPU::BUFFER_STORE_BYTE_D16_HI_OFFSET;
1114 default:
1115 return -1;
1116 }
1117}
1118
1119static int getOffsetMUBUFLoad(unsigned Opc) {
1120 switch (Opc) {
1121 case AMDGPU::BUFFER_LOAD_DWORD_OFFEN:
1122 return AMDGPU::BUFFER_LOAD_DWORD_OFFSET;
1123 case AMDGPU::BUFFER_LOAD_UBYTE_OFFEN:
1124 return AMDGPU::BUFFER_LOAD_UBYTE_OFFSET;
1125 case AMDGPU::BUFFER_LOAD_SBYTE_OFFEN:
1126 return AMDGPU::BUFFER_LOAD_SBYTE_OFFSET;
1127 case AMDGPU::BUFFER_LOAD_USHORT_OFFEN:
1128 return AMDGPU::BUFFER_LOAD_USHORT_OFFSET;
1129 case AMDGPU::BUFFER_LOAD_SSHORT_OFFEN:
1130 return AMDGPU::BUFFER_LOAD_SSHORT_OFFSET;
1131 case AMDGPU::BUFFER_LOAD_DWORDX2_OFFEN:
1132 return AMDGPU::BUFFER_LOAD_DWORDX2_OFFSET;
1133 case AMDGPU::BUFFER_LOAD_DWORDX3_OFFEN:
1134 return AMDGPU::BUFFER_LOAD_DWORDX3_OFFSET;
1135 case AMDGPU::BUFFER_LOAD_DWORDX4_OFFEN:
1136 return AMDGPU::BUFFER_LOAD_DWORDX4_OFFSET;
1137 case AMDGPU::BUFFER_LOAD_UBYTE_D16_OFFEN:
1138 return AMDGPU::BUFFER_LOAD_UBYTE_D16_OFFSET;
1139 case AMDGPU::BUFFER_LOAD_UBYTE_D16_HI_OFFEN:
1140 return AMDGPU::BUFFER_LOAD_UBYTE_D16_HI_OFFSET;
1141 case AMDGPU::BUFFER_LOAD_SBYTE_D16_OFFEN:
1142 return AMDGPU::BUFFER_LOAD_SBYTE_D16_OFFSET;
1143 case AMDGPU::BUFFER_LOAD_SBYTE_D16_HI_OFFEN:
1144 return AMDGPU::BUFFER_LOAD_SBYTE_D16_HI_OFFSET;
1145 case AMDGPU::BUFFER_LOAD_SHORT_D16_OFFEN:
1146 return AMDGPU::BUFFER_LOAD_SHORT_D16_OFFSET;
1147 case AMDGPU::BUFFER_LOAD_SHORT_D16_HI_OFFEN:
1148 return AMDGPU::BUFFER_LOAD_SHORT_D16_HI_OFFSET;
1149 default:
1150 return -1;
1151 }
1152}
1153
1154static int getOffenMUBUFStore(unsigned Opc) {
1155 switch (Opc) {
1156 case AMDGPU::BUFFER_STORE_DWORD_OFFSET:
1157 return AMDGPU::BUFFER_STORE_DWORD_OFFEN;
1158 case AMDGPU::BUFFER_STORE_BYTE_OFFSET:
1159 return AMDGPU::BUFFER_STORE_BYTE_OFFEN;
1160 case AMDGPU::BUFFER_STORE_SHORT_OFFSET:
1161 return AMDGPU::BUFFER_STORE_SHORT_OFFEN;
1162 case AMDGPU::BUFFER_STORE_DWORDX2_OFFSET:
1163 return AMDGPU::BUFFER_STORE_DWORDX2_OFFEN;
1164 case AMDGPU::BUFFER_STORE_DWORDX3_OFFSET:
1165 return AMDGPU::BUFFER_STORE_DWORDX3_OFFEN;
1166 case AMDGPU::BUFFER_STORE_DWORDX4_OFFSET:
1167 return AMDGPU::BUFFER_STORE_DWORDX4_OFFEN;
1168 case AMDGPU::BUFFER_STORE_SHORT_D16_HI_OFFSET:
1169 return AMDGPU::BUFFER_STORE_SHORT_D16_HI_OFFEN;
1170 case AMDGPU::BUFFER_STORE_BYTE_D16_HI_OFFSET:
1171 return AMDGPU::BUFFER_STORE_BYTE_D16_HI_OFFEN;
1172 default:
1173 return -1;
1174 }
1175}
1176
1177static int getOffenMUBUFLoad(unsigned Opc) {
1178 switch (Opc) {
1179 case AMDGPU::BUFFER_LOAD_DWORD_OFFSET:
1180 return AMDGPU::BUFFER_LOAD_DWORD_OFFEN;
1181 case AMDGPU::BUFFER_LOAD_UBYTE_OFFSET:
1182 return AMDGPU::BUFFER_LOAD_UBYTE_OFFEN;
1183 case AMDGPU::BUFFER_LOAD_SBYTE_OFFSET:
1184 return AMDGPU::BUFFER_LOAD_SBYTE_OFFEN;
1185 case AMDGPU::BUFFER_LOAD_USHORT_OFFSET:
1186 return AMDGPU::BUFFER_LOAD_USHORT_OFFEN;
1187 case AMDGPU::BUFFER_LOAD_SSHORT_OFFSET:
1188 return AMDGPU::BUFFER_LOAD_SSHORT_OFFEN;
1189 case AMDGPU::BUFFER_LOAD_DWORDX2_OFFSET:
1190 return AMDGPU::BUFFER_LOAD_DWORDX2_OFFEN;
1191 case AMDGPU::BUFFER_LOAD_DWORDX3_OFFSET:
1192 return AMDGPU::BUFFER_LOAD_DWORDX3_OFFEN;
1193 case AMDGPU::BUFFER_LOAD_DWORDX4_OFFSET:
1194 return AMDGPU::BUFFER_LOAD_DWORDX4_OFFEN;
1195 case AMDGPU::BUFFER_LOAD_UBYTE_D16_OFFSET:
1196 return AMDGPU::BUFFER_LOAD_UBYTE_D16_OFFEN;
1197 case AMDGPU::BUFFER_LOAD_UBYTE_D16_HI_OFFSET:
1198 return AMDGPU::BUFFER_LOAD_UBYTE_D16_HI_OFFEN;
1199 case AMDGPU::BUFFER_LOAD_SBYTE_D16_OFFSET:
1200 return AMDGPU::BUFFER_LOAD_SBYTE_D16_OFFEN;
1201 case AMDGPU::BUFFER_LOAD_SBYTE_D16_HI_OFFSET:
1202 return AMDGPU::BUFFER_LOAD_SBYTE_D16_HI_OFFEN;
1203 case AMDGPU::BUFFER_LOAD_SHORT_D16_OFFSET:
1204 return AMDGPU::BUFFER_LOAD_SHORT_D16_OFFEN;
1205 case AMDGPU::BUFFER_LOAD_SHORT_D16_HI_OFFSET:
1206 return AMDGPU::BUFFER_LOAD_SHORT_D16_HI_OFFEN;
1207 default:
1208 return -1;
1209 }
1210}
1211
1215 int Index, unsigned Lane,
1216 unsigned ValueReg, bool IsKill) {
1219 const SIInstrInfo *TII = ST.getInstrInfo();
1220
1221 MCPhysReg Reg = MFI->getVGPRToAGPRSpill(Index, Lane);
1222
1223 if (Reg == AMDGPU::NoRegister)
1224 return MachineInstrBuilder();
1225
1226 bool IsStore = MI->mayStore();
1228 auto *TRI = static_cast<const SIRegisterInfo*>(MRI.getTargetRegisterInfo());
1229
1230 unsigned Dst = IsStore ? Reg : ValueReg;
1231 unsigned Src = IsStore ? ValueReg : Reg;
1232 bool IsVGPR = TRI->isVGPR(MRI, Reg);
1233 DebugLoc DL = MI->getDebugLoc();
1234 if (IsVGPR == TRI->isVGPR(MRI, ValueReg)) {
1235 // Spiller during regalloc may restore a spilled register to its superclass.
1236 // It could result in AGPR spills restored to VGPRs or the other way around,
1237 // making the src and dst with identical regclasses at this point. It just
1238 // needs a copy in such cases.
1239 auto CopyMIB = BuildMI(MBB, MI, DL, TII->get(AMDGPU::COPY), Dst)
1240 .addReg(Src, getKillRegState(IsKill));
1242 return CopyMIB;
1243 }
1244 unsigned Opc = (IsStore ^ IsVGPR) ? AMDGPU::V_ACCVGPR_WRITE_B32_e64
1245 : AMDGPU::V_ACCVGPR_READ_B32_e64;
1246
1247 auto MIB = BuildMI(MBB, MI, DL, TII->get(Opc), Dst)
1248 .addReg(Src, getKillRegState(IsKill));
1250 return MIB;
1251}
1252
1253// This differs from buildSpillLoadStore by only scavenging a VGPR. It does not
1254// need to handle the case where an SGPR may need to be spilled while spilling.
1256 MachineFrameInfo &MFI,
1258 int Index,
1259 int64_t Offset) {
1260 const SIInstrInfo *TII = ST.getInstrInfo();
1261 MachineBasicBlock *MBB = MI->getParent();
1262 const DebugLoc &DL = MI->getDebugLoc();
1263 bool IsStore = MI->mayStore();
1264
1265 unsigned Opc = MI->getOpcode();
1266 int LoadStoreOp = IsStore ?
1268 if (LoadStoreOp == -1)
1269 return false;
1270
1271 const MachineOperand *Reg = TII->getNamedOperand(*MI, AMDGPU::OpName::vdata);
1272 if (spillVGPRtoAGPR(ST, *MBB, MI, Index, 0, Reg->getReg(), false).getInstr())
1273 return true;
1274
1275 MachineInstrBuilder NewMI =
1276 BuildMI(*MBB, MI, DL, TII->get(LoadStoreOp))
1277 .add(*Reg)
1278 .add(*TII->getNamedOperand(*MI, AMDGPU::OpName::srsrc))
1279 .add(*TII->getNamedOperand(*MI, AMDGPU::OpName::soffset))
1280 .addImm(Offset)
1281 .addImm(0) // cpol
1282 .addImm(0) // swz
1283 .cloneMemRefs(*MI);
1284
1285 const MachineOperand *VDataIn = TII->getNamedOperand(*MI,
1286 AMDGPU::OpName::vdata_in);
1287 if (VDataIn)
1288 NewMI.add(*VDataIn);
1289 return true;
1290}
1291
1293 unsigned LoadStoreOp,
1294 unsigned EltSize) {
1295 bool IsStore = TII->get(LoadStoreOp).mayStore();
1296 bool HasVAddr = AMDGPU::hasNamedOperand(LoadStoreOp, AMDGPU::OpName::vaddr);
1297 bool UseST =
1298 !HasVAddr && !AMDGPU::hasNamedOperand(LoadStoreOp, AMDGPU::OpName::saddr);
1299
1300 switch (EltSize) {
1301 case 4:
1302 LoadStoreOp = IsStore ? AMDGPU::SCRATCH_STORE_DWORD_SADDR
1303 : AMDGPU::SCRATCH_LOAD_DWORD_SADDR;
1304 break;
1305 case 8:
1306 LoadStoreOp = IsStore ? AMDGPU::SCRATCH_STORE_DWORDX2_SADDR
1307 : AMDGPU::SCRATCH_LOAD_DWORDX2_SADDR;
1308 break;
1309 case 12:
1310 LoadStoreOp = IsStore ? AMDGPU::SCRATCH_STORE_DWORDX3_SADDR
1311 : AMDGPU::SCRATCH_LOAD_DWORDX3_SADDR;
1312 break;
1313 case 16:
1314 LoadStoreOp = IsStore ? AMDGPU::SCRATCH_STORE_DWORDX4_SADDR
1315 : AMDGPU::SCRATCH_LOAD_DWORDX4_SADDR;
1316 break;
1317 default:
1318 llvm_unreachable("Unexpected spill load/store size!");
1319 }
1320
1321 if (HasVAddr)
1322 LoadStoreOp = AMDGPU::getFlatScratchInstSVfromSS(LoadStoreOp);
1323 else if (UseST)
1324 LoadStoreOp = AMDGPU::getFlatScratchInstSTfromSS(LoadStoreOp);
1325
1326 return LoadStoreOp;
1327}
1328
1331 unsigned LoadStoreOp, int Index, Register ValueReg, bool IsKill,
1332 MCRegister ScratchOffsetReg, int64_t InstOffset, MachineMemOperand *MMO,
1333 RegScavenger *RS, LiveRegUnits *LiveUnits) const {
1334 assert((!RS || !LiveUnits) && "Only RS or LiveUnits can be set but not both");
1335
1337 const SIInstrInfo *TII = ST.getInstrInfo();
1338 const MachineFrameInfo &MFI = MF->getFrameInfo();
1339 const SIMachineFunctionInfo *FuncInfo = MF->getInfo<SIMachineFunctionInfo>();
1340
1341 const MCInstrDesc *Desc = &TII->get(LoadStoreOp);
1342 bool IsStore = Desc->mayStore();
1343 bool IsFlat = TII->isFLATScratch(LoadStoreOp);
1344
1345 bool CanClobberSCC = false;
1346 bool Scavenged = false;
1347 MCRegister SOffset = ScratchOffsetReg;
1348
1349 const TargetRegisterClass *RC = getRegClassForReg(MF->getRegInfo(), ValueReg);
1350 // On gfx90a+ AGPR is a regular VGPR acceptable for loads and stores.
1351 const bool IsAGPR = !ST.hasGFX90AInsts() && isAGPRClass(RC);
1352 const unsigned RegWidth = AMDGPU::getRegBitWidth(*RC) / 8;
1353
1354 // Always use 4 byte operations for AGPRs because we need to scavenge
1355 // a temporary VGPR.
1356 unsigned EltSize = (IsFlat && !IsAGPR) ? std::min(RegWidth, 16u) : 4u;
1357 unsigned NumSubRegs = RegWidth / EltSize;
1358 unsigned Size = NumSubRegs * EltSize;
1359 unsigned RemSize = RegWidth - Size;
1360 unsigned NumRemSubRegs = RemSize ? 1 : 0;
1361 int64_t Offset = InstOffset + MFI.getObjectOffset(Index);
1362 int64_t MaterializedOffset = Offset;
1363
1364 int64_t MaxOffset = Offset + Size + RemSize - EltSize;
1365 int64_t ScratchOffsetRegDelta = 0;
1366
1367 if (IsFlat && EltSize > 4) {
1368 LoadStoreOp = getFlatScratchSpillOpcode(TII, LoadStoreOp, EltSize);
1369 Desc = &TII->get(LoadStoreOp);
1370 }
1371
1372 Align Alignment = MFI.getObjectAlign(Index);
1373 const MachinePointerInfo &BasePtrInfo = MMO->getPointerInfo();
1374
1375 assert((IsFlat || ((Offset % EltSize) == 0)) &&
1376 "unexpected VGPR spill offset");
1377
1378 // Track a VGPR to use for a constant offset we need to materialize.
1379 Register TmpOffsetVGPR;
1380
1381 // Track a VGPR to use as an intermediate value.
1382 Register TmpIntermediateVGPR;
1383 bool UseVGPROffset = false;
1384
1385 // Materialize a VGPR offset required for the given SGPR/VGPR/Immediate
1386 // combination.
