LLVM  9.0.0svn
DenseMap.h
Go to the documentation of this file.
1 //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the DenseMap class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_ADT_DENSEMAP_H
14 #define LLVM_ADT_DENSEMAP_H
15 
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/EpochTracker.h"
18 #include "llvm/Support/AlignOf.h"
19 #include "llvm/Support/Compiler.h"
23 #include <algorithm>
24 #include <cassert>
25 #include <cstddef>
26 #include <cstring>
27 #include <initializer_list>
28 #include <iterator>
29 #include <new>
30 #include <type_traits>
31 #include <utility>
32 
33 namespace llvm {
34 
35 namespace detail {
36 
37 // We extend a pair to allow users to override the bucket type with their own
38 // implementation without requiring two members.
39 template <typename KeyT, typename ValueT>
40 struct DenseMapPair : public std::pair<KeyT, ValueT> {
41 
42  // FIXME: Switch to inheriting constructors when we drop support for older
43  // clang versions.
44  // NOTE: This default constructor is declared with '{}' rather than
45  // '= default' to work around a separate bug in clang-3.8. This can
46  // also go when we switch to inheriting constructors.
48 
49  DenseMapPair(const KeyT &Key, const ValueT &Value)
50  : std::pair<KeyT, ValueT>(Key, Value) {}
51 
53  : std::pair<KeyT, ValueT>(std::move(Key), std::move(Value)) {}
54 
55  template <typename AltKeyT, typename AltValueT>
56  DenseMapPair(AltKeyT &&AltKey, AltValueT &&AltValue,
57  typename std::enable_if<
58  std::is_convertible<AltKeyT, KeyT>::value &&
59  std::is_convertible<AltValueT, ValueT>::value>::type * = 0)
60  : std::pair<KeyT, ValueT>(std::forward<AltKeyT>(AltKey),
61  std::forward<AltValueT>(AltValue)) {}
62 
63  template <typename AltPairT>
64  DenseMapPair(AltPairT &&AltPair,
65  typename std::enable_if<std::is_convertible<
66  AltPairT, std::pair<KeyT, ValueT>>::value>::type * = nullptr)
67  : std::pair<KeyT, ValueT>(std::forward<AltPairT>(AltPair)) {}
68 
70  const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; }
73 };
74 
75 } // end namespace detail
76 
77 template <typename KeyT, typename ValueT,
78  typename KeyInfoT = DenseMapInfo<KeyT>,
80  bool IsConst = false>
82 
83 template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
84  typename BucketT>
85 class DenseMapBase : public DebugEpochBase {
86  template <typename T>
87  using const_arg_type_t = typename const_pointer_or_const_ref<T>::type;
88 
89 public:
91  using key_type = KeyT;
92  using mapped_type = ValueT;
93  using value_type = BucketT;
94 
96  using const_iterator =
98 
99  inline iterator begin() {
100  // When the map is empty, avoid the overhead of advancing/retreating past
101  // empty buckets.
102  if (empty())
103  return end();
104  if (shouldReverseIterate<KeyT>())
105  return makeIterator(getBucketsEnd() - 1, getBuckets(), *this);
106  return makeIterator(getBuckets(), getBucketsEnd(), *this);
107  }
108  inline iterator end() {
109  return makeIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
110  }
111  inline const_iterator begin() const {
112  if (empty())
113  return end();
114  if (shouldReverseIterate<KeyT>())
115  return makeConstIterator(getBucketsEnd() - 1, getBuckets(), *this);
116  return makeConstIterator(getBuckets(), getBucketsEnd(), *this);
117  }
118  inline const_iterator end() const {
119  return makeConstIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
120  }
121 
122  LLVM_NODISCARD bool empty() const {
123  return getNumEntries() == 0;
124  }
125  unsigned size() const { return getNumEntries(); }
126 
127  /// Grow the densemap so that it can contain at least \p NumEntries items
128  /// before resizing again.
129  void reserve(size_type NumEntries) {
130  auto NumBuckets = getMinBucketToReserveForEntries(NumEntries);
131  incrementEpoch();
132  if (NumBuckets > getNumBuckets())
133  grow(NumBuckets);
134  }
135 
136  void clear() {
137  incrementEpoch();
138  if (getNumEntries() == 0 && getNumTombstones() == 0) return;
139 
140  // If the capacity of the array is huge, and the # elements used is small,
141  // shrink the array.
142  if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
143  shrink_and_clear();
144  return;
145  }
146 
147  const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
150  // Use a simpler loop when these are trivial types.
151  for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P)
152  P->getFirst() = EmptyKey;
153  } else {
154  unsigned NumEntries = getNumEntries();
155  for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
156  if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) {
157  if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
158  P->getSecond().~ValueT();
159  --NumEntries;
160  }
161  P->getFirst() = EmptyKey;
162  }
163  }
164  assert(NumEntries == 0 && "Node count imbalance!");
165  }
166  setNumEntries(0);
167  setNumTombstones(0);
168  }
169 
170  /// Return 1 if the specified key is in the map, 0 otherwise.
171  size_type count(const_arg_type_t<KeyT> Val) const {
172  const BucketT *TheBucket;
173  return LookupBucketFor(Val, TheBucket) ? 1 : 0;
174  }
175 
176  iterator find(const_arg_type_t<KeyT> Val) {
177  BucketT *TheBucket;
178  if (LookupBucketFor(Val, TheBucket))
179  return makeIterator(TheBucket, getBucketsEnd(), *this, true);
180  return end();
181  }
182  const_iterator find(const_arg_type_t<KeyT> Val) const {
183  const BucketT *TheBucket;
184  if (LookupBucketFor(Val, TheBucket))
185  return makeConstIterator(TheBucket, getBucketsEnd(), *this, true);
186  return end();
187  }
188 
189  /// Alternate version of find() which allows a different, and possibly
190  /// less expensive, key type.
191  /// The DenseMapInfo is responsible for supplying methods
192  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
193  /// type used.
194  template<class LookupKeyT>
195  iterator find_as(const LookupKeyT &Val) {
196  BucketT *TheBucket;
197  if (LookupBucketFor(Val, TheBucket))
198  return makeIterator(TheBucket, getBucketsEnd(), *this, true);
199  return end();
200  }
201  template<class LookupKeyT>
202  const_iterator find_as(const LookupKeyT &Val) const {
203  const BucketT *TheBucket;
204  if (LookupBucketFor(Val, TheBucket))
205  return makeConstIterator(TheBucket, getBucketsEnd(), *this, true);
206  return end();
207  }
208 
209  /// lookup - Return the entry for the specified key, or a default
210  /// constructed value if no such entry exists.
