LLVM 19.0.0git
TargetLoweringBase.cpp
Go to the documentation of this file.
1//===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the TargetLoweringBase class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ADT/BitVector.h"
14#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/StringRef.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/Analysis/Loads.h"
38#include "llvm/IR/Attributes.h"
39#include "llvm/IR/CallingConv.h"
40#include "llvm/IR/DataLayout.h"
42#include "llvm/IR/Function.h"
43#include "llvm/IR/GlobalValue.h"
45#include "llvm/IR/IRBuilder.h"
46#include "llvm/IR/Module.h"
47#include "llvm/IR/Type.h"
57#include <algorithm>
58#include <cassert>
59#include <cstdint>
60#include <cstring>
61#include <iterator>
62#include <string>
63#include <tuple>
64#include <utility>
65
66using namespace llvm;
67
69 "jump-is-expensive", cl::init(false),
70 cl::desc("Do not create extra branches to split comparison logic."),
72
74 ("min-jump-table-entries", cl::init(4), cl::Hidden,
75 cl::desc("Set minimum number of entries to use a jump table."));
76
78 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79 cl::desc("Set maximum size of jump tables."));
80
81/// Minimum jump table density for normal functions.
83 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84 cl::desc("Minimum density for building a jump table in "
85 "a normal function"));
86
87/// Minimum jump table density for -Os or -Oz functions.
89 "optsize-jump-table-density", cl::init(40), cl::Hidden,
90 cl::desc("Minimum density for building a jump table in "
91 "an optsize function"));
92
93// FIXME: This option is only to test if the strict fp operation processed
94// correctly by preventing mutating strict fp operation to normal fp operation
95// during development. When the backend supports strict float operation, this
96// option will be meaningless.
97static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
98 cl::desc("Don't mutate strict-float node to a legalize node"),
99 cl::init(false), cl::Hidden);
100
101static bool darwinHasSinCos(const Triple &TT) {
102 assert(TT.isOSDarwin() && "should be called with darwin triple");
103 // Don't bother with 32 bit x86.
104 if (TT.getArch() == Triple::x86)
105 return false;
106 // Macos < 10.9 has no sincos_stret.
107 if (TT.isMacOSX())
108 return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
109 // iOS < 7.0 has no sincos_stret.
110 if (TT.isiOS())
111 return !TT.isOSVersionLT(7, 0);
112 // Any other darwin such as WatchOS/TvOS is new enough.
113 return true;
114}
115
116void TargetLoweringBase::InitLibcalls(const Triple &TT) {
117#define HANDLE_LIBCALL(code, name) \
118 setLibcallName(RTLIB::code, name);
119#include "llvm/IR/RuntimeLibcalls.def"
120#undef HANDLE_LIBCALL
121 // Initialize calling conventions to their default.
122 for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
124
125 // Use the f128 variants of math functions on x86_64
126 if (TT.getArch() == Triple::ArchType::x86_64 && TT.isGNUEnvironment()) {
127 setLibcallName(RTLIB::REM_F128, "fmodf128");
128 setLibcallName(RTLIB::FMA_F128, "fmaf128");
129 setLibcallName(RTLIB::SQRT_F128, "sqrtf128");
130 setLibcallName(RTLIB::CBRT_F128, "cbrtf128");
131 setLibcallName(RTLIB::LOG_F128, "logf128");
132 setLibcallName(RTLIB::LOG_FINITE_F128, "__logf128_finite");
133 setLibcallName(RTLIB::LOG2_F128, "log2f128");
134 setLibcallName(RTLIB::LOG2_FINITE_F128, "__log2f128_finite");
135 setLibcallName(RTLIB::LOG10_F128, "log10f128");
136 setLibcallName(RTLIB::LOG10_FINITE_F128, "__log10f128_finite");
137 setLibcallName(RTLIB::EXP_F128, "expf128");
138 setLibcallName(RTLIB::EXP_FINITE_F128, "__expf128_finite");
139 setLibcallName(RTLIB::EXP2_F128, "exp2f128");
140 setLibcallName(RTLIB::EXP2_FINITE_F128, "__exp2f128_finite");
141 setLibcallName(RTLIB::EXP10_F128, "exp10f128");
142 setLibcallName(RTLIB::SIN_F128, "sinf128");
143 setLibcallName(RTLIB::COS_F128, "cosf128");
144 setLibcallName(RTLIB::SINCOS_F128, "sincosf128");
145 setLibcallName(RTLIB::POW_F128, "powf128");
146 setLibcallName(RTLIB::POW_FINITE_F128, "__powf128_finite");
147 setLibcallName(RTLIB::CEIL_F128, "ceilf128");
148 setLibcallName(RTLIB::TRUNC_F128, "truncf128");
149 setLibcallName(RTLIB::RINT_F128, "rintf128");
150 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128");
151 setLibcallName(RTLIB::ROUND_F128, "roundf128");
152 setLibcallName(RTLIB::ROUNDEVEN_F128, "roundevenf128");
153 setLibcallName(RTLIB::FLOOR_F128, "floorf128");
154 setLibcallName(RTLIB::COPYSIGN_F128, "copysignf128");
155 setLibcallName(RTLIB::FMIN_F128, "fminf128");
156 setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
157 setLibcallName(RTLIB::LROUND_F128, "lroundf128");
158 setLibcallName(RTLIB::LLROUND_F128, "llroundf128");
159 setLibcallName(RTLIB::LRINT_F128, "lrintf128");
160 setLibcallName(RTLIB::LLRINT_F128, "llrintf128");
161 setLibcallName(RTLIB::LDEXP_F128, "ldexpf128");
162 setLibcallName(RTLIB::FREXP_F128, "frexpf128");
163 }
164
165 // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
166 if (TT.isPPC()) {
167 setLibcallName(RTLIB::ADD_F128, "__addkf3");
168 setLibcallName(RTLIB::SUB_F128, "__subkf3");
169 setLibcallName(RTLIB::MUL_F128, "__mulkf3");
170 setLibcallName(RTLIB::DIV_F128, "__divkf3");
171 setLibcallName(RTLIB::POWI_F128, "__powikf2");
172 setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
173 setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
174 setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
175 setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
176 setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
177 setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
178 setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti");
179 setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
180 setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
181 setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti");
182 setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
183 setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
184 setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf");
185 setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
186 setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
187 setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf");
188 setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
189 setLibcallName(RTLIB::UNE_F128, "__nekf2");
190 setLibcallName(RTLIB::OGE_F128, "__gekf2");
191 setLibcallName(RTLIB::OLT_F128, "__ltkf2");
192 setLibcallName(RTLIB::OLE_F128, "__lekf2");
193 setLibcallName(RTLIB::OGT_F128, "__gtkf2");
194 setLibcallName(RTLIB::UO_F128, "__unordkf2");
195 }
196
197 // A few names are different on particular architectures or environments.
198 if (TT.isOSDarwin()) {
199 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
200 // of the gnueabi-style __gnu_*_ieee.
201 // FIXME: What about other targets?
202 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
203 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
204
205 // Some darwins have an optimized __bzero/bzero function.
206 switch (TT.getArch()) {
207 case Triple::x86:
208 case Triple::x86_64:
209 if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
210 setLibcallName(RTLIB::BZERO, "__bzero");
211 break;
212 case Triple::aarch64:
214 setLibcallName(RTLIB::BZERO, "bzero");
215 break;
216 default:
217 break;
218 }
219
220 if (darwinHasSinCos(TT)) {
221 setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
222 setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
223 if (TT.isWatchABI()) {
224 setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
226 setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
228 }
229 }
230 } else {
231 setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
232 setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
233 }
234
235 if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
236 (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
237 setLibcallName(RTLIB::SINCOS_F32, "sincosf");
238 setLibcallName(RTLIB::SINCOS_F64, "sincos");
239 setLibcallName(RTLIB::SINCOS_F80, "sincosl");
240 setLibcallName(RTLIB::SINCOS_F128, "sincosl");
241 setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
242 }
243
244 if (TT.isPS()) {
245 setLibcallName(RTLIB::SINCOS_F32, "sincosf");
246 setLibcallName(RTLIB::SINCOS_F64, "sincos");
247 }
248
249 if (TT.isOSOpenBSD()) {
250 setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
251 }
252
253 if (TT.isOSWindows() && !TT.isOSCygMing()) {
254 setLibcallName(RTLIB::LDEXP_F32, nullptr);
255 setLibcallName(RTLIB::LDEXP_F80, nullptr);
256 setLibcallName(RTLIB::LDEXP_F128, nullptr);
257 setLibcallName(RTLIB::LDEXP_PPCF128, nullptr);
258
259 setLibcallName(RTLIB::FREXP_F32, nullptr);
260 setLibcallName(RTLIB::FREXP_F80, nullptr);
261 setLibcallName(RTLIB::FREXP_F128, nullptr);
262 setLibcallName(RTLIB::FREXP_PPCF128, nullptr);
263 }
264}
265
266/// GetFPLibCall - Helper to return the right libcall for the given floating
267/// point type, or UNKNOWN_LIBCALL if there is none.
269 RTLIB::Libcall Call_F32,
270 RTLIB::Libcall Call_F64,
271 RTLIB::Libcall Call_F80,
272 RTLIB::Libcall Call_F128,
273 RTLIB::Libcall Call_PPCF128) {
274 return
275 VT == MVT::f32 ? Call_F32 :
276 VT == MVT::f64 ? Call_F64 :
277 VT == MVT::f80 ? Call_F80 :
278 VT == MVT::f128 ? Call_F128 :
279 VT == MVT::ppcf128 ? Call_PPCF128 :
280 RTLIB::UNKNOWN_LIBCALL;
281}
282
283/// getFPEXT - Return the FPEXT_*_* value for the given types, or
284/// UNKNOWN_LIBCALL if there is none.
286 if (OpVT == MVT::f16) {
287 if (RetVT == MVT::f32)
288 return FPEXT_F16_F32;
289 if (RetVT == MVT::f64)
290 return FPEXT_F16_F64;
291 if (RetVT == MVT::f80)
292 return FPEXT_F16_F80;
293 if (RetVT == MVT::f128)
294 return FPEXT_F16_F128;
295 } else if (OpVT == MVT::f32) {
296 if (RetVT == MVT::f64)
297 return FPEXT_F32_F64;
298 if (RetVT == MVT::f128)
299 return FPEXT_F32_F128;
300 if (RetVT == MVT::ppcf128)
301 return FPEXT_F32_PPCF128;
302 } else if (OpVT == MVT::f64) {
303 if (RetVT == MVT::f128)
304 return FPEXT_F64_F128;
305 else if (RetVT == MVT::ppcf128)
306 return FPEXT_F64_PPCF128;
307 } else if (OpVT == MVT::f80) {
308 if (RetVT == MVT::f128)
309 return FPEXT_F80_F128;
310 } else if (OpVT == MVT::bf16) {
311 if (RetVT == MVT::f32)
312 return FPEXT_BF16_F32;
313 }
314
315 return UNKNOWN_LIBCALL;
316}
317
318/// getFPROUND - Return the FPROUND_*_* value for the given types, or
319/// UNKNOWN_LIBCALL if there is none.
