14#ifndef LLVM_ADT_BITVECTOR_H
15#define LLVM_ADT_BITVECTOR_H
34 const BitVectorT &Parent;
38 assert(Current != -1 &&
"Trying to advance past end.");
39 Current = Parent.find_next(Current);
44 : Parent(Parent), Current(Current) {}
64 "Comparing iterators from different BitVectors");
65 return Current ==
Other.Current;
70 "Comparing iterators from different BitVectors");
71 return Current !=
Other.Current;
76 typedef uintptr_t BitWord;
78 enum { BITWORD_SIZE = (
unsigned)
sizeof(BitWord) * CHAR_BIT };
80 static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
81 "Unsupported word size");
99 WordRef = &b.Bits[
Idx / BITWORD_SIZE];
100 BitPos =
Idx % BITWORD_SIZE;
113 *WordRef |= BitWord(1) << BitPos;
115 *WordRef &= ~(BitWord(1) << BitPos);
120 return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
143 : Bits(NumBitWords(s), 0 - (BitWord)t), Size(s) {
149 bool empty()
const {
return Size == 0; }
156 unsigned NumBits = 0;
157 for (
auto Bit : Bits)
164 return any_of(Bits, [](BitWord Bit) {
return Bit != 0; });
169 for (
unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
170 if (Bits[i] != ~BitWord(0))
174 if (
unsigned Remainder = Size % BITWORD_SIZE)
175 return Bits[Size / BITWORD_SIZE] == (BitWord(1) << Remainder) - 1;
189 assert(Begin <= End && End <= Size);
193 unsigned FirstWord = Begin / BITWORD_SIZE;
194 unsigned LastWord = (End - 1) / BITWORD_SIZE;
201 for (
unsigned i = FirstWord; i <= LastWord; ++i) {
202 BitWord Copy = Bits[i];
206 if (i == FirstWord) {
207 unsigned FirstBit = Begin % BITWORD_SIZE;
208 Copy &= maskTrailingZeros<BitWord>(FirstBit);
212 unsigned LastBit = (End - 1) % BITWORD_SIZE;
213 Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
224 assert(Begin <= End && End <= Size);
228 unsigned LastWord = (End - 1) / BITWORD_SIZE;
229 unsigned FirstWord = Begin / BITWORD_SIZE;
231 for (
unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
232 unsigned CurrentWord = i - 1;
234 BitWord Copy = Bits[CurrentWord];
235 if (CurrentWord == LastWord) {
236 unsigned LastBit = (End - 1) % BITWORD_SIZE;
237 Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
240 if (CurrentWord == FirstWord) {
241 unsigned FirstBit = Begin % BITWORD_SIZE;
242 Copy &= maskTrailingZeros<BitWord>(FirstBit);
261 assert(Begin <= End && End <= Size);
265 unsigned LastWord = (End - 1) / BITWORD_SIZE;
266 unsigned FirstWord = Begin / BITWORD_SIZE;
268 for (
unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
269 unsigned CurrentWord = i - 1;
271 BitWord Copy = Bits[CurrentWord];
272 if (CurrentWord == LastWord) {
273 unsigned LastBit = (End - 1) % BITWORD_SIZE;
274 Copy |= maskTrailingZeros<BitWord>(LastBit + 1);
277 if (CurrentWord == FirstWord) {
278 unsigned FirstBit = Begin % BITWORD_SIZE;
279 Copy |= maskTrailingOnes<BitWord>(FirstBit);
282 if (Copy != ~BitWord(0)) {
285 return Result < Size ? Result : -1;
337 Bits.resize(NumBitWords(
N), 0 - BitWord(t));
341 void reserve(
unsigned N) { Bits.reserve(NumBitWords(
N)); }
352 Bits[
Idx / BITWORD_SIZE] |= BitWord(1) << (
Idx % BITWORD_SIZE);
358 assert(
I <=
E &&
"Attempted to set backwards range!");
359 assert(
E <=
size() &&
"Attempted to set out-of-bounds range!");
361 if (
I ==
E)
return *
this;
363 if (
I / BITWORD_SIZE ==
E / BITWORD_SIZE) {
364 BitWord EMask = BitWord(1) << (
E % BITWORD_SIZE);
