15#ifndef LLVM_ADT_APINT_H
16#define LLVM_ADT_APINT_H
28class FoldingSetNodeID;
35template <
typename T>
class SmallVectorImpl;
37template <
typename T,
typename Enable>
struct DenseMapInfo;
83 static constexpr unsigned APINT_WORD_SIZE =
sizeof(
WordType);
86 static constexpr unsigned APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT;
112 bool implicitTrunc =
false)
114 if (!implicitTrunc) {
118 "Value must be 0 or -1 for signed 0-bit APInt");
121 "Value is not an N-bit signed value");
125 assert(val == 0 &&
"Value must be zero for unsigned 0-bit APInt");
128 "Value is not an N-bit unsigned value");
132 if (isSingleWord()) {
157 APInt(
unsigned numBits,
unsigned numWords,
const uint64_t bigVal[]);
185 memcpy(&U, &that.U,
sizeof(U));
210 APInt API = getAllOnes(numBits);
220 APInt API(numBits, 0);
235 return APInt(numBits, WORDTYPE_MAX,
true);
240 APInt Res(numBits, 0);
259 APInt Res(numBits, 0);
272 APInt Res(numBits, 0);
287 APInt Res(numBits, 0);
297 APInt Res(numBits, 0);
307 APInt Res(numBits, 0);
313 static APInt getSplat(
unsigned NewLen,
const APInt &V);
367 return (*
this)[BitNo] &&
popcount() == 1;
375 return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD -
BitWidth);
376 return countTrailingOnesSlowCase() ==
BitWidth;
383 return countLeadingZerosSlowCase() ==
BitWidth;
392 return countLeadingZerosSlowCase() ==
BitWidth - 1;
406 if (isSingleWord()) {
410 return !isNegative() && countTrailingOnesSlowCase() ==
BitWidth - 1;
424 if (isSingleWord()) {
428 return isNegative() && countTrailingZerosSlowCase() ==
BitWidth - 1;
432 bool isIntN(
unsigned N)
const {
return getActiveBits() <=
N; }
441 if (isSingleWord()) {
445 return countPopulationSlowCase() == 1;
476 return ugt(Limit) ? Limit : getZExtValue();
484 bool isSplat(
unsigned SplatSizeInBits)
const;
489 assert(numBits != 0 &&
"numBits must be non-zero");
492 return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
493 unsigned Ones = countTrailingOnesSlowCase();
494 return (numBits == Ones) &&
495 ((Ones + countLeadingZerosSlowCase()) ==
BitWidth);
504 unsigned Ones = countTrailingOnesSlowCase();
505 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) ==
BitWidth);
513 unsigned Ones = countPopulationSlowCase();
514 unsigned LeadZ = countLeadingZerosSlowCase();
515 return (Ones + LeadZ + countTrailingZerosSlowCase()) ==
BitWidth;
525 unsigned Ones = countPopulationSlowCase();
526 unsigned LeadZ = countLeadingZerosSlowCase();
527 unsigned TrailZ = countTrailingZerosSlowCase();
528 if ((Ones + LeadZ + TrailZ) !=
BitWidth)
541 APInt getHiBits(
unsigned numBits)
const;
549 APInt getLoBits(
unsigned numBits)
const;
558 return I1 == I2.
