LLVM 20.0.0git
JITLink.h
Go to the documentation of this file.
1//===------------ JITLink.h - JIT linker functionality ----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Contains generic JIT-linker types.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
14#define LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
15
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DenseSet.h"
19#include "llvm/ADT/STLExtras.h"
30#include "llvm/Support/Endian.h"
31#include "llvm/Support/Error.h"
37#include <optional>
38
39#include <map>
40#include <string>
41#include <system_error>
42
43namespace llvm {
44namespace jitlink {
45
46class LinkGraph;
47class Symbol;
48class Section;
49
50/// Base class for errors originating in JIT linker, e.g. missing relocation
51/// support.
52class JITLinkError : public ErrorInfo<JITLinkError> {
53public:
54 static char ID;
55
56 JITLinkError(Twine ErrMsg) : ErrMsg(ErrMsg.str()) {}
57
58 void log(raw_ostream &OS) const override;
59 const std::string &getErrorMessage() const { return ErrMsg; }
60 std::error_code convertToErrorCode() const override;
61
62private:
63 std::string ErrMsg;
64};
65
66/// Represents fixups and constraints in the LinkGraph.
67class Edge {
68public:
69 using Kind = uint8_t;
70
72 Invalid, // Invalid edge value.
73 FirstKeepAlive, // Keeps target alive. Offset/addend zero.
74 KeepAlive = FirstKeepAlive, // Tag first edge kind that preserves liveness.
75 FirstRelocation // First architecture specific relocation.
76 };
77
79 using AddendT = int64_t;
80
81 Edge(Kind K, OffsetT Offset, Symbol &Target, AddendT Addend)
82 : Target(&Target), Offset(Offset), Addend(Addend), K(K) {}
83
84 OffsetT getOffset() const { return Offset; }
85 void setOffset(OffsetT Offset) { this->Offset = Offset; }
86 Kind getKind() const { return K; }
87 void setKind(Kind K) { this->K = K; }
88 bool isRelocation() const { return K >= FirstRelocation; }
90 assert(isRelocation() && "Not a relocation edge");
91 return K - FirstRelocation;
92 }
93 bool isKeepAlive() const { return K >= FirstKeepAlive; }
94 Symbol &getTarget() const { return *Target; }
95 void setTarget(Symbol &Target) { this->Target = &Target; }
96 AddendT getAddend() const { return Addend; }
97 void setAddend(AddendT Addend) { this->Addend = Addend; }
98
99private:
100 Symbol *Target = nullptr;
101 OffsetT Offset = 0;
102 AddendT Addend = 0;
103 Kind K = 0;
104};
105
106/// Returns the string name of the given generic edge kind, or "unknown"
107/// otherwise. Useful for debugging.
109
110/// Base class for Addressable entities (externals, absolutes, blocks).
112 friend class LinkGraph;
113
114protected:
115 Addressable(orc::ExecutorAddr Address, bool IsDefined)
116 : Address(Address), IsDefined(IsDefined), IsAbsolute(false) {}
117
119 : Address(Address), IsDefined(false), IsAbsolute(true) {
120 assert(!(IsDefined && IsAbsolute) &&
121 "Block cannot be both defined and absolute");
122 }
123
124public:
125 Addressable(const Addressable &) = delete;
126 Addressable &operator=(const Addressable &) = default;
129
130 orc::ExecutorAddr getAddress() const { return Address; }
131 void setAddress(orc::ExecutorAddr Address) { this->Address = Address; }
132
133 /// Returns true if this is a defined addressable, in which case you
134 /// can downcast this to a Block.
135 bool isDefined() const { return static_cast<bool>(IsDefined); }
136 bool isAbsolute() const { return static_cast<bool>(IsAbsolute); }
137
138private:
139 void setAbsolute(bool IsAbsolute) {
140 assert(!IsDefined && "Cannot change the Absolute flag on a defined block");
141 this->IsAbsolute = IsAbsolute;
142 }
143
144 orc::ExecutorAddr Address;
145 uint64_t IsDefined : 1;
146 uint64_t IsAbsolute : 1;
147
148protected:
149 // bitfields for Block, allocated here to improve packing.
153};
154
156
157/// An Addressable with content and edges.
158class Block : public Addressable {
159 friend class LinkGraph;
160
161private:
162 /// Create a zero-fill defined addressable.
165 : Addressable(Address, true), Parent(&Parent), Size(Size) {
166 assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
167 assert(AlignmentOffset < Alignment &&
168 "Alignment offset cannot exceed alignment");
169 assert(AlignmentOffset <= MaxAlignmentOffset &&
170 "Alignment offset exceeds maximum");
171 ContentMutable = false;
172 P2Align = Alignment ? llvm::countr_zero(Alignment) : 0;
173 this->AlignmentOffset = AlignmentOffset;
174 }
175
176 /// Create a defined addressable for the given content.
177 /// The Content is assumed to be non-writable, and will be copied when
178 /// mutations are required.
181 : Addressable(Address, true), Parent(&Parent), Data(Content.data()),
182 Size(Content.size()) {
183 assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
184 assert(AlignmentOffset < Alignment &&
185 "Alignment offset cannot exceed alignment");
186 assert(AlignmentOffset <= MaxAlignmentOffset &&
187 "Alignment offset exceeds maximum");
188 ContentMutable = false;
189 P2Align = Alignment ? llvm::countr_zero(Alignment) : 0;
190 this->AlignmentOffset = AlignmentOffset;
191 }
192
193 /// Create a defined addressable for the given content.
194 /// The content is assumed to be writable, and the caller is responsible
195 /// for ensuring that it lives for the duration of the Block's lifetime.
196 /// The standard way to achieve this is to allocate it on the Graph's
197 /// allocator.
198 Block(Section &Parent, MutableArrayRef<char> Content,
200 : Addressable(Address, true), Parent(&Parent), Data(Content.data()),
201 Size(Content.size()) {
202 assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2");
203 assert(AlignmentOffset < Alignment &&
204 "Alignment offset cannot exceed alignment");
205 assert(AlignmentOffset <= MaxAlignmentOffset &&
206 "Alignment offset exceeds maximum");
207 ContentMutable = true;
208 P2Align = Alignment ? llvm::countr_zero(Alignment) : 0;
209 this->AlignmentOffset = AlignmentOffset;
210 }
211
212public:
213 using EdgeVector = std::vector<Edge>;
214 using edge_iterator = EdgeVector::iterator;
215 using const_edge_iterator = EdgeVector::const_iterator;
216
217 Block(const Block &) = delete;
218 Block &operator=(const Block &) = delete;
219 Block(Block &&) = delete;
220 Block &operator=(Block &&) = delete;
221
222 /// Return the parent section for this block.
223 Section &getSection() const { return *Parent; }
224
225 /// Returns true if this is a zero-fill block.
226 ///
227 /// If true, getSize is callable but getContent is not (the content is
228 /// defined to be a sequence of zero bytes of length Size).
229 bool isZeroFill() const { return !Data; }
230
231 /// Returns the size of this defined addressable.
232 size_t getSize() const { return Size; }
233
234 /// Turns this block into a zero-fill block of the given size.
235 void setZeroFillSize(size_t Size) {
236 Data = nullptr;
237 this->Size = Size;
238 }
239
240 /// Returns the address range of this defined addressable.
243 }
244
245 /// Get the content for this block. Block must not be a zero-fill block.
247 assert(Data && "Block does not contain content");
248 return ArrayRef<char>(Data, Size);
249 }
250
251 /// Set the content for this block.
252 /// Caller is responsible for ensuring the underlying bytes are not
253 /// deallocated while pointed to by this block.
255 assert(Content.data() && "Setting null content");
256 Data = Content.data();
257 Size = Content.size();
258 ContentMutable = false;
259 }
260
261 /// Get mutable content for this block.
262 ///
263 /// If this Block's content is not already mutable this will trigger a copy
264 /// of the existing immutable content to a new, mutable buffer allocated using
265 /// LinkGraph::allocateContent.
267
268 /// Get mutable content for this block.
269 ///
270 /// This block's content must already be mutable. It is a programmatic error
271 /// to call this on a block with immutable content -- consider using
272 /// getMutableContent instead.
274 assert(Data && "Block does not contain content");
275 assert(ContentMutable && "Content is not mutable");
276 return MutableArrayRef<char>(const_cast<char *>(Data), Size);
277 }
278
279 /// Set mutable content for this block.
280 ///
281 /// The caller is responsible for ensuring that the memory pointed to by
282 /// MutableContent is not deallocated while pointed to by this block.
284 assert(MutableContent.data() && "Setting null content");
285 Data = MutableContent.data();
286 Size = MutableContent.size();
287 ContentMutable = true;
288 }
289
290 /// Returns true if this block's content is mutable.
291 ///
292 /// This is primarily useful for asserting that a block is already in a
293 /// mutable state prior to modifying the content. E.g. when applying
294 /// fixups we expect the block to already be mutable as it should have been
295 /// copied to working memory.
296 bool isContentMutable() const { return ContentMutable; }
297
298 /// Get the alignment for this content.
299 uint64_t getAlignment() const { return 1ull << P2Align; }
300
301 /// Set the alignment for this content.
302 void setAlignment(uint64_t Alignment) {
303 assert(isPowerOf2_64(Alignment) && "Alignment must be a power of two");
304 P2Align = Alignment ? llvm::countr_zero(Alignment) : 0;
305 }
306
307 /// Get the alignment offset for this content.
309
310 /// Set the alignment offset for this content.
312 assert(AlignmentOffset < (1ull << P2Align) &&
313 "Alignment offset can't exceed alignment");
314 this->AlignmentOffset = AlignmentOffset;
315 }
316
317 /// Add an edge to this block.