1387 auto MaterializeVOffset = [&](Register SGPRBase, Register TmpVGPR,
1388 int64_t VOffset) {
1389 // We are using a VGPR offset
1390 if (IsFlat && SGPRBase) {
1391 // We only have 1 VGPR offset, or 1 SGPR offset. We don't have a free
1392 // SGPR, so perform the add as vector.
1393 // We don't need a base SGPR in the kernel.
1394
1395 if (ST.getConstantBusLimit(AMDGPU::V_ADD_U32_e64) >= 2) {
1396 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_ADD_U32_e64), TmpVGPR)
1397 .addReg(SGPRBase)
1398 .addImm(VOffset)
1399 .addImm(0); // clamp
1400 } else {
1401 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), TmpVGPR)
1402 .addReg(SGPRBase);
1403 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_ADD_U32_e32), TmpVGPR)
1404 .addImm(VOffset)
1405 .addReg(TmpOffsetVGPR);
1406 }
1407 } else {
1408 assert(TmpOffsetVGPR);
1409 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), TmpVGPR)
1410 .addImm(VOffset);
1411 }
1412 };
1413
1414 bool IsOffsetLegal =
1415 IsFlat ? TII->isLegalFLATOffset(MaxOffset, AMDGPUAS::PRIVATE_ADDRESS,
1417 : TII->isLegalMUBUFImmOffset(MaxOffset);
1418 if (!IsOffsetLegal || (IsFlat && !SOffset && !ST.hasFlatScratchSTMode())) {
1419 SOffset = MCRegister();
1420
1421 // We don't have access to the register scavenger if this function is called
1422 // during PEI::scavengeFrameVirtualRegs() so use LiveUnits in this case.
1423 // TODO: Clobbering SCC is not necessary for scratch instructions in the
1424 // entry.
1425 if (RS) {
1426 SOffset = RS->scavengeRegisterBackwards(AMDGPU::SGPR_32RegClass, MI, false, 0, false);
1427
1428 // Piggy back on the liveness scan we just did see if SCC is dead.
1429 CanClobberSCC = !RS->isRegUsed(AMDGPU::SCC);
1430 } else if (LiveUnits) {
1431 CanClobberSCC = LiveUnits->available(AMDGPU::SCC);
1432 for (MCRegister Reg : AMDGPU::SGPR_32RegClass) {
1433 if (LiveUnits->available(Reg) && !MF->getRegInfo().isReserved(Reg)) {
1434 SOffset = Reg;
1435 break;
1436 }
1437 }
1438 }
1439
1440 if (ScratchOffsetReg != AMDGPU::NoRegister && !CanClobberSCC)
1441 SOffset = Register();
1442
1443 if (!SOffset) {
1444 UseVGPROffset = true;
1445
1446 if (RS) {
1447 TmpOffsetVGPR = RS->scavengeRegisterBackwards(AMDGPU::VGPR_32RegClass, MI, false, 0);
1448 } else {
1449 assert(LiveUnits);
1450 for (MCRegister Reg : AMDGPU::VGPR_32RegClass) {
1451 if (LiveUnits->available(Reg) && !MF->getRegInfo().isReserved(Reg)) {
1452 TmpOffsetVGPR = Reg;
1453 break;
1454 }
1455 }
1456 }
1457
1458 assert(TmpOffsetVGPR);
1459 } else if (!SOffset && CanClobberSCC) {
1460 // There are no free SGPRs, and since we are in the process of spilling
1461 // VGPRs too. Since we need a VGPR in order to spill SGPRs (this is true
1462 // on SI/CI and on VI it is true until we implement spilling using scalar
1463 // stores), we have no way to free up an SGPR. Our solution here is to
1464 // add the offset directly to the ScratchOffset or StackPtrOffset
1465 // register, and then subtract the offset after the spill to return the
1466 // register to it's original value.
1467
1468 // TODO: If we don't have to do an emergency stack slot spill, converting
1469 // to use the VGPR offset is fewer instructions.
1470 if (!ScratchOffsetReg)
1471 ScratchOffsetReg = FuncInfo->getStackPtrOffsetReg();
1472 SOffset = ScratchOffsetReg;
1473 ScratchOffsetRegDelta = Offset;
1474 } else {
1475 Scavenged = true;
1476 }
1477
1478 // We currently only support spilling VGPRs to EltSize boundaries, meaning
1479 // we can simplify the adjustment of Offset here to just scale with
1480 // WavefrontSize.
1481 if (!IsFlat && !UseVGPROffset)
1482 Offset *= ST.getWavefrontSize();
1483
1484 if (!UseVGPROffset && !SOffset)
1485 report_fatal_error("could not scavenge SGPR to spill in entry function");
1486
1487 if (UseVGPROffset) {
1488 // We are using a VGPR offset
1489 MaterializeVOffset(ScratchOffsetReg, TmpOffsetVGPR, Offset);
1490 } else if (ScratchOffsetReg == AMDGPU::NoRegister) {
1491 BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_MOV_B32), SOffset).addImm(Offset);
1492 } else {
1493 assert(Offset != 0);
1494 auto Add = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_ADD_I32), SOffset)
1495 .addReg(ScratchOffsetReg)
1496 .addImm(Offset);
1497 Add->getOperand(3).setIsDead(); // Mark SCC as dead.
1498 }
1499
1500 Offset = 0;
1501 }
1502
1503 if (IsFlat && SOffset == AMDGPU::NoRegister) {
1504 assert(AMDGPU::getNamedOperandIdx(LoadStoreOp, AMDGPU::OpName::vaddr) < 0
1505 && "Unexpected vaddr for flat scratch with a FI operand");
1506
1507 if (UseVGPROffset) {
1508 LoadStoreOp = AMDGPU::getFlatScratchInstSVfromSS(LoadStoreOp);
1509 } else {
1511 LoadStoreOp = AMDGPU::getFlatScratchInstSTfromSS(LoadStoreOp);
1512 }
1513
1514 Desc = &TII->get(LoadStoreOp);
1515 }
1516
1517 for (unsigned i = 0, e = NumSubRegs + NumRemSubRegs, RegOffset = 0; i != e;
1518 ++i, RegOffset += EltSize) {
1519 if (i == NumSubRegs) {
1520 EltSize = RemSize;
1521 LoadStoreOp = getFlatScratchSpillOpcode(TII, LoadStoreOp, EltSize);
1522 }
1523 Desc = &TII->get(LoadStoreOp);
1524
1525 if (!IsFlat && UseVGPROffset) {
1526 int NewLoadStoreOp = IsStore ? getOffenMUBUFStore(LoadStoreOp)
1527 : getOffenMUBUFLoad(LoadStoreOp);
1528 Desc = &TII->get(NewLoadStoreOp);
1529 }
1530
1531 if (UseVGPROffset && TmpOffsetVGPR == TmpIntermediateVGPR) {
1532 // If we are spilling an AGPR beyond the range of the memory instruction
1533 // offset and need to use a VGPR offset, we ideally have at least 2
1534 // scratch VGPRs. If we don't have a second free VGPR without spilling,
1535 // recycle the VGPR used for the offset which requires resetting after
1536 // each subregister.
1537
1538 MaterializeVOffset(ScratchOffsetReg, TmpOffsetVGPR, MaterializedOffset);
1539 }
1540
1541 unsigned NumRegs = EltSize / 4;
1542 Register SubReg = e == 1
1543 ? ValueReg
1544 : Register(getSubReg(ValueReg,
1545 getSubRegFromChannel(RegOffset / 4, NumRegs)));
1546
1547 unsigned SOffsetRegState = 0;
1548 unsigned SrcDstRegState = getDefRegState(!IsStore);
1549 const bool IsLastSubReg = i + 1 == e;
1550 const bool IsFirstSubReg = i == 0;
1551 if (IsLastSubReg) {
1552 SOffsetRegState |= getKillRegState(Scavenged);
1553 // The last implicit use carries the "Kill" flag.
1554 SrcDstRegState |= getKillRegState(IsKill);
1555 }
1556
1557 // Make sure the whole register is defined if there are undef components by
1558 // adding an implicit def of the super-reg on the first instruction.
1559 bool NeedSuperRegDef = e > 1 && IsStore && IsFirstSubReg;
1560 bool NeedSuperRegImpOperand = e > 1;
1561
1562 // Remaining element size to spill into memory after some parts of it
1563 // spilled into either AGPRs or VGPRs.
1564 unsigned RemEltSize = EltSize;
1565
1566 // AGPRs to spill VGPRs and vice versa are allocated in a reverse order,
1567 // starting from the last lane. In case if a register cannot be completely
1568 // spilled into another register that will ensure its alignment does not
1569 // change. For targets with VGPR alignment requirement this is important
1570 // in case of flat scratch usage as we might get a scratch_load or
1571 // scratch_store of an unaligned register otherwise.
1572 for (int LaneS = (RegOffset + EltSize) / 4 - 1, Lane = LaneS,
1573 LaneE = RegOffset / 4;
1574 Lane >= LaneE; --Lane) {
1575 bool IsSubReg = e > 1 || EltSize > 4;
1576 Register Sub = IsSubReg
1577 ? Register(getSubReg(ValueReg, getSubRegFromChannel(Lane)))
1578 : ValueReg;
1579 auto MIB = spillVGPRtoAGPR(ST, MBB, MI, Index, Lane, Sub, IsKill);
1580 if (!MIB.getInstr())
1581 break;
1582 if (NeedSuperRegDef || (IsSubReg && IsStore && Lane == LaneS && IsFirstSubReg)) {
1583 MIB.addReg(ValueReg, RegState::ImplicitDefine);
1584 NeedSuperRegDef = false;
1585 }
1586 if ((IsSubReg || NeedSuperRegImpOperand) && (IsFirstSubReg || IsLastSubReg)) {
1587 NeedSuperRegImpOperand = true;
1588 unsigned State = SrcDstRegState;
1589 if (!IsLastSubReg || (Lane != LaneE))
1590 State &= ~RegState::Kill;
1591 if (!IsFirstSubReg || (Lane != LaneS))
1592 State &= ~RegState::Define;
1593 MIB.addReg(ValueReg, RegState::Implicit | State);
1594 }
1595 RemEltSize -= 4;
1596 }
1597
1598 if (!RemEltSize) // Fully spilled into AGPRs.
1599 continue;
1600
1601 if (RemEltSize != EltSize) { // Partially spilled to AGPRs
1602 assert(IsFlat && EltSize > 4);
1603
1604 unsigned NumRegs = RemEltSize / 4;
1605 SubReg = Register(getSubReg(ValueReg,
1606 getSubRegFromChannel(RegOffset / 4, NumRegs)));
1607 unsigned Opc = getFlatScratchSpillOpcode(TII, LoadStoreOp, RemEltSize);
1608 Desc = &TII->get(Opc);
1609 }
1610
1611 unsigned FinalReg = SubReg;
1612
1613 if (IsAGPR) {
1614 assert(EltSize == 4);
1615
1616 if (!TmpIntermediateVGPR) {
1617 TmpIntermediateVGPR = FuncInfo->getVGPRForAGPRCopy();
1618 assert(MF->getRegInfo().isReserved(TmpIntermediateVGPR));
1619 }
1620 if (IsStore) {
1621 auto AccRead = BuildMI(MBB, MI, DL,
1622 TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64),
1623 TmpIntermediateVGPR)
1624 .addReg(SubReg, getKillRegState(IsKill));
1625 if (NeedSuperRegDef)
1626 AccRead.addReg(ValueReg, RegState::ImplicitDefine);
1628 }
1629 SubReg = TmpIntermediateVGPR;
1630 } else if (UseVGPROffset) {
1631 if (!TmpOffsetVGPR) {
1632 TmpOffsetVGPR = RS->scavengeRegisterBackwards(AMDGPU::VGPR_32RegClass,
1633 MI, false, 0);
1634 RS->setRegUsed(TmpOffsetVGPR);
1635 }
1636 }
1637
1638 MachinePointerInfo PInfo = BasePtrInfo.getWithOffset(RegOffset);
1639 MachineMemOperand *NewMMO =
1640 MF->getMachineMemOperand(PInfo, MMO->getFlags(), RemEltSize,
1641 commonAlignment(Alignment, RegOffset));
1642
1643 auto MIB =
1644 BuildMI(MBB, MI, DL, *Desc)
1645 .addReg(SubReg, getDefRegState(!IsStore) | getKillRegState(IsKill));
1646
1647 if (UseVGPROffset) {
1648 // For an AGPR spill, we reuse the same temp VGPR for the offset and the
1649 // intermediate accvgpr_write.
1650 MIB.addReg(TmpOffsetVGPR, getKillRegState(IsLastSubReg && !IsAGPR));
1651 }
1652
1653 if (!IsFlat)
1654 MIB.addReg(FuncInfo->getScratchRSrcReg());
1655
1656 if (SOffset == AMDGPU::NoRegister) {
1657 if (!IsFlat) {
1658 if (UseVGPROffset && ScratchOffsetReg) {
1659 MIB.addReg(ScratchOffsetReg);
1660 } else {
1661 assert(FuncInfo->isBottomOfStack());
1662 MIB.addImm(0);
1663 }
1664 }
1665 } else {
1666 MIB.addReg(SOffset, SOffsetRegState);
1667 }
1668
1669 MIB.addImm(Offset + RegOffset);
1670
1671 bool LastUse = MMO->getFlags() & MOLastUse;
1672 MIB.addImm(LastUse ? AMDGPU::CPol::TH_LU : 0); // cpol
1673
1674 if (!IsFlat)
1675 MIB.addImm(0); // swz
1676 MIB.addMemOperand(NewMMO);
1677
1678 if (!IsAGPR && NeedSuperRegDef)
1679 MIB.addReg(ValueReg, RegState::ImplicitDefine);
1680
1681 if (!IsStore && IsAGPR && TmpIntermediateVGPR != AMDGPU::NoRegister) {
1682 MIB = BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64),
1683 FinalReg)
1684 .addReg(TmpIntermediateVGPR, RegState::Kill);
1686 }
1687
1688 if (NeedSuperRegImpOperand && (IsFirstSubReg || IsLastSubReg))
1689 MIB.addReg(ValueReg, RegState::Implicit | SrcDstRegState);
1690
1691 // The epilog restore of a wwm-scratch register can cause undesired
1692 // optimization during machine-cp post PrologEpilogInserter if the same
1693 // register was assigned for return value ABI lowering with a COPY
1694 // instruction. As given below, with the epilog reload, the earlier COPY
1695 // appeared to be dead during machine-cp.
1696 // ...
1697 // v0 in WWM operation, needs the WWM spill at prolog/epilog.
1698 // $vgpr0 = V_WRITELANE_B32 $sgpr20, 0, $vgpr0
1699 // ...
1700 // Epilog block:
1701 // $vgpr0 = COPY $vgpr1 // outgoing value moved to v0
1702 // ...
1703 // WWM spill restore to preserve the inactive lanes of v0.
1704 // $sgpr4_sgpr5 = S_XOR_SAVEEXEC_B64 -1
1705 // $vgpr0 = BUFFER_LOAD $sgpr0_sgpr1_sgpr2_sgpr3, $sgpr32, 0, 0, 0
1706 // $exec = S_MOV_B64 killed $sgpr4_sgpr5
1707 // ...
1708 // SI_RETURN implicit $vgpr0
1709 // ...