365 BitWord IMask = BitWord(1) << (
I % BITWORD_SIZE);
366 BitWord Mask = EMask - IMask;
367 Bits[
I / BITWORD_SIZE] |= Mask;
371 BitWord PrefixMask = ~BitWord(0) << (
I % BITWORD_SIZE);
372 Bits[
I / BITWORD_SIZE] |= PrefixMask;
375 for (;
I + BITWORD_SIZE <=
E;
I += BITWORD_SIZE)
376 Bits[
I / BITWORD_SIZE] = ~BitWord(0);
378 BitWord PostfixMask = (BitWord(1) << (
E % BITWORD_SIZE)) - 1;
380 Bits[
I / BITWORD_SIZE] |= PostfixMask;
391 Bits[
Idx / BITWORD_SIZE] &= ~(BitWord(1) << (
Idx % BITWORD_SIZE));
397 assert(
I <=
E &&
"Attempted to reset backwards range!");
398 assert(
E <=
size() &&
"Attempted to reset out-of-bounds range!");
400 if (
I ==
E)
return *
this;
402 if (
I / BITWORD_SIZE ==
E / BITWORD_SIZE) {
403 BitWord EMask = BitWord(1) << (
E % BITWORD_SIZE);
404 BitWord IMask = BitWord(1) << (
I % BITWORD_SIZE);
405 BitWord Mask = EMask - IMask;
406 Bits[
I / BITWORD_SIZE] &= ~Mask;
410 BitWord PrefixMask = ~BitWord(0) << (
I % BITWORD_SIZE);
411 Bits[
I / BITWORD_SIZE] &= ~PrefixMask;
414 for (;
I + BITWORD_SIZE <=
E;
I += BITWORD_SIZE)
415 Bits[
I / BITWORD_SIZE] = BitWord(0);
417 BitWord PostfixMask = (BitWord(1) << (
E % BITWORD_SIZE)) - 1;
419 Bits[
I / BITWORD_SIZE] &= ~PostfixMask;
425 for (
auto &Bit : Bits)
432 Bits[
Idx / BITWORD_SIZE] ^= BitWord(1) << (
Idx % BITWORD_SIZE);
438 assert (
Idx < Size &&
"Out-of-bounds Bit access.");
443 assert (
Idx < Size &&
"Out-of-bounds Bit access.");
444 BitWord Mask = BitWord(1) << (
Idx % BITWORD_SIZE);
445 return (Bits[
Idx / BITWORD_SIZE] & Mask) != 0;
450 assert(!
empty() &&
"Getting last element of empty vector.");
451 return (*
this)[
size() - 1];
460 unsigned OldSize = Size;
461 unsigned NewSize = Size + 1;
477 assert(!
empty() &&
"Empty vector has no element to pop.");
483 unsigned ThisWords = Bits.size();
484 unsigned RHSWords =
RHS.Bits.size();
485 for (
unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
486 if (Bits[i] &
RHS.Bits[i])
495 unsigned NumWords = Bits.size();
496 return std::equal(Bits.begin(), Bits.begin() + NumWords,
RHS.Bits.begin());
503 unsigned ThisWords = Bits.size();
504 unsigned RHSWords =
RHS.Bits.size();
506 for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
507 Bits[i] &=
RHS.Bits[i];
512 for (; i != ThisWords; ++i)
520 unsigned ThisWords = Bits.size();
521 unsigned RHSWords =
RHS.Bits.size();
522 for (
unsigned i = 0; i != std::min(ThisWords, RHSWords); ++i)
523 Bits[i] &= ~
RHS.Bits[i];
530 unsigned ThisWords = Bits.size();
531 unsigned RHSWords =
RHS.Bits.size();
533 for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
534 if ((Bits[i] & ~
RHS.Bits[i]) != 0)
537 for (; i != ThisWords ; ++i)
544 template <
class F,
class... ArgTys>
546 ArgTys
const &...Args) {
548 std::initializer_list<unsigned>{Args.size()...},
549 [&
Arg](
auto const &BV) {
return Arg.size() == BV; }) &&
553 Out.Bits[
I] = f(
Arg.Bits[
I], Args.Bits[
I]...);
554 Out.clear_unused_bits();
562 Bits[
I] |=
RHS.Bits[
I];
570 Bits[
I] ^=
RHS.Bits[
I];
579 unsigned NumWords = Bits.size();
582 wordShr(
N / BITWORD_SIZE);
584 unsigned BitDistance =
N % BITWORD_SIZE;
585 if (BitDistance == 0)
610 const BitWord Mask = maskTrailingOnes<BitWord>(BitDistance);
611 const unsigned LSH = BITWORD_SIZE - BitDistance;
613 for (
unsigned I = 0;
I < NumWords - 1; ++
I) {
614 Bits[
I] >>= BitDistance;
615 Bits[