319 Edge::AddendT Addend) {
320 assert((K == Edge::KeepAlive || !isZeroFill()) &&
321 "Adding edge to zero-fill block?");
322 Edges.push_back(Edge(K, Offset, Target, Addend));
323 }
324
325 /// Add an edge by copying an existing one. This is typically used when
326 /// moving edges between blocks.
327 void addEdge(const Edge &E) { Edges.push_back(E); }
328
329 /// Return the list of edges attached to this content.
331 return make_range(Edges.begin(), Edges.end());
332 }
333
334 /// Returns the list of edges attached to this content.
336 return make_range(Edges.begin(), Edges.end());
337 }
338
339 /// Returns an iterator over all edges at the given offset within the block.
341 return make_filter_range(edges(),
342 [O](const Edge &E) { return E.getOffset() == O; });
343 }
344
345 /// Returns an iterator over all edges at the given offset within the block.
346 auto edges_at(Edge::OffsetT O) const {
347 return make_filter_range(edges(),
348 [O](const Edge &E) { return E.getOffset() == O; });
349 }
350
351 /// Return the size of the edges list.
352 size_t edges_size() const { return Edges.size(); }
353
354 /// Returns true if the list of edges is empty.
355 bool edges_empty() const { return Edges.empty(); }
356
357 /// Remove the edge pointed to by the given iterator.
358 /// Returns an iterator to the new next element.
359 edge_iterator removeEdge(edge_iterator I) { return Edges.erase(I); }
360
361 /// Returns the address of the fixup for the given edge, which is equal to
362 /// this block's address plus the edge's offset.
364 return getAddress() + E.getOffset();
365 }
366
367private:
368 static constexpr uint64_t MaxAlignmentOffset = (1ULL << 56) - 1;
369
370 void setSection(Section &Parent) { this->Parent = &Parent; }
371
372 Section *Parent;
373 const char *Data = nullptr;
374 size_t Size = 0;
375 std::vector<Edge> Edges;
376};
377
378// Align an address to conform with block alignment requirements.
380 uint64_t Delta = (B.getAlignmentOffset() - Addr) % B.getAlignment();
381 return Addr + Delta;
382}
383
384// Align a orc::ExecutorAddr to conform with block alignment requirements.
386 return orc::ExecutorAddr(alignToBlock(Addr.getValue(), B));
387}
388
389// Returns true if the given blocks contains exactly one valid c-string.
390// Zero-fill blocks of size 1 count as valid empty strings. Content blocks
391// must end with a zero, and contain no zeros before the end.
392bool isCStringBlock(Block &B);
393
394/// Describes symbol linkage. This can be used to resolve definition clashes.
395enum class Linkage : uint8_t {
396 Strong,
397 Weak,
398};
399
400/// Holds target-specific properties for a symbol.
402
403/// For errors and debugging output.
404const char *getLinkageName(Linkage L);
405
406/// Defines the scope in which this symbol should be visible:
407/// Default -- Visible in the public interface of the linkage unit.
408/// Hidden -- Visible within the linkage unit, but not exported from it.
409/// SideEffectsOnly -- Like hidden, but symbol can only be looked up once
410/// to trigger materialization of the containing graph.
411/// Local -- Visible only within the LinkGraph.
413
414/// For debugging output.
415const char *getScopeName(Scope S);
416
417raw_ostream &operator<<(raw_ostream &OS, const Block &B);
418
419/// Symbol representation.
420///
421/// Symbols represent locations within Addressable objects.
422/// They can be either Named or Anonymous.
423/// Anonymous symbols have neither linkage nor visibility, and must point at
424/// ContentBlocks.
425/// Named symbols may be in one of four states:
426/// - Null: Default initialized. Assignable, but otherwise unusable.
427/// - Defined: Has both linkage and visibility and points to a ContentBlock
428/// - Common: Has both linkage and visibility, points to a null Addressable.
429/// - External: Has neither linkage nor visibility, points to an external
430/// Addressable.
431///
432class Symbol {
433 friend class LinkGraph;
434
435private:
438 Scope S, bool IsLive, bool IsCallable)
439 : Name(std::move(Name)), Base(&Base), Offset(Offset), WeakRef(0),
440 Size(Size) {
441 assert(Offset <= MaxOffset && "Offset out of range");
442 setLinkage(L);
443 setScope(S);
444 setLive(IsLive);
445 setCallable(IsCallable);
447 }
448
449 static Symbol &constructExternal(BumpPtrAllocator &Allocator,
450 Addressable &Base,
453 bool WeaklyReferenced) {
454 assert(!Base.isDefined() &&
455 "Cannot create external symbol from defined block");
456 assert(Name && "External symbol name cannot be empty");
457 auto *Sym = Allocator.Allocate<Symbol>();
458 new (Sym)
459 Symbol(Base, 0, std::move(Name), Size, L, Scope::Default, false, false);
460 Sym->setWeaklyReferenced(WeaklyReferenced);
461 return *Sym;
462 }
463
464 static Symbol &constructAbsolute(BumpPtrAllocator &Allocator,
465 Addressable &Base,
466 orc::SymbolStringPtr &&Name,
468 Scope S, bool IsLive) {
469 assert(!Base.isDefined() &&
470 "Cannot create absolute symbol from a defined block");
471 auto *Sym = Allocator.Allocate<Symbol>();
472 new (Sym) Symbol(Base, 0, std::move(Name), Size, L, S, IsLive, false);
473 return *Sym;
474 }
475
476 static Symbol &constructAnonDef(BumpPtrAllocator &Allocator, Block &Base,
478 orc::ExecutorAddrDiff Size, bool IsCallable,
479 bool IsLive) {
480 assert((Offset + Size) <= Base.getSize() &&
481 "Symbol extends past end of block");
482 auto *Sym = Allocator.Allocate<Symbol>();
483 new (Sym) Symbol(Base, Offset, nullptr, Size, Linkage::Strong, Scope::Local,
484 IsLive, IsCallable);
485 return *Sym;
486 }
487
488 static Symbol &constructNamedDef(BumpPtrAllocator &Allocator, Block &Base,
490 orc::SymbolStringPtr Name,
492 Scope S, bool IsLive, bool IsCallable) {
493 assert((Offset + Size) <= Base.getSize() &&
494 "Symbol extends past end of block");
495 assert(Name && "Name cannot be empty");
496 auto *Sym = Allocator.Allocate<Symbol>();
497 new (Sym)
498 Symbol(Base, Offset, std::move(Name), Size, L, S, IsLive, IsCallable);
499 return *Sym;
500 }
501
502public:
503 /// Create a null Symbol. This allows Symbols to be default initialized for
504 /// use in containers (e.g. as map values). Null symbols are only useful for
505 /// assigning to.
506 Symbol() = default;
507
508 // Symbols are not movable or copyable.
509 Symbol(const Symbol &) = delete;
510 Symbol &operator=(const Symbol &) = delete;
511 Symbol(Symbol &&) = delete;
512 Symbol &operator=(Symbol &&) = delete;
513
514 /// Returns true if this symbol has a name.
515 bool hasName() const { return Name != nullptr; }
516
517 /// Returns the name of this symbol (empty if the symbol is anonymous).
519 assert((hasName() || getScope() == Scope::Local) &&
520 "Anonymous symbol has non-local scope");
521
522 return Name;
523 }
524
525 /// Rename this symbol. The client is responsible for updating scope and
526 /// linkage if this name-change requires it.
527 void setName(const orc::SymbolStringPtr Name) { this->Name = Name; }
528
529 /// Returns true if this Symbol has content (potentially) defined within this
530 /// object file (i.e. is anything but an external or absolute symbol).
531 bool isDefined() const {
532 assert(Base && "Attempt to access null symbol");
533 return Base->isDefined();
534 }
535
536 /// Returns true if this symbol is live (i.e. should be treated as a root for
537 /// dead stripping).
538 bool isLive() const {
539 assert(Base && "Attempting to access null symbol");
540 return IsLive;
541 }
542
543 /// Set this symbol's live bit.
544 void setLive(bool IsLive) { this->IsLive = IsLive; }
545
546 /// Returns true is this symbol is callable.
547 bool isCallable() const { return IsCallable; }
548
549 /// Set this symbol's callable bit.
550 void setCallable(bool IsCallable) { this->IsCallable = IsCallable; }
551
552 /// Returns true if the underlying addressable is an unresolved external.
553 bool isExternal() const {
554 assert(Base && "Attempt to access null symbol");
555 return !Base->isDefined() && !Base->isAbsolute();
556 }
557
558 /// Returns true if the underlying addressable is an absolute symbol.
559 bool isAbsolute() const {
560 assert(Base && "Attempt to access null symbol");
561 return Base->isAbsolute();
562 }
563
564 /// Return the addressable that this symbol points to.
566 assert(Base && "Cannot get underlying addressable for null symbol");
567 return *Base;
568 }
569
570 /// Return the addressable that this symbol points to.
572 assert(Base && "Cannot get underlying addressable for null symbol");
573 return *Base;
574 }
575
576 /// Return the Block for this Symbol (Symbol must be defined).
578 assert(Base && "Cannot get block for null symbol");
579 assert(Base->isDefined() && "Not a defined symbol");
580 return static_cast<Block &>(*Base);
581 }
582
583 /// Return the Block for this Symbol (Symbol must be defined).
584 const Block &getBlock() const {
585 assert(Base && "Cannot get block for null symbol");
586 assert(Base->isDefined() && "Not a defined symbol");
587 return static_cast<const Block &>(*Base);
588 }
589
590 /// Returns the offset for this symbol within the underlying addressable.
592
594 assert(NewOffset <= getBlock().getSize() && "Offset out of range");
595 Offset = NewOffset;
596 }
597
598 /// Returns the address of this symbol.
