LLVM 22.0.0git
NVPTXISelLowering.cpp
Go to the documentation of this file.
1//===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interfaces that NVPTX uses to lower LLVM code into a
10// selection DAG.
11//
12//===----------------------------------------------------------------------===//
13
14#include "NVPTXISelLowering.h"
16#include "NVPTX.h"
17#include "NVPTXISelDAGToDAG.h"
19#include "NVPTXSubtarget.h"
20#include "NVPTXTargetMachine.h"
22#include "NVPTXUtilities.h"
23#include "llvm/ADT/APFloat.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/StringRef.h"
39#include "llvm/IR/Argument.h"
40#include "llvm/IR/Attributes.h"
41#include "llvm/IR/Constants.h"
42#include "llvm/IR/DataLayout.h"
45#include "llvm/IR/FPEnv.h"
46#include "llvm/IR/Function.h"
47#include "llvm/IR/GlobalValue.h"
48#include "llvm/IR/IRBuilder.h"
49#include "llvm/IR/Instruction.h"
51#include "llvm/IR/IntrinsicsNVPTX.h"
52#include "llvm/IR/Module.h"
53#include "llvm/IR/Type.h"
54#include "llvm/IR/Value.h"
66#include <algorithm>
67#include <cassert>
68#include <cmath>
69#include <cstdint>
70#include <iterator>
71#include <optional>
72#include <string>
73#include <tuple>
74#include <utility>
75#include <vector>
76
77#define DEBUG_TYPE "nvptx-lower"
78
79using namespace llvm;
80
82 "nvptx-sched4reg",
83 cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
84
86 "nvptx-fma-level", cl::Hidden,
87 cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
88 " 1: do it 2: do it aggressively"),
89 cl::init(2));
90
92 "nvptx-prec-divf32", cl::Hidden,
94 "NVPTX Specific: Override the precision of the lowering for f32 fdiv"),
96 clEnumValN(NVPTX::DivPrecisionLevel::Approx, "0", "Use div.approx"),
97 clEnumValN(NVPTX::DivPrecisionLevel::Full, "1", "Use div.full"),
99 "Use IEEE Compliant F32 div.rnd if available (default)"),
101 "Use IEEE Compliant F32 div.rnd if available, no FTZ")),
103
105 "nvptx-prec-sqrtf32", cl::Hidden,
106 cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
107 cl::init(true));
108
109/// Whereas CUDA's implementation (see libdevice) uses ex2.approx for exp2(), it
110/// does NOT use lg2.approx for log2, so this is disabled by default.
112 "nvptx-approx-log2f32",
113 cl::desc("NVPTX Specific: whether to use lg2.approx for log2"),
114 cl::init(false));
115
117 "nvptx-force-min-byval-param-align", cl::Hidden,
118 cl::desc("NVPTX Specific: force 4-byte minimal alignment for byval"
119 " params of device functions."),
120 cl::init(false));
121
124 const SDNode &N) const {
125 // If nvptx-prec-div32=N is used on the command-line, always honor it
126 if (UsePrecDivF32.getNumOccurrences() > 0)
127 return UsePrecDivF32;
128
129 const SDNodeFlags Flags = N.getFlags();
130 if (Flags.hasApproximateFuncs())
132
134}
135
137 // If nvptx-prec-sqrtf32 is used on the command-line, always honor it
138 if (UsePrecSqrtF32.getNumOccurrences() > 0)
139 return UsePrecSqrtF32;
140
141 if (N) {
142 const SDNodeFlags Flags = N->getFlags();
143 if (Flags.hasApproximateFuncs())
144 return false;
145 }
146
147 return true;
148}
149
154
155static bool IsPTXVectorType(MVT VT) {
156 switch (VT.SimpleTy) {
157 default:
158 return false;
159 case MVT::v2i1:
160 case MVT::v4i1:
161 case MVT::v2i8:
162 case MVT::v4i8:
163 case MVT::v8i8: // <2 x i8x4>
164 case MVT::v16i8: // <4 x i8x4>
165 case MVT::v2i16:
166 case MVT::v4i16:
167 case MVT::v8i16: // <4 x i16x2>
168 case MVT::v2i32:
169 case MVT::v4i32:
170 case MVT::v2i64:
171 case MVT::v2f16:
172 case MVT::v4f16:
173 case MVT::v8f16: // <4 x f16x2>
174 case MVT::v2bf16:
175 case MVT::v4bf16:
176 case MVT::v8bf16: // <4 x bf16x2>
177 case MVT::v2f32:
178 case MVT::v4f32:
179 case MVT::v2f64:
180 case MVT::v4i64:
181 case MVT::v4f64:
182 case MVT::v8i32:
183 case MVT::v8f32:
184 case MVT::v16f16: // <8 x f16x2>
185 case MVT::v16bf16: // <8 x bf16x2>
186 case MVT::v16i16: // <8 x i16x2>
187 case MVT::v32i8: // <8 x i8x4>
188 return true;
189 }
190}
191
192// When legalizing vector loads/stores, this function is called, which does two
193// things:
194// 1. Determines Whether the vector is something we want to custom lower,
195// std::nullopt is returned if we do not want to custom lower it.
196// 2. If we do want to handle it, returns two parameters:
197// - unsigned int NumElts - The number of elements in the final vector
198// - EVT EltVT - The type of the elements in the final vector
199static std::optional<std::pair<unsigned int, MVT>>
201 unsigned AddressSpace) {
202 const bool CanLowerTo256Bit = STI.has256BitVectorLoadStore(AddressSpace);
203
204 if (CanLowerTo256Bit && VectorEVT.isScalarInteger() &&
205 VectorEVT.getSizeInBits() == 256)
206 return {{4, MVT::i64}};
207
208 if (!VectorEVT.isSimple())
209 return std::nullopt;
210 const MVT VectorVT = VectorEVT.getSimpleVT();
211
212 if (!VectorVT.isVector()) {
213 if (VectorVT == MVT::i128 || VectorVT == MVT::f128)
214 return {{2, MVT::i64}};
215 return std::nullopt;
216 }
217
218 const MVT EltVT = VectorVT.getVectorElementType();
219 const unsigned NumElts = VectorVT.getVectorNumElements();
220
221 // The size of the PTX virtual register that holds a packed type.
222 unsigned PackRegSize;
223
224 // We only handle "native" vector sizes for now, e.g. <4 x double> is not
225 // legal. We can (and should) split that into 2 stores of <2 x double> here
226 // but I'm leaving that as a TODO for now.
227 switch (VectorVT.SimpleTy) {
228 default:
229 return std::nullopt;
230
231 case MVT::v4i64:
232 case MVT::v4f64:
233 // This is a "native" vector type iff the address space is global and the
234 // target supports 256-bit loads/stores
235 if (!CanLowerTo256Bit)
236 return std::nullopt;
237 [[fallthrough]];
238 case MVT::v2i8:
239 case MVT::v2i64:
240 case MVT::v2f64:
241 // This is a "native" vector type
242 return std::pair(NumElts, EltVT);
243
244 case MVT::v16f16: // <8 x f16x2>
245 case MVT::v16bf16: // <8 x bf16x2>
246 case MVT::v16i16: // <8 x i16x2>
247 case MVT::v32i8: // <8 x i8x4>
248 // This can be upsized into a "native" vector type iff the address space is
249 // global and the target supports 256-bit loads/stores.
250 if (!CanLowerTo256Bit)
251 return std::nullopt;
252 [[fallthrough]];
253 case MVT::v2i16: // <1 x i16x2>
254 case MVT::v2f16: // <1 x f16x2>
255 case MVT::v2bf16: // <1 x bf16x2>
256 case MVT::v4i8: // <1 x i8x4>
257 case MVT::v4i16: // <2 x i16x2>
258 case MVT::v4f16: // <2 x f16x2>
259 case MVT::v4bf16: // <2 x bf16x2>
260 case MVT::v8i8: // <2 x i8x4>
261 case MVT::v8f16: // <4 x f16x2>
262 case MVT::v8bf16: // <4 x bf16x2>
263 case MVT::v8i16: // <4 x i16x2>
264 case MVT::v16i8: // <4 x i8x4>
265 PackRegSize = 32;
266 break;
267
268 case MVT::v8f32: // <4 x f32x2>
269 case MVT::v8i32: // <4 x i32x2>
270 // This is a "native" vector type iff the address space is global and the
271 // target supports 256-bit loads/stores
272 if (!CanLowerTo256Bit)
273 return std::nullopt;
274 [[fallthrough]];
275 case MVT::v2f32: // <1 x f32x2>
276 case MVT::v4f32: // <2 x f32x2>
277 case MVT::v2i32: // <1 x i32x2>
278 case MVT::v4i32: // <2 x i32x2>
279 if (!STI.hasF32x2Instructions())
280 return std::pair(NumElts, EltVT);
281 PackRegSize = 64;
282 break;
283 }
284
285 // If we reach here, then we can pack 2 or more elements into a single 32-bit
286 // or 64-bit PTX register and treat the vector as a new vector containing
287 // packed elements.
288
289 // Number of elements to pack in one word.
290 const unsigned NPerReg = PackRegSize / EltVT.getSizeInBits();
291
292 return std::pair(NumElts / NPerReg, MVT::getVectorVT(EltVT, NPerReg));
293}
294
295/// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
296/// legal-ish MVTs that compose it. Unlike ComputeValueVTs, this will legalize
297/// the types as required by the calling convention (with special handling for
298/// i8s).
299/// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
300/// same number of types as the Ins/Outs arrays in LowerFormalArguments,
301/// LowerCall, and LowerReturn.
302static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
303 LLVMContext &Ctx, CallingConv::ID CallConv,
304 Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
306 uint64_t StartingOffset = 0) {
307 SmallVector<EVT, 16> TempVTs;
308 SmallVector<uint64_t, 16> TempOffsets;
309 ComputeValueVTs(TLI, DL, Ty, TempVTs, /*MemVTs=*/nullptr, &TempOffsets,
310 StartingOffset);
311
312 for (const auto [VT, Off] : zip(TempVTs, TempOffsets)) {
313 MVT RegisterVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
314 unsigned NumRegs = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
315
316 // Since we actually can load/store b8, we need to ensure that we'll use
317 // the original sized type for any i8s or i8 vectors.
318 if (VT.getScalarType() == MVT::i8) {
319 if (RegisterVT == MVT::i16)
320 RegisterVT = MVT::i8;
321 else if (RegisterVT == MVT::v2i16)
322 RegisterVT = MVT::v2i8;
323 else
324 assert(RegisterVT == MVT::v4i8 &&
325 "Expected v4i8, v2i16, or i16 for i8 RegisterVT");
326 }
327
328 // TODO: This is horribly incorrect for cases where the vector elements are
329 // not a multiple of bytes (ex i1) and legal or i8. However, this problem
330 // has existed for as long as NVPTX has and no one has complained, so we'll
331 // leave it for now.
332 for (unsigned I : seq(NumRegs)) {
333 ValueVTs.push_back(RegisterVT);
334 Offsets.push_back(Off + I * RegisterVT.getStoreSize());
335 }
336 }
337}
338
339// We return an EVT that can hold N VTs
340// If the VT is a vector, the resulting EVT is a flat vector with the same
341// element type as VT's element type.
342static EVT getVectorizedVT(EVT VT, unsigned N, LLVMContext &C) {
343 if (N == 1)
344 return VT;
345
346 return VT.isVector() ? EVT::getVectorVT(C, VT.getScalarType(),
347 VT.getVectorNumElements() * N)
348 : EVT::getVectorVT(C, VT, N);
349}
350
352 const SDLoc &dl, SelectionDAG &DAG) {
353 if (V.getValueType() == VT) {
354 assert(I == 0 && "Index must be 0 for scalar value");
355 return V;
356 }
357
358 if (!VT.isVector())
359 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, V,
360 DAG.getVectorIdxConstant(I, dl));
361
362 return DAG.getNode(
363 ISD::EXTRACT_SUBVECTOR, dl, VT, V,
365}
366
367template <typename T>
368static inline SDValue getBuildVectorizedValue(unsigned N, const SDLoc &dl,
369 SelectionDAG &DAG, T GetElement) {
370 if (N == 1)
371 return GetElement(0);
372
374 for (const unsigned I : llvm::seq(N)) {
375 SDValue Val = GetElement(I);
376 if (Val.getValueType().isVector())
377 DAG.ExtractVectorElements(Val, Values);
378 else
379 Values.push_back(Val);
380 }
381
382 EVT VT = EVT::getVectorVT(*DAG.getContext(), Values[0].getValueType(),
383 Values.size());
384 return DAG.getBuildVector(VT, dl, Values);
385}
386
387/// PromoteScalarIntegerPTX
388/// Used to make sure the arguments/returns are suitable for passing
389/// and promote them to a larger size if they're not.
390///
391/// The promoted type is placed in \p PromoteVT if the function returns true.
393 if (VT.isScalarInteger()) {
394 switch (PowerOf2Ceil(VT.getFixedSizeInBits())) {
395 default:
397 "Promotion is not suitable for scalars of size larger than 64-bits");
398 case 1:
399 return MVT::i1;
400 case 2:
401 case 4:
402 case 8:
403 return MVT::i8;
404 case 16:
405 return MVT::i16;
406 case 32:
407 return MVT::i32;
408 case 64:
409 return MVT::i64;
410 }
411 }
412 return VT;
413}
414
415// Check whether we can merge loads/stores of some of the pieces of a
416// flattened function parameter or return value into a single vector
417// load/store.
418//
419// The flattened parameter is represented as a list of EVTs and
420// offsets, and the whole structure is aligned to ParamAlignment. This
421// function determines whether we can load/store pieces of the
422// parameter starting at index Idx using a single vectorized op of
423// size AccessSize. If so, it returns the number of param pieces
424// covered by the vector op. Otherwise, it returns 1.
425template <typename T>
427 unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs,
428 const SmallVectorImpl<T> &Offsets, Align ParamAlignment) {
429
430 // Can't vectorize if param alignment is not sufficient.
431 if (ParamAlignment < AccessSize)
432 return 1;
433 // Can't vectorize if offset is not aligned.
434 if (Offsets[Idx] & (AccessSize - 1))
435 return 1;
436
437 EVT EltVT = ValueVTs[Idx];
438 unsigned EltSize = EltVT.getStoreSize();
439
440 // Element is too large to vectorize.
441 if (EltSize >= AccessSize)
442 return 1;
443
444 unsigned NumElts = AccessSize / EltSize;
445 // Can't vectorize if AccessBytes if not a multiple of EltSize.
446 if (AccessSize != EltSize * NumElts)
447 return 1;
448
449 // We don't have enough elements to vectorize.
450 if (Idx + NumElts > ValueVTs.size())
451 return 1;
452
453 // PTX ISA can only deal with 2- and 4-element vector ops.
454 if (NumElts != 4 && NumElts != 2)
455 return 1;
456
457 for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) {
458 // Types do not match.
459 if (ValueVTs[j] != EltVT)
460 return 1;
461
462 // Elements are not contiguous.
463 if (Offsets[j] - Offsets[j - 1] != EltSize)
464 return 1;
465 }
466 // OK. We can vectorize ValueVTs[i..i+NumElts)
467 return NumElts;
468}
469
470// Computes whether and how we can vectorize the loads/stores of a
471// flattened function parameter or return value.
472//
473// The flattened parameter is represented as the list of ValueVTs and
474// Offsets, and is aligned to ParamAlignment bytes. We return a vector
475// of the same size as ValueVTs indicating how each piece should be
476// loaded/stored (i.e. as a scalar, or as part of a vector
477// load/store).
478template <typename T>
481 const SmallVectorImpl<T> &Offsets, Align ParamAlignment,
482 bool IsVAArg = false) {
483 // Set vector size to match ValueVTs and mark all elements as
484 // scalars by default.
485
486 if (IsVAArg)
487 return SmallVector<unsigned>(ValueVTs.size(), 1);
488
489 SmallVector<unsigned, 16> VectorInfo;
490
491 const auto GetNumElts = [&](unsigned I) -> unsigned {
492 for (const unsigned AccessSize : {16, 8, 4, 2}) {
493 const unsigned NumElts = canMergeParamLoadStoresStartingAt(
494 I, AccessSize, ValueVTs, Offsets, ParamAlignment);
495 assert((NumElts == 1 || NumElts == 2 || NumElts == 4) &&
496 "Unexpected vectorization size");
497 if (NumElts != 1)
498 return NumElts;
499 }
500 return 1;
501 };
502
503 // Check what we can vectorize using 128/64/32-bit accesses.
504 for (unsigned I = 0, E = ValueVTs.size(); I != E;) {
505 const unsigned NumElts = GetNumElts(I);
506 VectorInfo.push_back(NumElts);
507 I += NumElts;
508 }
509 assert(std::accumulate(VectorInfo.begin(), VectorInfo.end(), 0u) ==
510 ValueVTs.size());
511 return VectorInfo;
512}
513
514// NVPTXTargetLowering Constructor.
516 const NVPTXSubtarget &STI)
517 : TargetLowering(TM, STI), nvTM(&TM), STI(STI), GlobalUniqueCallSite(0) {
518 // always lower memset, memcpy, and memmove intrinsics to load/store
519 // instructions, rather
520 // then generating calls to memset, mempcy or memmove.
524
527
528 // Jump is Expensive. Don't create extra control flow for 'and', 'or'
529 // condition branches.
530 setJumpIsExpensive(true);
531
532 // Wide divides are _very_ slow. Try to reduce the width of the divide if
533 // possible.
534 addBypassSlowDiv(64, 32);
535
536 // By default, use the Source scheduling
537 if (sched4reg)
539 else
541
542 auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
543 LegalizeAction NoF16Action) {
544 bool IsOpSupported = STI.allowFP16Math();
545 switch (Op) {
546 // Several FP16 instructions are available on sm_80 only.
547 case ISD::FMINNUM:
548 case ISD::FMAXNUM:
549 case ISD::FMAXNUM_IEEE:
550 case ISD::FMINNUM_IEEE:
551 case ISD::FMAXIMUM:
552 case ISD::FMINIMUM:
553 case ISD::FMAXIMUMNUM:
554 case ISD::FMINIMUMNUM:
555 IsOpSupported &= STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70;
556 break;
557 case ISD::FEXP2:
558 IsOpSupported &= STI.getSmVersion() >= 75 && STI.getPTXVersion() >= 70;
559 break;
560 }
561 setOperationAction(Op, VT, IsOpSupported ? Action : NoF16Action);
562 };
563
564 auto setBF16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
565 LegalizeAction NoBF16Action) {
566 bool IsOpSupported = STI.hasNativeBF16Support(Op);
568 Op, VT, IsOpSupported ? Action : NoBF16Action);
569 };
570
571 auto setI16x2OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
572 LegalizeAction NoI16x2Action) {
573 bool IsOpSupported = false;
574 // instructions are available on sm_90 only
575 switch (Op) {
576 case ISD::ADD:
577 case ISD::SMAX:
578 case ISD::SMIN:
579 case ISD::UMIN:
580 case ISD::UMAX:
581 IsOpSupported = STI.getSmVersion() >= 90 && STI.getPTXVersion() >= 80;
582 break;
583 }
584 setOperationAction(Op, VT, IsOpSupported ? Action : NoI16x2Action);
585 };
586
587 addRegisterClass(MVT::i1, &NVPTX::B1RegClass);
588 addRegisterClass(MVT::i16, &NVPTX::B16RegClass);
589 addRegisterClass(MVT::v2i16, &NVPTX::B32RegClass);
590 addRegisterClass(MVT::v4i8, &NVPTX::B32RegClass);
591 addRegisterClass(MVT::i32, &NVPTX::B32RegClass);
592 addRegisterClass(MVT::i64, &NVPTX::B64RegClass);
593 addRegisterClass(MVT::f32, &NVPTX::B32RegClass);
594 addRegisterClass(MVT::f64, &NVPTX::B64RegClass);
595 addRegisterClass(MVT::f16, &NVPTX::B16RegClass);
596 addRegisterClass(MVT::v2f16, &NVPTX::B32RegClass);
597 addRegisterClass(MVT::bf16, &NVPTX::B16RegClass);
598 addRegisterClass(MVT::v2bf16, &NVPTX::B32RegClass);
599
600 if (STI.hasF32x2Instructions()) {
601 addRegisterClass(MVT::v2f32, &NVPTX::B64RegClass);
602 addRegisterClass(MVT::v2i32, &NVPTX::B64RegClass);
603 }
604
605 // Conversion to/from FP16/FP16x2 is always legal.
610
611 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
612 if (STI.getSmVersion() >= 30 && STI.getPTXVersion() > 31)
613 setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Legal);
614
615 setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote);
616 setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand);
617
618 // Conversion to/from BFP16/BFP16x2 is always legal.
623
624 setBF16OperationAction(ISD::SETCC, MVT::v2bf16, Legal, Expand);
625 setBF16OperationAction(ISD::SETCC, MVT::bf16, Legal, Promote);
626 if (getOperationAction(ISD::SETCC, MVT::bf16) == Promote)
627 AddPromotedToType(ISD::SETCC, MVT::bf16, MVT::f32);
628
629 // Conversion to/from i16/i16x2 is always legal.
634
639
640 // No support for these operations with v2f32/v2i32
641 setOperationAction(ISD::INSERT_VECTOR_ELT, {MVT::v2f32, MVT::v2i32}, Expand);
642 setOperationAction(ISD::VECTOR_SHUFFLE, {MVT::v2f32, MVT::v2i32}, Expand);
643
646 MVT::v2i32, Expand);
647
648 // Need custom lowering in case the index is dynamic.
649 if (STI.hasF32x2Instructions())
650 setOperationAction(ISD::EXTRACT_VECTOR_ELT, {MVT::v2f32, MVT::v2i32},
651 Custom);
652
653 // Custom conversions to/from v2i8.
654 setOperationAction(ISD::BITCAST, MVT::v2i8, Custom);
655
656 // Only logical ops can be done on v4i8/v2i32 directly, others must be done
657 // elementwise.
674 {MVT::v4i8, MVT::v2i32}, Expand);
675
676 // Operations not directly supported by NVPTX.
677 for (MVT VT : {MVT::bf16, MVT::f16, MVT::v2bf16, MVT::v2f16, MVT::f32,
678 MVT::v2f32, MVT::f64, MVT::i1, MVT::i8, MVT::i16, MVT::v2i16,
679 MVT::v4i8, MVT::i32, MVT::v2i32, MVT::i64}) {
681 setOperationAction(ISD::BR_CC, VT, Expand);
682 }
683
684 // We don't want ops like FMINIMUM or UMAX to be lowered to SETCC+VSELECT.
685 setOperationAction(ISD::VSELECT, {MVT::v2f32, MVT::v2i32}, Expand);
686
687 // Some SIGN_EXTEND_INREG can be done using cvt instruction.
688 // For others we will expand to a SHL/SRA pair.
694 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i16, MVT::v2i32}, Expand);
695
702
705
707 {MVT::i8, MVT::i16, MVT::v2i16, MVT::i32, MVT::i64},
708 Expand);
709
710 if (STI.hasHWROT32()) {
713 Custom);
714 }
715
716 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
717 setOperationAction(ISD::BRIND, MVT::Other, Expand);
718
719 // We want to legalize constant related memmove and memcopy
720 // intrinsics.
722
723 // FP extload/truncstore is not legal in PTX. We need to expand all these.
724 for (auto FloatVTs :
726 for (MVT ValVT : FloatVTs) {
727 for (MVT MemVT : FloatVTs) {
728 setLoadExtAction(ISD::EXTLOAD, ValVT, MemVT, Expand);
729 setTruncStoreAction(ValVT, MemVT, Expand);
730 }
731 }
732 }
733
734 // To improve CodeGen we'll legalize any-extend loads to zext loads. This is
735 // how they'll be lowered in ISel anyway, and by doing this a little earlier
736 // we allow for more DAG combine opportunities.
737 for (auto IntVTs :
739 for (MVT ValVT : IntVTs)
740 for (MVT MemVT : IntVTs)
741 if (isTypeLegal(ValVT))
742 setLoadExtAction(ISD::EXTLOAD, ValVT, MemVT, Custom);
743
744 // PTX does not support load / store predicate registers
745 setOperationAction({ISD::LOAD, ISD::STORE}, MVT::i1, Custom);
746 for (MVT VT : MVT::integer_valuetypes()) {
748 Promote);
749 setTruncStoreAction(VT, MVT::i1, Expand);
750 }
751
752 // Disable generations of extload/truncstore for v2i32/v2i16/v2i8. The generic
753 // expansion for these nodes when they are unaligned is incorrect if the
754 // type is a vector.
755 //
756 // TODO: Fix the generic expansion for these nodes found in
757 // TargetLowering::expandUnalignedLoad/Store.
759 MVT::v2i8, Expand);
761 {MVT::v2i8, MVT::v2i16}, Expand);
762 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
763 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
764 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
765
766 // Register custom handling for illegal type loads/stores. We'll try to custom
767 // lower almost all illegal types and logic in the lowering will discard cases
768 // we can't handle.
769 setOperationAction({ISD::LOAD, ISD::STORE}, {MVT::i128, MVT::i256, MVT::f128},
770 Custom);
772 if (!isTypeLegal(VT) && VT.getStoreSizeInBits() <= 256)
773 setOperationAction({ISD::STORE, ISD::LOAD, ISD::MSTORE, ISD::MLOAD}, VT,
774 Custom);
775
776 // Custom legalization for LDU intrinsics.
777 // TODO: The logic to lower these is not very robust and we should rewrite it.
778 // Perhaps LDU should not be represented as an intrinsic at all.
781 if (IsPTXVectorType(VT))
783
787 MVT::i1, Expand);
788
789 // This is legal in NVPTX
794
795 setOperationAction(ISD::DYNAMIC_STACKALLOC, {MVT::i32, MVT::i64}, Custom);
796 setOperationAction({ISD::STACKRESTORE, ISD::STACKSAVE}, MVT::Other, Custom);
797
798 // TRAP can be lowered to PTX trap
799 setOperationAction(ISD::TRAP, MVT::Other, Legal);
800 // DEBUGTRAP can be lowered to PTX brkpt
801 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
802
803 // Support varargs.
804 setOperationAction(ISD::VASTART, MVT::Other, Custom);
805 setOperationAction(ISD::VAARG, MVT::Other, Custom);
806 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
807 setOperationAction(ISD::VAEND, MVT::Other, Expand);
808
810 {MVT::i16, MVT::i32, MVT::i64}, Legal);
811
813 Promote);
816
817 setI16x2OperationAction(ISD::ABS, MVT::v2i16, Legal, Custom);
818 setI16x2OperationAction(ISD::SMIN, MVT::v2i16, Legal, Custom);
819 setI16x2OperationAction(ISD::SMAX, MVT::v2i16, Legal, Custom);
820 setI16x2OperationAction(ISD::UMIN, MVT::v2i16, Legal, Custom);
821 setI16x2OperationAction(ISD::UMAX, MVT::v2i16, Legal, Custom);
822 setI16x2OperationAction(ISD::CTPOP, MVT::v2i16, Legal, Expand);
823 setI16x2OperationAction(ISD::CTLZ, MVT::v2i16, Legal, Expand);
824
825 setI16x2OperationAction(ISD::ADD, MVT::v2i16, Legal, Custom);
826 setI16x2OperationAction(ISD::SUB, MVT::v2i16, Legal, Custom);
827 setI16x2OperationAction(ISD::MUL, MVT::v2i16, Legal, Custom);
828 setI16x2OperationAction(ISD::SHL, MVT::v2i16, Legal, Custom);
829 setI16x2OperationAction(ISD::SREM, MVT::v2i16, Legal, Custom);
830 setI16x2OperationAction(ISD::UREM, MVT::v2i16, Legal, Custom);
831
832 // Other arithmetic and logic ops are unsupported.
836 {MVT::v2i16, MVT::v2i32}, Expand);
837
838 // v2i32 is not supported for any arithmetic operations
843 MVT::v2i32, Expand);
844
849 if (STI.getPTXVersion() >= 43) {
854 }
855
857 setOperationAction(ISD::CTTZ, {MVT::v2i16, MVT::v2i32}, Expand);
860
861 // PTX does not directly support SELP of i1, so promote to i32 first
863
864 // PTX cannot multiply two i64s in a single instruction.
867
868 // We have some custom DAG combine patterns for these nodes
871 ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM,
872 ISD::FMAXIMUM, ISD::FMINIMUM, ISD::FMAXIMUMNUM,
873 ISD::FMINIMUMNUM, ISD::MUL, ISD::SHL,
875 ISD::BUILD_VECTOR, ISD::ADDRSPACECAST, ISD::LOAD,
876 ISD::STORE, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND});
877
878 // setcc for f16x2 and bf16x2 needs special handling to prevent
879 // legalizer's attempt to scalarize it due to v2i1 not being legal.
880 if (STI.allowFP16Math() || STI.hasBF16Math())
882
883 // Vector reduction operations. These may be turned into shuffle or tree
884 // reductions depending on what instructions are available for each type.
886 MVT EltVT = VT.getVectorElementType();
887 if (EltVT == MVT::f32 || EltVT == MVT::f64) {
888 setOperationAction({ISD::VECREDUCE_FMAX, ISD::VECREDUCE_FMIN,
889 ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM},
890 VT, Custom);
891 }
892 }
893
894 // Promote fp16 arithmetic if fp16 hardware isn't available or the
895 // user passed --nvptx-no-fp16-math. The flag is useful because,
896 // although sm_53+ GPUs have some sort of FP16 support in
897 // hardware, only sm_53 and sm_60 have full implementation. Others
898 // only have token amount of hardware and are likely to run faster
899 // by using fp32 units instead.
900 for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) {
901 setFP16OperationAction(Op, MVT::f16, Legal, Promote);
902 setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
903 setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand);
904 // bf16 must be promoted to f32.
905 setBF16OperationAction(Op, MVT::bf16, Legal, Promote);
906 if (getOperationAction(Op, MVT::bf16) == Promote)
907 AddPromotedToType(Op, MVT::bf16, MVT::f32);
908 setOperationAction(Op, MVT::v2f32,
909 STI.hasF32x2Instructions() ? Legal : Expand);
910 }
911
912 // On SM80, we select add/mul/sub as fma to avoid promotion to float
913 for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB}) {
914 for (const auto &VT : {MVT::bf16, MVT::v2bf16}) {
915 if (!STI.hasNativeBF16Support(Op) && STI.hasNativeBF16Support(ISD::FMA)) {
917 }
918 }
919 }
920
921 // f16/f16x2 neg was introduced in PTX 60, SM_53.
922 const bool IsFP16FP16x2NegAvailable = STI.getSmVersion() >= 53 &&
923 STI.getPTXVersion() >= 60 &&
924 STI.allowFP16Math();
925 for (const auto &VT : {MVT::f16, MVT::v2f16})
926 setOperationAction(ISD::FNEG, VT,
927 IsFP16FP16x2NegAvailable ? Legal : Expand);
928
929 setBF16OperationAction(ISD::FNEG, MVT::bf16, Legal, Expand);
930 setBF16OperationAction(ISD::FNEG, MVT::v2bf16, Legal, Expand);
931 setOperationAction(ISD::FNEG, MVT::v2f32, Expand);
932 // (would be) Library functions.
933
934 // These map to conversion instructions for scalar FP types.
935 for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
936 ISD::FROUNDEVEN, ISD::FTRUNC}) {
937 setOperationAction(Op, MVT::f16, Legal);
938 setOperationAction(Op, MVT::f32, Legal);
939 setOperationAction(Op, MVT::f64, Legal);
940 setOperationAction(Op, MVT::v2f16, Expand);
941 setOperationAction(Op, MVT::v2bf16, Expand);
942 setOperationAction(Op, MVT::v2f32, Expand);
943 setBF16OperationAction(Op, MVT::bf16, Legal, Promote);
944 if (getOperationAction(Op, MVT::bf16) == Promote)
945 AddPromotedToType(Op, MVT::bf16, MVT::f32);
946 }
947
948 if (STI.getSmVersion() < 80 || STI.getPTXVersion() < 71) {
949 setOperationAction(ISD::BF16_TO_FP, MVT::f32, Expand);
950 }
951 if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) {
952 for (MVT VT : {MVT::bf16, MVT::f32, MVT::f64}) {
953 setOperationAction(ISD::FP_EXTEND, VT, Custom);
955 }
956 }
957
958 // Expand v2f32 = fp_extend
959 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
960 // Expand v2[b]f16 = fp_round v2f32
961 setOperationAction(ISD::FP_ROUND, {MVT::v2bf16, MVT::v2f16}, Expand);
962
963 // sm_80 only has conversions between f32 and bf16. Custom lower all other
964 // bf16 conversions.
965 if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) {
966 for (MVT VT : {MVT::i1, MVT::i16, MVT::i32, MVT::i64}) {
969 VT, Custom);
970 }
973 MVT::bf16, Custom);
974 }
975
976 setOperationAction(ISD::FROUND, MVT::f16, Promote);
977 setOperationAction(ISD::FROUND, MVT::v2f16, Expand);
978 setOperationAction(ISD::FROUND, MVT::v2bf16, Expand);
979 setOperationAction(ISD::FROUND, MVT::f32, Custom);
980 setOperationAction(ISD::FROUND, MVT::f64, Custom);
981 setOperationAction(ISD::FROUND, MVT::bf16, Promote);
982 AddPromotedToType(ISD::FROUND, MVT::bf16, MVT::f32);
983
984 // 'Expand' implements FCOPYSIGN without calling an external library.
991
992 // These map to corresponding instructions for f32/f64. f16 must be
993 // promoted to f32. v2f16 is expanded to f16, which is then promoted
994 // to f32.
995 for (const auto &Op :
996 {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FTANH}) {
997 setOperationAction(Op, MVT::f16, Promote);
998 setOperationAction(Op, MVT::f32, Legal);
999 // only div/rem/sqrt are legal for f64
1000 if (Op == ISD::FDIV || Op == ISD::FREM || Op == ISD::FSQRT) {
1001 setOperationAction(Op, MVT::f64, Legal);
1002 }
1003 setOperationAction(Op, {MVT::v2f16, MVT::v2bf16, MVT::v2f32}, Expand);
1004 setOperationAction(Op, MVT::bf16, Promote);
1005 AddPromotedToType(Op, MVT::bf16, MVT::f32);
1006 }
1007 setOperationAction(ISD::FREM, {MVT::f32, MVT::f64}, Custom);
1008
1009 setOperationAction(ISD::FABS, {MVT::f32, MVT::f64}, Legal);
1010 setOperationAction(ISD::FABS, MVT::v2f32, Expand);
1011 if (STI.getPTXVersion() >= 65) {
1012 setFP16OperationAction(ISD::FABS, MVT::f16, Legal, Promote);
1013 setFP16OperationAction(ISD::FABS, MVT::v2f16, Legal, Expand);
1014 } else {
1015 setOperationAction(ISD::FABS, MVT::f16, Promote);
1016 setOperationAction(ISD::FABS, MVT::v2f16, Expand);
1017 }
1018 setBF16OperationAction(ISD::FABS, MVT::v2bf16, Legal, Expand);
1019 setBF16OperationAction(ISD::FABS, MVT::bf16, Legal, Promote);
1020 if (getOperationAction(ISD::FABS, MVT::bf16) == Promote)
1021 AddPromotedToType(ISD::FABS, MVT::bf16, MVT::f32);
1022
1023 for (const auto &Op :
1024 {ISD::FMINNUM, ISD::FMAXNUM, ISD::FMINIMUMNUM, ISD::FMAXIMUMNUM}) {
1025 setOperationAction(Op, MVT::f32, Legal);
1026 setOperationAction(Op, MVT::f64, Legal);
1027 setFP16OperationAction(Op, MVT::f16, Legal, Promote);
1028 setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
1029 setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand);
1030 setBF16OperationAction(Op, MVT::bf16, Legal, Promote);
1031 if (getOperationAction(Op, MVT::bf16) == Promote)
1032 AddPromotedToType(Op, MVT::bf16, MVT::f32);
1033 setOperationAction(Op, MVT::v2f32, Expand);
1034 }
1035 bool SupportsF32MinMaxNaN =
1036 STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70;
1037 for (const auto &Op : {ISD::FMINIMUM, ISD::FMAXIMUM}) {
1038 setOperationAction(Op, MVT::f32, SupportsF32MinMaxNaN ? Legal : Expand);
1039 setFP16OperationAction(Op, MVT::f16, Legal, Expand);
1040 setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
1041 setBF16OperationAction(Op, MVT::bf16, Legal, Expand);
1042 setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand);
1043 setOperationAction(Op, MVT::v2f32, Expand);
1044 }
1045
1046 // Custom lowering for inline asm with 128-bit operands
1049
1050 // FEXP2 support:
1051 // - f32
1052 // - f16/f16x2 (sm_70+, PTX 7.0+)
1053 // - bf16/bf16x2 (sm_90+, PTX 7.8+)
1054 // When f16/bf16 types aren't supported, they are promoted/expanded to f32.
1055 setOperationAction(ISD::FEXP2, MVT::f32, Legal);
1056 setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
1057 setFP16OperationAction(ISD::FEXP2, MVT::f16, Legal, Promote);
1058 setFP16OperationAction(ISD::FEXP2, MVT::v2f16, Legal, Expand);
1059 setBF16OperationAction(ISD::FEXP2, MVT::bf16, Legal, Promote);
1060 setBF16OperationAction(ISD::FEXP2, MVT::v2bf16, Legal, Expand);
1061
1062 // FLOG2 supports f32 only
1063 // f16/bf16 types aren't supported, but they are promoted/expanded to f32.
1064 if (UseApproxLog2F32) {
1065 setOperationAction(ISD::FLOG2, MVT::f32, Legal);
1066 setOperationPromotedToType(ISD::FLOG2, MVT::f16, MVT::f32);
1067 setOperationPromotedToType(ISD::FLOG2, MVT::bf16, MVT::f32);
1068 setOperationAction(ISD::FLOG2, {MVT::v2f16, MVT::v2bf16, MVT::v2f32},
1069 Expand);
1070 }
1071
1072 setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom);
1073
1074 setOperationAction(ISD::ATOMIC_LOAD_SUB, {MVT::i32, MVT::i64}, Expand);
1075
1076 // atom.b128 is legal in PTX but since we don't represent i128 as a legal
1077 // type, we need to custom lower it.