211  ValueT lookup(const_arg_type_t<KeyT> Val) const {
212  const BucketT *TheBucket;
213  if (LookupBucketFor(Val, TheBucket))
214  return TheBucket->getSecond();
215  return ValueT();
216  }
217 
218  // Inserts key,value pair into the map if the key isn't already in the map.
219  // If the key is already in the map, it returns false and doesn't update the
220  // value.
221  std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
222  return try_emplace(KV.first, KV.second);
223  }
224 
225  // Inserts key,value pair into the map if the key isn't already in the map.
226  // If the key is already in the map, it returns false and doesn't update the
227  // value.
228  std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
229  return try_emplace(std::move(KV.first), std::move(KV.second));
230  }
231 
232  // Inserts key,value pair into the map if the key isn't already in the map.
233  // The value is constructed in-place if the key is not in the map, otherwise
234  // it is not moved.
235  template <typename... Ts>
236  std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) {
237  BucketT *TheBucket;
238  if (LookupBucketFor(Key, TheBucket))
239  return std::make_pair(
240  makeIterator(TheBucket, getBucketsEnd(), *this, true),
241  false); // Already in map.
242 
243  // Otherwise, insert the new element.
244  TheBucket =
245  InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...);
246  return std::make_pair(
247  makeIterator(TheBucket, getBucketsEnd(), *this, true),
248  true);
249  }
250 
251  // Inserts key,value pair into the map if the key isn't already in the map.
252  // The value is constructed in-place if the key is not in the map, otherwise
253  // it is not moved.
254  template <typename... Ts>
255  std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) {
256  BucketT *TheBucket;
257  if (LookupBucketFor(Key, TheBucket))
258  return std::make_pair(
259  makeIterator(TheBucket, getBucketsEnd(), *this, true),
260  false); // Already in map.
261 
262  // Otherwise, insert the new element.
263  TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...);
264  return std::make_pair(
265  makeIterator(TheBucket, getBucketsEnd(), *this, true),
266  true);
267  }
268 
269  /// Alternate version of insert() which allows a different, and possibly
270  /// less expensive, key type.
271  /// The DenseMapInfo is responsible for supplying methods
272  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
273  /// type used.
274  template <typename LookupKeyT>
275  std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV,
276  const LookupKeyT &Val) {
277  BucketT *TheBucket;
278  if (LookupBucketFor(Val, TheBucket))
279  return std::make_pair(
280  makeIterator(TheBucket, getBucketsEnd(), *this, true),
281  false); // Already in map.
282 
283  // Otherwise, insert the new element.
284  TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first),
285  std::move(KV.second), Val);
286  return std::make_pair(
287  makeIterator(TheBucket, getBucketsEnd(), *this, true),
288  true);
289  }
290 
291  /// insert - Range insertion of pairs.
292  template<typename InputIt>
293  void insert(InputIt I, InputIt E) {
294  for (; I != E; ++I)
295  insert(*I);
296  }
297 
298  bool erase(const KeyT &Val) {
299  BucketT *TheBucket;
300  if (!LookupBucketFor(Val, TheBucket))
301  return false; // not in map.
302 
303  TheBucket->getSecond().~ValueT();
304  TheBucket->getFirst() = getTombstoneKey();
305  decrementNumEntries();
306  incrementNumTombstones();
307  return true;
308  }
309  void erase(iterator I) {
310  BucketT *TheBucket = &*I;
311  TheBucket->getSecond().~ValueT();
312  TheBucket->getFirst() = getTombstoneKey();
313  decrementNumEntries();
314  incrementNumTombstones();
315  }
316 
318  BucketT *TheBucket;
319  if (LookupBucketFor(Key, TheBucket))
320  return *TheBucket;
321 
322  return *InsertIntoBucket(TheBucket, Key);
323  }
324 
325  ValueT &operator[](const KeyT &Key) {
326  return FindAndConstruct(Key).second;
327  }
328 
330  BucketT *TheBucket;
331  if (LookupBucketFor(Key, TheBucket))
332  return *TheBucket;
333 
334  return *InsertIntoBucket(TheBucket, std::move(Key));
335  }
336 
337  ValueT &operator[](KeyT &&Key) {
338  return FindAndConstruct(std::move(Key)).second;
339  }
340 
341  /// isPointerIntoBucketsArray - Return true if the specified pointer points
342  /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
343  /// value in the DenseMap).
344  bool isPointerIntoBucketsArray(const void *Ptr) const {
345  return Ptr >= getBuckets() && Ptr < getBucketsEnd();
346  }
347 
348  /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
349  /// array. In conjunction with the previous method, this can be used to
350  /// determine whether an insertion caused the DenseMap to reallocate.
351  const void *getPointerIntoBucketsArray() const { return getBuckets(); }
352 
353 protected:
354  DenseMapBase() = default;
355 
356  void destroyAll() {
357  if (getNumBuckets() == 0) // Nothing to do.
358  return;
359 
360  const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
361  for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
362  if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
363  !KeyInfoT::isEqual(P->getFirst(), TombstoneKey))
364  P->getSecond().~ValueT();
365  P->getFirst().~KeyT();
366  }
367  }
368 
369  void initEmpty() {
370  setNumEntries(0);
371  setNumTombstones(0);
372 
373  assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
374  "# initial buckets must be a power of two!");
375  const KeyT EmptyKey = getEmptyKey();
376  for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
377  ::new (&B->getFirst()) KeyT(EmptyKey);
378  }
379 
380  /// Returns the number of buckets to allocate to ensure that the DenseMap can
381  /// accommodate \p NumEntries without need to grow().
382  unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
383  // Ensure that "NumEntries * 4 < NumBuckets * 3"
384  if (NumEntries == 0)
385  return 0;
386  // +1 is required because of the strict equality.
387  // For example if NumEntries is 48, we need to return 401.
388  return NextPowerOf2(NumEntries * 4 / 3 + 1);
389  }
390 
391  void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
392  initEmpty();
393 
394  // Insert all the old elements.