1710 // To fix it, mark the same reg as a tied op for such restore instructions
1711 // so that it marks a usage for the preceding COPY.
1712 if (!IsStore && MI != MBB.end() && MI->isReturn() &&
1713 MI->readsRegister(SubReg, this)) {
1714 MIB.addReg(SubReg, RegState::Implicit);
1715 MIB->tieOperands(0, MIB->getNumOperands() - 1);
1716 }
1717 }
1718
1719 if (ScratchOffsetRegDelta != 0) {
1720 // Subtract the offset we added to the ScratchOffset register.
1721 BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_ADD_I32), SOffset)
1722 .addReg(SOffset)
1723 .addImm(-ScratchOffsetRegDelta);
1724 }
1725}
1726
1728 int Offset, bool IsLoad,
1729 bool IsKill) const {
1730 // Load/store VGPR
1731 MachineFrameInfo &FrameInfo = SB.MF.getFrameInfo();
1733
1734 Register FrameReg =
1735 FrameInfo.isFixedObjectIndex(Index) && hasBasePointer(SB.MF)
1736 ? getBaseRegister()
1737 : getFrameRegister(SB.MF);
1738
1739 Align Alignment = FrameInfo.getObjectAlign(Index);
1743 SB.EltSize, Alignment);
1744
1745 if (IsLoad) {
1746 unsigned Opc = ST.enableFlatScratch() ? AMDGPU::SCRATCH_LOAD_DWORD_SADDR
1747 : AMDGPU::BUFFER_LOAD_DWORD_OFFSET;
1748 buildSpillLoadStore(*SB.MBB, SB.MI, SB.DL, Opc, Index, SB.TmpVGPR, false,
1749 FrameReg, (int64_t)Offset * SB.EltSize, MMO, SB.RS);
1750 } else {
1751 unsigned Opc = ST.enableFlatScratch() ? AMDGPU::SCRATCH_STORE_DWORD_SADDR
1752 : AMDGPU::BUFFER_STORE_DWORD_OFFSET;
1753 buildSpillLoadStore(*SB.MBB, SB.MI, SB.DL, Opc, Index, SB.TmpVGPR, IsKill,
1754 FrameReg, (int64_t)Offset * SB.EltSize, MMO, SB.RS);
1755 // This only ever adds one VGPR spill
1756 SB.MFI.addToSpilledVGPRs(1);
1757 }
1758}
1759
1761 RegScavenger *RS, SlotIndexes *Indexes,
1762 LiveIntervals *LIS, bool OnlyToVGPR,
1763 bool SpillToPhysVGPRLane) const {
1764 SGPRSpillBuilder SB(*this, *ST.getInstrInfo(), isWave32, MI, Index, RS);
1765
1766 ArrayRef<SpilledReg> VGPRSpills =
1767 SpillToPhysVGPRLane ? SB.MFI.getSGPRSpillToPhysicalVGPRLanes(Index)
1769 bool SpillToVGPR = !VGPRSpills.empty();
1770 if (OnlyToVGPR && !SpillToVGPR)
1771 return false;
1772
1773 assert(SpillToVGPR || (SB.SuperReg != SB.MFI.getStackPtrOffsetReg() &&
1774 SB.SuperReg != SB.MFI.getFrameOffsetReg()));
1775
1776 if (SpillToVGPR) {
1777
1778 assert(SB.NumSubRegs == VGPRSpills.size() &&
1779 "Num of VGPR lanes should be equal to num of SGPRs spilled");
1780
1781 for (unsigned i = 0, e = SB.NumSubRegs; i < e; ++i) {
1783 SB.NumSubRegs == 1
1784 ? SB.SuperReg
1785 : Register(getSubReg(SB.SuperReg, SB.SplitParts[i]));
1786 SpilledReg Spill = VGPRSpills[i];
1787
1788 bool IsFirstSubreg = i == 0;
1789 bool IsLastSubreg = i == SB.NumSubRegs - 1;
1790 bool UseKill = SB.IsKill && IsLastSubreg;
1791
1792
1793 // Mark the "old value of vgpr" input undef only if this is the first sgpr
1794 // spill to this specific vgpr in the first basic block.
1795 auto MIB = BuildMI(*SB.MBB, MI, SB.DL,
1796 SB.TII.get(AMDGPU::SI_SPILL_S32_TO_VGPR), Spill.VGPR)
1797 .addReg(SubReg, getKillRegState(UseKill))
1798 .addImm(Spill.Lane)
1799 .addReg(Spill.VGPR);
1800 if (Indexes) {
1801 if (IsFirstSubreg)
1802 Indexes->replaceMachineInstrInMaps(*MI, *MIB);
1803 else
1804 Indexes->insertMachineInstrInMaps(*MIB);
1805 }
1806
1807 if (IsFirstSubreg && SB.NumSubRegs > 1) {
1808 // We may be spilling a super-register which is only partially defined,
1809 // and need to ensure later spills think the value is defined.
1810 MIB.addReg(SB.SuperReg, RegState::ImplicitDefine);
1811 }
1812
1813 if (SB.NumSubRegs > 1 && (IsFirstSubreg || IsLastSubreg))
1814 MIB.addReg(SB.SuperReg, getKillRegState(UseKill) | RegState::Implicit);
1815
1816 // FIXME: Since this spills to another register instead of an actual
1817 // frame index, we should delete the frame index when all references to
1818 // it are fixed.
1819 }
1820 } else {
1821 SB.prepare();
1822
1823 // SubReg carries the "Kill" flag when SubReg == SB.SuperReg.
1824 unsigned SubKillState = getKillRegState((SB.NumSubRegs == 1) && SB.IsKill);
1825
1826 // Per VGPR helper data
1827 auto PVD = SB.getPerVGPRData();
1828
1829 for (unsigned Offset = 0; Offset < PVD.NumVGPRs; ++Offset) {
1830 unsigned TmpVGPRFlags = RegState::Undef;
1831
1832 // Write sub registers into the VGPR
1833 for (unsigned i = Offset * PVD.PerVGPR,
1834 e = std::min((Offset + 1) * PVD.PerVGPR, SB.NumSubRegs);
1835 i < e; ++i) {
1837 SB.NumSubRegs == 1
1838 ? SB.SuperReg
1839 : Register(getSubReg(SB.SuperReg, SB.SplitParts[i]));
1840
1841 MachineInstrBuilder WriteLane =
1842 BuildMI(*SB.MBB, MI, SB.DL,
1843 SB.TII.get(AMDGPU::SI_SPILL_S32_TO_VGPR), SB.TmpVGPR)
1844 .addReg(SubReg, SubKillState)
1845 .addImm(i % PVD.PerVGPR)
1846 .addReg(SB.TmpVGPR, TmpVGPRFlags);
1847 TmpVGPRFlags = 0;
1848
1849 if (Indexes) {
1850 if (i == 0)
1851 Indexes->replaceMachineInstrInMaps(*MI, *WriteLane);
1852 else
1853 Indexes->insertMachineInstrInMaps(*WriteLane);
1854 }
1855
1856 // There could be undef components of a spilled super register.
1857 // TODO: Can we detect this and skip the spill?
1858 if (SB.NumSubRegs > 1) {
1859 // The last implicit use of the SB.SuperReg carries the "Kill" flag.
1860 unsigned SuperKillState = 0;
1861 if (i + 1 == SB.NumSubRegs)
1862 SuperKillState |= getKillRegState(SB.IsKill);
1863 WriteLane.addReg(SB.SuperReg, RegState::Implicit | SuperKillState);
1864 }
1865 }
1866
1867 // Write out VGPR
1868 SB.readWriteTmpVGPR(Offset, /*IsLoad*/ false);
1869 }
1870
1871 SB.restore();
1872 }
1873
1874 MI->eraseFromParent();
1876
1877 if (LIS)
1879
1880 return true;
1881}
1882
1884 RegScavenger *RS, SlotIndexes *Indexes,
1885 LiveIntervals *LIS, bool OnlyToVGPR,
1886 bool SpillToPhysVGPRLane) const {
1887 SGPRSpillBuilder SB(*this, *ST.getInstrInfo(), isWave32, MI, Index, RS);
1888
1889 ArrayRef<SpilledReg> VGPRSpills =
1890 SpillToPhysVGPRLane ? SB.MFI.getSGPRSpillToPhysicalVGPRLanes(Index)
1892 bool SpillToVGPR = !VGPRSpills.empty();
1893 if (OnlyToVGPR && !SpillToVGPR)
1894 return false;
1895
1896 if (SpillToVGPR) {
1897 for (unsigned i = 0, e = SB.NumSubRegs; i < e; ++i) {
1899 SB.NumSubRegs == 1
1900 ? SB.SuperReg
1901 : Register(getSubReg(SB.SuperReg, SB.SplitParts[i]));
1902
1903 SpilledReg Spill = VGPRSpills[i];
1904 auto MIB = BuildMI(*SB.MBB, MI, SB.DL,
1905 SB.TII.get(AMDGPU::SI_RESTORE_S32_FROM_VGPR), SubReg)
1906 .addReg(Spill.VGPR)
1907 .addImm(Spill.Lane);
1908 if (SB.NumSubRegs > 1 && i == 0)
1910 if (Indexes) {
1911 if (i == e - 1)
1912 Indexes->replaceMachineInstrInMaps(*MI, *MIB);
1913 else
1914 Indexes->insertMachineInstrInMaps(*MIB);
1915 }
1916 }
1917 } else {
1918 SB.prepare();
1919
1920 // Per VGPR helper data
1921 auto PVD = SB.getPerVGPRData();
1922
1923 for (unsigned Offset = 0; Offset < PVD.NumVGPRs; ++Offset) {
1924 // Load in VGPR data
1925 SB.readWriteTmpVGPR(Offset, /*IsLoad*/ true);
1926
1927 // Unpack lanes
1928 for (unsigned i = Offset * PVD.PerVGPR,
1929 e = std::min((Offset + 1) * PVD.PerVGPR, SB.NumSubRegs);
1930 i < e; ++i) {
1932 SB.NumSubRegs == 1
1933 ? SB.SuperReg
1934 : Register(getSubReg(SB.SuperReg, SB.SplitParts[i]));
1935
1936 bool LastSubReg = (i + 1 == e);
1937 auto MIB = BuildMI(*SB.MBB, MI, SB.DL,
1938 SB.TII.get(AMDGPU::SI_RESTORE_S32_FROM_VGPR), SubReg)
1939 .addReg(SB.TmpVGPR, getKillRegState(LastSubReg))
1940 .addImm(i);
1941 if (SB.NumSubRegs > 1 && i == 0)
1943 if (Indexes) {
1944 if (i == e - 1)
1945 Indexes->replaceMachineInstrInMaps(*MI, *MIB);
1946 else
1947 Indexes->insertMachineInstrInMaps(*MIB);
1948 }
1949 }
1950 }
1951
1952 SB.restore();
1953 }
1954
1955 MI->eraseFromParent();
1956
1957 if (LIS)
1959
1960 return true;
1961}
1962
1964 MachineBasicBlock &RestoreMBB,
1965 Register SGPR, RegScavenger *RS) const {
1966 SGPRSpillBuilder SB(*this, *ST.getInstrInfo(), isWave32, MI, SGPR, false, 0,
1967 RS);
1968 SB.prepare();
1969 // Generate the spill of SGPR to SB.TmpVGPR.
1970 unsigned SubKillState = getKillRegState((SB.NumSubRegs == 1) && SB.IsKill);
1971 auto PVD = SB.getPerVGPRData();
1972 for (unsigned Offset = 0; Offset < PVD.NumVGPRs; ++Offset) {
1973 unsigned TmpVGPRFlags = RegState::Undef;
1974 // Write sub registers into the VGPR
1975 for (unsigned i = Offset * PVD.PerVGPR,
1976 e = std::min((Offset + 1) * PVD.PerVGPR, SB.NumSubRegs);
1977 i < e; ++i) {
1979 SB.NumSubRegs == 1
1980 ? SB.SuperReg
1981 : Register(getSubReg(SB.SuperReg, SB.SplitParts[i]));
1982
1983 MachineInstrBuilder WriteLane =
1984 BuildMI(*SB.MBB, MI, SB.DL, SB.TII.get(AMDGPU::V_WRITELANE_B32),
1985 SB.TmpVGPR)
1986 .addReg(SubReg, SubKillState)
1987 .addImm(i % PVD.PerVGPR)
1988 .addReg(SB.TmpVGPR, TmpVGPRFlags);
1989 TmpVGPRFlags = 0;
1990 // There could be undef components of a spilled super register.
1991 // TODO: Can we detect this and skip the spill?
1992 if (SB.NumSubRegs > 1) {
1993 // The last implicit use of the SB.SuperReg carries the "Kill" flag.
1994 unsigned SuperKillState = 0;
1995 if (i + 1 == SB.NumSubRegs)
1996 SuperKillState |= getKillRegState(SB.IsKill);
1997 WriteLane.addReg(SB.SuperReg, RegState::Implicit | SuperKillState);
1998 }
1999 }
2000 // Don't need to write VGPR out.
2001 }
2002
2003 // Restore clobbered registers in the specified restore block.
2004 MI = RestoreMBB.end();
2005 SB.setMI(&RestoreMBB, MI);
2006 // Generate the restore of SGPR from SB.TmpVGPR.
2007 for (unsigned Offset = 0; Offset < PVD.NumVGPRs; ++Offset) {
2008 // Don't need to load VGPR in.
2009 // Unpack lanes
2010 for (unsigned i = Offset * PVD.PerVGPR,
2011 e = std::min((Offset + 1) * PVD.PerVGPR, SB.NumSubRegs);
2012 i < e; ++i) {
2014 SB.NumSubRegs == 1
2015 ? SB.SuperReg
2016 : Register(getSubReg(SB.SuperReg, SB.SplitParts[i]));
2017 bool LastSubReg = (i + 1 == e);
2018 auto MIB = BuildMI(*SB.MBB, MI, SB.DL, SB.TII.get(AMDGPU::V_READLANE_B32),
2019 SubReg)
2020 .addReg(SB.TmpVGPR, getKillRegState(LastSubReg))
2021 .addImm(i);
2022 if (SB.NumSubRegs > 1 && i == 0)
2024 }
2025 }
2026 SB.restore();
2027
2029 return false;
2030}
2031
2032/// Special case of eliminateFrameIndex. Returns true if the SGPR was spilled to
2033/// a VGPR and the stack slot can be safely eliminated when all other users are
2034/// handled.
