LLVM 18.0.0git
ELF_riscv.cpp
Go to the documentation of this file.
1//===------- ELF_riscv.cpp -JIT linker implementation for ELF/riscv -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// ELF/riscv jit-link implementation.
10//
11//===----------------------------------------------------------------------===//
12
14#include "ELFLinkGraphBuilder.h"
15#include "JITLinkGeneric.h"
20#include "llvm/Object/ELF.h"
22#include "llvm/Support/Endian.h"
23
24#define DEBUG_TYPE "jitlink"
25using namespace llvm;
26using namespace llvm::jitlink;
27using namespace llvm::jitlink::riscv;
28
29namespace {
30
31class PerGraphGOTAndPLTStubsBuilder_ELF_riscv
33 PerGraphGOTAndPLTStubsBuilder_ELF_riscv> {
34public:
35 static constexpr size_t StubEntrySize = 16;
36 static const uint8_t NullGOTEntryContent[8];
37 static const uint8_t RV64StubContent[StubEntrySize];
38 static const uint8_t RV32StubContent[StubEntrySize];
39
41 PerGraphGOTAndPLTStubsBuilder_ELF_riscv>::PerGraphGOTAndPLTStubsBuilder;
42
43 bool isRV64() const { return G.getPointerSize() == 8; }
44
45 bool isGOTEdgeToFix(Edge &E) const { return E.getKind() == R_RISCV_GOT_HI20; }
46
47 Symbol &createGOTEntry(Symbol &Target) {
48 Block &GOTBlock =
49 G.createContentBlock(getGOTSection(), getGOTEntryBlockContent(),
50 orc::ExecutorAddr(), G.getPointerSize(), 0);
51 GOTBlock.addEdge(isRV64() ? R_RISCV_64 : R_RISCV_32, 0, Target, 0);
52 return G.addAnonymousSymbol(GOTBlock, 0, G.getPointerSize(), false, false);
53 }
54
55 Symbol &createPLTStub(Symbol &Target) {
56 Block &StubContentBlock = G.createContentBlock(
57 getStubsSection(), getStubBlockContent(), orc::ExecutorAddr(), 4, 0);
58 auto &GOTEntrySymbol = getGOTEntry(Target);
59 StubContentBlock.addEdge(R_RISCV_CALL, 0, GOTEntrySymbol, 0);
60 return G.addAnonymousSymbol(StubContentBlock, 0, StubEntrySize, true,
61 false);
62 }
63
64 void fixGOTEdge(Edge &E, Symbol &GOTEntry) {
65 // Replace the relocation pair (R_RISCV_GOT_HI20, R_RISCV_PCREL_LO12)
66 // with (R_RISCV_PCREL_HI20, R_RISCV_PCREL_LO12)
67 // Therefore, here just change the R_RISCV_GOT_HI20 to R_RISCV_PCREL_HI20
68 E.setKind(R_RISCV_PCREL_HI20);
69 E.setTarget(GOTEntry);
70 }
71
72 void fixPLTEdge(Edge &E, Symbol &PLTStubs) {
73 assert((E.getKind() == R_RISCV_CALL || E.getKind() == R_RISCV_CALL_PLT ||
74 E.getKind() == CallRelaxable) &&
75 "Not a PLT edge?");
76 E.setKind(R_RISCV_CALL);
77 E.setTarget(PLTStubs);
78 }
79
80 bool isExternalBranchEdge(Edge &E) const {
81 return (E.getKind() == R_RISCV_CALL || E.getKind() == R_RISCV_CALL_PLT ||
82 E.getKind() == CallRelaxable) &&
83 !E.getTarget().isDefined();
84 }
85
86private:
87 Section &getGOTSection() const {
88 if (!GOTSection)
89 GOTSection = &G.createSection("$__GOT", orc::MemProt::Read);
90 return *GOTSection;
91 }
92
93 Section &getStubsSection() const {
94 if (!StubsSection)
95 StubsSection =
96 &G.createSection("$__STUBS", orc::MemProt::Read | orc::MemProt::Exec);
97 return *StubsSection;
98 }
99
100 ArrayRef<char> getGOTEntryBlockContent() {
101 return {reinterpret_cast<const char *>(NullGOTEntryContent),
102 G.getPointerSize()};
103 }
104
105 ArrayRef<char> getStubBlockContent() {
106 auto StubContent = isRV64() ? RV64StubContent : RV32StubContent;
107 return {reinterpret_cast<const char *>(StubContent), StubEntrySize};
108 }
109
110 mutable Section *GOTSection = nullptr;
111 mutable Section *StubsSection = nullptr;
112};
113
114const uint8_t PerGraphGOTAndPLTStubsBuilder_ELF_riscv::NullGOTEntryContent[8] =
115 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
116
117const uint8_t
118 PerGraphGOTAndPLTStubsBuilder_ELF_riscv::RV64StubContent[StubEntrySize] = {
119 0x17, 0x0e, 0x00, 0x00, // auipc t3, literal
120 0x03, 0x3e, 0x0e, 0x00, // ld t3, literal(t3)
121 0x67, 0x00, 0x0e, 0x00, // jr t3
122 0x13, 0x00, 0x00, 0x00}; // nop
123
124const uint8_t
125 PerGraphGOTAndPLTStubsBuilder_ELF_riscv::RV32StubContent[StubEntrySize] = {
126 0x17, 0x0e, 0x00, 0x00, // auipc t3, literal
127 0x03, 0x2e, 0x0e, 0x00, // lw t3, literal(t3)
128 0x67, 0x00, 0x0e, 0x00, // jr t3
129 0x13, 0x00, 0x00, 0x00}; // nop
130} // namespace
131namespace llvm {
132namespace jitlink {
133
135 using namespace riscv;
136 assert((E.getKind() == R_RISCV_PCREL_LO12_I ||
137 E.getKind() == R_RISCV_PCREL_LO12_S) &&
138 "Can only have high relocation for R_RISCV_PCREL_LO12_I or "
139 "R_RISCV_PCREL_LO12_S");
140
141 const Symbol &Sym = E.getTarget();
142 const Block &B = Sym.getBlock();
144
145 struct Comp {
146 bool operator()(const Edge &Lhs, orc::ExecutorAddrDiff Offset) {
147 return Lhs.getOffset() < Offset;
148 }
149 bool operator()(orc::ExecutorAddrDiff Offset, const Edge &Rhs) {
150 return Offset < Rhs.getOffset();
151 }
152 };
153
154 auto Bound =
155 std::equal_range(B.edges().begin(), B.edges().end(), Offset, Comp{});
156
157 for (auto It = Bound.first; It != Bound.second; ++It) {
158 if (It->getKind() == R_RISCV_PCREL_HI20)
159 return *It;
160 }
161
162 return make_error<JITLinkError>(
163 "No HI20 PCREL relocation type be found for LO12 PCREL relocation type");
164}
165
166static uint32_t extractBits(uint32_t Num, unsigned Low, unsigned Size) {
167 return (Num & (((1ULL << Size) - 1) << Low)) >> Low;
168}
169
170static inline bool isAlignmentCorrect(uint64_t Value, int N) {
171 return (Value & (N - 1)) ? false : true;
172}
173
174// Requires 0 < N <= 64.