1078 setOperationAction({ISD::ATOMIC_CMP_SWAP, ISD::ATOMIC_SWAP}, MVT::i128,
1079 Custom);
1080
1081 // Now deduce the information based on the above mentioned
1082 // actions
1083 computeRegisterProperties(STI.getRegisterInfo());
1084
1085 // PTX support for 16-bit CAS is emulated. Only use 32+
1086 setMinCmpXchgSizeInBits(STI.getMinCmpXchgSizeInBits());
1087 setMaxAtomicSizeInBitsSupported(STI.hasAtomSwap128() ? 128 : 64);
1089
1090 // Custom lowering for tcgen05.ld vector operands
1092 {MVT::v2i32, MVT::v4i32, MVT::v8i32, MVT::v16i32,
1093 MVT::v32i32, MVT::v64i32, MVT::v128i32},
1094 Custom);
1095
1096 // Custom lowering for tcgen05.st vector operands
1098 {MVT::v2i32, MVT::v4i32, MVT::v8i32, MVT::v16i32,
1099 MVT::v32i32, MVT::v64i32, MVT::v128i32, MVT::Other},
1100 Custom);
1101
1102 // Enable custom lowering for the following:
1103 // * MVT::i128 - clusterlaunchcontrol
1104 // * MVT::i32 - prmt
1105 // * MVT::v4f32 - cvt_rs fp{4/6/8}x4 intrinsics
1106 // * MVT::Other - internal.addrspace.wrap
1108 {MVT::i32, MVT::i128, MVT::v4f32, MVT::Other}, Custom);
1109
1110 // Custom lowering for bswap
1111 setOperationAction(ISD::BSWAP, {MVT::i16, MVT::i32, MVT::i64, MVT::v2i16},
1112 Custom);
1113}
1114
1117 if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1118 VT.getScalarType() == MVT::i1)
1119 return TypeSplitVector;
1121}
1122
1124 int Enabled, int &ExtraSteps,
1125 bool &UseOneConst,
1126 bool Reciprocal) const {
1129 return SDValue();
1130
1131 if (ExtraSteps == ReciprocalEstimate::Unspecified)
1132 ExtraSteps = 0;
1133
1134 SDLoc DL(Operand);
1135 EVT VT = Operand.getValueType();
1136 bool Ftz = useF32FTZ(DAG.getMachineFunction());
1137
1138 auto MakeIntrinsicCall = [&](Intrinsic::ID IID) {
1139 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
1140 DAG.getConstant(IID, DL, MVT::i32), Operand);
1141 };
1142
1143 // The sqrt and rsqrt refinement processes assume we always start out with an
1144 // approximation of the rsqrt. Therefore, if we're going to do any refinement
1145 // (i.e. ExtraSteps > 0), we must return an rsqrt. But if we're *not* doing
1146 // any refinement, we must return a regular sqrt.
1147 if (Reciprocal || ExtraSteps > 0) {
1148 if (VT == MVT::f32)
1149 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
1150 : Intrinsic::nvvm_rsqrt_approx_f);
1151 else if (VT == MVT::f64)
1152 return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
1153 else
1154 return SDValue();
1155 } else {
1156 if (VT == MVT::f32)
1157 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
1158 : Intrinsic::nvvm_sqrt_approx_f);
1159 else {
1160 // There's no sqrt.approx.f64 instruction, so we emit
1161 // reciprocal(rsqrt(x)). This is faster than
1162 // select(x == 0, 0, x * rsqrt(x)). (In fact, it's faster than plain
1163 // x * rsqrt(x).)
1164 return DAG.getNode(
1166 DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32),
1167 MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
1168 }
1169 }
1170}
1171
1173 const DataLayout &DL, Type *RetTy, const ArgListTy &Args,
1175 std::optional<unsigned> FirstVAArg, const CallBase &CB,
1176 unsigned UniqueCallSite) const {
1177 auto PtrVT = getPointerTy(DL);
1178
1179 std::string Prototype;
1180 raw_string_ostream O(Prototype);
1181 O << "prototype_" << UniqueCallSite << " : .callprototype ";
1182
1183 if (RetTy->isVoidTy()) {
1184 O << "()";
1185 } else {
1186 O << "(";
1187 if (shouldPassAsArray(RetTy)) {
1188 const Align RetAlign = getArgumentAlignment(&CB, RetTy, 0, DL);
1189 O << ".param .align " << RetAlign.value() << " .b8 _["
1190 << DL.getTypeAllocSize(RetTy) << "]";
1191 } else if (RetTy->isFloatingPointTy() || RetTy->isIntegerTy()) {
1192 unsigned size = 0;
1193 if (auto *ITy = dyn_cast<IntegerType>(RetTy)) {
1194 size = ITy->getBitWidth();
1195 } else {
1196 assert(RetTy->isFloatingPointTy() &&
1197 "Floating point type expected here");
1198 size = RetTy->getPrimitiveSizeInBits();
1199 }
1200 // PTX ABI requires all scalar return values to be at least 32
1201 // bits in size. fp16 normally uses .b16 as its storage type in
1202 // PTX, so its size must be adjusted here, too.
1204
1205 O << ".param .b" << size << " _";
1206 } else if (isa<PointerType>(RetTy)) {
1207 O << ".param .b" << PtrVT.getSizeInBits() << " _";
1208 } else {
1209 llvm_unreachable("Unknown return type");
1210 }
1211 O << ") ";
1212 }
1213 O << "_ (";
1214
1215 bool first = true;
1216
1217 const unsigned NumArgs = FirstVAArg.value_or(Args.size());
1218 auto AllOuts = ArrayRef(Outs);
1219 for (const unsigned I : llvm::seq(NumArgs)) {
1220 const auto ArgOuts =
1221 AllOuts.take_while([I](auto O) { return O.OrigArgIndex == I; });
1222 AllOuts = AllOuts.drop_front(ArgOuts.size());
1223
1224 Type *Ty = Args[I].Ty;
1225 if (!first) {
1226 O << ", ";
1227 }
1228 first = false;
1229
1230 if (ArgOuts[0].Flags.isByVal()) {
1231 // Indirect calls need strict ABI alignment so we disable optimizations by
1232 // not providing a function to optimize.
1233 Type *ETy = Args[I].IndirectType;
1234 Align InitialAlign = ArgOuts[0].Flags.getNonZeroByValAlign();
1235 Align ParamByValAlign =
1236 getFunctionByValParamAlign(/*F=*/nullptr, ETy, InitialAlign, DL);
1237
1238 O << ".param .align " << ParamByValAlign.value() << " .b8 _["
1239 << ArgOuts[0].Flags.getByValSize() << "]";
1240 } else {
1241 if (shouldPassAsArray(Ty)) {
1242 Align ParamAlign =
1243 getArgumentAlignment(&CB, Ty, I + AttributeList::FirstArgIndex, DL);
1244 O << ".param .align " << ParamAlign.value() << " .b8 _["
1245 << DL.getTypeAllocSize(Ty) << "]";
1246 continue;
1247 }
1248 // i8 types in IR will be i16 types in SDAG
1249 assert((getValueType(DL, Ty) == ArgOuts[0].VT ||
1250 (getValueType(DL, Ty) == MVT::i8 && ArgOuts[0].VT == MVT::i16)) &&
1251 "type mismatch between callee prototype and arguments");
1252 // scalar type
1253 unsigned sz = 0;
1254 if (auto *ITy = dyn_cast<IntegerType>(Ty)) {
1255 sz = promoteScalarArgumentSize(ITy->getBitWidth());
1256 } else if (isa<PointerType>(Ty)) {
1257 sz = PtrVT.getSizeInBits();
1258 } else {
1259 sz = Ty->getPrimitiveSizeInBits();
1260 }
1261 O << ".param .b" << sz << " _";
1262 }
1263 }
1264
1265 if (FirstVAArg)
1266 O << (first ? "" : ",") << " .param .align "
1267 << STI.getMaxRequiredAlignment() << " .b8 _[]";
1268 O << ")";
1269 if (shouldEmitPTXNoReturn(&CB, *nvTM))
1270 O << " .noreturn";
1271 O << ";";
1272
1273 return Prototype;
1274}
1275
1277 const Function *F, Type *Ty, unsigned Idx, const DataLayout &DL) const {
1278 return getAlign(*F, Idx).value_or(getFunctionParamOptimizedAlign(F, Ty, DL));
1279}
1280
1281Align NVPTXTargetLowering::getArgumentAlignment(const CallBase *CB, Type *Ty,
1282 unsigned Idx,
1283 const DataLayout &DL) const {
1284 if (!CB) {
1285 // CallSite is zero, fallback to ABI type alignment
1286 return DL.getABITypeAlign(Ty);
1287 }
1288
1289 const Function *DirectCallee = CB->getCalledFunction();
1290
1291 if (!DirectCallee) {
1292 // We don't have a direct function symbol, but that may be because of
1293 // constant cast instructions in the call.
1294
1295 // With bitcast'd call targets, the instruction will be the call
1296 if (const auto *CI = dyn_cast<CallInst>(CB)) {
1297 // Check if we have call alignment metadata
1298 if (MaybeAlign StackAlign = getAlign(*CI, Idx))
1299 return StackAlign.value();
1300 }
1301 DirectCallee = getMaybeBitcastedCallee(CB);
1302 }
1303
1304 // Check for function alignment information if we found that the
1305 // ultimate target is a Function
1306 if (DirectCallee)
1307 return getFunctionArgumentAlignment(DirectCallee, Ty, Idx, DL);
1308
1309 // Call is indirect, fall back to the ABI type alignment
1310 return DL.getABITypeAlign(Ty);
1311}
1312
1314 const GlobalAddressSDNode *Func) {
1315 if (!Func)
1316 return false;
1317 if (auto *CalleeFunc = dyn_cast<Function>(Func->getGlobal()))
1318 return CB->getFunctionType() != CalleeFunc->getFunctionType();
1319 return false;
1320}
1321
1323 const DataLayout &DL,
1324 const TargetLowering &TL) {
1325 if (Ptr->getOpcode() == ISD::FrameIndex) {
1326 auto Ty = TL.getPointerTy(DL, ADDRESS_SPACE_LOCAL);
1327 Ptr = DAG.getAddrSpaceCast(SDLoc(), Ty, Ptr, ADDRESS_SPACE_GENERIC,
1329
1331 }
1332
1333 // Peel of an addrspacecast to generic and load directly from the specific
1334 // address space.
1335 if (Ptr->getOpcode() == ISD::ADDRSPACECAST) {
1336 const auto *ASC = cast<AddrSpaceCastSDNode>(Ptr);
1337 if (ASC->getDestAddressSpace() == ADDRESS_SPACE_GENERIC) {
1338 Ptr = ASC->getOperand(0);
1339 return MachinePointerInfo(ASC->getSrcAddressSpace());
1340 }
1341 }
1342
1343 return MachinePointerInfo();
1344}
1345
1347 if (Flags.isSExt())
1348 return ISD::SIGN_EXTEND;
1349 if (Flags.isZExt())
1350 return ISD::ZERO_EXTEND;
1351 return ISD::ANY_EXTEND;
1352}
1353
1355 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1356 SDLoc dl) {
1357 const EVT ActualVT = V.getValueType();
1358 assert((ActualVT == ExpectedVT ||
1359 (ExpectedVT.isInteger() && ActualVT.isInteger())) &&
1360 "Non-integer argument type size mismatch");
1361 if (ExpectedVT.bitsGT(ActualVT))
1362 return DAG.getNode(getExtOpcode(Flags), dl, ExpectedVT, V);
1363 if (ExpectedVT.bitsLT(ActualVT))
1364 return DAG.getNode(ISD::TRUNCATE, dl, ExpectedVT, V);
1365
1366 return V;
1367}
1368
1370 SmallVectorImpl<SDValue> &InVals) const {
1371
1372 if (CLI.IsVarArg && (STI.getPTXVersion() < 60 || STI.getSmVersion() < 30))
1374 "Support for variadic functions (unsized array parameter) introduced "
1375 "in PTX ISA version 6.0 and requires target sm_30.");
1376
1377 SelectionDAG &DAG = CLI.DAG;
1378 SDLoc dl = CLI.DL;
1379 const SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1380 SDValue Callee = CLI.Callee;
1381 ArgListTy &Args = CLI.getArgs();
1382 Type *RetTy = CLI.RetTy;
1383 const CallBase *CB = CLI.CB;
1384 const DataLayout &DL = DAG.getDataLayout();
1385 LLVMContext &Ctx = *DAG.getContext();
1386
1387 const auto GetI32 = [&](const unsigned I) {
1388 return DAG.getConstant(I, dl, MVT::i32);
1389 };
1390
1391 const unsigned UniqueCallSite = GlobalUniqueCallSite++;
1392 const SDValue CallChain = CLI.Chain;
1393 const SDValue StartChain =
1394 DAG.getCALLSEQ_START(CallChain, UniqueCallSite, 0, dl);
1395 SDValue DeclareGlue = StartChain.getValue(1);
1396
1397 SmallVector<SDValue, 16> CallPrereqs{StartChain};
1398
1399 const auto MakeDeclareScalarParam = [&](SDValue Symbol, unsigned Size) {
1400 // PTX ABI requires integral types to be at least 32 bits in size. FP16 is
1401 // loaded/stored using i16, so it's handled here as well.
1402 const unsigned SizeBits = promoteScalarArgumentSize(Size * 8);
1403 SDValue Declare =
1404 DAG.getNode(NVPTXISD::DeclareScalarParam, dl, {MVT::Other, MVT::Glue},
1405 {StartChain, Symbol, GetI32(SizeBits), DeclareGlue});
1406 CallPrereqs.push_back(Declare);
1407 DeclareGlue = Declare.getValue(1);
1408 return Declare;
1409 };
1410
1411 const auto MakeDeclareArrayParam = [&](SDValue Symbol, Align Align,
1412 unsigned Size) {
1413 SDValue Declare = DAG.getNode(
1414 NVPTXISD::DeclareArrayParam, dl, {MVT::Other, MVT::Glue},
1415 {StartChain, Symbol, GetI32(Align.value()), GetI32(Size), DeclareGlue});
1416 CallPrereqs.push_back(Declare);
1417 DeclareGlue = Declare.getValue(1);
1418 return Declare;
1419 };
1420
1421 // Variadic arguments.
1422 //
1423 // Normally, for each argument, we declare a param scalar or a param
1424 // byte array in the .param space, and store the argument value to that
1425 // param scalar or array starting at offset 0.
1426 //
1427 // In the case of the first variadic argument, we declare a vararg byte array
1428 // with size 0. The exact size of this array isn't known at this point, so
1429 // it'll be patched later. All the variadic arguments will be stored to this
1430 // array at a certain offset (which gets tracked by 'VAOffset'). The offset is
1431 // initially set to 0, so it can be used for non-variadic arguments (which use
1432 // 0 offset) to simplify the code.
1433 //
1434 // After all vararg is processed, 'VAOffset' holds the size of the
1435 // vararg byte array.
1436 assert((CLI.IsVarArg || CLI.Args.size() == CLI.NumFixedArgs) &&
1437 "Non-VarArg function with extra arguments");
1438
1439 const unsigned FirstVAArg = CLI.NumFixedArgs; // position of first variadic
1440 unsigned VAOffset = 0; // current offset in the param array
1441
1442 const SDValue VADeclareParam =
1443 CLI.Args.size() > FirstVAArg
1444 ? MakeDeclareArrayParam(getCallParamSymbol(DAG, FirstVAArg, MVT::i32),
1445 Align(STI.getMaxRequiredAlignment()), 0)
1446 : SDValue();
1447
1448 // Args.size() and Outs.size() need not match.
1449 // Outs.size() will be larger
1450 // * if there is an aggregate argument with multiple fields (each field
1451 // showing up separately in Outs)
1452 // * if there is a vector argument with more than typical vector-length
1453 // elements (generally if more than 4) where each vector element is
1454 // individually present in Outs.
1455 // So a different index should be used for indexing into Outs/OutVals.
1456 // See similar issue in LowerFormalArguments.
1457 auto AllOuts = ArrayRef(CLI.Outs);
1458 auto AllOutVals = ArrayRef(CLI.OutVals);
1459 assert(AllOuts.size() == AllOutVals.size() &&
1460 "Outs and OutVals must be the same size");
1461 // Declare the .params or .reg need to pass values
1462 // to the function
1463 for (const auto E : llvm::enumerate(Args)) {
1464 const auto ArgI = E.index();
1465 const auto Arg = E.value();
1466 const auto ArgOuts =
1467 AllOuts.take_while([&](auto O) { return O.OrigArgIndex == ArgI; });
1468 const auto ArgOutVals = AllOutVals.take_front(ArgOuts.size());
1469 AllOuts = AllOuts.drop_front(ArgOuts.size());
1470 AllOutVals = AllOutVals.drop_front(ArgOuts.size());
1471
1472 const bool IsVAArg = (ArgI >= FirstVAArg);
1473 const bool IsByVal = Arg.IsByVal;
1474
1475 const SDValue ParamSymbol =
1476 getCallParamSymbol(DAG, IsVAArg ? FirstVAArg : ArgI, MVT::i32);
1477
1478 assert((!IsByVal || Arg.IndirectType) &&
1479 "byval arg must have indirect type");
1480 Type *ETy = (IsByVal ? Arg.IndirectType : Arg.Ty);
1481
1482 const Align ArgAlign = [&]() {
1483 if (IsByVal) {
1484 // The ByValAlign in the Outs[OIdx].Flags is always set at this point,
1485 // so we don't need to worry whether it's naturally aligned or not.
1486 // See TargetLowering::LowerCallTo().
1487 const Align InitialAlign = ArgOuts[0].Flags.getNonZeroByValAlign();
1489 InitialAlign, DL);
1490 }
1491 return getArgumentAlignment(CB, Arg.Ty, ArgI + 1, DL);
1492 }();
1493
1494 const unsigned TySize = DL.getTypeAllocSize(ETy);
1495 assert((!IsByVal || TySize == ArgOuts[0].Flags.getByValSize()) &&
1496 "type size mismatch");
1497
1498 const SDValue ArgDeclare = [&]() {
1499 if (IsVAArg)
1500 return VADeclareParam;
1501
1502 if (IsByVal || shouldPassAsArray(Arg.Ty))
1503 return MakeDeclareArrayParam(ParamSymbol, ArgAlign, TySize);
1504
1505 assert(ArgOuts.size() == 1 && "We must pass only one value as non-array");
1506 assert((ArgOuts[0].VT.isInteger() || ArgOuts[0].VT.isFloatingPoint()) &&
1507 "Only int and float types are supported as non-array arguments");
1508
1509 return MakeDeclareScalarParam(ParamSymbol, TySize);
1510 }();
1511
1512 if (IsByVal) {
1513 assert(ArgOutVals.size() == 1 && "We must pass only one value as byval");
1514 SDValue SrcPtr = ArgOutVals[0];
1515 const auto PointerInfo = refinePtrAS(SrcPtr, DAG, DL, *this);
1516 const Align BaseSrcAlign = ArgOuts[0].Flags.getNonZeroByValAlign();
1517
1518 if (IsVAArg)
1519 VAOffset = alignTo(VAOffset, ArgAlign);
1520
1521 SmallVector<EVT, 4> ValueVTs, MemVTs;
1523 ComputeValueVTs(*this, DL, ETy, ValueVTs, &MemVTs, &Offsets);
1524
1525 unsigned J = 0;
1526 const auto VI = VectorizePTXValueVTs(MemVTs, Offsets, ArgAlign, IsVAArg);
1527 for (const unsigned NumElts : VI) {
1528 EVT LoadVT = getVectorizedVT(MemVTs[J], NumElts, Ctx);
1529 Align SrcAlign = commonAlignment(BaseSrcAlign, Offsets[J]);
1530 SDValue SrcAddr = DAG.getObjectPtrOffset(dl, SrcPtr, Offsets[J]);
1531 SDValue SrcLoad =
1532 DAG.getLoad(LoadVT, dl, CallChain, SrcAddr, PointerInfo, SrcAlign);
1533
1534 TypeSize ParamOffset = Offsets[J].getWithIncrement(VAOffset);
1535 Align ParamAlign = commonAlignment(ArgAlign, ParamOffset);
1536 SDValue ParamAddr =
1537 DAG.getObjectPtrOffset(dl, ParamSymbol, ParamOffset);
1538 SDValue StoreParam =
1539 DAG.getStore(ArgDeclare, dl, SrcLoad, ParamAddr,
1541 CallPrereqs.push_back(StoreParam);
1542
1543 J += NumElts;
1544 }
1545 if (IsVAArg)
1546 VAOffset += TySize;
1547 } else {
1550 ComputePTXValueVTs(*this, DL, Ctx, CLI.CallConv, Arg.Ty, VTs, Offsets,
1551 VAOffset);
1552 assert(VTs.size() == Offsets.size() && "Size mismatch");
1553 assert(VTs.size() == ArgOuts.size() && "Size mismatch");
1554
1555 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter
1556 // than 32-bits are sign extended or zero extended, depending on
1557 // whether they are signed or unsigned types. This case applies
1558 // only to scalar parameters and not to aggregate values.
1559 const bool ExtendIntegerParam =
1560 Arg.Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Arg.Ty) < 32;
1561
1562 const auto GetStoredValue = [&](const unsigned I) {
1563 SDValue StVal = ArgOutVals[I];
1565 StVal.getValueType() &&
1566 "OutVal type should always be legal");
1567
1568 const EVT VTI = promoteScalarIntegerPTX(VTs[I]);
1569 const EVT StoreVT =
1570 ExtendIntegerParam ? MVT::i32 : (VTI == MVT::i1 ? MVT::i8 : VTI);
1571
1572 return correctParamType(StVal, StoreVT, ArgOuts[I].Flags, DAG, dl);
1573 };
1574
1575 unsigned J = 0;
1576 const auto VI = VectorizePTXValueVTs(VTs, Offsets, ArgAlign, IsVAArg);
1577 for (const unsigned NumElts : VI) {
1578 const EVT EltVT = promoteScalarIntegerPTX(VTs[J]);
1579
1580 unsigned Offset;
1581 if (IsVAArg) {
1582 // TODO: We may need to support vector types that can be passed
1583 // as scalars in variadic arguments.
1584 assert(NumElts == 1 &&
1585 "Vectorization should be disabled for vaargs.");
1586
1587 // Align each part of the variadic argument to their type.
1588 VAOffset = alignTo(VAOffset, DAG.getEVTAlign(EltVT));
1589 Offset = VAOffset;
1590
1591 const EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : EltVT;
1592 VAOffset += DL.getTypeAllocSize(TheStoreType.getTypeForEVT(Ctx));
1593 } else {
1594 assert(VAOffset == 0 && "VAOffset must be 0 for non-VA args");
1595 Offset = Offsets[J];
1596 }
1597
1598 SDValue Ptr =
1599 DAG.getObjectPtrOffset(dl, ParamSymbol, TypeSize::getFixed(Offset));
1600
1601 const MaybeAlign CurrentAlign = ExtendIntegerParam
1602 ? MaybeAlign(std::nullopt)
1603 : commonAlignment(ArgAlign, Offset);
1604
1605 SDValue Val =
1606 getBuildVectorizedValue(NumElts, dl, DAG, [&](unsigned K) {
1607 return GetStoredValue(J + K);
1608 });
1609
1610 SDValue StoreParam =
1611 DAG.getStore(ArgDeclare, dl, Val, Ptr,
1613 CallPrereqs.push_back(StoreParam);
1614
1615 J += NumElts;
1616 }
1617 }
1618 }
1619
1620 // Handle Result
1621 if (!Ins.empty()) {
1622 const SDValue RetSymbol = DAG.getExternalSymbol("retval0", MVT::i32);
1623 const unsigned ResultSize = DL.getTypeAllocSize(RetTy);
1624 if (shouldPassAsArray(RetTy)) {
1625 const Align RetAlign = getArgumentAlignment(CB, RetTy, 0, DL);
1626 MakeDeclareArrayParam(RetSymbol, RetAlign, ResultSize);
1627 } else {
1628 MakeDeclareScalarParam(RetSymbol, ResultSize);
1629 }
1630 }
1631
1632 // Set the size of the vararg param byte array if the callee is a variadic
1633 // function and the variadic part is not empty.
1634 if (VADeclareParam) {
1635 SDValue DeclareParamOps[] = {VADeclareParam.getOperand(0),
1636 VADeclareParam.getOperand(1),
1637 VADeclareParam.getOperand(2), GetI32(VAOffset),
1638 VADeclareParam.getOperand(4)};
1639 DAG.MorphNodeTo(VADeclareParam.getNode(), VADeclareParam.getOpcode(),
1640 VADeclareParam->getVTList(), DeclareParamOps);
1641 }
1642
1643 const auto *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
1644 // If the type of the callsite does not match that of the function, convert
1645 // the callsite to an indirect call.
1646 const bool ConvertToIndirectCall = shouldConvertToIndirectCall(CB, Func);
1647
1648 // Both indirect calls and libcalls have nullptr Func. In order to distinguish
1649 // between them we must rely on the call site value which is valid for
1650 // indirect calls but is always null for libcalls.
1651 const bool IsIndirectCall = (!Func && CB) || ConvertToIndirectCall;
1652
1653 if (isa<ExternalSymbolSDNode>(Callee)) {
1654 Function* CalleeFunc = nullptr;
1655
1656 // Try to find the callee in the current module.
1657 Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc);
1658 assert(CalleeFunc != nullptr && "Libcall callee must be set.");
1659
1660 // Set the "libcall callee" attribute to indicate that the function
1661 // must always have a declaration.
1662 CalleeFunc->addFnAttr("nvptx-libcall-callee", "true");
1663 }
1664
1665 if (IsIndirectCall) {
1666 // This is indirect function call case : PTX requires a prototype of the
1667 // form
1668 // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
1669 // to be emitted, and the label has to used as the last arg of call
1670 // instruction.
1671 // The prototype is embedded in a string and put as the operand for a
1672 // CallPrototype SDNode which will print out to the value of the string.
1673 const bool HasVAArgs = CLI.IsVarArg && (CLI.Args.size() > CLI.NumFixedArgs);
1674 std::string Proto =
1675 getPrototype(DL, RetTy, Args, CLI.Outs,
1676 HasVAArgs ? std::optional(FirstVAArg) : std::nullopt, *CB,
1677 UniqueCallSite);
1678 const char *ProtoStr = nvTM->getStrPool().save(Proto).data();
1679 const SDValue PrototypeDeclare = DAG.getNode(
1680 NVPTXISD::CallPrototype, dl, MVT::Other,
1681 {StartChain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32)});
1682 CallPrereqs.push_back(PrototypeDeclare);
1683 }
1684
1685 const unsigned Proto = IsIndirectCall ? UniqueCallSite : 0;
1686 const unsigned NumArgs =
1687 std::min<unsigned>(CLI.NumFixedArgs + 1, Args.size());
1688 /// CALL(Chain, IsConvergent, IsIndirectCall/IsUniform, NumReturns,
1689 /// NumParams, Callee, Proto)
1690 const SDValue CallToken = DAG.getTokenFactor(dl, CallPrereqs);
1691 const SDValue Call = DAG.getNode(
1692 NVPTXISD::CALL, dl, MVT::Other,
1693 {CallToken, GetI32(CLI.IsConvergent), GetI32(IsIndirectCall),
1694 GetI32(Ins.empty() ? 0 : 1), GetI32(NumArgs), Callee, GetI32(Proto)});
1695
1696 SmallVector<SDValue, 16> LoadChains{Call};
1697 SmallVector<SDValue, 16> ProxyRegOps;
1698 if (!Ins.empty()) {
1701 ComputePTXValueVTs(*this, DL, Ctx, CLI.CallConv, RetTy, VTs, Offsets);
1702 assert(VTs.size() == Ins.size() && "Bad value decomposition");
1703
1704 const Align RetAlign = getArgumentAlignment(CB, RetTy, 0, DL);
1705 const SDValue RetSymbol = DAG.getExternalSymbol("retval0", MVT::i32);
1706
1707 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
1708 // 32-bits are sign extended or zero extended, depending on whether
1709 // they are signed or unsigned types.
1710 const bool ExtendIntegerRetVal =
1711 RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
1712
1713 unsigned I = 0;
1714 const auto VI = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
1715 for (const unsigned NumElts : VI) {
1716 const MaybeAlign CurrentAlign =
1717 ExtendIntegerRetVal ? MaybeAlign(std::nullopt)
1718 : commonAlignment(RetAlign, Offsets[I]);
1719
1720 const EVT VTI = promoteScalarIntegerPTX(VTs[I]);
1721 const EVT LoadVT =
1722 ExtendIntegerRetVal ? MVT::i32 : (VTI == MVT::i1 ? MVT::i8 : VTI);
1723 const EVT VecVT = getVectorizedVT(LoadVT, NumElts, Ctx);
1724 SDValue Ptr =
1725 DAG.getObjectPtrOffset(dl, RetSymbol, TypeSize::getFixed(Offsets[I]));
1726
1727 SDValue R =
1728 DAG.getLoad(VecVT, dl, Call, Ptr,
1730
1731 LoadChains.push_back(R.getValue(1));
1732 for (const unsigned J : llvm::seq(NumElts))
1733 ProxyRegOps.push_back(getExtractVectorizedValue(R, J, LoadVT, dl, DAG));
1734 I += NumElts;
1735 }
1736 }
1737
1738 const SDValue EndToken = DAG.getTokenFactor(dl, LoadChains);
1739 const SDValue CallEnd = DAG.getCALLSEQ_END(EndToken, UniqueCallSite,
1740 UniqueCallSite + 1, SDValue(), dl);
1741
1742 // Append ProxyReg instructions to the chain to make sure that `callseq_end`
1743 // will not get lost. Otherwise, during libcalls expansion, the nodes can become
1744 // dangling.
1745 for (const auto [I, Reg] : llvm::enumerate(ProxyRegOps)) {
1746 SDValue Proxy =
1747 DAG.getNode(NVPTXISD::ProxyReg, dl, Reg.getValueType(), {CallEnd, Reg});
1748 SDValue Ret = correctParamType(Proxy, Ins[I].VT, Ins[I].Flags, DAG, dl);
1749 InVals.push_back(Ret);
1750 }
1751
1752 // set IsTailCall to false for now, until we figure out how to express
1753 // tail call optimization in PTX
1754 CLI.IsTailCall = false;
1755 return CallEnd;
1756}
1757
1759 SelectionDAG &DAG) const {
1760
1761 if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) {
1762 const Function &Fn = DAG.getMachineFunction().getFunction();
1763
1765 Fn,
1766 "Support for dynamic alloca introduced in PTX ISA version 7.3 and "
1767 "requires target sm_52.",
1768 SDLoc(Op).getDebugLoc()));
1769 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()),
1770 Op.getOperand(0)};
1771 return DAG.getMergeValues(Ops, SDLoc());
1772 }
1773
1774 SDLoc DL(Op.getNode());
1775 SDValue Chain = Op.getOperand(0);
1776 SDValue Size = Op.getOperand(1);
1777 uint64_t Align = Op.getConstantOperandVal(2);
1778
1779 // The alignment on a ISD::DYNAMIC_STACKALLOC node may be 0 to indicate that
1780 // the default stack alignment should be used.
1781 if (Align == 0)
1783
1784 // The size for ptx alloca instruction is 64-bit for m64 and 32-bit for m32.
1785 const MVT LocalVT = getPointerTy(DAG.getDataLayout(), ADDRESS_SPACE_LOCAL);
1786
1787 SDValue Alloc =
1788 DAG.getNode(NVPTXISD::DYNAMIC_STACKALLOC, DL, {LocalVT, MVT::Other},
1789 {Chain, DAG.getZExtOrTrunc(Size, DL, LocalVT),
1790 DAG.getTargetConstant(Align, DL, MVT::i32)});
1791
1792 SDValue ASC = DAG.getAddrSpaceCast(
1794
1795 return DAG.getMergeValues({ASC, SDValue(Alloc.getNode(), 1)}, DL);
1796}
1797
1799 SelectionDAG &DAG) const {
1800 SDLoc DL(Op.getNode());
1801 if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) {
1802 const Function &Fn = DAG.getMachineFunction().getFunction();
1803
1805 Fn,
1806 "Support for stackrestore requires PTX ISA version >= 7.3 and target "
1807 ">= sm_52.",
1808 DL.getDebugLoc()));
1809 return Op.getOperand(0);
1810 }
1811
1812 const MVT LocalVT = getPointerTy(DAG.getDataLayout(), ADDRESS_SPACE_LOCAL);
1813 SDValue Chain = Op.getOperand(0);
1814 SDValue Ptr = Op.getOperand(1);
1815 SDValue ASC = DAG.getAddrSpaceCast(DL, LocalVT, Ptr, ADDRESS_SPACE_GENERIC,
1817 return DAG.getNode(NVPTXISD::STACKRESTORE, DL, MVT::Other, {Chain, ASC});
1818}
1819
1821 SelectionDAG &DAG) const {
1822 SDLoc DL(Op.getNode());
1823 if (STI.getPTXVersion() < 73 || STI.getSmVersion() < 52) {
1824 const Function &Fn = DAG.getMachineFunction().getFunction();
1825
1827 Fn,
1828 "Support for stacksave requires PTX ISA version >= 7.3 and target >= "
1829 "sm_52.",
1830 DL.getDebugLoc()));
1831 auto Ops = {DAG.getConstant(0, DL, Op.getValueType()), Op.getOperand(0)};
1832 return DAG.getMergeValues(Ops, DL);
1833 }
1834
1835 const MVT LocalVT = getPointerTy(DAG.getDataLayout(), ADDRESS_SPACE_LOCAL);
1836 SDValue Chain = Op.getOperand(0);
1837 SDValue SS =
1838 DAG.getNode(NVPTXISD::STACKSAVE, DL, {LocalVT, MVT::Other}, Chain);
1839 SDValue ASC = DAG.getAddrSpaceCast(
1840 DL, Op.getValueType(), SS, ADDRESS_SPACE_LOCAL, ADDRESS_SPACE_GENERIC);
1841 return DAG.getMergeValues({ASC, SDValue(SS.getNode(), 1)}, DL);
1842}
1843
1844// By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
1845// (see LegalizeDAG.cpp). This is slow and uses local memory.
1846// We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
1847SDValue
1848NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
1849 SDNode *Node = Op.getNode();
1850 SDLoc dl(Node);
1852 unsigned NumOperands = Node->getNumOperands();
1853 for (unsigned i = 0; i < NumOperands; ++i) {
1854 SDValue SubOp = Node->getOperand(i);
1855 EVT VVT = SubOp.getNode()->getValueType(0);
1856 EVT EltVT = VVT.getVectorElementType();
1857 unsigned NumSubElem = VVT.getVectorNumElements();
1858 for (unsigned j = 0; j < NumSubElem; ++j) {
1859 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
1860 DAG.getIntPtrConstant(j, dl)));
1861 }
1862 }
1863 return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
1864}
1865
1867 SelectionDAG &DAG,
1868 unsigned Mode = NVPTX::PTXPrmtMode::NONE) {
1869 assert(A.getValueType() == MVT::i32 && B.getValueType() == MVT::i32 &&
1870 Selector.getValueType() == MVT::i32 && "PRMT must have i32 operands");
1871 return DAG.getNode(NVPTXISD::PRMT, DL, MVT::i32,
1872 {A, B, Selector, DAG.getConstant(Mode, DL, MVT::i32)});
1873}
1874
1876 SelectionDAG &DAG,
1877 unsigned Mode = NVPTX::PTXPrmtMode::NONE) {
1878 return getPRMT(A, B, DAG.getConstant(Selector, DL, MVT::i32), DL, DAG, Mode);
1879}
1880
1881/// Reduces the elements using the scalar operations provided. The operations
1882/// are sorted descending in number of inputs they take. The flags on the
1883/// original reduction operation will be propagated to each scalar operation.
1884/// Nearby elements are grouped in tree reduction, unlike the shuffle reduction
1885/// used in ExpandReductions and SelectionDAG.
1887 const SmallVector<SDValue> &Elements, EVT EltTy,
1888 ArrayRef<std::pair<unsigned /*NodeType*/, unsigned /*NumInputs*/>> Ops,
1889 const SDLoc &DL, const SDNodeFlags Flags, SelectionDAG &DAG) {
1890 // Build the reduction tree at each level, starting with all the elements.
1891 SmallVector<SDValue> Level = Elements;
1892
1893 unsigned OpIdx = 0;
1894 while (Level.size() > 1) {
1895 // Try to reduce this level using the current operator.
1896 const auto [Op, NumInputs] = Ops[OpIdx];
1897
1898 // Build the next level by partially reducing all elements.
1899 SmallVector<SDValue> ReducedLevel;
1900 unsigned I = 0, E = Level.size();
1901 for (; I + NumInputs <= E; I += NumInputs) {
1902 // Reduce elements in groups of [NumInputs], as much as possible.
1903 ReducedLevel.push_back(DAG.getNode(
1904 Op, DL, EltTy, ArrayRef<SDValue>(Level).slice(I, NumInputs), Flags));
1905 }
1906
1907 if (I < E) {
1908 // Handle leftover elements.
1909
1910 if (ReducedLevel.empty()) {
1911 // We didn't reduce anything at this level. We need to pick a smaller
1912 // operator.
1913 ++OpIdx;
1914 assert(OpIdx < Ops.size() && "no smaller operators for reduction");
1915 continue;
1916 }
1917
1918 // We reduced some things but there's still more left, meaning the
1919 // operator's number of inputs doesn't evenly divide this level size. Move
1920 // these elements to the next level.
1921 for (; I < E; ++I)
1922 ReducedLevel.push_back(Level[I]);
1923 }
1924
1925 // Process the next level.
1926 Level = ReducedLevel;
1927 }
1928
1929 return *Level.begin();
1930}
1931
1932// Get scalar reduction opcode
1933static ISD::NodeType getScalarOpcodeForReduction(unsigned ReductionOpcode) {
1934 switch (ReductionOpcode) {
1935 case ISD::VECREDUCE_FMAX:
1936 return ISD::FMAXNUM;
1937 case ISD::VECREDUCE_FMIN:
1938 return ISD::FMINNUM;
1939 case ISD::VECREDUCE_FMAXIMUM:
1940 return ISD::FMAXIMUM;
1941 case ISD::VECREDUCE_FMINIMUM:
1942 return ISD::FMINIMUM;
1943 default:
1944 llvm_unreachable("unhandled reduction opcode");
1945 }
1946}
1947
1948/// Get 3-input scalar reduction opcode
1949static std::optional<unsigned>
1950getScalar3OpcodeForReduction(unsigned ReductionOpcode) {
1951 switch (ReductionOpcode) {
1952 case ISD::VECREDUCE_FMAX:
1953 return NVPTXISD::FMAXNUM3;
1954 case ISD::VECREDUCE_FMIN:
1955 return NVPTXISD::FMINNUM3;
1956 case ISD::VECREDUCE_FMAXIMUM:
1957 return NVPTXISD::FMAXIMUM3;
1958 case ISD::VECREDUCE_FMINIMUM:
1959 return NVPTXISD::FMINIMUM3;
1960 default:
1961 return std::nullopt;
1962 }
1963}
1964
1965/// Lower reductions to either a sequence of operations or a tree if
1966/// reassociations are allowed. This method will use larger operations like
1967/// max3/min3 when the target supports them.