599 orc::ExecutorAddr getAddress() const { return Base->getAddress() + Offset; }
600
601 /// Returns the size of this symbol.
603
604 /// Set the size of this symbol.
606 assert(Base && "Cannot set size for null Symbol");
607 assert((Size == 0 || Base->isDefined()) &&
608 "Non-zero size can only be set for defined symbols");
609 assert((Offset + Size <= static_cast<const Block &>(*Base).getSize()) &&
610 "Symbol size cannot extend past the end of its containing block");
611 this->Size = Size;
612 }
613
614 /// Returns the address range of this symbol.
617 }
618
619 /// Returns true if this symbol is backed by a zero-fill block.
620 /// This method may only be called on defined symbols.
621 bool isSymbolZeroFill() const { return getBlock().isZeroFill(); }
622
623 /// Returns the content in the underlying block covered by this symbol.
624 /// This method may only be called on defined non-zero-fill symbols.
626 return getBlock().getContent().slice(Offset, Size);
627 }
628
629 /// Get the linkage for this Symbol.
630 Linkage getLinkage() const { return static_cast<Linkage>(L); }
631
632 /// Set the linkage for this Symbol.
634 assert((L == Linkage::Strong || (!Base->isAbsolute() && Name)) &&
635 "Linkage can only be applied to defined named symbols");
636 this->L = static_cast<uint8_t>(L);
637 }
638
639 /// Get the visibility for this Symbol.
640 Scope getScope() const { return static_cast<Scope>(S); }
641
642 /// Set the visibility for this Symbol.
643 void setScope(Scope S) {
644 assert((hasName() || S == Scope::Local) &&
645 "Can not set anonymous symbol to non-local scope");
646 assert((S != Scope::Local || Base->isDefined() || Base->isAbsolute()) &&
647 "Invalid visibility for symbol type");
648 this->S = static_cast<uint8_t>(S);
649 }
650
651 /// Get the target flags of this Symbol.
652 TargetFlagsType getTargetFlags() const { return TargetFlags; }
653
654 /// Set the target flags for this Symbol.
656 assert(Flags <= 1 && "Add more bits to store more than single flag");
657 TargetFlags = Flags;
658 }
659
660 /// Returns true if this is a weakly referenced external symbol.
661 /// This method may only be called on external symbols.
662 bool isWeaklyReferenced() const {
663 assert(isExternal() && "isWeaklyReferenced called on non-external");
664 return WeakRef;
665 }
666
667 /// Set the WeaklyReferenced value for this symbol.
668 /// This method may only be called on external symbols.
669 void setWeaklyReferenced(bool WeakRef) {
670 assert(isExternal() && "setWeaklyReferenced called on non-external");
671 this->WeakRef = WeakRef;
672 }
673
674private:
675 void makeExternal(Addressable &A) {
676 assert(!A.isDefined() && !A.isAbsolute() &&
677 "Attempting to make external with defined or absolute block");
678 Base = &A;
679 Offset = 0;
681 IsLive = 0;
682 // note: Size, Linkage and IsCallable fields left unchanged.
683 }
684
685 void makeAbsolute(Addressable &A) {
686 assert(!A.isDefined() && A.isAbsolute() &&
687 "Attempting to make absolute with defined or external block");
688 Base = &A;
689 Offset = 0;
690 }
691
692 void setBlock(Block &B) { Base = &B; }
693
694 static constexpr uint64_t MaxOffset = (1ULL << 59) - 1;
695
696 orc::SymbolStringPtr Name = nullptr;
697 Addressable *Base = nullptr;
698 uint64_t Offset : 57;
699 uint64_t L : 1;
700 uint64_t S : 2;
701 uint64_t IsLive : 1;
702 uint64_t IsCallable : 1;
703 uint64_t WeakRef : 1;
704 uint64_t TargetFlags : 1;
705 size_t Size = 0;
706};
707
708raw_ostream &operator<<(raw_ostream &OS, const Symbol &A);
709
710void printEdge(raw_ostream &OS, const Block &B, const Edge &E,
711 StringRef EdgeKindName);
712
713/// Represents an object file section.
714class Section {
715 friend class LinkGraph;
716
717private:
719 : Name(Name), Prot(Prot), SecOrdinal(SecOrdinal) {}
720
721 using SymbolSet = DenseSet<Symbol *>;
722 using BlockSet = DenseSet<Block *>;
723
724public:
727
730
731 ~Section();
732
733 // Sections are not movable or copyable.
734 Section(const Section &) = delete;
735 Section &operator=(const Section &) = delete;
736 Section(Section &&) = delete;
737 Section &operator=(Section &&) = delete;
738
739 /// Returns the name of this section.
740 StringRef getName() const { return Name; }
741
742 /// Returns the protection flags for this section.
743 orc::MemProt getMemProt() const { return Prot; }
744
745 /// Set the protection flags for this section.
746 void setMemProt(orc::MemProt Prot) { this->Prot = Prot; }
747
748 /// Get the memory lifetime policy for this section.
750
751 /// Set the memory lifetime policy for this section.
752 void setMemLifetime(orc::MemLifetime ML) { this->ML = ML; }
753
754 /// Returns the ordinal for this section.
755 SectionOrdinal getOrdinal() const { return SecOrdinal; }
756
757 /// Set the ordinal for this section. Ordinals are used to order the layout
758 /// of sections with the same permissions.
759 void setOrdinal(SectionOrdinal SecOrdinal) { this->SecOrdinal = SecOrdinal; }
760
761 /// Returns true if this section is empty (contains no blocks or symbols).
762 bool empty() const { return Blocks.empty(); }
763
764 /// Returns an iterator over the blocks defined in this section.
766 return make_range(Blocks.begin(), Blocks.end());
767 }
768
769 /// Returns an iterator over the blocks defined in this section.
771 return make_range(Blocks.begin(), Blocks.end());
772 }
773
774 /// Returns the number of blocks in this section.
775 BlockSet::size_type blocks_size() const { return Blocks.size(); }
776
777 /// Returns an iterator over the symbols defined in this section.
779 return make_range(Symbols.begin(), Symbols.end());
780 }
781
782 /// Returns an iterator over the symbols defined in this section.
784 return make_range(Symbols.begin(), Symbols.end());
785 }
786
787 /// Return the number of symbols in this section.
788 SymbolSet::size_type symbols_size() const { return Symbols.size(); }
789
790private:
791 void addSymbol(Symbol &Sym) {
792 assert(!Symbols.count(&Sym) && "Symbol is already in this section");
793 Symbols.insert(&Sym);
794 }
795
796 void removeSymbol(Symbol &Sym) {
797 assert(Symbols.count(&Sym) && "symbol is not in this section");
798 Symbols.erase(&Sym);
799 }
800
801 void addBlock(Block &B) {
802 assert(!Blocks.count(&B) && "Block is already in this section");
803 Blocks.insert(&B);
804 }
805
806 void removeBlock(Block &B) {
807 assert(Blocks.count(&B) && "Block is not in this section");
808 Blocks.erase(&B);
809 }
810
811 void transferContentTo(Section &DstSection) {
812 if (&DstSection == this)
813 return;
814 for (auto *S : Symbols)
815 DstSection.addSymbol(*S);
816 for (auto *B : Blocks)
817 DstSection.addBlock(*B);
818 Symbols.clear();
819 Blocks.clear();
820 }
821
822 StringRef Name;
823 orc::MemProt Prot;
825 SectionOrdinal SecOrdinal = 0;
826 BlockSet Blocks;
827 SymbolSet Symbols;
828};
829
830/// Represents a section address range via a pair of Block pointers
831/// to the first and last Blocks in the section.