175static inline bool isInRangeForImm(int64_t Value, int N) {
176 return Value == llvm::SignExtend64(Value, N);
177}
178
179class ELFJITLinker_riscv : public JITLinker<ELFJITLinker_riscv> {
180 friend class JITLinker<ELFJITLinker_riscv>;
181
182public:
183 ELFJITLinker_riscv(std::unique_ptr<JITLinkContext> Ctx,
184 std::unique_ptr<LinkGraph> G, PassConfiguration PassConfig)
185 : JITLinker(std::move(Ctx), std::move(G), std::move(PassConfig)) {}
186
187private:
188 Error applyFixup(LinkGraph &G, Block &B, const Edge &E) const {
189 using namespace riscv;
190 using namespace llvm::support;
191
192 char *BlockWorkingMem = B.getAlreadyMutableContent().data();
193 char *FixupPtr = BlockWorkingMem + E.getOffset();
194 orc::ExecutorAddr FixupAddress = B.getAddress() + E.getOffset();
195 switch (E.getKind()) {
196 case R_RISCV_32: {
197 int64_t Value = (E.getTarget().getAddress() + E.getAddend()).getValue();
198 *(little32_t *)FixupPtr = static_cast<uint32_t>(Value);
199 break;
200 }
201 case R_RISCV_64: {
202 int64_t Value = (E.getTarget().getAddress() + E.getAddend()).getValue();
203 *(little64_t *)FixupPtr = static_cast<uint64_t>(Value);
204 break;
205 }
206 case R_RISCV_BRANCH: {
207 int64_t Value = E.getTarget().getAddress() + E.getAddend() - FixupAddress;
208 if (LLVM_UNLIKELY(!isInRangeForImm(Value >> 1, 12)))
209 return makeTargetOutOfRangeError(G, B, E);
211 return makeAlignmentError(FixupAddress, Value, 2, E);
212 uint32_t Imm12 = extractBits(Value, 12, 1) << 31;
213 uint32_t Imm10_5 = extractBits(Value, 5, 6) << 25;
214 uint32_t Imm4_1 = extractBits(Value, 1, 4) << 8;
215 uint32_t Imm11 = extractBits(Value, 11, 1) << 7;
216 uint32_t RawInstr = *(little32_t *)FixupPtr;
217 *(little32_t *)FixupPtr =
218 (RawInstr & 0x1FFF07F) | Imm12 | Imm10_5 | Imm4_1 | Imm11;
219 break;
220 }
221 case R_RISCV_JAL: {
222 int64_t Value = E.getTarget().getAddress() + E.getAddend() - FixupAddress;
223 if (LLVM_UNLIKELY(!isInRangeForImm(Value >> 1, 20)))
224 return makeTargetOutOfRangeError(G, B, E);
226 return makeAlignmentError(FixupAddress, Value, 2, E);
227 uint32_t Imm20 = extractBits(Value, 20, 1) << 31;
228 uint32_t Imm10_1 = extractBits(Value, 1, 10) << 21;
229 uint32_t Imm11 = extractBits(Value, 11, 1) << 20;
230 uint32_t Imm19_12 = extractBits(Value, 12, 8) << 12;
231 uint32_t RawInstr = *(little32_t *)FixupPtr;
232 *(little32_t *)FixupPtr =
233 (RawInstr & 0xFFF) | Imm20 | Imm10_1 | Imm11 | Imm19_12;
234 break;
235 }
236 case CallRelaxable:
237 // Treat as R_RISCV_CALL when the relaxation pass did not run
238 case R_RISCV_CALL_PLT:
239 case R_RISCV_CALL: {
240 int64_t Value = E.getTarget().getAddress() + E.getAddend() - FixupAddress;
241 int64_t Hi = Value + 0x800;
243 return makeTargetOutOfRangeError(G, B, E);
244 int32_t Lo = Value & 0xFFF;
245 uint32_t RawInstrAuipc = *(little32_t *)FixupPtr;
246 uint32_t RawInstrJalr = *(little32_t *)(FixupPtr + 4);
247 *(little32_t *)FixupPtr =
248 RawInstrAuipc | (static_cast<uint32_t>(Hi & 0xFFFFF000));
249 *(little32_t *)(FixupPtr + 4) =
250 RawInstrJalr | (static_cast<uint32_t>(Lo) << 20);
251 break;
252 }
253 // The relocations R_RISCV_CALL_PLT and R_RISCV_GOT_HI20 are handled by
254 // PerGraphGOTAndPLTStubsBuilder_ELF_riscv and are transformed into
255 // R_RISCV_CALL and R_RISCV_PCREL_HI20.