395  const KeyT EmptyKey = getEmptyKey();
396  const KeyT TombstoneKey = getTombstoneKey();
397  for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
398  if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) &&
399  !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) {
400  // Insert the key/value into the new table.
401  BucketT *DestBucket;
402  bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket);
403  (void)FoundVal; // silence warning.
404  assert(!FoundVal && "Key already in new map?");
405  DestBucket->getFirst() = std::move(B->getFirst());
406  ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond()));
407  incrementNumEntries();
408 
409  // Free the value.
410  B->getSecond().~ValueT();
411  }
412  B->getFirst().~KeyT();
413  }
414  }
415 
416  template <typename OtherBaseT>
417  void copyFrom(
419  assert(&other != this);
420  assert(getNumBuckets() == other.getNumBuckets());
421 
422  setNumEntries(other.getNumEntries());
423  setNumTombstones(other.getNumTombstones());
424 
427  memcpy(reinterpret_cast<void *>(getBuckets()), other.getBuckets(),
428  getNumBuckets() * sizeof(BucketT));
429  else
430  for (size_t i = 0; i < getNumBuckets(); ++i) {
431  ::new (&getBuckets()[i].getFirst())
432  KeyT(other.getBuckets()[i].getFirst());
433  if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) &&
434  !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey()))
435  ::new (&getBuckets()[i].getSecond())
436  ValueT(other.getBuckets()[i].getSecond());
437  }
438  }
439 
440  static unsigned getHashValue(const KeyT &Val) {
441  return KeyInfoT::getHashValue(Val);
442  }
443 
444  template<typename LookupKeyT>
445  static unsigned getHashValue(const LookupKeyT &Val) {
446  return KeyInfoT::getHashValue(Val);
447  }
448 
449  static const KeyT getEmptyKey() {
450  static_assert(std::is_base_of<DenseMapBase, DerivedT>::value,
451  "Must pass the derived type to this template!");
452  return KeyInfoT::getEmptyKey();
453  }
454 
455  static const KeyT getTombstoneKey() {
456  return KeyInfoT::getTombstoneKey();
457  }
458 
459 private:
460  iterator makeIterator(BucketT *P, BucketT *E,
461  DebugEpochBase &Epoch,
462  bool NoAdvance=false) {
463  if (shouldReverseIterate<KeyT>()) {
464  BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
465  return iterator(B, E, Epoch, NoAdvance);
466  }
467  return iterator(P, E, Epoch, NoAdvance);
468  }
469 
470  const_iterator makeConstIterator(const BucketT *P, const BucketT *E,
471  const DebugEpochBase &Epoch,
472  const bool NoAdvance=false) const {
473  if (shouldReverseIterate<KeyT>()) {
474  const BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
475  return const_iterator(B, E, Epoch, NoAdvance);
476  }
477  return const_iterator(P, E, Epoch, NoAdvance);
478  }
479 
480  unsigned getNumEntries() const {
481  return static_cast<const DerivedT *>(this)->getNumEntries();
482  }
483 
484  void setNumEntries(unsigned Num) {
485  static_cast<DerivedT *>(this)->setNumEntries(Num);
486  }
487 
488  void incrementNumEntries() {
489  setNumEntries(getNumEntries() + 1);
490  }
491 
492  void decrementNumEntries() {
493  setNumEntries(getNumEntries() - 1);
494  }
495 
496  unsigned getNumTombstones() const {
497  return static_cast<const DerivedT *>(this)->getNumTombstones();
498  }
499 
500  void setNumTombstones(unsigned Num) {
501  static_cast<DerivedT *>(this)->setNumTombstones(Num);
502  }
503 
504  void incrementNumTombstones() {
505  setNumTombstones(getNumTombstones() + 1);
506  }
507 
508  void decrementNumTombstones() {
509  setNumTombstones(getNumTombstones() - 1);
510  }
511 
512  const BucketT *getBuckets() const {
513  return static_cast<const DerivedT *>(this)->getBuckets();
514  }
515 
516  BucketT *getBuckets() {
517  return static_cast<DerivedT *>(this)->getBuckets();
518  }
519 
520  unsigned getNumBuckets() const {
521  return static_cast<const DerivedT *>(this)->getNumBuckets();
522  }
523 
524  BucketT *getBucketsEnd() {
525  return getBuckets() + getNumBuckets();
526  }
527 
528  const BucketT *getBucketsEnd() const {
529  return getBuckets() + getNumBuckets();
530  }
531 
532  void grow(unsigned AtLeast) {
533  static_cast<DerivedT *>(this)->grow(AtLeast);
534  }
535 
536  void shrink_and_clear() {
537  static_cast<DerivedT *>(this)->shrink_and_clear();
538  }
539 
540  template <typename KeyArg, typename... ValueArgs>
541  BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key,
542  ValueArgs &&... Values) {
543  TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket);
544 
545  TheBucket->getFirst() = std::forward<KeyArg>(Key);
546  ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...);
547  return TheBucket;
548  }
549 
550  template <typename LookupKeyT>
551  BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key,
552  ValueT &&Value, LookupKeyT &Lookup) {
553  TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket);
554 
555  TheBucket->getFirst() = std::move(Key);
556  ::new (&TheBucket->getSecond()) ValueT(std::move(Value));
557  return TheBucket;
558  }
559 
560  template <typename LookupKeyT>
561  BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup,
562  BucketT *TheBucket) {
563  incrementEpoch();
564 
565  // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
566  // the buckets are empty (meaning that many are filled with tombstones),
567  // grow the table.
568  //
569  // The later case is tricky. For example, if we had one empty bucket with
570  // tons of tombstones, failing lookups (e.g. for insertion) would have to
571  // probe almost the entire table until it found the empty bucket. If the
572  // table completely filled with tombstones, no lookup would ever succeed,
573  // causing infinite loops in lookup.
574  unsigned NewNumEntries = getNumEntries() + 1;
575  unsigned NumBuckets = getNumBuckets();
576  if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) {
577  this->grow(NumBuckets * 2);
578  LookupBucketFor(Lookup, TheBucket);
579  NumBuckets = getNumBuckets();
580  } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <=
581  NumBuckets/8)) {
582  this->grow(NumBuckets);
583  LookupBucketFor(Lookup, TheBucket);
584  }
585  assert(TheBucket);
586 
587  // Only update the state after we've grown our bucket space appropriately
588  // so that when growing buckets we have self-consistent entry count.
