69 "jump-is-expensive",
cl::init(
false),
70 cl::desc(
"Do not create extra branches to split comparison logic."),
75 cl::desc(
"Set minimum number of entries to use a jump table."));
79 cl::desc(
"Set maximum size of jump tables."));
84 cl::desc(
"Minimum density for building a jump table in "
85 "a normal function"));
90 cl::desc(
"Minimum density for building a jump table in "
91 "an optsize function"));
98 cl::desc(
"Don't mutate strict-float node to a legalize node"),
110 VT == MVT::f32 ? Call_F32 :
111 VT == MVT::f64 ? Call_F64 :
112 VT == MVT::f80 ? Call_F80 :
113 VT == MVT::f128 ? Call_F128 :
114 VT == MVT::ppcf128 ? Call_PPCF128 :
115 RTLIB::UNKNOWN_LIBCALL;
121 if (OpVT == MVT::f16) {
122 if (RetVT == MVT::f32)
123 return FPEXT_F16_F32;
124 if (RetVT == MVT::f64)
125 return FPEXT_F16_F64;
126 if (RetVT == MVT::f80)
127 return FPEXT_F16_F80;
128 if (RetVT == MVT::f128)
129 return FPEXT_F16_F128;
130 }
else if (OpVT == MVT::f32) {
131 if (RetVT == MVT::f64)
132 return FPEXT_F32_F64;
133 if (RetVT == MVT::f128)
134 return FPEXT_F32_F128;
135 if (RetVT == MVT::ppcf128)
136 return FPEXT_F32_PPCF128;
137 }
else if (OpVT == MVT::f64) {
138 if (RetVT == MVT::f128)
139 return FPEXT_F64_F128;
140 else if (RetVT == MVT::ppcf128)
141 return FPEXT_F64_PPCF128;
142 }
else if (OpVT == MVT::f80) {
143 if (RetVT == MVT::f128)
144 return FPEXT_F80_F128;
145 }
else if (OpVT == MVT::bf16) {
146 if (RetVT == MVT::f32)
147 return FPEXT_BF16_F32;
150 return UNKNOWN_LIBCALL;
156 if (RetVT == MVT::f16) {
157 if (OpVT == MVT::f32)
158 return FPROUND_F32_F16;
159 if (OpVT == MVT::f64)
160 return FPROUND_F64_F16;
161 if (OpVT == MVT::f80)
162 return FPROUND_F80_F16;
163 if (OpVT == MVT::f128)
164 return FPROUND_F128_F16;
165 if (OpVT == MVT::ppcf128)
166 return FPROUND_PPCF128_F16;
167 }
else if (RetVT == MVT::bf16) {
168 if (OpVT == MVT::f32)
169 return FPROUND_F32_BF16;
170 if (OpVT == MVT::f64)
171 return FPROUND_F64_BF16;
172 if (OpVT == MVT::f80)
173 return FPROUND_F80_BF16;
174 if (OpVT == MVT::f128)
175 return FPROUND_F128_BF16;
176 }
else if (RetVT == MVT::f32) {
177 if (OpVT == MVT::f64)
178 return FPROUND_F64_F32;
179 if (OpVT == MVT::f80)
180 return FPROUND_F80_F32;
181 if (OpVT == MVT::f128)
182 return FPROUND_F128_F32;
183 if (OpVT == MVT::ppcf128)
184 return FPROUND_PPCF128_F32;
185 }
else if (RetVT == MVT::f64) {
186 if (OpVT == MVT::f80)
187 return FPROUND_F80_F64;
188 if (OpVT == MVT::f128)
189 return FPROUND_F128_F64;
190 if (OpVT == MVT::ppcf128)
191 return FPROUND_PPCF128_F64;
192 }
else if (RetVT == MVT::f80) {
193 if (OpVT == MVT::f128)
194 return FPROUND_F128_F80;
197 return UNKNOWN_LIBCALL;
203 if (OpVT == MVT::f16) {
204 if (RetVT == MVT::i32)
205 return FPTOSINT_F16_I32;
206 if (RetVT == MVT::i64)
207 return FPTOSINT_F16_I64;
208 if (RetVT == MVT::i128)
209 return FPTOSINT_F16_I128;
210 }
else if (OpVT == MVT::f32) {
211 if (RetVT == MVT::i32)
212 return FPTOSINT_F32_I32;
213 if (RetVT == MVT::i64)
214 return FPTOSINT_F32_I64;
215 if (RetVT == MVT::i128)
216 return FPTOSINT_F32_I128;
217 }
else if (OpVT == MVT::f64) {
218 if (RetVT == MVT::i32)
219 return FPTOSINT_F64_I32;
220 if (RetVT == MVT::i64)
221 return FPTOSINT_F64_I64;