833public:
834 SectionRange() = default;
835 SectionRange(const Section &Sec) {
836 if (Sec.blocks().empty())
837 return;
838 First = Last = *Sec.blocks().begin();
839 for (auto *B : Sec.blocks()) {
840 if (B->getAddress() < First->getAddress())
841 First = B;
842 if (B->getAddress() > Last->getAddress())
843 Last = B;
844 }
845 }
847 assert((!Last || First) && "First can not be null if end is non-null");
848 return First;
849 }
851 assert((First || !Last) && "Last can not be null if start is non-null");
852 return Last;
853 }
854 bool empty() const {
855 assert((First || !Last) && "Last can not be null if start is non-null");
856 return !First;
857 }
859 return First ? First->getAddress() : orc::ExecutorAddr();
860 }
862 return Last ? Last->getAddress() + Last->getSize() : orc::ExecutorAddr();
863 }
865
868 }
869
870private:
871 Block *First = nullptr;
872 Block *Last = nullptr;
873};
874
876private:
881
882 template <typename... ArgTs>
883 Addressable &createAddressable(ArgTs &&... Args) {
884 Addressable *A =
885 reinterpret_cast<Addressable *>(Allocator.Allocate<Addressable>());
886 new (A) Addressable(std::forward<ArgTs>(Args)...);
887 return *A;
888 }
889
890 void destroyAddressable(Addressable &A) {
891 A.~Addressable();
892 Allocator.Deallocate(&A);
893 }
894
895 template <typename... ArgTs> Block &createBlock(ArgTs &&... Args) {
896 Block *B = reinterpret_cast<Block *>(Allocator.Allocate<Block>());
897 new (B) Block(std::forward<ArgTs>(Args)...);
898 B->getSection().addBlock(*B);
899 return *B;
900 }
901
902 void destroyBlock(Block &B) {
903 B.~Block();
904 Allocator.Deallocate(&B);
905 }
906
907 void destroySymbol(Symbol &S) {
908 S.~Symbol();
909 Allocator.Deallocate(&S);
910 }
911
912 static iterator_range<Section::block_iterator> getSectionBlocks(Section &S) {
913 return S.blocks();
914 }
915
917 getSectionConstBlocks(const Section &S) {
918 return S.blocks();
919 }
920
922 getSectionSymbols(Section &S) {
923 return S.symbols();
924 }
925
927 getSectionConstSymbols(const Section &S) {
928 return S.symbols();
929 }
930
931 struct GetExternalSymbolMapEntryValue {
932 Symbol *operator()(ExternalSymbolMap::value_type &KV) const {
933 return KV.second;
934 }
935 };
936
937 struct GetSectionMapEntryValue {
938 Section &operator()(SectionMap::value_type &KV) const { return *KV.second; }
939 };
940
941 struct GetSectionMapEntryConstValue {
942 const Section &operator()(const SectionMap::value_type &KV) const {
943 return *KV.second;
944 }
945 };
946
947public:
950 GetExternalSymbolMapEntryValue>;
952
957
958 template <typename OuterItrT, typename InnerItrT, typename T,
959 iterator_range<InnerItrT> getInnerRange(
960 typename OuterItrT::reference)>
962 : public iterator_facade_base<
963 nested_collection_iterator<OuterItrT, InnerItrT, T, getInnerRange>,
964 std::forward_iterator_tag, T> {
965 public:
967
968 nested_collection_iterator(OuterItrT OuterI, OuterItrT OuterE)
969 : OuterI(OuterI), OuterE(OuterE),
970 InnerI(getInnerBegin(OuterI, OuterE)) {
971 moveToNonEmptyInnerOrEnd();
972 }
973
975 return (OuterI == RHS.OuterI) && (InnerI == RHS.InnerI);
976 }
977
978 T operator*() const {
979 assert(InnerI != getInnerRange(*OuterI).end() && "Dereferencing end?");
980 return *InnerI;
981 }
982
984 ++InnerI;
985 moveToNonEmptyInnerOrEnd();
986 return *this;
987 }
988
989 private:
990 static InnerItrT getInnerBegin(OuterItrT OuterI, OuterItrT OuterE) {
991 return OuterI != OuterE ? getInnerRange(*OuterI).begin() : InnerItrT();
992 }
993
994 void moveToNonEmptyInnerOrEnd() {
995 while (OuterI != OuterE && InnerI == getInnerRange(*OuterI).end()) {
996 ++OuterI;
997 InnerI = getInnerBegin(OuterI, OuterE);
998 }
999 }
1000
1001 OuterItrT OuterI, OuterE;
1002 InnerItrT InnerI;
1003 };
1004
1007 Symbol *, getSectionSymbols>;
1008
1012 getSectionConstSymbols>;
1013
1016 Block *, getSectionBlocks>;
1017
1021 getSectionConstBlocks>;
1022
1023 using GetEdgeKindNameFunction = const char *(*)(Edge::Kind);
1024
1025 LinkGraph(std::string Name, std::shared_ptr<orc::SymbolStringPool> SSP,
1026 Triple TT, SubtargetFeatures Features,
1027 GetEdgeKindNameFunction GetEdgeKindName)
1028 : Name(std::move(Name)), SSP(std::move(SSP)), TT(std::move(TT)),
1029 Features(std::move(Features)),
1030 GetEdgeKindName(std::move(GetEdgeKindName)) {
1031 assert(!(Triple::getArchPointerBitWidth(this->TT.getArch()) % 8) &&
1032 "Arch bitwidth is not a multiple of 8");
1033 }
1034
1035 LinkGraph(const LinkGraph &) = delete;
1036 LinkGraph &operator=(const LinkGraph &) = delete;
1037 LinkGraph(LinkGraph &&) = delete;
1039 ~LinkGraph();
1040
1041 /// Returns the name of this graph (usually the name of the original
1042 /// underlying MemoryBuffer).
1043 const std::string &getName() const { return Name; }
1044
1045 /// Returns the target triple for this Graph.
1046 const Triple &getTargetTriple() const { return TT; }
1047
1048 /// Return the subtarget features for this Graph.
1049 const SubtargetFeatures &getFeatures() const { return Features; }
1050
1051 /// Returns the pointer size for use in this graph.
1052 unsigned getPointerSize() const { return TT.getArchPointerBitWidth() / 8; }
1053
1054 /// Returns the endianness of content in this graph.
1057 }
1058
1059 const char *getEdgeKindName(Edge::Kind K) const { return GetEdgeKindName(K); }
1060
1061 std::shared_ptr<orc::SymbolStringPool> getSymbolStringPool() { return SSP; }
1062
1063 /// Allocate a mutable buffer of the given size using the LinkGraph's
1064 /// allocator.
1066 return {Allocator.Allocate<char>(Size), Size};
1067 }
1068
1069 /// Allocate a copy of the given string using the LinkGraph's allocator.
1070 /// This can be useful when renaming symbols or adding new content to the
1071 /// graph.
1073 auto *AllocatedBuffer = Allocator.Allocate<char>(Source.size());
1074 llvm::copy(Source, AllocatedBuffer);
1075 return MutableArrayRef<char>(AllocatedBuffer, Source.size());
1076 }
1077
1078 /// Allocate a copy of the given string using the LinkGraph's allocator.
1079 /// This can be useful when renaming symbols or adding new content to the
1080 /// graph.
1081 ///
1082 /// Note: This Twine-based overload requires an extra string copy and an
1083 /// extra heap allocation for large strings. The ArrayRef<char> overload
1084 /// should be preferred where possible.
1086 SmallString<256> TmpBuffer;
1087 auto SourceStr = Source.toStringRef(TmpBuffer);
1088 auto *AllocatedBuffer = Allocator.Allocate<char>(SourceStr.size());
1089 llvm::copy(SourceStr, AllocatedBuffer);
1090 return MutableArrayRef<char>(AllocatedBuffer, SourceStr.size());
1091 }
1092
1093 /// Allocate a copy of the given string using the LinkGraph's allocator
1094 /// and return it as a StringRef.
1095 ///
1096 /// This is a convenience wrapper around allocateContent(Twine) that is
1097 /// handy when creating new symbol names within the graph.
1099 auto Buf = allocateContent(Source);
1100 return {Buf.data(), Buf.size()};
1101 }
1102
1103 /// Allocate a copy of the given string using the LinkGraph's allocator.
1104 ///
1105 /// The allocated string will be terminated with a null character, and the
1106 /// returned MutableArrayRef will include this null character in the last
1107 /// position.
1109 char *AllocatedBuffer = Allocator.Allocate<char>(Source.size() + 1);
1110 llvm::copy(Source, AllocatedBuffer);
1111 AllocatedBuffer[Source.size()] = '\0';
1112 return MutableArrayRef<char>(AllocatedBuffer, Source.size() + 1);
1113 }
1114
1115 /// Allocate a copy of the given string using the LinkGraph's allocator.
1116 ///
1117 /// The allocated string will be terminated with a null character, and the
1118 /// returned MutableArrayRef will include this null character in the last
1119 /// position.
1120 ///
1121 /// Note: This Twine-based overload requires an extra string copy and an
1122 /// extra heap allocation for large strings. The ArrayRef<char> overload
1123 /// should be preferred where possible.
1125 SmallString<256> TmpBuffer;
1126 auto SourceStr = Source.toStringRef(TmpBuffer);
1127 auto *AllocatedBuffer = Allocator.Allocate<char>(SourceStr.size() + 1);
1128 llvm::copy(SourceStr, AllocatedBuffer);
1129 AllocatedBuffer[SourceStr.size()] = '\0';
1130 return MutableArrayRef<char>(AllocatedBuffer, SourceStr.size() + 1);
1131 }
1132
1133 /// Create a section with the given name, protection flags.
1135 assert(!Sections.count(Name) && "Duplicate section name");
1136 std::unique_ptr<Section> Sec(new Section(Name, Prot, Sections.size()));
1137 return *Sections.insert(std::make_pair(Name, std::move(Sec))).first->second;
1138 }
1139
1140 /// Create a content block.
1143 uint64_t AlignmentOffset) {
1144 return createBlock(Parent, Content, Address, Alignment, AlignmentOffset);
1145 }
1146
1147 /// Create a content block with initially mutable data.
1149 MutableArrayRef<char> MutableContent,
1151 uint64_t Alignment,
1152 uint64_t AlignmentOffset) {
1153 return createBlock(Parent, MutableContent, Address, Alignment,
1154 AlignmentOffset);
1155 }
1156
1157 /// Create a content block with initially mutable data of the given size.
1158 /// Content will be allocated via the LinkGraph's allocateBuffer method.
1159 /// By default the memory will be zero-initialized. Passing false for
1160 /// ZeroInitialize will prevent this.
1161 Block &createMutableContentBlock(Section &Parent, size_t ContentSize,
1163 uint64_t Alignment, uint64_t AlignmentOffset,
1164 bool ZeroInitialize = true) {
1165 auto Content = allocateBuffer(ContentSize);
1166 if (ZeroInitialize)
1167 memset(Content.data(), 0, Content.size());
1168 return createBlock(Parent, Content, Address, Alignment, AlignmentOffset);
1169 }
1170
1171 /// Create a zero-fill block.
1174 uint64_t AlignmentOffset) {
1175 return createBlock(Parent, Size, Address, Alignment, AlignmentOffset);
1176 }
1177
1178 /// Returns a BinaryStreamReader for the given block.
1181 reinterpret_cast<const uint8_t *>(B.getContent().data()), B.getSize());
1183 }
1184
1185 /// Returns a BinaryStreamWriter for the given block.
1186 /// This will call getMutableContent to obtain mutable content for the block.
1189 reinterpret_cast<uint8_t *>(B.getMutableContent(*this).data()),
1190 B.getSize());
1192 }
1193
1194 /// Cache type for the splitBlock function.