256 case R_RISCV_PCREL_HI20: {
257 int64_t Value = E.getTarget().getAddress() + E.getAddend() - FixupAddress;
258 int64_t Hi = Value + 0x800;
260 return makeTargetOutOfRangeError(G, B, E);
261 uint32_t RawInstr = *(little32_t *)FixupPtr;
262 *(little32_t *)FixupPtr =
263 (RawInstr & 0xFFF) | (static_cast<uint32_t>(Hi & 0xFFFFF000));
264 break;
265 }
267 // FIXME: We assume that R_RISCV_PCREL_HI20 is present in object code and
268 // pairs with current relocation R_RISCV_PCREL_LO12_I. So here may need a
269 // check.
270 auto RelHI20 = getRISCVPCRelHi20(E);
271 if (!RelHI20)
272 return RelHI20.takeError();
273 int64_t Value = RelHI20->getTarget().getAddress() +
274 RelHI20->getAddend() - E.getTarget().getAddress();
275 int64_t Lo = Value & 0xFFF;
276 uint32_t RawInstr = *(little32_t *)FixupPtr;
277 *(little32_t *)FixupPtr =
278 (RawInstr & 0xFFFFF) | (static_cast<uint32_t>(Lo & 0xFFF) << 20);
279 break;
280 }
282 // FIXME: We assume that R_RISCV_PCREL_HI20 is present in object code and
283 // pairs with current relocation R_RISCV_PCREL_LO12_S. So here may need a
284 // check.
285 auto RelHI20 = getRISCVPCRelHi20(E);
286 if (!RelHI20)
287 return RelHI20.takeError();
288 int64_t Value = RelHI20->getTarget().getAddress() +
289 RelHI20->getAddend() - E.getTarget().getAddress();
290 int64_t Lo = Value & 0xFFF;
291 uint32_t Imm11_5 = extractBits(Lo, 5, 7) << 25;
292 uint32_t Imm4_0 = extractBits(Lo, 0, 5) << 7;
293 uint32_t RawInstr = *(little32_t *)FixupPtr;
294
295 *(little32_t *)FixupPtr = (RawInstr & 0x1FFF07F) | Imm11_5 | Imm4_0;
296 break;
297 }
298 case R_RISCV_HI20: {
299 int64_t Value = (E.getTarget().getAddress() + E.getAddend()).getValue();
300 int64_t Hi = Value + 0x800;
302 return makeTargetOutOfRangeError(G, B, E);
303 uint32_t RawInstr = *(little32_t *)FixupPtr;
304 *(little32_t *)FixupPtr =
305 (RawInstr & 0xFFF) | (static_cast<uint32_t>(Hi & 0xFFFFF000));
306 break;
307 }
308 case R_RISCV_LO12_I: {
309 // FIXME: We assume that R_RISCV_HI20 is present in object code and pairs
310 // with current relocation R_RISCV_LO12_I. So here may need a check.
311 int64_t Value = (E.getTarget().getAddress() + E.getAddend()).getValue();
312 int32_t Lo = Value & 0xFFF;
313 uint32_t RawInstr = *(little32_t *)FixupPtr;
314 *(little32_t *)FixupPtr =
315 (RawInstr & 0xFFFFF) | (static_cast<uint32_t>(Lo & 0xFFF) << 20);
316 break;
317 }
318 case R_RISCV_LO12_S: {
319 // FIXME: We assume that R_RISCV_HI20 is present in object code and pairs
320 // with current relocation R_RISCV_LO12_S. So here may need a check.
321 int64_t Value = (E.getTarget().getAddress() + E.getAddend()).getValue();
322 int64_t Lo = Value & 0xFFF;
323 uint32_t Imm11_5 = extractBits(Lo, 5, 7) << 25;
324 uint32_t Imm4_0 = extractBits(Lo, 0, 5) << 7;
325 uint32_t RawInstr = *(little32_t *)FixupPtr;
326 *(little32_t *)FixupPtr = (RawInstr & 0x1FFF07F) | Imm11_5 | Imm4_0;
327 break;
328 }
329 case R_RISCV_ADD8: {
330 int64_t Value =
331 (E.getTarget().getAddress() +
332 *(reinterpret_cast<const uint8_t *>(FixupPtr)) + E.getAddend())
333 .getValue();
334 *FixupPtr = static_cast<uint8_t>(Value);
335 break;
336 }
337 case R_RISCV_ADD16: {
338 int64_t Value = (E.getTarget().getAddress() +
339 support::endian::read16le(FixupPtr) + E.getAddend())
340 .getValue();
341 *(little16_t *)FixupPtr = static_cast<uint16_t>(Value);
342 break;
343 }
344 case R_RISCV_ADD32: {
345 int64_t Value = (E.getTarget().getAddress() +
346 support::endian::read32le(FixupPtr) + E.getAddend())
347 .getValue();
348 *(little32_t *)FixupPtr = static_cast<uint32_t>(Value);
349 break;
350 }
351 case R_RISCV_ADD64: {
352 int64_t Value = (E.getTarget().getAddress() +
353 support::endian::read64le(FixupPtr) + E.getAddend())
354 .getValue();
355 *(little64_t *)FixupPtr = static_cast<uint64_t>(Value);
356 break;
357 }
358 case R_RISCV_SUB8: {
359 int64_t Value = *(reinterpret_cast<const uint8_t *>(FixupPtr)) -
360 E.getTarget().getAddress().getValue() - E.getAddend();
361 *FixupPtr = static_cast<uint8_t>(Value);
362 break;
363 }
364 case R_RISCV_SUB16: {
365 int64_t Value = support::endian::read16le(FixupPtr) -
366 E.getTarget().getAddress().getValue() - E.getAddend();
367 *(little16_t *)FixupPtr = static_cast<uint32_t>(Value);
368 break;
369 }
370 case R_RISCV_SUB32: {