zext(I1.getBitWidth());
621 if (isSingleWord() &&
RHS.isSingleWord()) {
633#ifdef EXPENSIVE_CHECKS
638 assert(
this != &that &&
"Self-move not supported");
644 memcpy(&U, &that.U,
sizeof(U));
659 if (isSingleWord()) {
664 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
679 andAssignSlowCase(
RHS);
689 if (isSingleWord()) {
694 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
709 orAssignSlowCase(
RHS);
719 if (isSingleWord()) {
738 xorAssignSlowCase(
RHS);
748 if (isSingleWord()) {
787 if (isSingleWord()) {
794 shlSlowCase(ShiftAmt);
829 R.ashrInPlace(ShiftAmt);
836 if (isSingleWord()) {
839 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1);
841 U.VAL = SExtVAL >> ShiftAmt;
845 ashrSlowCase(ShiftAmt);
853 R.lshrInPlace(shiftAmt);
860 if (isSingleWord()) {
867 lshrSlowCase(ShiftAmt);
881 return RelativeShift > 0 ? lshr(RelativeShift) : shl(-RelativeShift);
886 return relativeLShr(-RelativeShift);
891 return RelativeShift > 0 ? ashr(RelativeShift) : shl(-RelativeShift);
896 return relativeAShr(-RelativeShift);
910 R.ashrInPlace(ShiftAmt);
915 void ashrInPlace(
const APInt &shiftAmt);
922 R.lshrInPlace(ShiftAmt);
927 void lshrInPlace(
const APInt &ShiftAmt);
950 if (NewWidth <= APINT_BITS_PER_WORD)
952 return concatSlowCase(NewLSB);
990 int64_t srem(int64_t
RHS)
const;
1007 int64_t &Remainder);
1017 APInt sshl_ov(
const APInt &Amt,
bool &Overflow)
const;
1018 APInt sshl_ov(
unsigned Amt,
bool &Overflow)
const;
1019 APInt ushl_ov(
const APInt &Amt,
bool &Overflow)
const;
1020 APInt ushl_ov(
unsigned Amt,
bool &Overflow)
const;
1036 APInt sshl_sat(
unsigned RHS)
const;
1038 APInt ushl_sat(
unsigned RHS)
const;
1045 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1059 return U.VAL ==
RHS.U.VAL;
1060 return equalSlowCase(
RHS);
1070 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1121 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() <
RHS;
1139 return (!isSingleWord() && getSignificantBits() > 64)
1141 : getSExtValue() <
RHS;
1192 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() >
RHS;
1210 return (!isSingleWord() && getSignificantBits() > 64)
1212 : getSExtValue() >
RHS;
1252 return (U.VAL &
RHS.U.VAL) != 0;
1253 return intersectsSlowCase(
RHS);
1260 return (U.VAL & ~
RHS.U.VAL) == 0;
1261 return isSubsetOfSlowCase(
RHS);
1272 APInt trunc(
unsigned width)
const;
1278 APInt truncUSat(
unsigned width)
const;
1285 APInt truncSSat(
unsigned width)
const;
1293 APInt sext(
unsigned width)
const;
1300 APInt zext(
unsigned width)
const;
1306 APInt sextOrTrunc(
unsigned width)
const;
1312 APInt zextOrTrunc(
unsigned width)
const;
1321 U.VAL = WORDTYPE_MAX;
1324 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1332 WordType Mask = maskBit(BitPosition);
1336 U.pVal[whichWord(BitPosition)] |= Mask;
1345 setBit(BitPosition);
1347 clearBit(BitPosition);
1357 if (loBit < hiBit) {
1358 setBits(loBit, hiBit);
1370 assert(loBit <= hiBit &&
"loBit greater than hiBit");
1373 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1374 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1381 setBitsSlowCase(loBit, hiBit);
1401 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1409 WordType Mask = ~maskBit(BitPosition);
1413 U.pVal[whichWord(BitPosition)] &= Mask;
1435 if (isSingleWord()) {
1436 U.VAL ^= WORDTYPE_MAX;
1439 flipAllBitsSlowCase();
1447 void flipBit(
unsigned bitPosition);
1456 void insertBits(
const APInt &SubBits,
unsigned bitPosition);
1457 void insertBits(
uint64_t SubBits,
unsigned bitPosition,
unsigned numBits);
1461 uint64_t extractBitsAsZExtValue(
unsigned numBits,
unsigned bitPosition)
const;
1484 return ((
uint64_t)
BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1499 unsigned numActiveBits = getActiveBits();