1195 using SplitBlockCache = std::optional<SmallVector<Symbol *, 8>>;
1196
1197 /// Splits block B into a sequence of smaller blocks.
1198 ///
1199 /// SplitOffsets should be a sequence of ascending offsets in B. The starting
1200 /// offset should be greater than zero, and the final offset less than
1201 /// B.getSize() - 1.
1202 ///
1203 /// The resulting seqeunce of blocks will start with the original block B
1204 /// (truncated to end at the first split offset) followed by newly introduced
1205 /// blocks starting at the subsequent split points.
1206 ///
1207 /// The optional Cache parameter can be used to speed up repeated calls to
1208 /// splitBlock for blocks within a single Section. If the value is None then
1209 /// the cache will be treated as uninitialized and splitBlock will populate
1210 /// it. Otherwise it is assumed to contain the list of Symbols pointing at B,
1211 /// sorted in descending order of offset.
1212 ///
1213 ///
1214 /// Notes:
1215 ///
1216 /// 1. splitBlock must be used with care. Splitting a block may cause
1217 /// incoming edges to become invalid if the edge target subexpression
1218 /// points outside the bounds of the newly split target block (E.g. an
1219 /// edge 'S + 10 : Pointer64' where S points to a newly split block
1220 /// whose size is less than 10). No attempt is made to detect invalidation
1221 /// of incoming edges, as in general this requires context that the
1222 /// LinkGraph does not have. Clients are responsible for ensuring that
1223 /// splitBlock is not used in a way that invalidates edges.
1224 ///
1225 /// 2. The newly introduced blocks will have new ordinals that will be higher
1226 /// than any other ordinals in the section. Clients are responsible for
1227 /// re-assigning block ordinals to restore a compatible order if needed.
1228 ///
1229 /// 3. The cache is not automatically updated if new symbols are introduced
1230 /// between calls to splitBlock. Any newly introduced symbols may be
1231 /// added to the cache manually (descending offset order must be
1232 /// preserved), or the cache can be set to None and rebuilt by
1233 /// splitBlock on the next call.
1234 template <typename SplitOffsetRange>
1235 std::vector<Block *> splitBlock(Block &B, SplitOffsetRange &&SplitOffsets,
1236 LinkGraph::SplitBlockCache *Cache = nullptr) {
1237 std::vector<Block *> Blocks;
1238 Blocks.push_back(&B);
1239
1240 if (std::empty(SplitOffsets))
1241 return Blocks;
1242
1243 // Special case zero-fill:
1244 if (B.isZeroFill()) {
1245 size_t OrigSize = B.getSize();
1246 for (Edge::OffsetT Offset : SplitOffsets) {
1247 assert(Offset > 0 && Offset < B.getSize() &&
1248 "Split offset must be inside block content");
1249 Blocks.back()->setZeroFillSize(
1250 Offset - (Blocks.back()->getAddress() - B.getAddress()));
1251 Blocks.push_back(&createZeroFillBlock(
1252 B.getSection(), B.getSize(), B.getAddress() + Offset,
1253 B.getAlignment(),
1254 (B.getAlignmentOffset() + Offset) % B.getAlignment()));
1255 }
1256 Blocks.back()->setZeroFillSize(
1257 OrigSize - (Blocks.back()->getAddress() - B.getAddress()));
1258 return Blocks;
1259 }
1260
1261 // Handle content blocks. We'll just create the blocks with their starting
1262 // address and no content here. The bulk of the work is deferred to
1263 // splitBlockImpl.
1264 for (Edge::OffsetT Offset : SplitOffsets) {
1265 assert(Offset > 0 && Offset < B.getSize() &&
1266 "Split offset must be inside block content");
1267 Blocks.push_back(&createContentBlock(
1268 B.getSection(), ArrayRef<char>(), B.getAddress() + Offset,
1269 B.getAlignment(),
1270 (B.getAlignmentOffset() + Offset) % B.getAlignment()));
1271 }
1272
1273 return splitBlockImpl(std::move(Blocks), Cache);
1274 }
1275
1276 /// Intern the given string in the LinkGraph's SymbolStringPool.
1278 return SSP->intern(SymbolName);
1279 }
1280
1281 /// Add an external symbol.
1282 /// Some formats (e.g. ELF) allow Symbols to have sizes. For Symbols whose
1283 /// size is not known, you should substitute '0'.
1284 /// The IsWeaklyReferenced argument determines whether the symbol must be
1285 /// present during lookup: Externals that are strongly referenced must be
1286 /// found or an error will be emitted. Externals that are weakly referenced
1287 /// are permitted to be undefined, in which case they are assigned an address
1288 /// of 0.
1291 bool IsWeaklyReferenced) {
1292 assert(!ExternalSymbols.contains(*Name) && "Duplicate external symbol");
1293 auto &Sym = Symbol::constructExternal(
1294 Allocator, createAddressable(orc::ExecutorAddr(), false),
1295 std::move(Name), Size, Linkage::Strong, IsWeaklyReferenced);
1296 ExternalSymbols.insert({*Sym.getName(), &Sym});
1297 return Sym;
1298 }
1299
1301 bool IsWeaklyReferenced) {
1302 return addExternalSymbol(SSP->intern(Name), Size, IsWeaklyReferenced);
1303 }
1304
1305 /// Add an absolute symbol.
1309 bool IsLive) {
1310 assert((S == Scope::Local || llvm::count_if(AbsoluteSymbols,
1311 [&](const Symbol *Sym) {
1312 return Sym->getName() == Name;
1313 }) == 0) &&
1314 "Duplicate absolute symbol");
1315 auto &Sym = Symbol::constructAbsolute(Allocator, createAddressable(Address),
1316 std::move(Name), Size, L, S, IsLive);
1317 AbsoluteSymbols.insert(&Sym);
1318 return Sym;
1319 }
1320
1323 bool IsLive) {
1324
1325 return addAbsoluteSymbol(SSP->intern(Name), Address, Size, L, S, IsLive);
1326 }
1327
1328 /// Add an anonymous symbol.
1330 orc::ExecutorAddrDiff Size, bool IsCallable,
1331 bool IsLive) {
1332 auto &Sym = Symbol::constructAnonDef(Allocator, Content, Offset, Size,
1333 IsCallable, IsLive);
1334 Content.getSection().addSymbol(Sym);
1335 return Sym;
1336 }
1337
1338 /// Add a named symbol.
1341 Linkage L, Scope S, bool IsCallable, bool IsLive) {
1342 return addDefinedSymbol(Content, Offset, SSP->intern(Name), Size, L, S,
1343 IsCallable, IsLive);
1344 }
1345
1349 bool IsCallable, bool IsLive) {
1351 [&](const Symbol *Sym) {
1352 return Sym->getName() == Name;
1353 }) == 0) &&
1354 "Duplicate defined symbol");
1355 auto &Sym =
1356 Symbol::constructNamedDef(Allocator, Content, Offset, std::move(Name),
1357 Size, L, S, IsLive, IsCallable);
1358 Content.getSection().addSymbol(Sym);
1359 return Sym;
1360 }
1361
1363 return make_range(
1364 section_iterator(Sections.begin(), GetSectionMapEntryValue()),
1365 section_iterator(Sections.end(), GetSectionMapEntryValue()));
1366 }
1367
1369 return make_range(
1370 const_section_iterator(Sections.begin(),
1371 GetSectionMapEntryConstValue()),
1372 const_section_iterator(Sections.end(), GetSectionMapEntryConstValue()));
1373 }
1374
1375 size_t sections_size() const { return Sections.size(); }
1376
1377 /// Returns the section with the given name if it exists, otherwise returns
1378 /// null.
1380 auto I = Sections.find(Name);
1381 if (I == Sections.end())
1382 return nullptr;
1383 return I->second.get();
1384 }
1385
1387 auto Secs = sections();
1388 return make_range(block_iterator(Secs.begin(), Secs.end()),
1389 block_iterator(Secs.end(), Secs.end()));
1390 }
1391
1393 auto Secs = sections();
1394 return make_range(const_block_iterator(Secs.begin(), Secs.end()),
1395 const_block_iterator(Secs.end(), Secs.end()));
1396 }
1397
1399 return make_range(
1400 external_symbol_iterator(ExternalSymbols.begin(),
1401 GetExternalSymbolMapEntryValue()),
1402 external_symbol_iterator(ExternalSymbols.end(),
1403 GetExternalSymbolMapEntryValue()));
1404 }
1405
1406 /// Returns the external symbol with the given name if one exists, otherwise
1407 /// returns nullptr.
1409 for (auto *Sym : external_symbols())
1410 if (Sym->getName() == Name)
1411 return Sym;
1412 return nullptr;
1413 }
1414
1416 return make_range(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1417 }
1418
1420 for (auto *Sym : absolute_symbols())
1421 if (Sym->getName() == Name)
1422 return Sym;
1423 return nullptr;
1424 }
1425
1427 auto Secs = sections();
1428 return make_range(defined_symbol_iterator(Secs.begin(), Secs.end()),
1429 defined_symbol_iterator(Secs.end(), Secs.end()));
1430 }
1431
1433 auto Secs = sections();
1434 return make_range(const_defined_symbol_iterator(Secs.begin(), Secs.end()),
1435 const_defined_symbol_iterator(Secs.end(), Secs.end()));
1436 }
1437
1438 /// Returns the defined symbol with the given name if one exists, otherwise
1439 /// returns nullptr.
1441 for (auto *Sym : defined_symbols())
1442 if (Sym->hasName() && Sym->getName() == Name)
1443 return Sym;
1444 return nullptr;
1445 }
1446
1447 /// Make the given symbol external (must not already be external).
1448 ///
1449 /// Symbol size, linkage and callability will be left unchanged. Symbol scope
1450 /// will be set to Default, and offset will be reset to 0.