371 int64_t Value = support::endian::read32le(FixupPtr) -
372 E.getTarget().getAddress().getValue() - E.getAddend();
373 *(little32_t *)FixupPtr = static_cast<uint32_t>(Value);
374 break;
375 }
376 case R_RISCV_SUB64: {
377 int64_t Value = support::endian::read64le(FixupPtr) -
378 E.getTarget().getAddress().getValue() - E.getAddend();
379 *(little64_t *)FixupPtr = static_cast<uint64_t>(Value);
380 break;
381 }
382 case R_RISCV_RVC_BRANCH: {
383 int64_t Value = E.getTarget().getAddress() + E.getAddend() - FixupAddress;
384 if (LLVM_UNLIKELY(!isInRangeForImm(Value >> 1, 8)))
385 return makeTargetOutOfRangeError(G, B, E);
387 return makeAlignmentError(FixupAddress, Value, 2, E);
388 uint16_t Imm8 = extractBits(Value, 8, 1) << 12;
389 uint16_t Imm4_3 = extractBits(Value, 3, 2) << 10;
390 uint16_t Imm7_6 = extractBits(Value, 6, 2) << 5;
391 uint16_t Imm2_1 = extractBits(Value, 1, 2) << 3;
392 uint16_t Imm5 = extractBits(Value, 5, 1) << 2;
393 uint16_t RawInstr = *(little16_t *)FixupPtr;
394 *(little16_t *)FixupPtr =
395 (RawInstr & 0xE383) | Imm8 | Imm4_3 | Imm7_6 | Imm2_1 | Imm5;
396 break;
397 }
398 case R_RISCV_RVC_JUMP: {
399 int64_t Value = E.getTarget().getAddress() + E.getAddend() - FixupAddress;
400 if (LLVM_UNLIKELY(!isInRangeForImm(Value >> 1, 11)))
401 return makeTargetOutOfRangeError(G, B, E);
403 return makeAlignmentError(FixupAddress, Value, 2, E);
404 uint16_t Imm11 = extractBits(Value, 11, 1) << 12;
405 uint16_t Imm4 = extractBits(Value, 4, 1) << 11;
406 uint16_t Imm9_8 = extractBits(Value, 8, 2) << 9;
407 uint16_t Imm10 = extractBits(Value, 10, 1) << 8;
408 uint16_t Imm6 = extractBits(Value, 6, 1) << 7;
409 uint16_t Imm7 = extractBits(Value, 7, 1) << 6;
410 uint16_t Imm3_1 = extractBits(Value, 1, 3) << 3;
411 uint16_t Imm5 = extractBits(Value, 5, 1) << 2;
412 uint16_t RawInstr = *(little16_t *)FixupPtr;
413 *(little16_t *)FixupPtr = (RawInstr & 0xE003) | Imm11 | Imm4 | Imm9_8 |
414 Imm10 | Imm6 | Imm7 | Imm3_1 | Imm5;
415 break;
416 }
417 case R_RISCV_SUB6: {
418 int64_t Value = *(reinterpret_cast<const uint8_t *>(FixupPtr)) & 0x3f;
419 Value -= E.getTarget().getAddress().getValue() - E.getAddend();
420 *FixupPtr = (*FixupPtr & 0xc0) | (static_cast<uint8_t>(Value) & 0x3f);
421 break;
422 }
423 case R_RISCV_SET6: {
424 int64_t Value = (E.getTarget().getAddress() + E.getAddend()).getValue();
425 uint32_t RawData = *(little32_t *)FixupPtr;
426 int64_t Word6 = Value & 0x3f;
427 *(little32_t *)FixupPtr = (RawData & 0xffffffc0) | Word6;
428 break;
429 }
430 case R_RISCV_SET8: {
431 int64_t Value = (E.getTarget().getAddress() + E.getAddend()).getValue();
432 uint32_t RawData = *(little32_t *)FixupPtr;
433 int64_t Word8 = Value & 0xff;
434 *(little32_t *)FixupPtr = (RawData & 0xffffff00) | Word8;
435 break;
436 }
437 case R_RISCV_SET16: {
438 int64_t Value = (E.getTarget().getAddress() + E.getAddend()).getValue();
439 uint32_t RawData = *(little32_t *)FixupPtr;
440 int64_t Word16 = Value & 0xffff;
441 *(little32_t *)FixupPtr = (RawData & 0xffff0000) | Word16;
442 break;
443 }
444 case R_RISCV_SET32: {
445 int64_t Value = (E.getTarget().getAddress() + E.getAddend()).getValue();
446 int64_t Word32 = Value & 0xffffffff;
447 *(little32_t *)FixupPtr = Word32;
448 break;
449 }
450 case R_RISCV_32_PCREL: {
451 int64_t Value = E.getTarget().getAddress() + E.getAddend() - FixupAddress;
452 int64_t Word32 = Value & 0xffffffff;
453 *(little32_t *)FixupPtr = Word32;
454 break;
455 }
456 case AlignRelaxable:
457 // Ignore when the relaxation pass did not run
458 break;
459 }
460 return Error::success();
461 }
462};
463
464namespace {
465
466struct SymbolAnchor {
469 bool End; // true for the anchor of getOffset() + getSize()
470};
471
472struct BlockRelaxAux {
473 // This records symbol start and end offsets which will be adjusted according
474 // to the nearest RelocDeltas element.
476 // All edges that either 1) are R_RISCV_ALIGN or 2) have a R_RISCV_RELAX edge
477 // at the same offset.
479 // For RelaxEdges[I], the actual offset is RelaxEdges[I]->getOffset() - (I ?
480 // RelocDeltas[I - 1] : 0).
482 // For RelaxEdges[I], the actual type is EdgeKinds[I].
484 // List of rewritten instructions. Contains one raw encoded instruction per
485 // element in EdgeKinds that isn't Invalid or R_RISCV_ALIGN.