321 if (RetVT == MVT::f16) {
322 if (OpVT == MVT::f32)
323 return FPROUND_F32_F16;
324 if (OpVT == MVT::f64)
325 return FPROUND_F64_F16;
326 if (OpVT == MVT::f80)
327 return FPROUND_F80_F16;
328 if (OpVT == MVT::f128)
329 return FPROUND_F128_F16;
330 if (OpVT == MVT::ppcf128)
331 return FPROUND_PPCF128_F16;
332 } else if (RetVT == MVT::bf16) {
333 if (OpVT == MVT::f32)
334 return FPROUND_F32_BF16;
335 if (OpVT == MVT::f64)
336 return FPROUND_F64_BF16;
337 } else if (RetVT == MVT::f32) {
338 if (OpVT == MVT::f64)
339 return FPROUND_F64_F32;
340 if (OpVT == MVT::f80)
341 return FPROUND_F80_F32;
342 if (OpVT == MVT::f128)
343 return FPROUND_F128_F32;
344 if (OpVT == MVT::ppcf128)
345 return FPROUND_PPCF128_F32;
346 } else if (RetVT == MVT::f64) {
347 if (OpVT == MVT::f80)
348 return FPROUND_F80_F64;
349 if (OpVT == MVT::f128)
350 return FPROUND_F128_F64;
351 if (OpVT == MVT::ppcf128)
352 return FPROUND_PPCF128_F64;
353 } else if (RetVT == MVT::f80) {
354 if (OpVT == MVT::f128)
355 return FPROUND_F128_F80;
356 }
357
358 return UNKNOWN_LIBCALL;
359}
360
361/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
362/// UNKNOWN_LIBCALL if there is none.
364 if (OpVT == MVT::f16) {
365 if (RetVT == MVT::i32)
366 return FPTOSINT_F16_I32;
367 if (RetVT == MVT::i64)
368 return FPTOSINT_F16_I64;
369 if (RetVT == MVT::i128)
370 return FPTOSINT_F16_I128;
371 } else if (OpVT == MVT::f32) {
372 if (RetVT == MVT::i32)
373 return FPTOSINT_F32_I32;
374 if (RetVT == MVT::i64)
375 return FPTOSINT_F32_I64;
376 if (RetVT == MVT::i128)
377 return FPTOSINT_F32_I128;
378 } else if (OpVT == MVT::f64) {
379 if (RetVT == MVT::i32)
380 return FPTOSINT_F64_I32;
381 if (RetVT == MVT::i64)
382 return FPTOSINT_F64_I64;
383 if (RetVT == MVT::i128)
384 return FPTOSINT_F64_I128;
385 } else if (OpVT == MVT::f80) {
386 if (RetVT == MVT::i32)
387 return FPTOSINT_F80_I32;
388 if (RetVT == MVT::i64)
389 return FPTOSINT_F80_I64;
390 if (RetVT == MVT::i128)
391 return FPTOSINT_F80_I128;
392 } else if (OpVT == MVT::f128) {
393 if (RetVT == MVT::i32)
394 return FPTOSINT_F128_I32;
395 if (RetVT == MVT::i64)
396 return FPTOSINT_F128_I64;
397 if (RetVT == MVT::i128)
398 return FPTOSINT_F128_I128;
399 } else if (OpVT == MVT::ppcf128) {
400 if (RetVT == MVT::i32)
401 return FPTOSINT_PPCF128_I32;
402 if (RetVT == MVT::i64)
403 return FPTOSINT_PPCF128_I64;
404 if (RetVT == MVT::i128)
405 return FPTOSINT_PPCF128_I128;
406 }
407 return UNKNOWN_LIBCALL;
408}
409
410/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
411/// UNKNOWN_LIBCALL if there is none.
413 if (OpVT == MVT::f16) {
414 if (RetVT == MVT::i32)
415 return FPTOUINT_F16_I32;
416 if (RetVT == MVT::i64)
417 return FPTOUINT_F16_I64;
418 if (RetVT == MVT::i128)
419 return FPTOUINT_F16_I128;
420 } else if (OpVT == MVT::f32) {
421 if (RetVT == MVT::i32)
422 return FPTOUINT_F32_I32;
423 if (RetVT == MVT::i64)
424 return FPTOUINT_F32_I64;
425 if (RetVT == MVT::i128)
426 return FPTOUINT_F32_I128;
427 } else if (OpVT == MVT::f64) {
428 if (RetVT == MVT::i32)
429 return FPTOUINT_F64_I32;
430 if (RetVT == MVT::i64)
431 return FPTOUINT_F64_I64;
432 if (RetVT == MVT::i128)
433 return FPTOUINT_F64_I128;
434 } else if (OpVT == MVT::f80) {
435 if (RetVT == MVT::i32)
436 return FPTOUINT_F80_I32;
437 if (RetVT == MVT::i64)
438 return FPTOUINT_F80_I64;
439 if (RetVT == MVT::i128)
440 return FPTOUINT_F80_I128;
441 } else if (OpVT == MVT::f128) {
442 if (RetVT == MVT::i32)
443 return FPTOUINT_F128_I32;
444 if (RetVT == MVT::i64)
445 return FPTOUINT_F128_I64;
446 if (RetVT == MVT::i128)
447 return FPTOUINT_F128_I128;
448 } else if (OpVT == MVT::ppcf128) {
449 if (RetVT == MVT::i32)
450 return FPTOUINT_PPCF128_I32;
451 if (RetVT == MVT::i64)
452 return FPTOUINT_PPCF128_I64;
453 if (RetVT == MVT::i128)
454 return FPTOUINT_PPCF128_I128;
455 }
456 return UNKNOWN_LIBCALL;
457}
458
459/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
460/// UNKNOWN_LIBCALL if there is none.
462 if (OpVT == MVT::i32) {
463 if (RetVT == MVT::f16)
464 return SINTTOFP_I32_F16;
465 if (RetVT == MVT::f32)
466 return SINTTOFP_I32_F32;
467 if (RetVT == MVT::f64)
468 return SINTTOFP_I32_F64;
469 if (RetVT == MVT::f80)
470 return SINTTOFP_I32_F80;
471 if (RetVT == MVT::f128)
472 return SINTTOFP_I32_F128;
473 if (RetVT == MVT::ppcf128)
474 return SINTTOFP_I32_PPCF128;
475 } else if (OpVT == MVT::i64) {
476 if (RetVT == MVT::f16)
477 return SINTTOFP_I64_F16;
478 if (RetVT == MVT::f32)
479 return SINTTOFP_I64_F32;
480 if (RetVT == MVT::f64)
481 return SINTTOFP_I64_F64;
482 if (RetVT == MVT::f80)
483 return SINTTOFP_I64_F80;
484 if (RetVT == MVT::f128)
485 return SINTTOFP_I64_F128;
486 if (RetVT == MVT::ppcf128)
487 return SINTTOFP_I64_PPCF128;
488 } else if (OpVT == MVT::i128) {
489 if (RetVT == MVT::f16)
490 return SINTTOFP_I128_F16;
491 if (RetVT == MVT::f32)
492 return SINTTOFP_I128_F32;
493 if (RetVT == MVT::f64)
494 return SINTTOFP_I128_F64;
495 if (RetVT == MVT::f80)
496 return SINTTOFP_I128_F80;
497 if (RetVT == MVT::f128)
498 return SINTTOFP_I128_F128;
499 if (RetVT == MVT::ppcf128)
500 return SINTTOFP_I128_PPCF128;
501 }
502 return UNKNOWN_LIBCALL;
503}
504
505/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
506/// UNKNOWN_LIBCALL if there is none.
508 if (OpVT == MVT::i32) {
509 if (RetVT == MVT::f16)
510 return UINTTOFP_I32_F16;
511 if (RetVT == MVT::f32)
512 return UINTTOFP_I32_F32;
513 if (RetVT == MVT::f64)
514 return UINTTOFP_I32_F64;
515 if (RetVT == MVT::f80)
516 return UINTTOFP_I32_F80;
517 if (RetVT == MVT::f128)
518 return UINTTOFP_I32_F128;
519 if (RetVT == MVT::ppcf128)
520 return UINTTOFP_I32_PPCF128;
521 } else if (OpVT == MVT::i64) {
522 if (RetVT == MVT::f16)
523 return UINTTOFP_I64_F16;
524 if (RetVT == MVT::f32)
525 return UINTTOFP_I64_F32;
526 if (RetVT == MVT::f64)
527 return UINTTOFP_I64_F64;
528 if (RetVT == MVT::f80)
529 return UINTTOFP_I64_F80;
530 if (RetVT == MVT::f128)
531 return UINTTOFP_I64_F128;
532 if (RetVT == MVT::ppcf128)
533 return UINTTOFP_I64_PPCF128;
534 } else if (OpVT == MVT::i128) {
535 if (RetVT == MVT::f16)
536 return UINTTOFP_I128_F16;
537 if (RetVT == MVT::f32)
538 return UINTTOFP_I128_F32;
539 if (RetVT == MVT::f64)
540 return UINTTOFP_I128_F64;
541 if (RetVT == MVT::f80)
542 return UINTTOFP_I128_F80;
543 if (RetVT == MVT::f128)
544 return UINTTOFP_I128_F128;
545 if (RetVT == MVT::ppcf128)
546 return UINTTOFP_I128_PPCF128;
547 }
548 return UNKNOWN_LIBCALL;
549}
550
552 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
553 POWI_PPCF128);
554}
555
557 return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
558 LDEXP_PPCF128);
559}
560
562 return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
563 FREXP_PPCF128);
564}
565
567 AtomicOrdering Order,
568 uint64_t MemSize) {
569 unsigned ModeN, ModelN;
570 switch (MemSize) {
571 case 1:
572 ModeN = 0;
573 break;
574 case 2:
575 ModeN = 1;
576 break;
577 case 4:
578 ModeN = 2;
579 break;
580 case 8:
581 ModeN = 3;
582 break;
583 case 16:
584 ModeN = 4;
585 break;
586 default:
587 return RTLIB::UNKNOWN_LIBCALL;
588 }
589
590 switch (Order) {
592 ModelN = 0;
593 break;
595 ModelN = 1;
596 break;
598 ModelN = 2;
599 break;
602 ModelN = 3;
603 break;
604 default:
605 return UNKNOWN_LIBCALL;
606 }
607
608 return LC[ModeN][ModelN];
609}
610
612 MVT VT) {
613 if (!VT.isScalarInteger())
614 return UNKNOWN_LIBCALL;
615 uint64_t MemSize = VT.getScalarSizeInBits() / 8;
616
617#define LCALLS(A, B) \
618 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
619#define LCALL5(A) \
620 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
621 switch (Opc) {
623 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
624 return getOutlineAtomicHelper(LC, Order, MemSize);
625 }
626 case ISD::ATOMIC_SWAP: {
627 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
628 return getOutlineAtomicHelper(LC, Order, MemSize);
629 }
631 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
632 return getOutlineAtomicHelper(LC, Order, MemSize);
633 }
634 case ISD::ATOMIC_LOAD_OR: {
635 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
636 return getOutlineAtomicHelper(LC, Order, MemSize);
637 }
639 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
640 return getOutlineAtomicHelper(LC, Order, MemSize);
641 }
643 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
644 return getOutlineAtomicHelper(LC, Order, MemSize);
645 }
646 default:
647 return UNKNOWN_LIBCALL;
648 }
649#undef LCALLS
650#undef LCALL5
651}
652
654#define OP_TO_LIBCALL(Name, Enum) \
655 case Name: \
656 switch (VT.SimpleTy) { \
657 default: \
658 return UNKNOWN_LIBCALL; \
659 case MVT::i8: \
660 return Enum##_1; \
661 case MVT::i16: \
662 return Enum##_2; \
663 case MVT::i32: \
664 return Enum##_4; \
665 case MVT::i64: \
666 return Enum##_8; \
667 case MVT::i128: \
668 return Enum##_16; \
669 }
670
671 switch (Opc) {
672 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
673 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
674 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
675 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
676 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
677 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
678 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
679 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
680 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
681 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
682 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
683 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
684 }
685
686#undef OP_TO_LIBCALL
687
688 return UNKNOWN_LIBCALL;
689}
690
692 switch (ElementSize) {
693 case 1:
694 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
695 case 2:
696 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
697 case 4:
698 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
699 case 8:
700 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
701 case 16:
702 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
703 default:
704 return UNKNOWN_LIBCALL;
705 }
706}
707
709 switch (ElementSize) {
710 case 1:
711 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
712 case 2:
713 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
714 case 4:
715 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
716 case 8:
717 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
718 case 16:
719 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
720 default:
721 return UNKNOWN_LIBCALL;
722 }
723}
724
726 switch (ElementSize) {
727 case 1:
728 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
729 case 2:
730 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
731 case 4:
732 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
733 case 8:
734 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
735 case 16:
736 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
737 default:
738 return UNKNOWN_LIBCALL;
739 }
740}
741
742/// InitCmpLibcallCCs - Set default comparison libcall CC.
