LLVM 19.0.0git
FunctionExtras.h
Go to the documentation of this file.
1//===- FunctionExtras.h - Function type erasure utilities -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file provides a collection of function (or more generally, callable)
10/// type erasure utilities supplementing those provided by the standard library
11/// in `<function>`.
12///
13/// It provides `unique_function`, which works like `std::function` but supports
14/// move-only callable objects and const-qualification.
15///
16/// Future plans:
17/// - Add a `function` that provides ref-qualified support, which doesn't work
18/// with `std::function`.
19/// - Provide support for specifying multiple signatures to type erase callable
20/// objects with an overload set, such as those produced by generic lambdas.
21/// - Expand to include a copyable utility that directly replaces std::function
22/// but brings the above improvements.
23///
24/// Note that LLVM's utilities are greatly simplified by not supporting
25/// allocators.
26///
27/// If the standard library ever begins to provide comparable facilities we can
28/// consider switching to those.
29///
30//===----------------------------------------------------------------------===//
31
32#ifndef LLVM_ADT_FUNCTIONEXTRAS_H
33#define LLVM_ADT_FUNCTIONEXTRAS_H
34
41#include <cstring>
42#include <memory>
43#include <type_traits>
44
45namespace llvm {
46
47/// unique_function is a type-erasing functor similar to std::function.
48///
49/// It can hold move-only function objects, like lambdas capturing unique_ptrs.
50/// Accordingly, it is movable but not copyable.
51///
52/// It supports const-qualification:
53/// - unique_function<int() const> has a const operator().
54/// It can only hold functions which themselves have a const operator().
55/// - unique_function<int()> has a non-const operator().
56/// It can hold functions with a non-const operator(), like mutable lambdas.
57template <typename FunctionT> class unique_function;
58
59namespace detail {
60
61template <typename T>
63 std::enable_if_t<std::is_trivially_move_constructible<T>::value &&
64 std::is_trivially_destructible<T>::value>;
65template <typename CallableT, typename ThisT>
67 std::enable_if_t<!std::is_same<remove_cvref_t<CallableT>, ThisT>::value>;
68template <typename CallableT, typename Ret, typename... Params>
69using EnableIfCallable = std::enable_if_t<std::disjunction<
70 std::is_void<Ret>,
71 std::is_same<decltype(std::declval<CallableT>()(std::declval<Params>()...)),
72 Ret>,
73 std::is_same<const decltype(std::declval<CallableT>()(
74 std::declval<Params>()...)),
75 Ret>,
76 std::is_convertible<decltype(std::declval<CallableT>()(
77 std::declval<Params>()...)),
78 Ret>>::value>;
79
80template <typename ReturnT, typename... ParamTs> class UniqueFunctionBase {
81protected:
82 static constexpr size_t InlineStorageSize = sizeof(void *) * 3;
83
84 template <typename T, class = void>
85 struct IsSizeLessThanThresholdT : std::false_type {};
86
87 template <typename T>
89 T, std::enable_if_t<sizeof(T) <= 2 * sizeof(void *)>> : std::true_type {};
90
91 // Provide a type function to map parameters that won't observe extra copies
92 // or moves and which are small enough to likely pass in register to values
93 // and all other types to l-value reference types. We use this to compute the
94 // types used in our erased call utility to minimize copies and moves unless
95 // doing so would force things unnecessarily into memory.
96 //
97 // The heuristic used is related to common ABI register passing conventions.
98 // It doesn't have to be exact though, and in one way it is more strict
99 // because we want to still be able to observe either moves *or* copies.
100 template <typename T> struct AdjustedParamTBase {
101 static_assert(!std::is_reference<T>::value,
102 "references should be handled by template specialization");
103 using type =
104 std::conditional_t<std::is_trivially_copy_constructible<T>::value &&
105 std::is_trivially_move_constructible<T>::value &&
106 IsSizeLessThanThresholdT<T>::value,
107 T, T &>;
108 };
109
110 // This specialization ensures that 'AdjustedParam<V<T>&>' or
111 // 'AdjustedParam<V<T>&&>' does not trigger a compile-time error when 'T' is
112 // an incomplete type and V a templated type.
113 template <typename T> struct AdjustedParamTBase<T &> { using type = T &; };
114 template <typename T> struct AdjustedParamTBase<T &&> { using type = T &; };
115
116 template <typename T>
117 using AdjustedParamT = typename AdjustedParamTBase<T>::type;
118
119 // The type of the erased function pointer we use as a callback to dispatch to
120 // the stored callable when it is trivial to move and destroy.