222 if (RetVT == MVT::i128)
223 return FPTOSINT_F64_I128;
224 }
else if (OpVT == MVT::f80) {
225 if (RetVT == MVT::i32)
226 return FPTOSINT_F80_I32;
227 if (RetVT == MVT::i64)
228 return FPTOSINT_F80_I64;
229 if (RetVT == MVT::i128)
230 return FPTOSINT_F80_I128;
231 }
else if (OpVT == MVT::f128) {
232 if (RetVT == MVT::i32)
233 return FPTOSINT_F128_I32;
234 if (RetVT == MVT::i64)
235 return FPTOSINT_F128_I64;
236 if (RetVT == MVT::i128)
237 return FPTOSINT_F128_I128;
238 }
else if (OpVT == MVT::ppcf128) {
239 if (RetVT == MVT::i32)
240 return FPTOSINT_PPCF128_I32;
241 if (RetVT == MVT::i64)
242 return FPTOSINT_PPCF128_I64;
243 if (RetVT == MVT::i128)
244 return FPTOSINT_PPCF128_I128;
246 return UNKNOWN_LIBCALL;
252 if (OpVT == MVT::f16) {
253 if (RetVT == MVT::i32)
254 return FPTOUINT_F16_I32;
255 if (RetVT == MVT::i64)
256 return FPTOUINT_F16_I64;
257 if (RetVT == MVT::i128)
258 return FPTOUINT_F16_I128;
259 }
else if (OpVT == MVT::f32) {
260 if (RetVT == MVT::i32)
261 return FPTOUINT_F32_I32;
262 if (RetVT == MVT::i64)
263 return FPTOUINT_F32_I64;
264 if (RetVT == MVT::i128)
265 return FPTOUINT_F32_I128;
266 }
else if (OpVT == MVT::f64) {
267 if (RetVT == MVT::i32)
268 return FPTOUINT_F64_I32;
269 if (RetVT == MVT::i64)
270 return FPTOUINT_F64_I64;
271 if (RetVT == MVT::i128)
272 return FPTOUINT_F64_I128;
273 }
else if (OpVT == MVT::f80) {
274 if (RetVT == MVT::i32)
275 return FPTOUINT_F80_I32;
276 if (RetVT == MVT::i64)
277 return FPTOUINT_F80_I64;
278 if (RetVT == MVT::i128)
279 return FPTOUINT_F80_I128;
280 }
else if (OpVT == MVT::f128) {
281 if (RetVT == MVT::i32)
282 return FPTOUINT_F128_I32;
283 if (RetVT == MVT::i64)
284 return FPTOUINT_F128_I64;
285 if (RetVT == MVT::i128)
286 return FPTOUINT_F128_I128;
287 }
else if (OpVT == MVT::ppcf128) {
288 if (RetVT == MVT::i32)
289 return FPTOUINT_PPCF128_I32;
290 if (RetVT == MVT::i64)
291 return FPTOUINT_PPCF128_I64;
292 if (RetVT == MVT::i128)
293 return FPTOUINT_PPCF128_I128;
295 return UNKNOWN_LIBCALL;
301 if (OpVT == MVT::i32) {
302 if (RetVT == MVT::f16)
303 return SINTTOFP_I32_F16;
304 if (RetVT == MVT::f32)
305 return SINTTOFP_I32_F32;
306 if (RetVT == MVT::f64)
307 return SINTTOFP_I32_F64;
308 if (RetVT == MVT::f80)
309 return SINTTOFP_I32_F80;
310 if (RetVT == MVT::f128)
311 return SINTTOFP_I32_F128;
312 if (RetVT == MVT::ppcf128)
313 return SINTTOFP_I32_PPCF128;
314 }
else if (OpVT == MVT::i64) {
315 if (RetVT == MVT::f16)
316 return SINTTOFP_I64_F16;
317 if (RetVT == MVT::f32)
318 return SINTTOFP_I64_F32;
319 if (RetVT == MVT::f64)
320 return SINTTOFP_I64_F64;
321 if (RetVT == MVT::f80)
322 return SINTTOFP_I64_F80;
323 if (RetVT == MVT::f128)
324 return SINTTOFP_I64_F128;
325 if (RetVT == MVT::ppcf128)
326 return SINTTOFP_I64_PPCF128;
327 }
else if (OpVT == MVT::i128) {
328 if (RetVT == MVT::f16)
329 return SINTTOFP_I128_F16;
330 if (RetVT == MVT::f32)
331 return SINTTOFP_I128_F32;
332 if (RetVT == MVT::f64)
333 return SINTTOFP_I128_F64;
334 if (RetVT == MVT::f80)
335 return SINTTOFP_I128_F80;
336 if (RetVT == MVT::f128)
337 return SINTTOFP_I128_F128;
338 if (RetVT == MVT::ppcf128)
339 return SINTTOFP_I128_PPCF128;
341 return UNKNOWN_LIBCALL;
347 if (OpVT == MVT::i32) {
348 if (RetVT == MVT::f16)