744 std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID);
745 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
746 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
747 CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
748 CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
749 CCs[RTLIB::UNE_F32] = ISD::SETNE;
750 CCs[RTLIB::UNE_F64] = ISD::SETNE;
751 CCs[RTLIB::UNE_F128] = ISD::SETNE;
752 CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
753 CCs[RTLIB::OGE_F32] = ISD::SETGE;
754 CCs[RTLIB::OGE_F64] = ISD::SETGE;
755 CCs[RTLIB::OGE_F128] = ISD::SETGE;
756 CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
757 CCs[RTLIB::OLT_F32] = ISD::SETLT;
758 CCs[RTLIB::OLT_F64] = ISD::SETLT;
759 CCs[RTLIB::OLT_F128] = ISD::SETLT;
760 CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
761 CCs[RTLIB::OLE_F32] = ISD::SETLE;
762 CCs[RTLIB::OLE_F64] = ISD::SETLE;
763 CCs[RTLIB::OLE_F128] = ISD::SETLE;
764 CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
765 CCs[RTLIB::OGT_F32] = ISD::SETGT;
766 CCs[RTLIB::OGT_F64] = ISD::SETGT;
767 CCs[RTLIB::OGT_F128] = ISD::SETGT;
768 CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
769 CCs[RTLIB::UO_F32] = ISD::SETNE;
770 CCs[RTLIB::UO_F64] = ISD::SETNE;
771 CCs[RTLIB::UO_F128] = ISD::SETNE;
772 CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
773}
774
775/// NOTE: The TargetMachine owns TLOF.
777 initActions();
778
779 // Perform these initializations only once.
785 HasMultipleConditionRegisters = false;
786 HasExtractBitsInsn = false;
787 JumpIsExpensive = JumpIsExpensiveOverride;
789 EnableExtLdPromotion = false;
790 StackPointerRegisterToSaveRestore = 0;
791 BooleanContents = UndefinedBooleanContent;
792 BooleanFloatContents = UndefinedBooleanContent;
793 BooleanVectorContents = UndefinedBooleanContent;
794 SchedPreferenceInfo = Sched::ILP;
797 MaxBytesForAlignment = 0;
798 MaxAtomicSizeInBitsSupported = 0;
799
800 // Assume that even with libcalls, no target supports wider than 128 bit
801 // division.
802 MaxDivRemBitWidthSupported = 128;
803
804 MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS;
805
806 MinCmpXchgSizeInBits = 0;
807 SupportsUnalignedAtomics = false;
808
809 std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
810
811 InitLibcalls(TM.getTargetTriple());
812 InitCmpLibcallCCs(CmpLibcallCCs);
813}
814
816 // All operations default to being supported.
817 memset(OpActions, 0, sizeof(OpActions));
818 memset(LoadExtActions, 0, sizeof(LoadExtActions));
819 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
820 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
821 memset(CondCodeActions, 0, sizeof(CondCodeActions));
822 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
823 std::fill(std::begin(TargetDAGCombineArray),
824 std::end(TargetDAGCombineArray), 0);
825
826 // Let extending atomic loads be unsupported by default.
827 for (MVT ValVT : MVT::all_valuetypes())
828 for (MVT MemVT : MVT::all_valuetypes())
830 Expand);
831
832 // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
833 // remove this and targets should individually set these types if not legal.
836 for (MVT VT : {MVT::i2, MVT::i4})
837 OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
838 }
839 for (MVT AVT : MVT::all_valuetypes()) {
840 for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
841 setTruncStoreAction(AVT, VT, Expand);
844 }
845 }
846 for (unsigned IM = (unsigned)ISD::PRE_INC;
847 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
848 for (MVT VT : {MVT::i2, MVT::i4}) {
853 }
854 }
855
856 for (MVT VT : MVT::fp_valuetypes()) {
857 MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
858 if (IntVT.isValid()) {
861 }
862 }
863
864 // Set default actions for various operations.
865 for (MVT VT : MVT::all_valuetypes()) {
866 // Default all indexed load / store to expand.
867 for (unsigned IM = (unsigned)ISD::PRE_INC;
868 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
873 }
874
875 // Most backends expect to see the node which just returns the value loaded.
877
878 // These operations default to expand.
896 VT, Expand);
897
898 // Overflow operations default to expand
901 VT, Expand);
902
903 // Carry-using overflow operations default to expand.
906 VT, Expand);
907
908 // ADDC/ADDE/SUBC/SUBE default to expand.
910 Expand);
911
912 // Halving adds
915 Expand);
916
917 // Absolute difference
919
920 // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
922 Expand);
923
925
926 // These library functions default to expand.
928 Expand);
929
930 // These operations default to expand for vector types.
931 if (VT.isVector())
936 VT, Expand);
937
938 // Constrained floating-point operations default to expand.
939#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
940 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
941#include "llvm/IR/ConstrainedOps.def"
942
943 // For most targets @llvm.get.dynamic.area.offset just returns 0.
945
946 // Vector reduction default to expand.
954 VT, Expand);
955
956 // Named vector shuffles default to expand.
958
959 // VP operations default to expand.
960#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
961 setOperationAction(ISD::SDOPC, VT, Expand);
962#include "llvm/IR/VPIntrinsics.def"
963
964 // FP environment operations default to expand.
968 }
969
970 // Most targets ignore the @llvm.prefetch intrinsic.
972
973 // Most targets also ignore the @llvm.readcyclecounter intrinsic.
975
976 // Most targets also ignore the @llvm.readsteadycounter intrinsic.
978
979 // ConstantFP nodes default to expand. Targets can either change this to
980 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
981 // to optimize expansions for certain constants.
983 {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
984 Expand);
985
986 // These library functions default to expand.
991 {MVT::f32, MVT::f64, MVT::f128}, Expand);
992
993 // Default ISD::TRAP to expand (which turns it into abort).
994 setOperationAction(ISD::TRAP, MVT::Other, Expand);
995
996 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
997 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
999
1001
1004
1005 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
1008 }
1010}
1011
1013 EVT) const {
1014 return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
1015}
1016
1018 bool LegalTypes) const {
1019 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
1020 if (LHSTy.isVector())
1021 return LHSTy;
1022 MVT ShiftVT =
1023 LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL);
1024 // If any possible shift value won't fit in the prefered type, just use
1025 // something safe. Assume it will be legalized when the shift is expanded.
1026 if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
1027 ShiftVT = MVT::i32;
1028 assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
1029 "ShiftVT is still too small!");
1030 return ShiftVT;
1031}
1032
1033bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
1034 assert(isTypeLegal(VT));
1035 switch (Op) {
1036 default:
1037 return false;
1038 case ISD::SDIV:
1039 case ISD::UDIV:
1040 case ISD::SREM:
1041 case ISD::UREM:
1042 return true;
1043 }
1044}
1045
1047 unsigned DestAS) const {
1048 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1049}
1050
1052 // If the command-line option was specified, ignore this request.
1053 if (!JumpIsExpensiveOverride.getNumOccurrences())
1054 JumpIsExpensive = isExpensive;
1055}
1056
1059 // If this is a simple type, use the ComputeRegisterProp mechanism.
1060 if (VT.isSimple()) {
1061 MVT SVT = VT.getSimpleVT();
1062 assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
1063 MVT NVT = TransformToType[SVT.SimpleTy];
1064 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1065
1066 assert((LA == TypeLegal || LA == TypeSoftenFloat ||
1067 LA == TypeSoftPromoteHalf ||
1068 (NVT.isVector() ||
1069 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
1070 "Promote may not follow Expand or Promote");
1071
1072 if (LA == TypeSplitVector)
1073 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
1074 if (LA == TypeScalarizeVector)
1075 return LegalizeKind(LA, SVT.getVectorElementType());
1076 return LegalizeKind(LA, NVT);
1077 }
1078
1079 // Handle Extended Scalar Types.
1080 if (!VT.isVector()) {
1081 assert(VT.isInteger() && "Float types must be simple");
1082 unsigned BitSize = VT.getSizeInBits();
1083 // First promote to a power-of-two size, then expand if necessary.
1084 if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1086 assert(NVT != VT && "Unable to round integer VT");
1087 LegalizeKind NextStep = getTypeConversion(Context, NVT);
1088 // Avoid multi-step promotion.
1089 if (NextStep.first == TypePromoteInteger)
1090 return NextStep;
1091 // Return rounded integer type.
1092 return LegalizeKind(TypePromoteInteger, NVT);
1093 }
1094
1097 }
1098
1099 // Handle vector types.
1100 ElementCount NumElts = VT.getVectorElementCount();
1101 EVT EltVT = VT.getVectorElementType();
1102
1103 // Vectors with only one element are always scalarized.
1104 if (NumElts.isScalar())
1105 return LegalizeKind(TypeScalarizeVector, EltVT);
1106
1107 // Try to widen vector elements until the element type is a power of two and
1108 // promote it to a legal type later on, for example:
1109 // <3 x i8> -> <4 x i8> -> <4 x i32>
1110 if (EltVT.isInteger()) {
1111 // Vectors with a number of elements that is not a power of two are always
1112 // widened, for example <3 x i8> -> <4 x i8>.
1113 if (!VT.isPow2VectorType()) {
1114 NumElts = NumElts.coefficientNextPowerOf2();
1115 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1116 return LegalizeKind(TypeWidenVector, NVT);
1117 }
1118
1119 // Examine the element type.
1121
1122 // If type is to be expanded, split the vector.
1123 // <4 x i140> -> <2 x i140>
1124 if (LK.first == TypeExpandInteger) {
1129 }
1130
1131 // Promote the integer element types until a legal vector type is found
1132 // or until the element integer type is too big. If a legal type was not
1133 // found, fallback to the usual mechanism of widening/splitting the
1134 // vector.
1135 EVT OldEltVT = EltVT;
1136 while (true) {
1137 // Increase the bitwidth of the element to the next pow-of-two
1138 // (which is greater than 8 bits).
1139 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1141
1142 // Stop trying when getting a non-simple element type.
1143 // Note that vector elements may be greater than legal vector element
1144 // types. Example: X86 XMM registers hold 64bit element on 32bit
1145 // systems.
1146 if (!EltVT.isSimple())
1147 break;
1148
1149 // Build a new vector type and check if it is legal.
1150 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1151 // Found a legal promoted vector type.
1152 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1154 EVT::getVectorVT(Context, EltVT, NumElts));
1155 }
1156
1157 // Reset the type to the unexpanded type if we did not find a legal vector
1158 // type with a promoted vector element type.
1159 EltVT = OldEltVT;
1160 }
1161
1162 // Try to widen the vector until a legal type is found.
1163 // If there is no wider legal type, split the vector.
1164 while (true) {
1165 // Round up to the next power of 2.
1166 NumElts = NumElts.coefficientNextPowerOf2();
1167
1168 // If there is no simple vector type with this many elements then there
1169 // cannot be a larger legal vector type. Note that this assumes that
1170 // there are no skipped intermediate vector types in the simple types.
1171 if (!EltVT.isSimple())
1172 break;
1173 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1174 if (LargerVector == MVT())
1175 break;
1176
1177 // If this type is legal then widen the vector.
1178 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1179 return LegalizeKind(TypeWidenVector, LargerVector);
1180 }
1181
1182 // Widen odd vectors to next power of two.
1183 if (!VT.isPow2VectorType()) {
1184 EVT NVT = VT.getPow2VectorType(Context);
1185 return LegalizeKind(TypeWidenVector, NVT);
1186 }
1187
1190
1191 // Vectors with illegal element types are expanded.