1968SDValue NVPTXTargetLowering::LowerVECREDUCE(SDValue Op,
1969 SelectionDAG &DAG) const {
1970 SDLoc DL(Op);
1971 const SDNodeFlags Flags = Op->getFlags();
1972 SDValue Vector = Op.getOperand(0);
1973
1974 const unsigned Opcode = Op->getOpcode();
1975 const EVT EltTy = Vector.getValueType().getVectorElementType();
1976
1977 // Whether we can use 3-input min/max when expanding the reduction.
1978 const bool CanUseMinMax3 =
1979 EltTy == MVT::f32 && STI.getSmVersion() >= 100 &&
1980 STI.getPTXVersion() >= 88 &&
1981 (Opcode == ISD::VECREDUCE_FMAX || Opcode == ISD::VECREDUCE_FMIN ||
1982 Opcode == ISD::VECREDUCE_FMAXIMUM || Opcode == ISD::VECREDUCE_FMINIMUM);
1983
1984 // A list of SDNode opcodes with equivalent semantics, sorted descending by
1985 // number of inputs they take.
1986 SmallVector<std::pair<unsigned /*Op*/, unsigned /*NumIn*/>, 2> ScalarOps;
1987
1988 if (auto Opcode3Elem = getScalar3OpcodeForReduction(Opcode);
1989 CanUseMinMax3 && Opcode3Elem)
1990 ScalarOps.push_back({*Opcode3Elem, 3});
1991 ScalarOps.push_back({getScalarOpcodeForReduction(Opcode), 2});
1992
1994 DAG.ExtractVectorElements(Vector, Elements);
1995
1996 return buildTreeReduction(Elements, EltTy, ScalarOps, DL, Flags, DAG);
1997}
1998
1999SDValue NVPTXTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
2000 // Handle bitcasting from v2i8 without hitting the default promotion
2001 // strategy which goes through stack memory.
2002 EVT FromVT = Op->getOperand(0)->getValueType(0);
2003 if (FromVT != MVT::v2i8) {
2004 return Op;
2005 }
2006
2007 // Pack vector elements into i16 and bitcast to final type
2008 SDLoc DL(Op);
2009 SDValue Vec0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8,
2010 Op->getOperand(0), DAG.getIntPtrConstant(0, DL));
2011 SDValue Vec1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8,
2012 Op->getOperand(0), DAG.getIntPtrConstant(1, DL));
2013 SDValue Extend0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i16, Vec0);
2014 SDValue Extend1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i16, Vec1);
2015 SDValue Const8 = DAG.getConstant(8, DL, MVT::i16);
2016 SDValue AsInt = DAG.getNode(
2017 ISD::OR, DL, MVT::i16,
2018 {Extend0, DAG.getNode(ISD::SHL, DL, MVT::i16, {Extend1, Const8})});
2019 EVT ToVT = Op->getValueType(0);
2020 return DAG.getBitcast(ToVT, AsInt);
2021}
2022
2023// We can init constant f16x2/v2i16/v4i8 with a single .b32 move. Normally it
2024// would get lowered as two constant loads and vector-packing move.
2025// Instead we want just a constant move:
2026// mov.b32 %r2, 0x40003C00
2027SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op,
2028 SelectionDAG &DAG) const {
2029 EVT VT = Op->getValueType(0);
2030 if (!(NVPTX::isPackedVectorTy(VT) && VT.is32BitVector()))
2031 return Op;
2032 SDLoc DL(Op);
2033
2034 if (!llvm::all_of(Op->ops(), [](SDValue Operand) {
2035 return Operand->isUndef() || isa<ConstantSDNode>(Operand) ||
2036 isa<ConstantFPSDNode>(Operand);
2037 })) {
2038 if (VT != MVT::v4i8)
2039 return Op;
2040 // Lower non-const v4i8 vector as byte-wise constructed i32, which allows us
2041 // to optimize calculation of constant parts.
2042 auto GetPRMT = [&](const SDValue Left, const SDValue Right, bool Cast,
2043 uint64_t SelectionValue) -> SDValue {
2044 SDValue L = Left;
2045 SDValue R = Right;
2046 if (Cast) {
2047 L = DAG.getAnyExtOrTrunc(L, DL, MVT::i32);
2048 R = DAG.getAnyExtOrTrunc(R, DL, MVT::i32);
2049 }
2050 return getPRMT(L, R, SelectionValue, DL, DAG);
2051 };
2052 auto PRMT__10 = GetPRMT(Op->getOperand(0), Op->getOperand(1), true, 0x3340);
2053 auto PRMT__32 = GetPRMT(Op->getOperand(2), Op->getOperand(3), true, 0x3340);
2054 auto PRMT3210 = GetPRMT(PRMT__10, PRMT__32, false, 0x5410);
2055 return DAG.getBitcast(VT, PRMT3210);
2056 }
2057
2058 // Get value or the Nth operand as an APInt(32). Undef values treated as 0.
2059 auto GetOperand = [](SDValue Op, int N) -> APInt {
2060 const SDValue &Operand = Op->getOperand(N);
2061 EVT VT = Op->getValueType(0);
2062 if (Operand->isUndef())
2063 return APInt(32, 0);
2064 APInt Value;
2065 if (VT == MVT::v2f16 || VT == MVT::v2bf16)
2066 Value = cast<ConstantFPSDNode>(Operand)->getValueAPF().bitcastToAPInt();
2067 else if (VT == MVT::v2i16 || VT == MVT::v4i8)
2068 Value = Operand->getAsAPIntVal();
2069 else
2070 llvm_unreachable("Unsupported type");
2071 // i8 values are carried around as i16, so we need to zero out upper bits,
2072 // so they do not get in the way of combining individual byte values
2073 if (VT == MVT::v4i8)
2074 Value = Value.trunc(8);
2075 return Value.zext(32);
2076 };
2077
2078 // Construct a 32-bit constant by shifting into place smaller values
2079 // (elements of the vector type VT).
2080 // For example, if VT has 2 elements, then N == 2:
2081 // ShiftAmount = 32 / N = 16
2082 // Value |= Op0 (b16) << 0
2083 // Value |= Op1 (b16) << 16
2084 // If N == 4:
2085 // ShiftAmount = 32 / N = 8
2086 // Value |= Op0 (b8) << 0
2087 // Value |= Op1 (b8) << 8
2088 // Value |= Op2 (b8) << 16
2089 // Value |= Op3 (b8) << 24
2090 // ...etc
2091 APInt Value(32, 0);
2092 const unsigned NumElements = VT.getVectorNumElements();
2093 assert(32 % NumElements == 0 && "must evenly divide bit length");
2094 const unsigned ShiftAmount = 32 / NumElements;
2095 for (unsigned ElementNo : seq(NumElements))
2096 Value |= GetOperand(Op, ElementNo).shl(ElementNo * ShiftAmount);
2097 SDValue Const = DAG.getConstant(Value, DL, MVT::i32);
2098 return DAG.getNode(ISD::BITCAST, DL, Op->getValueType(0), Const);
2099}
2100
2101SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
2102 SelectionDAG &DAG) const {
2103 SDValue Index = Op->getOperand(1);
2104 SDValue Vector = Op->getOperand(0);
2105 SDLoc DL(Op);
2106 EVT VectorVT = Vector.getValueType();
2107
2108 if (VectorVT == MVT::v4i8) {
2109 SDValue Selector = DAG.getNode(ISD::OR, DL, MVT::i32,
2110 DAG.getZExtOrTrunc(Index, DL, MVT::i32),
2111 DAG.getConstant(0x7770, DL, MVT::i32));
2112 SDValue PRMT = getPRMT(DAG.getBitcast(MVT::i32, Vector),
2113 DAG.getConstant(0, DL, MVT::i32), Selector, DL, DAG);
2114 SDValue Ext = DAG.getAnyExtOrTrunc(PRMT, DL, Op->getValueType(0));
2115 SDNodeFlags Flags;
2116 Flags.setNoSignedWrap(Ext.getScalarValueSizeInBits() > 8);
2117 Flags.setNoUnsignedWrap(Ext.getScalarValueSizeInBits() >= 8);
2118 Ext->setFlags(Flags);
2119 return Ext;
2120 }
2121
2122 // Constant index will be matched by tablegen.
2123 if (isa<ConstantSDNode>(Index.getNode()))
2124 return Op;
2125
2126 // Extract individual elements and select one of them.
2127 assert(NVPTX::isPackedVectorTy(VectorVT) &&
2128 VectorVT.getVectorNumElements() == 2 && "Unexpected vector type.");
2129 EVT EltVT = VectorVT.getVectorElementType();
2130
2131 SDLoc dl(Op.getNode());
2132 SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
2133 DAG.getIntPtrConstant(0, dl));
2134 SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
2135 DAG.getIntPtrConstant(1, dl));
2136 return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1,
2138}
2139
2140SDValue NVPTXTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
2141 SelectionDAG &DAG) const {
2142 SDValue Vector = Op->getOperand(0);
2143 EVT VectorVT = Vector.getValueType();
2144
2145 if (VectorVT != MVT::v4i8)
2146 return Op;
2147 SDLoc DL(Op);
2148 SDValue Value = Op->getOperand(1);
2149 if (Value->isUndef())
2150 return Vector;
2151
2152 SDValue Index = Op->getOperand(2);
2153
2154 SDValue BFI =
2155 DAG.getNode(NVPTXISD::BFI, DL, MVT::i32,
2156 {DAG.getZExtOrTrunc(Value, DL, MVT::i32), Vector,
2157 DAG.getNode(ISD::MUL, DL, MVT::i32,
2158 DAG.getZExtOrTrunc(Index, DL, MVT::i32),
2159 DAG.getConstant(8, DL, MVT::i32)),
2160 DAG.getConstant(8, DL, MVT::i32)});
2161 return DAG.getNode(ISD::BITCAST, DL, Op->getValueType(0), BFI);
2162}
2163
2164SDValue NVPTXTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
2165 SelectionDAG &DAG) const {
2166 SDValue V1 = Op.getOperand(0);
2167 EVT VectorVT = V1.getValueType();
2168 if (VectorVT != MVT::v4i8 || Op.getValueType() != MVT::v4i8)
2169 return Op;
2170
2171 // Lower shuffle to PRMT instruction.
2172 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2173 SDValue V2 = Op.getOperand(1);
2174 uint32_t Selector = 0;
2175 for (auto I : llvm::enumerate(SVN->getMask())) {
2176 if (I.value() != -1) // -1 is a placeholder for undef.
2177 Selector |= (I.value() << (I.index() * 4));
2178 }
2179
2180 SDLoc DL(Op);
2181 SDValue PRMT = getPRMT(DAG.getBitcast(MVT::i32, V1),
2182 DAG.getBitcast(MVT::i32, V2), Selector, DL, DAG);
2183 return DAG.getBitcast(Op.getValueType(), PRMT);
2184}
2185/// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
2186/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
2187/// amount, or
2188/// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
2189/// amount.
2190SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
2191 SelectionDAG &DAG) const {
2192 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2193 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2194
2195 EVT VT = Op.getValueType();
2196 unsigned VTBits = VT.getSizeInBits();
2197 SDLoc dl(Op);
2198 SDValue ShOpLo = Op.getOperand(0);
2199 SDValue ShOpHi = Op.getOperand(1);
2200 SDValue ShAmt = Op.getOperand(2);
2201 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2202
2203 if (VTBits == 32 && STI.getSmVersion() >= 35) {
2204 // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
2205 // {dHi, dLo} = {aHi, aLo} >> Amt
2206 // dHi = aHi >> Amt
2207 // dLo = shf.r.clamp aLo, aHi, Amt
2208
2209 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2210 SDValue Lo =
2211 DAG.getNode(NVPTXISD::FSHR_CLAMP, dl, VT, ShOpHi, ShOpLo, ShAmt);
2212
2213 SDValue Ops[2] = { Lo, Hi };
2214 return DAG.getMergeValues(Ops, dl);
2215 }
2216 else {
2217 // {dHi, dLo} = {aHi, aLo} >> Amt
2218 // - if (Amt>=size) then
2219 // dLo = aHi >> (Amt-size)
2220 // dHi = aHi >> Amt (this is either all 0 or all 1)
2221 // else
2222 // dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
2223 // dHi = aHi >> Amt
2224
2225 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2226 DAG.getConstant(VTBits, dl, MVT::i32),
2227 ShAmt);
2228 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2229 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2230 DAG.getConstant(VTBits, dl, MVT::i32));
2231 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2232 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2233 SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2234
2235 SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2236 DAG.getConstant(VTBits, dl, MVT::i32),
2237 ISD::SETGE);
2238 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2239 SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2240
2241 SDValue Ops[2] = { Lo, Hi };
2242 return DAG.getMergeValues(Ops, dl);
2243 }
2244}
2245
2246/// LowerShiftLeftParts - Lower SHL_PARTS, which
2247/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
2248/// amount, or
2249/// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
2250/// amount.
2251SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
2252 SelectionDAG &DAG) const {
2253 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2254 assert(Op.getOpcode() == ISD::SHL_PARTS);
2255
2256 EVT VT = Op.getValueType();
2257 unsigned VTBits = VT.getSizeInBits();
2258 SDLoc dl(Op);
2259 SDValue ShOpLo = Op.getOperand(0);
2260 SDValue ShOpHi = Op.getOperand(1);
2261 SDValue ShAmt = Op.getOperand(2);
2262
2263 if (VTBits == 32 && STI.getSmVersion() >= 35) {
2264 // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
2265 // {dHi, dLo} = {aHi, aLo} << Amt
2266 // dHi = shf.l.clamp aLo, aHi, Amt
2267 // dLo = aLo << Amt
2268
2269 SDValue Hi =
2270 DAG.getNode(NVPTXISD::FSHL_CLAMP, dl, VT, ShOpHi, ShOpLo, ShAmt);
2271 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2272
2273 SDValue Ops[2] = { Lo, Hi };
2274 return DAG.getMergeValues(Ops, dl);
2275 }
2276 else {
2277 // {dHi, dLo} = {aHi, aLo} << Amt
2278 // - if (Amt>=size) then
2279 // dLo = aLo << Amt (all 0)
2280 // dLo = aLo << (Amt-size)
2281 // else
2282 // dLo = aLo << Amt
2283 // dHi = (aHi << Amt) | (aLo >> (size-Amt))
2284
2285 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2286 DAG.getConstant(VTBits, dl, MVT::i32),
2287 ShAmt);
2288 SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2289 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2290 DAG.getConstant(VTBits, dl, MVT::i32));
2291 SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2292 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2293 SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2294
2295 SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2296 DAG.getConstant(VTBits, dl, MVT::i32),
2297 ISD::SETGE);
2298 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2299 SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2300
2301 SDValue Ops[2] = { Lo, Hi };
2302 return DAG.getMergeValues(Ops, dl);
2303 }
2304}
2305
2306/// If the types match, convert the generic copysign to the NVPTXISD version,
2307/// otherwise bail ensuring that mismatched cases are properly expaned.
2308SDValue NVPTXTargetLowering::LowerFCOPYSIGN(SDValue Op,
2309 SelectionDAG &DAG) const {
2310 EVT VT = Op.getValueType();
2311 SDLoc DL(Op);
2312
2313 SDValue In1 = Op.getOperand(0);
2314 SDValue In2 = Op.getOperand(1);
2315 EVT SrcVT = In2.getValueType();
2316
2317 if (!SrcVT.bitsEq(VT))
2318 return SDValue();
2319
2320 return DAG.getNode(NVPTXISD::FCOPYSIGN, DL, VT, In1, In2);
2321}
2322
2323SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2324 EVT VT = Op.getValueType();
2325
2326 if (VT == MVT::f32)
2327 return LowerFROUND32(Op, DAG);
2328
2329 if (VT == MVT::f64)
2330 return LowerFROUND64(Op, DAG);
2331
2332 llvm_unreachable("unhandled type");
2333}
2334
2335// This is the the rounding method used in CUDA libdevice in C like code:
2336// float roundf(float A)
2337// {
2338// float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f));
2339// RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2340// return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2341// }
2342SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op,
2343 SelectionDAG &DAG) const {
2344 SDLoc SL(Op);
2345 SDValue A = Op.getOperand(0);
2346 EVT VT = Op.getValueType();
2347
2348 SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2349
2350 // RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f))
2351 SDValue Bitcast = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A);
2352 const unsigned SignBitMask = 0x80000000;
2353 SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast,
2354 DAG.getConstant(SignBitMask, SL, MVT::i32));
2355 const unsigned PointFiveInBits = 0x3F000000;
2356 SDValue PointFiveWithSignRaw =
2357 DAG.getNode(ISD::OR, SL, MVT::i32, Sign,
2358 DAG.getConstant(PointFiveInBits, SL, MVT::i32));
2359 SDValue PointFiveWithSign =
2360 DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw);
2361 SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign);
2362 SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2363
2364 // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2365 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2366 SDValue IsLarge =
2367 DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT),
2368 ISD::SETOGT);
2369 RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2370
2371 // return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2372 SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2373 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2374 SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A);
2375 return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA);
2376}
2377
2378// The implementation of round(double) is similar to that of round(float) in
2379// that they both separate the value range into three regions and use a method
2380// specific to the region to round the values. However, round(double) first
2381// calculates the round of the absolute value and then adds the sign back while
2382// round(float) directly rounds the value with sign.
2383SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op,
2384 SelectionDAG &DAG) const {
2385 SDLoc SL(Op);
2386 SDValue A = Op.getOperand(0);
2387 EVT VT = Op.getValueType();
2388
2389 SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2390
2391 // double RoundedA = (double) (int) (abs(A) + 0.5f);
2392 SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA,
2393 DAG.getConstantFP(0.5, SL, VT));
2394 SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2395
2396 // RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA;
2397 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2398 SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2399 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2400 RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall,
2401 DAG.getConstantFP(0, SL, VT),
2402 RoundedA);
2403
2404 // Add sign to rounded_A
2405 RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A);
2406 DAG.getNode(ISD::FTRUNC, SL, VT, A);
2407
2408 // RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA;
2409 SDValue IsLarge =
2410 DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT),
2411 ISD::SETOGT);
2412 return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2413}
2414
2416 EVT VT = N->getValueType(0);
2417 EVT NVT = MVT::f32;
2418 if (VT.isVector()) {
2419 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
2420 }
2421 SDLoc DL(N);
2422 SDValue Tmp0 = DAG.getFPExtendOrRound(N->getOperand(0), DL, NVT);
2423 SDValue Tmp1 = DAG.getFPExtendOrRound(N->getOperand(1), DL, NVT);
2424 SDValue Res = DAG.getNode(N->getOpcode(), DL, NVT, Tmp0, Tmp1, N->getFlags());
2425 return DAG.getFPExtendOrRound(Res, DL, VT);
2426}
2427
2428SDValue NVPTXTargetLowering::PromoteBinOpIfF32FTZ(SDValue Op,
2429 SelectionDAG &DAG) const {
2430 if (useF32FTZ(DAG.getMachineFunction())) {
2431 return PromoteBinOpToF32(Op.getNode(), DAG);
2432 }
2433 return Op;
2434}
2435
2436SDValue NVPTXTargetLowering::LowerINT_TO_FP(SDValue Op,
2437 SelectionDAG &DAG) const {
2438 assert(STI.getSmVersion() < 90 || STI.getPTXVersion() < 78);
2439
2440 if (Op.getValueType() == MVT::bf16) {
2441 SDLoc Loc(Op);
2442 return DAG.getNode(
2443 ISD::FP_ROUND, Loc, MVT::bf16,
2444 DAG.getNode(Op.getOpcode(), Loc, MVT::f32, Op.getOperand(0)),
2445 DAG.getIntPtrConstant(0, Loc, /*isTarget=*/true));
2446 }
2447
2448 // Everything else is considered legal.
2449 return Op;
2450}
2451
2452SDValue NVPTXTargetLowering::LowerFP_TO_INT(SDValue Op,
2453 SelectionDAG &DAG) const {
2454 assert(STI.getSmVersion() < 90 || STI.getPTXVersion() < 78);
2455
2456 if (Op.getOperand(0).getValueType() == MVT::bf16) {
2457 SDLoc Loc(Op);
2458 return DAG.getNode(
2459 Op.getOpcode(), Loc, Op.getValueType(),
2460 DAG.getNode(ISD::FP_EXTEND, Loc, MVT::f32, Op.getOperand(0)));
2461 }
2462
2463 // Everything else is considered legal.
2464 return Op;
2465}
2466
2467SDValue NVPTXTargetLowering::LowerFP_ROUND(SDValue Op,
2468 SelectionDAG &DAG) const {
2469 EVT NarrowVT = Op.getValueType();
2470 SDValue Wide = Op.getOperand(0);
2471 EVT WideVT = Wide.getValueType();
2472 if (NarrowVT.getScalarType() == MVT::bf16) {
2473 const TargetLowering *TLI = STI.getTargetLowering();
2474 if (STI.getSmVersion() < 80 || STI.getPTXVersion() < 70) {
2475 return TLI->expandFP_ROUND(Op.getNode(), DAG);
2476 }
2477 if (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78) {
2478 // This combination was the first to support f32 -> bf16.
2479 if (STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70) {
2480 if (WideVT.getScalarType() == MVT::f32) {
2481 return Op;
2482 }
2483 if (WideVT.getScalarType() == MVT::f64) {
2484 SDLoc Loc(Op);
2485 // Round-inexact-to-odd f64 to f32, then do the final rounding using
2486 // the hardware f32 -> bf16 instruction.
2488 WideVT.isVector() ? WideVT.changeVectorElementType(MVT::f32)
2489 : MVT::f32,
2490 Wide, Loc, DAG);
2491 return DAG.getFPExtendOrRound(rod, Loc, NarrowVT);
2492 }
2493 }
2494 return TLI->expandFP_ROUND(Op.getNode(), DAG);
2495 }
2496 }
2497
2498 // Everything else is considered legal.
2499 return Op;
2500}
2501
2502SDValue NVPTXTargetLowering::LowerFP_EXTEND(SDValue Op,
2503 SelectionDAG &DAG) const {
2504 SDValue Narrow = Op.getOperand(0);
2505 EVT NarrowVT = Narrow.getValueType();
2506 EVT WideVT = Op.getValueType();
2507 if (NarrowVT.getScalarType() == MVT::bf16) {
2508 if (WideVT.getScalarType() == MVT::f32 &&
2509 (STI.getSmVersion() < 80 || STI.getPTXVersion() < 71)) {
2510 SDLoc Loc(Op);
2511 return DAG.getNode(ISD::BF16_TO_FP, Loc, WideVT, Narrow);
2512 }
2513 if (WideVT.getScalarType() == MVT::f64 &&
2514 (STI.getSmVersion() < 90 || STI.getPTXVersion() < 78)) {
2515 EVT F32 = NarrowVT.isVector() ? NarrowVT.changeVectorElementType(MVT::f32)
2516 : MVT::f32;
2517 SDLoc Loc(Op);
2518 if (STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 71) {
2519 Op = DAG.getNode(ISD::FP_EXTEND, Loc, F32, Narrow);
2520 } else {
2521 Op = DAG.getNode(ISD::BF16_TO_FP, Loc, F32, Narrow);
2522 }
2523 return DAG.getNode(ISD::FP_EXTEND, Loc, WideVT, Op);
2524 }
2525 }
2526
2527 // Everything else is considered legal.
2528 return Op;
2529}
2530
2532 SDLoc DL(Op);
2533 if (Op.getValueType() != MVT::v2i16)
2534 return Op;
2535 EVT EltVT = Op.getValueType().getVectorElementType();
2536 SmallVector<SDValue> VecElements;
2537 for (int I = 0, E = Op.getValueType().getVectorNumElements(); I < E; I++) {
2538 SmallVector<SDValue> ScalarArgs;
2539 llvm::transform(Op->ops(), std::back_inserter(ScalarArgs),
2540 [&](const SDUse &O) {
2541 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
2542 O.get(), DAG.getIntPtrConstant(I, DL));
2543 });
2544 VecElements.push_back(DAG.getNode(Op.getOpcode(), DL, EltVT, ScalarArgs));
2545 }
2546 SDValue V =
2547 DAG.getNode(ISD::BUILD_VECTOR, DL, Op.getValueType(), VecElements);
2548 return V;
2549}
2550
2552 SDNode *N = Op.getNode();
2553 SDLoc DL(N);
2555
2556 // split the vector argument
2557 for (size_t I = 0; I < N->getNumOperands(); I++) {
2558 SDValue Val = N->getOperand(I);
2559 EVT ValVT = Val.getValueType();
2560 if (ValVT.isVector()) {
2561 EVT EltVT = ValVT.getVectorElementType();
2562 for (unsigned J = 0, NElts = ValVT.getVectorNumElements(); J < NElts; J++)
2563 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
2564 DAG.getIntPtrConstant(J, DL)));
2565 } else
2566 Ops.push_back(Val);
2567 }
2568
2570 SDValue Tcgen05StNode =
2571 DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, N->getVTList(), Ops,
2572 MemSD->getMemoryVT(), MemSD->getMemOperand());
2573
2574 return Tcgen05StNode;
2575}
2576
2578 SDLoc DL(Op);
2579 SDValue Src = Op.getOperand(0);
2580 EVT VT = Op.getValueType();
2581
2582 switch (VT.getSimpleVT().SimpleTy) {
2583 case MVT::i16: {
2584 SDValue Extended = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Src);
2585 SDValue Swapped =
2586 getPRMT(Extended, DAG.getConstant(0, DL, MVT::i32), 0x7701, DL, DAG);
2587 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Swapped);
2588 }
2589 case MVT::i32: {
2590 return getPRMT(Src, DAG.getConstant(0, DL, MVT::i32), 0x0123, DL, DAG);
2591 }
2592 case MVT::v2i16: {
2593 SDValue Converted = DAG.getBitcast(MVT::i32, Src);
2594 SDValue Swapped =
2595 getPRMT(Converted, DAG.getConstant(0, DL, MVT::i32), 0x2301, DL, DAG);
2596 return DAG.getNode(ISD::BITCAST, DL, MVT::v2i16, Swapped);
2597 }
2598 case MVT::i64: {
2599 SDValue UnpackSrc =
2600 DAG.getNode(NVPTXISD::UNPACK_VECTOR, DL, {MVT::i32, MVT::i32}, Src);
2601 SDValue SwappedLow =
2602 getPRMT(UnpackSrc.getValue(0), DAG.getConstant(0, DL, MVT::i32), 0x0123,
2603 DL, DAG);
2604 SDValue SwappedHigh =
2605 getPRMT(UnpackSrc.getValue(1), DAG.getConstant(0, DL, MVT::i32), 0x0123,
2606 DL, DAG);
2607 return DAG.getNode(NVPTXISD::BUILD_VECTOR, DL, MVT::i64,
2608 {SwappedHigh, SwappedLow});
2609 }
2610 default:
2611 llvm_unreachable("unsupported type for bswap");
2612 }
2613}
2614
2615static unsigned getTcgen05MMADisableOutputLane(unsigned IID) {
2616 switch (IID) {
2617 case Intrinsic::nvvm_tcgen05_mma_shared_disable_output_lane_cg1:
2618 return NVPTXISD::TCGEN05_MMA_SHARED_DISABLE_OUTPUT_LANE_CG1;
2619 case Intrinsic::nvvm_tcgen05_mma_shared_disable_output_lane_cg2:
2620 return NVPTXISD::TCGEN05_MMA_SHARED_DISABLE_OUTPUT_LANE_CG2;
2621 case Intrinsic::nvvm_tcgen05_mma_shared_scale_d_disable_output_lane_cg1:
2622 return NVPTXISD::TCGEN05_MMA_SHARED_SCALE_D_DISABLE_OUTPUT_LANE_CG1;
2623 case Intrinsic::nvvm_tcgen05_mma_shared_scale_d_disable_output_lane_cg2:
2624 return NVPTXISD::TCGEN05_MMA_SHARED_SCALE_D_DISABLE_OUTPUT_LANE_CG2;
2625 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg1:
2626 return NVPTXISD::TCGEN05_MMA_TENSOR_DISABLE_OUTPUT_LANE_CG1;
2627 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg2:
2628 return NVPTXISD::TCGEN05_MMA_TENSOR_DISABLE_OUTPUT_LANE_CG2;
2629 case Intrinsic::nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg1:
2630 return NVPTXISD::TCGEN05_MMA_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG1;
2631 case Intrinsic::nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg2:
2632 return NVPTXISD::TCGEN05_MMA_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG2;
2633 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg1_ashift:
2634 return NVPTXISD::TCGEN05_MMA_TENSOR_DISABLE_OUTPUT_LANE_CG1_ASHIFT;
2635 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg2_ashift:
2636 return NVPTXISD::TCGEN05_MMA_TENSOR_DISABLE_OUTPUT_LANE_CG2_ASHIFT;
2637 case Intrinsic::
2638 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg1_ashift:
2639 return NVPTXISD::TCGEN05_MMA_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG1_ASHIFT;
2640 case Intrinsic::
2641 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg2_ashift:
2642 return NVPTXISD::TCGEN05_MMA_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG2_ASHIFT;
2643 case Intrinsic::nvvm_tcgen05_mma_sp_shared_disable_output_lane_cg1:
2644 return NVPTXISD::TCGEN05_MMA_SP_SHARED_DISABLE_OUTPUT_LANE_CG1;
2645 case Intrinsic::nvvm_tcgen05_mma_sp_shared_disable_output_lane_cg2:
2646 return NVPTXISD::TCGEN05_MMA_SP_SHARED_DISABLE_OUTPUT_LANE_CG2;
2647 case Intrinsic::nvvm_tcgen05_mma_sp_shared_scale_d_disable_output_lane_cg1:
2648 return NVPTXISD::TCGEN05_MMA_SP_SHARED_SCALE_D_DISABLE_OUTPUT_LANE_CG1;
2649 case Intrinsic::nvvm_tcgen05_mma_sp_shared_scale_d_disable_output_lane_cg2:
2650 return NVPTXISD::TCGEN05_MMA_SP_SHARED_SCALE_D_DISABLE_OUTPUT_LANE_CG2;
2651 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg1:
2652 return NVPTXISD::TCGEN05_MMA_SP_TENSOR_DISABLE_OUTPUT_LANE_CG1;
2653 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg2:
2654 return NVPTXISD::TCGEN05_MMA_SP_TENSOR_DISABLE_OUTPUT_LANE_CG2;
2655 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg1_ashift:
2656 return NVPTXISD::TCGEN05_MMA_SP_TENSOR_DISABLE_OUTPUT_LANE_CG1_ASHIFT;
2657 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg2_ashift:
2658 return NVPTXISD::TCGEN05_MMA_SP_TENSOR_DISABLE_OUTPUT_LANE_CG2_ASHIFT;
2659 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg1:
2660 return NVPTXISD::TCGEN05_MMA_SP_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG1;
2661 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg2:
2662 return NVPTXISD::TCGEN05_MMA_SP_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG2;
2663 case Intrinsic::
2664 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg1_ashift:
2665 return NVPTXISD::
2666 TCGEN05_MMA_SP_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG1_ASHIFT;
2667 case Intrinsic::
2668 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg2_ashift:
2669 return NVPTXISD::
2670 TCGEN05_MMA_SP_TENSOR_SCALE_D_DISABLE_OUTPUT_LANE_CG2_ASHIFT;
2671 };
2672 llvm_unreachable("unhandled tcgen05.mma.disable_output_lane intrinsic");
2673}
2674
2676 SDNode *N = Op.getNode();
2677 SDLoc DL(N);
2678 unsigned IID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2679
2681 // split the vector argument
2682 for (size_t I = 0; I < N->getNumOperands(); I++) {
2683 if (I == 1)
2684 continue; // skip IID
2685 SDValue Val = N->getOperand(I);
2686 EVT ValVT = Val.getValueType();
2687 if (ValVT.isVector()) {
2688 EVT EltVT = ValVT.getVectorElementType();
2689 for (unsigned J = 0, NElts = ValVT.getVectorNumElements(); J < NElts; J++)
2690 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
2691 DAG.getIntPtrConstant(J, DL)));
2692 } else
2693 Ops.push_back(Val);
2694 }
2695
2697 SDValue Tcgen05MMANode = DAG.getMemIntrinsicNode(
2698 getTcgen05MMADisableOutputLane(IID), DL, N->getVTList(), Ops,
2699 MemSD->getMemoryVT(), MemSD->getMemOperand());
2700
2701 return Tcgen05MMANode;
2702}
2703
2704// Lower vector return type of tcgen05.ld intrinsics
2705static std::optional<std::pair<SDValue, SDValue>>
2706lowerTcgen05Ld(SDNode *N, SelectionDAG &DAG, bool HasOffset = false) {
2707 SDLoc DL(N);
2708 EVT ResVT = N->getValueType(0);
2709 if (!ResVT.isVector())
2710 return {}; // already legalized.
2711
2712 const unsigned NumElts = ResVT.getVectorNumElements();
2713
2714 // Create the return type of the instructions
2715 SmallVector<EVT, 5> ListVTs;
2716 for (unsigned i = 0; i < NumElts; ++i)
2717 ListVTs.push_back(MVT::i32);
2718
2719 ListVTs.push_back(N->getValueType(1)); // Chain
2720
2721 SDVTList ResVTs = DAG.getVTList(ListVTs);
2722
2723 SmallVector<SDValue, 8> Ops{N->getOperand(0), N->getOperand(1),
2724 N->getOperand(2)};
2725
2726 if (HasOffset) {
2727 Ops.push_back(N->getOperand(3)); // offset
2728 Ops.push_back(N->getOperand(4)); // Pack flag
2729 } else
2730 Ops.push_back(N->getOperand(3)); // Pack flag
2731
2733 SDValue NewNode =
2735 MemSD->getMemoryVT(), MemSD->getMemOperand());
2736
2737 // split the vector result
2738 SmallVector<SDValue, 4> ScalarRes;
2739 for (unsigned i = 0; i < NumElts; ++i) {
2740 SDValue Res = NewNode.getValue(i);
2741 ScalarRes.push_back(Res);
2742 }
2743
2744 SDValue Chain = NewNode.getValue(NumElts);
2745 SDValue BuildVector = DAG.getNode(ISD::BUILD_VECTOR, DL, ResVT, ScalarRes);
2746 return {{BuildVector, Chain}};
2747}
2748
2750 SDNode *N = Op.getNode();
2751 SDValue Intrin = N->getOperand(1);
2752
2753 // Get the intrinsic ID
2754 unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
2755 switch (IntrinNo) {
2756 default:
2757 break;
2758 case Intrinsic::nvvm_tcgen05_st_16x64b_x1:
2759 case Intrinsic::nvvm_tcgen05_st_16x64b_x2:
2760 case Intrinsic::nvvm_tcgen05_st_16x64b_x4:
2761 case Intrinsic::nvvm_tcgen05_st_16x64b_x8:
2762 case Intrinsic::nvvm_tcgen05_st_16x64b_x16:
2763 case Intrinsic::nvvm_tcgen05_st_16x64b_x32:
2764 case Intrinsic::nvvm_tcgen05_st_16x64b_x128:
2765 case Intrinsic::nvvm_tcgen05_st_16x128b_x1:
2766 case Intrinsic::nvvm_tcgen05_st_16x128b_x2:
2767 case Intrinsic::nvvm_tcgen05_st_16x128b_x4:
2768 case Intrinsic::nvvm_tcgen05_st_16x128b_x8:
2769 case Intrinsic::nvvm_tcgen05_st_16x128b_x16:
2770 case Intrinsic::nvvm_tcgen05_st_16x128b_x32:
2771 case Intrinsic::nvvm_tcgen05_st_16x128b_x64:
2772 case Intrinsic::nvvm_tcgen05_st_16x256b_x1:
2773 case Intrinsic::nvvm_tcgen05_st_16x256b_x2:
2774 case Intrinsic::nvvm_tcgen05_st_16x256b_x4:
2775 case Intrinsic::nvvm_tcgen05_st_16x256b_x8:
2776 case Intrinsic::nvvm_tcgen05_st_16x256b_x16:
2777 case Intrinsic::nvvm_tcgen05_st_16x256b_x32:
2778 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x1:
2779 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x2:
2780 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x4:
2781 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x8:
2782 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x16:
2783 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x32:
2784 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x64:
2785 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x128:
2786 case Intrinsic::nvvm_tcgen05_st_32x32b_x1:
2787 case Intrinsic::nvvm_tcgen05_st_32x32b_x2:
2788 case Intrinsic::nvvm_tcgen05_st_32x32b_x4:
2789 case Intrinsic::nvvm_tcgen05_st_32x32b_x8:
2790 case Intrinsic::nvvm_tcgen05_st_32x32b_x16:
2791 case Intrinsic::nvvm_tcgen05_st_32x32b_x32:
2792 case Intrinsic::nvvm_tcgen05_st_16x64b_x64:
2793 case Intrinsic::nvvm_tcgen05_st_32x32b_x64:
2794 case Intrinsic::nvvm_tcgen05_st_32x32b_x128:
2795 return lowerTcgen05St(Op, DAG);
2796 case Intrinsic::nvvm_tcgen05_mma_shared_disable_output_lane_cg1:
2797 case Intrinsic::nvvm_tcgen05_mma_shared_disable_output_lane_cg2:
2798 case Intrinsic::nvvm_tcgen05_mma_shared_scale_d_disable_output_lane_cg1:
2799 case Intrinsic::nvvm_tcgen05_mma_shared_scale_d_disable_output_lane_cg2:
2800 case Intrinsic::nvvm_tcgen05_mma_sp_shared_disable_output_lane_cg1:
2801 case Intrinsic::nvvm_tcgen05_mma_sp_shared_disable_output_lane_cg2:
2802 case Intrinsic::nvvm_tcgen05_mma_sp_shared_scale_d_disable_output_lane_cg1:
2803 case Intrinsic::nvvm_tcgen05_mma_sp_shared_scale_d_disable_output_lane_cg2:
2804 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg1:
2805 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg2:
2806 case Intrinsic::nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg1:
2807 case Intrinsic::nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg2:
2808 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg1:
2809 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg2:
2810 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg1:
2811 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg2:
2812 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg1_ashift:
2813 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg2_ashift:
2814 case Intrinsic::
2815 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg1_ashift:
2816 case Intrinsic::
2817 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg2_ashift:
2818 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg1_ashift:
2819 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg2_ashift:
2820 case Intrinsic::
2821 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg1_ashift:
2822 case Intrinsic::
2823 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg2_ashift:
2825 }
2826 return Op;
2827}
2828
2830 SelectionDAG &DAG) {
2831
2832 SDNode *N = Op.getNode();
2833 if (N->getOperand(1).getValueType() != MVT::i128) {
2834 // return, if the operand is already lowered
2835 return SDValue();
2836 }
2837
2838 unsigned IID =
2839 cast<ConstantSDNode>(N->getOperand(0).getNode())->getZExtValue();
2840 auto Opcode = [&]() {
2841 switch (IID) {
2842 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_is_canceled:
2843 return NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_IS_CANCELED;
2844 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_x:
2845 return NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_X;
2846 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_y:
2847 return NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_Y;
2848 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_z:
2849 return NVPTXISD::CLUSTERLAUNCHCONTROL_QUERY_CANCEL_GET_FIRST_CTAID_Z;
2850 default:
2851 llvm_unreachable("unsupported/unhandled intrinsic");
2852 }
2853 }();
2854
2855 SDLoc DL(N);
2856 SDValue TryCancelResponse = N->getOperand(1);
2857 SDValue Cast = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, TryCancelResponse);
2858 SDValue TryCancelResponse0 =
2859 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast,
2860 DAG.getIntPtrConstant(0, DL));
2861 SDValue TryCancelResponse1 =
2862 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast,
2863 DAG.getIntPtrConstant(1, DL));
2864
2865 return DAG.getNode(Opcode, DL, N->getVTList(),
2866 {TryCancelResponse0, TryCancelResponse1});
2867}
2868
2870 SDNode *N = Op.getNode();
2871 SDLoc DL(N);
2872 SDValue F32Vec = N->getOperand(1);
2873 SDValue RBits = N->getOperand(2);
2874
2875 unsigned IntrinsicID = N->getConstantOperandVal(0);
2876
2877 // Extract the 4 float elements from the vector
2879 for (unsigned i = 0; i < 4; ++i)
2880 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, F32Vec,
2881 DAG.getIntPtrConstant(i, DL)));
2882
2884
2885 auto [OpCode, RetTy, CvtModeFlag] =
2886 [&]() -> std::tuple<unsigned, MVT::SimpleValueType, uint32_t> {
2887 switch (IntrinsicID) {
2888 case Intrinsic::nvvm_f32x4_to_e4m3x4_rs_relu_satfinite:
2889 return {NVPTXISD::CVT_E4M3X4_F32X4_RS_SF, MVT::v4i8,
2890 CvtMode::RS | CvtMode::RELU_FLAG};
2891 case Intrinsic::nvvm_f32x4_to_e4m3x4_rs_satfinite:
2892 return {NVPTXISD::CVT_E4M3X4_F32X4_RS_SF, MVT::v4i8, CvtMode::RS};
2893 case Intrinsic::nvvm_f32x4_to_e5m2x4_rs_relu_satfinite:
2894 return {NVPTXISD::CVT_E5M2X4_F32X4_RS_SF, MVT::v4i8,
2895 CvtMode::RS | CvtMode::RELU_FLAG};
2896 case Intrinsic::nvvm_f32x4_to_e5m2x4_rs_satfinite:
2897 return {NVPTXISD::CVT_E5M2X4_F32X4_RS_SF, MVT::v4i8, CvtMode::RS};
2898 case Intrinsic::nvvm_f32x4_to_e2m3x4_rs_relu_satfinite:
2899 return {NVPTXISD::CVT_E2M3X4_F32X4_RS_SF, MVT::v4i8,
2900 CvtMode::RS | CvtMode::RELU_FLAG};
2901 case Intrinsic::nvvm_f32x4_to_e2m3x4_rs_satfinite:
2902 return {NVPTXISD::CVT_E2M3X4_F32X4_RS_SF, MVT::v4i8, CvtMode::RS};
2903 case Intrinsic::nvvm_f32x4_to_e3m2x4_rs_relu_satfinite:
2904 return {NVPTXISD::CVT_E3M2X4_F32X4_RS_SF, MVT::v4i8,
2905 CvtMode::RS | CvtMode::RELU_FLAG};
2906 case Intrinsic::nvvm_f32x4_to_e3m2x4_rs_satfinite:
2907 return {NVPTXISD::CVT_E3M2X4_F32X4_RS_SF, MVT::v4i8, CvtMode::RS};
2908 case Intrinsic::nvvm_f32x4_to_e2m1x4_rs_relu_satfinite:
2909 return {NVPTXISD::CVT_E2M1X4_F32X4_RS_SF, MVT::i16,
2910 CvtMode::RS | CvtMode::RELU_FLAG};
2911 case Intrinsic::nvvm_f32x4_to_e2m1x4_rs_satfinite:
2912 return {NVPTXISD::CVT_E2M1X4_F32X4_RS_SF, MVT::i16, CvtMode::RS};
2913 default:
2914 llvm_unreachable("unsupported/unhandled intrinsic");
2915 }
2916 }();
2917
2918 Ops.push_back(RBits);
2919 Ops.push_back(DAG.getConstant(CvtModeFlag, DL, MVT::i32));
2920
2921 return DAG.getNode(OpCode, DL, RetTy, Ops);
2922}
2923
2925 const unsigned Mode = [&]() {
2926 switch (Op->getConstantOperandVal(0)) {
2927 case Intrinsic::nvvm_prmt:
2929 case Intrinsic::nvvm_prmt_b4e:
2931 case Intrinsic::nvvm_prmt_ecl:
2933 case Intrinsic::nvvm_prmt_ecr:
2935 case Intrinsic::nvvm_prmt_f4e:
2937 case Intrinsic::nvvm_prmt_rc16:
2939 case Intrinsic::nvvm_prmt_rc8:
2941 default:
2942 llvm_unreachable("unsupported/unhandled intrinsic");
2943 }
2944 }();
2945 SDLoc DL(Op);
2946 SDValue A = Op->getOperand(1);
2947 SDValue B = Op.getNumOperands() == 4 ? Op.getOperand(2)
2948 : DAG.getConstant(0, DL, MVT::i32);
2949 SDValue Selector = (Op->op_end() - 1)->get();
2950 return getPRMT(A, B, Selector, DL, DAG, Mode);
2951}
2952
2954 switch (Op->getConstantOperandVal(1)) {
2955 default:
2956 return Op;
2957
2958 // These tcgen05 intrinsics return a v2i32, which is legal, so we have to
2959 // lower them through LowerOperation() instead of ReplaceNodeResults().