I] |= (Bits[
I + 1] & Mask) << LSH;
618 Bits[NumWords - 1] >>= BitDistance;
628 unsigned NumWords = Bits.size();
631 wordShl(
N / BITWORD_SIZE);
633 unsigned BitDistance =
N % BITWORD_SIZE;
634 if (BitDistance == 0)
660 const BitWord Mask = maskLeadingOnes<BitWord>(BitDistance);
661 const unsigned RSH = BITWORD_SIZE - BitDistance;
663 for (
int I = NumWords - 1;
I > 0; --
I) {
664 Bits[
I] <<= BitDistance;
665 Bits[
I] |= (Bits[
I - 1] & Mask) >> RSH;
667 Bits[0] <<= BitDistance;
679 assert(!Size && Bits.empty());
701 applyMask<true, false>(Mask, MaskWords);
707 applyMask<false, false>(Mask, MaskWords);
713 applyMask<true, true>(Mask, MaskWords);
719 applyMask<false, true>(Mask, MaskWords);
746 std::copy(Bits.begin(), Bits.begin() + NumWords - Count,
747 Bits.begin() + Count);
748 std::fill(Bits.begin(), Bits.begin() + Count, 0);
761 std::copy(Bits.begin() + Count, Bits.begin() + NumWords, Bits.begin());
762 std::fill(Bits.begin() + NumWords - Count, Bits.begin() + NumWords, 0);
765 int next_unset_in_word(
int WordIndex, BitWord Word)
const {
770 unsigned NumBitWords(
unsigned S)
const {
771 return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
775 void set_unused_bits(
bool t =
true) {
777 if (
unsigned ExtraBits = Size % BITWORD_SIZE) {
778 BitWord ExtraBitMask = ~BitWord(0) << ExtraBits;
780 Bits.back() |= ExtraBitMask;
782 Bits.back() &= ~ExtraBitMask;
787 void clear_unused_bits() {
788 set_unused_bits(
false);
791 void init_words(
bool t) {
792 std::fill(
Bits.begin(),
Bits.end(), 0 - (BitWord)t);
795 template<
bool AddBits,
bool InvertMask>
796 void applyMask(
const uint32_t *Mask,
unsigned MaskWords) {
797 static_assert(BITWORD_SIZE % 32 == 0,
"Unsupported BitWord size.");
798 MaskWords = std::min(MaskWords, (
size() + 31) / 32);
799 const unsigned Scale = BITWORD_SIZE / 32;
801 for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
802 BitWord BW =
Bits[i];
804 for (
unsigned b = 0;
b != BITWORD_SIZE;
b += 32) {
806 if (InvertMask)
M = ~M;
807 if (AddBits) BW |= BitWord(M) <<
b;
808 else BW &= ~(BitWord(M) <<
b);
812 for (
unsigned b = 0; MaskWords;
b += 32, --MaskWords) {
814 if (InvertMask)
M = ~M;
815 if (AddBits)
Bits[i] |= BitWord(M) <<
b;
816 else Bits[i] &= ~(BitWord(M) <<
b);
829 return X.getMemorySize();
841 getHashValue(std::make_pair(V.size(), V.getData()));
844 if (
LHS.isInvalid() ||
RHS.isInvalid())
845 return LHS.isInvalid() ==
RHS.isInvalid();
amdgpu Simplify well known AMD library false FunctionCallee Value * Arg
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_UNLIKELY(EXPR)
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file defines DenseMapInfo traits for DenseMap.
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
reference & operator=(bool t)
reference(BitVector &b, unsigned Idx)
reference & operator=(reference t)
reference(const reference &)=default
BitVector & operator>>=(unsigned N)
bool test(unsigned Idx) const
void swap(BitVector &RHS)
int find_first() const
find_first - Returns the index of the first set bit, -1 if none of the bits are set.
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
bool anyCommon(const BitVector &RHS) const
Test if any common bits are set.
void clear()
clear - Removes all bits from the bitvector.
bool test(const BitVector &RHS) const
test - Check if (This - RHS) is zero.