589  incrementNumEntries();
590 
591  // If we are writing over a tombstone, remember this.
592  const KeyT EmptyKey = getEmptyKey();
593  if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey))
594  decrementNumTombstones();
595 
596  return TheBucket;
597  }
598 
599  /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
600  /// FoundBucket. If the bucket contains the key and a value, this returns
601  /// true, otherwise it returns a bucket with an empty marker or tombstone and
602  /// returns false.
603  template<typename LookupKeyT>
604  bool LookupBucketFor(const LookupKeyT &Val,
605  const BucketT *&FoundBucket) const {
606  const BucketT *BucketsPtr = getBuckets();
607  const unsigned NumBuckets = getNumBuckets();
608 
609  if (NumBuckets == 0) {
610  FoundBucket = nullptr;
611  return false;
612  }
613 
614  // FoundTombstone - Keep track of whether we find a tombstone while probing.
615  const BucketT *FoundTombstone = nullptr;
616  const KeyT EmptyKey = getEmptyKey();
617  const KeyT TombstoneKey = getTombstoneKey();
618  assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
619  !KeyInfoT::isEqual(Val, TombstoneKey) &&
620  "Empty/Tombstone value shouldn't be inserted into map!");
621 
622  unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
623  unsigned ProbeAmt = 1;
624  while (true) {
625  const BucketT *ThisBucket = BucketsPtr + BucketNo;
626  // Found Val's bucket? If so, return it.
627  if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) {
628  FoundBucket = ThisBucket;
629  return true;
630  }
631 
632  // If we found an empty bucket, the key doesn't exist in the set.
633  // Insert it and return the default value.
634  if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) {
635  // If we've already seen a tombstone while probing, fill it in instead
636  // of the empty bucket we eventually probed to.
637  FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
638  return false;
639  }
640 
641  // If this is a tombstone, remember it. If Val ends up not in the map, we
642  // prefer to return it than something that would require more probing.
643  if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) &&
644  !FoundTombstone)
645  FoundTombstone = ThisBucket; // Remember the first tombstone found.
646 
647  // Otherwise, it's a hash collision or a tombstone, continue quadratic
648  // probing.
649  BucketNo += ProbeAmt++;
650  BucketNo &= (NumBuckets-1);
651  }
652  }
653 
654  template <typename LookupKeyT>
655  bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
656  const BucketT *ConstFoundBucket;
657  bool Result = const_cast<const DenseMapBase *>(this)
658  ->LookupBucketFor(Val, ConstFoundBucket);
659  FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
660  return Result;
661  }
662 
663 public:
664  /// Return the approximate size (in bytes) of the actual map.
665  /// This is just the raw memory used by DenseMap.
666  /// If entries are pointers to objects, the size of the referenced objects
667  /// are not included.
668  size_t getMemorySize() const {
669  return getNumBuckets() * sizeof(BucketT);
670  }
671 };
672 
673 /// Equality comparison for DenseMap.
674 ///
675 /// Iterates over elements of LHS confirming that each (key, value) pair in LHS
676 /// is also in RHS, and that no additional pairs are in RHS.
677 /// Equivalent to N calls to RHS.find and N value comparisons. Amortized
678 /// complexity is linear, worst case is O(N^2) (if every hash collides).
679 template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
680  typename BucketT>
684  if (LHS.size() != RHS.size())
685  return false;
686 
687  for (auto &KV : LHS) {
688  auto I = RHS.find(KV.first);
689  if (I == RHS.end() || I->second != KV.second)
690  return false;
691  }
692 
693  return true;
694 }
695 
696 /// Inequality comparison for DenseMap.
697 ///
698 /// Equivalent to !(LHS == RHS). See operator== for performance notes.
699 template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
700  typename BucketT>
704  return !(LHS == RHS);
705 }
706 
707 template <typename KeyT, typename ValueT,
708  typename KeyInfoT = DenseMapInfo<KeyT>,
709  typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>>
710 class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>,
711  KeyT, ValueT, KeyInfoT, BucketT> {
712  friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
713 
714  // Lift some types from the dependent base class into this class for
715  // simplicity of referring to them.
717 
718  BucketT *Buckets;
719  unsigned NumEntries;
720  unsigned NumTombstones;
721  unsigned NumBuckets;
722 
723 public:
724  /// Create a DenseMap wth an optional \p InitialReserve that guarantee that
725  /// this number of elements can be inserted in the map without grow()
726  explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); }
727 
728  DenseMap(const DenseMap &other) : BaseT() {
729  init(0);
730  copyFrom(other);
731  }
732 
733  DenseMap(DenseMap &&other) : BaseT() {
734  init(0);
735  swap(other);
736  }
737 
738  template<typename InputIt>
739  DenseMap(const InputIt &I, const InputIt &E) {
740  init(std::distance(I, E));
741  this->insert(I, E);
742  }
743 
744  DenseMap(std::initializer_list<typename BaseT::value_type> Vals) {
745  init(Vals.size());
746  this->insert(Vals.begin(), Vals.end());
747  }
748 
750  this->destroyAll();
751  operator delete(Buckets);
752  }
753 
754  void swap(DenseMap& RHS) {
755  this->incrementEpoch();
756  RHS.incrementEpoch();
757  std::swap(Buckets, RHS.Buckets);
758  std::swap(NumEntries, RHS.NumEntries);
759  std::swap(NumTombstones, RHS.NumTombstones);
760  std::swap(NumBuckets, RHS.NumBuckets);
761  }
762 
763  DenseMap& operator=(const DenseMap& other) {
764  if (&other != this)
765  copyFrom(other);
766  return *this;
767  }
768 
770  this->destroyAll();
771  operator delete(Buckets);
772  init(0);
773  swap(other);
774  return *this;
775  }
776 
777  void copyFrom(const DenseMap& other) {
778  this->destroyAll();
779  operator delete(Buckets);
780  if (allocateBuckets(other.NumBuckets)) {
781  this->BaseT::copyFrom(other);
782  } else {
783  NumEntries = 0;
784  NumTombstones = 0;
785  }
786  }
787 
788  void init(unsigned InitNumEntries) {
789  auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries);
790  if (allocateBuckets(InitBuckets)) {
791  this->BaseT::initEmpty();
792  } else {
793  NumEntries = 0;
794  NumTombstones = 0;
795  }
796  }
797 
798  void grow(unsigned AtLeast) {
799  unsigned OldNumBuckets = NumBuckets;
800  BucketT *OldBuckets = Buckets;
801 
802  allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
803  assert(Buckets);
804  if (!OldBuckets) {
805  this->BaseT::initEmpty();
806  return;
807  }
808 
809  this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
810 
811  // Free the old table.