2960 case Intrinsic::nvvm_tcgen05_ld_16x64b_x2:
2961 case Intrinsic::nvvm_tcgen05_ld_16x128b_x1:
2962 case Intrinsic::nvvm_tcgen05_ld_32x32b_x2:
2963 if (auto Res = lowerTcgen05Ld(Op.getNode(), DAG))
2964 return DAG.getMergeValues({Res->first, Res->second}, SDLoc(Op));
2965 return SDValue();
2966
2967 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x2:
2968 if (auto Res = lowerTcgen05Ld(Op.getNode(), DAG, /*HasOffset=*/true))
2969 return DAG.getMergeValues({Res->first, Res->second}, SDLoc(Op));
2970 return SDValue();
2971 }
2972}
2973
2975 switch (Op->getConstantOperandVal(0)) {
2976 default:
2977 return Op;
2978 case Intrinsic::nvvm_prmt:
2979 case Intrinsic::nvvm_prmt_b4e:
2980 case Intrinsic::nvvm_prmt_ecl:
2981 case Intrinsic::nvvm_prmt_ecr:
2982 case Intrinsic::nvvm_prmt_f4e:
2983 case Intrinsic::nvvm_prmt_rc16:
2984 case Intrinsic::nvvm_prmt_rc8:
2985 return lowerPrmtIntrinsic(Op, DAG);
2986 case Intrinsic::nvvm_internal_addrspace_wrap:
2987 return Op.getOperand(1);
2988 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_is_canceled:
2989 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_x:
2990 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_y:
2991 case Intrinsic::nvvm_clusterlaunchcontrol_query_cancel_get_first_ctaid_z:
2993 case Intrinsic::nvvm_f32x4_to_e4m3x4_rs_satfinite:
2994 case Intrinsic::nvvm_f32x4_to_e4m3x4_rs_relu_satfinite:
2995 case Intrinsic::nvvm_f32x4_to_e5m2x4_rs_satfinite:
2996 case Intrinsic::nvvm_f32x4_to_e5m2x4_rs_relu_satfinite:
2997 case Intrinsic::nvvm_f32x4_to_e2m3x4_rs_satfinite:
2998 case Intrinsic::nvvm_f32x4_to_e2m3x4_rs_relu_satfinite:
2999 case Intrinsic::nvvm_f32x4_to_e3m2x4_rs_satfinite:
3000 case Intrinsic::nvvm_f32x4_to_e3m2x4_rs_relu_satfinite:
3001 case Intrinsic::nvvm_f32x4_to_e2m1x4_rs_satfinite:
3002 case Intrinsic::nvvm_f32x4_to_e2m1x4_rs_relu_satfinite:
3003 return lowerCvtRSIntrinsics(Op, DAG);
3004 }
3005}
3006
3007// In PTX 64-bit CTLZ and CTPOP are supported, but they return a 32-bit value.
3008// Lower these into a node returning the correct type which is zero-extended
3009// back to the correct size.
3011 SDValue V = Op->getOperand(0);
3012 assert(V.getValueType() == MVT::i64 &&
3013 "Unexpected CTLZ/CTPOP type to legalize");
3014
3015 SDLoc DL(Op);
3016 SDValue CT = DAG.getNode(Op->getOpcode(), DL, MVT::i32, V);
3017 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, CT, SDNodeFlags::NonNeg);
3018}
3019
3021 unsigned Opcode, SelectionDAG &DAG) {
3022 assert(A.getValueType() == MVT::i64 && B.getValueType() == MVT::i64);
3023
3024 const auto *AmtConst = dyn_cast<ConstantSDNode>(ShiftAmount);
3025 if (!AmtConst)
3026 return SDValue();
3027 const auto Amt = AmtConst->getZExtValue() & 63;
3028
3029 SDValue UnpackA =
3030 DAG.getNode(NVPTXISD::UNPACK_VECTOR, DL, {MVT::i32, MVT::i32}, A);
3031 SDValue UnpackB =
3032 DAG.getNode(NVPTXISD::UNPACK_VECTOR, DL, {MVT::i32, MVT::i32}, B);
3033
3034 // Arch is Little endiain: 0 = low bits, 1 = high bits
3035 SDValue ALo = UnpackA.getValue(0);
3036 SDValue AHi = UnpackA.getValue(1);
3037 SDValue BLo = UnpackB.getValue(0);
3038 SDValue BHi = UnpackB.getValue(1);
3039
3040 // The bitfeild consists of { AHi : ALo : BHi : BLo }
3041 //
3042 // * FSHL, Amt < 32 - The window will contain { AHi : ALo : BHi }
3043 // * FSHL, Amt >= 32 - The window will contain { ALo : BHi : BLo }
3044 // * FSHR, Amt < 32 - The window will contain { ALo : BHi : BLo }
3045 // * FSHR, Amt >= 32 - The window will contain { AHi : ALo : BHi }
3046 //
3047 // Note that Amt = 0 and Amt = 32 are special cases where 32-bit funnel shifts
3048 // are not needed at all. Amt = 0 is a no-op producing either A or B depending
3049 // on the direction. Amt = 32 can be implemented by a packing and unpacking
3050 // move to select and arrange the 32bit values. For simplicity, these cases
3051 // are not handled here explicitly and instead we rely on DAGCombiner to
3052 // remove the no-op funnel shifts we insert.
3053 auto [High, Mid, Low] = ((Opcode == ISD::FSHL) == (Amt < 32))
3054 ? std::make_tuple(AHi, ALo, BHi)
3055 : std::make_tuple(ALo, BHi, BLo);
3056
3057 SDValue NewAmt = DAG.getConstant(Amt & 31, DL, MVT::i32);
3058 SDValue RHi = DAG.getNode(Opcode, DL, MVT::i32, {High, Mid, NewAmt});
3059 SDValue RLo = DAG.getNode(Opcode, DL, MVT::i32, {Mid, Low, NewAmt});
3060
3061 return DAG.getNode(NVPTXISD::BUILD_VECTOR, DL, MVT::i64, {RLo, RHi});
3062}
3063
3065 return expandFSH64(Op->getOperand(0), Op->getOperand(1), Op->getOperand(2),
3066 SDLoc(Op), Op->getOpcode(), DAG);
3067}
3068
3070 unsigned Opcode = Op->getOpcode() == ISD::ROTL ? ISD::FSHL : ISD::FSHR;
3071 return expandFSH64(Op->getOperand(0), Op->getOperand(0), Op->getOperand(1),
3072 SDLoc(Op), Opcode, DAG);
3073}
3074
3076 // Lower (frem x, y) into (sub x, (mul (ftrunc (div x, y)) y)),
3077 // i.e. "poor man's fmod()". When y is infinite, x is returned. This matches
3078 // the semantics of LLVM's frem.
3079 SDLoc DL(Op);
3080 SDValue X = Op->getOperand(0);
3081 SDValue Y = Op->getOperand(1);
3082 EVT Ty = Op.getValueType();
3083 SDNodeFlags Flags = Op->getFlags();
3084
3085 SDValue Div = DAG.getNode(ISD::FDIV, DL, Ty, X, Y, Flags);
3086 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, Ty, Div, Flags);
3087 SDValue Mul = DAG.getNode(ISD::FMUL, DL, Ty, Trunc, Y,
3089 SDValue Sub = DAG.getNode(ISD::FSUB, DL, Ty, X, Mul,
3091
3092 if (Flags.hasNoInfs())
3093 return Sub;
3094
3095 // If Y is infinite, return X
3096 SDValue AbsY = DAG.getNode(ISD::FABS, DL, Ty, Y);
3097 SDValue Inf =
3098 DAG.getConstantFP(APFloat::getInf(Ty.getFltSemantics()), DL, Ty);
3099 SDValue IsInf = DAG.getSetCC(DL, MVT::i1, AbsY, Inf, ISD::SETEQ);
3100 return DAG.getSelect(DL, Ty, IsInf, X, Sub);
3101}
3102
3104 assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");
3105
3106 SDValue Cond = Op->getOperand(0);
3107 SDValue TrueVal = Op->getOperand(1);
3108 SDValue FalseVal = Op->getOperand(2);
3109 SDLoc DL(Op);
3110
3111 // If both operands are truncated, we push the select through the truncates.
3112 if (TrueVal.getOpcode() == ISD::TRUNCATE &&
3113 FalseVal.getOpcode() == ISD::TRUNCATE) {
3114 TrueVal = TrueVal.getOperand(0);
3115 FalseVal = FalseVal.getOperand(0);
3116
3117 EVT VT = TrueVal.getSimpleValueType().bitsLE(FalseVal.getSimpleValueType())
3118 ? TrueVal.getValueType()
3119 : FalseVal.getValueType();
3120 TrueVal = DAG.getAnyExtOrTrunc(TrueVal, DL, VT);
3121 FalseVal = DAG.getAnyExtOrTrunc(FalseVal, DL, VT);
3122 SDValue Select = DAG.getSelect(DL, VT, Cond, TrueVal, FalseVal);
3123 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
3124 }
3125
3126 // Otherwise, expand the select into a series of logical operations. These
3127 // often can be folded into other operations either by us or ptxas.
3128 TrueVal = DAG.getFreeze(TrueVal);
3129 FalseVal = DAG.getFreeze(FalseVal);
3130 SDValue And1 = DAG.getNode(ISD::AND, DL, MVT::i1, Cond, TrueVal);
3131 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
3132 SDValue And2 = DAG.getNode(ISD::AND, DL, MVT::i1, NotCond, FalseVal);
3133 SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i1, And1, And2);
3134 return Or;
3135}
3136
3138 SDNode *N = Op.getNode();
3139
3140 SDValue Chain = N->getOperand(0);
3141 SDValue Val = N->getOperand(1);
3142 SDValue BasePtr = N->getOperand(2);
3143 SDValue Offset = N->getOperand(3);
3144 SDValue Mask = N->getOperand(4);
3145
3146 SDLoc DL(N);
3147 EVT ValVT = Val.getValueType();
3148 MemSDNode *MemSD = cast<MemSDNode>(N);
3149 assert(ValVT.isVector() && "Masked vector store must have vector type");
3150 assert(MemSD->getAlign() >= DAG.getEVTAlign(ValVT) &&
3151 "Unexpected alignment for masked store");
3152
3153 unsigned Opcode = 0;
3154 switch (ValVT.getSimpleVT().SimpleTy) {
3155 default:
3156 llvm_unreachable("Unexpected masked vector store type");
3157 case MVT::v4i64:
3158 case MVT::v4f64: {
3159 Opcode = NVPTXISD::StoreV4;
3160 break;
3161 }
3162 case MVT::v8i32:
3163 case MVT::v8f32: {
3164 Opcode = NVPTXISD::StoreV8;
3165 break;
3166 }
3167 }
3168
3170
3171 // Construct the new SDNode. First operand is the chain.
3172 Ops.push_back(Chain);
3173
3174 // The next N operands are the values to store. Encode the mask into the
3175 // values using the sentinel register 0 to represent a masked-off element.
3176 assert(Mask.getValueType().isVector() &&
3177 Mask.getValueType().getVectorElementType() == MVT::i1 &&
3178 "Mask must be a vector of i1");
3179 assert(Mask.getOpcode() == ISD::BUILD_VECTOR &&
3180 "Mask expected to be a BUILD_VECTOR");
3181 assert(Mask.getValueType().getVectorNumElements() ==
3182 ValVT.getVectorNumElements() &&
3183 "Mask size must be the same as the vector size");
3184 for (auto [I, Op] : enumerate(Mask->ops())) {
3185 // Mask elements must be constants.
3186 if (Op.getNode()->getAsZExtVal() == 0) {
3187 // Append a sentinel register 0 to the Ops vector to represent a masked
3188 // off element, this will be handled in tablegen
3190 ValVT.getVectorElementType()));
3191 } else {
3192 // Extract the element from the vector to store
3193 SDValue ExtVal =
3195 Val, DAG.getIntPtrConstant(I, DL));
3196 Ops.push_back(ExtVal);
3197 }
3198 }
3199
3200 // Next, the pointer operand.
3201 Ops.push_back(BasePtr);
3202
3203 // Finally, the offset operand. We expect this to always be undef, and it will
3204 // be ignored in lowering, but to mirror the handling of the other vector
3205 // store instructions we include it in the new SDNode.
3206 assert(Offset.getOpcode() == ISD::UNDEF &&
3207 "Offset operand expected to be undef");
3208 Ops.push_back(Offset);
3209
3210 SDValue NewSt =
3211 DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
3212 MemSD->getMemoryVT(), MemSD->getMemOperand());
3213
3214 return NewSt;
3215}
3216
3217SDValue
3219 switch (Op.getOpcode()) {
3220 case ISD::RETURNADDR:
3221 return SDValue();
3222 case ISD::FRAMEADDR:
3223 return SDValue();
3224 case ISD::ADDRSPACECAST:
3225 return LowerADDRSPACECAST(Op, DAG);
3227 return lowerIntrinsicWChain(Op, DAG);
3229 return lowerIntrinsicWOChain(Op, DAG);
3231 return lowerIntrinsicVoid(Op, DAG);
3232 case ISD::BUILD_VECTOR:
3233 return LowerBUILD_VECTOR(Op, DAG);
3234 case ISD::BITCAST:
3235 return LowerBITCAST(Op, DAG);
3237 return Op;
3239 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3241 return LowerINSERT_VECTOR_ELT(Op, DAG);
3243 return LowerVECTOR_SHUFFLE(Op, DAG);
3245 return LowerCONCAT_VECTORS(Op, DAG);
3246 case ISD::VECREDUCE_FMAX:
3247 case ISD::VECREDUCE_FMIN:
3248 case ISD::VECREDUCE_FMAXIMUM:
3249 case ISD::VECREDUCE_FMINIMUM:
3250 return LowerVECREDUCE(Op, DAG);
3251 case ISD::STORE:
3252 return LowerSTORE(Op, DAG);
3253 case ISD::MSTORE: {
3254 assert(STI.has256BitVectorLoadStore(
3255 cast<MemSDNode>(Op.getNode())->getAddressSpace()) &&
3256 "Masked store vector not supported on subtarget.");
3257 return lowerMSTORE(Op, DAG);
3258 }
3259 case ISD::LOAD:
3260 return LowerLOAD(Op, DAG);
3261 case ISD::MLOAD:
3262 return LowerMLOAD(Op, DAG);
3263 case ISD::SHL_PARTS:
3264 return LowerShiftLeftParts(Op, DAG);
3265 case ISD::SRA_PARTS:
3266 case ISD::SRL_PARTS:
3267 return LowerShiftRightParts(Op, DAG);
3268 case ISD::SELECT:
3269 return lowerSELECT(Op, DAG);
3270 case ISD::FROUND:
3271 return LowerFROUND(Op, DAG);
3272 case ISD::FCOPYSIGN:
3273 return LowerFCOPYSIGN(Op, DAG);
3274 case ISD::SINT_TO_FP:
3275 case ISD::UINT_TO_FP:
3276 return LowerINT_TO_FP(Op, DAG);
3277 case ISD::FP_TO_SINT:
3278 case ISD::FP_TO_UINT:
3279 return LowerFP_TO_INT(Op, DAG);
3280 case ISD::FP_ROUND:
3281 return LowerFP_ROUND(Op, DAG);
3282 case ISD::FP_EXTEND:
3283 return LowerFP_EXTEND(Op, DAG);
3284 case ISD::BR_JT:
3285 return LowerBR_JT(Op, DAG);
3286 case ISD::VAARG:
3287 return LowerVAARG(Op, DAG);
3288 case ISD::VASTART:
3289 return LowerVASTART(Op, DAG);
3290 case ISD::FSHL:
3291 case ISD::FSHR:
3292 return lowerFSH(Op, DAG);
3293 case ISD::ROTL:
3294 case ISD::ROTR:
3295 return lowerROT(Op, DAG);
3296 case ISD::ABS:
3297 case ISD::SMIN:
3298 case ISD::SMAX:
3299 case ISD::UMIN:
3300 case ISD::UMAX:
3301 case ISD::ADD:
3302 case ISD::SUB:
3303 case ISD::MUL:
3304 case ISD::SHL:
3305 case ISD::SREM:
3306 case ISD::UREM:
3307 return LowerVectorArith(Op, DAG);
3308 case ISD::DYNAMIC_STACKALLOC:
3309 return LowerDYNAMIC_STACKALLOC(Op, DAG);
3310 case ISD::STACKRESTORE:
3311 return LowerSTACKRESTORE(Op, DAG);
3312 case ISD::STACKSAVE:
3313 return LowerSTACKSAVE(Op, DAG);
3314 case ISD::CopyToReg:
3315 return LowerCopyToReg_128(Op, DAG);
3316 case ISD::FADD:
3317 case ISD::FSUB:
3318 case ISD::FMUL:
3319 // Used only for bf16 on SM80, where we select fma for non-ftz operation
3320 return PromoteBinOpIfF32FTZ(Op, DAG);
3321 case ISD::CTPOP:
3322 case ISD::CTLZ:
3323 return lowerCTLZCTPOP(Op, DAG);
3324 case ISD::FREM:
3325 return lowerFREM(Op, DAG);
3326 case ISD::BSWAP:
3327 return lowerBSWAP(Op, DAG);
3328 default:
3329 llvm_unreachable("Custom lowering not defined for operation");
3330 }
3331}
3332
3333SDValue NVPTXTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3334 SDLoc DL(Op);
3335 SDValue Chain = Op.getOperand(0);
3336 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
3337 SDValue Index = Op.getOperand(2);
3338
3339 unsigned JId = JT->getIndex();
3341 ArrayRef<MachineBasicBlock *> MBBs = MJTI->getJumpTables()[JId].MBBs;
3342
3343 SDValue IdV = DAG.getConstant(JId, DL, MVT::i32);
3344
3345 // Generate BrxStart node
3346 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3347 Chain = DAG.getNode(NVPTXISD::BrxStart, DL, VTs, Chain, IdV);
3348
3349 // Generate BrxItem nodes
3350 assert(!MBBs.empty());
3351 for (MachineBasicBlock *MBB : MBBs.drop_back())
3352 Chain = DAG.getNode(NVPTXISD::BrxItem, DL, VTs, Chain.getValue(0),
3353 DAG.getBasicBlock(MBB), Chain.getValue(1));
3354
3355 // Generate BrxEnd nodes
3356 SDValue EndOps[] = {Chain.getValue(0), DAG.getBasicBlock(MBBs.back()), Index,
3357 IdV, Chain.getValue(1)};
3358 SDValue BrxEnd = DAG.getNode(NVPTXISD::BrxEnd, DL, MVT::Other, EndOps);
3359
3360 return BrxEnd;
3361}
3362
3363// This will prevent AsmPrinter from trying to print the jump tables itself.
3367
3368SDValue NVPTXTargetLowering::LowerADDRSPACECAST(SDValue Op,
3369 SelectionDAG &DAG) const {
3371 unsigned SrcAS = N->getSrcAddressSpace();
3372 unsigned DestAS = N->getDestAddressSpace();
3373 if (SrcAS != llvm::ADDRESS_SPACE_GENERIC &&
3374 DestAS != llvm::ADDRESS_SPACE_GENERIC) {
3375 // Shared and SharedCluster can be converted to each other through generic
3376 // space
3377 if ((SrcAS == llvm::ADDRESS_SPACE_SHARED &&
3380 DestAS == llvm::ADDRESS_SPACE_SHARED)) {
3381 SDLoc DL(Op.getNode());
3382 const MVT GenerictVT =
3384 SDValue GenericConversion = DAG.getAddrSpaceCast(
3385 DL, GenerictVT, Op.getOperand(0), SrcAS, ADDRESS_SPACE_GENERIC);
3386 SDValue SharedClusterConversion =
3387 DAG.getAddrSpaceCast(DL, Op.getValueType(), GenericConversion,
3388 ADDRESS_SPACE_GENERIC, DestAS);
3389 return SharedClusterConversion;
3390 }
3391
3392 return DAG.getUNDEF(Op.getValueType());
3393 }
3394
3395 return Op;
3396}
3397
3398// This function is almost a copy of SelectionDAG::expandVAArg().
3399// The only diff is that this one produces loads from local address space.
3400SDValue NVPTXTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3401 const TargetLowering *TLI = STI.getTargetLowering();
3402 SDLoc DL(Op);
3403
3404 SDNode *Node = Op.getNode();
3405 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3406 EVT VT = Node->getValueType(0);
3407 auto *Ty = VT.getTypeForEVT(*DAG.getContext());
3408 SDValue Tmp1 = Node->getOperand(0);
3409 SDValue Tmp2 = Node->getOperand(1);
3410 const MaybeAlign MA(Node->getConstantOperandVal(3));
3411
3412 SDValue VAListLoad = DAG.getLoad(TLI->getPointerTy(DAG.getDataLayout()), DL,
3413 Tmp1, Tmp2, MachinePointerInfo(V));
3414 SDValue VAList = VAListLoad;
3415
3416 if (MA && *MA > TLI->getMinStackArgumentAlignment()) {
3417 VAList = DAG.getNode(
3418 ISD::ADD, DL, VAList.getValueType(), VAList,
3419 DAG.getConstant(MA->value() - 1, DL, VAList.getValueType()));
3420
3421 VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList,
3422 DAG.getSignedConstant(-(int64_t)MA->value(), DL,
3423 VAList.getValueType()));
3424 }
3425
3426 // Increment the pointer, VAList, to the next vaarg
3427 Tmp1 = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
3429 DL, VAList.getValueType()));
3430
3431 // Store the incremented VAList to the legalized pointer
3432 Tmp1 = DAG.getStore(VAListLoad.getValue(1), DL, Tmp1, Tmp2,
3433 MachinePointerInfo(V));
3434
3435 const Value *SrcV = Constant::getNullValue(
3437
3438 // Load the actual argument out of the pointer VAList
3439 return DAG.getLoad(VT, DL, Tmp1, VAList, MachinePointerInfo(SrcV));
3440}
3441
3442SDValue NVPTXTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3443 const TargetLowering *TLI = STI.getTargetLowering();
3444 SDLoc DL(Op);
3445 EVT PtrVT = TLI->getPointerTy(DAG.getDataLayout());
3446
3447 // Store the address of unsized array <function>_vararg[] in the ap object.
3448 SDValue VAReg = getParamSymbol(DAG, /* vararg */ -1, PtrVT);
3449
3450 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3451 return DAG.getStore(Op.getOperand(0), DL, VAReg, Op.getOperand(1),
3452 MachinePointerInfo(SV));
3453}
3454
3455static std::pair<MemSDNode *, uint32_t>
3457 SDValue Chain = N->getOperand(0);
3458 SDValue BasePtr = N->getOperand(1);
3459 SDValue Mask = N->getOperand(3);
3460 [[maybe_unused]] SDValue Passthru = N->getOperand(4);
3461
3462 SDLoc DL(N);
3463 EVT ResVT = N->getValueType(0);
3464 assert(ResVT.isVector() && "Masked vector load must have vector type");
3465 // While we only expect poison passthru vectors as an input to the backend,
3466 // when the legalization framework splits a poison vector in half, it creates
3467 // two undef vectors, so we can technically expect those too.
3468 assert((Passthru.getOpcode() == ISD::POISON ||
3469 Passthru.getOpcode() == ISD::UNDEF) &&
3470 "Passthru operand expected to be poison or undef");
3471
3472 // Extract the mask and convert it to a uint32_t representing the used bytes
3473 // of the entire vector load
3474 uint32_t UsedBytesMask = 0;
3475 uint32_t ElementSizeInBits = ResVT.getVectorElementType().getSizeInBits();
3476 assert(ElementSizeInBits % 8 == 0 && "Unexpected element size");
3477 uint32_t ElementSizeInBytes = ElementSizeInBits / 8;
3478 uint32_t ElementMask = (1u << ElementSizeInBytes) - 1u;
3479
3480 for (SDValue Op : reverse(Mask->ops())) {
3481 // We technically only want to do this shift for every
3482 // iteration *but* the first, but in the first iteration UsedBytesMask is 0,
3483 // so this shift is a no-op.
3484 UsedBytesMask <<= ElementSizeInBytes;
3485
3486 // Mask elements must be constants.
3487 if (Op->getAsZExtVal() != 0)
3488 UsedBytesMask |= ElementMask;
3489 }
3490
3491 assert(UsedBytesMask != 0 && UsedBytesMask != UINT32_MAX &&
3492 "Unexpected masked load with elements masked all on or all off");
3493
3494 // Create a new load sd node to be handled normally by ReplaceLoadVector.
3495 MemSDNode *NewLD = cast<MemSDNode>(
3496 DAG.getLoad(ResVT, DL, Chain, BasePtr, N->getMemOperand()).getNode());
3497
3498 return {NewLD, UsedBytesMask};
3499}
3500
3501/// replaceLoadVector - Convert vector loads into multi-output scalar loads.
3502static std::optional<std::pair<SDValue, SDValue>>
3505 const EVT ResVT = LD->getValueType(0);
3506 const EVT MemVT = LD->getMemoryVT();
3507
3508 // If we're doing sign/zero extension as part of the load, avoid lowering to
3509 // a LoadV node. TODO: consider relaxing this restriction.
3510 if (ResVT != MemVT)
3511 return std::nullopt;
3512
3513 const auto NumEltsAndEltVT =
3514 getVectorLoweringShape(ResVT, STI, LD->getAddressSpace());
3515 if (!NumEltsAndEltVT)
3516 return std::nullopt;
3517 const auto [NumElts, EltVT] = NumEltsAndEltVT.value();
3518
3519 Align Alignment = LD->getAlign();
3520 const auto &TD = DAG.getDataLayout();
3521 Align PrefAlign = TD.getPrefTypeAlign(MemVT.getTypeForEVT(*DAG.getContext()));
3522 if (Alignment < PrefAlign) {
3523 // This load is not sufficiently aligned, so bail out and let this vector
3524 // load be scalarized. Note that we may still be able to emit smaller
3525 // vector loads. For example, if we are loading a <4 x float> with an
3526 // alignment of 8, this check will fail but the legalizer will try again
3527 // with 2 x <2 x float>, which will succeed with an alignment of 8.
3528 return std::nullopt;
3529 }
3530
3531 // If we have a masked load, convert it to a normal load now
3532 std::optional<uint32_t> UsedBytesMask = std::nullopt;
3533 if (LD->getOpcode() == ISD::MLOAD)
3534 std::tie(LD, UsedBytesMask) = convertMLOADToLoadWithUsedBytesMask(LD, DAG);
3535
3536 // Since LoadV2 is a target node, we cannot rely on DAG type legalization.
3537 // Therefore, we must ensure the type is legal. For i1 and i8, we set the
3538 // loaded type to i16 and propagate the "real" type as the memory type.
3539 const MVT LoadEltVT = (EltVT.getSizeInBits() < 16) ? MVT::i16 : EltVT;
3540
3541 unsigned Opcode;
3542 switch (NumElts) {
3543 default:
3544 return std::nullopt;
3545 case 2:
3546 Opcode = NVPTXISD::LoadV2;
3547 break;
3548 case 4:
3549 Opcode = NVPTXISD::LoadV4;
3550 break;
3551 case 8:
3552 Opcode = NVPTXISD::LoadV8;
3553 break;
3554 }
3555 auto ListVTs = SmallVector<EVT, 9>(NumElts, LoadEltVT);
3556 ListVTs.push_back(MVT::Other);
3557 SDVTList LdResVTs = DAG.getVTList(ListVTs);
3558
3559 SDLoc DL(LD);
3560
3561 // Copy regular operands
3562 SmallVector<SDValue, 8> OtherOps(LD->ops());
3563
3564 OtherOps.push_back(
3565 DAG.getConstant(UsedBytesMask.value_or(UINT32_MAX), DL, MVT::i32));
3566
3567 // The select routine does not have access to the LoadSDNode instance, so
3568 // pass along the extension information
3569 OtherOps.push_back(
3570 DAG.getIntPtrConstant(cast<LoadSDNode>(LD)->getExtensionType(), DL));
3571
3572 SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps, MemVT,
3573 LD->getMemOperand());
3574
3575 SmallVector<SDValue> ScalarRes;
3576 if (EltVT.isVector()) {
3578 assert(NumElts * EltVT.getVectorNumElements() ==
3579 ResVT.getVectorNumElements());
3580 // Generate EXTRACT_VECTOR_ELTs to split v2[i,f,bf]16/v4i8 subvectors back
3581 // into individual elements.
3582 for (const unsigned I : llvm::seq(NumElts)) {
3583 SDValue SubVector = NewLD.getValue(I);
3584 DAG.ExtractVectorElements(SubVector, ScalarRes);
3585 }
3586 } else {
3587 for (const unsigned I : llvm::seq(NumElts)) {
3588 SDValue Res = NewLD.getValue(I);
3589 if (LoadEltVT != EltVT)
3590 Res = DAG.getNode(ISD::TRUNCATE, DL, EltVT, Res);
3591 ScalarRes.push_back(Res);
3592 }
3593 }
3594
3595 SDValue LoadChain = NewLD.getValue(NumElts);
3596
3597 const MVT BuildVecVT =
3598 MVT::getVectorVT(EltVT.getScalarType(), ScalarRes.size());
3599 SDValue BuildVec = DAG.getBuildVector(BuildVecVT, DL, ScalarRes);
3600 SDValue LoadValue = DAG.getBitcast(ResVT, BuildVec);
3601
3602 return {{LoadValue, LoadChain}};
3603}
3604
3607 const NVPTXSubtarget &STI) {
3608 if (auto Res = replaceLoadVector(N, DAG, STI))
3609 Results.append({Res->first, Res->second});
3610}
3611
3613 const NVPTXSubtarget &STI) {
3614 if (auto Res = replaceLoadVector(N, DAG, STI))
3615 return DAG.getMergeValues({Res->first, Res->second}, SDLoc(N));
3616 return SDValue();
3617}
3618
3619// v = ld i1* addr
3620// =>
3621// v1 = ld i8* addr (-> i16)
3622// v = trunc i16 to i1
3624 SDLoc dl(LD);
3625 assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
3626 assert(LD->getValueType(0) == MVT::i1 && "Custom lowering for i1 load only");
3627 SDValue newLD = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i16, LD->getChain(),
3628 LD->getBasePtr(), LD->getPointerInfo(),
3629 MVT::i8, LD->getAlign(),
3630 LD->getMemOperand()->getFlags());
3631 SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
3632 // The legalizer (the caller) is expecting two values from the legalized
3633 // load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
3634 // in LegalizeDAG.cpp which also uses MergeValues.
3635 return DAG.getMergeValues({result, LD->getChain()}, dl);
3636}
3637
3638SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
3639 LoadSDNode *LD = cast<LoadSDNode>(Op);
3640
3641 if (Op.getValueType() == MVT::i1)
3642 return lowerLOADi1(LD, DAG);
3643
3644 // To improve CodeGen we'll legalize any-extend loads to zext loads. This is
3645 // how they'll be lowered in ISel anyway, and by doing this a little earlier
3646 // we allow for more DAG combine opportunities.
3647 if (LD->getExtensionType() == ISD::EXTLOAD) {
3648 assert(LD->getValueType(0).isInteger() && LD->getMemoryVT().isInteger() &&
3649 "Unexpected fpext-load");
3650 return DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Op), Op.getValueType(),
3651 LD->getChain(), LD->getBasePtr(), LD->getMemoryVT(),
3652 LD->getMemOperand());
3653 }
3654
3655 llvm_unreachable("Unexpected custom lowering for load");
3656}
3657
3658SDValue NVPTXTargetLowering::LowerMLOAD(SDValue Op, SelectionDAG &DAG) const {
3659 // v2f16/v2bf16/v2i16/v4i8 are legal, so we can't rely on legalizer to handle
3660 // masked loads of these types and have to handle them here.
3661 // v2f32 also needs to be handled here if the subtarget has f32x2
3662 // instructions, making it legal.
3663 //
3664 // Note: misaligned masked loads should never reach this point
3665 // because the override of isLegalMaskedLoad in NVPTXTargetTransformInfo.cpp
3666 // will validate alignment. Therefore, we do not need to special case handle
3667 // them here.
3668 EVT VT = Op.getValueType();
3669 if (NVPTX::isPackedVectorTy(VT)) {
3670 auto Result =
3672 MemSDNode *LD = std::get<0>(Result);
3673 uint32_t UsedBytesMask = std::get<1>(Result);
3674
3675 SDLoc DL(LD);
3676
3677 // Copy regular operands
3678 SmallVector<SDValue, 8> OtherOps(LD->ops());
3679
3680 OtherOps.push_back(DAG.getConstant(UsedBytesMask, DL, MVT::i32));
3681
3682 // We currently are not lowering extending loads, but pass the extension
3683 // type anyway as later handling expects it.