487};
488
489struct RelaxConfig {
490 bool IsRV32;
491 bool HasRVC;
492};
493
494struct RelaxAux {
495 RelaxConfig Config;
497};
498
499} // namespace
500
501static bool shouldRelax(const Section &S) {
503}
504
505static bool isRelaxable(const Edge &E) {
506 switch (E.getKind()) {
507 default:
508 return false;
509 case CallRelaxable:
510 case AlignRelaxable:
511 return true;
512 }
513}
514
515static RelaxAux initRelaxAux(LinkGraph &G) {
516 RelaxAux Aux;
517 Aux.Config.IsRV32 = G.getTargetTriple().isRISCV32();
518 const auto &Features = G.getFeatures().getFeatures();
519 Aux.Config.HasRVC = llvm::is_contained(Features, "+c");
520
521 for (auto &S : G.sections()) {
522 if (!shouldRelax(S))
523 continue;
524 for (auto *B : S.blocks()) {
525 auto BlockEmplaceResult = Aux.Blocks.try_emplace(B);
526 assert(BlockEmplaceResult.second && "Block encountered twice");
527 auto &BlockAux = BlockEmplaceResult.first->second;
528
529 for (auto &E : B->edges())
530 if (isRelaxable(E))
531 BlockAux.RelaxEdges.push_back(&E);
532
533 if (BlockAux.RelaxEdges.empty()) {
534 Aux.Blocks.erase(BlockEmplaceResult.first);
535 continue;
536 }
537
538 const auto NumEdges = BlockAux.RelaxEdges.size();
539 BlockAux.RelocDeltas.resize(NumEdges, 0);
540 BlockAux.EdgeKinds.resize_for_overwrite(NumEdges);
541
542 // Store anchors (offset and offset+size) for symbols.
543 for (auto *Sym : S.symbols()) {
544 if (!Sym->isDefined() || &Sym->getBlock() != B)
545 continue;
546
547 BlockAux.Anchors.push_back({Sym->getOffset(), Sym, false});
548 BlockAux.Anchors.push_back(
549 {Sym->getOffset() + Sym->getSize(), Sym, true});
550 }
551 }
552 }
553
554 // Sort anchors by offset so that we can find the closest relocation
555 // efficiently. For a zero size symbol, ensure that its start anchor precedes
556 // its end anchor. For two symbols with anchors at the same offset, their
557 // order does not matter.
558 for (auto &BlockAuxIter : Aux.Blocks) {
559 llvm::sort(BlockAuxIter.second.Anchors, [](auto &A, auto &B) {
560 return std::make_pair(A.Offset, A.End) < std::make_pair(B.Offset, B.End);
561 });
562 }
563
564 return Aux;
565}
566
567static void relaxAlign(orc::ExecutorAddr Loc, const Edge &E, uint32_t &Remove,
568 Edge::Kind &NewEdgeKind) {
569 // E points to the start of the padding bytes.
570 // E + Addend points to the instruction to be aligned by removing padding.
571 // Alignment is the smallest power of 2 strictly greater than Addend.
572 const auto Align = NextPowerOf2(E.getAddend());
573 const auto DestLoc = alignTo(Loc.getValue(), Align);
574 const auto SrcLoc = Loc.getValue() + E.getAddend();
575 Remove = SrcLoc - DestLoc;
576 assert(static_cast<int32_t>(Remove) >= 0 &&
577 "R_RISCV_ALIGN needs expanding the content");
578 NewEdgeKind = AlignRelaxable;
579}
580
581static void relaxCall(const Block &B, BlockRelaxAux &Aux,
582 const RelaxConfig &Config, orc::ExecutorAddr Loc,
583 const Edge &E, uint32_t &Remove,
584 Edge::Kind &NewEdgeKind) {
585 const auto JALR =
586 support::endian::read32le(B.getContent().data() + E.getOffset() + 4);
587 const auto RD = extractBits(JALR, 7, 5);
588 const auto Dest = E.getTarget().getAddress() + E.getAddend();
589 const auto Displace = Dest - Loc;
590
591 if (Config.HasRVC && isInt<12>(Displace) && RD == 0) {
592 NewEdgeKind = R_RISCV_RVC_JUMP;
593 Aux.Writes.push_back(0xa001); // c.j
594 Remove = 6;
595 } else if (Config.HasRVC && Config.IsRV32 && isInt<12>(Displace) && RD == 1) {
596 NewEdgeKind = R_RISCV_RVC_JUMP;
597 Aux.Writes.push_back(0x2001); // c.jal
598 Remove = 6;
599 } else if (isInt<21>(Displace)) {
600 NewEdgeKind = R_RISCV_JAL;
601 Aux.Writes.push_back(0x6f | RD << 7); // jal
602 Remove = 4;
603 } else {
604 // Not relaxable
605 NewEdgeKind = R_RISCV_CALL_PLT;
606 Remove = 0;
607 }
608}
609
610static bool relaxBlock(LinkGraph &G, Block &Block, BlockRelaxAux &Aux,
611 const RelaxConfig &Config) {
612 const auto BlockAddr = Block.getAddress();
613 bool Changed = false;
614 ArrayRef<SymbolAnchor> SA = ArrayRef(Aux.Anchors);
615 uint32_t Delta = 0;
616
617 Aux.EdgeKinds.assign(Aux.EdgeKinds.size(), Edge::Invalid);
618 Aux.Writes.clear();
619
620 for (auto [I, E] : llvm::enumerate(Aux.RelaxEdges)) {
621 const auto Loc = BlockAddr + E->getOffset() - Delta;
622 auto &Cur = Aux.RelocDeltas[I];
623 uint32_t Remove = 0;
624 switch (E->getKind()) {
625 case AlignRelaxable:
626 relaxAlign(Loc, *E, Remove, Aux.EdgeKinds[I]);
627 break;
628 case CallRelaxable:
629 relaxCall(Block, Aux, Config, Loc, *E, Remove, Aux.EdgeKinds[I]);
630 break;
631 default:
632 llvm_unreachable("Unexpected relaxable edge kind");
633 }
634
635 // For all anchors whose offsets are <= E->getOffset(), they are preceded by
636 // the previous relocation whose RelocDeltas value equals Delta.