2037 SlotIndexes *Indexes, LiveIntervals *LIS, bool SpillToPhysVGPRLane) const {
2038 switch (MI->getOpcode()) {
2039 case AMDGPU::SI_SPILL_S1024_SAVE:
2040 case AMDGPU::SI_SPILL_S512_SAVE:
2041 case AMDGPU::SI_SPILL_S384_SAVE:
2042 case AMDGPU::SI_SPILL_S352_SAVE:
2043 case AMDGPU::SI_SPILL_S320_SAVE:
2044 case AMDGPU::SI_SPILL_S288_SAVE:
2045 case AMDGPU::SI_SPILL_S256_SAVE:
2046 case AMDGPU::SI_SPILL_S224_SAVE:
2047 case AMDGPU::SI_SPILL_S192_SAVE:
2048 case AMDGPU::SI_SPILL_S160_SAVE:
2049 case AMDGPU::SI_SPILL_S128_SAVE:
2050 case AMDGPU::SI_SPILL_S96_SAVE:
2051 case AMDGPU::SI_SPILL_S64_SAVE:
2052 case AMDGPU::SI_SPILL_S32_SAVE:
2053 return spillSGPR(MI, FI, RS, Indexes, LIS, true, SpillToPhysVGPRLane);
2054 case AMDGPU::SI_SPILL_S1024_RESTORE:
2055 case AMDGPU::SI_SPILL_S512_RESTORE:
2056 case AMDGPU::SI_SPILL_S384_RESTORE:
2057 case AMDGPU::SI_SPILL_S352_RESTORE:
2058 case AMDGPU::SI_SPILL_S320_RESTORE:
2059 case AMDGPU::SI_SPILL_S288_RESTORE:
2060 case AMDGPU::SI_SPILL_S256_RESTORE:
2061 case AMDGPU::SI_SPILL_S224_RESTORE:
2062 case AMDGPU::SI_SPILL_S192_RESTORE:
2063 case AMDGPU::SI_SPILL_S160_RESTORE:
2064 case AMDGPU::SI_SPILL_S128_RESTORE:
2065 case AMDGPU::SI_SPILL_S96_RESTORE:
2066 case AMDGPU::SI_SPILL_S64_RESTORE:
2067 case AMDGPU::SI_SPILL_S32_RESTORE:
2068 return restoreSGPR(MI, FI, RS, Indexes, LIS, true, SpillToPhysVGPRLane);
2069 default:
2070 llvm_unreachable("not an SGPR spill instruction");
2071 }
2072}
2073
2075 int SPAdj, unsigned FIOperandNum,
2076 RegScavenger *RS) const {
2077 MachineFunction *MF = MI->getParent()->getParent();
2078 MachineBasicBlock *MBB = MI->getParent();
2080 MachineFrameInfo &FrameInfo = MF->getFrameInfo();
2081 const SIInstrInfo *TII = ST.getInstrInfo();
2082 DebugLoc DL = MI->getDebugLoc();
2083
2084 assert(SPAdj == 0 && "unhandled SP adjustment in call sequence?");
2085
2087 "unreserved scratch RSRC register");
2088
2089 MachineOperand &FIOp = MI->getOperand(FIOperandNum);
2090 int Index = MI->getOperand(FIOperandNum).getIndex();
2091
2092 Register FrameReg = FrameInfo.isFixedObjectIndex(Index) && hasBasePointer(*MF)
2093 ? getBaseRegister()
2094 : getFrameRegister(*MF);
2095
2096 switch (MI->getOpcode()) {
2097 // SGPR register spill
2098 case AMDGPU::SI_SPILL_S1024_SAVE:
2099 case AMDGPU::SI_SPILL_S512_SAVE:
2100 case AMDGPU::SI_SPILL_S384_SAVE:
2101 case AMDGPU::SI_SPILL_S352_SAVE:
2102 case AMDGPU::SI_SPILL_S320_SAVE:
2103 case AMDGPU::SI_SPILL_S288_SAVE:
2104 case AMDGPU::SI_SPILL_S256_SAVE:
2105 case AMDGPU::SI_SPILL_S224_SAVE:
2106 case AMDGPU::SI_SPILL_S192_SAVE:
2107 case AMDGPU::SI_SPILL_S160_SAVE:
2108 case AMDGPU::SI_SPILL_S128_SAVE:
2109 case AMDGPU::SI_SPILL_S96_SAVE:
2110 case AMDGPU::SI_SPILL_S64_SAVE:
2111 case AMDGPU::SI_SPILL_S32_SAVE: {
2112 return spillSGPR(MI, Index, RS);
2113 }
2114
2115 // SGPR register restore
2116 case AMDGPU::SI_SPILL_S1024_RESTORE:
2117 case AMDGPU::SI_SPILL_S512_RESTORE:
2118 case AMDGPU::SI_SPILL_S384_RESTORE:
2119 case AMDGPU::SI_SPILL_S352_RESTORE:
2120 case AMDGPU::SI_SPILL_S320_RESTORE:
2121 case AMDGPU::SI_SPILL_S288_RESTORE:
2122 case AMDGPU::SI_SPILL_S256_RESTORE:
2123 case AMDGPU::SI_SPILL_S224_RESTORE:
2124 case AMDGPU::SI_SPILL_S192_RESTORE:
2125 case AMDGPU::SI_SPILL_S160_RESTORE:
2126 case AMDGPU::SI_SPILL_S128_RESTORE:
2127 case AMDGPU::SI_SPILL_S96_RESTORE:
2128 case AMDGPU::SI_SPILL_S64_RESTORE:
2129 case AMDGPU::SI_SPILL_S32_RESTORE: {
2130 return restoreSGPR(MI, Index, RS);
2131 }
2132
2133 // VGPR register spill
2134 case AMDGPU::SI_SPILL_V1024_SAVE:
2135 case AMDGPU::SI_SPILL_V512_SAVE:
2136 case AMDGPU::SI_SPILL_V384_SAVE:
2137 case AMDGPU::SI_SPILL_V352_SAVE:
2138 case AMDGPU::SI_SPILL_V320_SAVE:
2139 case AMDGPU::SI_SPILL_V288_SAVE:
2140 case AMDGPU::SI_SPILL_V256_SAVE:
2141 case AMDGPU::SI_SPILL_V224_SAVE:
2142 case AMDGPU::SI_SPILL_V192_SAVE:
2143 case AMDGPU::SI_SPILL_V160_SAVE:
2144 case AMDGPU::SI_SPILL_V128_SAVE:
2145 case AMDGPU::SI_SPILL_V96_SAVE:
2146 case AMDGPU::SI_SPILL_V64_SAVE:
2147 case AMDGPU::SI_SPILL_V32_SAVE:
2148 case AMDGPU::SI_SPILL_A1024_SAVE:
2149 case AMDGPU::SI_SPILL_A512_SAVE:
2150 case AMDGPU::SI_SPILL_A384_SAVE:
2151 case AMDGPU::SI_SPILL_A352_SAVE:
2152 case AMDGPU::SI_SPILL_A320_SAVE:
2153 case AMDGPU::SI_SPILL_A288_SAVE:
2154 case AMDGPU::SI_SPILL_A256_SAVE:
2155 case AMDGPU::SI_SPILL_A224_SAVE:
2156 case AMDGPU::SI_SPILL_A192_SAVE:
2157 case AMDGPU::SI_SPILL_A160_SAVE:
2158 case AMDGPU::SI_SPILL_A128_SAVE:
2159 case AMDGPU::SI_SPILL_A96_SAVE:
2160 case AMDGPU::SI_SPILL_A64_SAVE:
2161 case AMDGPU::SI_SPILL_A32_SAVE:
2162 case AMDGPU::SI_SPILL_AV1024_SAVE:
2163 case AMDGPU::SI_SPILL_AV512_SAVE:
2164 case AMDGPU::SI_SPILL_AV384_SAVE:
2165 case AMDGPU::SI_SPILL_AV352_SAVE:
2166 case AMDGPU::SI_SPILL_AV320_SAVE:
2167 case AMDGPU::SI_SPILL_AV288_SAVE:
2168 case AMDGPU::SI_SPILL_AV256_SAVE:
2169 case AMDGPU::SI_SPILL_AV224_SAVE:
2170 case AMDGPU::SI_SPILL_AV192_SAVE:
2171 case AMDGPU::SI_SPILL_AV160_SAVE:
2172 case AMDGPU::SI_SPILL_AV128_SAVE:
2173 case AMDGPU::SI_SPILL_AV96_SAVE:
2174 case AMDGPU::SI_SPILL_AV64_SAVE:
2175 case AMDGPU::SI_SPILL_AV32_SAVE:
2176 case AMDGPU::SI_SPILL_WWM_V32_SAVE:
2177 case AMDGPU::SI_SPILL_WWM_AV32_SAVE: {
2178 const MachineOperand *VData = TII->getNamedOperand(*MI,
2179 AMDGPU::OpName::vdata);
2180 assert(TII->getNamedOperand(*MI, AMDGPU::OpName::soffset)->getReg() ==
2181 MFI->getStackPtrOffsetReg());
2182
2183 unsigned Opc = ST.enableFlatScratch() ? AMDGPU::SCRATCH_STORE_DWORD_SADDR
2184 : AMDGPU::BUFFER_STORE_DWORD_OFFSET;
2185 auto *MBB = MI->getParent();
2186 bool IsWWMRegSpill = TII->isWWMRegSpillOpcode(MI->getOpcode());
2187 if (IsWWMRegSpill) {
2188 TII->insertScratchExecCopy(*MF, *MBB, MI, DL, MFI->getSGPRForEXECCopy(),
2189 RS->isRegUsed(AMDGPU::SCC));
2190 }
2192 *MBB, MI, DL, Opc, Index, VData->getReg(), VData->isKill(), FrameReg,
2193 TII->getNamedOperand(*MI, AMDGPU::OpName::offset)->getImm(),
2194 *MI->memoperands_begin(), RS);
2195 MFI->addToSpilledVGPRs(getNumSubRegsForSpillOp(MI->getOpcode()));
2196 if (IsWWMRegSpill)
2197 TII->restoreExec(*MF, *MBB, MI, DL, MFI->getSGPRForEXECCopy());
2198
2199 MI->eraseFromParent();
2200 return true;
2201 }
2202 case AMDGPU::SI_SPILL_V32_RESTORE:
2203 case AMDGPU::SI_SPILL_V64_RESTORE:
2204 case AMDGPU::SI_SPILL_V96_RESTORE:
2205 case AMDGPU::SI_SPILL_V128_RESTORE:
2206 case AMDGPU::SI_SPILL_V160_RESTORE:
2207 case AMDGPU::SI_SPILL_V192_RESTORE:
2208 case AMDGPU::SI_SPILL_V224_RESTORE:
2209 case AMDGPU::SI_SPILL_V256_RESTORE:
2210 case AMDGPU::SI_SPILL_V288_RESTORE:
2211 case AMDGPU::SI_SPILL_V320_RESTORE:
2212 case AMDGPU::SI_SPILL_V352_RESTORE:
2213 case AMDGPU::SI_SPILL_V384_RESTORE:
2214 case AMDGPU::SI_SPILL_V512_RESTORE:
2215 case AMDGPU::SI_SPILL_V1024_RESTORE:
2216 case AMDGPU::SI_SPILL_A32_RESTORE:
2217 case AMDGPU::SI_SPILL_A64_RESTORE:
2218 case AMDGPU::SI_SPILL_A96_RESTORE:
2219 case AMDGPU::SI_SPILL_A128_RESTORE:
2220 case AMDGPU::SI_SPILL_A160_RESTORE:
2221 case AMDGPU::SI_SPILL_A192_RESTORE:
2222 case AMDGPU::SI_SPILL_A224_RESTORE:
2223 case AMDGPU::SI_SPILL_A256_RESTORE:
2224 case AMDGPU::SI_SPILL_A288_RESTORE:
2225 case AMDGPU::SI_SPILL_A320_RESTORE:
2226 case AMDGPU::SI_SPILL_A352_RESTORE:
2227 case AMDGPU::SI_SPILL_A384_RESTORE:
2228 case AMDGPU::SI_SPILL_A512_RESTORE:
2229 case AMDGPU::SI_SPILL_A1024_RESTORE:
2230 case AMDGPU::SI_SPILL_AV32_RESTORE:
2231 case AMDGPU::SI_SPILL_AV64_RESTORE:
2232 case AMDGPU::SI_SPILL_AV96_RESTORE:
2233 case AMDGPU::SI_SPILL_AV128_RESTORE:
2234 case AMDGPU::SI_SPILL_AV160_RESTORE:
2235 case AMDGPU::SI_SPILL_AV192_RESTORE:
2236 case AMDGPU::SI_SPILL_AV224_RESTORE:
2237 case AMDGPU::SI_SPILL_AV256_RESTORE:
2238 case AMDGPU::SI_SPILL_AV288_RESTORE:
2239 case AMDGPU::SI_SPILL_AV320_RESTORE:
2240 case AMDGPU::SI_SPILL_AV352_RESTORE:
2241 case AMDGPU::SI_SPILL_AV384_RESTORE:
2242 case AMDGPU::SI_SPILL_AV512_RESTORE:
2243 case AMDGPU::SI_SPILL_AV1024_RESTORE:
2244 case AMDGPU::SI_SPILL_WWM_V32_RESTORE:
2245 case AMDGPU::SI_SPILL_WWM_AV32_RESTORE: {
2246 const MachineOperand *VData = TII->getNamedOperand(*MI,
2247 AMDGPU::OpName::vdata);
2248 assert(TII->getNamedOperand(*MI, AMDGPU::OpName::soffset)->getReg() ==
2249 MFI->getStackPtrOffsetReg());
2250
2251 unsigned Opc = ST.enableFlatScratch() ? AMDGPU::SCRATCH_LOAD_DWORD_SADDR
2252 : AMDGPU::BUFFER_LOAD_DWORD_OFFSET;
2253 auto *MBB = MI->getParent();
2254 bool IsWWMRegSpill = TII->isWWMRegSpillOpcode(MI->getOpcode());
2255 if (IsWWMRegSpill) {
2256 TII->insertScratchExecCopy(*MF, *MBB, MI, DL, MFI->getSGPRForEXECCopy(),
2257 RS->isRegUsed(AMDGPU::SCC));
2258 }
2259
2261 *MBB, MI, DL, Opc, Index, VData->getReg(), VData->isKill(), FrameReg,
2262 TII->getNamedOperand(*MI, AMDGPU::OpName::offset)->getImm(),
2263 *MI->memoperands_begin(), RS);
2264
2265 if (IsWWMRegSpill)
2266 TII->restoreExec(*MF, *MBB, MI, DL, MFI->getSGPRForEXECCopy());
2267
2268 MI->eraseFromParent();
2269 return true;
2270 }
2271
2272 default: {
2273 // Other access to frame index
2274 const DebugLoc &DL = MI->getDebugLoc();
2275
2276 int64_t Offset = FrameInfo.getObjectOffset(Index);
2277 if (ST.enableFlatScratch()) {
2278 if (TII->isFLATScratch(*MI)) {
2279 assert((int16_t)FIOperandNum ==
2280 AMDGPU::getNamedOperandIdx(MI->getOpcode(),
2281 AMDGPU::OpName::saddr));
2282
2283 // The offset is always swizzled, just replace it
2284 if (FrameReg)
2285 FIOp.ChangeToRegister(FrameReg, false);
2286
2287 MachineOperand *OffsetOp =
2288 TII->getNamedOperand(*MI, AMDGPU::OpName::offset);
2289 int64_t NewOffset = Offset + OffsetOp->getImm();
2290 if (TII->isLegalFLATOffset(NewOffset, AMDGPUAS::PRIVATE_ADDRESS,
2292 OffsetOp->setImm(NewOffset);
2293 if (FrameReg)
2294 return false;
2295 Offset = 0;
2296 }
2297
2298 if (!Offset) {
2299 unsigned Opc = MI->getOpcode();
2300 int NewOpc = -1;
2301 if (AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vaddr)) {
2303 } else if (ST.hasFlatScratchSTMode()) {
2304 // On GFX10 we have ST mode to use no registers for an address.
2305 // Otherwise we need to materialize 0 into an SGPR.
2307 }
2308
2309 if (NewOpc != -1) {
2310 // removeOperand doesn't fixup tied operand indexes as it goes, so
2311 // it asserts. Untie vdst_in for now and retie them afterwards.