812  operator delete(OldBuckets);
813  }
814 
816  unsigned OldNumEntries = NumEntries;
817  this->destroyAll();
818 
819  // Reduce the number of buckets.
820  unsigned NewNumBuckets = 0;
821  if (OldNumEntries)
822  NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
823  if (NewNumBuckets == NumBuckets) {
824  this->BaseT::initEmpty();
825  return;
826  }
827 
828  operator delete(Buckets);
829  init(NewNumBuckets);
830  }
831 
832 private:
833  unsigned getNumEntries() const {
834  return NumEntries;
835  }
836 
837  void setNumEntries(unsigned Num) {
838  NumEntries = Num;
839  }
840 
841  unsigned getNumTombstones() const {
842  return NumTombstones;
843  }
844 
845  void setNumTombstones(unsigned Num) {
846  NumTombstones = Num;
847  }
848 
849  BucketT *getBuckets() const {
850  return Buckets;
851  }
852 
853  unsigned getNumBuckets() const {
854  return NumBuckets;
855  }
856 
857  bool allocateBuckets(unsigned Num) {
858  NumBuckets = Num;
859  if (NumBuckets == 0) {
860  Buckets = nullptr;
861  return false;
862  }
863 
864  Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets));
865  return true;
866  }
867 };
868 
869 template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4,
870  typename KeyInfoT = DenseMapInfo<KeyT>,
871  typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>>
873  : public DenseMapBase<
874  SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT,
875  ValueT, KeyInfoT, BucketT> {
876  friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
877 
878  // Lift some types from the dependent base class into this class for
879  // simplicity of referring to them.
881 
882  static_assert(isPowerOf2_64(InlineBuckets),
883  "InlineBuckets must be a power of 2.");
884 
885  unsigned Small : 1;
886  unsigned NumEntries : 31;
887  unsigned NumTombstones;
888 
889  struct LargeRep {
890  BucketT *Buckets;
891  unsigned NumBuckets;
892  };
893 
894  /// A "union" of an inline bucket array and the struct representing
895  /// a large bucket. This union will be discriminated by the 'Small' bit.
897 
898 public:
899  explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
900  init(NumInitBuckets);
901  }
902 
903  SmallDenseMap(const SmallDenseMap &other) : BaseT() {
904  init(0);
905  copyFrom(other);
906  }
907 
908  SmallDenseMap(SmallDenseMap &&other) : BaseT() {
909  init(0);
910  swap(other);
911  }
912 
913  template<typename InputIt>
914  SmallDenseMap(const InputIt &I, const InputIt &E) {
915  init(NextPowerOf2(std::distance(I, E)));
916  this->insert(I, E);
917  }
918 
920  this->destroyAll();
921  deallocateBuckets();
922  }
923 
924  void swap(SmallDenseMap& RHS) {
925  unsigned TmpNumEntries = RHS.NumEntries;
926  RHS.NumEntries = NumEntries;
927  NumEntries = TmpNumEntries;
928  std::swap(NumTombstones, RHS.NumTombstones);
929 
930  const KeyT EmptyKey = this->getEmptyKey();
931  const KeyT TombstoneKey = this->getTombstoneKey();
932  if (Small && RHS.Small) {
933  // If we're swapping inline bucket arrays, we have to cope with some of
934  // the tricky bits of DenseMap's storage system: the buckets are not
935  // fully initialized. Thus we swap every key, but we may have
936  // a one-directional move of the value.
937  for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
938  BucketT *LHSB = &getInlineBuckets()[i],
939  *RHSB = &RHS.getInlineBuckets()[i];
940  bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) &&
941  !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey));
942  bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) &&
943  !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey));
944  if (hasLHSValue && hasRHSValue) {
945  // Swap together if we can...
946  std::swap(*LHSB, *RHSB);
947  continue;
948  }
949  // Swap separately and handle any assymetry.
950  std::swap(LHSB->getFirst(), RHSB->getFirst());
951  if (hasLHSValue) {
952  ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond()));
953  LHSB->getSecond().~ValueT();
954  } else if (hasRHSValue) {
955  ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond()));
956  RHSB->getSecond().~ValueT();
957  }
958  }
959  return;
960  }
961  if (!Small && !RHS.Small) {
962  std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
963  std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
964  return;
965  }
966 
967  SmallDenseMap &SmallSide = Small ? *this : RHS;
968  SmallDenseMap &LargeSide = Small ? RHS : *this;
969 
970  // First stash the large side's rep and move the small side across.
971  LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
972  LargeSide.getLargeRep()->~LargeRep();
973  LargeSide.Small = true;
974  // This is similar to the standard move-from-old-buckets, but the bucket
975  // count hasn't actually rotated in this case. So we have to carefully
976  // move construct the keys and values into their new locations, but there
977  // is no need to re-hash things.
978  for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
979  BucketT *NewB = &LargeSide.getInlineBuckets()[i],
980  *OldB = &SmallSide.getInlineBuckets()[i];
981  ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst()));
982  OldB->getFirst().~KeyT();
983  if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) &&
984  !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) {
985  ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond()));
986  OldB->getSecond().~ValueT();
987  }
988  }
989 
990  // The hard part of moving the small buckets across is done, just move
991  // the TmpRep into its new home.