637 // Decrease their offset and update their size.
638 for (; SA.size() && SA[0].Offset <= E->getOffset(); SA = SA.slice(1)) {
639 if (SA[0].End)
640 SA[0].Sym->setSize(SA[0].Offset - Delta - SA[0].Sym->getOffset());
641 else
642 SA[0].Sym->setOffset(SA[0].Offset - Delta);
643 }
644
645 Delta += Remove;
646 if (Delta != Cur) {
647 Cur = Delta;
648 Changed = true;
649 }
650 }
651
652 for (const SymbolAnchor &A : SA) {
653 if (A.End)
654 A.Sym->setSize(A.Offset - Delta - A.Sym->getOffset());
655 else
656 A.Sym->setOffset(A.Offset - Delta);
657 }
658
659 return Changed;
660}
661
662static bool relaxOnce(LinkGraph &G, RelaxAux &Aux) {
663 bool Changed = false;
664
665 for (auto &[B, BlockAux] : Aux.Blocks)
666 Changed |= relaxBlock(G, *B, BlockAux, Aux.Config);
667
668 return Changed;
669}
670
671static void finalizeBlockRelax(LinkGraph &G, Block &Block, BlockRelaxAux &Aux) {
672 auto Contents = Block.getAlreadyMutableContent();
673 auto *Dest = Contents.data();
674 auto NextWrite = Aux.Writes.begin();
675 uint32_t Offset = 0;
676 uint32_t Delta = 0;
677
678 // Update section content: remove NOPs for R_RISCV_ALIGN and rewrite
679 // instructions for relaxed relocations.
680 for (auto [I, E] : llvm::enumerate(Aux.RelaxEdges)) {
681 uint32_t Remove = Aux.RelocDeltas[I] - Delta;
682 Delta = Aux.RelocDeltas[I];
683 if (Remove == 0 && Aux.EdgeKinds[I] == Edge::Invalid)
684 continue;
685
686 // Copy from last location to the current relocated location.
687 const auto Size = E->getOffset() - Offset;
688 std::memmove(Dest, Contents.data() + Offset, Size);
689 Dest += Size;
690
691 uint32_t Skip = 0;
692 switch (Aux.EdgeKinds[I]) {
693 case Edge::Invalid:
694 break;
695 case AlignRelaxable:
696 // For R_RISCV_ALIGN, we will place Offset in a location (among NOPs) to
697 // satisfy the alignment requirement. If both Remove and E->getAddend()
698 // are multiples of 4, it is as if we have skipped some NOPs. Otherwise we
699 // are in the middle of a 4-byte NOP, and we need to rewrite the NOP
700 // sequence.
701 if (Remove % 4 || E->getAddend() % 4) {
702 Skip = E->getAddend() - Remove;
703 uint32_t J = 0;
704 for (; J + 4 <= Skip; J += 4)
705 support::endian::write32le(Dest + J, 0x00000013); // nop
706 if (J != Skip) {
707 assert(J + 2 == Skip);
708 support::endian::write16le(Dest + J, 0x0001); // c.nop
709 }
710 }
711 break;
712 case R_RISCV_RVC_JUMP:
713 Skip = 2;
714 support::endian::write16le(Dest, *NextWrite++);
715 break;
716 case R_RISCV_JAL:
717 Skip = 4;
718 support::endian::write32le(Dest, *NextWrite++);
719 break;
720 }
721
722 Dest += Skip;
723 Offset = E->getOffset() + Skip + Remove;
724 }
725
726 std::memmove(Dest, Contents.data() + Offset, Contents.size() - Offset);
727
728 // Fixup edge offsets and kinds.
729 Delta = 0;
730 size_t I = 0;
731 for (auto &E : Block.edges()) {
732 E.setOffset(E.getOffset() - Delta);
733
734 if (I < Aux.RelaxEdges.size() && Aux.RelaxEdges[I] == &E) {
735 if (Aux.EdgeKinds[I] != Edge::Invalid)
736 E.setKind(Aux.EdgeKinds[I]);
737
738 Delta = Aux.RelocDeltas[I];
739 ++I;
740 }
741 }
742
743 // Remove AlignRelaxable edges: all other relaxable edges got modified and
744 // will be used later while linking. Alignment is entirely handled here so we
745 // don't need these edges anymore.