2312 int VDstIn = AMDGPU::getNamedOperandIdx(Opc,
2313 AMDGPU::OpName::vdst_in);
2314 bool TiedVDst = VDstIn != -1 &&
2315 MI->getOperand(VDstIn).isReg() &&
2316 MI->getOperand(VDstIn).isTied();
2317 if (TiedVDst)
2318 MI->untieRegOperand(VDstIn);
2319
2320 MI->removeOperand(
2321 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr));
2322
2323 if (TiedVDst) {
2324 int NewVDst =
2325 AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vdst);
2326 int NewVDstIn =
2327 AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vdst_in);
2328 assert (NewVDst != -1 && NewVDstIn != -1 && "Must be tied!");
2329 MI->tieOperands(NewVDst, NewVDstIn);
2330 }
2331 MI->setDesc(TII->get(NewOpc));
2332 return false;
2333 }
2334 }
2335 }
2336
2337 if (!FrameReg) {
2339 if (TII->isImmOperandLegal(*MI, FIOperandNum, FIOp))
2340 return false;
2341 }
2342
2343 // We need to use register here. Check if we can use an SGPR or need
2344 // a VGPR.
2345 FIOp.ChangeToRegister(AMDGPU::M0, false);
2346 bool UseSGPR = TII->isOperandLegal(*MI, FIOperandNum, &FIOp);
2347
2348 if (!Offset && FrameReg && UseSGPR) {
2349 FIOp.setReg(FrameReg);
2350 return false;
2351 }
2352
2353 const TargetRegisterClass *RC = UseSGPR ? &AMDGPU::SReg_32_XM0RegClass
2354 : &AMDGPU::VGPR_32RegClass;
2355
2356 Register TmpReg =
2357 RS->scavengeRegisterBackwards(*RC, MI, false, 0, !UseSGPR);
2358 FIOp.setReg(TmpReg);
2359 FIOp.setIsKill();
2360
2361 if ((!FrameReg || !Offset) && TmpReg) {
2362 unsigned Opc = UseSGPR ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
2363 auto MIB = BuildMI(*MBB, MI, DL, TII->get(Opc), TmpReg);
2364 if (FrameReg)
2365 MIB.addReg(FrameReg);
2366 else
2367 MIB.addImm(Offset);
2368
2369 return false;
2370 }
2371
2372 bool NeedSaveSCC = RS->isRegUsed(AMDGPU::SCC) &&
2373 !MI->definesRegister(AMDGPU::SCC, /*TRI=*/nullptr);
2374
2375 Register TmpSReg =
2376 UseSGPR ? TmpReg
2377 : RS->scavengeRegisterBackwards(AMDGPU::SReg_32_XM0RegClass,
2378 MI, false, 0, !UseSGPR);
2379
2380 // TODO: for flat scratch another attempt can be made with a VGPR index
2381 // if no SGPRs can be scavenged.
2382 if ((!TmpSReg && !FrameReg) || (!TmpReg && !UseSGPR))
2383 report_fatal_error("Cannot scavenge register in FI elimination!");
2384
2385 if (!TmpSReg) {
2386 // Use frame register and restore it after.
2387 TmpSReg = FrameReg;
2388 FIOp.setReg(FrameReg);
2389 FIOp.setIsKill(false);
2390 }
2391
2392 if (NeedSaveSCC) {
2393 assert(!(Offset & 0x1) && "Flat scratch offset must be aligned!");
2394 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_ADDC_U32), TmpSReg)
2395 .addReg(FrameReg)
2396 .addImm(Offset);
2397 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_BITCMP1_B32))
2398 .addReg(TmpSReg)
2399 .addImm(0);
2400 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_BITSET0_B32), TmpSReg)
2401 .addImm(0)
2402 .addReg(TmpSReg);
2403 } else {
2404 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_ADD_I32), TmpSReg)
2405 .addReg(FrameReg)
2406 .addImm(Offset);
2407 }
2408
2409 if (!UseSGPR)
2410 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), TmpReg)
2411 .addReg(TmpSReg, RegState::Kill);
2412
2413 if (TmpSReg == FrameReg) {
2414 // Undo frame register modification.
2415 if (NeedSaveSCC &&
2416 !MI->registerDefIsDead(AMDGPU::SCC, /*TRI=*/nullptr)) {
2418 BuildMI(*MBB, std::next(MI), DL, TII->get(AMDGPU::S_ADDC_U32),
2419 TmpSReg)
2420 .addReg(FrameReg)
2421 .addImm(-Offset);
2422 I = BuildMI(*MBB, std::next(I), DL, TII->get(AMDGPU::S_BITCMP1_B32))
2423 .addReg(TmpSReg)
2424 .addImm(0);
2425 BuildMI(*MBB, std::next(I), DL, TII->get(AMDGPU::S_BITSET0_B32),
2426 TmpSReg)
2427 .addImm(0)
2428 .addReg(TmpSReg);
2429 } else {
2430 BuildMI(*MBB, std::next(MI), DL, TII->get(AMDGPU::S_ADD_I32),
2431 FrameReg)
2432 .addReg(FrameReg)
2433 .addImm(-Offset);
2434 }
2435 }
2436
2437 return false;
2438 }
2439
2440 bool IsMUBUF = TII->isMUBUF(*MI);
2441
2442 if (!IsMUBUF && !MFI->isBottomOfStack()) {
2443 // Convert to a swizzled stack address by scaling by the wave size.
2444 // In an entry function/kernel the offset is already swizzled.
2445 bool IsSALU = isSGPRClass(TII->getOpRegClass(*MI, FIOperandNum));
2446 bool LiveSCC = RS->isRegUsed(AMDGPU::SCC) &&
2447 !MI->definesRegister(AMDGPU::SCC, /*TRI=*/nullptr);
2448 const TargetRegisterClass *RC = IsSALU && !LiveSCC
2449 ? &AMDGPU::SReg_32RegClass
2450 : &AMDGPU::VGPR_32RegClass;
2451 bool IsCopy = MI->getOpcode() == AMDGPU::V_MOV_B32_e32 ||
2452 MI->getOpcode() == AMDGPU::V_MOV_B32_e64;
2453 Register ResultReg =
2454 IsCopy ? MI->getOperand(0).getReg()
2455 : RS->scavengeRegisterBackwards(*RC, MI, false, 0);
2456
2457 int64_t Offset = FrameInfo.getObjectOffset(Index);
2458 if (Offset == 0) {
2459 unsigned OpCode = IsSALU && !LiveSCC ? AMDGPU::S_LSHR_B32
2460 : AMDGPU::V_LSHRREV_B32_e64;
2461 auto Shift = BuildMI(*MBB, MI, DL, TII->get(OpCode), ResultReg);
2462 if (OpCode == AMDGPU::V_LSHRREV_B32_e64)
2463 // For V_LSHRREV, the operands are reversed (the shift count goes
2464 // first).
2465 Shift.addImm(ST.getWavefrontSizeLog2()).addReg(FrameReg);
2466 else
2467 Shift.addReg(FrameReg).addImm(ST.getWavefrontSizeLog2());
2468 if (IsSALU && !LiveSCC)
2469 Shift.getInstr()->getOperand(3).setIsDead(); // Mark SCC as dead.
2470 if (IsSALU && LiveSCC) {
2471 Register NewDest = RS->scavengeRegisterBackwards(
2472 AMDGPU::SReg_32RegClass, Shift, false, 0);
2473 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32),
2474 NewDest)
2475 .addReg(ResultReg);
2476 ResultReg = NewDest;
2477 }
2478 } else {
2480 if (!IsSALU) {
2481 if ((MIB = TII->getAddNoCarry(*MBB, MI, DL, ResultReg, *RS)) !=
2482 nullptr) {
2483 // Reuse ResultReg in intermediate step.
2484 Register ScaledReg = ResultReg;
2485
2486 BuildMI(*MBB, *MIB, DL, TII->get(AMDGPU::V_LSHRREV_B32_e64),
2487 ScaledReg)
2489 .addReg(FrameReg);
2490
2491 const bool IsVOP2 = MIB->getOpcode() == AMDGPU::V_ADD_U32_e32;
2492
2493 // TODO: Fold if use instruction is another add of a constant.
2495 // FIXME: This can fail
2496 MIB.addImm(Offset);
2497 MIB.addReg(ScaledReg, RegState::Kill);
2498 if (!IsVOP2)
2499 MIB.addImm(0); // clamp bit
2500 } else {
2501 assert(MIB->getOpcode() == AMDGPU::V_ADD_CO_U32_e64 &&
2502 "Need to reuse carry out register");
2503
2504 // Use scavenged unused carry out as offset register.
2505 Register ConstOffsetReg;
2506 if (!isWave32)
2507 ConstOffsetReg = getSubReg(MIB.getReg(1), AMDGPU::sub0);
2508 else
2509 ConstOffsetReg = MIB.getReg(1);
2510
2511 BuildMI(*MBB, *MIB, DL, TII->get(AMDGPU::S_MOV_B32), ConstOffsetReg)
2512 .addImm(Offset);
2513 MIB.addReg(ConstOffsetReg, RegState::Kill);
2514 MIB.addReg(ScaledReg, RegState::Kill);
2515 MIB.addImm(0); // clamp bit
2516 }
2517 }
2518 }
2519 if (!MIB || IsSALU) {
2520 // We have to produce a carry out, and there isn't a free SGPR pair
2521 // for it. We can keep the whole computation on the SALU to avoid
2522 // clobbering an additional register at the cost of an extra mov.
2523
2524 // We may have 1 free scratch SGPR even though a carry out is
2525 // unavailable. Only one additional mov is needed.
2526 Register TmpScaledReg = RS->scavengeRegisterBackwards(
2527 AMDGPU::SReg_32_XM0RegClass, MI, false, 0, false);
2528 Register ScaledReg = TmpScaledReg.isValid() ? TmpScaledReg : FrameReg;
2529
2530 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_LSHR_B32), ScaledReg)
2531 .addReg(FrameReg)
2533 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_ADD_I32), ScaledReg)
2534 .addReg(ScaledReg, RegState::Kill)
2535 .addImm(Offset);
2536 if (!IsSALU)
2537 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::COPY), ResultReg)
2538 .addReg(ScaledReg, RegState::Kill);
2539 else
2540 ResultReg = ScaledReg;
2541
2542 // If there were truly no free SGPRs, we need to undo everything.
2543 if (!TmpScaledReg.isValid()) {
2544 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_ADD_I32), ScaledReg)
2545 .addReg(ScaledReg, RegState::Kill)
2546 .addImm(-Offset);
2547 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::S_LSHL_B32), ScaledReg)
2548 .addReg(FrameReg)
2550 }
2551 }
2552 }
2553
2554 // Don't introduce an extra copy if we're just materializing in a mov.
2555 if (IsCopy) {
2556 MI->eraseFromParent();
2557 return true;
2558 }
2559 FIOp.ChangeToRegister(ResultReg, false, false, true);
2560 return false;
2561 }
2562
2563 if (IsMUBUF) {
2564 // Disable offen so we don't need a 0 vgpr base.
2565 assert(static_cast<int>(FIOperandNum) ==
2566 AMDGPU::getNamedOperandIdx(MI->getOpcode(),
2567 AMDGPU::OpName::vaddr));
2568
2569 auto &SOffset = *TII->getNamedOperand(*MI, AMDGPU::OpName::soffset);
2570 assert((SOffset.isImm() && SOffset.getImm() == 0));
2571
2572 if (FrameReg != AMDGPU::NoRegister)
2573 SOffset.ChangeToRegister(FrameReg, false);
2574
2575 int64_t Offset = FrameInfo.getObjectOffset(Index);
2576 int64_t OldImm
2577 = TII->getNamedOperand(*MI, AMDGPU::OpName::offset)->getImm();
2578 int64_t NewOffset = OldImm + Offset;
2579
2580 if (TII->isLegalMUBUFImmOffset(NewOffset) &&
2581 buildMUBUFOffsetLoadStore(ST, FrameInfo, MI, Index, NewOffset)) {
2582 MI->eraseFromParent();
2583 return true;
2584 }
2585 }
2586
2587 // If the offset is simply too big, don't convert to a scratch wave offset
2588 // relative index.