1192 EVT NVT = EVT::getVectorVT(Context, EltVT,
1194 return LegalizeKind(TypeSplitVector, NVT);
1195}
1196
1197static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1198 unsigned &NumIntermediates,
1199 MVT &RegisterVT,
1200 TargetLoweringBase *TLI) {
1201 // Figure out the right, legal destination reg to copy into.
1203 MVT EltTy = VT.getVectorElementType();
1204
1205 unsigned NumVectorRegs = 1;
1206
1207 // Scalable vectors cannot be scalarized, so splitting or widening is
1208 // required.
1209 if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1211 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1212
1213 // FIXME: We don't support non-power-of-2-sized vectors for now.
1214 // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1215 if (!isPowerOf2_32(EC.getKnownMinValue())) {
1216 // Split EC to unit size (scalable property is preserved).
1217 NumVectorRegs = EC.getKnownMinValue();
1218 EC = ElementCount::getFixed(1);
1219 }
1220
1221 // Divide the input until we get to a supported size. This will
1222 // always end up with an EC that represent a scalar or a scalable
1223 // scalar.
1224 while (EC.getKnownMinValue() > 1 &&
1225 !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1226 EC = EC.divideCoefficientBy(2);
1227 NumVectorRegs <<= 1;
1228 }
1229
1230 NumIntermediates = NumVectorRegs;
1231
1232 MVT NewVT = MVT::getVectorVT(EltTy, EC);
1233 if (!TLI->isTypeLegal(NewVT))
1234 NewVT = EltTy;
1235 IntermediateVT = NewVT;
1236
1237 unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1238
1239 // Convert sizes such as i33 to i64.
1240 LaneSizeInBits = llvm::bit_ceil(LaneSizeInBits);
1241
1242 MVT DestVT = TLI->getRegisterType(NewVT);
1243 RegisterVT = DestVT;
1244 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
1245 return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1246
1247 // Otherwise, promotion or legal types use the same number of registers as
1248 // the vector decimated to the appropriate level.
1249 return NumVectorRegs;
1250}
1251
1252/// isLegalRC - Return true if the value types that can be represented by the
1253/// specified register class are all legal.
1255 const TargetRegisterClass &RC) const {
1256 for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1257 if (isTypeLegal(*I))
1258 return true;
1259 return false;
1260}
1261
1262/// Replace/modify any TargetFrameIndex operands with a targte-dependent
1263/// sequence of memory operands that is recognized by PrologEpilogInserter.
1266 MachineBasicBlock *MBB) const {
1267 MachineInstr *MI = &InitialMI;
1268 MachineFunction &MF = *MI->getMF();
1269 MachineFrameInfo &MFI = MF.getFrameInfo();
1270
1271 // We're handling multiple types of operands here:
1272 // PATCHPOINT MetaArgs - live-in, read only, direct
1273 // STATEPOINT Deopt Spill - live-through, read only, indirect
1274 // STATEPOINT Deopt Alloca - live-through, read only, direct
1275 // (We're currently conservative and mark the deopt slots read/write in
1276 // practice.)
1277 // STATEPOINT GC Spill - live-through, read/write, indirect
1278 // STATEPOINT GC Alloca - live-through, read/write, direct
1279 // The live-in vs live-through is handled already (the live through ones are
1280 // all stack slots), but we need to handle the different type of stackmap
1281 // operands and memory effects here.
1282
1283 if (llvm::none_of(MI->operands(),
1284 [](MachineOperand &Operand) { return Operand.isFI(); }))
1285 return MBB;
1286
1287 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1288
1289 // Inherit previous memory operands.
1290 MIB.cloneMemRefs(*MI);
1291
1292 for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1293 MachineOperand &MO = MI->getOperand(i);
1294 if (!MO.isFI()) {
1295 // Index of Def operand this Use it tied to.
1296 // Since Defs are coming before Uses, if Use is tied, then
1297 // index of Def must be smaller that index of that Use.
1298 // Also, Defs preserve their position in new MI.
1299 unsigned TiedTo = i;
1300 if (MO.isReg() && MO.isTied())
1301 TiedTo = MI->findTiedOperandIdx(i);
1302 MIB.add(MO);
1303 if (TiedTo < i)
1304 MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1305 continue;
1306 }
1307
1308 // foldMemoryOperand builds a new MI after replacing a single FI operand
1309 // with the canonical set of five x86 addressing-mode operands.
1310 int FI = MO.getIndex();
1311
1312 // Add frame index operands recognized by stackmaps.cpp
1314 // indirect-mem-ref tag, size, #FI, offset.
1315 // Used for spills inserted by StatepointLowering. This codepath is not
1316 // used for patchpoints/stackmaps at all, for these spilling is done via
1317 // foldMemoryOperand callback only.
1318 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1319 MIB.addImm(StackMaps::IndirectMemRefOp);
1320 MIB.addImm(MFI.getObjectSize(FI));
1321 MIB.add(MO);
1322 MIB.addImm(0);
1323 } else {
1324 // direct-mem-ref tag, #FI, offset.
1325 // Used by patchpoint, and direct alloca arguments to statepoints
1326 MIB.addImm(StackMaps::DirectMemRefOp);
1327 MIB.add(MO);
1328 MIB.addImm(0);
1329 }
1330
1331 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1332
1333 // Add a new memory operand for this FI.
1334 assert(MFI.getObjectOffset(FI) != -1);
1335
1336 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and
1337 // PATCHPOINT should be updated to do the same. (TODO)
1338 if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1339 auto Flags = MachineMemOperand::MOLoad;
1341 MachinePointerInfo::getFixedStack(MF, FI), Flags,
1343 MIB->addMemOperand(MF, MMO);
1344 }
1345 }
1347 MI->eraseFromParent();
1348 return MBB;
1349}
1350
1351/// findRepresentativeClass - Return the largest legal super-reg register class
1352/// of the register class for the specified type and its associated "cost".
1353// This function is in TargetLowering because it uses RegClassForVT which would
1354// need to be moved to TargetRegisterInfo and would necessitate moving
1355// isTypeLegal over as well - a massive change that would just require
1356// TargetLowering having a TargetRegisterInfo class member that it would use.
1357std::pair<const TargetRegisterClass *, uint8_t>
1359 MVT VT) const {
1360 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1361 if (!RC)
1362 return std::make_pair(RC, 0);
1363
1364 // Compute the set of all super-register classes.
1365 BitVector SuperRegRC(TRI->getNumRegClasses());
1366 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1367 SuperRegRC.setBitsInMask(RCI.getMask());
1368
1369 // Find the first legal register class with the largest spill size.
1370 const TargetRegisterClass *BestRC = RC;
1371 for (unsigned i : SuperRegRC.set_bits()) {
1372 const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1373 // We want the largest possible spill size.
1374 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1375 continue;
1376 if (!isLegalRC(*TRI, *SuperRC))
1377 continue;
1378 BestRC = SuperRC;
1379 }
1380 return std::make_pair(BestRC, 1);
1381}
1382
1383/// computeRegisterProperties - Once all of the register classes are added,
1384/// this allows us to compute derived properties we expose.
1386 const TargetRegisterInfo *TRI) {
1388 "Too many value types for ValueTypeActions to hold!");
1389
1390 // Everything defaults to needing one register.
1391 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1392 NumRegistersForVT[i] = 1;
1393 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1394 }
1395 // ...except isVoid, which doesn't need any registers.
1396 NumRegistersForVT[MVT::isVoid] = 0;
1397
1398 // Find the largest integer register class.
1399 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1400 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1401 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1402
1403 // Every integer value type larger than this largest register takes twice as
1404 // many registers to represent as the previous ValueType.
1405 for (unsigned ExpandedReg = LargestIntReg + 1;
1406 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1407 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1408 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1409 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1410 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1412 }
1413
1414 // Inspect all of the ValueType's smaller than the largest integer
1415 // register to see which ones need promotion.
1416 unsigned LegalIntReg = LargestIntReg;
1417 for (unsigned IntReg = LargestIntReg - 1;
1418 IntReg >= (unsigned)MVT::i1; --IntReg) {
1419 MVT IVT = (MVT::SimpleValueType)IntReg;
1420 if (isTypeLegal(IVT)) {
1421 LegalIntReg = IntReg;
1422 } else {
1423 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1424 (MVT::SimpleValueType)LegalIntReg;
1425 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1426 }
1427 }
1428
1429 // ppcf128 type is really two f64's.
1430 if (!isTypeLegal(MVT::ppcf128)) {
1431 if (isTypeLegal(MVT::f64)) {
1432 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1433 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1434 TransformToType[MVT::ppcf128] = MVT::f64;
1435 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1436 } else {
1437 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1438 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1439 TransformToType[MVT::ppcf128] = MVT::i128;
1440 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1441 }
1442 }
1443
1444 // Decide how to handle f128. If the target does not have native f128 support,
1445 // expand it to i128 and we will be generating soft float library calls.
1446 if (!isTypeLegal(MVT::f128)) {
1447 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1448 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1449 TransformToType[MVT::f128] = MVT::i128;
1450 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1451 }
1452
1453 // Decide how to handle f80. If the target does not have native f80 support,
1454 // expand it to i96 and we will be generating soft float library calls.
1455 if (!isTypeLegal(MVT::f80)) {
1456 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1457 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1458 TransformToType[MVT::f80] = MVT::i32;
1459 ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1460 }
1461
1462 // Decide how to handle f64. If the target does not have native f64 support,
1463 // expand it to i64 and we will be generating soft float library calls.
1464 if (!isTypeLegal(MVT::f64)) {
1465 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1466 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1467 TransformToType[MVT::f64] = MVT::i64;
1468 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1469 }
1470
1471 // Decide how to handle f32. If the target does not have native f32 support,
1472 // expand it to i32 and we will be generating soft float library calls.
1473 if (!isTypeLegal(MVT::f32)) {
1474 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1475 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1476 TransformToType[MVT::f32] = MVT::i32;
1477 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1478 }
1479
1480 // Decide how to handle f16. If the target does not have native f16 support,
1481 // promote it to f32, because there are no f16 library calls (except for
1482 // conversions).
1483 if (!isTypeLegal(MVT::f16)) {
1484 // Allow targets to control how we legalize half.
1485 bool SoftPromoteHalfType = softPromoteHalfType();
1486 bool UseFPRegsForHalfType = !SoftPromoteHalfType || useFPRegsForHalfType();
1487
1488 if (!UseFPRegsForHalfType) {
1489 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1490 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1491 } else {
1492 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1493 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1494 }
1495 TransformToType[MVT::f16] = MVT::f32;
1496 if (SoftPromoteHalfType) {
1497 ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1498 } else {
1499 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1500 }
1501 }
1502
1503 // Decide how to handle bf16. If the target does not have native bf16 support,
1504 // promote it to f32, because there are no bf16 library calls (except for
1505 // converting from f32 to bf16).
1506 if (!isTypeLegal(MVT::bf16)) {
1507 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1508 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1509 TransformToType[MVT::bf16] = MVT::f32;
1510 ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf);
1511 }
1512
1513 // Loop over all of the vector value types to see which need transformations.
1514 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1515 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1516 MVT VT = (MVT::SimpleValueType) i;
1517 if (isTypeLegal(VT))
1518 continue;
1519
1520 MVT EltVT = VT.getVectorElementType();
1522 bool IsLegalWiderType = false;
1523 bool IsScalable = VT.isScalableVector();
1524 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1525 switch (PreferredAction) {
1526 case TypePromoteInteger: {
1527 MVT::SimpleValueType EndVT = IsScalable ?
1528 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1529 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1530 // Try to promote the elements of integer vectors. If no legal
1531 // promotion was found, fall through to the widen-vector method.
1532 for (unsigned nVT = i + 1;
1533 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1534 MVT SVT = (MVT::SimpleValueType) nVT;
1535 // Promote vectors of integers to vectors with the same number
1536 // of elements, with a wider element type.
