LLVM 20.0.0git
FunctionExtras.h
Go to the documentation of this file.
1//===- FunctionExtras.h - Function type erasure utilities -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file provides a collection of function (or more generally, callable)
10/// type erasure utilities supplementing those provided by the standard library
11/// in `<function>`.
12///
13/// It provides `unique_function`, which works like `std::function` but supports
14/// move-only callable objects and const-qualification.
15///
16/// Future plans:
17/// - Add a `function` that provides ref-qualified support, which doesn't work
18/// with `std::function`.
19/// - Provide support for specifying multiple signatures to type erase callable
20/// objects with an overload set, such as those produced by generic lambdas.
21/// - Expand to include a copyable utility that directly replaces std::function
22/// but brings the above improvements.
23///
24/// Note that LLVM's utilities are greatly simplified by not supporting
25/// allocators.
26///
27/// If the standard library ever begins to provide comparable facilities we can
28/// consider switching to those.
29///
30//===----------------------------------------------------------------------===//
31
32#ifndef LLVM_ADT_FUNCTIONEXTRAS_H
33#define LLVM_ADT_FUNCTIONEXTRAS_H
34
41#include <cstring>
42#include <memory>
43#include <type_traits>
44
45namespace llvm {
46
47/// unique_function is a type-erasing functor similar to std::function.
48///
49/// It can hold move-only function objects, like lambdas capturing unique_ptrs.
50/// Accordingly, it is movable but not copyable.
51///
52/// It supports const-qualification:
53/// - unique_function<int() const> has a const operator().
54/// It can only hold functions which themselves have a const operator().
55/// - unique_function<int()> has a non-const operator().
56/// It can hold functions with a non-const operator(), like mutable lambdas.
57template <typename FunctionT> class unique_function;
58
59namespace detail {
60
61template <typename T>
63 std::enable_if_t<std::is_trivially_move_constructible<T>::value &&
64 std::is_trivially_destructible<T>::value>;
65template <typename CallableT, typename ThisT>
67 std::enable_if_t<!std::is_same<remove_cvref_t<CallableT>, ThisT>::value>;
68template <typename CallableT, typename Ret, typename... Params>
69using EnableIfCallable = std::enable_if_t<std::disjunction<
70 std::is_void<Ret>,
71 std::is_same<decltype(std::declval<CallableT>()(std::declval<Params>()...)),
72 Ret>,
73 std::is_same<const decltype(std::declval<CallableT>()(
74 std::declval<Params>()...)),
75 Ret>,
76 std::is_convertible<decltype(std::declval<CallableT>()(
77 std::declval<Params>()...)),
78 Ret>>::value>;
79
80template <typename ReturnT, typename... ParamTs> class UniqueFunctionBase {
81protected:
82 static constexpr size_t InlineStorageSize = sizeof(void *) * 3;
83 static constexpr size_t InlineStorageAlign = alignof(void *);
84
85 template <typename T, class = void>
86 struct IsSizeLessThanThresholdT : std::false_type {};
87
88 template <typename T>
90 T, std::enable_if_t<sizeof(T) <= 2 * sizeof(void *)>> : std::true_type {};
91
92 // Provide a type function to map parameters that won't observe extra copies
93 // or moves and which are small enough to likely pass in register to values
94 // and all other types to l-value reference types. We use this to compute the
95 // types used in our erased call utility to minimize copies and moves unless
96 // doing so would force things unnecessarily into memory.
97 //
98 // The heuristic used is related to common ABI register passing conventions.
99 // It doesn't have to be exact though, and in one way it is more strict
100 // because we want to still be able to observe either moves *or* copies.
101 template <typename T> struct AdjustedParamTBase {
102 static_assert(!std::is_reference<T>::value,
103 "references should be handled by template specialization");
104 using type =
105 std::conditional_t<std::is_trivially_copy_constructible<T>::value &&
106 std::is_trivially_move_constructible<T>::value &&
107 IsSizeLessThanThresholdT<T>::value,
108 T, T &>;
109 };
110
111 // This specialization ensures that 'AdjustedParam<V<T>&>' or
112 // 'AdjustedParam<V<T>&&>' does not trigger a compile-time error when 'T' is
113 // an incomplete type and V a templated type.
114 template <typename T> struct AdjustedParamTBase<T &> { using type = T &; };
115 template <typename T> struct AdjustedParamTBase<T &&> { using type = T &; };
116
117 template <typename T>
118 using AdjustedParamT = typename AdjustedParamTBase<T>::type;
119
120 // The type of the erased function pointer we use as a callback to dispatch to
121 // the stored callable when it is trivial to move and destroy.