3684 OtherOps.push_back(
3685 DAG.getIntPtrConstant(cast<LoadSDNode>(LD)->getExtensionType(), DL));
3686 SDValue NewLD =
3687 DAG.getMemIntrinsicNode(NVPTXISD::MLoad, DL, LD->getVTList(), OtherOps,
3688 LD->getMemoryVT(), LD->getMemOperand());
3689 return NewLD;
3690 }
3691 return SDValue();
3692}
3693
3695 const NVPTXSubtarget &STI) {
3696 MemSDNode *N = cast<MemSDNode>(Op.getNode());
3697 SDValue Val = N->getOperand(1);
3698 SDLoc DL(N);
3699 const EVT ValVT = Val.getValueType();
3700 const EVT MemVT = N->getMemoryVT();
3701
3702 // If we're truncating as part of the store, avoid lowering to a StoreV node.
3703 // TODO: consider relaxing this restriction.
3704 if (ValVT != MemVT)
3705 return SDValue();
3706
3707 const auto NumEltsAndEltVT =
3708 getVectorLoweringShape(ValVT, STI, N->getAddressSpace());
3709 if (!NumEltsAndEltVT)
3710 return SDValue();
3711 const auto [NumElts, EltVT] = NumEltsAndEltVT.value();
3712
3713 const DataLayout &TD = DAG.getDataLayout();
3714
3715 Align Alignment = N->getAlign();
3716 Align PrefAlign = TD.getPrefTypeAlign(ValVT.getTypeForEVT(*DAG.getContext()));
3717 if (Alignment < PrefAlign) {
3718 // This store is not sufficiently aligned, so bail out and let this vector
3719 // store be scalarized. Note that we may still be able to emit smaller
3720 // vector stores. For example, if we are storing a <4 x float> with an
3721 // alignment of 8, this check will fail but the legalizer will try again
3722 // with 2 x <2 x float>, which will succeed with an alignment of 8.
3723 return SDValue();
3724 }
3725
3726 unsigned Opcode;
3727 switch (NumElts) {
3728 default:
3729 return SDValue();
3730 case 2:
3731 Opcode = NVPTXISD::StoreV2;
3732 break;
3733 case 4:
3734 Opcode = NVPTXISD::StoreV4;
3735 break;
3736 case 8:
3737 Opcode = NVPTXISD::StoreV8;
3738 break;
3739 }
3740
3742
3743 // First is the chain
3744 Ops.push_back(N->getOperand(0));
3745
3746 // Then the split values
3747 if (EltVT.isVector()) {
3749 assert(NumElts * EltVT.getVectorNumElements() ==
3750 ValVT.getVectorNumElements());
3751 // Combine individual elements into v2[i,f,bf]16/v4i8 subvectors to be
3752 // stored as b32s
3753 const unsigned NumEltsPerSubVector = EltVT.getVectorNumElements();
3754 for (const unsigned I : llvm::seq(NumElts)) {
3755 SmallVector<SDValue, 4> SubVectorElts;
3756 DAG.ExtractVectorElements(Val, SubVectorElts, I * NumEltsPerSubVector,
3757 NumEltsPerSubVector);
3758 Ops.push_back(DAG.getBuildVector(EltVT, DL, SubVectorElts));
3759 }
3760 } else {
3761 SDValue V = DAG.getBitcast(MVT::getVectorVT(EltVT, NumElts), Val);
3762 for (const unsigned I : llvm::seq(NumElts)) {
3763 SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, V,
3764 DAG.getIntPtrConstant(I, DL));
3765
3766 // Since StoreV2 is a target node, we cannot rely on DAG type
3767 // legalization. Therefore, we must ensure the type is legal. For i1 and
3768 // i8, we set the stored type to i16 and propagate the "real" type as the
3769 // memory type.
3770 if (EltVT.getSizeInBits() < 16)
3771 ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
3772 Ops.push_back(ExtVal);
3773 }
3774 }
3775
3776 // Then any remaining arguments
3777 Ops.append(N->op_begin() + 2, N->op_end());
3778
3779 SDValue NewSt =
3780 DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
3781 N->getMemoryVT(), N->getMemOperand());
3782
3783 // return DCI.CombineTo(N, NewSt, true);
3784 return NewSt;
3785}
3786
3787SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
3788 StoreSDNode *Store = cast<StoreSDNode>(Op);
3789 EVT VT = Store->getMemoryVT();
3790
3791 if (VT == MVT::i1)
3792 return LowerSTOREi1(Op, DAG);
3793
3794 // Lower store of any other vector type, including v2f32 as we want to break
3795 // it apart since this is not a widely-supported type.
3796 return lowerSTOREVector(Op, DAG, STI);
3797}
3798
3799// st i1 v, addr
3800// =>
3801// v1 = zxt v to i16
3802// st.u8 i16, addr
3803SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
3804 SDNode *Node = Op.getNode();
3805 SDLoc dl(Node);
3806 StoreSDNode *ST = cast<StoreSDNode>(Node);
3807 SDValue Tmp1 = ST->getChain();
3808 SDValue Tmp2 = ST->getBasePtr();
3809 SDValue Tmp3 = ST->getValue();
3810 assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
3811 Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
3812 SDValue Result =
3813 DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8,
3814 ST->getAlign(), ST->getMemOperand()->getFlags());
3815 return Result;
3816}
3817
3818SDValue NVPTXTargetLowering::LowerCopyToReg_128(SDValue Op,
3819 SelectionDAG &DAG) const {
3820 // Change the CopyToReg to take in two 64-bit operands instead of a 128-bit
3821 // operand so that it can pass the legalization.
3822
3823 assert(Op.getOperand(1).getValueType() == MVT::i128 &&
3824 "Custom lowering for 128-bit CopyToReg only");
3825
3826 SDNode *Node = Op.getNode();
3827 SDLoc DL(Node);
3828
3829 SDValue Cast = DAG.getBitcast(MVT::v2i64, Op->getOperand(2));
3830 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast,
3831 DAG.getIntPtrConstant(0, DL));
3832 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, Cast,
3833 DAG.getIntPtrConstant(1, DL));
3834
3836 SmallVector<EVT, 3> ResultsType(Node->values());
3837
3838 NewOps[0] = Op->getOperand(0); // Chain
3839 NewOps[1] = Op->getOperand(1); // Dst Reg
3840 NewOps[2] = Lo; // Lower 64-bit
3841 NewOps[3] = Hi; // Higher 64-bit
3842 if (Op.getNumOperands() == 4)
3843 NewOps[4] = Op->getOperand(3); // Glue if exists
3844
3845 return DAG.getNode(ISD::CopyToReg, DL, ResultsType, NewOps);
3846}
3847
3848unsigned NVPTXTargetLowering::getNumRegisters(
3849 LLVMContext &Context, EVT VT,
3850 std::optional<MVT> RegisterVT = std::nullopt) const {
3851 if (VT == MVT::i128 && RegisterVT == MVT::i128)
3852 return 1;
3853 return TargetLoweringBase::getNumRegisters(Context, VT, RegisterVT);
3854}
3855
3856bool NVPTXTargetLowering::splitValueIntoRegisterParts(
3857 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
3858 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
3859 if (Val.getValueType() == MVT::i128 && NumParts == 1) {
3860 Parts[0] = Val;
3861 return true;
3862 }
3863 return false;
3864}
3865
3866// This creates target external symbol for a function parameter.
3867// Name of the symbol is composed from its index and the function name.
3868// Negative index corresponds to special parameter (unsized array) used for
3869// passing variable arguments.
3870SDValue NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int I,
3871 EVT T) const {
3872 StringRef SavedStr = nvTM->getStrPool().save(
3874 return DAG.getExternalSymbol(SavedStr.data(), T);
3875}
3876
3877SDValue NVPTXTargetLowering::getCallParamSymbol(SelectionDAG &DAG, int I,
3878 EVT T) const {
3879 const StringRef SavedStr = nvTM->getStrPool().save("param" + Twine(I));
3880 return DAG.getExternalSymbol(SavedStr.data(), T);
3881}
3882
3884 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3885 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3886 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3887 const DataLayout &DL = DAG.getDataLayout();
3888 LLVMContext &Ctx = *DAG.getContext();
3889 auto PtrVT = getPointerTy(DAG.getDataLayout());
3890
3891 const Function &F = DAG.getMachineFunction().getFunction();
3892
3893 SDValue Root = DAG.getRoot();
3894 SmallVector<SDValue, 16> OutChains;
3895
3896 // argTypes.size() (or theArgs.size()) and Ins.size() need not match.
3897 // Ins.size() will be larger
3898 // * if there is an aggregate argument with multiple fields (each field
3899 // showing up separately in Ins)
3900 // * if there is a vector argument with more than typical vector-length
3901 // elements (generally if more than 4) where each vector element is
3902 // individually present in Ins.
3903 // So a different index should be used for indexing into Ins.
3904 // See similar issue in LowerCall.
3905
3906 auto AllIns = ArrayRef(Ins);
3907 for (const auto &Arg : F.args()) {
3908 const auto ArgIns = AllIns.take_while(
3909 [&](auto I) { return I.OrigArgIndex == Arg.getArgNo(); });
3910 AllIns = AllIns.drop_front(ArgIns.size());
3911
3912 Type *Ty = Arg.getType();
3913
3914 if (ArgIns.empty())
3915 report_fatal_error("Empty parameter types are not supported");
3916
3917 if (Arg.use_empty()) {
3918 // argument is dead
3919 for (const auto &In : ArgIns) {
3920 assert(!In.Used && "Arg.use_empty() is true but Arg is used?");
3921 InVals.push_back(DAG.getUNDEF(In.VT));
3922 }
3923 continue;
3924 }
3925
3926 SDValue ArgSymbol = getParamSymbol(DAG, Arg.getArgNo(), PtrVT);
3927
3928 // In the following cases, assign a node order of "i+1"
3929 // to newly created nodes. The SDNodes for params have to
3930 // appear in the same order as their order of appearance
3931 // in the original function. "i+1" holds that order.
3932 if (Arg.hasByValAttr()) {
3933 // Param has ByVal attribute
3934 // Return MoveParam(param symbol).
3935 // Ideally, the param symbol can be returned directly,
3936 // but when SDNode builder decides to use it in a CopyToReg(),
3937 // machine instruction fails because TargetExternalSymbol
3938 // (not lowered) is target dependent, and CopyToReg assumes
3939 // the source is lowered.
3940 assert(ArgIns.size() == 1 && "ByVal argument must be a pointer");
3941 const auto &ByvalIn = ArgIns[0];
3942 assert(getValueType(DL, Ty) == ByvalIn.VT &&
3943 "Ins type did not match function type");
3944 assert(ByvalIn.VT == PtrVT && "ByVal argument must be a pointer");
3945
3946 SDValue P;
3947 if (isKernelFunction(F)) {
3948 P = ArgSymbol;
3949 P.getNode()->setIROrder(Arg.getArgNo() + 1);
3950 } else {
3951 P = DAG.getNode(NVPTXISD::MoveParam, dl, ByvalIn.VT, ArgSymbol);
3952 P.getNode()->setIROrder(Arg.getArgNo() + 1);
3953 P = DAG.getAddrSpaceCast(dl, ByvalIn.VT, P, ADDRESS_SPACE_LOCAL,
3955 }
3956 InVals.push_back(P);
3957 } else {
3960 ComputePTXValueVTs(*this, DL, Ctx, CallConv, Ty, VTs, Offsets);
3961 assert(VTs.size() == ArgIns.size() && "Size mismatch");
3962 assert(VTs.size() == Offsets.size() && "Size mismatch");
3963
3964 const Align ArgAlign = getFunctionArgumentAlignment(
3965 &F, Ty, Arg.getArgNo() + AttributeList::FirstArgIndex, DL);
3966
3967 unsigned I = 0;
3968 const auto VI = VectorizePTXValueVTs(VTs, Offsets, ArgAlign);
3969 for (const unsigned NumElts : VI) {
3970 // i1 is loaded/stored as i8
3971 const EVT LoadVT = VTs[I] == MVT::i1 ? MVT::i8 : VTs[I];
3972 const EVT VecVT = getVectorizedVT(LoadVT, NumElts, Ctx);
3973
3974 SDValue VecAddr = DAG.getObjectPtrOffset(
3975 dl, ArgSymbol, TypeSize::getFixed(Offsets[I]));
3976
3977 const Align PartAlign = commonAlignment(ArgAlign, Offsets[I]);
3978 SDValue P =
3979 DAG.getLoad(VecVT, dl, Root, VecAddr,
3983 P.getNode()->setIROrder(Arg.getArgNo() + 1);
3984 for (const unsigned J : llvm::seq(NumElts)) {
3985 SDValue Elt = getExtractVectorizedValue(P, J, LoadVT, dl, DAG);
3986
3987 Elt = correctParamType(Elt, ArgIns[I + J].VT, ArgIns[I + J].Flags,
3988 DAG, dl);
3989 InVals.push_back(Elt);
3990 }
3991 I += NumElts;
3992 }
3993 }
3994 }
3995
3996 if (!OutChains.empty())
3997 DAG.setRoot(DAG.getTokenFactor(dl, OutChains));
3998
3999 return Chain;
4000}
4001
4002SDValue
4004 bool isVarArg,
4006 const SmallVectorImpl<SDValue> &OutVals,
4007 const SDLoc &dl, SelectionDAG &DAG) const {
4008 const Function &F = DAG.getMachineFunction().getFunction();
4009 Type *RetTy = F.getReturnType();
4010
4011 if (RetTy->isVoidTy()) {
4012 assert(OutVals.empty() && Outs.empty() && "Return value expected for void");
4013 return DAG.getNode(NVPTXISD::RET_GLUE, dl, MVT::Other, Chain);
4014 }
4015
4016 const DataLayout &DL = DAG.getDataLayout();
4017 LLVMContext &Ctx = *DAG.getContext();
4018
4019 const SDValue RetSymbol = DAG.getExternalSymbol("func_retval0", MVT::i32);
4020 const auto RetAlign = getFunctionParamOptimizedAlign(&F, RetTy, DL);
4021
4022 // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
4023 // 32-bits are sign extended or zero extended, depending on whether
4024 // they are signed or unsigned types.
4025 const bool ExtendIntegerRetVal =
4026 RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
4027
4030 ComputePTXValueVTs(*this, DL, Ctx, CallConv, RetTy, VTs, Offsets);
4031 assert(VTs.size() == OutVals.size() && "Bad return value decomposition");
4032
4033 const auto GetRetVal = [&](unsigned I) -> SDValue {
4034 SDValue RetVal = OutVals[I];
4036 RetVal.getValueType() &&
4037 "OutVal type should always be legal");
4038
4039 const EVT VTI = promoteScalarIntegerPTX(VTs[I]);
4040 const EVT StoreVT =
4041 ExtendIntegerRetVal ? MVT::i32 : (VTI == MVT::i1 ? MVT::i8 : VTI);
4042 return correctParamType(RetVal, StoreVT, Outs[I].Flags, DAG, dl);
4043 };
4044
4045 unsigned I = 0;
4046 const auto VI = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
4047 for (const unsigned NumElts : VI) {
4048 const MaybeAlign CurrentAlign = ExtendIntegerRetVal
4049 ? MaybeAlign(std::nullopt)
4050 : commonAlignment(RetAlign, Offsets[I]);
4051
4053 NumElts, dl, DAG, [&](unsigned K) { return GetRetVal(I + K); });
4054
4055 SDValue Ptr =
4056 DAG.getObjectPtrOffset(dl, RetSymbol, TypeSize::getFixed(Offsets[I]));
4057
4058 Chain = DAG.getStore(Chain, dl, Val, Ptr,
4060
4061 I += NumElts;
4062 }
4063
4064 return DAG.getNode(NVPTXISD::RET_GLUE, dl, MVT::Other, Chain);
4065}
4066
4068 SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
4069 SelectionDAG &DAG) const {
4070 if (Constraint.size() > 1)
4071 return;
4073}
4074
4075// llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
4076// TgtMemIntrinsic
4077// because we need the information that is only available in the "Value" type
4078// of destination
4079// pointer. In particular, the address space information.
4081 IntrinsicInfo &Info, const CallInst &I,
4082 MachineFunction &MF, unsigned Intrinsic) const {
4083 switch (Intrinsic) {
4084 default:
4085 return false;
4086 case Intrinsic::nvvm_match_all_sync_i32p:
4087 case Intrinsic::nvvm_match_all_sync_i64p:
4088 Info.opc = ISD::INTRINSIC_W_CHAIN;
4089 // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute
4090 // in order to model data exchange with other threads, but perform no real
4091 // memory accesses.
4092 Info.memVT = MVT::i1;
4093
4094 // Our result depends on both our and other thread's arguments.
4096 return true;
4097 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
4098 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
4099 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
4100 case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
4101 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
4102 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
4103 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
4104 case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
4105 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
4106 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
4107 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
4108 case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
4109 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
4110 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
4111 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
4112 case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
4113 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
4114 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
4115 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
4116 case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
4117 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
4118 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
4119 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
4120 case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
4121 Info.opc = ISD::INTRINSIC_W_CHAIN;
4122 Info.memVT = MVT::v8f16;
4123 Info.ptrVal = I.getArgOperand(0);
4124 Info.offset = 0;
4125 Info.flags = MachineMemOperand::MOLoad;
4126 Info.align = Align(16);
4127 return true;
4128 }
4129 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col:
4130 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride:
4131 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride:
4132 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col:
4133 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row:
4134 case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride:
4135 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride:
4136 case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row:
4137 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col:
4138 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col_stride:
4139 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row:
4140 case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row_stride:
4141 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col:
4142 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride:
4143 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride:
4144 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col:
4145 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row:
4146 case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride:
4147 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride:
4148 case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row:
4149 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col:
4150 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col_stride:
4151 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row:
4152 case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row_stride: {
4153 Info.opc = ISD::INTRINSIC_W_CHAIN;
4154 Info.memVT = MVT::v2i32;
4155 Info.ptrVal = I.getArgOperand(0);
4156 Info.offset = 0;
4157 Info.flags = MachineMemOperand::MOLoad;
4158 Info.align = Align(8);
4159 return true;
4160 }
4161
4162 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col:
4163 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride:
4164 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride:
4165 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col:
4166 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row:
4167 case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride:
4168 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride:
4169 case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row:
4170 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col:
4171 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col_stride:
4172 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row:
4173 case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row_stride:
4174 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col:
4175 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col_stride:
4176 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row:
4177 case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row_stride:
4178
4179 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col:
4180 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride:
4181 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride:
4182 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col:
4183 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row:
4184 case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride:
4185 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride:
4186 case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row:
4187 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col:
4188 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col_stride:
4189 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row:
4190 case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row_stride:
4191 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col:
4192 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col_stride:
4193 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row:
4194 case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row_stride:
4195 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_b16:
4196 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_trans_b16:
4197 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8:
4198 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8x16_b4x16_p64:
4199 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x2_trans_b8x16_b6x16_p32:
4200 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x4_b8x16_b4x16_p64:
4201 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x4_b8x16_b6x16_p32: {
4202 Info.opc = ISD::INTRINSIC_W_CHAIN;
4203 Info.memVT = MVT::v4i32;
4204 Info.ptrVal = I.getArgOperand(0);
4205 Info.offset = 0;
4206 Info.flags = MachineMemOperand::MOLoad;
4207 Info.align = Align(16);
4208 return true;
4209 }
4210
4211 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col:
4212 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride:
4213 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride:
4214 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col:
4215 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row:
4216 case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride:
4217 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride:
4218 case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row:
4219
4220 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col:
4221 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride:
4222 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride:
4223 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col:
4224 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row:
4225 case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride:
4226 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride:
4227 case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row:
4228 case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row:
4229 case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride:
4230 case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col:
4231 case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride:
4232 case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row:
4233 case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride:
4234 case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride:
4235 case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row:
4236 case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col:
4237 case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride:
4238 case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride:
4239 case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col:
4240 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_b16:
4241 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_trans_b16:
4242 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x1_b8x16_b4x16_p64:
4243 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x1_b8x16_b6x16_p32: {
4244 Info.opc = ISD::INTRINSIC_W_CHAIN;
4245 Info.memVT = MVT::i32;
4246 Info.ptrVal = I.getArgOperand(0);
4247 Info.offset = 0;
4248 Info.flags = MachineMemOperand::MOLoad;
4249 Info.align = Align(4);
4250 return true;
4251 }
4252
4253 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
4254 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
4255 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
4256 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
4257 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
4258 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
4259 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
4260 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
4261 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
4262 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
4263 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
4264 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
4265 Info.opc = ISD::INTRINSIC_W_CHAIN;
4266 Info.memVT = MVT::v4f16;
4267 Info.ptrVal = I.getArgOperand(0);
4268 Info.offset = 0;
4269 Info.flags = MachineMemOperand::MOLoad;
4270 Info.align = Align(16);
4271 return true;
4272 }
4273
4274 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
4275 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
4276 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
4277 case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
4278 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
4279 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
4280 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
4281 case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
4282 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
4283 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
4284 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
4285 case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride:
4286 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col:
4287 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row:
4288 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col_stride:
4289 case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row_stride: {
4290 Info.opc = ISD::INTRINSIC_W_CHAIN;
4291 Info.memVT = MVT::v8f32;
4292 Info.ptrVal = I.getArgOperand(0);
4293 Info.offset = 0;
4294 Info.flags = MachineMemOperand::MOLoad;
4295 Info.align = Align(16);
4296 return true;
4297 }
4298
4299 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col:
4300 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col_stride:
4301 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row:
4302 case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row_stride:
4303
4304 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col:
4305 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col_stride:
4306 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row:
4307 case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row_stride:
4308
4309 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col:
4310 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride:
4311 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row:
4312 case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride:
4313 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col:
4314 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride:
4315 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row:
4316 case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride:
4317 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col:
4318 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride:
4319 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row:
4320 case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: {
4321 Info.opc = ISD::INTRINSIC_W_CHAIN;
4322 Info.memVT = MVT::v8i32;
4323 Info.ptrVal = I.getArgOperand(0);
4324 Info.offset = 0;
4325 Info.flags = MachineMemOperand::MOLoad;
4326 Info.align = Align(16);
4327 return true;
4328 }
4329
4330 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col:
4331 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride:
4332 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row:
4333 case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride:
4334 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col:
4335 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride:
4336 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row:
4337 case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride:
4338 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_b16:
4339 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_trans_b16:
4340 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8:
4341 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8x16_b4x16_p64:
4342 case Intrinsic::nvvm_ldmatrix_sync_aligned_m16n16_x1_trans_b8x16_b6x16_p32:
4343 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x2_b8x16_b4x16_p64:
4344 case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n16_x2_b8x16_b6x16_p32: {
4345 Info.opc = ISD::INTRINSIC_W_CHAIN;
4346 Info.memVT = MVT::v2i32;
4347 Info.ptrVal = I.getArgOperand(0);
4348 Info.offset = 0;
4349 Info.flags = MachineMemOperand::MOLoad;
4350 Info.align = Align(8);
4351 return true;
4352 }
4353
4354 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col:
4355 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col_stride:
4356 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row:
4357 case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row_stride:
4358
4359 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col:
4360 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col_stride:
4361 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row:
4362 case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row_stride: {
4363 Info.opc = ISD::INTRINSIC_W_CHAIN;
4364 Info.memVT = MVT::f64;
4365 Info.ptrVal = I.getArgOperand(0);
4366 Info.offset = 0;
4367 Info.flags = MachineMemOperand::MOLoad;
4368 Info.align = Align(8);
4369 return true;
4370 }
4371
4372 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col:
4373 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col_stride:
4374 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row:
4375 case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row_stride: {
4376 Info.opc = ISD::INTRINSIC_W_CHAIN;
4377 Info.memVT = MVT::v2f64;
4378 Info.ptrVal = I.getArgOperand(0);
4379 Info.offset = 0;
4380 Info.flags = MachineMemOperand::MOLoad;
4381 Info.align = Align(16);
4382 return true;
4383 }
4384
4385 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
4386 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
4387 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
4388 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
4389 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
4390 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
4391 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
4392 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
4393 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
4394 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
4395 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
4396 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
4397 Info.opc = ISD::INTRINSIC_VOID;
4398 Info.memVT = MVT::v4f16;
4399 Info.ptrVal = I.getArgOperand(0);
4400 Info.offset = 0;
4401 Info.flags = MachineMemOperand::MOStore;
4402 Info.align = Align(16);
4403 return true;
4404 }
4405
4406 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
4407 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
4408 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
4409 case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
4410 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
4411 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
4412 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
4413 case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
4414 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
4415 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
4416 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
4417 case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride:
4418 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col:
4419 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row:
4420 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col_stride:
4421 case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row_stride: {
4422 Info.opc = ISD::INTRINSIC_VOID;
4423 Info.memVT = MVT::v8f32;
4424 Info.ptrVal = I.getArgOperand(0);
4425 Info.offset = 0;
4426 Info.flags = MachineMemOperand::MOStore;
4427 Info.align = Align(16);
4428 return true;
4429 }
4430
4431 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col:
4432 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride:
4433 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row:
4434 case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride:
4435 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col:
4436 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride:
4437 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row:
4438 case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride:
4439 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col:
4440 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride:
4441 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row:
4442 case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: {
4443 Info.opc = ISD::INTRINSIC_VOID;
4444 Info.memVT = MVT::v8i32;
4445 Info.ptrVal = I.getArgOperand(0);
4446 Info.offset = 0;
4447 Info.flags = MachineMemOperand::MOStore;
4448 Info.align = Align(16);
4449 return true;
4450 }
4451
4452 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col:
4453 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride:
4454 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row:
4455 case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride:
4456 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col:
4457 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride:
4458 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row:
4459 case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride:
4460 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x2_b16:
4461 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x2_trans_b16:
4462 case Intrinsic::nvvm_stmatrix_sync_aligned_m16n8_x2_trans_b8: {
4463 Info.opc = ISD::INTRINSIC_VOID;
4464 Info.memVT = MVT::v2i32;
4465 Info.ptrVal = I.getArgOperand(0);
4466 Info.offset = 0;
4467 Info.flags = MachineMemOperand::MOStore;
4468 Info.align = Align(8);
4469 return true;
4470 }
4471
4472 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col:
4473 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col_stride:
4474 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row:
4475 case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row_stride: {
4476 Info.opc = ISD::INTRINSIC_VOID;
4477 Info.memVT = MVT::v2f64;
4478 Info.ptrVal = I.getArgOperand(0);
4479 Info.offset = 0;
4480 Info.flags = MachineMemOperand::MOStore;
4481 Info.align = Align(16);
4482 return true;
4483 }
4484
4485 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x1_b16:
4486 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x1_trans_b16:
4487 case Intrinsic::nvvm_stmatrix_sync_aligned_m16n8_x1_trans_b8: {
4488 Info.opc = ISD::INTRINSIC_VOID;
4489 Info.memVT = MVT::i32;
4490 Info.ptrVal = I.getArgOperand(0);
4491 Info.offset = 0;
4492 Info.flags = MachineMemOperand::MOStore;
4493 Info.align = Align(4);
4494 return true;
4495 }
4496
4497 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x4_b16:
4498 case Intrinsic::nvvm_stmatrix_sync_aligned_m8n8_x4_trans_b16:
4499 case Intrinsic::nvvm_stmatrix_sync_aligned_m16n8_x4_trans_b8: {
4500 Info.opc = ISD::INTRINSIC_VOID;
4501 Info.memVT = MVT::v4i32;
4502 Info.ptrVal = I.getArgOperand(0);
4503 Info.offset = 0;
4504 Info.flags = MachineMemOperand::MOStore;
4505 Info.align = Align(16);
4506 return true;
4507 }
4508
4509 case Intrinsic::nvvm_atomic_add_gen_f_cta:
4510 case Intrinsic::nvvm_atomic_add_gen_f_sys:
4511 case Intrinsic::nvvm_atomic_add_gen_i_cta:
4512 case Intrinsic::nvvm_atomic_add_gen_i_sys:
4513 case Intrinsic::nvvm_atomic_and_gen_i_cta:
4514 case Intrinsic::nvvm_atomic_and_gen_i_sys:
4515 case Intrinsic::nvvm_atomic_cas_gen_i_cta:
4516 case Intrinsic::nvvm_atomic_cas_gen_i_sys:
4517 case Intrinsic::nvvm_atomic_dec_gen_i_cta:
4518 case Intrinsic::nvvm_atomic_dec_gen_i_sys:
4519 case Intrinsic::nvvm_atomic_inc_gen_i_cta:
4520 case Intrinsic::nvvm_atomic_inc_gen_i_sys:
4521 case Intrinsic::nvvm_atomic_max_gen_i_cta:
4522 case Intrinsic::nvvm_atomic_max_gen_i_sys:
4523 case Intrinsic::nvvm_atomic_min_gen_i_cta:
4524 case Intrinsic::nvvm_atomic_min_gen_i_sys:
4525 case Intrinsic::nvvm_atomic_or_gen_i_cta:
4526 case Intrinsic::nvvm_atomic_or_gen_i_sys:
4527 case Intrinsic::nvvm_atomic_exch_gen_i_cta:
4528 case Intrinsic::nvvm_atomic_exch_gen_i_sys:
4529 case Intrinsic::nvvm_atomic_xor_gen_i_cta:
4530 case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
4531 auto &DL = I.getDataLayout();
4532 Info.opc = ISD::INTRINSIC_W_CHAIN;
4533 Info.memVT = getValueType(DL, I.getType());
4534 Info.ptrVal = I.getArgOperand(0);
4535 Info.offset = 0;
4537 Info.align.reset();
4538 return true;
4539 }
4540
4541 case Intrinsic::nvvm_prefetch_tensormap: {
4542 auto &DL = I.getDataLayout();
4543 Info.opc = ISD::INTRINSIC_VOID;
4544 Info.memVT = getPointerTy(DL);
4545 Info.ptrVal = I.getArgOperand(0);
4546 Info.offset = 0;
4547 Info.flags =
4549 Info.align.reset();
4550 return true;
4551 }
4552
4553 case Intrinsic::nvvm_ldu_global_i:
4554 case Intrinsic::nvvm_ldu_global_f:
4555 case Intrinsic::nvvm_ldu_global_p: {
4556 Info.opc = ISD::INTRINSIC_W_CHAIN;
4557 Info.memVT = getValueType(I.getDataLayout(), I.getType());
4558 Info.ptrVal = I.getArgOperand(0);
4559 Info.offset = 0;
4560 Info.flags = MachineMemOperand::MOLoad;
4561 Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4562
4563 return true;
4564 }
4565 case Intrinsic::nvvm_tex_1d_v4f32_s32:
4566 case Intrinsic::nvvm_tex_1d_v4f32_f32:
4567 case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
4568 case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
4569 case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
4570 case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
4571 case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
4572 case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
4573 case Intrinsic::nvvm_tex_2d_v4f32_s32:
4574 case Intrinsic::nvvm_tex_2d_v4f32_f32:
4575 case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
4576 case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
4577 case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
4578 case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
4579 case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
4580 case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
4581 case Intrinsic::nvvm_tex_3d_v4f32_s32:
4582 case Intrinsic::nvvm_tex_3d_v4f32_f32:
4583 case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
4584 case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
4585 case Intrinsic::nvvm_tex_cube_v4f32_f32:
4586 case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
4587 case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
4588 case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
4589 case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
4590 case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
4591 case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
4592 case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
4593 case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
4594 case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
4595 case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
4596 case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
4597 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
4598 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
4599 case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
4600 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
4601 case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
4602 case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
4603 case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
4604 case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
4605 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
4606 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
4607 case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
4608 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
4609 case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
4610 case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
4611 case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
4612 case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
4613 case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
4614 case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
4615 case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
4616 case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
4617 case Intrinsic::nvvm_tex_unified_cube_grad_v4f32_f32:
4618 case Intrinsic::nvvm_tex_unified_cube_array_grad_v4f32_f32:
4619 case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
4620 case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
4621 case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
4622 case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
4623 Info.opc = ISD::INTRINSIC_W_CHAIN;
4624 Info.memVT = MVT::v4f32;
4625 Info.ptrVal = nullptr;
4626 Info.offset = 0;
4627 Info.flags = MachineMemOperand::MOLoad;
4628 Info.align = Align(16);
4629 return true;
4630
4631 case Intrinsic::nvvm_tex_1d_v4s32_s32:
4632 case Intrinsic::nvvm_tex_1d_v4s32_f32:
4633 case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
4634 case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
4635 case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
4636 case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
4637 case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
4638 case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
4639 case Intrinsic::nvvm_tex_2d_v4s32_s32:
4640 case Intrinsic::nvvm_tex_2d_v4s32_f32:
4641 case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
4642 case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
4643 case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
4644 case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
4645 case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
4646 case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
4647 case Intrinsic::nvvm_tex_3d_v4s32_s32:
4648 case Intrinsic::nvvm_tex_3d_v4s32_f32:
4649 case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