349 return UINTTOFP_I32_F16;
350 if (RetVT == MVT::f32)
351 return UINTTOFP_I32_F32;
352 if (RetVT == MVT::f64)
353 return UINTTOFP_I32_F64;
354 if (RetVT == MVT::f80)
355 return UINTTOFP_I32_F80;
356 if (RetVT == MVT::f128)
357 return UINTTOFP_I32_F128;
358 if (RetVT == MVT::ppcf128)
359 return UINTTOFP_I32_PPCF128;
360 }
else if (OpVT == MVT::i64) {
361 if (RetVT == MVT::f16)
362 return UINTTOFP_I64_F16;
363 if (RetVT == MVT::f32)
364 return UINTTOFP_I64_F32;
365 if (RetVT == MVT::f64)
366 return UINTTOFP_I64_F64;
367 if (RetVT == MVT::f80)
368 return UINTTOFP_I64_F80;
369 if (RetVT == MVT::f128)
370 return UINTTOFP_I64_F128;
371 if (RetVT == MVT::ppcf128)
372 return UINTTOFP_I64_PPCF128;
373 }
else if (OpVT == MVT::i128) {
374 if (RetVT == MVT::f16)
375 return UINTTOFP_I128_F16;
376 if (RetVT == MVT::f32)
377 return UINTTOFP_I128_F32;
378 if (RetVT == MVT::f64)
379 return UINTTOFP_I128_F64;
380 if (RetVT == MVT::f80)
381 return UINTTOFP_I128_F80;
382 if (RetVT == MVT::f128)
383 return UINTTOFP_I128_F128;
384 if (RetVT == MVT::ppcf128)
385 return UINTTOFP_I128_PPCF128;
387 return UNKNOWN_LIBCALL;
391 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
396 return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
401 return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
406 return getFPLibCall(RetVT, SINCOS_F32, SINCOS_F64, SINCOS_F80, SINCOS_F128,
413 unsigned ModeN, ModelN;
431 return RTLIB::UNKNOWN_LIBCALL;
435 case AtomicOrdering::Monotonic:
438 case AtomicOrdering::Acquire:
441 case AtomicOrdering::Release:
444 case AtomicOrdering::AcquireRelease:
445 case AtomicOrdering::SequentiallyConsistent:
449 return UNKNOWN_LIBCALL;
452 return LC[ModeN][ModelN];
458 return UNKNOWN_LIBCALL;
461#define LCALLS(A, B) \
462 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
464 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
491 return UNKNOWN_LIBCALL;
498#define OP_TO_LIBCALL(Name, Enum) \
500 switch (VT.SimpleTy) { \
502 return UNKNOWN_LIBCALL; \
532 return UNKNOWN_LIBCALL;
536 switch (ElementSize) {
538 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
540 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
542 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
544 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
546 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
548 return UNKNOWN_LIBCALL;
553 switch (ElementSize) {
555 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
557 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
559 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
561 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
563 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
565 return UNKNOWN_LIBCALL;
570 switch (ElementSize) {
572 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
574 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
576 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
578 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
580 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
582 return UNKNOWN_LIBCALL;
587 std::fill(CmpLibcallCCs, CmpLibcallCCs + RTLIB::UNKNOWN_LIBCALL,
592 CmpLibcallCCs[RTLIB::OEQ_PPCF128] =
ISD::SETEQ;