121 using CallPtrT = ReturnT (*)(void *CallableAddr,
122 AdjustedParamT<ParamTs>... Params);
123 using MovePtrT = void (*)(void *LHSCallableAddr, void *RHSCallableAddr);
124 using DestroyPtrT = void (*)(void *CallableAddr);
125
126 /// A struct to hold a single trivial callback with sufficient alignment for
127 /// our bitpacking.
128 struct alignas(8) TrivialCallback {
129 CallPtrT CallPtr;
130 };
131
132 /// A struct we use to aggregate three callbacks when we need full set of
133 /// operations.
134 struct alignas(8) NonTrivialCallbacks {
135 CallPtrT CallPtr;
136 MovePtrT MovePtr;
137 DestroyPtrT DestroyPtr;
138 };
139
140 // Create a pointer union between either a pointer to a static trivial call
141 // pointer in a struct or a pointer to a static struct of the call, move, and
142 // destroy pointers.
143 using CallbackPointerUnionT =
144 PointerUnion<TrivialCallback *, NonTrivialCallbacks *>;
145
146 // The main storage buffer. This will either have a pointer to out-of-line
147 // storage or an inline buffer storing the callable.
148 union StorageUnionT {
149 // For out-of-line storage we keep a pointer to the underlying storage and
150 // the size. This is enough to deallocate the memory.
151 struct OutOfLineStorageT {
152 void *StoragePtr;
153 size_t Size;
154 size_t Alignment;
155 } OutOfLineStorage;
156 static_assert(
157 sizeof(OutOfLineStorageT) <= InlineStorageSize,
158 "Should always use all of the out-of-line storage for inline storage!");
159
160 // For in-line storage, we just provide an aligned character buffer. We
161 // provide three pointers worth of storage here.
162 // This is mutable as an inlined `const unique_function<void() const>` may
163 // still modify its own mutable members.
164 alignas(void *) mutable std::byte InlineStorage[InlineStorageSize];
165 } StorageUnion;
166
167 // A compressed pointer to either our dispatching callback or our table of
168 // dispatching callbacks and the flag for whether the callable itself is
169 // stored inline or not.
170 PointerIntPair<CallbackPointerUnionT, 1, bool> CallbackAndInlineFlag;
171
172 bool isInlineStorage() const { return CallbackAndInlineFlag.getInt(); }
173
174 bool isTrivialCallback() const {
175 return isa<TrivialCallback *>(CallbackAndInlineFlag.getPointer());
176 }
177
178 CallPtrT getTrivialCallback() const {
179 return cast<TrivialCallback *>(CallbackAndInlineFlag.getPointer())->CallPtr;
180 }
181
182 NonTrivialCallbacks *getNonTrivialCallbacks() const {
183 return cast<NonTrivialCallbacks *>(CallbackAndInlineFlag.getPointer());
184 }
185
186 CallPtrT getCallPtr() const {
187 return isTrivialCallback() ? getTrivialCallback()
188 : getNonTrivialCallbacks()->CallPtr;
189 }
190
191 // These three functions are only const in the narrow sense. They return
192 // mutable pointers to function state.
193 // This allows unique_function<T const>::operator() to be const, even if the
194 // underlying functor may be internally mutable.
195 //
196 // const callers must ensure they're only used in const-correct ways.
197 void *getCalleePtr() const {
198 return isInlineStorage() ? getInlineStorage() : getOutOfLineStorage();
199 }
200 void *getInlineStorage() const { return &StorageUnion.InlineStorage; }
201 void *getOutOfLineStorage() const {
202 return StorageUnion.OutOfLineStorage.StoragePtr;
203 }
204
205 size_t getOutOfLineStorageSize() const {
206 return StorageUnion.OutOfLineStorage.Size;
207 }
209 return StorageUnion.OutOfLineStorage.Alignment;
210 }
211
212 void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment) {
213 StorageUnion.OutOfLineStorage = {Ptr, Size, Alignment};
214 }
215
216 template <typename CalledAsT>
217 static ReturnT CallImpl(void *CallableAddr,
218 AdjustedParamT<ParamTs>... Params) {
219 auto &Func = *reinterpret_cast<CalledAsT *>(CallableAddr);
220 return Func(std::forward<ParamTs>(Params)...);
221 }
222
223 template <typename CallableT>
224 static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept {
225 new (LHSCallableAddr)
226 CallableT(std::move(*reinterpret_cast<CallableT *>(RHSCallableAddr)));
227 }
228
229 template <typename CallableT>
230 static void DestroyImpl(void *CallableAddr) noexcept {
231 reinterpret_cast<CallableT *>(CallableAddr)->~CallableT();
232 }
233
234 // The pointers to call/move/destroy functions are determined for each
235 // callable type (and called-as type, which determines the overload chosen).