4650 case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
4651 case Intrinsic::nvvm_tex_cube_v4s32_f32:
4652 case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
4653 case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
4654 case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
4655 case Intrinsic::nvvm_tex_cube_v4u32_f32:
4656 case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
4657 case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
4658 case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
4659 case Intrinsic::nvvm_tex_1d_v4u32_s32:
4660 case Intrinsic::nvvm_tex_1d_v4u32_f32:
4661 case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
4662 case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
4663 case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
4664 case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
4665 case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
4666 case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
4667 case Intrinsic::nvvm_tex_2d_v4u32_s32:
4668 case Intrinsic::nvvm_tex_2d_v4u32_f32:
4669 case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
4670 case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
4671 case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
4672 case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
4673 case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
4674 case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
4675 case Intrinsic::nvvm_tex_3d_v4u32_s32:
4676 case Intrinsic::nvvm_tex_3d_v4u32_f32:
4677 case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
4678 case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
4679 case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
4680 case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
4681 case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
4682 case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
4683 case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
4684 case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
4685 case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
4686 case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
4687 case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
4688 case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
4689 case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
4690 case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
4691 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
4692 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
4693 case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
4694 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
4695 case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
4696 case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
4697 case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
4698 case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
4699 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
4700 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
4701 case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
4702 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
4703 case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
4704 case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
4705 case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
4706 case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
4707 case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
4708 case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
4709 case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
4710 case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
4711 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
4712 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
4713 case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
4714 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
4715 case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
4716 case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
4717 case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
4718 case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
4719 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
4720 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
4721 case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
4722 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
4723 case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
4724 case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
4725 case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
4726 case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
4727 case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
4728 case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
4729 case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
4730 case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
4731 case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
4732 case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
4733 case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
4734 case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
4735 case Intrinsic::nvvm_tex_unified_cube_grad_v4s32_f32:
4736 case Intrinsic::nvvm_tex_unified_cube_grad_v4u32_f32:
4737 case Intrinsic::nvvm_tex_unified_cube_array_grad_v4s32_f32:
4738 case Intrinsic::nvvm_tex_unified_cube_array_grad_v4u32_f32:
4739 case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
4740 case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
4741 case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
4742 case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
4743 case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
4744 case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
4745 case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
4746 case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
4747 Info.opc = ISD::INTRINSIC_W_CHAIN;
4748 Info.memVT = MVT::v4i32;
4749 Info.ptrVal = nullptr;
4750 Info.offset = 0;
4751 Info.flags = MachineMemOperand::MOLoad;
4752 Info.align = Align(16);
4753 return true;
4754
4755 case Intrinsic::nvvm_suld_1d_i8_clamp:
4756 case Intrinsic::nvvm_suld_1d_v2i8_clamp:
4757 case Intrinsic::nvvm_suld_1d_v4i8_clamp:
4758 case Intrinsic::nvvm_suld_1d_array_i8_clamp:
4759 case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
4760 case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
4761 case Intrinsic::nvvm_suld_2d_i8_clamp:
4762 case Intrinsic::nvvm_suld_2d_v2i8_clamp:
4763 case Intrinsic::nvvm_suld_2d_v4i8_clamp:
4764 case Intrinsic::nvvm_suld_2d_array_i8_clamp:
4765 case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
4766 case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
4767 case Intrinsic::nvvm_suld_3d_i8_clamp:
4768 case Intrinsic::nvvm_suld_3d_v2i8_clamp:
4769 case Intrinsic::nvvm_suld_3d_v4i8_clamp:
4770 case Intrinsic::nvvm_suld_1d_i8_trap:
4771 case Intrinsic::nvvm_suld_1d_v2i8_trap:
4772 case Intrinsic::nvvm_suld_1d_v4i8_trap:
4773 case Intrinsic::nvvm_suld_1d_array_i8_trap:
4774 case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
4775 case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
4776 case Intrinsic::nvvm_suld_2d_i8_trap:
4777 case Intrinsic::nvvm_suld_2d_v2i8_trap:
4778 case Intrinsic::nvvm_suld_2d_v4i8_trap:
4779 case Intrinsic::nvvm_suld_2d_array_i8_trap:
4780 case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
4781 case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
4782 case Intrinsic::nvvm_suld_3d_i8_trap:
4783 case Intrinsic::nvvm_suld_3d_v2i8_trap:
4784 case Intrinsic::nvvm_suld_3d_v4i8_trap:
4785 case Intrinsic::nvvm_suld_1d_i8_zero:
4786 case Intrinsic::nvvm_suld_1d_v2i8_zero:
4787 case Intrinsic::nvvm_suld_1d_v4i8_zero:
4788 case Intrinsic::nvvm_suld_1d_array_i8_zero:
4789 case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
4790 case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
4791 case Intrinsic::nvvm_suld_2d_i8_zero:
4792 case Intrinsic::nvvm_suld_2d_v2i8_zero:
4793 case Intrinsic::nvvm_suld_2d_v4i8_zero:
4794 case Intrinsic::nvvm_suld_2d_array_i8_zero:
4795 case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
4796 case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
4797 case Intrinsic::nvvm_suld_3d_i8_zero:
4798 case Intrinsic::nvvm_suld_3d_v2i8_zero:
4799 case Intrinsic::nvvm_suld_3d_v4i8_zero:
4800 Info.opc = ISD::INTRINSIC_W_CHAIN;
4801 Info.memVT = MVT::i8;
4802 Info.ptrVal = nullptr;
4803 Info.offset = 0;
4804 Info.flags = MachineMemOperand::MOLoad;
4805 Info.align = Align(16);
4806 return true;
4807
4808 case Intrinsic::nvvm_suld_1d_i16_clamp:
4809 case Intrinsic::nvvm_suld_1d_v2i16_clamp:
4810 case Intrinsic::nvvm_suld_1d_v4i16_clamp:
4811 case Intrinsic::nvvm_suld_1d_array_i16_clamp:
4812 case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
4813 case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
4814 case Intrinsic::nvvm_suld_2d_i16_clamp:
4815 case Intrinsic::nvvm_suld_2d_v2i16_clamp:
4816 case Intrinsic::nvvm_suld_2d_v4i16_clamp:
4817 case Intrinsic::nvvm_suld_2d_array_i16_clamp:
4818 case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
4819 case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
4820 case Intrinsic::nvvm_suld_3d_i16_clamp:
4821 case Intrinsic::nvvm_suld_3d_v2i16_clamp:
4822 case Intrinsic::nvvm_suld_3d_v4i16_clamp:
4823 case Intrinsic::nvvm_suld_1d_i16_trap:
4824 case Intrinsic::nvvm_suld_1d_v2i16_trap:
4825 case Intrinsic::nvvm_suld_1d_v4i16_trap:
4826 case Intrinsic::nvvm_suld_1d_array_i16_trap:
4827 case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
4828 case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
4829 case Intrinsic::nvvm_suld_2d_i16_trap:
4830 case Intrinsic::nvvm_suld_2d_v2i16_trap:
4831 case Intrinsic::nvvm_suld_2d_v4i16_trap:
4832 case Intrinsic::nvvm_suld_2d_array_i16_trap:
4833 case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
4834 case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
4835 case Intrinsic::nvvm_suld_3d_i16_trap:
4836 case Intrinsic::nvvm_suld_3d_v2i16_trap:
4837 case Intrinsic::nvvm_suld_3d_v4i16_trap:
4838 case Intrinsic::nvvm_suld_1d_i16_zero:
4839 case Intrinsic::nvvm_suld_1d_v2i16_zero:
4840 case Intrinsic::nvvm_suld_1d_v4i16_zero:
4841 case Intrinsic::nvvm_suld_1d_array_i16_zero:
4842 case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
4843 case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
4844 case Intrinsic::nvvm_suld_2d_i16_zero:
4845 case Intrinsic::nvvm_suld_2d_v2i16_zero:
4846 case Intrinsic::nvvm_suld_2d_v4i16_zero:
4847 case Intrinsic::nvvm_suld_2d_array_i16_zero:
4848 case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
4849 case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
4850 case Intrinsic::nvvm_suld_3d_i16_zero:
4851 case Intrinsic::nvvm_suld_3d_v2i16_zero:
4852 case Intrinsic::nvvm_suld_3d_v4i16_zero:
4853 Info.opc = ISD::INTRINSIC_W_CHAIN;
4854 Info.memVT = MVT::i16;
4855 Info.ptrVal = nullptr;
4856 Info.offset = 0;
4857 Info.flags = MachineMemOperand::MOLoad;
4858 Info.align = Align(16);
4859 return true;
4860
4861 case Intrinsic::nvvm_suld_1d_i32_clamp:
4862 case Intrinsic::nvvm_suld_1d_v2i32_clamp:
4863 case Intrinsic::nvvm_suld_1d_v4i32_clamp:
4864 case Intrinsic::nvvm_suld_1d_array_i32_clamp:
4865 case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
4866 case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
4867 case Intrinsic::nvvm_suld_2d_i32_clamp:
4868 case Intrinsic::nvvm_suld_2d_v2i32_clamp:
4869 case Intrinsic::nvvm_suld_2d_v4i32_clamp:
4870 case Intrinsic::nvvm_suld_2d_array_i32_clamp:
4871 case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
4872 case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
4873 case Intrinsic::nvvm_suld_3d_i32_clamp:
4874 case Intrinsic::nvvm_suld_3d_v2i32_clamp:
4875 case Intrinsic::nvvm_suld_3d_v4i32_clamp:
4876 case Intrinsic::nvvm_suld_1d_i32_trap:
4877 case Intrinsic::nvvm_suld_1d_v2i32_trap:
4878 case Intrinsic::nvvm_suld_1d_v4i32_trap:
4879 case Intrinsic::nvvm_suld_1d_array_i32_trap:
4880 case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
4881 case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
4882 case Intrinsic::nvvm_suld_2d_i32_trap:
4883 case Intrinsic::nvvm_suld_2d_v2i32_trap:
4884 case Intrinsic::nvvm_suld_2d_v4i32_trap:
4885 case Intrinsic::nvvm_suld_2d_array_i32_trap:
4886 case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
4887 case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
4888 case Intrinsic::nvvm_suld_3d_i32_trap:
4889 case Intrinsic::nvvm_suld_3d_v2i32_trap:
4890 case Intrinsic::nvvm_suld_3d_v4i32_trap:
4891 case Intrinsic::nvvm_suld_1d_i32_zero:
4892 case Intrinsic::nvvm_suld_1d_v2i32_zero:
4893 case Intrinsic::nvvm_suld_1d_v4i32_zero:
4894 case Intrinsic::nvvm_suld_1d_array_i32_zero:
4895 case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
4896 case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
4897 case Intrinsic::nvvm_suld_2d_i32_zero:
4898 case Intrinsic::nvvm_suld_2d_v2i32_zero:
4899 case Intrinsic::nvvm_suld_2d_v4i32_zero:
4900 case Intrinsic::nvvm_suld_2d_array_i32_zero:
4901 case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
4902 case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
4903 case Intrinsic::nvvm_suld_3d_i32_zero:
4904 case Intrinsic::nvvm_suld_3d_v2i32_zero:
4905 case Intrinsic::nvvm_suld_3d_v4i32_zero:
4906 Info.opc = ISD::INTRINSIC_W_CHAIN;
4907 Info.memVT = MVT::i32;
4908 Info.ptrVal = nullptr;
4909 Info.offset = 0;
4910 Info.flags = MachineMemOperand::MOLoad;
4911 Info.align = Align(16);
4912 return true;
4913
4914 case Intrinsic::nvvm_suld_1d_i64_clamp:
4915 case Intrinsic::nvvm_suld_1d_v2i64_clamp:
4916 case Intrinsic::nvvm_suld_1d_array_i64_clamp:
4917 case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
4918 case Intrinsic::nvvm_suld_2d_i64_clamp:
4919 case Intrinsic::nvvm_suld_2d_v2i64_clamp:
4920 case Intrinsic::nvvm_suld_2d_array_i64_clamp:
4921 case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
4922 case Intrinsic::nvvm_suld_3d_i64_clamp:
4923 case Intrinsic::nvvm_suld_3d_v2i64_clamp:
4924 case Intrinsic::nvvm_suld_1d_i64_trap:
4925 case Intrinsic::nvvm_suld_1d_v2i64_trap:
4926 case Intrinsic::nvvm_suld_1d_array_i64_trap:
4927 case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
4928 case Intrinsic::nvvm_suld_2d_i64_trap:
4929 case Intrinsic::nvvm_suld_2d_v2i64_trap:
4930 case Intrinsic::nvvm_suld_2d_array_i64_trap:
4931 case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
4932 case Intrinsic::nvvm_suld_3d_i64_trap:
4933 case Intrinsic::nvvm_suld_3d_v2i64_trap:
4934 case Intrinsic::nvvm_suld_1d_i64_zero:
4935 case Intrinsic::nvvm_suld_1d_v2i64_zero:
4936 case Intrinsic::nvvm_suld_1d_array_i64_zero:
4937 case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
4938 case Intrinsic::nvvm_suld_2d_i64_zero:
4939 case Intrinsic::nvvm_suld_2d_v2i64_zero:
4940 case Intrinsic::nvvm_suld_2d_array_i64_zero:
4941 case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
4942 case Intrinsic::nvvm_suld_3d_i64_zero:
4943 case Intrinsic::nvvm_suld_3d_v2i64_zero:
4944 Info.opc = ISD::INTRINSIC_W_CHAIN;
4945 Info.memVT = MVT::i64;
4946 Info.ptrVal = nullptr;
4947 Info.offset = 0;
4948 Info.flags = MachineMemOperand::MOLoad;
4949 Info.align = Align(16);
4950 return true;
4951
4952 case Intrinsic::nvvm_tcgen05_ld_16x64b_x1:
4953 case Intrinsic::nvvm_tcgen05_ld_32x32b_x1:
4954 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x1: {
4955 Info.opc = ISD::INTRINSIC_W_CHAIN;
4956 Info.memVT = MVT::v1i32;
4957 Info.ptrVal = I.getArgOperand(0);
4958 Info.offset = 0;
4959 Info.flags = MachineMemOperand::MOLoad;
4960 Info.align.reset();
4961 return true;
4962 }
4963
4964 case Intrinsic::nvvm_tcgen05_ld_16x64b_x2:
4965 case Intrinsic::nvvm_tcgen05_ld_16x128b_x1:
4966 case Intrinsic::nvvm_tcgen05_ld_32x32b_x2:
4967 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x2: {
4968 Info.opc = ISD::INTRINSIC_W_CHAIN;
4969 Info.memVT = MVT::v2i32;
4970 Info.ptrVal = I.getArgOperand(0);
4971 Info.offset = 0;
4972 Info.flags = MachineMemOperand::MOLoad;
4973 Info.align.reset();
4974 return true;
4975 }
4976
4977 case Intrinsic::nvvm_tcgen05_ld_16x64b_x4:
4978 case Intrinsic::nvvm_tcgen05_ld_16x128b_x2:
4979 case Intrinsic::nvvm_tcgen05_ld_32x32b_x4:
4980 case Intrinsic::nvvm_tcgen05_ld_16x256b_x1:
4981 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x4: {
4982 Info.opc = ISD::INTRINSIC_W_CHAIN;
4983 Info.memVT = MVT::v4i32;
4984 Info.ptrVal = I.getArgOperand(0);
4985 Info.offset = 0;
4986 Info.flags = MachineMemOperand::MOLoad;
4987 Info.align.reset();
4988 return true;
4989 }
4990
4991 case Intrinsic::nvvm_tcgen05_ld_16x64b_x8:
4992 case Intrinsic::nvvm_tcgen05_ld_16x128b_x4:
4993 case Intrinsic::nvvm_tcgen05_ld_16x256b_x2:
4994 case Intrinsic::nvvm_tcgen05_ld_32x32b_x8:
4995 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x8: {
4996 Info.opc = ISD::INTRINSIC_W_CHAIN;
4997 Info.memVT = MVT::v8i32;
4998 Info.ptrVal = I.getArgOperand(0);
4999 Info.offset = 0;
5000 Info.flags = MachineMemOperand::MOLoad;
5001 Info.align.reset();
5002 return true;
5003 }
5004
5005 case Intrinsic::nvvm_tcgen05_ld_16x64b_x16:
5006 case Intrinsic::nvvm_tcgen05_ld_16x128b_x8:
5007 case Intrinsic::nvvm_tcgen05_ld_16x256b_x4:
5008 case Intrinsic::nvvm_tcgen05_ld_32x32b_x16:
5009 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x16: {
5010 Info.opc = ISD::INTRINSIC_W_CHAIN;
5011 Info.memVT = MVT::v16i32;
5012 Info.ptrVal = I.getArgOperand(0);
5013 Info.offset = 0;
5014 Info.flags = MachineMemOperand::MOLoad;
5015 Info.align.reset();
5016 return true;
5017 }
5018
5019 case Intrinsic::nvvm_tcgen05_ld_16x64b_x32:
5020 case Intrinsic::nvvm_tcgen05_ld_16x128b_x16:
5021 case Intrinsic::nvvm_tcgen05_ld_16x256b_x8:
5022 case Intrinsic::nvvm_tcgen05_ld_32x32b_x32:
5023 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x32: {
5024 Info.opc = ISD::INTRINSIC_W_CHAIN;
5025 Info.memVT = MVT::v32i32;
5026 Info.ptrVal = I.getArgOperand(0);
5027 Info.offset = 0;
5028 Info.flags = MachineMemOperand::MOLoad;
5029 Info.align.reset();
5030 return true;
5031 }
5032
5033 case Intrinsic::nvvm_tcgen05_ld_16x64b_x64:
5034 case Intrinsic::nvvm_tcgen05_ld_16x128b_x32:
5035 case Intrinsic::nvvm_tcgen05_ld_16x256b_x16:
5036 case Intrinsic::nvvm_tcgen05_ld_32x32b_x64:
5037 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x64: {
5038 Info.opc = ISD::INTRINSIC_W_CHAIN;
5039 Info.memVT = MVT::v64i32;
5040 Info.ptrVal = I.getArgOperand(0);
5041 Info.offset = 0;
5042 Info.flags = MachineMemOperand::MOLoad;
5043 Info.align.reset();
5044 return true;
5045 }
5046
5047 case Intrinsic::nvvm_tcgen05_ld_16x64b_x128:
5048 case Intrinsic::nvvm_tcgen05_ld_16x128b_x64:
5049 case Intrinsic::nvvm_tcgen05_ld_16x256b_x32:
5050 case Intrinsic::nvvm_tcgen05_ld_32x32b_x128:
5051 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x128: {
5052 Info.opc = ISD::INTRINSIC_W_CHAIN;
5053 Info.memVT = MVT::v128i32;
5054 Info.ptrVal = I.getArgOperand(0);
5055 Info.offset = 0;
5056 Info.flags = MachineMemOperand::MOLoad;
5057 Info.align.reset();
5058 return true;
5059 }
5060
5061 case Intrinsic::nvvm_tcgen05_st_16x64b_x1:
5062 case Intrinsic::nvvm_tcgen05_st_32x32b_x1:
5063 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x1: {
5064 Info.opc = ISD::INTRINSIC_VOID;
5065 Info.memVT = MVT::i32;
5066 Info.ptrVal = I.getArgOperand(0);
5067 Info.offset = 0;
5068 Info.flags = MachineMemOperand::MOStore;
5069 Info.align.reset();
5070 return true;
5071 }
5072
5073 case Intrinsic::nvvm_tcgen05_st_16x64b_x2:
5074 case Intrinsic::nvvm_tcgen05_st_16x128b_x1:
5075 case Intrinsic::nvvm_tcgen05_st_32x32b_x2:
5076 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x2: {
5077 Info.opc = ISD::INTRINSIC_VOID;
5078 Info.memVT = MVT::v2i32;
5079 Info.ptrVal = I.getArgOperand(0);
5080 Info.offset = 0;
5081 Info.flags = MachineMemOperand::MOStore;
5082 Info.align.reset();
5083 return true;
5084 }
5085
5086 case Intrinsic::nvvm_tcgen05_st_16x64b_x4:
5087 case Intrinsic::nvvm_tcgen05_st_16x128b_x2:
5088 case Intrinsic::nvvm_tcgen05_st_16x256b_x1:
5089 case Intrinsic::nvvm_tcgen05_st_32x32b_x4:
5090 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x4: {
5091 Info.opc = ISD::INTRINSIC_VOID;
5092 Info.memVT = MVT::v4i32;
5093 Info.ptrVal = I.getArgOperand(0);
5094 Info.offset = 0;
5095 Info.flags = MachineMemOperand::MOStore;
5096 Info.align.reset();
5097 return true;
5098 }
5099
5100 case Intrinsic::nvvm_tcgen05_st_16x64b_x8:
5101 case Intrinsic::nvvm_tcgen05_st_16x128b_x4:
5102 case Intrinsic::nvvm_tcgen05_st_16x256b_x2:
5103 case Intrinsic::nvvm_tcgen05_st_32x32b_x8:
5104 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x8: {
5105 Info.opc = ISD::INTRINSIC_VOID;
5106 Info.memVT = MVT::v8i32;
5107 Info.ptrVal = I.getArgOperand(0);
5108 Info.offset = 0;
5109 Info.flags = MachineMemOperand::MOStore;
5110 Info.align.reset();
5111 return true;
5112 }
5113
5114 case Intrinsic::nvvm_tcgen05_st_16x64b_x16:
5115 case Intrinsic::nvvm_tcgen05_st_16x128b_x8:
5116 case Intrinsic::nvvm_tcgen05_st_16x256b_x4:
5117 case Intrinsic::nvvm_tcgen05_st_32x32b_x16:
5118 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x16: {
5119 Info.opc = ISD::INTRINSIC_VOID;
5120 Info.memVT = MVT::v16i32;
5121 Info.ptrVal = I.getArgOperand(0);
5122 Info.offset = 0;
5123 Info.flags = MachineMemOperand::MOStore;
5124 Info.align.reset();
5125 return true;
5126 }
5127
5128 case Intrinsic::nvvm_tcgen05_st_16x64b_x32:
5129 case Intrinsic::nvvm_tcgen05_st_16x128b_x16:
5130 case Intrinsic::nvvm_tcgen05_st_16x256b_x8:
5131 case Intrinsic::nvvm_tcgen05_st_32x32b_x32:
5132 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x32: {
5133 Info.opc = ISD::INTRINSIC_VOID;
5134 Info.memVT = MVT::v32i32;
5135 Info.ptrVal = I.getArgOperand(0);
5136 Info.offset = 0;
5137 Info.flags = MachineMemOperand::MOStore;
5138 Info.align.reset();
5139 return true;
5140 }
5141
5142 case Intrinsic::nvvm_tcgen05_st_16x64b_x64:
5143 case Intrinsic::nvvm_tcgen05_st_16x128b_x32:
5144 case Intrinsic::nvvm_tcgen05_st_16x256b_x16:
5145 case Intrinsic::nvvm_tcgen05_st_32x32b_x64:
5146 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x64: {
5147 Info.opc = ISD::INTRINSIC_VOID;
5148 Info.memVT = MVT::v64i32;
5149 Info.ptrVal = I.getArgOperand(0);
5150 Info.offset = 0;
5151 Info.flags = MachineMemOperand::MOStore;
5152 Info.align.reset();
5153 return true;
5154 }
5155
5156 case Intrinsic::nvvm_tcgen05_st_16x64b_x128:
5157 case Intrinsic::nvvm_tcgen05_st_16x128b_x64:
5158 case Intrinsic::nvvm_tcgen05_st_16x256b_x32:
5159 case Intrinsic::nvvm_tcgen05_st_32x32b_x128:
5160 case Intrinsic::nvvm_tcgen05_st_16x32bx2_x128: {
5161 Info.opc = ISD::INTRINSIC_VOID;
5162 Info.memVT = MVT::v128i32;
5163 Info.ptrVal = I.getArgOperand(0);
5164 Info.offset = 0;
5165 Info.flags = MachineMemOperand::MOStore;
5166 Info.align.reset();
5167 return true;
5168 }
5169 case Intrinsic::nvvm_tcgen05_mma_shared_disable_output_lane_cg1:
5170 case Intrinsic::nvvm_tcgen05_mma_shared_scale_d_disable_output_lane_cg1:
5171 case Intrinsic::nvvm_tcgen05_mma_sp_shared_disable_output_lane_cg1:
5172 case Intrinsic::nvvm_tcgen05_mma_sp_shared_scale_d_disable_output_lane_cg1:
5173 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg1:
5174 case Intrinsic::nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg1:
5175 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg1_ashift:
5176 case Intrinsic::
5177 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg1_ashift:
5178 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg1:
5179 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg1:
5180 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg1_ashift:
5181 case Intrinsic::
5182 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg1_ashift: {
5183 // We are reading and writing back to TMem
5184 Info.opc = ISD::INTRINSIC_VOID;
5185 Info.memVT = MVT::v4i32;
5186 Info.ptrVal = I.getArgOperand(0);
5187 Info.offset = 0;
5189 Info.align = Align(16);
5190 return true;
5191 }
5192
5193 case Intrinsic::nvvm_tcgen05_mma_shared_disable_output_lane_cg2:
5194 case Intrinsic::nvvm_tcgen05_mma_shared_scale_d_disable_output_lane_cg2:
5195 case Intrinsic::nvvm_tcgen05_mma_sp_shared_disable_output_lane_cg2:
5196 case Intrinsic::nvvm_tcgen05_mma_sp_shared_scale_d_disable_output_lane_cg2:
5197 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg2:
5198 case Intrinsic::nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg2:
5199 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg2:
5200 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg2:
5201 case Intrinsic::nvvm_tcgen05_mma_tensor_disable_output_lane_cg2_ashift:
5202 case Intrinsic::
5203 nvvm_tcgen05_mma_tensor_scale_d_disable_output_lane_cg2_ashift:
5204 case Intrinsic::nvvm_tcgen05_mma_sp_tensor_disable_output_lane_cg2_ashift:
5205 case Intrinsic::
5206 nvvm_tcgen05_mma_sp_tensor_scale_d_disable_output_lane_cg2_ashift: {
5207 // We are reading and writing back to TMem
5208 Info.opc = ISD::INTRINSIC_VOID;
5209 Info.memVT = MVT::v8i32;
5210 Info.ptrVal = I.getArgOperand(0);
5211 Info.offset = 0;
5213 Info.align = Align(16);
5214 return true;
5215 }
5216 }
5217 return false;
5218}
5219
5220/// getFunctionParamOptimizedAlign - since function arguments are passed via
5221/// .param space, we may want to increase their alignment in a way that
5222/// ensures that we can effectively vectorize their loads & stores. We can
5223/// increase alignment only if the function has internal or has private
5224/// linkage as for other linkage types callers may already rely on default
5225/// alignment. To allow using 128-bit vectorized loads/stores, this function
5226/// ensures that alignment is 16 or greater.
5228 const Function *F, Type *ArgTy, const DataLayout &DL) const {
5229 // Capping the alignment to 128 bytes as that is the maximum alignment
5230 // supported by PTX.
5231 const Align ABITypeAlign = std::min(Align(128), DL.getABITypeAlign(ArgTy));
5232
5233 // If a function has linkage different from internal or private, we
5234 // must use default ABI alignment as external users rely on it. Same
5235 // for a function that may be called from a function pointer.
5236 if (!F || !F->hasLocalLinkage() ||
5237 F->hasAddressTaken(/*Users=*/nullptr,
5238 /*IgnoreCallbackUses=*/false,
5239 /*IgnoreAssumeLikeCalls=*/true,
5240 /*IgnoreLLVMUsed=*/true))
5241 return ABITypeAlign;
5242
5243 assert(!isKernelFunction(*F) && "Expect kernels to have non-local linkage");
5244 return std::max(Align(16), ABITypeAlign);
5245}
5246
5247/// Helper for computing alignment of a device function byval parameter.
5249 const Function *F, Type *ArgTy, Align InitialAlign,
5250 const DataLayout &DL) const {
5251 Align ArgAlign = InitialAlign;
5252 // Try to increase alignment to enhance vectorization options.
5253 if (F)
5254 ArgAlign = std::max(ArgAlign, getFunctionParamOptimizedAlign(F, ArgTy, DL));
5255
5256 // Old ptx versions have a bug. When PTX code takes address of
5257 // byval parameter with alignment < 4, ptxas generates code to
5258 // spill argument into memory. Alas on sm_50+ ptxas generates
5259 // SASS code that fails with misaligned access. To work around
5260 // the problem, make sure that we align byval parameters by at
5261 // least 4. This bug seems to be fixed at least starting from
5262 // ptxas > 9.0.
5263 // TODO: remove this after verifying the bug is not reproduced
5264 // on non-deprecated ptxas versions.
5266 ArgAlign = std::max(ArgAlign, Align(4));
5267
5268 return ArgAlign;
5269}
5270
5271// Helper for getting a function parameter name. Name is composed from
5272// its index and the function name. Negative index corresponds to special
5273// parameter (unsized array) used for passing variable arguments.
5275 int Idx) const {
5276 std::string ParamName;
5277 raw_string_ostream ParamStr(ParamName);
5278
5279 ParamStr << getTargetMachine().getSymbol(F)->getName();
5280 if (Idx < 0)
5281 ParamStr << "_vararg";
5282 else
5283 ParamStr << "_param_" << Idx;
5284
5285 return ParamName;
5286}
5287
5288/// isLegalAddressingMode - Return true if the addressing mode represented
5289/// by AM is legal for this target, for a load/store of the specified type.
5290/// Used to guide target specific optimizations, like loop strength reduction
5291/// (LoopStrengthReduce.cpp) and memory optimization for address mode
5292/// (CodeGenPrepare.cpp)
5294 const AddrMode &AM, Type *Ty,
5295 unsigned AS, Instruction *I) const {
5296 // AddrMode - This represents an addressing mode of:
5297 // BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
5298 //
5299 // The legal address modes are
5300 // - [avar]
5301 // - [areg]
5302 // - [areg+immoff]
5303 // - [immAddr]
5304
5305 // immoff must fit in a signed 32-bit int
5306 if (!APInt(64, AM.BaseOffs).isSignedIntN(32))
5307 return false;
5308
5309 if (AM.BaseGV)
5310 return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
5311
5312 switch (AM.Scale) {
5313 case 0: // "r", "r+i" or "i" is allowed
5314 break;
5315 case 1:
5316 if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
5317 return false;
5318 // Otherwise we have r+i.
5319 break;
5320 default:
5321 // No scale > 1 is allowed
5322 return false;
5323 }
5324 return true;
5325}
5326
5327//===----------------------------------------------------------------------===//
5328// NVPTX Inline Assembly Support
5329//===----------------------------------------------------------------------===//
5330
5331/// getConstraintType - Given a constraint letter, return the type of
5332/// constraint it is for this target.
5335 if (Constraint.size() == 1) {
5336 switch (Constraint[0]) {
5337 default:
5338 break;
5339 case 'b':
5340 case 'r':
5341 case 'h':
5342 case 'c':
5343 case 'l':
5344 case 'f':
5345 case 'd':
5346 case 'q':
5347 case '0':
5348 case 'N':
5349 return C_RegisterClass;
5350 }
5351 }
5352 return TargetLowering::getConstraintType(Constraint);
5353}
5354
5355std::pair<unsigned, const TargetRegisterClass *>
5357 StringRef Constraint,
5358 MVT VT) const {
5359 if (Constraint.size() == 1) {
5360 switch (Constraint[0]) {
5361 case 'b':
5362 return std::make_pair(0U, &NVPTX::B1RegClass);
5363 case 'c':
5364 case 'h':
5365 return std::make_pair(0U, &NVPTX::B16RegClass);
5366 case 'r':
5367 case 'f':
5368 return std::make_pair(0U, &NVPTX::B32RegClass);
5369 case 'l':
5370 case 'N':
5371 case 'd':
5372 return std::make_pair(0U, &NVPTX::B64RegClass);
5373 case 'q': {
5374 if (STI.getSmVersion() < 70)
5375 report_fatal_error("Inline asm with 128 bit operands is only "
5376 "supported for sm_70 and higher!");
5377 return std::make_pair(0U, &NVPTX::B128RegClass);
5378 }
5379 }
5380 }
5381 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
5382}
5383
5384//===----------------------------------------------------------------------===//
5385// NVPTX DAG Combining
5386//===----------------------------------------------------------------------===//
5387
5389 CodeGenOptLevel OptLevel) const {
5390 // Always honor command-line argument
5391 if (FMAContractLevelOpt.getNumOccurrences() > 0)
5392 return FMAContractLevelOpt > 0;
5393
5394 // Do not contract if we're not optimizing the code.
5395 if (OptLevel == CodeGenOptLevel::None)
5396 return false;
5397
5398 // Honor TargetOptions flags that explicitly say fusion is okay.
5400 return true;
5401
5402 return false;
5403}
5404
5405static bool isConstZero(const SDValue &Operand) {
5406 const auto *Const = dyn_cast<ConstantSDNode>(Operand);
5407 return Const && Const->getZExtValue() == 0;
5408}
5409
5410/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
5411/// operands N0 and N1. This is a helper for PerformADDCombine that is
5412/// called with the default operands, and if that fails, with commuted
5413/// operands.
5414static SDValue
5417 EVT VT = N0.getValueType();
5418
5419 // Since integer multiply-add costs the same as integer multiply
5420 // but is more costly than integer add, do the fusion only when
5421 // the mul is only used in the add.
5422 // TODO: this may not be true for later architectures, consider relaxing this
5423 if (!N0.getNode()->hasOneUse())
5424 return SDValue();
5425
5426 // fold (add (select cond, 0, (mul a, b)), c)
5427 // -> (select cond, c, (add (mul a, b), c))
5428 //
5429 if (N0.getOpcode() == ISD::SELECT) {
5430 unsigned ZeroOpNum;
5431 if (isConstZero(N0->getOperand(1)))
5432 ZeroOpNum = 1;
5433 else if (isConstZero(N0->getOperand(2)))
5434 ZeroOpNum = 2;
5435 else
5436 return SDValue();
5437
5438 SDValue M = N0->getOperand((ZeroOpNum == 1) ? 2 : 1);
5439 if (M->getOpcode() != ISD::MUL || !M.getNode()->hasOneUse())
5440 return SDValue();
5441
5442 SDLoc DL(N);
5443 SDValue Mul =
5444 DCI.DAG.getNode(ISD::MUL, DL, VT, M->getOperand(0), M->getOperand(1));
5445 SDValue MAD = DCI.DAG.getNode(ISD::ADD, DL, VT, Mul, N1);
5446 return DCI.DAG.getSelect(SDLoc(N), VT, N0->getOperand(0),
5447 ((ZeroOpNum == 1) ? N1 : MAD),
5448 ((ZeroOpNum == 1) ? MAD : N1));
5449 }
5450
5451 return SDValue();
5452}
5453
5454static SDValue
5457 CodeGenOptLevel OptLevel) {
5458 EVT VT = N0.getValueType();
5459 if (N0.getOpcode() == ISD::FMUL) {
5460 const auto *TLI = static_cast<const NVPTXTargetLowering *>(
5461 &DCI.DAG.getTargetLoweringInfo());
5462 if (!(TLI->allowFMA(DCI.DAG.getMachineFunction(), OptLevel) ||
5463 (N->getFlags().hasAllowContract() &&
5464 N0->getFlags().hasAllowContract())))
5465 return SDValue();
5466
5467 // For floating point:
5468 // Do the fusion only when the mul has less than 5 uses and all
5469 // are add.
5470 // The heuristic is that if a use is not an add, then that use
5471 // cannot be fused into fma, therefore mul is still needed anyway.
5472 // If there are more than 4 uses, even if they are all add, fusing
5473 // them will increase register pressue.
5474 //
5475 int numUses = 0;
5476 int nonAddCount = 0;
5477 for (const SDNode *User : N0.getNode()->users()) {
5478 numUses++;
5479 if (User->getOpcode() != ISD::FADD)
5480 ++nonAddCount;
5481 if (numUses >= 5)
5482 return SDValue();
5483 }
5484 if (nonAddCount) {
5485 int orderNo = N->getIROrder();
5486 int orderNo2 = N0.getNode()->getIROrder();
5487 // simple heuristics here for considering potential register
5488 // pressure, the logics here is that the differnce are used
5489 // to measure the distance between def and use, the longer distance
5490 // more likely cause register pressure.
5491 if (orderNo - orderNo2 < 500)
5492 return SDValue();
5493
5494 // Now, check if at least one of the FMUL's operands is live beyond the
5495 // node N, which guarantees that the FMA will not increase register
5496 // pressure at node N.
5497 bool opIsLive = false;
5498 const SDNode *left = N0.getOperand(0).getNode();
5499 const SDNode *right = N0.getOperand(1).getNode();
5500
5501 if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
5502 opIsLive = true;
5503
5504 if (!opIsLive)
5505 for (const SDNode *User : left->users()) {
5506 int orderNo3 = User->getIROrder();
5507 if (orderNo3 > orderNo) {
5508 opIsLive = true;
5509 break;
5510 }
5511 }
5512
5513 if (!opIsLive)
5514 for (const SDNode *User : right->users()) {
5515 int orderNo3 = User->getIROrder();
5516 if (orderNo3 > orderNo) {
5517 opIsLive = true;
5518 break;
5519 }
5520 }
5521
5522 if (!opIsLive)
5523 return SDValue();
5524 }
5525
5526 return DCI.DAG.getNode(ISD::FMA, SDLoc(N), VT, N0.getOperand(0),
5527 N0.getOperand(1), N1);
5528 }
5529
5530 return SDValue();
5531}
5532
5533/// Fold unpacking movs into a load by increasing the number of return values.
5534///
5535/// ex:
5536/// L: v2f16,ch = load <p>
5537/// a: f16 = extractelt L:0, 0
5538/// b: f16 = extractelt L:0, 1
5539/// use(a, b)
5540///
5541/// ...is turned into...
5542///
5543/// L: f16,f16,ch = LoadV2 <p>
5544/// use(L:0, L:1)
5545static SDValue
5547 // Don't run this optimization before the legalizer
5548 if (!DCI.isAfterLegalizeDAG())
5549 return SDValue();
5550
5551 EVT ElementVT = N->getValueType(0);
5552 // Avoid non-packed types and v4i8
5553 if (!NVPTX::isPackedVectorTy(ElementVT) || ElementVT == MVT::v4i8)
5554 return SDValue();
5555
5556 // Check whether all outputs are either used by an extractelt or are
5557 // glue/chain nodes
5558 if (!all_of(N->uses(), [&](SDUse &U) {
5559 // Skip glue, chain nodes
5560 if (U.getValueType() == MVT::Glue || U.getValueType() == MVT::Other)
5561 return true;
5562 if (U.getUser()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
5563 if (N->getOpcode() != ISD::LOAD)
5564 return true;
5565 // Since this is an ISD::LOAD, check all extractelts are used. If
5566 // any are not used, we don't want to defeat another optimization that
5567 // will narrow the load.
5568 //
5569 // For example:
5570 //
5571 // L: v2f16,ch = load <p>
5572 // e0: f16 = extractelt L:0, 0
5573 // e1: f16 = extractelt L:0, 1 <-- unused
5574 // store e0
5575 //
5576 // Can be optimized by DAGCombiner to:
5577 //
5578 // L: f16,ch = load <p>
5579 // store L:0
5580 return !U.getUser()->use_empty();
5581 }
5582
5583 // Otherwise, this use prevents us from splitting a value.
5584 return false;
5585 }))
5586 return SDValue();
5587
5588 auto *LD = cast<MemSDNode>(N);
5589 SDLoc DL(LD);
5590
5591 // the new opcode after we double the number of operands
5592 unsigned Opcode;
5593 SmallVector<SDValue> Operands(LD->ops());
5594 unsigned OldNumOutputs; // non-glue, non-chain outputs
5595 switch (LD->getOpcode()) {
5596 case ISD::LOAD:
5597 OldNumOutputs = 1;
5598 // Any packed type is legal, so the legalizer will not have lowered
5599 // ISD::LOAD -> NVPTXISD::Load (unless it's under-aligned). We have to do it
5600 // here.
5601 Opcode = NVPTXISD::LoadV2;
5602 // append a "full" used bytes mask operand right before the extension type
5603 // operand, signifying that all bytes are used.
5604 Operands.push_back(DCI.DAG.getConstant(UINT32_MAX, DL, MVT::i32));
5605 Operands.push_back(DCI.DAG.getIntPtrConstant(
5606 cast<LoadSDNode>(LD)->getExtensionType(), DL));
5607 break;
5608 case NVPTXISD::LoadV2:
5609 OldNumOutputs = 2;
5610 Opcode = NVPTXISD::LoadV4;
5611 break;
5612 case NVPTXISD::LoadV4:
5613 // V8 is only supported for f32/i32. Don't forget, we're not changing the
5614 // load size here. This is already a 256-bit load.
5615 if (ElementVT != MVT::v2f32 && ElementVT != MVT::v2i32)
5616 return SDValue();
5617 OldNumOutputs = 4;
5618 Opcode = NVPTXISD::LoadV8;
5619 break;
5620 case NVPTXISD::LoadV8:
5621 // PTX doesn't support the next doubling of outputs
5622 return SDValue();
5623 }
5624
5625 // the non-glue, non-chain outputs in the new load
5626 const unsigned NewNumOutputs = OldNumOutputs * 2;
5627 SmallVector<EVT> NewVTs(NewNumOutputs, ElementVT.getVectorElementType());
5628 // add remaining chain and glue values
5629 NewVTs.append(LD->value_begin() + OldNumOutputs, LD->value_end());
5630
5631 // Create the new load
5632 SDValue NewLoad = DCI.DAG.getMemIntrinsicNode(
5633 Opcode, DL, DCI.DAG.getVTList(NewVTs), Operands, LD->getMemoryVT(),
5634 LD->getMemOperand());
5635
5636 // Now we use a combination of BUILD_VECTORs and a MERGE_VALUES node to keep
5637 // the outputs the same. These nodes will be optimized away in later
5638 // DAGCombiner iterations.
5640 for (unsigned I : seq(OldNumOutputs))
5641 Results.push_back(DCI.DAG.getBuildVector(
5642 ElementVT, DL, {NewLoad.getValue(I * 2), NewLoad.getValue(I * 2 + 1)}));
5643 // Add remaining chain and glue nodes
5644 for (unsigned I : seq(NewLoad->getNumValues() - NewNumOutputs))
5645 Results.push_back(NewLoad.getValue(NewNumOutputs + I));
5646
5647 return DCI.DAG.getMergeValues(Results, DL);
5648}
5649
5650/// Fold packing movs into a store.
5651///
5652/// ex:
5653/// v1: v2f16 = BUILD_VECTOR a:f16, b:f16
5654/// v2: v2f16 = BUILD_VECTOR c:f16, d:f16
5655/// StoreV2 v1, v2
5656///
5657/// ...is turned into...
5658///
5659/// StoreV4 a, b, c, d
5662 unsigned Front, unsigned Back) {
5663 // We want to run this as late as possible since other optimizations may
5664 // eliminate the BUILD_VECTORs.
5665 if (!DCI.isAfterLegalizeDAG())
5666 return SDValue();
5667
5668 // Get the type of the operands being stored.
5669 EVT ElementVT = N->getOperand(Front).getValueType();
5670
5671 // Avoid non-packed types and v4i8
5672 if (!NVPTX::isPackedVectorTy(ElementVT) || ElementVT == MVT::v4i8)
5673 return SDValue();
5674
5675 auto *ST = cast<MemSDNode>(N);
5676
5677 // The new opcode after we double the number of operands.
5678 unsigned Opcode;
5679 switch (N->getOpcode()) {
5680 case ISD::STORE:
5681 // Any packed type is legal, so the legalizer will not have lowered
5682 // ISD::STORE -> NVPTXISD::Store (unless it's under-aligned). We have to do
5683 // it here.
5684 Opcode = NVPTXISD::StoreV2;
5685 break;
5686 case NVPTXISD::StoreV2:
5687 Opcode = NVPTXISD::StoreV4;
5688 break;
5689 case NVPTXISD::StoreV4:
5690 // V8 is only supported for f32/i32. Don't forget, we're not changing the
5691 // store size here. This is already a 256-bit store.
5692 if (ElementVT != MVT::v2f32 && ElementVT != MVT::v2i32)
5693 return SDValue();
5694 Opcode = NVPTXISD::StoreV8;
5695 break;
5696 case NVPTXISD::StoreV8:
5697 // PTX doesn't support the next doubling of operands
5698 return SDValue();
5699 default:
5700 llvm_unreachable("Unhandled store opcode");
5701 }
5702
5703 // Scan the operands and if they're all BUILD_VECTORs, we'll have gathered
5704 // their elements.
5705 SmallVector<SDValue, 4> Operands(N->ops().take_front(Front));
5706 for (SDValue BV : N->ops().drop_front(Front).drop_back(Back)) {
5707 if (BV.getOpcode() != ISD::BUILD_VECTOR)
5708 return SDValue();
5709
5710 // If the operand has multiple uses, this optimization can increase register
5711 // pressure.