1537 if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1538 SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1539 TransformToType[i] = SVT;
1540 RegisterTypeForVT[i] = SVT;
1541 NumRegistersForVT[i] = 1;
1542 ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1543 IsLegalWiderType = true;
1544 break;
1545 }
1546 }
1547 if (IsLegalWiderType)
1548 break;
1549 [[fallthrough]];
1550 }
1551
1552 case TypeWidenVector:
1553 if (isPowerOf2_32(EC.getKnownMinValue())) {
1554 // Try to widen the vector.
1555 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1556 MVT SVT = (MVT::SimpleValueType) nVT;
1557 if (SVT.getVectorElementType() == EltVT &&
1558 SVT.isScalableVector() == IsScalable &&
1560 EC.getKnownMinValue() &&
1561 isTypeLegal(SVT)) {
1562 TransformToType[i] = SVT;
1563 RegisterTypeForVT[i] = SVT;
1564 NumRegistersForVT[i] = 1;
1565 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1566 IsLegalWiderType = true;
1567 break;
1568 }
1569 }
1570 if (IsLegalWiderType)
1571 break;
1572 } else {
1573 // Only widen to the next power of 2 to keep consistency with EVT.
1574 MVT NVT = VT.getPow2VectorType();
1575 if (isTypeLegal(NVT)) {
1576 TransformToType[i] = NVT;
1577 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1578 RegisterTypeForVT[i] = NVT;
1579 NumRegistersForVT[i] = 1;
1580 break;
1581 }
1582 }
1583 [[fallthrough]];
1584
1585 case TypeSplitVector:
1586 case TypeScalarizeVector: {
1587 MVT IntermediateVT;
1588 MVT RegisterVT;
1589 unsigned NumIntermediates;
1590 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1591 NumIntermediates, RegisterVT, this);
1592 NumRegistersForVT[i] = NumRegisters;
1593 assert(NumRegistersForVT[i] == NumRegisters &&
1594 "NumRegistersForVT size cannot represent NumRegisters!");
1595 RegisterTypeForVT[i] = RegisterVT;
1596
1597 MVT NVT = VT.getPow2VectorType();
1598 if (NVT == VT) {
1599 // Type is already a power of 2. The default action is to split.
1600 TransformToType[i] = MVT::Other;
1601 if (PreferredAction == TypeScalarizeVector)
1602 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1603 else if (PreferredAction == TypeSplitVector)
1604 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1605 else if (EC.getKnownMinValue() > 1)
1606 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1607 else
1608 ValueTypeActions.setTypeAction(VT, EC.isScalable()
1611 } else {
1612 TransformToType[i] = NVT;
1613 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1614 }
1615 break;
1616 }
1617 default:
1618 llvm_unreachable("Unknown vector legalization action!");
1619 }
1620 }
1621
1622 // Determine the 'representative' register class for each value type.
1623 // An representative register class is the largest (meaning one which is
1624 // not a sub-register class / subreg register class) legal register class for
1625 // a group of value types. For example, on i386, i8, i16, and i32
1626 // representative would be GR32; while on x86_64 it's GR64.
1627 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1628 const TargetRegisterClass* RRC;
1629 uint8_t Cost;
1631 RepRegClassForVT[i] = RRC;
1632 RepRegClassCostForVT[i] = Cost;
1633 }
1634}
1635
1637 EVT VT) const {
1638 assert(!VT.isVector() && "No default SetCC type for vectors!");
1639 return getPointerTy(DL).SimpleTy;
1640}
1641
1643 return MVT::i32; // return the default value
1644}
1645
1646/// getVectorTypeBreakdown - Vector types are broken down into some number of
1647/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
1648/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1649/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1650///
1651/// This method returns the number of registers needed, and the VT for each
1652/// register. It also returns the VT and quantity of the intermediate values
1653/// before they are promoted/expanded.
1655 EVT VT, EVT &IntermediateVT,
1656 unsigned &NumIntermediates,
1657 MVT &RegisterVT) const {
1658 ElementCount EltCnt = VT.getVectorElementCount();
1659
1660 // If there is a wider vector type with the same element type as this one,
1661 // or a promoted vector type that has the same number of elements which
1662 // are wider, then we should convert to that legal vector type.
1663 // This handles things like <2 x float> -> <4 x float> and
1664 // <4 x i1> -> <4 x i32>.
1666 if (!EltCnt.isScalar() &&
1667 (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1668 EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1669 if (isTypeLegal(RegisterEVT)) {
1670 IntermediateVT = RegisterEVT;
1671 RegisterVT = RegisterEVT.getSimpleVT();
1672 NumIntermediates = 1;
1673 return 1;
1674 }
1675 }
1676
1677 // Figure out the right, legal destination reg to copy into.
1678 EVT EltTy = VT.getVectorElementType();
1679
1680 unsigned NumVectorRegs = 1;
1681
1682 // Scalable vectors cannot be scalarized, so handle the legalisation of the
1683 // types like done elsewhere in SelectionDAG.
1684 if (EltCnt.isScalable()) {
1685 LegalizeKind LK;
1686 EVT PartVT = VT;
1687 do {
1688 // Iterate until we've found a legal (part) type to hold VT.
1689 LK = getTypeConversion(Context, PartVT);
1690 PartVT = LK.second;
1691 } while (LK.first != TypeLegal);
1692
1693 if (!PartVT.isVector()) {
1695 "Don't know how to legalize this scalable vector type");
1696 }
1697
1698 NumIntermediates =
1701 IntermediateVT = PartVT;
1702 RegisterVT = getRegisterType(Context, IntermediateVT);
1703 return NumIntermediates;
1704 }
1705
1706 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally
1707 // we could break down into LHS/RHS like LegalizeDAG does.
1708 if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1709 NumVectorRegs = EltCnt.getKnownMinValue();
1710 EltCnt = ElementCount::getFixed(1);
1711 }
1712
1713 // Divide the input until we get to a supported size. This will always
1714 // end with a scalar if the target doesn't support vectors.
1715 while (EltCnt.getKnownMinValue() > 1 &&
1716 !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1717 EltCnt = EltCnt.divideCoefficientBy(2);
1718 NumVectorRegs <<= 1;
1719 }
1720
1721 NumIntermediates = NumVectorRegs;
1722
1723 EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1724 if (!isTypeLegal(NewVT))
1725 NewVT = EltTy;
1726 IntermediateVT = NewVT;
1727
1728 MVT DestVT = getRegisterType(Context, NewVT);
1729 RegisterVT = DestVT;
1730
1731 if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16.
1732 TypeSize NewVTSize = NewVT.getSizeInBits();
1733 // Convert sizes such as i33 to i64.
1734 if (!llvm::has_single_bit<uint32_t>(NewVTSize.getKnownMinValue()))
1735 NewVTSize = NewVTSize.coefficientNextPowerOf2();
1736 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1737 }
1738
1739 // Otherwise, promotion or legal types use the same number of registers as
1740 // the vector decimated to the appropriate level.
1741 return NumVectorRegs;
1742}
1743
1745 uint64_t NumCases,
1746 uint64_t Range,
1747 ProfileSummaryInfo *PSI,
1748 BlockFrequencyInfo *BFI) const {
1749 // FIXME: This function check the maximum table size and density, but the
1750 // minimum size is not checked. It would be nice if the minimum size is
1751 // also combined within this function. Currently, the minimum size check is
1752 // performed in findJumpTable() in SelectionDAGBuiler and
1753 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1754 const bool OptForSize =
1755 SI->getParent()->getParent()->hasOptSize() ||
1756 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1757 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1758 const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1759
1760 // Check whether the number of cases is small enough and
1761 // the range is dense enough for a jump table.
1762 return (OptForSize || Range <= MaxJumpTableSize) &&
1763 (NumCases * 100 >= Range * MinDensity);
1764}
1765
1767 EVT ConditionVT) const {
1768 return getRegisterType(Context, ConditionVT);
1769}
1770
1771/// Get the EVTs and ArgFlags collections that represent the legalized return
1772/// type of the given function. This does not require a DAG or a return value,
1773/// and is suitable for use before any DAGs for the function are constructed.
1774/// TODO: Move this out of TargetLowering.cpp.
1776 AttributeList attr,
1778 const TargetLowering &TLI, const DataLayout &DL) {
1779 SmallVector<EVT, 4> ValueVTs;
1780 ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1781 unsigned NumValues = ValueVTs.size();
1782 if (NumValues == 0) return;
1783
1784 for (unsigned j = 0, f = NumValues; j != f; ++j) {
1785 EVT VT = ValueVTs[j];
1786 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1787
1788 if (attr.hasRetAttr(Attribute::SExt))
1789 ExtendKind = ISD::SIGN_EXTEND;
1790 else if (attr.hasRetAttr(Attribute::ZExt))
1791 ExtendKind = ISD::ZERO_EXTEND;
1792
1793 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1794 VT = TLI.getTypeForExtReturn(ReturnType->getContext(), VT, ExtendKind);
1795
1796 unsigned NumParts =
1797 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1798 MVT PartVT =
1799 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1800
1801 // 'inreg' on function refers to return value
1803 if (attr.hasRetAttr(Attribute::InReg))
1804 Flags.setInReg();
1805
1806 // Propagate extension type if any
1807 if (attr.hasRetAttr(Attribute::SExt))
1808 Flags.setSExt();
1809 else if (attr.hasRetAttr(Attribute::ZExt))
1810 Flags.setZExt();
1811
1812 for (unsigned i = 0; i < NumParts; ++i)
1813 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1814 }
1815}
1816
1817/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1818/// function arguments in the caller parameter area. This is the actual
1819/// alignment, not its logarithm.
1821 const DataLayout &DL) const {
1822 return DL.getABITypeAlign(Ty).value();
1823}
1824
1826 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1827 Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
1828 // Check if the specified alignment is sufficient based on the data layout.
1829 // TODO: While using the data layout works in practice, a better solution
1830 // would be to implement this check directly (make this a virtual function).
1831 // For example, the ABI alignment may change based on software platform while
1832 // this function should only be affected by hardware implementation.
1833 Type *Ty = VT.getTypeForEVT(Context);
1834 if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1835 // Assume that an access that meets the ABI-specified alignment is fast.
1836 if (Fast != nullptr)
1837 *Fast = 1;
1838 return true;
1839 }
1840
1841 // This is a misaligned access.