746 for (auto IE = Block.edges().begin(); IE != Block.edges().end();) {
747 if (IE->getKind() == AlignRelaxable)
748 IE = Block.removeEdge(IE);
749 else
750 ++IE;
751 }
752}
753
754static void finalizeRelax(LinkGraph &G, RelaxAux &Aux) {
755 for (auto &[B, BlockAux] : Aux.Blocks)
756 finalizeBlockRelax(G, *B, BlockAux);
757}
758
760 auto Aux = initRelaxAux(G);
761 while (relaxOnce(G, Aux)) {
762 }
763 finalizeRelax(G, Aux);
764 return Error::success();
765}
766
767template <typename ELFT>
769private:
771 getRelocationKind(const uint32_t Type) {
772 using namespace riscv;
773 switch (Type) {
774 case ELF::R_RISCV_32:
775 return EdgeKind_riscv::R_RISCV_32;
776 case ELF::R_RISCV_64:
777 return EdgeKind_riscv::R_RISCV_64;
778 case ELF::R_RISCV_BRANCH:
779 return EdgeKind_riscv::R_RISCV_BRANCH;
780 case ELF::R_RISCV_JAL:
781 return EdgeKind_riscv::R_RISCV_JAL;
782 case ELF::R_RISCV_CALL:
783 return EdgeKind_riscv::R_RISCV_CALL;
784 case ELF::R_RISCV_CALL_PLT:
785 return EdgeKind_riscv::R_RISCV_CALL_PLT;
786 case ELF::R_RISCV_GOT_HI20:
787 return EdgeKind_riscv::R_RISCV_GOT_HI20;
788 case ELF::R_RISCV_PCREL_HI20:
789 return EdgeKind_riscv::R_RISCV_PCREL_HI20;
790 case ELF::R_RISCV_PCREL_LO12_I:
791 return EdgeKind_riscv::R_RISCV_PCREL_LO12_I;
792 case ELF::R_RISCV_PCREL_LO12_S:
793 return EdgeKind_riscv::R_RISCV_PCREL_LO12_S;
794 case ELF::R_RISCV_HI20:
795 return EdgeKind_riscv::R_RISCV_HI20;
796 case ELF::R_RISCV_LO12_I:
797 return EdgeKind_riscv::R_RISCV_LO12_I;
798 case ELF::R_RISCV_LO12_S:
799 return EdgeKind_riscv::R_RISCV_LO12_S;
800 case ELF::R_RISCV_ADD8:
801 return EdgeKind_riscv::R_RISCV_ADD8;
802 case ELF::R_RISCV_ADD16:
803 return EdgeKind_riscv::R_RISCV_ADD16;
804 case ELF::R_RISCV_ADD32:
805 return EdgeKind_riscv::R_RISCV_ADD32;
806 case ELF::R_RISCV_ADD64:
807 return EdgeKind_riscv::R_RISCV_ADD64;
808 case ELF::R_RISCV_SUB8:
809 return EdgeKind_riscv::R_RISCV_SUB8;
810 case ELF::R_RISCV_SUB16:
811 return EdgeKind_riscv::R_RISCV_SUB16;
812 case ELF::R_RISCV_SUB32:
813 return EdgeKind_riscv::R_RISCV_SUB32;
814 case ELF::R_RISCV_SUB64:
815 return EdgeKind_riscv::R_RISCV_SUB64;
816 case ELF::R_RISCV_RVC_BRANCH:
817 return EdgeKind_riscv::R_RISCV_RVC_BRANCH;
818 case ELF::R_RISCV_RVC_JUMP:
819 return EdgeKind_riscv::R_RISCV_RVC_JUMP;
820 case ELF::R_RISCV_SUB6:
821 return EdgeKind_riscv::R_RISCV_SUB6;
822 case ELF::R_RISCV_SET6:
823 return EdgeKind_riscv::R_RISCV_SET6;
824 case ELF::R_RISCV_SET8:
825 return EdgeKind_riscv::R_RISCV_SET8;
826 case ELF::R_RISCV_SET16:
827 return EdgeKind_riscv::R_RISCV_SET16;
828 case ELF::R_RISCV_SET32:
829 return EdgeKind_riscv::R_RISCV_SET32;
830 case ELF::R_RISCV_32_PCREL:
831 return EdgeKind_riscv::R_RISCV_32_PCREL;
832 case ELF::R_RISCV_ALIGN:
833 return EdgeKind_riscv::AlignRelaxable;
834 }
835
836 return make_error<JITLinkError>(
837 "Unsupported riscv relocation:" + formatv("{0:d}: ", Type) +
839 }
840
841 EdgeKind_riscv getRelaxableRelocationKind(EdgeKind_riscv Kind) {
842 switch (Kind) {
843 default:
844 // Just ignore unsupported relaxations
845 return Kind;
846 case R_RISCV_CALL:
847 case R_RISCV_CALL_PLT:
848 return CallRelaxable;
849 }
850 }
851
852 Error addRelocations() override {
853 LLVM_DEBUG(dbgs() << "Processing relocations:\n");
854
857 for (const auto &RelSect : Base::Sections)
858 if (Error Err = Base::forEachRelaRelocation(RelSect, this,
859 &Self::addSingleRelocation))
860 return Err;
861
862 return Error::success();
863 }
864
865 Error addSingleRelocation(const typename ELFT::Rela &Rel,
866 const typename ELFT::Shdr &FixupSect,
867 Block &BlockToFix) {
869
870 uint32_t Type = Rel.getType(false);
871 int64_t Addend = Rel.r_addend;
872
873 if (Type == ELF::R_RISCV_RELAX) {
874 if (BlockToFix.edges_empty())
875 return make_error<StringError>(
876 "R_RISCV_RELAX without preceding relocation",
878
879 auto &PrevEdge = *std::prev(BlockToFix.edges().end());
880 auto Kind = static_cast<EdgeKind_riscv>(PrevEdge.getKind());
881 PrevEdge.setKind(getRelaxableRelocationKind(Kind));
882 return Error::success();
883 }
884
885 Expected<riscv::EdgeKind_riscv> Kind = getRelocationKind(Type);
886 if (!Kind)
887 return Kind.takeError();
888
889 uint32_t SymbolIndex = Rel.getSymbol(false);
890 auto ObjSymbol = Base::Obj.getRelocationSymbol(Rel, Base::SymTabSec);
891 if (!ObjSymbol)
892 return ObjSymbol.takeError();
893
894 Symbol *GraphSymbol = Base::getGraphSymbol(SymbolIndex);
895 if (!GraphSymbol)
896 return make_error<StringError>(
897 formatv("Could not find symbol at given index, did you add it to "
898 "JITSymbolTable? index: {0}, shndx: {1} Size of table: {2}",
899 SymbolIndex, (*ObjSymbol)->st_shndx,
900 Base::GraphSymbols.size()),
902
903 auto FixupAddress = orc::ExecutorAddr(FixupSect.sh_addr) + Rel.r_offset;
904 Edge::OffsetT Offset = FixupAddress - BlockToFix.getAddress();
905 Edge GE(*Kind, Offset, *GraphSymbol, Addend);
906 LLVM_DEBUG({
907 dbgs() << " ";
908 printEdge(dbgs(), BlockToFix, GE, riscv::getEdgeKindName(*Kind));
909 dbgs() << "\n";
910 });
911
912 BlockToFix.addEdge(std::move(GE));
913 return Error::success();
914 }
915
916public:
919 SubtargetFeatures Features)
920 : ELFLinkGraphBuilder<ELFT>(Obj, std::move(TT), std::move(Features),
921 FileName, riscv::getEdgeKindName) {}
922};
923
926 LLVM_DEBUG({
927 dbgs() << "Building jitlink graph for new input "
928 << ObjectBuffer.getBufferIdentifier() << "...\n";
929 });
930
931 auto ELFObj = object::ObjectFile::createELFObjectFile(ObjectBuffer);
932 if (!ELFObj)
933 return ELFObj.takeError();
934
935 auto Features = (*ELFObj)->getFeatures();
936 if (!Features)
937 return Features.takeError();
938
939 if ((*ELFObj)->getArch() == Triple::riscv64) {
940 auto &ELFObjFile = cast<object::ELFObjectFile<object::ELF64LE>>(**ELFObj);
942 (*ELFObj)->getFileName(), ELFObjFile.getELFFile(),
943 (*ELFObj)->makeTriple(), std::move(*Features))
944 .buildGraph();
945 } else {
946 assert((*ELFObj)->getArch() == Triple::riscv32 &&
947 "Invalid triple for RISCV ELF object file");
948 auto &ELFObjFile = cast<object::ELFObjectFile<object::ELF32LE>>(**ELFObj);
950 (*ELFObj)->getFileName(), ELFObjFile.getELFFile(),
951 (*ELFObj)->makeTriple(), std::move(*Features))
952 .buildGraph();
953 }
954}
955
956void link_ELF_riscv(std::unique_ptr<LinkGraph> G,
957 std::unique_ptr<JITLinkContext> Ctx) {
959 const Triple &TT = G->getTargetTriple();
960 if (Ctx->shouldAddDefaultTargetPasses(TT)) {
961 if (auto MarkLive = Ctx->getMarkLivePass(TT))
962 Config.PrePrunePasses.push_back(std::move(MarkLive));
963 else
964 Config.PrePrunePasses.push_back(markAllSymbolsLive);
965 Config.PostPrunePasses.push_back(
966 PerGraphGOTAndPLTStubsBuilder_ELF_riscv::asPass);
967 Config.PostAllocationPasses.push_back(relax);
968 }
969 if (auto Err = Ctx->modifyPassConfig(*G, Config))
970 return Ctx->notifyFailed(std::move(Err));
971
972 ELFJITLinker_riscv::link(std::move(Ctx), std::move(G), std::move(Config));
973}
974
976
977} // namespace jitlink
978} // namespace llvm
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_UNLIKELY(EXPR)
Definition: Compiler.h:222
#define LLVM_DEBUG(X)
Definition: Debug.h:101
uint64_t Size
bool End
Definition: ELF_riscv.cpp:469
RelaxConfig Config
Definition: ELF_riscv.cpp:495
DenseMap< Block *, BlockRelaxAux > Blocks
Definition: ELF_riscv.cpp:496
SmallVector< uint32_t, 0 > Writes
Definition: ELF_riscv.cpp:486
SmallVector< uint32_t, 0 > RelocDeltas
Definition: ELF_riscv.cpp:481
SmallVector< Edge *, 0 > RelaxEdges
Definition: ELF_riscv.cpp:478
Symbol * Sym
Definition: ELF_riscv.cpp:468
SmallVector< Edge::Kind, 0 > EdgeKinds
Definition: ELF_riscv.cpp:483
SmallVector< SymbolAnchor, 0 > Anchors
Definition: ELF_riscv.cpp:475
bool HasRVC
Definition: ELF_riscv.cpp:491
bool IsRV32
Definition: ELF_riscv.cpp:490
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:165
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Definition: ArrayRef.h:195
Lightweight error class with error context and mandatory checking.
Definition: Error.h:160
static ErrorSuccess success()
Create a success value.
Definition: Error.h:334
Tagged union holding either a T or a Error.
Definition: Error.h:474
StringRef getBufferIdentifier() const
T * data() const
Definition: ArrayRef.h:354
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1200
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
Manages the enabling and disabling of subtarget specific features.
Target - Wrapper for Target specific information.
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
LLVM Value Representation.
Definition: Value.h:74
static Expected< std::unique_ptr< ObjectFile > > createELFObjectFile(MemoryBufferRef Object, bool InitContent=true)
Represents an address in the executor process.
uint64_t getValue() const
unique_function is a type-erasing functor similar to std::function.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ EM_RISCV
Definition: ELF.h:317
StringRef getELFRelocationTypeName(uint32_t Machine, uint32_t Type)
Definition: ELF.cpp:23
uint64_t read64le(const void *P)
Definition: Endian.h:382
uint16_t read16le(const void *P)
Definition: Endian.h:376
void write32le(void *P, uint32_t V)
Definition: Endian.h:414
void write16le(void *P, uint16_t V)
Definition: Endian.h:413
uint32_t read32le(const void *P)
Definition: Endian.h:379
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
@ Offset
Definition: DWP.cpp:440
auto formatv(const char *Fmt, Ts &&... Vals) -> formatv_object< decltype(std::make_tuple(detail::build_format_adapter(std::forward< Ts >(Vals))...))>
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are are tuples (A,...
Definition: STLExtras.h:2338
std::error_code inconvertibleErrorCode()
The value returned by this function can be returned from convertToErrorCode for Error values where no...
Definition: Error.cpp:90
static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result)
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1652
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1854
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1884
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition: MathExtras.h:449
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition: MathExtras.h:349
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39