1452 assert(!Sym.isExternal() && "Symbol is already external");
1453 if (Sym.isAbsolute()) {
1454 assert(AbsoluteSymbols.count(&Sym) &&
1455 "Sym is not in the absolute symbols set");
1456 assert(Sym.getOffset() == 0 && "Absolute not at offset 0");
1457 AbsoluteSymbols.erase(&Sym);
1458 auto &A = Sym.getAddressable();
1459 A.setAbsolute(false);
1460 A.setAddress(orc::ExecutorAddr());
1461 } else {
1462 assert(Sym.isDefined() && "Sym is not a defined symbol");
1463 Section &Sec = Sym.getBlock().getSection();
1464 Sec.removeSymbol(Sym);
1465 Sym.makeExternal(createAddressable(orc::ExecutorAddr(), false));
1466 }
1467 ExternalSymbols.insert({*Sym.getName(), &Sym});
1468 }
1469
1470 /// Make the given symbol an absolute with the given address (must not already
1471 /// be absolute).
1472 ///
1473 /// The symbol's size, linkage, and callability, and liveness will be left
1474 /// unchanged, and its offset will be reset to 0.
1475 ///
1476 /// If the symbol was external then its scope will be set to local, otherwise
1477 /// it will be left unchanged.
1479 assert(!Sym.isAbsolute() && "Symbol is already absolute");
1480 if (Sym.isExternal()) {
1481 assert(ExternalSymbols.contains(*Sym.getName()) &&
1482 "Sym is not in the absolute symbols set");
1483 assert(Sym.getOffset() == 0 && "External is not at offset 0");
1484 ExternalSymbols.erase(*Sym.getName());
1485 auto &A = Sym.getAddressable();
1486 A.setAbsolute(true);
1487 A.setAddress(Address);
1488 Sym.setScope(Scope::Local);
1489 } else {
1490 assert(Sym.isDefined() && "Sym is not a defined symbol");
1491 Section &Sec = Sym.getBlock().getSection();
1492 Sec.removeSymbol(Sym);
1493 Sym.makeAbsolute(createAddressable(Address));
1494 }
1495 AbsoluteSymbols.insert(&Sym);
1496 }
1497
1498 /// Turn an absolute or external symbol into a defined one by attaching it to
1499 /// a block. Symbol must not already be defined.
1502 bool IsLive) {
1503 assert(!Sym.isDefined() && "Sym is already a defined symbol");
1504 if (Sym.isAbsolute()) {
1505 assert(AbsoluteSymbols.count(&Sym) &&
1506 "Symbol is not in the absolutes set");
1507 AbsoluteSymbols.erase(&Sym);
1508 } else {
1509 assert(ExternalSymbols.contains(*Sym.getName()) &&
1510 "Symbol is not in the externals set");
1511 ExternalSymbols.erase(*Sym.getName());
1512 }
1513 Addressable &OldBase = *Sym.Base;
1514 Sym.setBlock(Content);
1515 Sym.setOffset(Offset);
1516 Sym.setSize(Size);
1517 Sym.setLinkage(L);
1518 Sym.setScope(S);
1519 Sym.setLive(IsLive);
1520 Content.getSection().addSymbol(Sym);
1521 destroyAddressable(OldBase);
1522 }
1523
1524 /// Transfer a defined symbol from one block to another.
1525 ///
1526 /// The symbol's offset within DestBlock is set to NewOffset.
1527 ///
1528 /// If ExplicitNewSize is given as None then the size of the symbol will be
1529 /// checked and auto-truncated to at most the size of the remainder (from the
1530 /// given offset) of the size of the new block.
1531 ///
1532 /// All other symbol attributes are unchanged.
1533 void
1535 orc::ExecutorAddrDiff NewOffset,
1536 std::optional<orc::ExecutorAddrDiff> ExplicitNewSize) {
1537 auto &OldSection = Sym.getBlock().getSection();
1538 Sym.setBlock(DestBlock);
1539 Sym.setOffset(NewOffset);
1540 if (ExplicitNewSize)
1541 Sym.setSize(*ExplicitNewSize);
1542 else {
1543 auto RemainingBlockSize = DestBlock.getSize() - NewOffset;
1544 if (Sym.getSize() > RemainingBlockSize)
1545 Sym.setSize(RemainingBlockSize);
1546 }
1547 if (&DestBlock.getSection() != &OldSection) {
1548 OldSection.removeSymbol(Sym);
1549 DestBlock.getSection().addSymbol(Sym);
1550 }
1551 }
1552
1553 /// Transfers the given Block and all Symbols pointing to it to the given
1554 /// Section.
1555 ///
1556 /// No attempt is made to check compatibility of the source and destination
1557 /// sections. Blocks may be moved between sections with incompatible
1558 /// permissions (e.g. from data to text). The client is responsible for
1559 /// ensuring that this is safe.
1560 void transferBlock(Block &B, Section &NewSection) {
1561 auto &OldSection = B.getSection();
1562 if (&OldSection == &NewSection)
1563 return;
1564 SmallVector<Symbol *> AttachedSymbols;
1565 for (auto *S : OldSection.symbols())
1566 if (&S->getBlock() == &B)
1567 AttachedSymbols.push_back(S);
1568 for (auto *S : AttachedSymbols) {
1569 OldSection.removeSymbol(*S);
1570 NewSection.addSymbol(*S);
1571 }
1572 OldSection.removeBlock(B);
1573 NewSection.addBlock(B);
1574 }
1575
1576 /// Move all blocks and symbols from the source section to the destination
1577 /// section.
1578 ///
1579 /// If PreserveSrcSection is true (or SrcSection and DstSection are the same)
1580 /// then SrcSection is preserved, otherwise it is removed (the default).
1581 void mergeSections(Section &DstSection, Section &SrcSection,
1582 bool PreserveSrcSection = false) {
1583 if (&DstSection == &SrcSection)
1584 return;
1585 for (auto *B : SrcSection.blocks())
1586 B->setSection(DstSection);
1587 SrcSection.transferContentTo(DstSection);
1588 if (!PreserveSrcSection)
1589 removeSection(SrcSection);
1590 }
1591
1592 /// Removes an external symbol. Also removes the underlying Addressable.
1594 assert(!Sym.isDefined() && !Sym.isAbsolute() &&
1595 "Sym is not an external symbol");
1596 assert(ExternalSymbols.contains(*Sym.getName()) &&
1597 "Symbol is not in the externals set");
1598 ExternalSymbols.erase(*Sym.getName());
1599 Addressable &Base = *Sym.Base;
1601 [&](Symbol *AS) { return AS->Base == &Base; }) &&
1602 "Base addressable still in use");
1603 destroySymbol(Sym);
1604 destroyAddressable(Base);
1605 }
1606
1607 /// Remove an absolute symbol. Also removes the underlying Addressable.
1609 assert(!Sym.isDefined() && Sym.isAbsolute() &&
1610 "Sym is not an absolute symbol");
1611 assert(AbsoluteSymbols.count(&Sym) &&
1612 "Symbol is not in the absolute symbols set");
1613 AbsoluteSymbols.erase(&Sym);
1614 Addressable &Base = *Sym.Base;
1616 [&](Symbol *AS) { return AS->Base == &Base; }) &&
1617 "Base addressable still in use");
1618 destroySymbol(Sym);
1619 destroyAddressable(Base);
1620 }
1621
1622 /// Removes defined symbols. Does not remove the underlying block.
1624 assert(Sym.isDefined() && "Sym is not a defined symbol");
1625 Sym.getBlock().getSection().removeSymbol(Sym);
1626 destroySymbol(Sym);
1627 }
1628
1629 /// Remove a block. The block reference is defunct after calling this
1630 /// function and should no longer be used.
1632 assert(llvm::none_of(B.getSection().symbols(),
1633 [&](const Symbol *Sym) {
1634 return &Sym->getBlock() == &B;
1635 }) &&
1636 "Block still has symbols attached");
1637 B.getSection().removeBlock(B);
1638 destroyBlock(B);
1639 }
1640
1641 /// Remove a section. The section reference is defunct after calling this
1642 /// function and should no longer be used.
1644 assert(Sections.count(Sec.getName()) && "Section not found");
1645 assert(Sections.find(Sec.getName())->second.get() == &Sec &&
1646 "Section map entry invalid");
1647 Sections.erase(Sec.getName());
1648 }
1649
1650 /// Accessor for the AllocActions object for this graph. This can be used to
1651 /// register allocation action calls prior to finalization.
1652 ///
1653 /// Accessing this object after finalization will result in undefined
1654 /// behavior.
1656
1657 /// Dump the graph.
1658 void dump(raw_ostream &OS);
1659
1660private:
1661 std::vector<Block *> splitBlockImpl(std::vector<Block *> Blocks,
1662 SplitBlockCache *Cache);
1663
1664 // Put the BumpPtrAllocator first so that we don't free any of the underlying
1665 // memory until the Symbol/Addressable destructors have been run.
1667
1668 std::string Name;
1669 std::shared_ptr<orc::SymbolStringPool> SSP;
1670 Triple TT;
1671 SubtargetFeatures Features;
1672 GetEdgeKindNameFunction GetEdgeKindName = nullptr;
1674 // FIXME(jared): these should become dense maps
1675 ExternalSymbolMap ExternalSymbols;
1676 AbsoluteSymbolSet AbsoluteSymbols;
1678};
1679
1681 if (!ContentMutable)
1682 setMutableContent(G.allocateContent({Data, Size}));
1683 return MutableArrayRef<char>(const_cast<char *>(Data), Size);
1684}
1685
1686/// Enables easy lookup of blocks by addresses.
1688public:
1689 using AddrToBlockMap = std::map<orc::ExecutorAddr, Block *>;
1690 using const_iterator = AddrToBlockMap::const_iterator;
1691
1692 /// A block predicate that always adds all blocks.