1842 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1843}
1844
1846 LLVMContext &Context, const DataLayout &DL, EVT VT,
1847 const MachineMemOperand &MMO, unsigned *Fast) const {
1849 MMO.getAlign(), MMO.getFlags(), Fast);
1850}
1851
1853 const DataLayout &DL, EVT VT,
1854 unsigned AddrSpace, Align Alignment,
1856 unsigned *Fast) const {
1857 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1858 Flags, Fast);
1859}
1860
1862 const DataLayout &DL, EVT VT,
1863 const MachineMemOperand &MMO,
1864 unsigned *Fast) const {
1865 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1866 MMO.getFlags(), Fast);
1867}
1868
1870 const DataLayout &DL, LLT Ty,
1871 const MachineMemOperand &MMO,
1872 unsigned *Fast) const {
1874 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1875 MMO.getFlags(), Fast);
1876}
1877
1878//===----------------------------------------------------------------------===//
1879// TargetTransformInfo Helpers
1880//===----------------------------------------------------------------------===//
1881
1883 enum InstructionOpcodes {
1884#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1885#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1886#include "llvm/IR/Instruction.def"
1887 };
1888 switch (static_cast<InstructionOpcodes>(Opcode)) {
1889 case Ret: return 0;
1890 case Br: return 0;
1891 case Switch: return 0;
1892 case IndirectBr: return 0;
1893 case Invoke: return 0;
1894 case CallBr: return 0;
1895 case Resume: return 0;
1896 case Unreachable: return 0;
1897 case CleanupRet: return 0;
1898 case CatchRet: return 0;
1899 case CatchPad: return 0;
1900 case CatchSwitch: return 0;
1901 case CleanupPad: return 0;
1902 case FNeg: return ISD::FNEG;
1903 case Add: return ISD::ADD;
1904 case FAdd: return ISD::FADD;
1905 case Sub: return ISD::SUB;
1906 case FSub: return ISD::FSUB;
1907 case Mul: return ISD::MUL;
1908 case FMul: return ISD::FMUL;
1909 case UDiv: return ISD::UDIV;
1910 case SDiv: return ISD::SDIV;
1911 case FDiv: return ISD::FDIV;
1912 case URem: return ISD::UREM;
1913 case SRem: return ISD::SREM;
1914 case FRem: return ISD::FREM;
1915 case Shl: return ISD::SHL;
1916 case LShr: return ISD::SRL;
1917 case AShr: return ISD::SRA;
1918 case And: return ISD::AND;
1919 case Or: return ISD::OR;
1920 case Xor: return ISD::XOR;
1921 case Alloca: return 0;
1922 case Load: return ISD::LOAD;
1923 case Store: return ISD::STORE;
1924 case GetElementPtr: return 0;
1925 case Fence: return 0;
1926 case AtomicCmpXchg: return 0;
1927 case AtomicRMW: return 0;
1928 case Trunc: return ISD::TRUNCATE;
1929 case ZExt: return ISD::ZERO_EXTEND;
1930 case SExt: return ISD::SIGN_EXTEND;
1931 case FPToUI: return ISD::FP_TO_UINT;
1932 case FPToSI: return ISD::FP_TO_SINT;
1933 case UIToFP: return ISD::UINT_TO_FP;
1934 case SIToFP: return ISD::SINT_TO_FP;
1935 case FPTrunc: return ISD::FP_ROUND;
1936 case FPExt: return ISD::FP_EXTEND;
1937 case PtrToInt: return ISD::BITCAST;
1938 case IntToPtr: return ISD::BITCAST;
1939 case BitCast: return ISD::BITCAST;
1940 case AddrSpaceCast: return ISD::ADDRSPACECAST;
1941 case ICmp: return ISD::SETCC;
1942 case FCmp: return ISD::SETCC;
1943 case PHI: return 0;
1944 case Call: return 0;
1945 case Select: return ISD::SELECT;
1946 case UserOp1: return 0;
1947 case UserOp2: return 0;
1948 case VAArg: return 0;
1949 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1950 case InsertElement: return ISD::INSERT_VECTOR_ELT;
1951 case ShuffleVector: return ISD::VECTOR_SHUFFLE;
1952 case ExtractValue: return ISD::MERGE_VALUES;
1953 case InsertValue: return ISD::MERGE_VALUES;
1954 case LandingPad: return 0;
1955 case Freeze: return ISD::FREEZE;
1956 }
1957
1958 llvm_unreachable("Unknown instruction type encountered!");
1959}
1960
1961Value *
1963 bool UseTLS) const {
1964 // compiler-rt provides a variable with a magic name. Targets that do not
1965 // link with compiler-rt may also provide such a variable.
1966 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1967 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1968 auto UnsafeStackPtr =
1969 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1970
1971 Type *StackPtrTy = PointerType::getUnqual(M->getContext());
1972
1973 if (!UnsafeStackPtr) {
1974 auto TLSModel = UseTLS ?
1977 // The global variable is not defined yet, define it ourselves.
1978 // We use the initial-exec TLS model because we do not support the
1979 // variable living anywhere other than in the main executable.
1980 UnsafeStackPtr = new GlobalVariable(
1981 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1982 UnsafeStackPtrVar, nullptr, TLSModel);
1983 } else {
1984 // The variable exists, check its type and attributes.
1985 if (UnsafeStackPtr->getValueType() != StackPtrTy)
1986 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1987 if (UseTLS != UnsafeStackPtr->isThreadLocal())
1988 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1989 (UseTLS ? "" : "not ") + "be thread-local");
1990 }
1991 return UnsafeStackPtr;
1992}
1993
1994Value *
1996 if (!TM.getTargetTriple().isAndroid())
1997 return getDefaultSafeStackPointerLocation(IRB, true);
1998
1999 // Android provides a libc function to retrieve the address of the current
2000 // thread's unsafe stack pointer.
2001 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
2002 auto *PtrTy = PointerType::getUnqual(M->getContext());
2003 FunctionCallee Fn =
2004 M->getOrInsertFunction("__safestack_pointer_address", PtrTy);
2005 return IRB.CreateCall(Fn);
2006}
2007
2008//===----------------------------------------------------------------------===//
2009// Loop Strength Reduction hooks
2010//===----------------------------------------------------------------------===//
2011
2012/// isLegalAddressingMode - Return true if the addressing mode represented
2013/// by AM is legal for this target, for a load/store of the specified type.
2015 const AddrMode &AM, Type *Ty,
2016 unsigned AS, Instruction *I) const {
2017 // The default implementation of this implements a conservative RISCy, r+r and
2018 // r+i addr mode.
2019
2020 // Scalable offsets not supported
2021 if (AM.ScalableOffset)
2022 return false;
2023
2024 // Allows a sign-extended 16-bit immediate field.
2025 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2026 return false;
2027
2028 // No global is ever allowed as a base.
2029 if (AM.BaseGV)
2030 return false;
2031
2032 // Only support r+r,
2033 switch (AM.Scale) {
2034 case 0: // "r+i" or just "i", depending on HasBaseReg.
2035 break;
2036 case 1:
2037 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
2038 return false;
2039 // Otherwise we have r+r or r+i.
2040 break;
2041 case 2:
2042 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
2043 return false;
2044 // Allow 2*r as r+r.
2045 break;
2046 default: // Don't allow n * r
2047 return false;
2048 }
2049
2050 return true;
2051}
2052
2053//===----------------------------------------------------------------------===//
2054// Stack Protector
2055//===----------------------------------------------------------------------===//
2056
2057// For OpenBSD return its special guard variable. Otherwise return nullptr,
2058// so that SelectionDAG handle SSP.
2060 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
2061 Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
2062 PointerType *PtrTy = PointerType::getUnqual(M.getContext());
2063 Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
2064 if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
2065 G->setVisibility(GlobalValue::HiddenVisibility);
2066 return C;
2067 }
2068 return nullptr;
2069}
2070
2071// Currently only support "standard" __stack_chk_guard.
2072// TODO: add LOAD_STACK_GUARD support.
2074 if (!M.getNamedValue("__stack_chk_guard")) {
2075 auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
2077 nullptr, "__stack_chk_guard");
2078
2079 // FreeBSD has "__stack_chk_guard" defined externally on libc.so
2080 if (M.getDirectAccessExternalData() &&
2082 !(TM.getTargetTriple().isPPC64() &&
2083 TM.getTargetTriple().isOSFreeBSD()) &&
2084 (!TM.getTargetTriple().isOSDarwin() ||
2086 GV->setDSOLocal(true);
2087 }
2088}
2089
2090// Currently only support "standard" __stack_chk_guard.
2091// TODO: add LOAD_STACK_GUARD support.
2093 return M.getNamedValue("__stack_chk_guard");
2094}
2095
2097 return nullptr;
2098}
2099
2102}
2103
2106}
2107
2108unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2109 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2110}
2111
2113 return MaximumJumpTableSize;
2114}
2115
2118}
2119
2122}
2123
2125 if (TM.Options.LoopAlignment)
2126 return Align(TM.Options.LoopAlignment);
2127 return PrefLoopAlignment;
2128}
2129
2131 MachineBasicBlock *MBB) const {
2132 return MaxBytesForAlignment;
2133}
2134
2135//===----------------------------------------------------------------------===//
2136// Reciprocal Estimates
2137//===----------------------------------------------------------------------===//
2138
2139/// Get the reciprocal estimate attribute string for a function that will
2140/// override the target defaults.
2142 const Function &F = MF.getFunction();
2143 return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2144}
2145
2146/// Construct a string for the given reciprocal operation of the given type.
2147/// This string should match the corresponding option to the front-end's
2148/// "-mrecip" flag assuming those strings have been passed through in an
2149/// attribute string. For example, "vec-divf" for a division of a vXf32.
2150static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2151 std::string Name = VT.isVector() ? "vec-" : "";
2152
2153 Name += IsSqrt ? "sqrt" : "div";
2154
2155 // TODO: Handle other float types?
2156 if (VT.getScalarType() == MVT::f64) {
2157 Name += "d";
2158 } else if (VT.getScalarType() == MVT::f16) {
2159 Name += "h";
2160 } else {
2161 assert(VT.getScalarType() == MVT::f32 &&
2162 "Unexpected FP type for reciprocal estimate");
2163 Name += "f";
2164 }
2165
2166 return Name;
2167}
2168
2169/// Return the character position and value (a single numeric character) of a
2170/// customized refinement operation in the input string if it exists. Return
2171/// false if there is no customized refinement step count.
2172static bool parseRefinementStep(StringRef In, size_t &Position,
2173 uint8_t &Value) {
2174 const char RefStepToken = ':';
2175 Position = In.find(RefStepToken);
2176 if (Position == StringRef::npos)
2177 return false;
2178
2179 StringRef RefStepString = In.substr(Position + 1);
2180 // Allow exactly one numeric character for the additional refinement
2181 // step parameter.
2182 if (RefStepString.size() == 1) {
2183 char RefStepChar = RefStepString[0];
2184 if (isDigit(RefStepChar)) {
2185 Value = RefStepChar - '0';
2186 return true;
2187 }
2188 }
2189 report_fatal_error("Invalid refinement step for -recip.");
2190}
2191
2192/// For the input attribute string, return one of the ReciprocalEstimate enum
2193/// status values (enabled, disabled, or not specified) for this operation on
2194/// the specified data type.
2195static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2196 if (Override.empty())
2198
2199 SmallVector<StringRef, 4> OverrideVector;
2200 Override.split(OverrideVector, ',');
2201 unsigned NumArgs = OverrideVector.size();
2202
2203 // Check if "all", "none", or "default" was specified.
2204 if (NumArgs == 1) {
2205 // Look for an optional setting of the number of refinement steps needed
2206 // for this type of reciprocal operation.
2207 size_t RefPos;
2208 uint8_t RefSteps;
2209 if (parseRefinementStep(Override, RefPos, RefSteps)) {
2210 // Split the string for further processing.
2211 Override = Override.substr(0, RefPos);
2212 }
2213
2214 // All reciprocal types are enabled.
2215 if (Override == "all")
2217
2218 // All reciprocal types are disabled.
2219 if (Override == "none")
2221
2222 // Target defaults for enablement are used.
2223 if (Override == "default")
2225 }
2226
2227 // The attribute string may omit the size suffix ('f'/'d').
2228 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2229 std::string VTNameNoSize = VTName;
2230 VTNameNoSize.pop_back();
2231 static const char DisabledPrefix = '!';
2232
2233 for (StringRef RecipType : OverrideVector) {
2234 size_t RefPos;
2235 uint8_t RefSteps;
2236 if (parseRefinementStep(RecipType, RefPos, RefSteps))
2237 RecipType = RecipType.substr(0, RefPos);
2238
2239 // Ignore the disablement token for string matching.
2240 bool IsDisabled = RecipType[0] == DisabledPrefix;
2241 if (IsDisabled)
2242 RecipType = RecipType.substr(1);
2243
2244 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2247 }
2248
2250}
2251
2252/// For the input attribute string, return the customized refinement step count
2253/// for this operation on the specified data type. If the step count does not
2254/// exist, return the ReciprocalEstimate enum value for unspecified.
2255static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2256 if (Override.empty())
2258
2259 SmallVector<StringRef, 4> OverrideVector;
2260 Override.split(OverrideVector, ',');
2261 unsigned NumArgs = OverrideVector.size();
2262
2263 // Check if "all", "default", or "none" was specified.
2264 if (NumArgs == 1) {
2265 // Look for an optional setting of the number of refinement steps needed
2266 // for this type of reciprocal operation.
2267 size_t RefPos;
2268 uint8_t RefSteps;
2269 if (!parseRefinementStep(Override, RefPos, RefSteps))
2271
2272 // Split the string for further processing.