1500 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1512 return BitWidth - getNumSignBits() + 1;
1523 assert(getActiveBits() <= 64 &&
"Too many bits for uint64_t");
1533 return (getActiveBits() <= 64) ? std::optional<uint64_t>(getZExtValue())
1545 assert(getSignificantBits() <= 64 &&
"Too many bits for int64_t");
1546 return int64_t(U.pVal[0]);
1555 return (getSignificantBits() <= 64) ? std::optional<int64_t>(getSExtValue())
1578 if (isSingleWord()) {
1579 unsigned unusedBits = APINT_BITS_PER_WORD -
BitWidth;
1582 return countLeadingZerosSlowCase();
1595 if (isSingleWord()) {
1600 return countLeadingOnesSlowCase();
1619 if (isSingleWord()) {
1623 return countTrailingZerosSlowCase();
1638 return countTrailingOnesSlowCase();
1652 return countPopulationSlowCase();
1664 bool formatAsCLiteral =
false,
bool UpperCase =
true,
1665 bool InsertSeparators =
false)
const;
1670 toString(Str, Radix,
false,
false);
1680 APInt byteSwap()
const;
1687 double roundToDouble(
bool isSigned)
const;
1702#ifdef HAS_IEE754_FLOAT128
1703 float128 bitsToQuad()
const {
1704 __uint128_t ul = ((__uint128_t)U.pVal[1] << 64) + U.pVal[0];
1705 return llvm::bit_cast<float128>(ul);
1715 return llvm::bit_cast<float>(
static_cast<uint32_t>(getWord(0)));
1723 return APInt(
sizeof(
double) * CHAR_BIT, llvm::bit_cast<uint64_t>(V));
1731 return APInt(
sizeof(
float) * CHAR_BIT, llvm::bit_cast<uint32_t>(V));
1739 unsigned logBase2()
const {
return getActiveBits() - 1; }
1757 unsigned nearestLogBase2()
const;
1780 APInt multiplicativeInverse()
const;
1794 static void tcSet(WordType *, WordType,
unsigned);
1797 static void tcAssign(WordType *,
const WordType *,
unsigned);
1800 static bool tcIsZero(
const WordType *,
unsigned);
1803 static int tcExtractBit(
const WordType *,
unsigned bit);
1809 static void tcExtract(WordType *,
unsigned dstCount,
const WordType *,
1810 unsigned srcBits,
unsigned srcLSB);
1813 static void tcSetBit(WordType *,
unsigned bit);
1816 static void tcClearBit(WordType *,
unsigned bit);
1820 static unsigned tcLSB(
const WordType *,
unsigned n);
1821 static unsigned tcMSB(
const WordType *parts,
unsigned n);
1824 static void tcNegate(WordType *,
unsigned);
1827 static WordType tcAdd(WordType *,
const WordType *, WordType carry,
unsigned);
1829 static WordType tcAddPart(WordType *, WordType,
unsigned);
1832 static WordType tcSubtract(WordType *,
const WordType *, WordType carry,
1835 static WordType tcSubtractPart(WordType *, WordType,
unsigned);
1847 static int tcMultiplyPart(WordType *dst,
const WordType *src,
1848 WordType multiplier, WordType carry,
1849 unsigned srcParts,
unsigned dstParts,
bool add);
1855 static int tcMultiply(WordType *,
const WordType *,
const WordType *,
1860 static void tcFullMultiply(WordType *,
const WordType *,
const WordType *,
1861 unsigned,
unsigned);
1872 static int tcDivide(WordType *lhs,
const WordType *rhs, WordType *remainder,
1873 WordType *scratch,
unsigned parts);
1877 static void tcShiftLeft(WordType *,
unsigned Words,
unsigned Count);
1881 static void tcShiftRight(WordType *,
unsigned Words,
unsigned Count);
1884 static int tcCompare(
const WordType *,
const WordType *,
unsigned);
1888 return tcAddPart(dst, 1, parts);
1893 return tcSubtractPart(dst, 1, parts);
1930 static unsigned whichWord(
unsigned bitPosition) {
1931 return bitPosition / APINT_BITS_PER_WORD;
1935 static unsigned whichBit(
unsigned bitPosition) {
1936 return bitPosition % APINT_BITS_PER_WORD;
1945 static uint64_t maskBit(
unsigned bitPosition) {
1946 return 1ULL << whichBit(bitPosition);
1957 unsigned WordBits = ((
BitWidth - 1) % APINT_BITS_PER_WORD) + 1;
1960 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
1967 U.pVal[getNumWords() - 1] &=
mask;
1973 uint64_t getWord(
unsigned bitPosition)
const {
1974 return isSingleWord() ?