596 CmpLibcallCCs[RTLIB::UNE_PPCF128] =
ISD::SETNE;
600 CmpLibcallCCs[RTLIB::OGE_PPCF128] =
ISD::SETGE;
604 CmpLibcallCCs[RTLIB::OLT_PPCF128] =
ISD::SETLT;
608 CmpLibcallCCs[RTLIB::OLE_PPCF128] =
ISD::SETLE;
612 CmpLibcallCCs[RTLIB::OGT_PPCF128] =
ISD::SETGT;
616 CmpLibcallCCs[RTLIB::UO_PPCF128] =
ISD::SETNE;
621 : TM(tm), Libcalls(TM.getTargetTriple()) {
630 HasMultipleConditionRegisters =
false;
631 HasExtractBitsInsn =
false;
635 StackPointerRegisterToSaveRestore = 0;
642 MaxBytesForAlignment = 0;
643 MaxAtomicSizeInBitsSupported = 0;
647 MaxDivRemBitWidthSupported = 128;
651 MinCmpXchgSizeInBits = 0;
652 SupportsUnalignedAtomics =
false;
659 memset(OpActions, 0,
sizeof(OpActions));
660 memset(LoadExtActions, 0,
sizeof(LoadExtActions));
661 memset(TruncStoreActions, 0,
sizeof(TruncStoreActions));
662 memset(IndexedModeActions, 0,
sizeof(IndexedModeActions));
663 memset(CondCodeActions, 0,
sizeof(CondCodeActions));
664 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT),
nullptr);
665 std::fill(std::begin(TargetDAGCombineArray),
666 std::end(TargetDAGCombineArray), 0);
678 for (
MVT VT : {MVT::i2, MVT::i4})
679 OpActions[(
unsigned)VT.SimpleTy][NT] =
Expand;
682 for (
MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
690 for (
MVT VT : {MVT::i2, MVT::i4}) {
793#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
794 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
795#include "llvm/IR/ConstrainedOps.def"
817#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
818 setOperationAction(ISD::SDOPC, VT, Expand);
819#include "llvm/IR/VPIntrinsics.def"
840 {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
850 {MVT::f32, MVT::f64, MVT::f128},
Expand);
854 {MVT::f32, MVT::f64, MVT::f128},
LibCall);
871 for (
MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
898 "ShiftVT is still too small!");
916 unsigned DestAS)
const {
931 unsigned EltWidth =
RetTy->getScalarSizeInBits();
941 JumpIsExpensive = isExpensive;
957 "Promote may not follow Expand or Promote");
973 assert(NVT != VT &&
"Unable to round integer VT");
1022 EVT OldEltVT = EltVT;
1061 if (LargerVector ==
MVT())
1085 unsigned &NumIntermediates,
1092 unsigned NumVectorRegs = 1;
1098 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1104 NumVectorRegs = EC.getKnownMinValue();
1111 while (EC.getKnownMinValue() > 1 &&
1113 EC = EC.divideCoefficientBy(2);
1114 NumVectorRegs <<= 1;
1117 NumIntermediates = NumVectorRegs;
1122 IntermediateVT = NewVT;
1130 RegisterVT = DestVT;
1131 if (
EVT(DestVT).bitsLT(NewVT))
1136 return NumVectorRegs;
1143 for (
const auto *
I =
TRI.legalclasstypes_begin(RC); *
I != MVT::Other; ++
I)
1179 for (
unsigned i = 0; i <
MI->getNumOperands(); ++i) {
1186 unsigned TiedTo = i;
1188 TiedTo =
MI->findTiedOperandIdx(i);
1205 assert(
MI->getOpcode() == TargetOpcode::STATEPOINT &&
"sanity");
1206 MIB.
addImm(StackMaps::IndirectMemRefOp);
1213 MIB.
addImm(StackMaps::DirectMemRefOp);
1218 assert(MIB->
mayLoad() &&
"Folded a stackmap use to a non-load!");
1225 if (
MI->getOpcode() != TargetOpcode::STATEPOINT) {
1234 MI->eraseFromParent();
1244std::pair<const TargetRegisterClass *, uint8_t>
1249 return std::make_pair(RC, 0);
1258 for (
unsigned i : SuperRegRC.