2273 Override = Override.substr(0, RefPos);
2274 assert(Override != "none" &&
2275 "Disabled reciprocals, but specifed refinement steps?");
2276
2277 // If this is a general override, return the specified number of steps.
2278 if (Override == "all" || Override == "default")
2279 return RefSteps;
2280 }
2281
2282 // The attribute string may omit the size suffix ('f'/'d').
2283 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2284 std::string VTNameNoSize = VTName;
2285 VTNameNoSize.pop_back();
2286
2287 for (StringRef RecipType : OverrideVector) {
2288 size_t RefPos;
2289 uint8_t RefSteps;
2290 if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2291 continue;
2292
2293 RecipType = RecipType.substr(0, RefPos);
2294 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2295 return RefSteps;
2296 }
2297
2299}
2300
2302 MachineFunction &MF) const {
2303 return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2304}
2305
2307 MachineFunction &MF) const {
2308 return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2309}
2310
2312 MachineFunction &MF) const {
2313 return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2314}
2315
2317 MachineFunction &MF) const {
2318 return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2319}
2320
2322 EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG,
2323 const MachineMemOperand &MMO) const {
2324 // Single-element vectors are scalarized, so we should generally avoid having
2325 // any memory operations on such types, as they would get scalarized too.
2326 if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() &&
2327 BitcastVT.getVectorNumElements() == 1)
2328 return false;
2329
2330 // Don't do if we could do an indexed load on the original type, but not on
2331 // the new one.
2332 if (!LoadVT.isSimple() || !BitcastVT.isSimple())
2333 return true;
2334
2335 MVT LoadMVT = LoadVT.getSimpleVT();
2336
2337 // Don't bother doing this if it's just going to be promoted again later, as
2338 // doing so might interfere with other combines.
2339 if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
2340 getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
2341 return false;
2342
2343 unsigned Fast = 0;
2344 return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
2345 MMO, &Fast) &&
2346 Fast;
2347}
2348
2351}
2352
2354 const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC,
2355 const TargetLibraryInfo *LibInfo) const {
2357 if (LI.isVolatile())
2359
2360 if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2362
2363 if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2365
2367 LI.getAlign(), DL, &LI, AC,
2368 /*DT=*/nullptr, LibInfo))
2370
2371 Flags |= getTargetMMOFlags(LI);
2372 return Flags;
2373}
2374
2377 const DataLayout &DL) const {
2379
2380 if (SI.isVolatile())
2382
2383 if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2385
2386 // FIXME: Not preserving dereferenceable
2387 Flags |= getTargetMMOFlags(SI);
2388 return Flags;
2389}
2390
2393 const DataLayout &DL) const {
2395
2396 if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2397 if (RMW->isVolatile())
2399 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2400 if (CmpX->isVolatile())
2402 } else
2403 llvm_unreachable("not an atomic instruction");
2404
2405 // FIXME: Not preserving dereferenceable
2406 Flags |= getTargetMMOFlags(AI);
2407 return Flags;
2408}
2409
2411 Instruction *Inst,
2412 AtomicOrdering Ord) const {
2413 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2414 return Builder.CreateFence(Ord);
2415 else
2416 return nullptr;
2417}
2418
2420 Instruction *Inst,
2421 AtomicOrdering Ord) const {
2422 if (isAcquireOrStronger(Ord))
2423 return Builder.CreateFence(Ord);
2424 else
2425 return nullptr;
2426}
2427
2428//===----------------------------------------------------------------------===//
2429// GlobalISel Hooks
2430//===----------------------------------------------------------------------===//
2431
2433 const TargetTransformInfo *TTI) const {
2434 auto &MF = *MI.getMF();
2435 auto &MRI = MF.getRegInfo();
2436 // Assuming a spill and reload of a value has a cost of 1 instruction each,
2437 // this helper function computes the maximum number of uses we should consider
2438 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2439 // break even in terms of code size when the original MI has 2 users vs
2440 // choosing to potentially spill. Any more than 2 users we we have a net code
2441 // size increase. This doesn't take into account register pressure though.
2442 auto maxUses = [](unsigned RematCost) {
2443 // A cost of 1 means remats are basically free.
2444 if (RematCost == 1)
2445 return std::numeric_limits<unsigned>::max();
2446 if (RematCost == 2)
2447 return 2U;
2448
2449 // Remat is too expensive, only sink if there's one user.
2450 if (RematCost > 2)
2451 return 1U;
2452 llvm_unreachable("Unexpected remat cost");
2453 };
2454
2455 switch (MI.getOpcode()) {
2456 default:
2457 return false;
2458 // Constants-like instructions should be close to their users.
2459 // We don't want long live-ranges for them.
2460 case TargetOpcode::G_CONSTANT:
2461 case TargetOpcode::G_FCONSTANT:
2462 case TargetOpcode::G_FRAME_INDEX:
2463 case TargetOpcode::G_INTTOPTR:
2464 return true;
2465 case TargetOpcode::G_GLOBAL_VALUE: {
2466 unsigned RematCost = TTI->getGISelRematGlobalCost();
2467 Register Reg = MI.getOperand(0).getReg();
2468 unsigned MaxUses = maxUses(RematCost);
2469 if (MaxUses == UINT_MAX)
2470 return true; // Remats are "free" so always localize.
2471 return MRI.hasAtMostUserInstrs(Reg, MaxUses);
2472 }
2473 }
2474}
unsigned const MachineRegisterInfo * MRI
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
amdgpu AMDGPU Register Bank Select
Rewrite undef for PHI
This file contains the simple types necessary to represent the attributes associated with functions a...
This file implements the BitVector class.
std::string Name
IRTranslator LLVM IR MI
#define LCALL5(A)
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
unsigned const TargetRegisterInfo * TRI
Module.h This file contains the declarations for the Module class.
LLVMContext & Context
const char LLVMTargetMachineRef TM
static bool isDigit(const char C)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
static bool darwinHasSinCos(const Triple &TT)
static cl::opt< bool > JumpIsExpensiveOverride("jump-is-expensive", cl::init(false), cl::desc("Do not create extra branches to split comparison logic."), cl::Hidden)
#define OP_TO_LIBCALL(Name, Enum)
static cl::opt< unsigned > MinimumJumpTableEntries("min-jump-table-entries", cl::init(4), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table."))
static cl::opt< bool > DisableStrictNodeMutation("disable-strictnode-mutation", cl::desc("Don't mutate strict-float node to a legalize node"), cl::init(false), cl::Hidden)
static bool parseRefinementStep(StringRef In, size_t &Position, uint8_t &Value)
Return the character position and value (a single numeric character) of a customized refinement opera...
static cl::opt< unsigned > MaximumJumpTableSize("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, cl::desc("Set maximum size of jump tables."))
static cl::opt< unsigned > JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, cl::desc("Minimum density for building a jump table in " "a normal function"))
Minimum jump table density for normal functions.
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT, TargetLoweringBase *TLI)
static std::string getReciprocalOpName(bool IsSqrt, EVT VT)
Construct a string for the given reciprocal operation of the given type.
static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return the customized refinement step count for this operation on the...
static void InitCmpLibcallCCs(ISD::CondCode *CCs)
InitCmpLibcallCCs - Set default comparison libcall CC.
static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return one of the ReciprocalEstimate enum status values (enabled,...
static StringRef getRecipEstimateForFunc(MachineFunction &MF)
Get the reciprocal estimate attribute string for a function that will override the target defaults.
static cl::opt< unsigned > OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, cl::desc("Minimum density for building a jump table in " "an optsize function"))
Minimum jump table density for -Os or -Oz functions.
This file describes how to lower LLVM code to machine code.
This pass exposes codegen information to IR-level passes.
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
Definition: Instructions.h:539
an instruction that atomically reads a memory location, combines it with another value,...
Definition: Instructions.h:748
bool hasRetAttr(Attribute::AttrKind Kind) const
Return true if the attribute exists for the return value.
Definition: Attributes.h:798
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:206
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
setBitsInMask - Add '1' bits from Mask to this vector.
Definition: BitVector.h:707
iterator_range< const_set_bits_iterator > set_bits() const
Definition: BitVector.h:140
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
This is an important base class in LLVM.
Definition: Constant.h:41
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
unsigned getPointerSize(unsigned AS=0) const
Layout pointer size in bytes, rounded up to a whole number of bytes.
Definition: DataLayout.cpp:750
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition: TypeSize.h:299
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition: TypeSize.h:296
constexpr bool isScalar() const
Exactly one element.
Definition: TypeSize.h:307
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Definition: DerivedTypes.h:168
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:656
@ HiddenVisibility
The GV is hidden.
Definition: GlobalValue.h:68
@ ExternalLinkage
Externally visible function.
Definition: GlobalValue.h:52
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:94
FenceInst * CreateFence(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System, const Twine &Name="")
Definition: IRBuilder.h:1834
BasicBlock * GetInsertBlock() const
Definition: IRBuilder.h:174
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args=std::nullopt, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2402
bool hasAtomicStore() const LLVM_READONLY
Return true if this atomic instruction stores to memory.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
Definition: Instruction.h:341
@ MAX_INT_BITS
Maximum number of bits that can be specified.
Definition: DerivedTypes.h:52
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:184
Value * getPointerOperand()
Definition: Instructions.h:280
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Definition: Instructions.h:230
Align getAlign() const
Return the alignment of the access that is being performed.
Definition: Instructions.h:236
Machine Value Type.
SimpleValueType SimpleTy
uint64_t getScalarSizeInBits() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto all_valuetypes()
SimpleValueType Iteration.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getPow2VectorType() const
Widens the length of the given vector MVT up to the nearest power of 2 and returns that type.
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
Definition: MachineInstr.h:69
unsigned getNumOperands() const
Retuns the total number of operands.
Definition: MachineInstr.h:549
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
unsigned getAddrSpace() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
void freezeReservedRegs()
freezeReservedRegs - Called by the register allocator to freeze the set of reserved registers before ...
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
Class to represent pointers.
Definition: DerivedTypes.h:646
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
Definition: DerivedTypes.h:662
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:225
const DataLayout & getDataLayout() const
Definition: SelectionDAG.h:471
LLVMContext * getContext() const
Definition: SelectionDAG.h:484
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
An instruction for storing to memory.
Definition: Instructions.h:317
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition: StringRef.h:696
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition: StringRef.h:567
constexpr bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:134
constexpr size_t size() const
size - Get the string size.
Definition: StringRef.h:137
static constexpr size_t npos
Definition: StringRef.h:52
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
Multiway switch.
Provides information about what library functions are available for the current target.
LegalizeTypeAction getTypeAction(MVT VT) const
void setTypeAction(MVT VT, LegalizeTypeAction Action)
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
void initActions()
Initialize all of the actions to default values.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool canOpTrap(unsigned Op, EVT VT) const
Returns true if the operation can trap for the value type.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const
Check whether or not MI needs to be moved close to its uses.
virtual unsigned getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const
Return the maximum amount of bytes allowed to be emitted when padding for alignment.
void setMaximumJumpTableSize(unsigned)
Indicate the maximum number of entries in jump tables.
virtual unsigned getMinimumJumpTableEntries() const
Return lower limit for number of blocks in a jump table.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC)
Set the CallingConv that should be used for the specified libcall.
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
virtual bool useFPRegsForHalfType() const
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
virtual bool softPromoteHalfType() const
unsigned getMaximumJumpTableSize() const
Return upper limit for number of entries in a jump table.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
Value * getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, bool UseTLS) const
virtual Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL, bool LegalTypes=true) const
Returns the type for the shift amount of a shift opcode.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual bool isJumpTableRelative() const
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const
Return the type to use for a scalar shift opcode, given the shifted amount type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
void setLibcallName(RTLIB::Libcall Call, const char *Name)
Rename the default libcall routine name for the specified libcall.
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
virtual uint64_t getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Return the desired alignment for ByVal or InAlloca aggregate function arguments in the caller paramet...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
unsigned getMinimumJumpTableDensity(bool OptForSize) const
Return lower limit of the density in a jump table.