U.VAL :
U.pVal[whichWord(bitPosition)];
1980 void reallocate(
unsigned NewBitWidth);
2002 static void divide(
const WordType *
LHS,
unsigned lhsWords,
2003 const WordType *
RHS,
unsigned rhsWords, WordType *Quotient,
2004 WordType *Remainder);
2010 void initFromArray(ArrayRef<uint64_t> array);
2013 void initSlowCase(
const APInt &that);
2016 void shlSlowCase(
unsigned ShiftAmt);
2019 void lshrSlowCase(
unsigned ShiftAmt);
2022 void ashrSlowCase(
unsigned ShiftAmt);
2025 void assignSlowCase(
const APInt &
RHS);
2052 void setBitsSlowCase(
unsigned loBit,
unsigned hiBit);
2055 void flipAllBitsSlowCase();
2058 APInt concatSlowCase(
const APInt &NewLSB)
const;
2061 void andAssignSlowCase(
const APInt &
RHS);
2064 void orAssignSlowCase(
const APInt &
RHS);
2067 void xorAssignSlowCase(
const APInt &
RHS);
2099 return std::move(b);
2119 return std::move(b);
2139 return std::move(b);
2169 return std::move(b);
2190 return std::move(b);
2218 return A.slt(
B) ?
A :
B;
2223 return A.sgt(
B) ?
A :
B;
2228 return A.ult(
B) ?
A :
B;
2233 return A.ugt(
B) ?
A :
B;
2238 return A.sge(
B) ? (
A -
B) : (
B -
A);
2243 return A.uge(
B) ? (
A -
B) : (
B -
A);
2303APInt RoundDoubleToAPInt(
double Double,
unsigned width);
2352 unsigned RangeWidth);
2356std::optional<unsigned> GetMostSignificantDifferentBit(
const APInt &
A,
2370APInt ScaleBitMask(
const APInt &
A,
unsigned NewBitWidth,
2371 bool MatchAllBits =
false);
2376hash_code hash_value(
const APInt &Arg);
2380void StoreIntToMemory(
const APInt &IntVal,
uint8_t *Dst,
unsigned StoreBytes);
2384void LoadIntFromMemory(APInt &IntVal,
const uint8_t *Src,
unsigned LoadBytes);
2389 APInt V(
nullptr, 0);
2395 APInt V(
nullptr, 0);
2403 return LHS.getBitWidth() ==
RHS.getBitWidth() &&
LHS ==
RHS;
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< ShadowStackGC > C("shadow-stack", "Very portable GC for uncooperative code generators")
raw_ostream & operator<<(raw_ostream &OS, const binary_le_impl< value_type > &BLE)
#define LLVM_UNLIKELY(EXPR)
static bool isSigned(unsigned int Opcode)
static KnownBits extractBits(unsigned BitWidth, const KnownBits &SrcOpKnown, const KnownBits &OffsetKnown, const KnownBits &WidthKnown)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment, const DataLayout &DL)
static bool isSplat(Value *V)
Return true if V is a splat of a value (which is used when multiplying a matrix with a scalar).
static const char * toString(MIToken::TokenKind TokenKind)
static uint64_t clearUnusedBits(uint64_t Val, unsigned Size)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
Class for arbitrary precision integers.
std::optional< uint64_t > tryZExtValue() const
Get zero extended value if possible.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
bool slt(int64_t RHS) const
Signed less than comparison.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
APInt relativeLShr(int RelativeShift) const
relative logical shift right
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
APInt operator--(int)
Postfix decrement operator.
uint64_t getZExtValue() const
Get zero extended value.
uint64_t * pVal
Used to store the >64 bits integer value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
APInt operator<<(const APInt &Bits) const
Left logical shift operator.
APInt operator<<(unsigned Bits) const
Left logical shift operator.
unsigned getActiveBits() const
Compute the number of active bits in the value.
bool sgt(int64_t RHS) const
Signed greater than comparison.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool operator[](unsigned bitPosition) const
Array-indexing support.
bool operator!=(const APInt &RHS) const
Inequality operator.
void toStringUnsigned(SmallVectorImpl< char > &Str, unsigned Radix=10) const
Considers the APInt to be unsigned and converts it into a string in the radix given.
APInt & operator&=(const APInt &RHS)
Bitwise AND assignment operator.
APInt abs() const
Get the absolute value.
unsigned ceilLogBase2() const
unsigned countLeadingOnes() const
APInt relativeLShl(int RelativeShift) const
relative logical shift left
APInt & operator=(const APInt &RHS)
Copy assignment operator.
bool sgt(const APInt &RHS) const
Signed greater than comparison.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
APInt(unsigned numBits, uint64_t val, bool isSigned=false, bool implicitTrunc=false)
Create a new APInt of numBits width, initialized as val.
APInt & operator^=(uint64_t RHS)
Bitwise XOR assignment operator.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
APInt & operator|=(uint64_t RHS)
Bitwise OR assignment operator.