122 using CallPtrT = ReturnT (*)(void *CallableAddr,
123 AdjustedParamT<ParamTs>... Params);
124 using MovePtrT = void (*)(void *LHSCallableAddr, void *RHSCallableAddr);
125 using DestroyPtrT = void (*)(void *CallableAddr);
126
127 /// A struct to hold a single trivial callback with sufficient alignment for
128 /// our bitpacking.
129 struct alignas(8) TrivialCallback {
130 CallPtrT CallPtr;
131 };
132
133 /// A struct we use to aggregate three callbacks when we need full set of
134 /// operations.
135 struct alignas(8) NonTrivialCallbacks {
136 CallPtrT CallPtr;
137 MovePtrT MovePtr;
138 DestroyPtrT DestroyPtr;
139 };
140
141 // Create a pointer union between either a pointer to a static trivial call
142 // pointer in a struct or a pointer to a static struct of the call, move, and
143 // destroy pointers.
144 using CallbackPointerUnionT =
145 PointerUnion<TrivialCallback *, NonTrivialCallbacks *>;
146
147 // The main storage buffer. This will either have a pointer to out-of-line
148 // storage or an inline buffer storing the callable.
149 union StorageUnionT {
150 // For out-of-line storage we keep a pointer to the underlying storage and
151 // the size. This is enough to deallocate the memory.
152 struct OutOfLineStorageT {
153 void *StoragePtr;
154 size_t Size;
155 size_t Alignment;
156 } OutOfLineStorage;
157 static_assert(
158 sizeof(OutOfLineStorageT) <= InlineStorageSize,
159 "Should always use all of the out-of-line storage for inline storage!");
160
161 // For in-line storage, we just provide an aligned character buffer. We
162 // provide three pointers worth of storage here.
163 // This is mutable as an inlined `const unique_function<void() const>` may
164 // still modify its own mutable members.
165 alignas(InlineStorageAlign) mutable std::byte
166 InlineStorage[InlineStorageSize];
167 } StorageUnion;
168
169 // A compressed pointer to either our dispatching callback or our table of
170 // dispatching callbacks and the flag for whether the callable itself is
171 // stored inline or not.
172 PointerIntPair<CallbackPointerUnionT, 1, bool> CallbackAndInlineFlag;
173
174 bool isInlineStorage() const { return CallbackAndInlineFlag.getInt(); }
175
176 bool isTrivialCallback() const {
177 return isa<TrivialCallback *>(CallbackAndInlineFlag.getPointer());
178 }
179
180 CallPtrT getTrivialCallback() const {
181 return cast<TrivialCallback *>(CallbackAndInlineFlag.getPointer())->CallPtr;
182 }
183
184 NonTrivialCallbacks *getNonTrivialCallbacks() const {
185 return cast<NonTrivialCallbacks *>(CallbackAndInlineFlag.getPointer());
186 }
187
188 CallPtrT getCallPtr() const {
189 return isTrivialCallback() ? getTrivialCallback()
190 : getNonTrivialCallbacks()->CallPtr;
191 }
192
193 // These three functions are only const in the narrow sense. They return
194 // mutable pointers to function state.
195 // This allows unique_function<T const>::operator() to be const, even if the
196 // underlying functor may be internally mutable.
197 //
198 // const callers must ensure they're only used in const-correct ways.
199 void *getCalleePtr() const {
200 return isInlineStorage() ? getInlineStorage() : getOutOfLineStorage();
201 }
202 void *getInlineStorage() const { return &StorageUnion.InlineStorage; }
203 void *getOutOfLineStorage() const {
204 return StorageUnion.OutOfLineStorage.StoragePtr;
205 }
206
207 size_t getOutOfLineStorageSize() const {
208 return StorageUnion.OutOfLineStorage.Size;
209 }
211 return StorageUnion.OutOfLineStorage.Alignment;
212 }
213
214 void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment) {
215 StorageUnion.OutOfLineStorage = {Ptr, Size, Alignment};
216 }
217
218 template <typename CalledAsT>
219 static ReturnT CallImpl(void *CallableAddr,
220 AdjustedParamT<ParamTs>... Params) {
221 auto &Func = *reinterpret_cast<CalledAsT *>(CallableAddr);
222 return Func(std::forward<ParamTs>(Params)...);
223 }
224
225 template <typename CallableT>
226 static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept {
227 new (LHSCallableAddr)
228 CallableT(std::move(*reinterpret_cast<CallableT *>(RHSCallableAddr)));
229 }
230
231 template <typename CallableT>
232 static void DestroyImpl(void *CallableAddr) noexcept {
233 reinterpret_cast<CallableT *>(CallableAddr)->~CallableT();
234 }
235
236 // The pointers to call/move/destroy functions are determined for each
237 // callable type (and called-as type, which determines the overload chosen).