1693 static bool includeAllBlocks(const Block &B) { return true; }
1694
1695 /// A block predicate that always includes blocks with non-null addresses.
1696 static bool includeNonNull(const Block &B) { return !!B.getAddress(); }
1697
1698 BlockAddressMap() = default;
1699
1700 /// Add a block to the map. Returns an error if the block overlaps with any
1701 /// existing block.
1702 template <typename PredFn = decltype(includeAllBlocks)>
1704 if (!Pred(B))
1705 return Error::success();
1706
1707 auto I = AddrToBlock.upper_bound(B.getAddress());
1708
1709 // If we're not at the end of the map, check for overlap with the next
1710 // element.
1711 if (I != AddrToBlock.end()) {
1712 if (B.getAddress() + B.getSize() > I->second->getAddress())
1713 return overlapError(B, *I->second);
1714 }
1715
1716 // If we're not at the start of the map, check for overlap with the previous
1717 // element.
1718 if (I != AddrToBlock.begin()) {
1719 auto &PrevBlock = *std::prev(I)->second;
1720 if (PrevBlock.getAddress() + PrevBlock.getSize() > B.getAddress())
1721 return overlapError(B, PrevBlock);
1722 }
1723
1724 AddrToBlock.insert(I, std::make_pair(B.getAddress(), &B));
1725 return Error::success();
1726 }
1727
1728 /// Add a block to the map without checking for overlap with existing blocks.
1729 /// The client is responsible for ensuring that the block added does not
1730 /// overlap with any existing block.
1731 void addBlockWithoutChecking(Block &B) { AddrToBlock[B.getAddress()] = &B; }
1732
1733 /// Add a range of blocks to the map. Returns an error if any block in the
1734 /// range overlaps with any other block in the range, or with any existing
1735 /// block in the map.
1736 template <typename BlockPtrRange,
1737 typename PredFn = decltype(includeAllBlocks)>
1738 Error addBlocks(BlockPtrRange &&Blocks, PredFn Pred = includeAllBlocks) {
1739 for (auto *B : Blocks)
1740 if (auto Err = addBlock(*B, Pred))
1741 return Err;
1742 return Error::success();
1743 }
1744
1745 /// Add a range of blocks to the map without checking for overlap with
1746 /// existing blocks. The client is responsible for ensuring that the block
1747 /// added does not overlap with any existing block.
1748 template <typename BlockPtrRange>
1749 void addBlocksWithoutChecking(BlockPtrRange &&Blocks) {
1750 for (auto *B : Blocks)
1752 }
1753
1754 /// Iterates over (Address, Block*) pairs in ascending order of address.
1755 const_iterator begin() const { return AddrToBlock.begin(); }
1756 const_iterator end() const { return AddrToBlock.end(); }
1757
1758 /// Returns the block starting at the given address, or nullptr if no such
1759 /// block exists.
1761 auto I = AddrToBlock.find(Addr);
1762 if (I == AddrToBlock.end())
1763 return nullptr;
1764 return I->second;
1765 }
1766
1767 /// Returns the block covering the given address, or nullptr if no such block
1768 /// exists.
1770 auto I = AddrToBlock.upper_bound(Addr);
1771 if (I == AddrToBlock.begin())
1772 return nullptr;
1773 auto *B = std::prev(I)->second;
1774 if (Addr < B->getAddress() + B->getSize())
1775 return B;
1776 return nullptr;
1777 }
1778
1779private:
1780 Error overlapError(Block &NewBlock, Block &ExistingBlock) {
1781 auto NewBlockEnd = NewBlock.getAddress() + NewBlock.getSize();
1782 auto ExistingBlockEnd =
1783 ExistingBlock.getAddress() + ExistingBlock.getSize();
1784 return make_error<JITLinkError>(
1785 "Block at " +
1786 formatv("{0:x16} -- {1:x16}", NewBlock.getAddress().getValue(),
1787 NewBlockEnd.getValue()) +
1788 " overlaps " +
1789 formatv("{0:x16} -- {1:x16}", ExistingBlock.getAddress().getValue(),
1790 ExistingBlockEnd.getValue()));
1791 }
1792
1793 AddrToBlockMap AddrToBlock;
1794};
1795
1796/// A map of addresses to Symbols.
1798public:
1800
1801 /// Add a symbol to the SymbolAddressMap.
1803 AddrToSymbols[Sym.getAddress()].push_back(&Sym);
1804 }
1805
1806 /// Add all symbols in a given range to the SymbolAddressMap.
1807 template <typename SymbolPtrCollection>
1808 void addSymbols(SymbolPtrCollection &&Symbols) {
1809 for (auto *Sym : Symbols)
1810 addSymbol(*Sym);
1811 }
1812
1813 /// Returns the list of symbols that start at the given address, or nullptr if
1814 /// no such symbols exist.
1816 auto I = AddrToSymbols.find(Addr);
1817 if (I == AddrToSymbols.end())
1818 return nullptr;
1819 return &I->second;
1820 }
1821
1822private:
1823 std::map<orc::ExecutorAddr, SymbolVector> AddrToSymbols;
1824};
1825
1826/// A function for mutating LinkGraphs.
1828
1829/// A list of LinkGraph passes.
1830using LinkGraphPassList = std::vector<LinkGraphPassFunction>;
1831
1832/// An LinkGraph pass configuration, consisting of a list of pre-prune,
1833/// post-prune, and post-fixup passes.
1835
1836 /// Pre-prune passes.
1837 ///
1838 /// These passes are called on the graph after it is built, and before any
1839 /// symbols have been pruned. Graph nodes still have their original vmaddrs.
1840 ///
1841 /// Notable use cases: Marking symbols live or should-discard.
1843
1844 /// Post-prune passes.
1845 ///
1846 /// These passes are called on the graph after dead stripping, but before
1847 /// memory is allocated or nodes assigned their final addresses.
1848 ///
1849 /// Notable use cases: Building GOT, stub, and TLV symbols.
1851
1852 /// Post-allocation passes.
1853 ///
1854 /// These passes are called on the graph after memory has been allocated and
1855 /// defined nodes have been assigned their final addresses, but before the
1856 /// context has been notified of these addresses. At this point externals
1857 /// have not been resolved, and symbol content has not yet been copied into
1858 /// working memory.
1859 ///
1860 /// Notable use cases: Setting up data structures associated with addresses
1861 /// of defined symbols (e.g. a mapping of __dso_handle to JITDylib* for the
1862 /// JIT runtime) -- using a PostAllocationPass for this ensures that the
1863 /// data structures are in-place before any query for resolved symbols
1864 /// can complete.
1866
1867 /// Pre-fixup passes.
1868 ///
1869 /// These passes are called on the graph after memory has been allocated,
1870 /// content copied into working memory, and all nodes (including externals)
1871 /// have been assigned their final addresses, but before any fixups have been
1872 /// applied.
1873 ///
1874 /// Notable use cases: Late link-time optimizations like GOT and stub
1875 /// elimination.
1877
1878 /// Post-fixup passes.
1879 ///
1880 /// These passes are called on the graph after block contents has been copied
1881 /// to working memory, and fixups applied. Blocks have been updated to point
1882 /// to their fixed up content.
1883 ///
1884 /// Notable use cases: Testing and validation.
1886};
1887
1888/// Flags for symbol lookup.
1889///
1890/// FIXME: These basically duplicate orc::SymbolLookupFlags -- We should merge
1891/// the two types once we have an OrcSupport library.
1893
1895
1896/// A map of symbol names to resolved addresses.
1899
1900/// A function object to call with a resolved symbol map (See AsyncLookupResult)
1901/// or an error if resolution failed.
1903public:
1905 virtual void run(Expected<AsyncLookupResult> LR) = 0;
1906
1907private:
1908 virtual void anchor();
1909};
1910
1911/// Create a lookup continuation from a function object.
1912template <typename Continuation>
1913std::unique_ptr<JITLinkAsyncLookupContinuation>
1914createLookupContinuation(Continuation Cont) {
1915
1916 class Impl final : public JITLinkAsyncLookupContinuation {
1917 public:
1918 Impl(Continuation C) : C(std::move(C)) {}
1919 void run(Expected<AsyncLookupResult> LR) override { C(std::move(LR)); }
1920
1921 private:
1922 Continuation C;
1923 };
1924
1925 return std::make_unique<Impl>(std::move(Cont));
1926}
1927
1928/// Holds context for a single jitLink invocation.
1930public:
1932
1933 /// Create a JITLinkContext.
1934 JITLinkContext(const JITLinkDylib *JD) : JD(JD) {}
1935
1936 /// Destroy a JITLinkContext.
1938
1939 /// Return the JITLinkDylib that this link is targeting, if any.
1940 const JITLinkDylib *getJITLinkDylib() const { return JD; }
1941
1942 /// Return the MemoryManager to be used for this link.
1944
1945 /// Notify this context that linking failed.
1946 /// Called by JITLink if linking cannot be completed.
1947 virtual void notifyFailed(Error Err) = 0;
1948
1949 /// Called by JITLink to resolve external symbols. This method is passed a
1950 /// lookup continutation which it must call with a result to continue the
1951 /// linking process.
1952 virtual void lookup(const LookupMap &Symbols,
1953 std::unique_ptr<JITLinkAsyncLookupContinuation> LC) = 0;
1954
1955 /// Called by JITLink once all defined symbols in the graph have been assigned
1956 /// their final memory locations in the target process. At this point the
1957 /// LinkGraph can be inspected to build a symbol table, however the block
1958 /// content will not generally have been copied to the target location yet.
1959 ///
1960 /// If the client detects an error in the LinkGraph state (e.g. unexpected or
1961 /// missing symbols) they may return an error here. The error will be
1962 /// propagated to notifyFailed and the linker will bail out.