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
static APInt floatToBits(float V)
Converts a float to APInt bits.
void setSignBit()
Set the sign bit to 1.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool sle(uint64_t RHS) const
Signed less or equal comparison.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
bool uge(uint64_t RHS) const
Unsigned greater or equal comparison.
bool operator!() const
Logical negation operation on this APInt returns true if zero, like normal integers.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
APInt & operator=(uint64_t RHS)
Assignment operator.
APInt relativeAShr(int RelativeShift) const
relative arithmetic shift right
friend hash_code hash_value(const APInt &Arg)
Overload to compute a hash_code for an APInt value.
APInt(const APInt &that)
Copy Constructor.
APInt & operator|=(const APInt &RHS)
Bitwise OR assignment operator.
bool isSingleWord() const
Determine if this APInt just has one word to store value.
bool operator==(uint64_t Val) const
Equality operator.
APInt operator++(int)
Postfix increment operator.
unsigned getNumWords() const
Get the number of words.
bool isMinValue() const
Determine if this is the smallest unsigned value.
APInt ashr(const APInt &ShiftAmt) const
Arithmetic right-shift function.
APInt()
Default constructor that creates an APInt with a 1-bit zero value.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
APInt(APInt &&that)
Move Constructor.
bool isNegative() const
Determine sign of this APInt.
APInt concat(const APInt &NewLSB) const
Concatenate the bits from "NewLSB" onto the bottom of *this.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
bool eq(const APInt &RHS) const
Equality comparison.
int32_t exactLogBase2() const
APInt & operator<<=(unsigned ShiftAmt)
Left-shift assignment function.
double roundToDouble() const
Converts this unsigned APInt to a double value.
void clearAllBits()
Set every bit to 0.
APInt relativeAShl(int RelativeShift) const
relative arithmetic shift left
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
bool sle(const APInt &RHS) const
Signed less or equal comparison.
void negate()
Negate this APInt in place.
static WordType tcDecrement(WordType *dst, unsigned parts)
Decrement a bignum in-place. Return the borrow flag.
unsigned countr_zero() const
Count the number of trailing zero bits.
bool isSignedIntN(unsigned N) const
Check if this APInt has an N-bits signed integer value.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
bool isOneBitSet(unsigned BitNo) const
Determine if this APInt Value only has the specified bit set.
unsigned countl_zero() const
The APInt version of std::countl_zero.
bool operator==(const APInt &RHS) const
Equality operator.
APInt shl(const APInt &ShiftAmt) const
Left-shift function.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const
Return true if this APInt value contains a non-empty sequence of ones with the remainder zero.
void setBitsWithWrap(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
APInt lshr(const APInt &ShiftAmt) const
Logical right-shift function.
bool isNonPositive() const
Determine if this APInt Value is non-positive (<= 0).
unsigned countTrailingZeros() const
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
unsigned countLeadingZeros() const
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
void flipAllBits()
Toggle every bit to its opposite value.
static unsigned getNumWords(unsigned BitWidth)
Get the number of words.
bool needsCleanup() const
Returns whether this instance allocated memory.
unsigned countl_one() const
Count the number of leading one bits.
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
unsigned logBase2() const
static APInt getZeroWidth()
Return an APInt zero bits wide.
double signedRoundToDouble() const
Converts this signed APInt to a double value.
bool isShiftedMask() const
Return true if this APInt value contains a non-empty sequence of ones with the remainder zero.
float bitsToFloat() const
Converts APInt bits to a float.
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
bool ule(uint64_t RHS) const
Unsigned less or equal comparison.
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
void setAllBits()
Set every bit to 1.
uint64_t VAL
Used to store the <= 64 bits integer value.
bool ugt(uint64_t RHS) const
Unsigned greater than comparison.
bool sge(int64_t RHS) const
Signed greater or equal comparison.
bool getBoolValue() const
Convert APInt to a boolean value.
static APInt doubleToBits(double V)
Converts a double to APInt bits.
bool isMask(unsigned numBits) const
APInt & operator=(APInt &&that)
Move assignment operator.
static WordType tcIncrement(WordType *dst, unsigned parts)
Increment a bignum in-place. Return the carry flag.
APInt & operator^=(const APInt &RHS)
Bitwise XOR assignment operator.