238 // (definitions are out-of-line).
239
240 // By default, we need an object that contains all the different
241 // type erased behaviors needed. Create a static instance of the struct type
242 // here and each instance will contain a pointer to it.
243 // Wrap in a struct to avoid https://gcc.gnu.org/PR71954
244 template <typename CallableT, typename CalledAs, typename Enable = void>
246 static NonTrivialCallbacks Callbacks;
247 };
248 // See if we can create a trivial callback. We need the callable to be
249 // trivially moved and trivially destroyed so that we don't have to store
250 // type erased callbacks for those operations.
251 template <typename CallableT, typename CalledAs>
252 struct CallbacksHolder<CallableT, CalledAs, EnableIfTrivial<CallableT>> {
253 static TrivialCallback Callbacks;
254 };
255
256 // A simple tag type so the call-as type to be passed to the constructor.
257 template <typename T> struct CalledAs {};
258
259 // Essentially the "main" unique_function constructor, but subclasses
260 // provide the qualified type to be used for the call.
261 // (We always store a T, even if the call will use a pointer to const T).
262 template <typename CallableT, typename CalledAsT>
264 bool IsInlineStorage = true;
265 void *CallableAddr = getInlineStorage();
266 if (sizeof(CallableT) > InlineStorageSize ||
267 alignof(CallableT) > InlineStorageAlign) {
268 IsInlineStorage = false;
269 // Allocate out-of-line storage. FIXME: Use an explicit alignment
270 // parameter in C++17 mode.
271 auto Size = sizeof(CallableT);
272 auto Alignment = alignof(CallableT);
273 CallableAddr = allocate_buffer(Size, Alignment);
274 setOutOfLineStorage(CallableAddr, Size, Alignment);
275 }
276
277 // Now move into the storage.
278 new (CallableAddr) CallableT(std::move(Callable));
279 CallbackAndInlineFlag.setPointerAndInt(
281 }
282
284 if (!CallbackAndInlineFlag.getPointer())
285 return;
286
287 // Cache this value so we don't re-check it after type-erased operations.
288 bool IsInlineStorage = isInlineStorage();
289
290 if (!isTrivialCallback())
291 getNonTrivialCallbacks()->DestroyPtr(
292 IsInlineStorage ? getInlineStorage() : getOutOfLineStorage());
293
294 if (!IsInlineStorage)
297 }
298
300 // Copy the callback and inline flag.
301 CallbackAndInlineFlag = RHS.CallbackAndInlineFlag;
302
303 // If the RHS is empty, just copying the above is sufficient.
304 if (!RHS)
305 return;
306
307 if (!isInlineStorage()) {
308 // The out-of-line case is easiest to move.
309 StorageUnion.OutOfLineStorage = RHS.StorageUnion.OutOfLineStorage;
310 } else if (isTrivialCallback()) {
311 // Move is trivial, just memcpy the bytes across.
312 memcpy(getInlineStorage(), RHS.getInlineStorage(), InlineStorageSize);
313 } else {
314 // Non-trivial move, so dispatch to a type-erased implementation.
316 RHS.getInlineStorage());
317 getNonTrivialCallbacks()->DestroyPtr(RHS.getInlineStorage());
318 }
319
320 // Clear the old callback and inline flag to get back to as-if-null.
321 RHS.CallbackAndInlineFlag = {};
322
323#if !defined(NDEBUG) && !LLVM_ADDRESS_SANITIZER_BUILD
324 // In debug builds without ASan, we also scribble across the rest of the
325 // storage. Scribbling under AddressSanitizer (ASan) is disabled to prevent
326 // overwriting poisoned objects (e.g., annotated short strings).
327 memset(RHS.getInlineStorage(), 0xAD, InlineStorageSize);
328#endif
329 }
330
332 if (this == &RHS)
333 return *this;
334
335 // Because we don't try to provide any exception safety guarantees we can
336 // implement move assignment very simply by first destroying the current
337 // object and then move-constructing over top of it.