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
TargetLoweringBase(const TargetMachine &TM)
NOTE: The TargetMachine owns TLOF.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:76
bool isPositionIndependent() const
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
Reloc::Model getRelocationModel() const
Returns the code generation relocation model.
TargetOptions Options
unsigned LoopAlignment
If greater than 0, override TargetLoweringBase::PrefLoopAlignment.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
unsigned getGISelRematGlobalCost() const
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
bool isWindowsGNUEnvironment() const
Definition: Triple.h:641
bool isAndroid() const
Tests whether the target is Android.
Definition: Triple.h:753
@ aarch64_32
Definition: Triple.h:53
bool isOSFreeBSD() const
Definition: Triple.h:568
bool isPPC64() const
Tests whether the target is 64-bit PowerPC (little and big endian).
Definition: Triple.h:948
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, XROS, or DriverKit).
Definition: Triple.h:542
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
constexpr LeafTy coefficientNextPowerOf2() const
Definition: TypeSize.h:247
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition: TypeSize.h:171
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition: TypeSize.h:168
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition: TypeSize.h:239
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
@ ARM_AAPCS_VFP
Same as ARM_AAPCS, but uses hard floating point ABI.
Definition: CallingConv.h:114
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition: ISDOpcodes.h:40
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition: ISDOpcodes.h:750
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition: ISDOpcodes.h:236
@ CTLZ_ZERO_UNDEF
Definition: ISDOpcodes.h:723
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition: ISDOpcodes.h:44
@ SET_FPENV
Sets the current floating-point environment.
Definition: ISDOpcodes.h:998
@ VECREDUCE_SEQ_FADD
Generic reduction nodes.
Definition: ISDOpcodes.h:1339
@ VECREDUCE_SMIN
Definition: ISDOpcodes.h:1370
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
Definition: ISDOpcodes.h:497
@ ATOMIC_LOAD_NAND
Definition: ISDOpcodes.h:1269
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition: ISDOpcodes.h:367
@ ConstantFP
Definition: ISDOpcodes.h:77
@ ATOMIC_LOAD_MAX
Definition: ISDOpcodes.h:1271
@ ATOMIC_LOAD_UMIN
Definition: ISDOpcodes.h:1272
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition: ISDOpcodes.h:269
@ RESET_FPENV
Set floating-point environment to default state.
Definition: ISDOpcodes.h:1002
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition: ISDOpcodes.h:487
@ FMAXNUM_IEEE
Definition: ISDOpcodes.h:979
@ ADD
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:239
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
Definition: ISDOpcodes.h:1031
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition: ISDOpcodes.h:373
@ SET_FPMODE
Sets the current dynamic floating-point control modes.
Definition: ISDOpcodes.h:1021
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition: ISDOpcodes.h:783
@ ATOMIC_CMP_SWAP_WITH_SUCCESS
Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.
Definition: ISDOpcodes.h:1254
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition: ISDOpcodes.h:790
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition: ISDOpcodes.h:543
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
Definition: ISDOpcodes.h:1355
@ FADD
Simple binary floating point operators.
Definition: ISDOpcodes.h:390
@ VECREDUCE_FMAXIMUM
FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm....
Definition: ISDOpcodes.h:1359
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition: ISDOpcodes.h:688
@ RESET_FPMODE
Sets default dynamic floating-point control modes.
Definition: ISDOpcodes.h:1025
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition: ISDOpcodes.h:820
@ VECREDUCE_SMAX
Definition: ISDOpcodes.h:1369
@ ATOMIC_LOAD_OR
Definition: ISDOpcodes.h:1267
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition: ISDOpcodes.h:903
@ ATOMIC_LOAD_XOR
Definition: ISDOpcodes.h:1268
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
Definition: ISDOpcodes.h:939
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition: ISDOpcodes.h:380
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
Definition: ISDOpcodes.h:1400
@ SIGN_EXTEND
Conversion operators.
Definition: ISDOpcodes.h:774
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition: ISDOpcodes.h:662
@ READSTEADYCOUNTER
READSTEADYCOUNTER - This corresponds to the readfixedcounter intrinsic.
Definition: ISDOpcodes.h:1188
@ VECREDUCE_FADD
These reductions have relaxed evaluation order semantics, and have a single vector operand.
Definition: ISDOpcodes.h:1352
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition: ISDOpcodes.h:722
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
Definition: ISDOpcodes.h:1221
@ VECREDUCE_FMIN
Definition: ISDOpcodes.h:1356
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
Definition: ISDOpcodes.h:758
@ FNEG
Perform various unary floating-point operations inspired by libm.
Definition: ISDOpcodes.h:930
@ SSUBO
Same for subtraction.
Definition: ISDOpcodes.h:327
@ ATOMIC_LOAD_MIN
Definition: ISDOpcodes.h:1270
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
Definition: ISDOpcodes.h:507
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition: ISDOpcodes.h:349
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition: ISDOpcodes.h:727
@ VECREDUCE_UMAX
Definition: ISDOpcodes.h:1371
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition: ISDOpcodes.h:627
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition: ISDOpcodes.h:323
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
Definition: ISDOpcodes.h:1364
@ GET_FPMODE
Reads the current dynamic floating-point control modes.
Definition: ISDOpcodes.h:1016
@ GET_FPENV
Gets the current floating-point environment.
Definition: ISDOpcodes.h:993
@ SHL
Shift and rotation operations.
Definition: ISDOpcodes.h:705
@ ATOMIC_LOAD_CLR
Definition: ISDOpcodes.h:1266
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition: ISDOpcodes.h:600
@ ATOMIC_LOAD_AND
Definition: ISDOpcodes.h:1265
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimum or maximum on two values,...
Definition: ISDOpcodes.h:978
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition: ISDOpcodes.h:535
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:780
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
Definition: ISDOpcodes.h:1211
@ FP_TO_UINT_SAT
Definition: ISDOpcodes.h:856
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
Definition: ISDOpcodes.h:1248
@ ATOMIC_LOAD_UMAX
Definition: ISDOpcodes.h:1273
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two values.
Definition: ISDOpcodes.h:971
@ UBSANTRAP
UBSANTRAP - Trap with an immediate describing the kind of sanitizer failure.
Definition: ISDOpcodes.h:1215
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition: ISDOpcodes.h:359
@ SMULO
Same for multiplication.
Definition: ISDOpcodes.h:331
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition: ISDOpcodes.h:809
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition: ISDOpcodes.h:798
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition: ISDOpcodes.h:674
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition: ISDOpcodes.h:386
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition: ISDOpcodes.h:888
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition: ISDOpcodes.h:303
@ VECREDUCE_UMIN
Definition: ISDOpcodes.h:1372
@ ATOMIC_LOAD_ADD
Definition: ISDOpcodes.h:1263
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
Definition: ISDOpcodes.h:984
@ ATOMIC_LOAD_SUB
Definition: ISDOpcodes.h:1264
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition: ISDOpcodes.h:836
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
Definition: ISDOpcodes.h:1182
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:680
@ TRAP
TRAP - Trapping instruction.
Definition: ISDOpcodes.h:1208
@ GET_FPENV_MEM
Gets the current floating-point environment.
Definition: ISDOpcodes.h:1007
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition: ISDOpcodes.h:657
@ VECREDUCE_FMUL
Definition: ISDOpcodes.h:1353
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition: ISDOpcodes.h:279
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition: ISDOpcodes.h:524
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
Definition: ISDOpcodes.h:612
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
Definition: ISDOpcodes.h:1262
@ FFREXP
FFREXP - frexp, extract fractional and exponent component of a floating-point value.
Definition: ISDOpcodes.h:944
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition: ISDOpcodes.h:869
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition: ISDOpcodes.h:831
@ ADDRSPACECAST
ADDRSPACECAST - This operator converts between pointers of different address spaces.
Definition: ISDOpcodes.h:907
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition: ISDOpcodes.h:855
@ VECREDUCE_FMINIMUM
Definition: ISDOpcodes.h:1360
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition: ISDOpcodes.h:786
@ VECREDUCE_SEQ_FMUL
Definition: ISDOpcodes.h:1340
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition: ISDOpcodes.h:493
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition: ISDOpcodes.h:340
@ GET_DYNAMIC_AREA_OFFSET
GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of the most recent dynamic alloca.
Definition: ISDOpcodes.h:1320
@ SET_FPENV_MEM
Sets the current floating point environment.
Definition: ISDOpcodes.h:1012
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition: ISDOpcodes.h:313
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
Definition: ISDOpcodes.h:1523
static const int LAST_INDEXED_MODE
Definition: ISDOpcodes.h:1474
Libcall getPOWI(EVT RetVT)
getPOWI - Return the POWI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getSYNC(unsigned Opc, MVT VT)
Return the SYNC_FETCH_AND_* value for the given opcode and type, or UNKNOWN_LIBCALL if there is none.
Libcall getLDEXP(EVT RetVT)
getLDEXP - Return the LDEXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getFREXP(EVT RetVT)
getFREXP - Return the FREXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall
RTLIB::Libcall enum - This enum defines all of the runtime library calls the backend can emit.
Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT)
Return the outline atomics value for the given opcode, atomic ordering and type, or UNKNOWN_LIBCALL i...
Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
Libcall getOutlineAtomicHelper(const Libcall(&LC)[5][4], AtomicOrdering Order, uint64_t MemSize)
Return the outline atomics value for the given atomic ordering, access size and set of libcalls for a...
Libcall getFPLibCall(EVT VT, Libcall Call_F32, Libcall Call_F64, Libcall Call_F80, Libcall Call_F128, Libcall Call_PPCF128)
GetFPLibCall - Helper to return the right libcall for the given floating point type,...
Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:450
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition: MathExtras.h:326
EVT getApproximateEVTForLLT(LLT Ty, const DataLayout &DL, LLVMContext &Ctx)
void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition: MathExtras.h:417
auto enum_seq(EnumT Begin, EnumT End)
Iterate over an enum type from Begin up to - but not including - End.
Definition: Sequence.h:337
bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
Definition: Loads.cpp:201
bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
constexpr force_iteration_on_noniterable_enum_t force_iteration_on_noniterable_enum
Definition: Sequence.h:108
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
Definition: bit.h:342
bool isReleaseOrStronger(AtomicOrdering AO)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:264
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1736
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:156
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ FMul
Product of floats.
@ And
Bitwise or logical AND of integers.
@ Add
Sum of integers.
@ FAdd
Sum of floats.
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
Definition: Analysis.cpp:79
bool isAcquireOrStronger(AtomicOrdering AO)
InstructionCost Cost
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Extended Value Type.
Definition: ValueTypes.h:34
EVT getPow2VectorType(LLVMContext &Context) const
Widens the length of the given vector EVT up to the nearest power of 2 and returns that type.
Definition: ValueTypes.h:462
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition: ValueTypes.h:136
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition: ValueTypes.h:73
ElementCount getVectorElementCount() const
Definition: ValueTypes.h:340
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition: ValueTypes.h:358
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
Definition: ValueTypes.h:455
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition: ValueTypes.h:306
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition: ValueTypes.h:64
bool isFixedLengthVector() const
Definition: ValueTypes.h:177
EVT getRoundIntegerType(LLVMContext &Context) const
Rounds the bit-width of the given integer EVT up to the nearest power of two (and at least to eight),...
Definition: ValueTypes.h:404
bool isVector() const
Return true if this is a vector value type.
Definition: ValueTypes.h:167
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition: ValueTypes.h:313
Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
Definition: ValueTypes.cpp:202
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition: ValueTypes.h:318
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition: ValueTypes.h:326
bool isZeroSized() const
Test if the given EVT has zero size, this will fail if called on a scalable type.
Definition: ValueTypes.h:131
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
Definition: ValueTypes.h:438
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition: ValueTypes.h:151
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...