2589
2591 if (!TII->isImmOperandLegal(*MI, FIOperandNum, FIOp)) {
2592 Register TmpReg = RS->scavengeRegisterBackwards(AMDGPU::VGPR_32RegClass,
2593 MI, false, 0);
2594 BuildMI(*MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), TmpReg)
2595 .addImm(Offset);
2596 FIOp.ChangeToRegister(TmpReg, false, false, true);
2597 }
2598 }
2599 }
2600 return false;
2601}
2602
2605}
2606
2608 return getRegBitWidth(RC.getID());
2609}
2610
2611static const TargetRegisterClass *
2613 if (BitWidth == 64)
2614 return &AMDGPU::VReg_64RegClass;
2615 if (BitWidth == 96)
2616 return &AMDGPU::VReg_96RegClass;
2617 if (BitWidth == 128)
2618 return &AMDGPU::VReg_128RegClass;
2619 if (BitWidth == 160)
2620 return &AMDGPU::VReg_160RegClass;
2621 if (BitWidth == 192)
2622 return &AMDGPU::VReg_192RegClass;
2623 if (BitWidth == 224)
2624 return &AMDGPU::VReg_224RegClass;
2625 if (BitWidth == 256)
2626 return &AMDGPU::VReg_256RegClass;
2627 if (BitWidth == 288)
2628 return &AMDGPU::VReg_288RegClass;
2629 if (BitWidth == 320)
2630 return &AMDGPU::VReg_320RegClass;
2631 if (BitWidth == 352)
2632 return &AMDGPU::VReg_352RegClass;
2633 if (BitWidth == 384)
2634 return &AMDGPU::VReg_384RegClass;
2635 if (BitWidth == 512)
2636 return &AMDGPU::VReg_512RegClass;
2637 if (BitWidth == 1024)
2638 return &AMDGPU::VReg_1024RegClass;
2639
2640 return nullptr;
2641}
2642
2643static const TargetRegisterClass *
2645 if (BitWidth == 64)
2646 return &AMDGPU::VReg_64_Align2RegClass;
2647 if (BitWidth == 96)
2648 return &AMDGPU::VReg_96_Align2RegClass;
2649 if (BitWidth == 128)
2650 return &AMDGPU::VReg_128_Align2RegClass;
2651 if (BitWidth == 160)
2652 return &AMDGPU::VReg_160_Align2RegClass;
2653 if (BitWidth == 192)
2654 return &AMDGPU::VReg_192_Align2RegClass;
2655 if (BitWidth == 224)
2656 return &AMDGPU::VReg_224_Align2RegClass;
2657 if (BitWidth == 256)
2658 return &AMDGPU::VReg_256_Align2RegClass;
2659 if (BitWidth == 288)
2660 return &AMDGPU::VReg_288_Align2RegClass;
2661 if (BitWidth == 320)
2662 return &AMDGPU::VReg_320_Align2RegClass;
2663 if (BitWidth == 352)
2664 return &AMDGPU::VReg_352_Align2RegClass;
2665 if (BitWidth == 384)
2666 return &AMDGPU::VReg_384_Align2RegClass;
2667 if (BitWidth == 512)
2668 return &AMDGPU::VReg_512_Align2RegClass;
2669 if (BitWidth == 1024)
2670 return &AMDGPU::VReg_1024_Align2RegClass;
2671
2672 return nullptr;
2673}
2674
2675const TargetRegisterClass *
2677 if (BitWidth == 1)
2678 return &AMDGPU::VReg_1RegClass;
2679 if (BitWidth == 16)
2680 return &AMDGPU::VGPR_16RegClass;
2681 if (BitWidth == 32)
2682 return &AMDGPU::VGPR_32RegClass;
2685}
2686
2687static const TargetRegisterClass *
2689 if (BitWidth == 64)
2690 return &AMDGPU::AReg_64RegClass;
2691 if (BitWidth == 96)
2692 return &AMDGPU::AReg_96RegClass;
2693 if (BitWidth == 128)
2694 return &AMDGPU::AReg_128RegClass;
2695 if (BitWidth == 160)
2696 return &AMDGPU::AReg_160RegClass;
2697 if (BitWidth == 192)
2698 return &AMDGPU::AReg_192RegClass;
2699 if (BitWidth == 224)
2700 return &AMDGPU::AReg_224RegClass;
2701 if (BitWidth == 256)
2702 return &AMDGPU::AReg_256RegClass;
2703 if (BitWidth == 288)
2704 return &AMDGPU::AReg_288RegClass;
2705 if (BitWidth == 320)
2706 return &AMDGPU::AReg_320RegClass;
2707 if (BitWidth == 352)
2708 return &AMDGPU::AReg_352RegClass;
2709 if (BitWidth == 384)
2710 return &AMDGPU::AReg_384RegClass;
2711 if (BitWidth == 512)
2712 return &AMDGPU::AReg_512RegClass;
2713 if (BitWidth == 1024)
2714 return &AMDGPU::AReg_1024RegClass;
2715
2716 return nullptr;
2717}
2718
2719static const TargetRegisterClass *
2721 if (BitWidth == 64)
2722 return &AMDGPU::AReg_64_Align2RegClass;
2723 if (BitWidth == 96)
2724 return &AMDGPU::AReg_96_Align2RegClass;
2725 if (BitWidth == 128)
2726 return &AMDGPU::AReg_128_Align2RegClass;
2727 if (BitWidth == 160)
2728 return &AMDGPU::AReg_160_Align2RegClass;
2729 if (BitWidth == 192)
2730 return &AMDGPU::AReg_192_Align2RegClass;
2731 if (BitWidth == 224)
2732 return &AMDGPU::AReg_224_Align2RegClass;
2733 if (BitWidth == 256)
2734 return &AMDGPU::AReg_256_Align2RegClass;
2735 if (BitWidth == 288)
2736 return &AMDGPU::AReg_288_Align2RegClass;
2737 if (BitWidth == 320)
2738 return &AMDGPU::AReg_320_Align2RegClass;
2739 if (BitWidth == 352)
2740 return &AMDGPU::AReg_352_Align2RegClass;
2741 if (BitWidth == 384)
2742 return &AMDGPU::AReg_384_Align2RegClass;
2743 if (BitWidth == 512)
2744 return &AMDGPU::AReg_512_Align2RegClass;
2745 if (BitWidth == 1024)
2746 return &AMDGPU::AReg_1024_Align2RegClass;
2747
2748 return nullptr;
2749}
2750
2751const TargetRegisterClass *
2753 if (BitWidth == 16)
2754 return &AMDGPU::AGPR_LO16RegClass;
2755 if (BitWidth == 32)
2756 return &AMDGPU::AGPR_32RegClass;
2759}
2760
2761static const TargetRegisterClass *
2763 if (BitWidth == 64)
2764 return &AMDGPU::AV_64RegClass;
2765 if (BitWidth == 96)
2766 return &AMDGPU::AV_96RegClass;
2767 if (BitWidth == 128)
2768 return &AMDGPU::AV_128RegClass;
2769 if (BitWidth == 160)
2770 return &AMDGPU::AV_160RegClass;
2771 if (BitWidth == 192)
2772 return &AMDGPU::AV_192RegClass;
2773 if (BitWidth == 224)
2774 return &AMDGPU::AV_224RegClass;
2775 if (BitWidth == 256)
2776 return &AMDGPU::AV_256RegClass;
2777 if (BitWidth == 288)
2778 return &AMDGPU::AV_288RegClass;
2779 if (BitWidth == 320)
2780 return &AMDGPU::AV_320RegClass;
2781 if (BitWidth == 352)
2782 return &AMDGPU::AV_352RegClass;
2783 if (BitWidth == 384)
2784 return &AMDGPU::AV_384RegClass;
2785 if (BitWidth == 512)
2786 return &AMDGPU::AV_512RegClass;
2787 if (BitWidth == 1024)
2788 return &AMDGPU::AV_1024RegClass;
2789
2790 return nullptr;
2791}
2792
2793static const TargetRegisterClass *
2795 if (BitWidth == 64)
2796 return &AMDGPU::AV_64_Align2RegClass;
2797 if (BitWidth == 96)
2798 return &AMDGPU::AV_96_Align2RegClass;
2799 if (BitWidth == 128)
2800 return &AMDGPU::AV_128_Align2RegClass;
2801 if (BitWidth == 160)
2802 return &AMDGPU::AV_160_Align2RegClass;
2803 if (BitWidth == 192)
2804 return &AMDGPU::AV_192_Align2RegClass;
2805 if (BitWidth == 224)
2806 return &AMDGPU::AV_224_Align2RegClass;
2807 if (BitWidth == 256)
2808 return &AMDGPU::AV_256_Align2RegClass;
2809 if (BitWidth == 288)
2810 return &AMDGPU::AV_288_Align2RegClass;
2811 if (BitWidth == 320)
2812 return &AMDGPU::AV_320_Align2RegClass;
2813 if (BitWidth == 352)
2814 return &AMDGPU::AV_352_Align2RegClass;
2815 if (BitWidth == 384)
2816 return &AMDGPU::AV_384_Align2RegClass;
2817 if (BitWidth == 512)
2818 return &AMDGPU::AV_512_Align2RegClass;
2819 if (BitWidth == 1024)
2820 return &AMDGPU::AV_1024_Align2RegClass;
2821
2822 return nullptr;
2823}
2824
2825const TargetRegisterClass *
2827 if (BitWidth == 32)
2828 return &AMDGPU::AV_32RegClass;
2829 return ST.needsAlignedVGPRs()
2832}
2833
2834const TargetRegisterClass *
2836 if (BitWidth == 16)
2837 return &AMDGPU::SGPR_LO16RegClass;
2838 if (BitWidth == 32)
2839 return &AMDGPU::SReg_32RegClass;
2840 if (BitWidth == 64)
2841 return &AMDGPU::SReg_64RegClass;
2842 if (BitWidth == 96)
2843 return &AMDGPU::SGPR_96RegClass;
2844 if (BitWidth == 128)
2845 return &AMDGPU::SGPR_128RegClass;
2846 if (BitWidth == 160)
2847 return &AMDGPU::SGPR_160RegClass;
2848 if (BitWidth == 192)
2849 return &AMDGPU::SGPR_192RegClass;
2850 if (BitWidth == 224)
2851 return &AMDGPU::SGPR_224RegClass;
2852 if (BitWidth == 256)
2853 return &AMDGPU::SGPR_256RegClass;
2854 if (BitWidth == 288)
2855 return &AMDGPU::SGPR_288RegClass;
2856 if (BitWidth == 320)
2857 return &AMDGPU::SGPR_320RegClass;
2858 if (BitWidth == 352)
2859 return &AMDGPU::SGPR_352RegClass;
2860 if (BitWidth == 384)
2861 return &AMDGPU::SGPR_384RegClass;
2862 if (BitWidth == 512)
2863 return &AMDGPU::SGPR_512RegClass;
2864 if (BitWidth == 1024)
2865 return &AMDGPU::SGPR_1024RegClass;
2866
2867 return nullptr;
2868}
2869
2871 Register Reg) const {
2872 const TargetRegisterClass *RC;
2873 if (Reg.isVirtual())
2874 RC = MRI.getRegClass(Reg);
2875 else
2876 RC = getPhysRegBaseClass(Reg);
2877 return RC ? isSGPRClass(RC) : false;
2878}
2879
2880const TargetRegisterClass *
2882 unsigned Size = getRegSizeInBits(*SRC);
2884 assert(VRC && "Invalid register class size");
2885 return VRC;
2886}
2887
2888const TargetRegisterClass *
2890 unsigned Size = getRegSizeInBits(*SRC);
2892 assert(ARC && "Invalid register class size");
2893 return ARC;
2894}
2895
2896const TargetRegisterClass *
2898 unsigned Size = getRegSizeInBits(*VRC);
2899 if (Size == 32)
2900 return &AMDGPU::SGPR_32RegClass;
2902 assert(SRC && "Invalid register class size");
2903 return SRC;
2904}
2905
2906const TargetRegisterClass *
2908 const TargetRegisterClass *SubRC,
2909 unsigned SubIdx) const {
2910 // Ensure this subregister index is aligned in the super register.
2911 const TargetRegisterClass *MatchRC =
2912 getMatchingSuperRegClass(SuperRC, SubRC, SubIdx);
2913 return MatchRC && MatchRC->hasSubClassEq(SuperRC) ? MatchRC : nullptr;
2914}
2915
2916bool SIRegisterInfo::opCanUseInlineConstant(unsigned OpType) const {
2919 return !ST.hasMFMAInlineLiteralBug();
2920
2921 return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
2922 OpType <= AMDGPU::OPERAND_SRC_LAST;
2923}
2924
2926 const TargetRegisterClass *DefRC,
2927 unsigned DefSubReg,
2928 const TargetRegisterClass *SrcRC,
2929 unsigned SrcSubReg) const {
2930 // We want to prefer the smallest register class possible, so we don't want to
2931 // stop and rewrite on anything that looks like a subregister
2932 // extract. Operations mostly don't care about the super register class, so we
2933 // only want to stop on the most basic of copies between the same register
2934 // class.
2935 //
2936 // e.g. if we have something like
2937 // %0 = ...
2938 // %1 = ...
2939 // %2 = REG_SEQUENCE %0, sub0, %1, sub1, %2, sub2
2940 // %3 = COPY %2, sub0
2941 //
2942 // We want to look through the COPY to find:
2943 // => %3 = COPY %0
2944
2945 // Plain copy.
2946 return getCommonSubClass(DefRC, SrcRC) != nullptr;
2947}
2948
2949bool SIRegisterInfo::opCanUseLiteralConstant(unsigned OpType) const {
2950 // TODO: 64-bit operands have extending behavior from 32-bit literal.
2951 return OpType >= AMDGPU::OPERAND_REG_IMM_FIRST &&
2953}
2954
2955/// Returns a lowest register that is not used at any point in the function.
2956/// If all registers are used, then this function will return
2957/// AMDGPU::NoRegister. If \p ReserveHighestRegister = true, then return
2958/// highest unused register.
2961 const MachineFunction &MF, bool ReserveHighestRegister) const {
2962 if (ReserveHighestRegister) {
2963 for (MCRegister Reg : reverse(*RC))
2964 if (MRI.isAllocatable(Reg) && !MRI.isPhysRegUsed(Reg))
2965 return Reg;
2966 } else {
2967 for (MCRegister Reg : *RC)
2968 if (MRI.isAllocatable(Reg) && !MRI.isPhysRegUsed(Reg))
2969 return Reg;
2970 }
2971 return MCRegister();
2972}
2973
2975 const RegisterBankInfo &RBI,
2976 Register Reg) const {
2977 auto *RB = RBI.getRegBank(Reg, MRI, *MRI.getTargetRegisterInfo());
2978 if (!RB)
2979 return false;
2980
2981 return !RBI.isDivergentRegBank(RB);
2982}
2983
2985 unsigned EltSize) const {
2986 const unsigned RegBitWidth = AMDGPU::getRegBitWidth(*RC);
2987 assert(RegBitWidth >= 32 && RegBitWidth <= 1024);
2988
2989 const unsigned RegDWORDs = RegBitWidth / 32;
2990 const unsigned EltDWORDs = EltSize / 4;
2991 assert(RegSplitParts.size() + 1 >= EltDWORDs);
2992
2993 const std::vector<int16_t> &Parts = RegSplitParts[EltDWORDs - 1];
2994 const unsigned NumParts = RegDWORDs / EltDWORDs;
2995
2996 return ArrayRef(Parts.data(), NumParts);
2997}
2998
3001 Register Reg) const {
3002 return Reg.isVirtual() ? MRI.getRegClass(Reg) : getPhysRegBaseClass(Reg);
3003}
3004
3005const TargetRegisterClass *
3007 const MachineOperand &MO) const {
3008 const TargetRegisterClass *SrcRC = getRegClassForReg(MRI, MO.getReg());
3009 return getSubRegisterClass(SrcRC, MO.getSubReg());
3010}
3011
3013 Register Reg) const {
3014 const TargetRegisterClass *RC = getRegClassForReg(MRI, Reg);
3015 // Registers without classes are unaddressable, SGPR-like registers.
3016 return RC && isVGPRClass(RC);
3017}
3018
3020 Register Reg) const {
3021 const TargetRegisterClass *RC = getRegClassForReg(MRI, Reg);
3022
3023 // Registers without classes are unaddressable, SGPR-like registers.
3024 return RC && isAGPRClass(RC);
3025}
3026
3028 const TargetRegisterClass *SrcRC,
3029 unsigned SubReg,
3030 const TargetRegisterClass *DstRC,
3031 unsigned DstSubReg,
3032 const TargetRegisterClass *NewRC,
3033 LiveIntervals &LIS) const {
3034 unsigned SrcSize = getRegSizeInBits(*SrcRC);
3035 unsigned DstSize = getRegSizeInBits(*DstRC);
3036 unsigned NewSize = getRegSizeInBits(*NewRC);
3037
3038 // Do not increase size of registers beyond dword, we would need to allocate
3039 // adjacent registers and constraint regalloc more than needed.
3040
3041 // Always allow dword coalescing.
3042 if (SrcSize <= 32 || DstSize <= 32)
3043 return true;
3044
3045 return NewSize <= DstSize || NewSize <= SrcSize;
3046}
3047
3049 MachineFunction &MF) const {
3051
3052 unsigned Occupancy = ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(),
3053 MF.getFunction());
3054 switch (RC->getID()) {
3055 default:
3056 return AMDGPUGenRegisterInfo::getRegPressureLimit(RC, MF);
3057 case AMDGPU::VGPR_32RegClassID:
3058 return std::min(ST.getMaxNumVGPRs(Occupancy), ST.getMaxNumVGPRs(MF));
3059 case AMDGPU::SGPR_32RegClassID:
3060 case AMDGPU::SGPR_LO16RegClassID:
3061 return std::min(ST.getMaxNumSGPRs(Occupancy, true), ST.getMaxNumSGPRs(MF));
3062 }
3063}
3064
3066 unsigned Idx) const {
3067 if (Idx == AMDGPU::RegisterPressureSets::VGPR_32 ||
3068 Idx == AMDGPU::RegisterPressureSets::AGPR_32)
3069 return getRegPressureLimit(&AMDGPU::VGPR_32RegClass,
3070 const_cast<MachineFunction &>(MF));
3071
3072 if (Idx == AMDGPU::RegisterPressureSets::SReg_32)
3073 return getRegPressureLimit(&AMDGPU::SGPR_32RegClass,
3074 const_cast<MachineFunction &>(MF));
3075
3076 llvm_unreachable("Unexpected register pressure set!");
3077}
3078
3079const int *SIRegisterInfo::getRegUnitPressureSets(unsigned RegUnit) const {
3080 static const int Empty[] = { -1 };
3081
3082 if (RegPressureIgnoredUnits[RegUnit])
3083 return Empty;
3084
3085 return AMDGPUGenRegisterInfo::getRegUnitPressureSets(RegUnit);
3086}
3087
3089 // Not a callee saved register.