338 this->~UniqueFunctionBase();
339 new (this) UniqueFunctionBase(std::move(RHS));
340 return *this;
341 }
342
344
345public:
346 explicit operator bool() const {
347 return (bool)CallbackAndInlineFlag.getPointer();
348 }
349};
350
351template <typename R, typename... P>
352template <typename CallableT, typename CalledAsT, typename Enable>
353typename UniqueFunctionBase<R, P...>::NonTrivialCallbacks UniqueFunctionBase<
354 R, P...>::CallbacksHolder<CallableT, CalledAsT, Enable>::Callbacks = {
355 &CallImpl<CalledAsT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>};
356
357template <typename R, typename... P>
358template <typename CallableT, typename CalledAsT>
359typename UniqueFunctionBase<R, P...>::TrivialCallback
360 UniqueFunctionBase<R, P...>::CallbacksHolder<
361 CallableT, CalledAsT, EnableIfTrivial<CallableT>>::Callbacks{
362 &CallImpl<CalledAsT>};
363
364} // namespace detail
365
366template <typename R, typename... P>
367class unique_function<R(P...)> : public detail::UniqueFunctionBase<R, P...> {
368 using Base = detail::UniqueFunctionBase<R, P...>;
369
370public:
371 unique_function() = default;
372 unique_function(std::nullptr_t) {}
377
378 template <typename CallableT>
380 CallableT Callable,
383 : Base(std::forward<CallableT>(Callable),
384 typename Base::template CalledAs<CallableT>{}) {}
385
386 R operator()(P... Params) {
387 return this->getCallPtr()(this->getCalleePtr(), Params...);
388 }
389};
390
391template <typename R, typename... P>
393 : public detail::UniqueFunctionBase<R, P...> {
394 using Base = detail::UniqueFunctionBase<R, P...>;
395
396public:
397 unique_function() = default;
398 unique_function(std::nullptr_t) {}
403
404 template <typename CallableT>
406 CallableT Callable,
409 : Base(std::forward<CallableT>(Callable),
410 typename Base::template CalledAs<const CallableT>{}) {}
411
412 R operator()(P... Params) const {
413 return this->getCallPtr()(this->getCalleePtr(), Params...);
414 }
415};
416
417} // end namespace llvm
418
419#endif // LLVM_ADT_FUNCTIONEXTRAS_H
aarch64 promote const
Given that RA is a live value
uint64_t Size
This file defines counterparts of C library allocation functions defined in the namespace 'std'.
#define T
#define P(N)
This file defines the PointerIntPair class.
This file defines the PointerUnion class, which is a discriminated union of pointer types.
This file contains library features backported from future STL versions.
Value * RHS
void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment)
UniqueFunctionBase & operator=(UniqueFunctionBase &&RHS) noexcept
NonTrivialCallbacks * getNonTrivialCallbacks() const
UniqueFunctionBase(CallableT Callable, CalledAs< CalledAsT >)
static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept
static void DestroyImpl(void *CallableAddr) noexcept
static ReturnT CallImpl(void *CallableAddr, AdjustedParamT< ParamTs >... Params)
static constexpr size_t InlineStorageAlign
size_t getOutOfLineStorageAlignment() const
UniqueFunctionBase(UniqueFunctionBase &&RHS) noexcept
static constexpr size_t InlineStorageSize
unique_function(const unique_function &)=delete
unique_function(unique_function &&)=default
unique_function & operator=(const unique_function &)=delete
unique_function & operator=(unique_function &&)=default
unique_function(CallableT Callable, detail::EnableUnlessSameType< CallableT, unique_function > *=nullptr, detail::EnableIfCallable< const CallableT, R, P... > *=nullptr)
unique_function(unique_function &&)=default
unique_function & operator=(const unique_function &)=delete
unique_function(CallableT Callable, detail::EnableUnlessSameType< CallableT, unique_function > *=nullptr, detail::EnableIfCallable< CallableT, R, P... > *=nullptr)
unique_function & operator=(unique_function &&)=default
unique_function(const unique_function &)=delete
unique_function is a type-erasing functor similar to std::function.
std::enable_if_t< std::disjunction< std::is_void< Ret >, std::is_same< decltype(std::declval< CallableT >()(std::declval< Params >()...)), Ret >, std::is_same< const decltype(std::declval< CallableT >()(std::declval< Params >()...)), Ret >, std::is_convertible< decltype(std::declval< CallableT >()(std::declval< Params >()...)), Ret > >::value > EnableIfCallable
std::enable_if_t< std::is_trivially_move_constructible< T >::value &&std::is_trivially_destructible< T >::value > EnableIfTrivial
std::enable_if_t<!std::is_same< remove_cvref_t< CallableT >, ThisT >::value > EnableUnlessSameType
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_RETURNS_NOALIAS void * allocate_buffer(size_t Size, size_t Alignment)
Allocate a buffer of memory with the given size and alignment.
Definition: MemAlloc.cpp:15
void deallocate_buffer(void *Ptr, size_t Size, size_t Alignment)
Deallocate a buffer of memory with the given size and alignment.
Definition: MemAlloc.cpp:24
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858