5712 if (!BV.hasOneUse())
5713 return SDValue();
5714
5715 // DAGCombiner visits nodes bottom-up. Check the BUILD_VECTOR operands for
5716 // any signs they may be folded by some other pattern or rule.
5717 for (SDValue Op : BV->ops()) {
5718 // Peek through bitcasts
5719 if (Op.getOpcode() == ISD::BITCAST)
5720 Op = Op.getOperand(0);
5721
5722 // This may be folded into a PRMT.
5723 if (Op.getValueType() == MVT::i16 && Op.getOpcode() == ISD::TRUNCATE &&
5724 Op->getOperand(0).getValueType() == MVT::i32)
5725 return SDValue();
5726
5727 // This may be folded into cvt.bf16x2
5728 if (Op.getOpcode() == ISD::FP_ROUND)
5729 return SDValue();
5730 }
5731 Operands.append({BV.getOperand(0), BV.getOperand(1)});
5732 }
5733 Operands.append(N->op_end() - Back, N->op_end());
5734
5735 // Now we replace the store
5736 return DCI.DAG.getMemIntrinsicNode(Opcode, SDLoc(N), N->getVTList(), Operands,
5737 ST->getMemoryVT(), ST->getMemOperand());
5738}
5739
5741 const NVPTXSubtarget &STI) {
5742
5743 if (DCI.isBeforeLegalize() && N->getOpcode() == ISD::STORE) {
5744 // Here is our chance to custom lower a store with a non-simple type.
5745 // Unfortunately, we can't do this in the legalizer because there is no
5746 // way to setOperationAction for an non-simple type.
5748 if (!ST->getValue().getValueType().isSimple())
5749 return lowerSTOREVector(SDValue(ST, 0), DCI.DAG, STI);
5750 }
5751
5752 return combinePackingMovIntoStore(N, DCI, 1, 2);
5753}
5754
5756 const NVPTXSubtarget &STI) {
5757 if (DCI.isBeforeLegalize() && N->getOpcode() == ISD::LOAD) {
5758 // Here is our chance to custom lower a load with a non-simple type.
5759 // Unfortunately, we can't do this in the legalizer because there is no
5760 // way to setOperationAction for an non-simple type.
5761 if (!N->getValueType(0).isSimple())
5762 return lowerLoadVector(N, DCI.DAG, STI);
5763 }
5764
5765 return combineUnpackingMovIntoLoad(N, DCI);
5766}
5767
5768/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
5769///
5772 CodeGenOptLevel OptLevel) {
5773 if (OptLevel == CodeGenOptLevel::None)
5774 return SDValue();
5775
5776 SDValue N0 = N->getOperand(0);
5777 SDValue N1 = N->getOperand(1);
5778
5779 // Skip non-integer, non-scalar case
5780 EVT VT = N0.getValueType();
5781 if (VT.isVector() || VT != MVT::i32)
5782 return SDValue();
5783
5784 // First try with the default operand order.
5785 if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI))
5786 return Result;
5787
5788 // If that didn't work, try again with the operands commuted.
5789 return PerformADDCombineWithOperands(N, N1, N0, DCI);
5790}
5791
5792/// PerformFADDCombine - Target-specific dag combine xforms for ISD::FADD.
5793///
5796 CodeGenOptLevel OptLevel) {
5797 SDValue N0 = N->getOperand(0);
5798 SDValue N1 = N->getOperand(1);
5799
5800 EVT VT = N0.getValueType();
5801 if (VT.isVector() || !(VT == MVT::f32 || VT == MVT::f64))
5802 return SDValue();
5803
5804 // First try with the default operand order.
5805 if (SDValue Result = PerformFADDCombineWithOperands(N, N0, N1, DCI, OptLevel))
5806 return Result;
5807
5808 // If that didn't work, try again with the operands commuted.
5809 return PerformFADDCombineWithOperands(N, N1, N0, DCI, OptLevel);
5810}
5811
5812/// Get 3-input version of a 2-input min/max opcode
5813static unsigned getMinMax3Opcode(unsigned MinMax2Opcode) {
5814 switch (MinMax2Opcode) {
5815 case ISD::FMAXNUM:
5816 case ISD::FMAXIMUMNUM:
5817 return NVPTXISD::FMAXNUM3;
5818 case ISD::FMINNUM:
5819 case ISD::FMINIMUMNUM:
5820 return NVPTXISD::FMINNUM3;
5821 case ISD::FMAXIMUM:
5822 return NVPTXISD::FMAXIMUM3;
5823 case ISD::FMINIMUM:
5824 return NVPTXISD::FMINIMUM3;
5825 default:
5826 llvm_unreachable("Invalid 2-input min/max opcode");
5827 }
5828}
5829
5830/// PerformFMinMaxCombine - Combine (fmaxnum (fmaxnum a, b), c) into
5831/// (fmaxnum3 a, b, c). Also covers other llvm min/max intrinsics.
5834 unsigned PTXVersion, unsigned SmVersion) {
5835
5836 // 3-input min/max requires PTX 8.8+ and SM_100+, and only supports f32s
5837 EVT VT = N->getValueType(0);
5838 if (VT != MVT::f32 || PTXVersion < 88 || SmVersion < 100)
5839 return SDValue();
5840
5841 SDValue Op0 = N->getOperand(0);
5842 SDValue Op1 = N->getOperand(1);
5843 unsigned MinMaxOp2 = N->getOpcode();
5844 unsigned MinMaxOp3 = getMinMax3Opcode(MinMaxOp2);
5845
5846 if (Op0.getOpcode() == MinMaxOp2 && Op0.hasOneUse()) {
5847 // (maxnum (maxnum a, b), c) -> (maxnum3 a, b, c)
5848 SDValue A = Op0.getOperand(0);
5849 SDValue B = Op0.getOperand(1);
5850 SDValue C = Op1;
5851 return DCI.DAG.getNode(MinMaxOp3, SDLoc(N), VT, A, B, C, N->getFlags());
5852 } else if (Op1.getOpcode() == MinMaxOp2 && Op1.hasOneUse()) {
5853 // (maxnum a, (maxnum b, c)) -> (maxnum3 a, b, c)
5854 SDValue A = Op0;
5855 SDValue B = Op1.getOperand(0);
5856 SDValue C = Op1.getOperand(1);
5857 return DCI.DAG.getNode(MinMaxOp3, SDLoc(N), VT, A, B, C, N->getFlags());
5858 }
5859 return SDValue();
5860}
5861
5864 CodeGenOptLevel OptLevel) {
5865 assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM);
5866
5867 // Don't do anything at less than -O2.
5868 if (OptLevel < CodeGenOptLevel::Default)
5869 return SDValue();
5870
5871 SelectionDAG &DAG = DCI.DAG;
5872 SDLoc DL(N);
5873 EVT VT = N->getValueType(0);
5874 bool IsSigned = N->getOpcode() == ISD::SREM;
5875 unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV;
5876
5877 const SDValue &Num = N->getOperand(0);
5878 const SDValue &Den = N->getOperand(1);
5879
5880 for (const SDNode *U : Num->users()) {
5881 if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
5882 U->getOperand(1) == Den) {
5883 // Num % Den -> Num - (Num / Den) * Den
5884 return DAG.getNode(ISD::SUB, DL, VT, Num,
5885 DAG.getNode(ISD::MUL, DL, VT,
5886 DAG.getNode(DivOpc, DL, VT, Num, Den),
5887 Den));
5888 }
5889 }
5890 return SDValue();
5891}
5892
5893// (sign_extend|zero_extend (mul|shl) x, y) -> (mul.wide x, y)
5895 CodeGenOptLevel OptLevel) {
5896 if (OptLevel == CodeGenOptLevel::None)
5897 return SDValue();
5898
5899 SDValue Op = N->getOperand(0);
5900 if (!Op.hasOneUse())
5901 return SDValue();
5902 EVT ToVT = N->getValueType(0);
5903 EVT FromVT = Op.getValueType();
5904 if (!((ToVT == MVT::i32 && FromVT == MVT::i16) ||
5905 (ToVT == MVT::i64 && FromVT == MVT::i32)))
5906 return SDValue();
5907 if (!(Op.getOpcode() == ISD::MUL ||
5908 (Op.getOpcode() == ISD::SHL && isa<ConstantSDNode>(Op.getOperand(1)))))
5909 return SDValue();
5910
5911 SDLoc DL(N);
5912 unsigned ExtOpcode = N->getOpcode();
5913 unsigned Opcode = 0;
5914 if (ExtOpcode == ISD::SIGN_EXTEND && Op->getFlags().hasNoSignedWrap())
5915 Opcode = NVPTXISD::MUL_WIDE_SIGNED;
5916 else if (ExtOpcode == ISD::ZERO_EXTEND && Op->getFlags().hasNoUnsignedWrap())
5917 Opcode = NVPTXISD::MUL_WIDE_UNSIGNED;
5918 else
5919 return SDValue();
5920 SDValue RHS = Op.getOperand(1);
5921 if (Op.getOpcode() == ISD::SHL) {
5922 const auto ShiftAmt = Op.getConstantOperandVal(1);
5923 const auto MulVal = APInt(ToVT.getSizeInBits(), 1) << ShiftAmt;
5924 RHS = DCI.DAG.getConstant(MulVal, DL, ToVT);
5925 }
5926 return DCI.DAG.getNode(Opcode, DL, ToVT, Op.getOperand(0), RHS);
5927}
5928
5934
5935/// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
5936/// that can be demoted to \p OptSize bits without loss of information. The
5937/// signedness of the operand, if determinable, is placed in \p S.
5939 unsigned OptSize,
5940 OperandSignedness &S) {
5941 S = Unknown;
5942
5943 if (Op.getOpcode() == ISD::SIGN_EXTEND ||
5944 Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
5945 EVT OrigVT = Op.getOperand(0).getValueType();
5946 if (OrigVT.getFixedSizeInBits() <= OptSize) {
5947 S = Signed;
5948 return true;
5949 }
5950 } else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
5951 EVT OrigVT = Op.getOperand(0).getValueType();
5952 if (OrigVT.getFixedSizeInBits() <= OptSize) {
5953 S = Unsigned;
5954 return true;
5955 }
5956 }
5957
5958 return false;
5959}
5960
5961/// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
5962/// be demoted to \p OptSize bits without loss of information. If the operands
5963/// contain a constant, it should appear as the RHS operand. The signedness of
5964/// the operands is placed in \p IsSigned.
5966 unsigned OptSize,
5967 bool &IsSigned) {
5968 OperandSignedness LHSSign;
5969
5970 // The LHS operand must be a demotable op
5971 if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
5972 return false;
5973
5974 // We should have been able to determine the signedness from the LHS
5975 if (LHSSign == Unknown)
5976 return false;
5977
5978 IsSigned = (LHSSign == Signed);
5979
5980 // The RHS can be a demotable op or a constant
5982 const APInt &Val = CI->getAPIntValue();
5983 if (LHSSign == Unsigned) {
5984 return Val.isIntN(OptSize);
5985 } else {
5986 return Val.isSignedIntN(OptSize);
5987 }
5988 } else {
5989 OperandSignedness RHSSign;
5990 if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
5991 return false;
5992
5993 return LHSSign == RHSSign;
5994 }
5995}
5996
5997/// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
5998/// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
5999/// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
6000/// amount.
6003 EVT MulType = N->getValueType(0);
6004 if (MulType != MVT::i32 && MulType != MVT::i64) {
6005 return SDValue();
6006 }
6007
6008 SDLoc DL(N);
6009 unsigned OptSize = MulType.getSizeInBits() >> 1;
6010 SDValue LHS = N->getOperand(0);
6011 SDValue RHS = N->getOperand(1);
6012
6013 // Canonicalize the multiply so the constant (if any) is on the right
6014 if (N->getOpcode() == ISD::MUL) {
6015 if (isa<ConstantSDNode>(LHS)) {
6016 std::swap(LHS, RHS);
6017 }
6018 }
6019
6020 // If we have a SHL, determine the actual multiply amount
6021 if (N->getOpcode() == ISD::SHL) {
6023 if (!ShlRHS) {
6024 return SDValue();
6025 }
6026
6027 APInt ShiftAmt = ShlRHS->getAPIntValue();
6028 unsigned BitWidth = MulType.getSizeInBits();
6029 if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
6030 APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
6031 RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
6032 } else {
6033 return SDValue();
6034 }
6035 }
6036
6037 bool Signed;
6038 // Verify that our operands are demotable
6039 if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
6040 return SDValue();
6041 }
6042
6043 EVT DemotedVT;
6044 if (MulType == MVT::i32) {
6045 DemotedVT = MVT::i16;
6046 } else {
6047 DemotedVT = MVT::i32;
6048 }
6049
6050 // Truncate the operands to the correct size. Note that these are just for
6051 // type consistency and will (likely) be eliminated in later phases.
6052 SDValue TruncLHS =
6053 DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
6054 SDValue TruncRHS =
6055 DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
6056
6057 unsigned Opc;
6058 if (Signed) {
6059 Opc = NVPTXISD::MUL_WIDE_SIGNED;
6060 } else {
6061 Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
6062 }
6063
6064 return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
6065}
6066
6067static bool isConstOne(const SDValue &Operand) {
6068 const auto *Const = dyn_cast<ConstantSDNode>(Operand);
6069 return Const && Const->getZExtValue() == 1;
6070}
6071
6073 if (Add->getOpcode() != ISD::ADD)
6074 return SDValue();
6075
6076 if (isConstOne(Add->getOperand(0)))
6077 return Add->getOperand(1);
6078
6079 if (isConstOne(Add->getOperand(1)))
6080 return Add->getOperand(0);
6081
6082 return SDValue();
6083}
6084
6087
6089 SDValue Mul = DCI.DAG.getNode(ISD::MUL, DL, VT, X, Y);
6090 return DCI.DAG.getNode(ISD::ADD, DL, VT, Mul, X);
6091 }
6092
6093 return SDValue();
6094}
6095
6097 SDLoc DL,
6099 if (Select->getOpcode() != ISD::SELECT)
6100 return SDValue();
6101
6102 SDValue Cond = Select->getOperand(0);
6103
6104 unsigned ConstOpNo;
6105 if (isConstOne(Select->getOperand(1)))
6106 ConstOpNo = 1;
6107 else if (isConstOne(Select->getOperand(2)))
6108 ConstOpNo = 2;
6109 else
6110 return SDValue();
6111
6112 SDValue Y = Select->getOperand((ConstOpNo == 1) ? 2 : 1);
6113
6114 // Do not combine if the resulting sequence is not obviously profitable.
6116 return SDValue();
6117
6118 SDValue NewMul = DCI.DAG.getNode(ISD::MUL, DL, VT, X, Y);
6119
6120 return DCI.DAG.getNode(ISD::SELECT, DL, VT, Cond,
6121 (ConstOpNo == 1) ? X : NewMul,
6122 (ConstOpNo == 1) ? NewMul : X);
6123}
6124
6125static SDValue
6128
6129 EVT VT = N0.getValueType();
6130 if (VT.isVector())
6131 return SDValue();
6132
6133 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
6134 return SDValue();
6135
6136 SDLoc DL(N);
6137
6138 // (mul x, (add y, 1)) -> (add (mul x, y), x)
6139 if (SDValue Res = combineMADConstOne(N0, N1, VT, DL, DCI))
6140 return Res;
6141 if (SDValue Res = combineMADConstOne(N1, N0, VT, DL, DCI))
6142 return Res;
6143
6144 // (mul x, (select y, 1)) -> (select (mul x, y), x)
6145 if (SDValue Res = combineMulSelectConstOne(N0, N1, VT, DL, DCI))
6146 return Res;
6147 if (SDValue Res = combineMulSelectConstOne(N1, N0, VT, DL, DCI))
6148 return Res;
6149
6150 return SDValue();
6151}
6152
6153/// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
6156 CodeGenOptLevel OptLevel) {
6157 if (OptLevel == CodeGenOptLevel::None)
6158 return SDValue();
6159
6160 if (SDValue Ret = TryMULWIDECombine(N, DCI))
6161 return Ret;
6162
6163 SDValue N0 = N->getOperand(0);
6164 SDValue N1 = N->getOperand(1);
6165 return PerformMULCombineWithOperands(N, N0, N1, DCI);
6166}
6167
6168/// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
6171 CodeGenOptLevel OptLevel) {
6172 if (OptLevel > CodeGenOptLevel::None) {
6173 // Try mul.wide combining at OptLevel > 0
6174 if (SDValue Ret = TryMULWIDECombine(N, DCI))
6175 return Ret;
6176 }
6177
6178 return SDValue();
6179}
6180
6183 unsigned int SmVersion) {
6184 EVT CCType = N->getValueType(0);
6185 SDValue A = N->getOperand(0);
6186 SDValue B = N->getOperand(1);
6187
6188 EVT AType = A.getValueType();
6189 if (!(CCType == MVT::v2i1 && (AType == MVT::v2f16 || AType == MVT::v2bf16)))
6190 return SDValue();
6191
6192 if (A.getValueType() == MVT::v2bf16 && SmVersion < 90)
6193 return SDValue();
6194
6195 SDLoc DL(N);
6196 // setp.f16x2 returns two scalar predicates, which we need to
6197 // convert back to v2i1. The returned result will be scalarized by
6198 // the legalizer, but the comparison will remain a single vector
6199 // instruction.
6200 SDValue CCNode = DCI.DAG.getNode(
6201 A.getValueType() == MVT::v2f16 ? NVPTXISD::SETP_F16X2
6203 DL, DCI.DAG.getVTList(MVT::i1, MVT::i1), {A, B, N->getOperand(2)});
6204 return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0),
6205 CCNode.getValue(1));
6206}
6207
6210 SDValue Vector = N->getOperand(0);
6211 if (Vector->getOpcode() == ISD::FREEZE)
6212 Vector = Vector->getOperand(0);
6213 SDLoc DL(N);
6214 EVT VectorVT = Vector.getValueType();
6215 if (Vector->getOpcode() == ISD::LOAD && VectorVT.isSimple() &&
6216 IsPTXVectorType(VectorVT.getSimpleVT()))
6217 return SDValue(); // Native vector loads already combine nicely w/
6218 // extract_vector_elt.
6219 // Don't mess with singletons or packed types (v2*32, v2*16, v4i8 and v8i8),
6220 // we already handle them OK.
6221 if (VectorVT.getVectorNumElements() == 1 ||
6222 NVPTX::isPackedVectorTy(VectorVT) || VectorVT == MVT::v8i8)
6223 return SDValue();
6224
6225 // Don't mess with undef values as sra may be simplified to 0, not undef.
6226 if (Vector->isUndef() || ISD::allOperandsUndef(Vector.getNode()))
6227 return SDValue();
6228
6229 uint64_t VectorBits = VectorVT.getSizeInBits();
6230 // We only handle the types we can extract in-register.
6231 if (!(VectorBits == 16 || VectorBits == 32 || VectorBits == 64))
6232 return SDValue();
6233
6234 ConstantSDNode *Index = dyn_cast<ConstantSDNode>(N->getOperand(1));
6235 // Index == 0 is handled by generic DAG combiner.
6236 if (!Index || Index->getZExtValue() == 0)
6237 return SDValue();
6238
6239 MVT IVT = MVT::getIntegerVT(VectorBits);
6240 EVT EltVT = VectorVT.getVectorElementType();
6241 EVT EltIVT = EltVT.changeTypeToInteger();
6242 uint64_t EltBits = EltVT.getScalarSizeInBits();
6243
6244 SDValue Result = DCI.DAG.getNode(
6245 ISD::TRUNCATE, DL, EltIVT,
6246 DCI.DAG.getNode(
6247 ISD::SRA, DL, IVT, DCI.DAG.getNode(ISD::BITCAST, DL, IVT, Vector),
6248 DCI.DAG.getConstant(Index->getZExtValue() * EltBits, DL, IVT)));
6249
6250 // If element has non-integer type, bitcast it back to the expected type.
6251 if (EltVT != EltIVT)
6252 Result = DCI.DAG.getNode(ISD::BITCAST, DL, EltVT, Result);
6253 // Past legalizer, we may need to extent i8 -> i16 to match the register type.
6254 if (EltVT != N->getValueType(0))
6255 Result = DCI.DAG.getNode(ISD::ANY_EXTEND, DL, N->getValueType(0), Result);
6256
6257 return Result;
6258}
6259
6262 SDValue VA = N->getOperand(1);
6263 EVT VectorVT = VA.getValueType();
6264 if (VectorVT != MVT::v4i8)
6265 return SDValue();
6266
6267 // We need to split vselect into individual per-element operations Because we
6268 // use BFE/BFI instruction for byte extraction/insertion, we do end up with
6269 // 32-bit values, so we may as well do comparison as i32 to avoid conversions
6270 // to/from i16 normally used for i8 values.
6272 SDLoc DL(N);
6273 SDValue VCond = N->getOperand(0);
6274 SDValue VB = N->getOperand(2);
6275 for (int I = 0; I < 4; ++I) {
6276 SDValue C = DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i1, VCond,
6277 DCI.DAG.getConstant(I, DL, MVT::i32));
6278 SDValue EA = DCI.DAG.getAnyExtOrTrunc(
6279 DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, VA,
6280 DCI.DAG.getConstant(I, DL, MVT::i32)),
6281 DL, MVT::i32);
6282 SDValue EB = DCI.DAG.getAnyExtOrTrunc(
6283 DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i8, VB,
6284 DCI.DAG.getConstant(I, DL, MVT::i32)),
6285 DL, MVT::i32);
6286 E.push_back(DCI.DAG.getAnyExtOrTrunc(
6287 DCI.DAG.getNode(ISD::SELECT, DL, MVT::i32, C, EA, EB), DL, MVT::i8));
6288 }
6289 return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v4i8, E);
6290}
6291
6292static SDValue
6294 auto VT = N->getValueType(0);
6295 if (!DCI.isAfterLegalizeDAG() ||
6296 // only process v2*16 types
6297 !(NVPTX::isPackedVectorTy(VT) && VT.is32BitVector() &&
6298 VT.getVectorNumElements() == 2))
6299 return SDValue();
6300
6301 auto Op0 = N->getOperand(0);
6302 auto Op1 = N->getOperand(1);
6303
6304 // Start out by assuming we want to take the lower 2 bytes of each i32
6305 // operand.
6306 uint64_t Op0Bytes = 0x10;
6307 uint64_t Op1Bytes = 0x54;
6308
6309 std::pair<SDValue *, uint64_t *> OpData[2] = {{&Op0, &Op0Bytes},
6310 {&Op1, &Op1Bytes}};
6311
6312 // Check that each operand is an i16, truncated from an i32 operand. We'll
6313 // select individual bytes from those original operands. Optionally, fold in a
6314 // shift right of that original operand.
6315 for (auto &[Op, OpBytes] : OpData) {
6316 // Eat up any bitcast
6317 if (Op->getOpcode() == ISD::BITCAST)
6318 *Op = Op->getOperand(0);
6319
6320 if (!(Op->getValueType() == MVT::i16 && Op->getOpcode() == ISD::TRUNCATE &&
6321 Op->getOperand(0).getValueType() == MVT::i32))
6322 return SDValue();
6323
6324 // If the truncate has multiple uses, this optimization can increase
6325 // register pressure
6326 if (!Op->hasOneUse())
6327 return SDValue();
6328
6329 *Op = Op->getOperand(0);
6330
6331 // Optionally, fold in a shift-right of the original operand and let permute
6332 // pick the two higher bytes of the original value directly.
6333 if (Op->getOpcode() == ISD::SRL && isa<ConstantSDNode>(Op->getOperand(1))) {
6334 if (cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue() == 16) {
6335 // Shift the PRMT byte selector to pick upper bytes from each respective
6336 // value, instead of the lower ones: 0x10 -> 0x32, 0x54 -> 0x76
6337 assert((*OpBytes == 0x10 || *OpBytes == 0x54) &&
6338 "PRMT selector values out of range");
6339 *OpBytes += 0x22;
6340 *Op = Op->getOperand(0);
6341 }
6342 }
6343 }
6344
6345 SDLoc DL(N);
6346 auto &DAG = DCI.DAG;
6347
6348 auto PRMT =
6349 getPRMT(DAG.getBitcast(MVT::i32, Op0), DAG.getBitcast(MVT::i32, Op1),
6350 (Op1Bytes << 8) | Op0Bytes, DL, DAG);
6351 return DAG.getBitcast(VT, PRMT);
6352}
6353
6356 auto *ASCN1 = cast<AddrSpaceCastSDNode>(N);
6357
6358 if (auto *ASCN2 = dyn_cast<AddrSpaceCastSDNode>(ASCN1->getOperand(0))) {
6359 assert(ASCN2->getDestAddressSpace() == ASCN1->getSrcAddressSpace());
6360
6361 // Fold asc[B -> A](asc[A -> B](x)) -> x
6362 if (ASCN1->getDestAddressSpace() == ASCN2->getSrcAddressSpace())
6363 return ASCN2->getOperand(0);
6364 }
6365
6366 return SDValue();
6367}
6368
6369// Given a constant selector value and a prmt mode, return the selector value
6370// normalized to the generic prmt mode. See the PTX ISA documentation for more
6371// details:
6372// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-prmt
6373static APInt getPRMTSelector(const APInt &Selector, unsigned Mode) {
6374 assert(Selector.getBitWidth() == 32 && "PRMT must have i32 operands");
6375
6377 return Selector;
6378
6379 const unsigned V = Selector.trunc(2).getZExtValue();
6380
6381 const auto GetSelector = [](unsigned S0, unsigned S1, unsigned S2,
6382 unsigned S3) {
6383 return APInt(32, S0 | (S1 << 4) | (S2 << 8) | (S3 << 12));
6384 };
6385
6386 switch (Mode) {
6388 return GetSelector(V, V + 1, V + 2, V + 3);
6390 return GetSelector(V, (V - 1) & 7, (V - 2) & 7, (V - 3) & 7);
6392 return GetSelector(V, V, V, V);
6394 return GetSelector(V, std::max(V, 1U), std::max(V, 2U), 3U);
6396 return GetSelector(0, std::min(V, 1U), std::min(V, 2U), V);
6398 unsigned V1 = (V & 1) << 1;
6399 return GetSelector(V1, V1 + 1, V1, V1 + 1);
6400 }
6401 default:
6402 llvm_unreachable("Invalid PRMT mode");
6403 }
6404}
6405
6406static APInt computePRMT(APInt A, APInt B, APInt Selector, unsigned Mode) {
6407 assert(A.getBitWidth() == 32 && B.getBitWidth() == 32 &&
6408 Selector.getBitWidth() == 32 && "PRMT must have i32 operands");
6409 // {b, a} = {{b7, b6, b5, b4}, {b3, b2, b1, b0}}
6410 APInt BitField = B.concat(A);
6411 APInt SelectorVal = getPRMTSelector(Selector, Mode);
6412 APInt Result(32, 0);
6413 for (unsigned I : llvm::seq(4U)) {
6414 APInt Sel = SelectorVal.extractBits(4, I * 4);
6415 unsigned Idx = Sel.getLoBits(3).getZExtValue();
6416 unsigned Sign = Sel.getHiBits(1).getZExtValue();
6417 APInt Byte = BitField.extractBits(8, Idx * 8);
6418 if (Sign)
6419 Byte = Byte.ashr(8);
6420 Result.insertBits(Byte, I * 8);
6421 }
6422 return Result;
6423}
6424
6426 CodeGenOptLevel OptLevel) {
6427 if (OptLevel == CodeGenOptLevel::None)
6428 return SDValue();
6429
6430 // Constant fold PRMT
6431 if (isa<ConstantSDNode>(N->getOperand(0)) &&
6432 isa<ConstantSDNode>(N->getOperand(1)) &&
6433 isa<ConstantSDNode>(N->getOperand(2)))
6434 return DCI.DAG.getConstant(computePRMT(N->getConstantOperandAPInt(0),
6435 N->getConstantOperandAPInt(1),
6436 N->getConstantOperandAPInt(2),
6437 N->getConstantOperandVal(3)),
6438 SDLoc(N), N->getValueType(0));
6439 return SDValue();
6440}
6441
6442// During call lowering we wrap the return values in a ProxyReg node which
6443// depend on the chain value produced by the completed call. This ensures that
6444// the full call is emitted in cases where libcalls are used to legalize
6445// operations. To improve the functioning of other DAG combines we pull all
6446// operations we can through one of these nodes, ensuring that the ProxyReg
6447// directly wraps a load. That is:
6448//
6449// (ProxyReg (zext (load retval0))) => (zext (ProxyReg (load retval0)))
6450//
6453 switch (R.getOpcode()) {
6454 case ISD::TRUNCATE:
6455 case ISD::ANY_EXTEND:
6456 case ISD::SIGN_EXTEND:
6457 case ISD::ZERO_EXTEND:
6458 case ISD::BITCAST: {
6459 if (SDValue V = sinkProxyReg(R.getOperand(0), Chain, DCI))
6460 return DCI.DAG.getNode(R.getOpcode(), SDLoc(R), R.getValueType(), V);
6461 return SDValue();
6462 }
6463 case ISD::SHL:
6464 case ISD::SRL:
6465 case ISD::SRA:
6466 case ISD::OR: {
6467 if (SDValue A = sinkProxyReg(R.getOperand(0), Chain, DCI))
6468 if (SDValue B = sinkProxyReg(R.getOperand(1), Chain, DCI))
6469 return DCI.DAG.getNode(R.getOpcode(), SDLoc(R), R.getValueType(), A, B);
6470 return SDValue();
6471 }
6472 case ISD::Constant:
6473 return R;
6474 case ISD::LOAD:
6475 case NVPTXISD::LoadV2:
6476 case NVPTXISD::LoadV4: {
6477 return DCI.DAG.getNode(NVPTXISD::ProxyReg, SDLoc(R), R.getValueType(),
6478 {Chain, R});
6479 }
6480 case ISD::BUILD_VECTOR: {
6481 if (DCI.isBeforeLegalize())
6482 return SDValue();
6483
6485 for (auto &Op : R->ops()) {
6486 SDValue V = sinkProxyReg(Op, Chain, DCI);
6487 if (!V)
6488 return SDValue();
6489 Ops.push_back(V);
6490 }
6491 return DCI.DAG.getNode(ISD::BUILD_VECTOR, SDLoc(R), R.getValueType(), Ops);
6492 }
6494 if (DCI.isBeforeLegalize())
6495 return SDValue();
6496
6497 if (SDValue V = sinkProxyReg(R.getOperand(0), Chain, DCI))
6499 R.getValueType(), V, R.getOperand(1));
6500 return SDValue();
6501 }
6502 default:
6503 return SDValue();
6504 }
6505}
6506
6509
6510 SDValue Chain = N->getOperand(0);
6511 SDValue Reg = N->getOperand(1);
6512
6513 // If the ProxyReg is not wrapping a load, try to pull the operations through
6514 // the ProxyReg.
6515 if (Reg.getOpcode() != ISD::LOAD) {
6516 if (SDValue V = sinkProxyReg(Reg, Chain, DCI))
6517 return V;
6518 }
6519
6520 return SDValue();
6521}
6522
6523SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
6524 DAGCombinerInfo &DCI) const {
6526 switch (N->getOpcode()) {
6527 default:
6528 break;
6529 case ISD::ADD:
6530 return PerformADDCombine(N, DCI, OptLevel);
6531 case ISD::ADDRSPACECAST:
6532 return combineADDRSPACECAST(N, DCI);
6533 case ISD::SIGN_EXTEND:
6534 case ISD::ZERO_EXTEND:
6535 return combineMulWide(N, DCI, OptLevel);
6536 case ISD::BUILD_VECTOR:
6537 return PerformBUILD_VECTORCombine(N, DCI);
6539 return PerformEXTRACTCombine(N, DCI);
6540 case ISD::FADD:
6541 return PerformFADDCombine(N, DCI, OptLevel);
6542 case ISD::FMAXNUM:
6543 case ISD::FMINNUM:
6544 case ISD::FMAXIMUM:
6545 case ISD::FMINIMUM:
6546 case ISD::FMAXIMUMNUM:
6547 case ISD::FMINIMUMNUM:
6548 return PerformFMinMaxCombine(N, DCI, STI.getPTXVersion(),
6549 STI.getSmVersion());
6550 case ISD::LOAD:
6551 case NVPTXISD::LoadV2:
6552 case NVPTXISD::LoadV4:
6553 return combineLOAD(N, DCI, STI);
6554 case ISD::MUL:
6555 return PerformMULCombine(N, DCI, OptLevel);
6556 case NVPTXISD::PRMT:
6557 return combinePRMT(N, DCI, OptLevel);
6558 case NVPTXISD::ProxyReg:
6559 return combineProxyReg(N, DCI);
6560 case ISD::SETCC:
6561 return PerformSETCCCombine(N, DCI, STI.getSmVersion());
6562 case ISD::SHL:
6563 return PerformSHLCombine(N, DCI, OptLevel);
6564 case ISD::SREM:
6565 case ISD::UREM:
6566 return PerformREMCombine(N, DCI, OptLevel);
6567 case ISD::STORE:
6568 case NVPTXISD::StoreV2:
6569 case NVPTXISD::StoreV4:
6570 return combineSTORE(N, DCI, STI);
6571 case ISD::VSELECT:
6572 return PerformVSELECTCombine(N, DCI);
6573 }
6574 return SDValue();
6575}
6576
6579 // Handle bitcasting to v2i8 without hitting the default promotion
6580 // strategy which goes through stack memory.
6581 SDValue Op(Node, 0);
6582 EVT ToVT = Op->getValueType(0);
6583 if (ToVT != MVT::v2i8) {
6584 return;
6585 }
6586
6587 // Bitcast to i16 and unpack elements into a vector
6588 SDLoc DL(Node);
6589 SDValue AsInt = DAG.getBitcast(MVT::i16, Op->getOperand(0));
6590 SDValue Vec0 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, AsInt);
6591 SDValue Const8 = DAG.getConstant(8, DL, MVT::i16);
6592 SDValue Vec1 =
6593 DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
6594 DAG.getNode(ISD::SRL, DL, MVT::i16, {AsInt, Const8}));
6595 Results.push_back(
6596 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i8, {Vec0, Vec1}));
6597}
6598
6601 SDValue Chain = N->getOperand(0);
6602 SDValue Intrin = N->getOperand(1);
6603 SDLoc DL(N);
6604
6605 // Get the intrinsic ID
6606 unsigned IntrinNo = Intrin.getNode()->getAsZExtVal();
6607 switch (IntrinNo) {
6608 default:
6609 return;
6610 case Intrinsic::nvvm_ldu_global_i:
6611 case Intrinsic::nvvm_ldu_global_f:
6612 case Intrinsic::nvvm_ldu_global_p: {
6613 EVT ResVT = N->getValueType(0);
6614
6615 if (ResVT.isVector()) {
6616 // Vector LDG/LDU
6617
6618 unsigned NumElts = ResVT.getVectorNumElements();
6619 EVT EltVT = ResVT.getVectorElementType();
6620
6621 // Since LDU/LDG are target nodes, we cannot rely on DAG type
6622 // legalization.
6623 // Therefore, we must ensure the type is legal. For i1 and i8, we set the
6624 // loaded type to i16 and propagate the "real" type as the memory type.
6625 bool NeedTrunc = false;
6626 if (EltVT.getSizeInBits() < 16) {
6627 EltVT = MVT::i16;
6628 NeedTrunc = true;
6629 }
6630
6631 unsigned Opcode = 0;
6632 SDVTList LdResVTs;
6633
6634 switch (NumElts) {
6635 default:
6636 return;
6637 case 2:
6638 Opcode = NVPTXISD::LDUV2;
6639 LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
6640 break;
6641 case 4: {
6642 Opcode = NVPTXISD::LDUV4;
6643 EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
6644 LdResVTs = DAG.getVTList(ListVTs);
6645 break;
6646 }
6647 }
6648
6649 SmallVector<SDValue, 8> OtherOps;
6650
6651 // Copy regular operands
6652
6653 OtherOps.push_back(Chain); // Chain
6654 // Skip operand 1 (intrinsic ID)
6655 // Others
6656 OtherOps.append(N->op_begin() + 2, N->op_end());
6657
6659
6660 SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
6661 MemSD->getMemoryVT(),
6662 MemSD->getMemOperand());
6663
6664 SmallVector<SDValue, 4> ScalarRes;
6665
6666 for (unsigned i = 0; i < NumElts; ++i) {
6667 SDValue Res = NewLD.getValue(i);
6668 if (NeedTrunc)
6669 Res =
6670 DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
6671 ScalarRes.push_back(Res);
6672 }
6673
6674 SDValue LoadChain = NewLD.getValue(NumElts);
6675
6676 SDValue BuildVec =
6677 DAG.getBuildVector(ResVT, DL, ScalarRes);
6678
6679 Results.push_back(BuildVec);
6680 Results.push_back(LoadChain);
6681 } else {
6682 // i8 LDG/LDU
6683 assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
6684 "Custom handling of non-i8 ldu/ldg?");
6685
6686 // Just copy all operands as-is
6688
6689 // Force output to i16
6690 SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
6691
6693
6694 // We make sure the memory type is i8, which will be used during isel
6695 // to select the proper instruction.