BitVector()=default
BitVector default ctor - Creates an empty bitvector.
bool back() const
Return the last element in the vector.
bool operator!=(const BitVector &RHS) const
void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
int find_last() const
find_last - Returns the index of the last set bit, -1 if none of the bits are set.
int find_first_unset_in(unsigned Begin, unsigned End) const
find_first_unset_in - Returns the index of the first unset bit in the range [Begin,...
size_type count() const
count - Returns the number of bits which are set.
BitVector & operator<<=(unsigned N)
ArrayRef< BitWord > getData() const
const_set_bits_iterator set_bits_end() const
BitVector & reset(unsigned Idx)
const_set_bits_iterator set_iterator
int find_last_unset() const
find_last_unset - Returns the index of the last unset bit, -1 if all of the bits are set.
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
setBitsInMask - Add '1' bits from Mask to this vector.
bool any() const
any - Returns true if any bit is set.
int find_prev_unset(unsigned PriorTo)
find_prev_unset - Returns the index of the first unset bit that precedes the bit at PriorTo.
bool all() const
all - Returns true if all bits are set.
BitVector(unsigned s, bool t=false)
BitVector ctor - Creates a bitvector of specified number of bits.
BitVector & reset(const BitVector &RHS)
reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
BitVector & operator|=(const BitVector &RHS)
void pop_back()
Pop one bit from the end of the vector.
void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
clearBitsInMask - Clear any bits in this vector that are set in Mask.
int find_prev(unsigned PriorTo) const
find_prev - Returns the index of the first set bit that precedes the the bit at PriorTo.
int find_last_in(unsigned Begin, unsigned End) const
find_last_in - Returns the index of the last set bit in the range [Begin, End).
void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
BitVector & reset(unsigned I, unsigned E)
reset - Efficiently reset a range of bits in [I, E)
bool operator==(const BitVector &RHS) const
int find_next(unsigned Prev) const
find_next - Returns the index of the next set bit following the "Prev" bit.
const_set_bits_iterator_impl< BitVector > const_set_bits_iterator
bool none() const
none - Returns true if none of the bits are set.
const_set_bits_iterator set_bits_begin() const
iterator_range< const_set_bits_iterator > set_bits() const
BitVector & set(unsigned I, unsigned E)
set - Efficiently set a range of bits in [I, E)
size_type getBitCapacity() const
int find_first_in(unsigned Begin, unsigned End, bool Set=true) const
find_first_in - Returns the index of the first set / unset bit, depending on Set, in the range [Begin...
size_type size() const
size - Returns the number of bits in this bitvector.
BitVector & operator^=(const BitVector &RHS)
BitVector & flip(unsigned Idx)
size_type getMemorySize() const
Return the size (in bytes) of the bit vector.
static BitVector & apply(F &&f, BitVector &Out, BitVector const &Arg, ArgTys const &...Args)
bool empty() const
empty - Tests whether there are no bits in this bitvector.
int find_next_unset(unsigned Prev) const
find_next_unset - Returns the index of the next unset bit following the "Prev" bit.
BitVector & set(unsigned Idx)
BitVector & operator&=(const BitVector &RHS)
Intersection, union, disjoint union.
int find_first_unset() const
find_first_unset - Returns the index of the first unset bit, -1 if all of the bits are set.
int find_last_unset_in(unsigned Begin, unsigned End) const
find_last_unset_in - Returns the index of the last unset bit in the range [Begin, End).
bool operator[](unsigned Idx) const
reference operator[](unsigned Idx)
ForwardIterator for the bits that are set.
const_set_bits_iterator_impl(const BitVectorT &Parent)
bool operator==(const const_set_bits_iterator_impl &Other) const
const_set_bits_iterator_impl(const const_set_bits_iterator_impl &)=default
const_set_bits_iterator_impl & operator++()
const_set_bits_iterator_impl operator++(int)
const_set_bits_iterator_impl(const BitVectorT &Parent, int Current)
bool operator!=(const const_set_bits_iterator_impl &Other) const
unsigned operator*() const
A range adaptor for a pair of iterators.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
This is an optimization pass for GlobalISel generic memory operations.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
int popcount(T Value) noexcept
Count the number of set bits in a value.
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
BitVector::size_type capacity_in_bytes(const BitVector &X)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
int countl_zero(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
int countl_one(T Value)
Count the number of ones from the most significant bit to the first zero bit.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
static BitVector getEmptyKey()
static bool isEqual(const BitVector &LHS, const BitVector &RHS)
static unsigned getHashValue(const BitVector &V)
static BitVector getTombstoneKey()
An information struct used to provide DenseMap with the various necessary components for a given valu...