3090 return AMDGPU::SGPR30_SGPR31;
3091}
3092
3093const TargetRegisterClass *
3095 const RegisterBank &RB) const {
3096 switch (RB.getID()) {
3097 case AMDGPU::VGPRRegBankID:
3099 std::max(ST.useRealTrue16Insts() ? 16u : 32u, Size));
3100 case AMDGPU::VCCRegBankID:
3101 assert(Size == 1);
3102 return isWave32 ? &AMDGPU::SReg_32_XM0_XEXECRegClass
3103 : &AMDGPU::SReg_64_XEXECRegClass;
3104 case AMDGPU::SGPRRegBankID:
3105 return getSGPRClassForBitWidth(std::max(32u, Size));
3106 case AMDGPU::AGPRRegBankID:
3107 return getAGPRClassForBitWidth(std::max(32u, Size));
3108 default:
3109 llvm_unreachable("unknown register bank");
3110 }
3111}
3112
3113const TargetRegisterClass *
3115 const MachineRegisterInfo &MRI) const {
3116 const RegClassOrRegBank &RCOrRB = MRI.getRegClassOrRegBank(MO.getReg());
3117 if (const RegisterBank *RB = RCOrRB.dyn_cast<const RegisterBank*>())
3118 return getRegClassForTypeOnBank(MRI.getType(MO.getReg()), *RB);
3119
3120 if (const auto *RC = RCOrRB.dyn_cast<const TargetRegisterClass *>())
3121 return getAllocatableClass(RC);
3122
3123 return nullptr;
3124}
3125
3127 return isWave32 ? AMDGPU::VCC_LO : AMDGPU::VCC;
3128}
3129
3131 return isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3132}
3133
3135 // VGPR tuples have an alignment requirement on gfx90a variants.
3136 return ST.needsAlignedVGPRs() ? &AMDGPU::VReg_64_Align2RegClass
3137 : &AMDGPU::VReg_64RegClass;
3138}
3139
3140const TargetRegisterClass *
3141SIRegisterInfo::getRegClass(unsigned RCID) const {
3142 switch ((int)RCID) {
3143 case AMDGPU::SReg_1RegClassID:
3144 return getBoolRC();
3145 case AMDGPU::SReg_1_XEXECRegClassID:
3146 return isWave32 ? &AMDGPU::SReg_32_XM0_XEXECRegClass
3147 : &AMDGPU::SReg_64_XEXECRegClass;
3148 case -1:
3149 return nullptr;
3150 default:
3151 return AMDGPUGenRegisterInfo::getRegClass(RCID);
3152 }
3153}
3154
3155// Find reaching register definition
3159 LiveIntervals *LIS) const {
3160 auto &MDT = LIS->getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
3161 SlotIndex UseIdx = LIS->getInstructionIndex(Use);
3162 SlotIndex DefIdx;
3163
3164 if (Reg.isVirtual()) {
3165 if (!LIS->hasInterval(Reg))
3166 return nullptr;
3167 LiveInterval &LI = LIS->getInterval(Reg);
3168 LaneBitmask SubLanes = SubReg ? getSubRegIndexLaneMask(SubReg)
3169 : MRI.getMaxLaneMaskForVReg(Reg);
3170 VNInfo *V = nullptr;
3171 if (LI.hasSubRanges()) {
3172 for (auto &S : LI.subranges()) {
3173 if ((S.LaneMask & SubLanes) == SubLanes) {
3174 V = S.getVNInfoAt(UseIdx);
3175 break;
3176 }
3177 }
3178 } else {
3179 V = LI.getVNInfoAt(UseIdx);
3180 }
3181 if (!V)
3182 return nullptr;
3183 DefIdx = V->def;
3184 } else {
3185 // Find last def.
3186 for (MCRegUnit Unit : regunits(Reg.asMCReg())) {
3187 LiveRange &LR = LIS->getRegUnit(Unit);
3188 if (VNInfo *V = LR.getVNInfoAt(UseIdx)) {
3189 if (!DefIdx.isValid() ||
3190 MDT.dominates(LIS->getInstructionFromIndex(DefIdx),
3191 LIS->getInstructionFromIndex(V->def)))
3192 DefIdx = V->def;
3193 } else {
3194 return nullptr;
3195 }
3196 }
3197 }
3198
3199 MachineInstr *Def = LIS->getInstructionFromIndex(DefIdx);
3200
3201 if (!Def || !MDT.dominates(Def, &Use))
3202 return nullptr;
3203
3204 assert(Def->modifiesRegister(Reg, this));
3205
3206 return Def;
3207}
3208
3210 assert(getRegSizeInBits(*getPhysRegBaseClass(Reg)) <= 32);
3211
3212 for (const TargetRegisterClass &RC : { AMDGPU::VGPR_32RegClass,
3213 AMDGPU::SReg_32RegClass,
3214 AMDGPU::AGPR_32RegClass } ) {
3215 if (MCPhysReg Super = getMatchingSuperReg(Reg, AMDGPU::lo16, &RC))
3216 return Super;
3217 }
3218 if (MCPhysReg Super = getMatchingSuperReg(Reg, AMDGPU::hi16,
3219 &AMDGPU::VGPR_32RegClass)) {
3220 return Super;
3221 }
3222
3223 return AMDGPU::NoRegister;
3224}
3225
3227 if (!ST.needsAlignedVGPRs())
3228 return true;
3229
3230 if (isVGPRClass(&RC))
3231 return RC.hasSuperClassEq(getVGPRClassForBitWidth(getRegSizeInBits(RC)));
3232 if (isAGPRClass(&RC))
3233 return RC.hasSuperClassEq(getAGPRClassForBitWidth(getRegSizeInBits(RC)));
3234 if (isVectorSuperClass(&RC))
3235 return RC.hasSuperClassEq(
3236 getVectorSuperClassForBitWidth(getRegSizeInBits(RC)));
3237
3238 return true;
3239}
3240
3241const TargetRegisterClass *
3243 if (!RC || !ST.needsAlignedVGPRs())
3244 return RC;
3245
3246 unsigned Size = getRegSizeInBits(*RC);
3247 if (Size <= 32)
3248 return RC;
3249
3250 if (isVGPRClass(RC))
3252 if (isAGPRClass(RC))
3254 if (isVectorSuperClass(RC))
3256
3257 return RC;
3258}
3259
3262 return ArrayRef(AMDGPU::SGPR_128RegClass.begin(), ST.getMaxNumSGPRs(MF) / 4);
3263}
3264
3267 return ArrayRef(AMDGPU::SGPR_64RegClass.begin(), ST.getMaxNumSGPRs(MF) / 2);
3268}
3269
3272 return ArrayRef(AMDGPU::SGPR_32RegClass.begin(), ST.getMaxNumSGPRs(MF));
3273}
3274
3275unsigned
3277 unsigned SubReg) const {
3278 switch (RC->TSFlags & SIRCFlags::RegKindMask) {
3279 case SIRCFlags::HasSGPR:
3280 return std::min(128u, getSubRegIdxSize(SubReg));
3281 case SIRCFlags::HasAGPR:
3282 case SIRCFlags::HasVGPR:
3284 return std::min(32u, getSubRegIdxSize(SubReg));
3285 default:
3286 break;
3287 }
3288 return 0;
3289}
unsigned SubReg
unsigned const MachineRegisterInfo * MRI
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Provides AMDGPU specific target descriptions.
This file declares the targeting of the RegisterBankInfo class for AMDGPU.
static const Function * getParent(const Value *V)
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
uint64_t Size
AMD GCN specific subclass of TargetSubtarget.
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
A set of register units.
#define I(x, y, z)
Definition: MD5.cpp:58
static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
Return the first found DebugLoc that has a DILocation, given a range of instructions.
unsigned const TargetRegisterInfo * TRI
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
This file declares the machine register scavenger class.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static int getOffenMUBUFStore(unsigned Opc)
static const TargetRegisterClass * getAnyAGPRClassForBitWidth(unsigned BitWidth)
static int getOffsetMUBUFLoad(unsigned Opc)
static const std::array< unsigned, 17 > SubRegFromChannelTableWidthMap
static const TargetRegisterClass * getAlignedAGPRClassForBitWidth(unsigned BitWidth)
static bool buildMUBUFOffsetLoadStore(const GCNSubtarget &ST, MachineFrameInfo &MFI, MachineBasicBlock::iterator MI, int Index, int64_t Offset)
static unsigned getFlatScratchSpillOpcode(const SIInstrInfo *TII, unsigned LoadStoreOp, unsigned EltSize)
static const TargetRegisterClass * getAlignedVGPRClassForBitWidth(unsigned BitWidth)
static int getOffsetMUBUFStore(unsigned Opc)
static const TargetRegisterClass * getAnyVGPRClassForBitWidth(unsigned BitWidth)
static cl::opt< bool > EnableSpillSGPRToVGPR("amdgpu-spill-sgpr-to-vgpr", cl::desc("Enable spilling SGPRs to VGPRs"), cl::ReallyHidden, cl::init(true))
static unsigned getNumSubRegsForSpillOp(unsigned Op)
static const TargetRegisterClass * getAlignedVectorSuperClassForBitWidth(unsigned BitWidth)
static const TargetRegisterClass * getAnyVectorSuperClassForBitWidth(unsigned BitWidth)
static MachineInstrBuilder spillVGPRtoAGPR(const GCNSubtarget &ST, MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, int Index, unsigned Lane, unsigned ValueReg, bool IsKill)
static int getOffenMUBUFLoad(unsigned Opc)
Interface definition for SIRegisterInfo.
static const char * getRegisterName(MCRegister Reg)
unsigned getOccupancyWithLocalMemSize(uint32_t Bytes, const Function &) const
Inverse of getMaxLocalMemWithWaveCount.
bool useRealTrue16Insts() const
Return true if real (non-fake) variants of True16 instructions using 16-bit registers should be code-...
unsigned getWavefrontSizeLog2() const
unsigned getWavefrontSize() const
bool hasInv2PiInlineImm() const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:165
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:160
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
Definition: BitVector.h:341
BitVector & set()
Definition: BitVector.h:351
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition: Function.h:274
bool hasGFX90AInsts() const
bool hasMAIInsts() const
Definition: GCNSubtarget.h:814
bool hasMFMAInlineLiteralBug() const
const SIInstrInfo * getInstrInfo() const override
Definition: GCNSubtarget.h:262
unsigned getConstantBusLimit(unsigned Opcode) const
bool needsAlignedVGPRs() const
Return if operations acting on VGPR tuples require even alignment.
bool enableFlatScratch() const
Definition: GCNSubtarget.h:648
unsigned getMaxNumVGPRs(unsigned WavesPerEU) const
const SIFrameLowering * getFrameLowering() const override
Definition: GCNSubtarget.h:266
unsigned getMaxNumSGPRs(unsigned WavesPerEU, bool Addressable) const
bool hasFlatScratchSTMode() const
Definition: GCNSubtarget.h:638
LiveInterval - This class represents the liveness of a register, or stack slot.
Definition: LiveInterval.h:687
bool hasSubRanges() const
Returns true if subregister liveness information is available.
Definition: LiveInterval.h:810
iterator_range< subrange_iterator > subranges()
Definition: LiveInterval.h:782
void removeAllRegUnitsForPhysReg(MCRegister Reg)
Remove associated live ranges for the register units associated with Reg.
bool hasInterval(Register Reg) const
MachineInstr * getInstructionFromIndex(SlotIndex index) const
Returns the instruction associated with the given index.
SlotIndex getInstructionIndex(const MachineInstr &Instr) const
Returns the base index of the given instruction.
LiveRange & getRegUnit(unsigned Unit)
Return the live range for register unit Unit.
LiveInterval & getInterval(Register Reg)
This class represents the liveness of a register, stack slot, etc.
Definition: LiveInterval.h:157
VNInfo * getVNInfoAt(SlotIndex Idx) const
getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
Definition: LiveInterval.h:421
A set of register units used to track register liveness.
Definition: LiveRegUnits.h:30
bool available(MCPhysReg Reg) const
Returns true if no part of physical register Reg is live.
Definition: LiveRegUnits.h:116
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
MCRegAliasIterator enumerates all registers aliasing Reg.
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
static MCRegister from(unsigned Val)
Check the provided unsigned value is a valid MCRegister.
Definition: MCRegister.h:74
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
Analysis pass which computes a MachineDominatorTree.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool hasCalls() const
Return true if the current function has any function calls.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
bool hasStackObjects() const
Return true if there are any stack objects in this function.
uint8_t getStackID(int ObjectIdx) const
unsigned getNumFixedObjects() const
Return the number of fixed objects.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
Register getReg(unsigned Idx) const
Get the register for the operand index.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
Representation of each machine instruction.
Definition: MachineInstr.h:69
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:569
void setAsmPrinterFlag(uint8_t Flag)
Set a flag for the AsmPrinter.
Definition: MachineInstr.h:377
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:579
A description of a memory reference used in the backend.
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
MachineOperand class - Representation of each machine instruction operand.
unsigned getSubReg() const
void setImm(int64_t immVal)
int64_t getImm() const
void setIsDead(bool Val=true)
void setReg(Register Reg)
Change the register this operand corresponds to.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
void ChangeToImmediate(int64_t ImmVal, unsigned TargetFlags=0)
ChangeToImmediate - Replace this operand with a new immediate operand of the specified value.
void setIsKill(bool Val=true)
void ChangeToRegister(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isDebug=false)
ChangeToRegister - Replace this operand with a new register operand of the specified value.
Register getReg() const
getReg - Returns the register number.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
bool isReserved(MCRegister PhysReg) const
isReserved - Returns true when PhysReg is a reserved register.
AnalysisType & getAnalysis() const
getAnalysis<AnalysisType>() - This function is used by subclasses to get to the analysis information ...
T dyn_cast() const
Returns the current pointer if it is of the specified pointer type, otherwise returns null.
Definition: PointerUnion.h:162
bool isRegUsed(Register Reg, bool includeReserved=true) const
Return if a specific register is currently used.
void setRegUsed(Register Reg, LaneBitmask LaneMask=LaneBitmask::getAll())
Tell the scavenger a register is used.
void assignRegToScavengingIndex(int FI, Register Reg, MachineInstr *Restore=nullptr)
Record that Reg is in use at scavenging index FI.
Register scavengeRegisterBackwards(const TargetRegisterClass &RC, MachineBasicBlock::iterator To, bool RestoreAfter, int SPAdj, bool AllowSpill=true)
Make a register of the specific register class available from the current position backwards to the p...
Holds all the information related to register banks.
virtual bool isDivergentRegBank(const RegisterBank *RB) const
Returns true if the register bank is considered divergent.
const RegisterBank & getRegBank(unsigned ID)
Get the register bank identified by ID.
This class implements the register bank concept.
Definition: RegisterBank.h:28
unsigned getID() const
Get the identifier of this register bank.