992  SmallSide.Small = false;
993  new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
994  }
995 
997  if (&other != this)
998  copyFrom(other);
999  return *this;
1000  }
1001 
1003  this->destroyAll();
1004  deallocateBuckets();
1005  init(0);
1006  swap(other);
1007  return *this;
1008  }
1009 
1010  void copyFrom(const SmallDenseMap& other) {
1011  this->destroyAll();
1012  deallocateBuckets();
1013  Small = true;
1014  if (other.getNumBuckets() > InlineBuckets) {
1015  Small = false;
1016  new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
1017  }
1018  this->BaseT::copyFrom(other);
1019  }
1020 
1021  void init(unsigned InitBuckets) {
1022  Small = true;
1023  if (InitBuckets > InlineBuckets) {
1024  Small = false;
1025  new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
1026  }
1027  this->BaseT::initEmpty();
1028  }
1029 
1030  void grow(unsigned AtLeast) {
1031  if (AtLeast >= InlineBuckets)
1032  AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
1033 
1034  if (Small) {
1035  if (AtLeast < InlineBuckets)
1036  return; // Nothing to do.
1037 
1038  // First move the inline buckets into a temporary storage.
1040  BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer);
1041  BucketT *TmpEnd = TmpBegin;
1042 
1043  // Loop over the buckets, moving non-empty, non-tombstones into the
1044  // temporary storage. Have the loop move the TmpEnd forward as it goes.
1045  const KeyT EmptyKey = this->getEmptyKey();
1046  const KeyT TombstoneKey = this->getTombstoneKey();
1047  for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
1048  if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
1049  !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
1050  assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
1051  "Too many inline buckets!");
1052  ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst()));
1053  ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond()));
1054  ++TmpEnd;
1055  P->getSecond().~ValueT();
1056  }
1057  P->getFirst().~KeyT();
1058  }
1059 
1060  // Now make this map use the large rep, and move all the entries back
1061  // into it.
1062  Small = false;
1063  new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
1064  this->moveFromOldBuckets(TmpBegin, TmpEnd);
1065  return;
1066  }
1067 
1068  LargeRep OldRep = std::move(*getLargeRep());
1069  getLargeRep()->~LargeRep();
1070  if (AtLeast <= InlineBuckets) {
1071  Small = true;
1072  } else {
1073  new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
1074  }
1075 
1076  this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
1077 
1078  // Free the old table.
1079  operator delete(OldRep.Buckets);
1080  }
1081 
1083  unsigned OldSize = this->size();
1084  this->destroyAll();
1085 
1086  // Reduce the number of buckets.
1087  unsigned NewNumBuckets = 0;
1088  if (OldSize) {
1089  NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
1090  if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
1091  NewNumBuckets = 64;
1092  }
1093  if ((Small && NewNumBuckets <= InlineBuckets) ||
1094  (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
1095  this->BaseT::initEmpty();
1096  return;
1097  }
1098 
1099  deallocateBuckets();
1100  init(NewNumBuckets);
1101  }
1102 
1103 private:
1104  unsigned getNumEntries() const {
1105  return NumEntries;
1106  }
1107 
1108  void setNumEntries(unsigned Num) {
1109  // NumEntries is hardcoded to be 31 bits wide.
1110  assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries");
1111  NumEntries = Num;
1112  }
1113 
1114  unsigned getNumTombstones() const {
1115  return NumTombstones;
1116  }
1117 
1118  void setNumTombstones(unsigned Num) {
1119  NumTombstones = Num;
1120  }
1121 
1122  const BucketT *getInlineBuckets() const {
1123  assert(Small);
1124  // Note that this cast does not violate aliasing rules as we assert that
1125  // the memory's dynamic type is the small, inline bucket buffer, and the
1126  // 'storage.buffer' static type is 'char *'.
1127  return reinterpret_cast<const BucketT *>(storage.buffer);
1128  }
1129 
1130  BucketT *getInlineBuckets() {
1131  return const_cast<BucketT *>(
1132  const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
1133  }
1134 
1135  const LargeRep *getLargeRep() const {
1136  assert(!Small);
1137  // Note, same rule about aliasing as with getInlineBuckets.
1138  return reinterpret_cast<const LargeRep *>(storage.buffer);
1139  }
1140 
1141  LargeRep *getLargeRep() {
1142  return const_cast<LargeRep *>(
1143  const_cast<const SmallDenseMap *>(this)->getLargeRep());
1144  }
1145 
1146  const BucketT *getBuckets() const {
1147  return Small ? getInlineBuckets() : getLargeRep()->Buckets;
1148  }
1149 
1150  BucketT *getBuckets() {
1151  return const_cast<BucketT *>(
1152  const_cast<const SmallDenseMap *>(this)->getBuckets());
1153  }
1154 
1155  unsigned getNumBuckets() const {
1156  return Small ? InlineBuckets : getLargeRep()->NumBuckets;
1157  }
1158 
1159  void deallocateBuckets() {
1160  if (Small)
1161  return;
1162 
1163  operator delete(getLargeRep()->Buckets);
1164  getLargeRep()->~LargeRep();
1165  }
1166 
1167  LargeRep allocateBuckets(unsigned Num) {
1168  assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
1169  LargeRep Rep = {
1170  static_cast<BucketT*>(operator new(sizeof(BucketT) * Num)), Num
1171  };
1172  return Rep;
1173  }
1174 };
1175 
1176 template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket,
1177  bool IsConst>
1179  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
1180  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>;
1181 
1183 
1184 public:
1186  using value_type =
1187  typename std::conditional<IsConst, const Bucket, Bucket>::type;
1188  using pointer = value_type *;
1190  using iterator_category = std::forward_iterator_tag;
1191 
1192 private:
1193  pointer Ptr = nullptr;
1194  pointer End = nullptr;
1195 
1196 public:
1197  DenseMapIterator() = default;
1198 
1200  bool NoAdvance = false)
1201  : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) {
1202  assert(isHandleInSync() && "invalid construction!");
1203 
1204  if (NoAdvance) return;
1205  if (shouldReverseIterate<KeyT>()) {
1206  RetreatPastEmptyBuckets();
1207  return;
1208  }
1209  AdvancePastEmptyBuckets();
1210  }
1211 
1212  // Converting ctor from non-const iterators to const iterators. SFINAE'd out
1213  // for const iterator destinations so it doesn't end up as a user defined copy
1214  // constructor.