6696 SDValue NewLD =
6698 MVT::i8, MemSD->getMemOperand());
6699
6700 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
6701 NewLD.getValue(0)));
6702 Results.push_back(NewLD.getValue(1));
6703 }
6704 return;
6705 }
6706
6707 case Intrinsic::nvvm_tcgen05_ld_16x64b_x4:
6708 case Intrinsic::nvvm_tcgen05_ld_16x64b_x8:
6709 case Intrinsic::nvvm_tcgen05_ld_16x64b_x16:
6710 case Intrinsic::nvvm_tcgen05_ld_16x64b_x32:
6711 case Intrinsic::nvvm_tcgen05_ld_16x64b_x64:
6712 case Intrinsic::nvvm_tcgen05_ld_16x64b_x128:
6713 case Intrinsic::nvvm_tcgen05_ld_32x32b_x4:
6714 case Intrinsic::nvvm_tcgen05_ld_32x32b_x8:
6715 case Intrinsic::nvvm_tcgen05_ld_32x32b_x16:
6716 case Intrinsic::nvvm_tcgen05_ld_32x32b_x32:
6717 case Intrinsic::nvvm_tcgen05_ld_32x32b_x64:
6718 case Intrinsic::nvvm_tcgen05_ld_32x32b_x128:
6719 case Intrinsic::nvvm_tcgen05_ld_16x128b_x2:
6720 case Intrinsic::nvvm_tcgen05_ld_16x128b_x4:
6721 case Intrinsic::nvvm_tcgen05_ld_16x128b_x8:
6722 case Intrinsic::nvvm_tcgen05_ld_16x128b_x16:
6723 case Intrinsic::nvvm_tcgen05_ld_16x128b_x32:
6724 case Intrinsic::nvvm_tcgen05_ld_16x128b_x64:
6725 case Intrinsic::nvvm_tcgen05_ld_16x256b_x1:
6726 case Intrinsic::nvvm_tcgen05_ld_16x256b_x2:
6727 case Intrinsic::nvvm_tcgen05_ld_16x256b_x4:
6728 case Intrinsic::nvvm_tcgen05_ld_16x256b_x8:
6729 case Intrinsic::nvvm_tcgen05_ld_16x256b_x16:
6730 case Intrinsic::nvvm_tcgen05_ld_16x256b_x32:
6731 if (auto Res = lowerTcgen05Ld(N, DAG)) {
6732 Results.push_back(Res->first);
6733 Results.push_back(Res->second);
6734 }
6735 return;
6736
6737 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x4:
6738 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x8:
6739 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x16:
6740 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x32:
6741 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x64:
6742 case Intrinsic::nvvm_tcgen05_ld_16x32bx2_x128:
6743 if (auto Res = lowerTcgen05Ld(N, DAG, /*HasOffset=*/true)) {
6744 Results.push_back(Res->first);
6745 Results.push_back(Res->second);
6746 }
6747 return;
6748 }
6749}
6750
6753 // Change the CopyFromReg to output 2 64-bit results instead of a 128-bit
6754 // result so that it can pass the legalization
6755 SDLoc DL(N);
6756 SDValue Chain = N->getOperand(0);
6757 SDValue Reg = N->getOperand(1);
6758 SDValue Glue = N->getOperand(2);
6759
6760 assert(Reg.getValueType() == MVT::i128 &&
6761 "Custom lowering for CopyFromReg with 128-bit reg only");
6762 SmallVector<EVT, 4> ResultsType = {MVT::i64, MVT::i64, N->getValueType(1),
6763 N->getValueType(2)};
6764 SmallVector<SDValue, 3> NewOps = {Chain, Reg, Glue};
6765
6766 SDValue NewValue = DAG.getNode(ISD::CopyFromReg, DL, ResultsType, NewOps);
6767 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128,
6768 {NewValue.getValue(0), NewValue.getValue(1)});
6769
6770 Results.push_back(Pair);
6771 Results.push_back(NewValue.getValue(2));
6772 Results.push_back(NewValue.getValue(3));
6773}
6774
6776 const TargetLowering &TLI,
6778 SDValue Chain = N->getOperand(0);
6779 SDValue Reg = N->getOperand(1);
6780
6781 MVT VT = TLI.getRegisterType(*DAG.getContext(), Reg.getValueType());
6782
6783 SDValue NewReg = DAG.getAnyExtOrTrunc(Reg, SDLoc(N), VT);
6784 SDValue NewProxy =
6785 DAG.getNode(NVPTXISD::ProxyReg, SDLoc(N), VT, {Chain, NewReg});
6786 SDValue Res = DAG.getAnyExtOrTrunc(NewProxy, SDLoc(N), N->getValueType(0));
6787
6788 Results.push_back(Res);
6789}
6790
6792 const NVPTXSubtarget &STI,
6794 assert(N->getValueType(0) == MVT::i128 &&
6795 "Custom lowering for atomic128 only supports i128");
6796
6798 SDLoc dl(N);
6799
6800 if (!STI.hasAtomSwap128()) {
6803 "Support for b128 atomics introduced in PTX ISA version 8.3 and "
6804 "requires target sm_90.",
6805 dl.getDebugLoc()));
6806
6807 Results.push_back(DAG.getUNDEF(MVT::i128));
6808 Results.push_back(AN->getOperand(0)); // Chain
6809 return;
6810 }
6811
6813 Ops.push_back(AN->getOperand(0)); // Chain
6814 Ops.push_back(AN->getOperand(1)); // Ptr
6815 for (const auto &Op : AN->ops().drop_front(2)) {
6816 // Low part
6817 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i64, Op,
6818 DAG.getIntPtrConstant(0, dl)));
6819 // High part
6820 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i64, Op,
6821 DAG.getIntPtrConstant(1, dl)));
6822 }
6823 unsigned Opcode = N->getOpcode() == ISD::ATOMIC_SWAP
6826 SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other);
6827 SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, MVT::i128,
6828 AN->getMemOperand());
6829 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i128,
6830 {Result.getValue(0), Result.getValue(1)}));
6831 Results.push_back(Result.getValue(2));
6832}
6833
6834void NVPTXTargetLowering::ReplaceNodeResults(
6836 switch (N->getOpcode()) {
6837 default:
6838 report_fatal_error("Unhandled custom legalization");
6839 case ISD::BITCAST:
6840 ReplaceBITCAST(N, DAG, Results);
6841 return;
6842 case ISD::LOAD:
6843 case ISD::MLOAD:
6844 replaceLoadVector(N, DAG, Results, STI);
6845 return;
6848 return;
6849 case ISD::CopyFromReg:
6851 return;
6852 case NVPTXISD::ProxyReg:
6853 replaceProxyReg(N, DAG, *this, Results);
6854 return;
6855 case ISD::ATOMIC_CMP_SWAP:
6856 case ISD::ATOMIC_SWAP:
6857 replaceAtomicSwap128(N, DAG, STI, Results);
6858 return;
6859 }
6860}
6861
6864 Type *Ty = AI->getValOperand()->getType();
6865
6866 if (AI->isFloatingPointOperation()) {
6868 if (Ty->isHalfTy() && STI.getSmVersion() >= 70 &&
6869 STI.getPTXVersion() >= 63)
6871 if (Ty->isBFloatTy() && STI.getSmVersion() >= 90 &&
6872 STI.getPTXVersion() >= 78)
6874 if (Ty->isFloatTy())
6876 if (Ty->isDoubleTy() && STI.hasAtomAddF64())
6878 }
6880 }
6881
6882 assert(Ty->isIntegerTy() && "Ty should be integer at this point");
6883 const unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
6884
6885 switch (AI->getOperation()) {
6886 default:
6889 if (BitWidth == 128)
6891 [[fallthrough]];
6895 switch (BitWidth) {
6896 case 8:
6897 case 16:
6899 case 32:
6901 case 64:
6902 if (STI.hasAtomBitwise64())
6905 case 128:
6907 default:
6908 llvm_unreachable("unsupported width encountered");
6909 }
6916 switch (BitWidth) {
6917 case 8:
6918 case 16:
6920 case 32:
6922 case 64:
6923 if (STI.hasAtomMinMax64())
6926 case 128:
6928 default:
6929 llvm_unreachable("unsupported width encountered");
6930 }
6933 switch (BitWidth) {
6934 case 32:
6936 case 8:
6937 case 16:
6938 case 64:
6939 case 128:
6941 default:
6942 llvm_unreachable("unsupported width encountered");
6943 }
6944 }
6945
6947}
6948
6950 const Instruction *I) const {
6951 auto *CI = dyn_cast<AtomicCmpXchgInst>(I);
6952 // When CAS bitwidth is not supported on the hardware, the CAS is emulated
6953 // using a retry loop that uses a higher-bitwidth monotonic CAS. We enforce
6954 // the memory order using explicit fences around the retry loop.
6955 // The memory order of natively supported CAS operations can be enforced
6956 // by lowering to an atom.cas with the right memory synchronizing effect.
6957 // However, atom.cas only supports relaxed, acquire, release and acq_rel.
6958 // So we also use explicit fences for enforcing memory order for
6959 // seq_cast CAS with natively-supported bitwidths.
6960 return CI &&
6961 (cast<IntegerType>(CI->getCompareOperand()->getType())->getBitWidth() <
6962 STI.getMinCmpXchgSizeInBits() ||
6963 CI->getMergedOrdering() == AtomicOrdering::SequentiallyConsistent);
6964}
6965
6967 const Instruction *I) const {
6968 auto *CI = dyn_cast<AtomicCmpXchgInst>(I);
6969 bool BitwidthSupportedAndIsSeqCst =
6970 CI && CI->getMergedOrdering() == AtomicOrdering::SequentiallyConsistent &&
6971 cast<IntegerType>(CI->getCompareOperand()->getType())->getBitWidth() >=
6972 STI.getMinCmpXchgSizeInBits();
6973 return BitwidthSupportedAndIsSeqCst ? AtomicOrdering::Acquire
6975}
6976
6978 Instruction *Inst,
6979 AtomicOrdering Ord) const {
6980 if (!isa<AtomicCmpXchgInst>(Inst))
6981 return TargetLoweringBase::emitLeadingFence(Builder, Inst, Ord);
6982
6983 // Specialize for cmpxchg
6984 // Emit a fence.sc leading fence for cmpxchg seq_cst which are not emulated
6985 SyncScope::ID SSID = cast<AtomicCmpXchgInst>(Inst)->getSyncScopeID();
6986 if (isReleaseOrStronger(Ord))
6987 return Builder.CreateFence(Ord == AtomicOrdering::SequentiallyConsistent
6988 ? Ord
6990 SSID);
6991
6992 return nullptr;
6993}
6994
6996 Instruction *Inst,
6997 AtomicOrdering Ord) const {
6998 // Specialize for cmpxchg
6999 if (!isa<AtomicCmpXchgInst>(Inst))
7000 return TargetLoweringBase::emitTrailingFence(Builder, Inst, Ord);
7001
7002 auto *CI = cast<AtomicCmpXchgInst>(Inst);
7003 auto CASWidth =
7004 cast<IntegerType>(CI->getCompareOperand()->getType())->getBitWidth();
7005 SyncScope::ID SSID = CI->getSyncScopeID();
7006 // Do not emit a trailing fence for cmpxchg seq_cst which are not emulated
7007 if (isAcquireOrStronger(Ord) &&
7009 CASWidth < STI.getMinCmpXchgSizeInBits()))
7010 return Builder.CreateFence(AtomicOrdering::Acquire, SSID);
7011
7012 return nullptr;
7013}
7014
7015// Rather than default to SINT when both UINT and SINT are custom, we only
7016// change the opcode when UINT is not legal and SINT is. UINT is preferred when
7017// both are custom since unsigned CVT instructions can lead to slightly better
7018// SASS code with fewer instructions.
7020 EVT ToVT) const {
7021 if (isOperationLegal(Op, ToVT))
7022 return Op;
7023 switch (Op) {
7024 case ISD::FP_TO_UINT:
7026 return ISD::FP_TO_SINT;
7027 break;
7031 break;
7032 case ISD::VP_FP_TO_UINT:
7033 if (isOperationLegal(ISD::VP_FP_TO_SINT, ToVT))
7034 return ISD::VP_FP_TO_SINT;
7035 break;
7036 default:
7037 break;
7038 }
7039 return Op;
7040}
7041
7042// Pin NVPTXTargetObjectFile's vtables to this file.
7044
7049
7051 const SelectionDAG &DAG, unsigned Depth) {
7052 SDValue A = Op.getOperand(0);
7053 SDValue B = Op.getOperand(1);
7054 ConstantSDNode *Selector = dyn_cast<ConstantSDNode>(Op.getOperand(2));
7055 unsigned Mode = Op.getConstantOperandVal(3);
7056
7057 if (!Selector)
7058 return;
7059
7060 KnownBits AKnown = DAG.computeKnownBits(A, Depth);
7061 KnownBits BKnown = DAG.computeKnownBits(B, Depth);
7062
7063 // {b, a} = {{b7, b6, b5, b4}, {b3, b2, b1, b0}}
7064 assert(AKnown.getBitWidth() == 32 && BKnown.getBitWidth() == 32 &&
7065 "PRMT must have i32 operands");
7066 assert(Known.getBitWidth() == 32 && "PRMT must have i32 result");
7067 KnownBits BitField = BKnown.concat(AKnown);
7068
7069 APInt SelectorVal = getPRMTSelector(Selector->getAPIntValue(), Mode);
7070 for (unsigned I : llvm::seq(4)) {
7071 APInt Sel = SelectorVal.extractBits(4, I * 4);
7072 unsigned Idx = Sel.getLoBits(3).getZExtValue();
7073 unsigned Sign = Sel.getHiBits(1).getZExtValue();
7074 KnownBits Byte = BitField.extractBits(8, Idx * 8);
7075 if (Sign)
7076 Byte = KnownBits::ashr(Byte, 8);
7077 Known.insertBits(Byte, I * 8);
7078 }
7079}
7080
7081static void computeKnownBitsForLoadV(const SDValue Op, KnownBits &Known) {
7083
7084 // We can't do anything without knowing the sign bit.
7085 auto ExtType = LD->getConstantOperandVal(LD->getNumOperands() - 1);
7086 if (ExtType == ISD::SEXTLOAD)
7087 return;
7088
7089 // ExtLoading to vector types is weird and may not work well with known bits.
7090 auto DestVT = LD->getValueType(0);
7091 if (DestVT.isVector())
7092 return;
7093
7094 assert(Known.getBitWidth() == DestVT.getSizeInBits());
7095 auto ElementBitWidth = NVPTXDAGToDAGISel::getFromTypeWidthForLoad(LD);
7096 Known.Zero.setHighBits(Known.getBitWidth() - ElementBitWidth);
7097}
7098
7100 const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
7101 const SelectionDAG &DAG, unsigned Depth) const {
7102 Known.resetAll();
7103
7104 switch (Op.getOpcode()) {
7105 case NVPTXISD::PRMT:
7106 computeKnownBitsForPRMT(Op, Known, DAG, Depth);
7107 break;
7108 case NVPTXISD::LoadV2:
7109 case NVPTXISD::LoadV4:
7110 case NVPTXISD::LoadV8:
7112 break;
7113 default:
7114 break;
7115 }
7116}
7117
7118static std::pair<APInt, APInt> getPRMTDemandedBits(const APInt &SelectorVal,
7119 const APInt &DemandedBits) {
7120 APInt DemandedLHS = APInt(32, 0);
7121 APInt DemandedRHS = APInt(32, 0);
7122
7123 for (unsigned I : llvm::seq(4)) {
7124 if (DemandedBits.extractBits(8, I * 8).isZero())
7125 continue;
7126
7127 APInt Sel = SelectorVal.extractBits(4, I * 4);
7128 unsigned Idx = Sel.getLoBits(3).getZExtValue();
7129 unsigned Sign = Sel.getHiBits(1).getZExtValue();
7130
7131 APInt &Src = Idx < 4 ? DemandedLHS : DemandedRHS;
7132 unsigned ByteStart = (Idx % 4) * 8;
7133 if (Sign)
7134 Src.setBit(ByteStart + 7);
7135 else
7136 Src.setBits(ByteStart, ByteStart + 8);
7137 }
7138
7139 return {DemandedLHS, DemandedRHS};
7140}
7141
7142// Replace undef with 0 as this is easier for other optimizations such as
7143// known bits.
7145 if (!Op)
7146 return SDValue();
7147 if (Op.isUndef())
7148 return DAG.getConstant(0, SDLoc(), MVT::i32);
7149 return Op;
7150}
7151
7153 const APInt &DemandedBits,
7154 SelectionDAG &DAG,
7155 const TargetLowering &TLI,
7156 unsigned Depth) {
7157 assert(PRMT.getOpcode() == NVPTXISD::PRMT);
7158 SDValue Op0 = PRMT.getOperand(0);
7159 SDValue Op1 = PRMT.getOperand(1);
7160 auto *SelectorConst = dyn_cast<ConstantSDNode>(PRMT.getOperand(2));
7161 if (!SelectorConst)
7162 return SDValue();
7163
7164 unsigned Mode = PRMT.getConstantOperandVal(3);
7165 const APInt Selector = getPRMTSelector(SelectorConst->getAPIntValue(), Mode);
7166
7167 // Try to simplify the PRMT to one of the inputs if the used bytes are all
7168 // from the same input in the correct order.
7169 const unsigned LeadingBytes = DemandedBits.countLeadingZeros() / 8;
7170 const unsigned SelBits = (4 - LeadingBytes) * 4;
7171 if (Selector.getLoBits(SelBits) == APInt(32, 0x3210).getLoBits(SelBits))
7172 return Op0;
7173 if (Selector.getLoBits(SelBits) == APInt(32, 0x7654).getLoBits(SelBits))
7174 return Op1;
7175
7176 auto [DemandedLHS, DemandedRHS] = getPRMTDemandedBits(Selector, DemandedBits);
7177
7178 // Attempt to avoid multi-use ops if we don't need anything from them.
7179 SDValue DemandedOp0 =
7180 TLI.SimplifyMultipleUseDemandedBits(Op0, DemandedLHS, DAG, Depth + 1);
7181 SDValue DemandedOp1 =
7182 TLI.SimplifyMultipleUseDemandedBits(Op1, DemandedRHS, DAG, Depth + 1);
7183
7184 DemandedOp0 = canonicalizePRMTInput(DemandedOp0, DAG);
7185 DemandedOp1 = canonicalizePRMTInput(DemandedOp1, DAG);
7186 if ((DemandedOp0 && DemandedOp0 != Op0) ||
7187 (DemandedOp1 && DemandedOp1 != Op1)) {
7188 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
7189 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
7190 return getPRMT(Op0, Op1, Selector.getZExtValue(), SDLoc(PRMT), DAG);
7191 }
7192
7193 return SDValue();
7194}
7195
7197 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
7198 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
7199 Known.resetAll();
7200
7201 switch (Op.getOpcode()) {
7202 case NVPTXISD::PRMT:
7204 *this, Depth)) {
7205 TLO.CombineTo(Op, Result);
7206 return true;
7207 }
7208 break;
7209 default:
7210 break;
7211 }
7212
7213 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
7214 return false;
7215}
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
constexpr LLT S1
constexpr LLT F32
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformADDCombineWithOperands - Try DAG combinations for an ADD with operands N0 and N1.
static SDValue PerformADDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
static SDValue PerformVSELECTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue PerformMULCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue PerformBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformBUILD_VECTORCombine - Target-specific dag combine xforms for ISD::BUILD_VECTOR.
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file contains the declarations of entities that describe floating point environment and related ...
Module.h This file contains the declarations for the Module class.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
Return the first DebugLoc that has line number information, given a range of instructions.
Register Reg
Register const TargetRegisterInfo * TRI
#define T
NVPTX address space definition.
static bool shouldConvertToIndirectCall(const CallBase *CB, const GlobalAddressSDNode *Func)
static SDValue combineADDRSPACECAST(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static cl::opt< bool > sched4reg("nvptx-sched4reg", cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false))
static SDValue lowerTcgen05St(SDValue Op, SelectionDAG &DAG)
static SDValue PerformEXTRACTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static cl::opt< NVPTX::DivPrecisionLevel > UsePrecDivF32("nvptx-prec-divf32", cl::Hidden, cl::desc("NVPTX Specific: Override the precision of the lowering for f32 fdiv"), cl::values(clEnumValN(NVPTX::DivPrecisionLevel::Approx, "0", "Use div.approx"), clEnumValN(NVPTX::DivPrecisionLevel::Full, "1", "Use div.full"), clEnumValN(NVPTX::DivPrecisionLevel::IEEE754, "2", "Use IEEE Compliant F32 div.rnd if available (default)"), clEnumValN(NVPTX::DivPrecisionLevel::IEEE754_NoFTZ, "3", "Use IEEE Compliant F32 div.rnd if available, no FTZ")), cl::init(NVPTX::DivPrecisionLevel::IEEE754))
static bool isConstOne(const SDValue &Operand)
static cl::opt< unsigned > FMAContractLevelOpt("nvptx-fma-level", cl::Hidden, cl::desc("NVPTX Specific: FMA contraction (0: don't do it" " 1: do it 2: do it aggressively"), cl::init(2))
static bool IsPTXVectorType(MVT VT)
static SDValue lowerLOADi1(LoadSDNode *LD, SelectionDAG &DAG)
static SDValue lowerIntrinsicVoid(SDValue Op, SelectionDAG &DAG)
static MachinePointerInfo refinePtrAS(SDValue &Ptr, SelectionDAG &DAG, const DataLayout &DL, const TargetLowering &TL)
static SDValue lowerROT(SDValue Op, SelectionDAG &DAG)
static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL, LLVMContext &Ctx, CallingConv::ID CallConv, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< uint64_t > &Offsets, uint64_t StartingOffset=0)
ComputePTXValueVTs - For the given Type Ty, returns the set of primitive legal-ish MVTs that compose ...
static void ReplaceBITCAST(SDNode *Node, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results)
static void replaceAtomicSwap128(SDNode *N, SelectionDAG &DAG, const NVPTXSubtarget &STI, SmallVectorImpl< SDValue > &Results)
static unsigned getMinMax3Opcode(unsigned MinMax2Opcode)
Get 3-input version of a 2-input min/max opcode.
static SDValue lowerSTOREVector(SDValue Op, SelectionDAG &DAG, const NVPTXSubtarget &STI)
static SDValue lowerLoadVector(SDNode *N, SelectionDAG &DAG, const NVPTXSubtarget &STI)
static void replaceProxyReg(SDNode *N, SelectionDAG &DAG, const TargetLowering &TLI, SmallVectorImpl< SDValue > &Results)
static void ReplaceCopyFromReg_128(SDNode *N, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results)
static SDValue lowerCTLZCTPOP(SDValue Op, SelectionDAG &DAG)
static SDValue combineMADConstOne(SDValue X, SDValue Add, EVT VT, SDLoc DL, TargetLowering::DAGCombinerInfo &DCI)
static SDValue combinePRMT(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
static SDValue combinePackingMovIntoStore(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, unsigned Front, unsigned Back)
Fold packing movs into a store.
static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG, SmallVectorImpl< SDValue > &Results)
static SDValue getBuildVectorizedValue(unsigned N, const SDLoc &dl, SelectionDAG &DAG, T GetElement)
static SDValue getExtractVectorizedValue(SDValue V, unsigned I, EVT VT, const SDLoc &dl, SelectionDAG &DAG)
static unsigned canMergeParamLoadStoresStartingAt(unsigned Idx, uint32_t AccessSize, const SmallVectorImpl< EVT > &ValueVTs, const SmallVectorImpl< T > &Offsets, Align ParamAlignment)
static EVT getVectorizedVT(EVT VT, unsigned N, LLVMContext &C)
static SDValue lowerIntrinsicWOChain(SDValue Op, SelectionDAG &DAG)
static SDValue PerformFMinMaxCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, unsigned PTXVersion, unsigned SmVersion)
PerformFMinMaxCombine - Combine (fmaxnum (fmaxnum a, b), c) into (fmaxnum3 a, b, c).
static SDValue combineMulWide(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
static SDValue PerformFADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
static std::optional< unsigned > getScalar3OpcodeForReduction(unsigned ReductionOpcode)
Get 3-input scalar reduction opcode.
static SDValue lowerIntrinsicWChain(SDValue Op, SelectionDAG &DAG)
static bool isConstZero(const SDValue &Operand)
static SDValue LowerVectorArith(SDValue Op, SelectionDAG &DAG)
static SDValue LowerTcgen05MMADisableOutputLane(SDValue Op, SelectionDAG &DAG)
static bool IsMulWideOperandDemotable(SDValue Op, unsigned OptSize, OperandSignedness &S)
IsMulWideOperandDemotable - Checks if the provided DAG node is an operand that can be demoted to OptS...
static unsigned getTcgen05MMADisableOutputLane(unsigned IID)
static std::pair< APInt, APInt > getPRMTDemandedBits(const APInt &SelectorVal, const APInt &DemandedBits)
static APInt computePRMT(APInt A, APInt B, APInt Selector, unsigned Mode)
static ISD::NodeType getScalarOpcodeForReduction(unsigned ReductionOpcode)
static SDValue PerformREMCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
static SDValue lowerBSWAP(SDValue Op, SelectionDAG &DAG)
static SDValue lowerMSTORE(SDValue Op, SelectionDAG &DAG)
static SDValue PerformMULCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI)
static void computeKnownBitsForPRMT(const SDValue Op, KnownBits &Known, const SelectionDAG &DAG, unsigned Depth)
static SDValue combineUnpackingMovIntoLoad(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
Fold unpacking movs into a load by increasing the number of return values.
static SDValue LowerClusterLaunchControlQueryCancel(SDValue Op, SelectionDAG &DAG)
static std::optional< std::pair< SDValue, SDValue > > lowerTcgen05Ld(SDNode *N, SelectionDAG &DAG, bool HasOffset=false)
static SDValue lowerCvtRSIntrinsics(SDValue Op, SelectionDAG &DAG)
static std::optional< std::pair< SDValue, SDValue > > replaceLoadVector(SDNode *N, SelectionDAG &DAG, const NVPTXSubtarget &STI)
replaceLoadVector - Convert vector loads into multi-output scalar loads.
static SDValue expandFSH64(SDValue A, SDValue B, SDValue ShiftAmount, SDLoc DL, unsigned Opcode, SelectionDAG &DAG)
static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS, unsigned OptSize, bool &IsSigned)
AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can be demoted to OptSize bits...
static SDValue TryMULWIDECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply of M/2 bits that produces...
static SDValue lowerPrmtIntrinsic(SDValue Op, SelectionDAG &DAG)
static SDValue combineMulSelectConstOne(SDValue X, SDValue Select, EVT VT, SDLoc DL, TargetLowering::DAGCombinerInfo &DCI)
static SDValue buildTreeReduction(const SmallVector< SDValue > &Elements, EVT EltTy, ArrayRef< std::pair< unsigned, unsigned > > Ops, const SDLoc &DL, const SDNodeFlags Flags, SelectionDAG &DAG)
Reduces the elements using the scalar operations provided.
static SDValue combineProxyReg(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SmallVector< unsigned, 16 > VectorizePTXValueVTs(const SmallVectorImpl< EVT > &ValueVTs, const SmallVectorImpl< T > &Offsets, Align ParamAlignment, bool IsVAArg=false)
static SDValue getPRMT(SDValue A, SDValue B, SDValue Selector, SDLoc DL, SelectionDAG &DAG, unsigned Mode=NVPTX::PTXPrmtMode::NONE)
static std::pair< MemSDNode *, uint32_t > convertMLOADToLoadWithUsedBytesMask(MemSDNode *N, SelectionDAG &DAG)
static SDValue matchMADConstOnePattern(SDValue Add)
static SDValue correctParamType(SDValue V, EVT ExpectedVT, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, SDLoc dl)
static ISD::NodeType getExtOpcode(const ISD::ArgFlagsTy &Flags)
static cl::opt< bool > UsePrecSqrtF32("nvptx-prec-sqrtf32", cl::Hidden, cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."), cl::init(true))
static void computeKnownBitsForLoadV(const SDValue Op, KnownBits &Known)
static APInt getPRMTSelector(const APInt &Selector, unsigned Mode)
static EVT promoteScalarIntegerPTX(const EVT VT)
PromoteScalarIntegerPTX Used to make sure the arguments/returns are suitable for passing and promote ...
static SDValue simplifyDemandedBitsForPRMT(SDValue PRMT, const APInt &DemandedBits, SelectionDAG &DAG, const TargetLowering &TLI, unsigned Depth)
static SDValue lowerFREM(SDValue Op, SelectionDAG &DAG)
static SDValue canonicalizePRMTInput(SDValue Op, SelectionDAG &DAG)
static SDValue sinkProxyReg(SDValue R, SDValue Chain, TargetLowering::DAGCombinerInfo &DCI)
static SDValue lowerFSH(SDValue Op, SelectionDAG &DAG)
static SDValue PromoteBinOpToF32(SDNode *N, SelectionDAG &DAG)
static SDValue PerformSETCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, unsigned int SmVersion)
static std::optional< std::pair< unsigned int, MVT > > getVectorLoweringShape(EVT VectorEVT, const NVPTXSubtarget &STI, unsigned AddressSpace)
static cl::opt< bool > ForceMinByValParamAlign("nvptx-force-min-byval-param-align", cl::Hidden, cl::desc("NVPTX Specific: force 4-byte minimal alignment for byval" " params of device functions."), cl::init(false))
static cl::opt< bool > UseApproxLog2F32("nvptx-approx-log2f32", cl::desc("NVPTX Specific: whether to use lg2.approx for log2"), cl::init(false))
Whereas CUDA's implementation (see libdevice) uses ex2.approx for exp2(), it does NOT use lg2....
static SDValue lowerSELECT(SDValue Op, SelectionDAG &DAG)
static SDValue combineLOAD(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const NVPTXSubtarget &STI)
static SDValue combineSTORE(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const NVPTXSubtarget &STI)
static SDValue PerformSHLCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, CodeGenOptLevel OptLevel)
PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
MachineInstr unsigned OpIdx
uint64_t High
#define P(N)
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
Value * RHS
Value * LHS
BinaryOperator * Mul
static const fltSemantics & IEEEsingle()
Definition APFloat.h:296
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Definition APFloat.h:1080
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt getLoBits(unsigned numBits) const
Compute an APInt containing numBits lowbits from this APInt.
Definition APInt.cpp:644
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1541
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition APInt.h:1392
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
Definition APInt.cpp:639
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition APInt.h:1331
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1489
bool isSignedIntN(unsigned N) const
Check if this APInt has an N-bits signed integer value.
Definition APInt.h:436
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition APInt.h:1131
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
bool isIntN(unsigned N) const
Check if this APInt has an N-bits unsigned integer value.
Definition APInt.h:433
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition APInt.h:1238
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
const T & back() const
back - Get the last element.
Definition ArrayRef.h:151
ArrayRef< T > drop_back(size_t N=1) const
Drop the last N elements of the array.
Definition ArrayRef.h:201
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Definition ArrayRef.h:186
an instruction that atomically reads a memory location, combines it with another value,...
@ Add
*p = old + v
@ FAdd
*p = old + v
@ Min
*p = old <signed v ? old : v
@ Sub
*p = old - v
@ And
*p = old & v
@ Xor
*p = old ^ v
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ UMax
*p = old >unsigned v ? old : v
@ UDecWrap
Decrement one until a minimum value or zero.
bool isFloatingPointOperation() const
BinOp getOperation() const
This is an SDNode representing atomic operations.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
FunctionType * getFunctionType() const
This class represents a function call, abstracting a target machine's calling convention.
const APInt & getAPIntValue() const
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
LLVM_ABI TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Diagnostic information for unsupported feature in backend.
void addFnAttr(Attribute::AttrKind Kind)
Add function attributes to this function.
Definition Function.cpp:640
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
This class is used to represent ISD::LOAD nodes.
MCSection * getDataSection() const
static constexpr unsigned NoRegister
Definition MCRegister.h:60
Instances of this class represent a uniqued identifier for a section in the current translation unit.
Definition MCSection.h:517
StringRef getName() const
getName - Get the symbol name.
Definition MCSymbol.h:188
Machine Value Type.
static auto integer_fixedlen_vector_valuetypes()
SimpleValueType SimpleTy
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto integer_valuetypes()
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static auto fixedlen_vector_valuetypes()
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
static auto fp_fixedlen_vector_valuetypes()
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineJumpTableInfo * getJumpTableInfo() const
getJumpTableInfo - Return the jump table info object for the current function.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
@ EK_Inline
EK_Inline - Jump table entries are emitted inline at their point of use.
const std::vector< MachineJumpTableEntry > & getJumpTables() const
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
This is an abstract virtual class for memory operations.
Align getAlign() const
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
EVT getMemoryVT() const
Return the type of the in-memory value.
static unsigned getFromTypeWidthForLoad(const MemSDNode *Mem)
bool hasAtomSwap128() const
bool hasF32x2Instructions() const
bool has256BitVectorLoadStore(unsigned AS) const
AtomicOrdering atomicOperationOrderAfterFenceSplit(const Instruction *I) const override
ConstraintType getConstraintType(StringRef Constraint) const override
getConstraintType - Given a constraint letter, return the type of constraint it is for this target.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
const NVPTXTargetMachine * nvTM
bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const override
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
NVPTXTargetLowering(const NVPTXTargetMachine &TM, const NVPTXSubtarget &STI)
std::string getPrototype(const DataLayout &DL, Type *, const ArgListTy &, const SmallVectorImpl< ISD::OutputArg > &, std::optional< unsigned > FirstVAArg, const CallBase &CB, unsigned UniqueCallSite) const
unsigned getPreferredFPToIntOpcode(unsigned Op, EVT FromVT, EVT ToVT) const override
bool useF32FTZ(const MachineFunction &MF) const
SDValue LowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const
Align getFunctionArgumentAlignment(const Function *F, Type *Ty, unsigned Idx, const DataLayout &DL) const
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &ExtraSteps, bool &UseOneConst, bool Reciprocal) const override
Hooks for building estimates in place of slower divisions and square roots.
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &dl, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const override
Lower the specified operand into the Ops vector.
SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const
Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const override
std::string getParamName(const Function *F, int Idx) const
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
Return the preferred vector type legalization action.
NVPTX::DivPrecisionLevel getDivF32Level(const MachineFunction &MF, const SDNode &N) const
bool shouldInsertFencesForAtomic(const Instruction *) const override
Whether AtomicExpandPass should automatically insert fences and reduce ordering for this atomic.
Align getFunctionParamOptimizedAlign(const Function *F, Type *ArgTy, const DataLayout &DL) const
getFunctionParamOptimizedAlign - since function arguments are passed via .param space,...
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, EVT VT) const override
Return the ValueType of the result of SETCC operations.
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
isLegalAddressingMode - Return true if the addressing mode represented by AM is legal for this target...
Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const override
Inserts in the IR a target-specific intrinsic specifying a fence.
AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
Align getFunctionByValParamAlign(const Function *F, Type *ArgTy, Align InitialAlign, const DataLayout &DL) const
Helper for computing alignment of a device function byval parameter.
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
bool allowFMA(MachineFunction &MF, CodeGenOptLevel OptLevel) const
bool usePrecSqrtF32(const SDNode *N=nullptr) const
unsigned getJumpTableEncoding() const override
Return the entry encoding for a jump table in the current function.
SDValue LowerCall(CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower calls into the specified DAG.
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
MCSection * SelectSectionForGlobal(const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const override
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
unsigned getIROrder() const
Return the node ordering.
SDNodeFlags getFlags() const
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
SDVTList getVTList() const
const SDValue & getOperand(unsigned Num) const
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
iterator_range< user_iterator > users()
Represents a use of a SDNode.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
const SDValue & getOperand(unsigned i) const
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
SectionKind - This is a simple POD value that classifies the properties of a section.
Definition SectionKind.h:22
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
const DataLayout & getDataLayout() const
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
MachineFunction & getMachineFunction() const
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
ArrayRef< int > getMask() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:140
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
void setMaxDivRemBitWidthSupported(unsigned SizeInBits)
Set the size in bits of the maximum div/rem the backend supports.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
const TargetMachine & getTargetMachine() const
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
Convenience method to set an operation to Promote and specify the type in a single call.
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth)
Tells the code generator which bitwidths to bypass.
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
void setMinCmpXchgSizeInBits(unsigned SizeInBits)
Sets the minimum cmpxchg or ll/sc size supported by the backend.
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
Align getMinStackArgumentAlignment() const
Return the minimum stack alignment of an argument.
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
std::vector< ArgListEntry > ArgListTy
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
TargetLowering(const TargetLowering &)=delete
SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL, SelectionDAG &DAG) const
Truncate Op to ResultVT.
SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const
Expand round(fp) to fp conversion.
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
Primary interface to the complete machine description for the target machine.
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
TargetOptions Options
MCSymbol * getSymbol(const GlobalValue *GV) const
FPOpFusion::FPOpFusionMode AllowFPOpFusion
AllowFPOpFusion - This flag is set by the -fp-contract=xxx option.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetFrameLowering * getFrameLowering() const
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:197
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
A raw_ostream that writes to an std::string.
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt pow(const APInt &X, int64_t N)
Compute X^N for N>=0.
Definition APInt.cpp:3155
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:807
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:780
@ POISON
POISON - A poison node.
Definition ISDOpcodes.h:231
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition ISDOpcodes.h:270
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:771
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:841
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:511
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:215
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:868
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:577
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:744
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
Definition ISDOpcodes.h:275
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:249
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:832
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:784
@ UNDEF
UNDEF - An undefined node.
Definition ISDOpcodes.h:228
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:242
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition ISDOpcodes.h:701
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:762
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:642
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:607
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:569
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
Definition ISDOpcodes.h:219
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:838
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition ISDOpcodes.h:799
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:876
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:724
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:793
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
Definition ISDOpcodes.h:110
@ STRICT_FP_TO_UINT
Definition ISDOpcodes.h:471
@ STRICT_FP_TO_SINT
STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:470
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:914
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:736
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:200
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:558
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:947
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:844
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
Definition ISDOpcodes.h:821
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:527
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:333
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:208
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:549
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
@ Bitcast
Perform the operation on a different, but equivalently sized type.
@ ATOMIC_CMP_SWAP_B128
These nodes are used to lower atomic instructions with i128 type.
bool isPackedVectorTy(EVT VT)
DivPrecisionLevel
Definition NVPTX.h:251
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
NodeAddr< NodeBase * > Node
Definition RDFGraph.h:381
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:280
@ Offset
Definition DWP.cpp:532
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:829
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
bool shouldEmitPTXNoReturn(const Value *V, const TargetMachine &TM)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
MaybeAlign getAlign(const CallInst &I, unsigned Index)
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1655
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs=nullptr, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
Definition Analysis.cpp:119
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2472
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
Definition MathExtras.h:385
bool isReleaseOrStronger(AtomicOrdering AO)
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
Definition STLExtras.h:1968
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
unsigned promoteScalarArgumentSize(unsigned size)
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
bool shouldPassAsArray(Type *Ty)
CodeGenOptLevel
Code generation optimization level.
Definition CodeGen.h:82
@ Default
-O2, -Os, -Oz
Definition CodeGen.h:85
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
bool isAcquireOrStronger(AtomicOrdering AO)
constexpr unsigned BitWidth
bool isKernelFunction(const Function &F)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
Function * getMaybeBitcastedCallee(const CallBase *CB)
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Definition Sequence.h:305
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
Definition ValueTypes.h:121
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
bool is32BitVector() const
Return true if this is a 32-bit vector type.
Definition ValueTypes.h:197
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
uint64_t getScalarSizeInBits() const
Definition ValueTypes.h:385
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
Definition ValueTypes.h:381
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
Definition ValueTypes.h:256
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition ValueTypes.h:157
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
Definition ValueTypes.h:102
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
Definition KnownBits.h:233
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
void resetAll()
Resets the known state of all bits.
Definition KnownBits.h:74
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
Definition KnownBits.h:219
This class contains a discriminated union of information about pointers in memory operands,...
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:106
These are IR-level optimization flags that may be propagated to SDNodes.
bool hasAllowContract() const
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
This structure contains all information that is necessary for lowering calls.
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs
Type * RetTy
Same as OrigRetTy, or partially legalized for soft float libcalls.
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...