Definition: RegisterBank.h:45
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
constexpr bool isValid() const
Definition: Register.h:116
bool hasFP(const MachineFunction &MF) const override
hasFP - Return true if the specified function should have a dedicated frame pointer register.
static bool isFLATScratch(const MachineInstr &MI)
Definition: SIInstrInfo.h:636
static bool isMUBUF(const MachineInstr &MI)
Definition: SIInstrInfo.h:528
This class keeps track of the SPI_SP_INPUT_ADDR config register, which tells the hardware which inter...
bool usesAGPRs(const MachineFunction &MF) const
ArrayRef< MCPhysReg > getAGPRSpillVGPRs() const
MCPhysReg getVGPRToAGPRSpill(int FrameIndex, unsigned Lane) const
Register getScratchRSrcReg() const
Returns the physical register reserved for use as the resource descriptor for scratch accesses.
ArrayRef< MCPhysReg > getVGPRSpillAGPRs() const
int getScavengeFI(MachineFrameInfo &MFI, const SIRegisterInfo &TRI)
ArrayRef< SIRegisterInfo::SpilledReg > getSGPRSpillToVirtualVGPRLanes(int FrameIndex) const
ArrayRef< SIRegisterInfo::SpilledReg > getSGPRSpillToPhysicalVGPRLanes(int FrameIndex) const
const ReservedRegSet & getWWMReservedRegs() const
Register materializeFrameBaseRegister(MachineBasicBlock *MBB, int FrameIdx, int64_t Offset) const override
int64_t getScratchInstrOffset(const MachineInstr *MI) const
bool isFrameOffsetLegal(const MachineInstr *MI, Register BaseReg, int64_t Offset) const override
const TargetRegisterClass * getRegClass(unsigned RCID) const
const TargetRegisterClass * getCompatibleSubRegClass(const TargetRegisterClass *SuperRC, const TargetRegisterClass *SubRC, unsigned SubIdx) const
Returns a register class which is compatible with SuperRC, such that a subregister exists with class ...
ArrayRef< MCPhysReg > getAllSGPR64(const MachineFunction &MF) const
Return all SGPR64 which satisfy the waves per execution unit requirement of the subtarget.
MCRegister findUnusedRegister(const MachineRegisterInfo &MRI, const TargetRegisterClass *RC, const MachineFunction &MF, bool ReserveHighestVGPR=false) const
Returns a lowest register that is not used at any point in the function.
static unsigned getSubRegFromChannel(unsigned Channel, unsigned NumRegs=1)
MCPhysReg get32BitRegister(MCPhysReg Reg) const
const uint32_t * getCallPreservedMask(const MachineFunction &MF, CallingConv::ID) const override
bool requiresFrameIndexReplacementScavenging(const MachineFunction &MF) const override
const TargetRegisterClass * getProperlyAlignedRC(const TargetRegisterClass *RC) const
bool shouldRealignStack(const MachineFunction &MF) const override
bool restoreSGPR(MachineBasicBlock::iterator MI, int FI, RegScavenger *RS, SlotIndexes *Indexes=nullptr, LiveIntervals *LIS=nullptr, bool OnlyToVGPR=false, bool SpillToPhysVGPRLane=false) const
bool isProperlyAlignedRC(const TargetRegisterClass &RC) const
const TargetRegisterClass * getEquivalentVGPRClass(const TargetRegisterClass *SRC) const
Register getFrameRegister(const MachineFunction &MF) const override
LLVM_READONLY const TargetRegisterClass * getVectorSuperClassForBitWidth(unsigned BitWidth) const
bool spillEmergencySGPR(MachineBasicBlock::iterator MI, MachineBasicBlock &RestoreMBB, Register SGPR, RegScavenger *RS) const
SIRegisterInfo(const GCNSubtarget &ST)
const uint32_t * getAllVGPRRegMask() const
MCRegister getReturnAddressReg(const MachineFunction &MF) const
const MCPhysReg * getCalleeSavedRegs(const MachineFunction *MF) const override
bool hasBasePointer(const MachineFunction &MF) const
const TargetRegisterClass * getCrossCopyRegClass(const TargetRegisterClass *RC) const override
Returns a legal register class to copy a register in the specified class to or from.
ArrayRef< int16_t > getRegSplitParts(const TargetRegisterClass *RC, unsigned EltSize) const
ArrayRef< MCPhysReg > getAllSGPR32(const MachineFunction &MF) const
Return all SGPR32 which satisfy the waves per execution unit requirement of the subtarget.
const TargetRegisterClass * getLargestLegalSuperClass(const TargetRegisterClass *RC, const MachineFunction &MF) const override
MCRegister reservedPrivateSegmentBufferReg(const MachineFunction &MF) const
Return the end register initially reserved for the scratch buffer in case spilling is needed.
bool eliminateSGPRToVGPRSpillFrameIndex(MachineBasicBlock::iterator MI, int FI, RegScavenger *RS, SlotIndexes *Indexes=nullptr, LiveIntervals *LIS=nullptr, bool SpillToPhysVGPRLane=false) const
Special case of eliminateFrameIndex.
bool isVGPR(const MachineRegisterInfo &MRI, Register Reg) const
void buildSpillLoadStore(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, unsigned LoadStoreOp, int Index, Register ValueReg, bool ValueIsKill, MCRegister ScratchOffsetReg, int64_t InstrOffset, MachineMemOperand *MMO, RegScavenger *RS, LiveRegUnits *LiveUnits=nullptr) const
bool isAsmClobberable(const MachineFunction &MF, MCRegister PhysReg) const override
LLVM_READONLY const TargetRegisterClass * getAGPRClassForBitWidth(unsigned BitWidth) const
static bool isChainScratchRegister(Register VGPR)
bool requiresRegisterScavenging(const MachineFunction &Fn) const override
bool opCanUseInlineConstant(unsigned OpType) const
const TargetRegisterClass * getRegClassForSizeOnBank(unsigned Size, const RegisterBank &Bank) const
const TargetRegisterClass * getConstrainedRegClassForOperand(const MachineOperand &MO, const MachineRegisterInfo &MRI) const override
bool isUniformReg(const MachineRegisterInfo &MRI, const RegisterBankInfo &RBI, Register Reg) const override
const uint32_t * getNoPreservedMask() const override
StringRef getRegAsmName(MCRegister Reg) const override
const uint32_t * getAllAllocatableSRegMask() const
MCRegister getAlignedHighSGPRForRC(const MachineFunction &MF, const unsigned Align, const TargetRegisterClass *RC) const
Return the largest available SGPR aligned to Align for the register class RC.
const TargetRegisterClass * getRegClassForReg(const MachineRegisterInfo &MRI, Register Reg) const
const MCPhysReg * getCalleeSavedRegsViaCopy(const MachineFunction *MF) const
const uint32_t * getAllVectorRegMask() const
const TargetRegisterClass * getEquivalentAGPRClass(const TargetRegisterClass *SRC) const
static LLVM_READONLY const TargetRegisterClass * getSGPRClassForBitWidth(unsigned BitWidth)
const TargetRegisterClass * getRegClassForTypeOnBank(LLT Ty, const RegisterBank &Bank) const
bool opCanUseLiteralConstant(unsigned OpType) const
Register getBaseRegister() const
LLVM_READONLY const TargetRegisterClass * getVGPRClassForBitWidth(unsigned BitWidth) const
bool requiresFrameIndexScavenging(const MachineFunction &MF) const override
bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC, unsigned DefSubReg, const TargetRegisterClass *SrcRC, unsigned SrcSubReg) const override
static bool isVGPRClass(const TargetRegisterClass *RC)
unsigned getHWRegIndex(MCRegister Reg) const
MachineInstr * findReachingDef(Register Reg, unsigned SubReg, MachineInstr &Use, MachineRegisterInfo &MRI, LiveIntervals *LIS) const
bool isSGPRReg(const MachineRegisterInfo &MRI, Register Reg) const
const TargetRegisterClass * getEquivalentSGPRClass(const TargetRegisterClass *VRC) const
unsigned getRegPressureLimit(const TargetRegisterClass *RC, MachineFunction &MF) const override
ArrayRef< MCPhysReg > getAllSGPR128(const MachineFunction &MF) const
Return all SGPR128 which satisfy the waves per execution unit requirement of the subtarget.
unsigned getRegPressureSetLimit(const MachineFunction &MF, unsigned Idx) const override
BitVector getReservedRegs(const MachineFunction &MF) const override
bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const override
const TargetRegisterClass * getRegClassForOperandReg(const MachineRegisterInfo &MRI, const MachineOperand &MO) const
const uint32_t * getAllAGPRRegMask() const
bool shouldCoalesce(MachineInstr *MI, const TargetRegisterClass *SrcRC, unsigned SubReg, const TargetRegisterClass *DstRC, unsigned DstSubReg, const TargetRegisterClass *NewRC, LiveIntervals &LIS) const override
const TargetRegisterClass * getBoolRC() const
const TargetRegisterClass * getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const override
bool isAGPR(const MachineRegisterInfo &MRI, Register Reg) const
bool eliminateFrameIndex(MachineBasicBlock::iterator MI, int SPAdj, unsigned FIOperandNum, RegScavenger *RS) const override
bool spillSGPR(MachineBasicBlock::iterator MI, int FI, RegScavenger *RS, SlotIndexes *Indexes=nullptr, LiveIntervals *LIS=nullptr, bool OnlyToVGPR=false, bool SpillToPhysVGPRLane=false) const
If OnlyToVGPR is true, this will only succeed if this manages to find a free VGPR lane to spill.
MCRegister getExec() const
MCRegister getVCC() const
int64_t getFrameIndexInstrOffset(const MachineInstr *MI, int Idx) const override
bool isVectorSuperClass(const TargetRegisterClass *RC) const
const TargetRegisterClass * getWaveMaskRegClass() const
unsigned getSubRegAlignmentNumBits(const TargetRegisterClass *RC, unsigned SubReg) const
void resolveFrameIndex(MachineInstr &MI, Register BaseReg, int64_t Offset) const override
bool requiresVirtualBaseRegisters(const MachineFunction &Fn) const override
const TargetRegisterClass * getVGPR64Class() const
void buildVGPRSpillLoadStore(SGPRSpillBuilder &SB, int Index, int Offset, bool IsLoad, bool IsKill=true) const
static bool isSGPRClass(const TargetRegisterClass *RC)
static bool isAGPRClass(const TargetRegisterClass *RC)
const int * getRegUnitPressureSets(unsigned RegUnit) const override
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:64
bool isValid() const
Returns true if this is a valid index.
Definition: SlotIndexes.h:129
SlotIndexes pass.
Definition: SlotIndexes.h:296
SlotIndex insertMachineInstrInMaps(MachineInstr &MI, bool Late=false)
Insert the given machine instruction into the mapping.
Definition: SlotIndexes.h:519
SlotIndex replaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI)
ReplaceMachineInstrInMaps - Replacing a machine instr with a new one in maps used by register allocat...
Definition: SlotIndexes.h:576
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
const uint8_t TSFlags
Configurable target specific flags.
unsigned getID() const
Return the register class ID number.
bool hasSubClassEq(const TargetRegisterClass *RC) const
Returns true if RC is a sub-class of or equal to this class.
bool hasSuperClassEq(const TargetRegisterClass *RC) const
Returns true if RC is a super-class of or equal to this class.
virtual const TargetRegisterClass * getLargestLegalSuperClass(const TargetRegisterClass *RC, const MachineFunction &) const
Returns the largest super class of RC that is legal to use in the current sub-target and has the same...
virtual bool shouldRealignStack(const MachineFunction &MF) const
True if storage within the function requires the stack pointer to be aligned more than the normal cal...
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
VNInfo - Value Number Information.
Definition: LiveInterval.h:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PRIVATE_ADDRESS
Address space for private memory.
LLVM_READONLY int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx)
LLVM_READONLY int getFlatScratchInstSVfromSS(uint16_t Opcode)
LLVM_READONLY int getFlatScratchInstSTfromSS(uint16_t Opcode)
LLVM_READONLY int getFlatScratchInstSVfromSVS(uint16_t Opcode)
bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi)
LLVM_READONLY bool hasNamedOperand(uint64_t Opcode, uint64_t NamedIdx)
bool isHi(unsigned Reg, const MCRegisterInfo &MRI)
@ OPERAND_REG_IMM_FIRST
Definition: SIDefines.h:256
@ OPERAND_SRC_FIRST
Definition: SIDefines.h:265
@ OPERAND_REG_INLINE_AC_FIRST
Definition: SIDefines.h:262
@ OPERAND_REG_INLINE_AC_LAST
Definition: SIDefines.h:263
@ OPERAND_REG_IMM_LAST
Definition: SIDefines.h:257
@ OPERAND_SRC_LAST
Definition: SIDefines.h:266
unsigned getRegBitWidth(const TargetRegisterClass &RC)
Get the size in bits of a register from the register class RC.
@ AMDGPU_Gfx
Used for AMD graphics targets.
Definition: CallingConv.h:232
@ AMDGPU_CS_ChainPreserve
Used on AMDGPUs to give the middle-end more control over argument placement.
Definition: CallingConv.h:249
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
Definition: CallingConv.h:245
@ Cold
Attempts to make code in the caller as efficient as possible under the assumption that the call is no...
Definition: CallingConv.h:47
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ Kill
The last use of a register.
@ Undef
Value of the register doesn't matter.
@ ReallyHidden
Definition: CommandLine.h:138
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1680
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition: MathExtras.h:431
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition: MCRegister.h:21
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:419
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
@ HasSGPR
Definition: SIDefines.h:26
@ HasVGPR
Definition: SIDefines.h:24
@ RegKindMask
Definition: SIDefines.h:29
@ HasAGPR
Definition: SIDefines.h:25
unsigned getDefRegState(bool B)
@ Add
Sum of integers.
unsigned getKillRegState(bool B)
void call_once(once_flag &flag, Function &&F, Args &&... ArgList)
Execute the function specified as a parameter once.
Definition: Threading.h:87
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:191
static const MachineMemOperand::Flags MOLastUse
Mark the MMO of a load as the last use.
Definition: SIInstrInfo.h:45
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition: Alignment.h:212
uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew=0)
Returns the largest uint64_t less than or equal to Value and is Skew mod Align.
Definition: MathExtras.h:483
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Description of the encoding of one expression Op.
This class contains a discriminated union of information about pointers in memory operands,...
MachinePointerInfo getWithOffset(int64_t O) const
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
void setMI(MachineBasicBlock *NewMBB, MachineBasicBlock::iterator NewMI)
ArrayRef< int16_t > SplitParts
SIMachineFunctionInfo & MFI
SGPRSpillBuilder(const SIRegisterInfo &TRI, const SIInstrInfo &TII, bool IsWave32, MachineBasicBlock::iterator MI, int Index, RegScavenger *RS)
SGPRSpillBuilder(const SIRegisterInfo &TRI, const SIInstrInfo &TII, bool IsWave32, MachineBasicBlock::iterator MI, Register Reg, bool IsKill, int Index, RegScavenger *RS)
PerVGPRData getPerVGPRData()
MachineBasicBlock::iterator MI
void readWriteTmpVGPR(unsigned Offset, bool IsLoad)
const SIRegisterInfo & TRI
MachineFunction & MF
MachineBasicBlock * MBB
const SIInstrInfo & TII
The llvm::once_flag structure.
Definition: Threading.h:68