1215  template <bool IsConstSrc,
1216  typename = typename std::enable_if<!IsConstSrc && IsConst>::type>
1219  : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {}
1220 
1222  assert(isHandleInSync() && "invalid iterator access!");
1223  if (shouldReverseIterate<KeyT>())
1224  return Ptr[-1];
1225  return *Ptr;
1226  }
1228  assert(isHandleInSync() && "invalid iterator access!");
1229  if (shouldReverseIterate<KeyT>())
1230  return &(Ptr[-1]);
1231  return Ptr;
1232  }
1233 
1234  bool operator==(const ConstIterator &RHS) const {
1235  assert((!Ptr || isHandleInSync()) && "handle not in sync!");
1236  assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
1237  assert(getEpochAddress() == RHS.getEpochAddress() &&
1238  "comparing incomparable iterators!");
1239  return Ptr == RHS.Ptr;
1240  }
1241  bool operator!=(const ConstIterator &RHS) const {
1242  assert((!Ptr || isHandleInSync()) && "handle not in sync!");
1243  assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
1244  assert(getEpochAddress() == RHS.getEpochAddress() &&
1245  "comparing incomparable iterators!");
1246  return Ptr != RHS.Ptr;
1247  }
1248 
1249  inline DenseMapIterator& operator++() { // Preincrement
1250  assert(isHandleInSync() && "invalid iterator access!");
1251  if (shouldReverseIterate<KeyT>()) {
1252  --Ptr;
1253  RetreatPastEmptyBuckets();
1254  return *this;
1255  }
1256  ++Ptr;
1257  AdvancePastEmptyBuckets();
1258  return *this;
1259  }
1260  DenseMapIterator operator++(int) { // Postincrement
1261  assert(isHandleInSync() && "invalid iterator access!");
1262  DenseMapIterator tmp = *this; ++*this; return tmp;
1263  }
1264 
1265 private:
1266  void AdvancePastEmptyBuckets() {
1267  assert(Ptr <= End);
1268  const KeyT Empty = KeyInfoT::getEmptyKey();
1269  const KeyT Tombstone = KeyInfoT::getTombstoneKey();
1270 
1271  while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) ||
1272  KeyInfoT::isEqual(Ptr->getFirst(), Tombstone)))
1273  ++Ptr;
1274  }
1275 
1276  void RetreatPastEmptyBuckets() {
1277  assert(Ptr >= End);
1278  const KeyT Empty = KeyInfoT::getEmptyKey();
1279  const KeyT Tombstone = KeyInfoT::getTombstoneKey();
1280 
1281  while (Ptr != End && (KeyInfoT::isEqual(Ptr[-1].getFirst(), Empty) ||
1282  KeyInfoT::isEqual(Ptr[-1].getFirst(), Tombstone)))
1283  --Ptr;
1284  }
1285 };
1286 
1287 template <typename KeyT, typename ValueT, typename KeyInfoT>
1289  return X.getMemorySize();
1290 }
1291 
1292 } // end namespace llvm
1293 
1294 #endif // LLVM_ADT_DENSEMAP_H
value_type & reference
Definition: DenseMap.h:1189
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition: MathExtras.h:551
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:233
DenseMapPair(KeyT &&Key, ValueT &&Value)
Definition: DenseMap.h:52
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
ValueT & operator[](const KeyT &Key)
Definition: DenseMap.h:325
void copyFrom(const DenseMap &other)
Definition: DenseMap.h:777
void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd)
Definition: DenseMap.h:391
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
const KeyT & getFirst() const
Definition: DenseMap.h:70
This class represents lattice values for constants.
Definition: AllocatorList.h:23
void init(unsigned InitNumEntries)
Definition: DenseMap.h:788
#define LLVM_UNLIKELY(EXPR)
Definition: Compiler.h:191
#define LLVM_LIKELY(EXPR)
Definition: Compiler.h:190
typename std::conditional< IsConst, const Bucket, Bucket >::type value_type
Definition: DenseMap.h:1187
DenseMapPair(const KeyT &Key, const ValueT &Value)
Definition: DenseMap.h:49
void init(unsigned InitBuckets)
Definition: DenseMap.h:1021
unsigned second
static const KeyT getTombstoneKey()
Definition: DenseMap.h:455
const void * getPointerIntoBucketsArray() const
getPointerIntoBucketsArray() - Return an opaque pointer into the buckets array.
Definition: DenseMap.h:351
block Block Frequency true
bool operator!=(const DenseSetImpl< ValueT, MapTy, ValueInfoT > &LHS, const DenseSetImpl< ValueT, MapTy, ValueInfoT > &RHS)
Inequality comparison for DenseSet.
Definition: DenseSet.h:240
const_iterator end() const
Definition: DenseMap.h:118
DenseMap(unsigned InitialReserve=0)
Create a DenseMap wth an optional InitialReserve that guarantee that this number of elements can be i...
Definition: DenseMap.h:726
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:221
reference operator*() const
Definition: DenseMap.h:1221
Definition: BitVector.h:937
A base class for data structure classes wishing to make iterators ("handles") pointing into themselve...
Definition: EpochTracker.h:35
size_t capacity_in_bytes(const BitVector &X)
Definition: BitVector.h:931
static unsigned getMinBucketToReserveForEntries(unsigned NumEntries)
Returns the number of buckets to allocate to ensure that the DenseMap can accommodate NumEntries with...
Definition: StringMap.cpp:24
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
value_type * pointer
Definition: DenseMap.h:1188
void incrementEpoch()
Calling incrementEpoch invalidates all handles pointing into the calling instance.
Definition: EpochTracker.h:43
SmallDenseMap(SmallDenseMap &&other)
Definition: DenseMap.h:908
A base class for iterator classes ("handles") that wish to poll for iterator invalidating modificatio...
Definition: EpochTracker.h:57
Key
PAL metadata keys.
void shrink_and_clear()
Definition: DenseMap.h:1082
static bool isEqual(const Function &Caller, const Function &Callee)
unsigned getMinBucketToReserveForEntries(unsigned NumEntries)
Returns the number of buckets to allocate to ensure that the DenseMap can accommodate NumEntries with...
Definition: DenseMap.h:382
static const KeyT getEmptyKey()
Definition: DenseMap.h:449
void copyFrom(const DenseMapBase< OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT > &other)
Definition: DenseMap.h:417
std::pair< iterator, bool > try_emplace(const KeyT &Key, Ts &&... Args)
Definition: DenseMap.h:255
SmallDenseMap(unsigned NumInitBuckets=0)
Definition: DenseMap.h:899
bool operator==(const DenseSetImpl< ValueT, MapTy, ValueInfoT > &LHS, const DenseSetImpl< ValueT, MapTy, ValueInfoT > &RHS)
Equality comparison for DenseSet.