236 // (definitions are out-of-line).
237
238 // By default, we need an object that contains all the different
239 // type erased behaviors needed. Create a static instance of the struct type
240 // here and each instance will contain a pointer to it.
241 // Wrap in a struct to avoid https://gcc.gnu.org/PR71954
242 template <typename CallableT, typename CalledAs, typename Enable = void>
244 static NonTrivialCallbacks Callbacks;
245 };
246 // See if we can create a trivial callback. We need the callable to be
247 // trivially moved and trivially destroyed so that we don't have to store
248 // type erased callbacks for those operations.
249 template <typename CallableT, typename CalledAs>
250 struct CallbacksHolder<CallableT, CalledAs, EnableIfTrivial<CallableT>> {
251 static TrivialCallback Callbacks;
252 };
253
254 // A simple tag type so the call-as type to be passed to the constructor.
255 template <typename T> struct CalledAs {};
256
257 // Essentially the "main" unique_function constructor, but subclasses
258 // provide the qualified type to be used for the call.
259 // (We always store a T, even if the call will use a pointer to const T).
260 template <typename CallableT, typename CalledAsT>
262 bool IsInlineStorage = true;
263 void *CallableAddr = getInlineStorage();
264 if (sizeof(CallableT) > InlineStorageSize ||
265 alignof(CallableT) > alignof(decltype(StorageUnion.InlineStorage))) {
266 IsInlineStorage = false;
267 // Allocate out-of-line storage. FIXME: Use an explicit alignment
268 // parameter in C++17 mode.
269 auto Size = sizeof(CallableT);
270 auto Alignment = alignof(CallableT);
271 CallableAddr = allocate_buffer(Size, Alignment);
272 setOutOfLineStorage(CallableAddr, Size, Alignment);
273 }
274
275 // Now move into the storage.
276 new (CallableAddr) CallableT(std::move(Callable));
277 CallbackAndInlineFlag.setPointerAndInt(
279 }
280
282 if (!CallbackAndInlineFlag.getPointer())
283 return;
284
285 // Cache this value so we don't re-check it after type-erased operations.
286 bool IsInlineStorage = isInlineStorage();
287
288 if (!isTrivialCallback())
289 getNonTrivialCallbacks()->DestroyPtr(
290 IsInlineStorage ? getInlineStorage() : getOutOfLineStorage());
291
292 if (!IsInlineStorage)
295 }
296
298 // Copy the callback and inline flag.
299 CallbackAndInlineFlag = RHS.CallbackAndInlineFlag;
300
301 // If the RHS is empty, just copying the above is sufficient.
302 if (!RHS)
303 return;
304
305 if (!isInlineStorage()) {
306 // The out-of-line case is easiest to move.
307 StorageUnion.OutOfLineStorage = RHS.StorageUnion.OutOfLineStorage;
308 } else if (isTrivialCallback()) {
309 // Move is trivial, just memcpy the bytes across.
310 memcpy(getInlineStorage(), RHS.getInlineStorage(), InlineStorageSize);
311 } else {
312 // Non-trivial move, so dispatch to a type-erased implementation.
314 RHS.getInlineStorage());
315 }
316
317 // Clear the old callback and inline flag to get back to as-if-null.
318 RHS.CallbackAndInlineFlag = {};
319
320#if !defined(NDEBUG) && !LLVM_ADDRESS_SANITIZER_BUILD
321 // In debug builds without ASan, we also scribble across the rest of the
322 // storage. Scribbling under AddressSanitizer (ASan) is disabled to prevent
323 // overwriting poisoned objects (e.g., annotated short strings).
324 memset(RHS.getInlineStorage(), 0xAD, InlineStorageSize);
325#endif
326 }
327
329 if (this == &RHS)
330 return *this;
331
332 // Because we don't try to provide any exception safety guarantees we can
333 // implement move assignment very simply by first destroying the current
334 // object and then move-constructing over top of it.