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
APInt shl(unsigned shiftAmt) const
Left-shift function.
double bitsToDouble() const
Converts APInt bits to a double.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
unsigned getActiveWords() const
Compute the number of active words in the value of this APInt.
bool ne(const APInt &RHS) const
Inequality comparison.
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
bool isSignBitSet() const
Determine if sign bit of this APInt is set.
const uint64_t * getRawData() const
This function returns a pointer to the internal storage of the APInt.
bool slt(const APInt &RHS) const
Signed less than comparison.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
bool isIntN(unsigned N) const
Check if this APInt has an N-bits unsigned integer value.
unsigned countTrailingOnes() const
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
std::optional< int64_t > trySExtValue() const
Get sign extended value if possible.
APInt & operator&=(uint64_t RHS)
Bitwise AND assignment operator.
double roundToDouble(bool isSigned) const
Converts this APInt to a double value.
bool isOne() const
Determine if this is a value of 1.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
void clearHighBits(unsigned hiBits)
Set top hiBits bits to 0.
int64_t getSExtValue() const
Get sign extended value.
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
unsigned countr_one() const
Count the number of trailing one bits.
static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit, unsigned hiBit)
Wrap version of getBitsSet.
bool isSignBitClear() const
Determine if sign bit of this APInt is clear.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
void setBitVal(unsigned BitPosition, bool BitValue)
Set a given bit to a given value.
void clearSignBit()
Set the sign bit to 0.
bool isMaxValue() const
Determine if this is the largest unsigned value.
void toStringSigned(SmallVectorImpl< char > &Str, unsigned Radix=10) const
Considers the APInt to be signed and converts it into a string in the radix given.
bool ult(uint64_t RHS) const
Unsigned less than comparison.
bool operator!=(uint64_t Val) const
Inequality operator.
An arbitrary precision integer that knows its signedness.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
This class provides support for dynamic arbitrary-precision arithmetic.
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
StringRef - Represent a constant reference to a string, i.e.
An opaque object representing a hash code.
This class implements an extremely fast bulk output stream that can only output to a stream.
std::error_code fromString(StringRef String, Metadata &HSAMetadata)
Converts String to HSAMetadata.
float RoundAPIntToFloat(const APInt &APIVal)
Converts the given APInt to a float value.
const APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
const APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
double RoundAPIntToDouble(const APInt &APIVal)
Converts the given APInt to a double value.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
APInt RoundFloatToAPInt(float Float, unsigned width)
Converts a float value into a APInt.
APInt RoundDoubleToAPInt(double Double, unsigned width)
Converts the given double value into a APInt.
double RoundSignedAPIntToDouble(const APInt &APIVal)
Converts the given APInt to a double value.
float RoundSignedAPIntToFloat(const APInt &APIVal)
Converts the given APInt to a float value.
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
This is an optimization pass for GlobalISel generic memory operations.
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
constexpr T rotr(T V, int R)
int popcount(T Value) noexcept
Count the number of set bits in a value.
bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
APInt operator&(APInt a, const APInt &b)
APInt operator*(APInt a, uint64_t RHS)
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
bool operator!=(uint64_t V1, const APInt &V2)
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt & operator+=(DynamicAPInt &A, int64_t B)
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt & operator-=(DynamicAPInt &A, int64_t B)
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
APInt operator~(APInt v)
Unary bitwise complement operator.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt & operator*=(DynamicAPInt &A, int64_t B)
int countl_zero(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
APInt operator^(APInt a, const APInt &b)
constexpr bool isMask_64(uint64_t Value)
Return true if the argument is a non-empty sequence of ones starting at the least significant bit wit...
int countl_one(T Value)
Count the number of ones from the most significant bit to the first zero bit.
bool isIntN(unsigned N, int64_t x)
Checks if an signed integer fits into the given (dynamic) bit width.
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
APInt operator+(APInt a, const APInt &b)
APInt operator|(APInt a, const APInt &b)
T reverseBits(T Val)
Reverse the bits in Val.
constexpr T rotl(T V, int R)
@ Keep
No function return thunk.
auto mask(ShuffFunc S, unsigned Length, OptArgs... args) -> MaskT
This struct is a compact representation of a valid (non-zero power of two) alignment.
static APInt getEmptyKey()
static APInt getTombstoneKey()
static bool isEqual(const APInt &LHS, const APInt &RHS)
static unsigned getHashValue(const APInt &Key)
An information struct used to provide DenseMap with the various necessary components for a given valu...