Definition: DenseSet.h:224
void grow(unsigned AtLeast)
Definition: DenseMap.h:1030
value_type & FindAndConstruct(const KeyT &Key)
Definition: DenseMap.h:317
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:176
std::forward_iterator_tag iterator_category
Definition: DenseMap.h:1190
#define P(N)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:432
bool erase(const KeyT &Val)
Definition: DenseMap.h:298
const ValueT & getSecond() const
Definition: DenseMap.h:72
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
DenseMap(DenseMap &&other)
Definition: DenseMap.h:733
SmallDenseMap(const SmallDenseMap &other)
Definition: DenseMap.h:903
static unsigned getHashValue(const LookupKeyT &Val)
Definition: DenseMap.h:445
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
void grow(unsigned AtLeast)
Definition: DenseMap.h:798
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition: MathExtras.h:433
const void * getEpochAddress() const
Returns a pointer to the epoch word stored in the data structure this handle points into...
Definition: EpochTracker.h:75
DenseMap(const DenseMap &other)
Definition: DenseMap.h:728
const_iterator begin() const
Definition: DenseMap.h:111
void reserve(size_type NumEntries)
Grow the densemap so that it can contain at least NumEntries items before resizing again...
Definition: DenseMap.h:129
unsigned size() const
Definition: DenseMap.h:125
DenseMapPair(AltKeyT &&AltKey, AltValueT &&AltValue, typename std::enable_if< std::is_convertible< AltKeyT, KeyT >::value &&std::is_convertible< AltValueT, ValueT >::value >::type *=0)
Definition: DenseMap.h:56
uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition: MathExtras.h:639
void insert(InputIt I, InputIt E)
insert - Range insertion of pairs.
Definition: DenseMap.h:293
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&... Args)
Definition: DenseMap.h:236
unsigned first
SmallDenseMap & operator=(const SmallDenseMap &other)
Definition: DenseMap.h:996
constexpr bool empty(const T &RangeOrContainer)
Test whether RangeOrContainer is empty. Similar to C++17 std::empty.
Definition: STLExtras.h:209
bool operator==(const ConstIterator &RHS) const
Definition: DenseMap.h:1234
size_t getMemorySize() const
Return the approximate size (in bytes) of the actual map.
Definition: DenseMap.h:668
DenseMapIterator operator++(int)
Definition: DenseMap.h:1260
auto size(R &&Range, typename std::enable_if< std::is_same< typename std::iterator_traits< decltype(Range.begin())>::iterator_category, std::random_access_iterator_tag >::value, void >::type *=nullptr) -> decltype(std::distance(Range.begin(), Range.end()))
Get the size of a range.
Definition: STLExtras.h:1166
void swap(SmallDenseMap &RHS)
Definition: DenseMap.h:924
DenseMap & operator=(const DenseMap &other)
Definition: DenseMap.h:763
bool isPointerIntoBucketsArray(const void *Ptr) const
isPointerIntoBucketsArray - Return true if the specified pointer points somewhere into the DenseMap&#39;s...
Definition: DenseMap.h:344
const_iterator find(const_arg_type_t< KeyT > Val) const
Definition: DenseMap.h:182
void shrink_and_clear()
Definition: DenseMap.h:815
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:940
SmallDenseMap & operator=(SmallDenseMap &&other)
Definition: DenseMap.h:1002
void copyFrom(const SmallDenseMap &other)
Definition: DenseMap.h:1010
DenseMapIterator & operator++()
Definition: DenseMap.h:1249
ValueT & operator[](KeyT &&Key)
Definition: DenseMap.h:337
bool isHandleInSync() const
Returns true if the DebugEpochBase this Handle is linked to has not called incrementEpoch on itself s...
Definition: EpochTracker.h:70
DenseMap(std::initializer_list< typename BaseT::value_type > Vals)
Definition: DenseMap.h:744
This class represents an analyzed expression in the program.
void erase(iterator I)
Definition: DenseMap.h:309
iterator begin()
Definition: DenseMap.h:99
bool operator!=(const ConstIterator &RHS) const
Definition: DenseMap.h:1241
#define I(x, y, z)
Definition: MD5.cpp:58
iterator end()
Definition: DenseMap.h:108
constexpr char IsConst[]
Key for Kernel::Arg::Metadata::mIsConst.
void swap(DenseMap &RHS)
Definition: DenseMap.h:754
std::pair< iterator, bool > insert(std::pair< KeyT, ValueT > &&KV)
Definition: DenseMap.h:228
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:171
LLVM_NODISCARD bool empty() const
Definition: DenseMap.h:122
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:211
#define LLVM_NODISCARD
LLVM_NODISCARD - Warn if a type or return value is discarded.
Definition: Compiler.h:128
iterator find_as(const LookupKeyT &Val)
Alternate version of find() which allows a different, and possibly less expensive, key type.
Definition: DenseMap.h:195
value_type & FindAndConstruct(KeyT &&Key)
Definition: DenseMap.h:329
SmallDenseMap(const InputIt &I, const InputIt &E)
Definition: DenseMap.h:914
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
DenseMap(const InputIt &I, const InputIt &E)
Definition: DenseMap.h:739
LLVM Value Representation.
Definition: Value.h:72
DenseMapIterator(const DenseMapIterator< KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc > &I)
Definition: DenseMap.h:1217
DenseMap & operator=(DenseMap &&other)
Definition: DenseMap.h:769
pointer operator->() const
Definition: DenseMap.h:1227
DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch, bool NoAdvance=false)
Definition: DenseMap.h:1199
DenseMapPair(AltPairT &&AltPair, typename std::enable_if< std::is_convertible< AltPairT, std::pair< KeyT, ValueT >>::value >::type *=nullptr)
Definition: DenseMap.h:64
std::pair< iterator, bool > insert_as(std::pair< KeyT, ValueT > &&KV, const LookupKeyT &Val)
Alternate version of insert() which allows a different, and possibly less expensive, key type.
Definition: DenseMap.h:275
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
static unsigned getHashValue(const KeyT &Val)
Definition: DenseMap.h:440
const_iterator find_as(const LookupKeyT &Val) const
Definition: DenseMap.h:202