335 this->~UniqueFunctionBase();
336 new (this) UniqueFunctionBase(std::move(RHS));
337 return *this;
338 }
339
341
342public:
343 explicit operator bool() const {
344 return (bool)CallbackAndInlineFlag.getPointer();
345 }
346};
347
348template <typename R, typename... P>
349template <typename CallableT, typename CalledAsT, typename Enable>
350typename UniqueFunctionBase<R, P...>::NonTrivialCallbacks UniqueFunctionBase<
351 R, P...>::CallbacksHolder<CallableT, CalledAsT, Enable>::Callbacks = {
352 &CallImpl<CalledAsT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>};
353
354template <typename R, typename... P>
355template <typename CallableT, typename CalledAsT>
356typename UniqueFunctionBase<R, P...>::TrivialCallback
357 UniqueFunctionBase<R, P...>::CallbacksHolder<
358 CallableT, CalledAsT, EnableIfTrivial<CallableT>>::Callbacks{
359 &CallImpl<CalledAsT>};
360
361} // namespace detail
362
363template <typename R, typename... P>
364class unique_function<R(P...)> : public detail::UniqueFunctionBase<R, P...> {
365 using Base = detail::UniqueFunctionBase<R, P...>;
366
367public:
368 unique_function() = default;
369 unique_function(std::nullptr_t) {}
374
375 template <typename CallableT>
377 CallableT Callable,
380 : Base(std::forward<CallableT>(Callable),
381 typename Base::template CalledAs<CallableT>{}) {}
382
383 R operator()(P... Params) {
384 return this->getCallPtr()(this->getCalleePtr(), Params...);
385 }
386};
387
388template <typename R, typename... P>
390 : public detail::UniqueFunctionBase<R, P...> {
391 using Base = detail::UniqueFunctionBase<R, P...>;
392
393public:
394 unique_function() = default;
395 unique_function(std::nullptr_t) {}
400
401 template <typename CallableT>
403 CallableT Callable,
406 : Base(std::forward<CallableT>(Callable),
407 typename Base::template CalledAs<const CallableT>{}) {}
408
409 R operator()(P... Params) const {
410 return this->getCallPtr()(this->getCalleePtr(), Params...);
411 }
412};
413
414} // end namespace llvm
415
416#endif // LLVM_ADT_FUNCTIONEXTRAS_H
aarch64 promote const
Given that RA is a live value
uint64_t Size
This file defines counterparts of C library allocation functions defined in the namespace 'std'.
#define T
#define P(N)
This file defines the PointerIntPair class.
This file defines the PointerUnion class, which is a discriminated union of pointer types.
This file contains library features backported from future STL versions.
Value * RHS
void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment)
UniqueFunctionBase & operator=(UniqueFunctionBase &&RHS) noexcept
NonTrivialCallbacks * getNonTrivialCallbacks() const
UniqueFunctionBase(CallableT Callable, CalledAs< CalledAsT >)
static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept
static void DestroyImpl(void *CallableAddr) noexcept
static ReturnT CallImpl(void *CallableAddr, AdjustedParamT< ParamTs >... Params)
size_t getOutOfLineStorageAlignment() const
UniqueFunctionBase(UniqueFunctionBase &&RHS) noexcept
static constexpr size_t InlineStorageSize
unique_function(const unique_function &)=delete
unique_function(unique_function &&)=default
unique_function & operator=(const unique_function &)=delete
unique_function & operator=(unique_function &&)=default
unique_function(CallableT Callable, detail::EnableUnlessSameType< CallableT, unique_function > *=nullptr, detail::EnableIfCallable< const CallableT, R, P... > *=nullptr)
unique_function(unique_function &&)=default
unique_function & operator=(const unique_function &)=delete
unique_function(CallableT Callable, detail::EnableUnlessSameType< CallableT, unique_function > *=nullptr, detail::EnableIfCallable< CallableT, R, P... > *=nullptr)
unique_function & operator=(unique_function &&)=default
unique_function(const unique_function &)=delete
unique_function is a type-erasing functor similar to std::function.
std::enable_if_t< std::disjunction< std::is_void< Ret >, std::is_same< decltype(std::declval< CallableT >()(std::declval< Params >()...)), Ret >, std::is_same< const decltype(std::declval< CallableT >()(std::declval< Params >()...)), Ret >, std::is_convertible< decltype(std::declval< CallableT >()(std::declval< Params >()...)), Ret > >::value > EnableIfCallable
std::enable_if_t< std::is_trivially_move_constructible< T >::value &&std::is_trivially_destructible< T >::value > EnableIfTrivial
std::enable_if_t<!std::is_same< remove_cvref_t< CallableT >, ThisT >::value > EnableUnlessSameType
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_RETURNS_NOALIAS void * allocate_buffer(size_t Size, size_t Alignment)
Allocate a buffer of memory with the given size and alignment.
Definition: MemAlloc.cpp:15
void deallocate_buffer(void *Ptr, size_t Size, size_t Alignment)
Deallocate a buffer of memory with the given size and alignment.
Definition: MemAlloc.cpp:24
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858