1964
1965 /// Called by JITLink to notify the context that the object has been
1966 /// finalized (i.e. emitted to memory and memory permissions set). If all of
1967 /// this objects dependencies have also been finalized then the code is ready
1968 /// to run.
1970
1971 /// Called by JITLink prior to linking to determine whether default passes for
1972 /// the target should be added. The default implementation returns true.
1973 /// If subclasses override this method to return false for any target then
1974 /// they are required to fully configure the pass pipeline for that target.
1975 virtual bool shouldAddDefaultTargetPasses(const Triple &TT) const;
1976
1977 /// Returns the mark-live pass to be used for this link. If no pass is
1978 /// returned (the default) then the target-specific linker implementation will
1979 /// choose a conservative default (usually marking all symbols live).
1980 /// This function is only called if shouldAddDefaultTargetPasses returns true,
1981 /// otherwise the JITContext is responsible for adding a mark-live pass in
1982 /// modifyPassConfig.
1983 virtual LinkGraphPassFunction getMarkLivePass(const Triple &TT) const;
1984
1985 /// Called by JITLink to modify the pass pipeline prior to linking.
1986 /// The default version performs no modification.
1988
1989private:
1990 const JITLinkDylib *JD = nullptr;
1991};
1992
1993/// Marks all symbols in a graph live. This can be used as a default,
1994/// conservative mark-live implementation.
1996
1997/// Create an out of range error for the given edge in the given block.
1999 const Edge &E);
2000
2002 const Edge &E);
2003
2004/// Creates a new pointer block in the given section and returns an
2005/// Anonymous symbol pointing to it.
2006///
2007/// The pointer block will have the following default values:
2008/// alignment: PointerSize
2009/// alignment-offset: 0
2010/// address: highest allowable
2012 unique_function<Symbol &(LinkGraph &G, Section &PointerSection,
2013 Symbol *InitialTarget, uint64_t InitialAddend)>;
2014
2015/// Get target-specific AnonymousPointerCreator
2017
2018/// Create a jump stub that jumps via the pointer at the given symbol and
2019/// an anonymous symbol pointing to it. Return the anonymous symbol.
2020///
2021/// The stub block will be created by createPointerJumpStubBlock.
2023 LinkGraph &G, Section &StubSection, Symbol &PointerSymbol)>;
2024
2025/// Get target-specific PointerJumpStubCreator
2027
2028/// Base case for edge-visitors where the visitor-list is empty.
2029inline void visitEdge(LinkGraph &G, Block *B, Edge &E) {}
2030
2031/// Applies the first visitor in the list to the given edge. If the visitor's
2032/// visitEdge method returns true then we return immediately, otherwise we
2033/// apply the next visitor.
2034template <typename VisitorT, typename... VisitorTs>
2035void visitEdge(LinkGraph &G, Block *B, Edge &E, VisitorT &&V,
2036 VisitorTs &&...Vs) {
2037 if (!V.visitEdge(G, B, E))
2038 visitEdge(G, B, E, std::forward<VisitorTs>(Vs)...);
2039}
2040
2041/// For each edge in the given graph, apply a list of visitors to the edge,
2042/// stopping when the first visitor's visitEdge method returns true.
2043///
2044/// Only visits edges that were in the graph at call time: if any visitor
2045/// adds new edges those will not be visited. Visitors are not allowed to
2046/// remove edges (though they can change their kind, target, and addend).
2047template <typename... VisitorTs>
2048void visitExistingEdges(LinkGraph &G, VisitorTs &&...Vs) {
2049 // We may add new blocks during this process, but we don't want to iterate
2050 // over them, so build a worklist.
2051 std::vector<Block *> Worklist(G.blocks().begin(), G.blocks().end());
2052
2053 for (auto *B : Worklist)
2054 for (auto &E : B->edges())
2055 visitEdge(G, B, E, std::forward<VisitorTs>(Vs)...);
2056}
2057
2058/// Create a LinkGraph from the given object buffer.
2059///
2060/// Note: The graph does not take ownership of the underlying buffer, nor copy
2061/// its contents. The caller is responsible for ensuring that the object buffer
2062/// outlives the graph.
2065 std::shared_ptr<orc::SymbolStringPool> SSP);
2066
2067/// Create a \c LinkGraph defining the given absolute symbols.
2068std::unique_ptr<LinkGraph>
2069absoluteSymbolsLinkGraph(Triple TT, std::shared_ptr<orc::SymbolStringPool> SSP,
2070 orc::SymbolMap Symbols);
2071
2072/// Link the given graph.
2073void link(std::unique_ptr<LinkGraph> G, std::unique_ptr<JITLinkContext> Ctx);
2074
2075} // end namespace jitlink
2076} // end namespace llvm
2077
2078#endif // LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H
This file defines the BumpPtrAllocator interface.
basic Basic Alias true
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< ShadowStackGC > C("shadow-stack", "Very portable GC for uncooperative code generators")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file defines the DenseMap class.
This file defines the DenseSet and SmallDenseSet classes.
T Content
uint64_t Addr
std::string Name
uint64_t Size
static void addSymbol(Object &Obj, const NewSymbolInfo &SymInfo, uint8_t DefaultVisibility)
Definition: ELFObjcopy.cpp:559
RelaxConfig Config
Definition: ELF_riscv.cpp:506
DenseMap< Block *, BlockRelaxAux > Blocks
Definition: ELF_riscv.cpp:507
uint64_t Offset
Definition: ELF_riscv.cpp:478
Symbol * Sym
Definition: ELF_riscv.cpp:479
static void makeAbsolute(SmallVectorImpl< char > &Path)
Make Path absolute.
This file provides a collection of function (or more generally, callable) type erasure utilities supp...
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
#define T
Basic Register Allocator
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
const Value * getAddress(const DbgVariableIntrinsic *DVI)
Definition: SROA.cpp:5023
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
Value * RHS
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Definition: ArrayRef.h:198
Provides read only access to a subclass of BinaryStream.
Provides write only access to a subclass of WritableBinaryStream.
Allocate memory in an ever growing pool, as if by bump-pointer.
Definition: Allocator.h:66
BucketT value_type
Definition: DenseMap.h:69
Implements a dense probed hash-table based set.
Definition: DenseSet.h:278
Base class for user error types.
Definition: Error.h:355
Lightweight error class with error context and mandatory checking.
Definition: Error.h:160
static ErrorSuccess success()
Create a success value.
Definition: Error.h:337
Tagged union holding either a T or a Error.
Definition: Error.h:481
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition: ArrayRef.h:310
T * data() const
Definition: ArrayRef.h:357
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition: SmallString.h:26
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringMapEntry - This is used to represent one value that is inserted into a StringMap.
iterator end()
Definition: StringMap.h:220
iterator begin()
Definition: StringMap.h:219
bool contains(StringRef Key) const
contains - Return true if the element is in the map, false otherwise.
Definition: StringMap.h:273
StringMapIterator< Symbol * > iterator
Definition: StringMap.h:217
void erase(iterator I)
Definition: StringMap.h:416
bool insert(MapEntryTy *KeyValue)
insert - Insert the specified key/value pair into the map.
Definition: StringMap.h:308
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
Manages the enabling and disabling of subtarget specific features.
Target - Wrapper for Target specific information.
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
unsigned getArchPointerBitWidth() const
Returns the pointer width of this architecture.
Definition: Triple.h:497
bool isLittleEndian() const
Tests whether the target triple is little endian.
Definition: Triple.cpp:1987
ArchType getArch() const
Get the parsed architecture type of this triple.
Definition: Triple.h:395
static unsigned getArchPointerBitWidth(llvm::Triple::ArchType Arch)
Returns the pointer width of this architecture.
Definition: Triple.cpp:1641
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
LLVM Value Representation.
Definition: Value.h:74
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:213
ConstIterator const_iterator
Definition: DenseSet.h:179
size_type size() const
Definition: DenseSet.h:81
bool erase(const ValueT &V)
Definition: DenseSet.h:97
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
Definition: DenseSet.h:95
CRTP base class which implements the entire standard iterator facade in terms of a minimal subset of ...
Definition: iterator.h:80
A range adaptor for a pair of iterators.
Represents an address in the executor process.
uint64_t getValue() const
Base class for both owning and non-owning symbol-string ptrs.
Pointer to a pooled string representing a symbol name.
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
unique_function is a type-erasing functor similar to std::function.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
std::vector< AllocActionCallPair > AllocActions
A vector of allocation actions to be run for this allocation.
MemProt
Describes Read/Write/Exec permissions for memory.
Definition: MemoryFlags.h:27
uint64_t ExecutorAddrDiff
MemLifetime
Describes a memory lifetime policy for memory to be allocated by a JITLinkMemoryManager.
Definition: MemoryFlags.h:75
@ Standard
Standard memory should be allocated by the allocator and then deallocated when the deallocate method ...
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1697
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition: MathExtras.h:298
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition: bit.h:215
auto formatv(bool Validate, const char *Fmt, Ts &&...Vals)
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1753
iterator_range< filter_iterator< detail::IterOfRange< RangeT >, PredicateT > > make_filter_range(RangeT &&Range, PredicateT Pred)
Convenience function that takes a range of elements and a predicate, and return a new filter_iterator...
Definition: STLExtras.h:573
BumpPtrAllocatorImpl BumpPtrAllocator
The standard BumpPtrAllocator which just uses the default template parameters.
Definition: Allocator.h:382
OutputIt copy(R &&Range, OutputIt Out)
Definition: STLExtras.h:1841
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1873
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition: STLExtras.h:1945
endianness
Definition: bit.h:70
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
#define N
Represents an address range in the exceutor process.