set_bits()) {
1261 if (
TRI->getSpillSize(*SuperRC) <=
TRI->getSpillSize(*BestRC))
1267 return std::make_pair(BestRC, 1);
1276 NumRegistersForVT[i] = 1;
1280 NumRegistersForVT[MVT::isVoid] = 0;
1283 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1284 for (; RegClassForVT[LargestIntReg] ==
nullptr; --LargestIntReg)
1285 assert(LargestIntReg != MVT::i1 &&
"No integer registers defined!");
1289 for (
unsigned ExpandedReg = LargestIntReg + 1;
1290 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1291 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1300 unsigned LegalIntReg = LargestIntReg;
1301 for (
unsigned IntReg = LargestIntReg - 1;
1302 IntReg >= (
unsigned)MVT::i1; --IntReg) {
1305 LegalIntReg = IntReg;
1307 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1316 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1317 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1318 TransformToType[MVT::ppcf128] = MVT::f64;
1321 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1322 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1323 TransformToType[MVT::ppcf128] = MVT::i128;
1331 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1332 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1333 TransformToType[MVT::f128] = MVT::i128;
1340 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1341 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1342 TransformToType[MVT::f80] = MVT::i32;
1349 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1350 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1351 TransformToType[MVT::f64] = MVT::i64;
1358 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1359 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1360 TransformToType[MVT::f32] = MVT::i32;
1372 if (!UseFPRegsForHalfType) {
1373 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1374 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1376 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1377 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1379 TransformToType[MVT::f16] = MVT::f32;
1380 if (SoftPromoteHalfType) {
1391 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1392 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1393 TransformToType[MVT::bf16] = MVT::f32;
1398 for (
unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1399 i <= (
unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1406 bool IsLegalWiderType =
false;
1409 switch (PreferredAction) {
1412 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1413 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1416 for (
unsigned nVT = i + 1;
1423 TransformToType[i] = SVT;
1424 RegisterTypeForVT[i] = SVT;
1425 NumRegistersForVT[i] = 1;
1427 IsLegalWiderType =
true;
1431 if (IsLegalWiderType)
1439 for (
unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1444 EC.getKnownMinValue() &&
1446 TransformToType[i] = SVT;
1447 RegisterTypeForVT[i] = SVT;
1448 NumRegistersForVT[i] = 1;
1450 IsLegalWiderType =
true;
1454 if (IsLegalWiderType)
1460 TransformToType[i] = NVT;
1462 RegisterTypeForVT[i] = NVT;
1463 NumRegistersForVT[i] = 1;
1473 unsigned NumIntermediates;
1475 NumIntermediates, RegisterVT,
this);
1476 NumRegistersForVT[i] = NumRegisters;
1477 assert(NumRegistersForVT[i] == NumRegisters &&
1478 "NumRegistersForVT size cannot represent NumRegisters!");
1479 RegisterTypeForVT[i] = RegisterVT;
1484 TransformToType[i] = MVT::Other;
1489 else if (EC.getKnownMinValue() > 1)
1496 TransformToType[i] = NVT;
1515 RepRegClassForVT[i] = RRC;
1516 RepRegClassCostForVT[i] =
Cost;
1539 EVT VT,
EVT &IntermediateVT,
1540 unsigned &NumIntermediates,
1541 MVT &RegisterVT)
const {
1554 IntermediateVT = RegisterEVT;
1556 NumIntermediates = 1;
1564 unsigned NumVectorRegs = 1;
1579 "Don't know how to legalize this scalable vector type");
1585 IntermediateVT = PartVT;
1587 return NumIntermediates;
1602 NumVectorRegs <<= 1;
1605 NumIntermediates = NumVectorRegs;
1610 IntermediateVT = NewVT;
1613 RegisterVT = DestVT;
1615 if (
EVT(DestVT).bitsLT(NewVT)) {
1625 return NumVectorRegs;
1638 const bool OptForSize =
1645 return (OptForSize ||
Range <= MaxJumpTableSize) &&
1646 (NumCases * 100 >=
Range * MinDensity);
1650 EVT ConditionVT)
const {
1664 unsigned NumValues = ValueVTs.
size();
1665 if (NumValues == 0)
return;
1667 for (
unsigned j = 0, f = NumValues; j != f; ++j) {
1668 EVT VT = ValueVTs[j];
1695 for (
unsigned i = 0; i < NumParts; ++i)
1702 return DL.getABITypeAlign(Ty);
1714 if (VT.
isZeroSized() || Alignment >=
DL.getABITypeAlign(Ty)) {
1716 if (
Fast !=
nullptr)
1734 unsigned AddrSpace,
Align Alignment,
1736 unsigned *
Fast)
const {
1744 unsigned *
Fast)
const {
1752 unsigned *
Fast)
const {
1763 enum InstructionOpcodes {
1764#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1765#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1766#include "llvm/IR/Instruction.def"
1768 switch (
static_cast<InstructionOpcodes
>(Opcode)) {
1771 case Switch:
return 0;
1772 case IndirectBr:
return 0;
1773 case Invoke:
return 0;
1774 case CallBr:
return 0;
1775 case Resume:
return 0;
1776 case Unreachable:
return 0;
1777 case CleanupRet:
return 0;
1778 case CatchRet:
return 0;
1779 case CatchPad:
return 0;
1780 case CatchSwitch:
return 0;
1781 case CleanupPad:
return 0;
1801 case Alloca:
return 0;
1804 case GetElementPtr:
return 0;
1805 case Fence:
return 0;
1806 case AtomicCmpXchg:
return 0;
1807 case AtomicRMW:
return 0;
1824 case Call:
return 0;
1826 case UserOp1:
return 0;
1827 case UserOp2:
return 0;
1828 case VAArg:
return 0;
1834 case LandingPad:
return 0;
1843 bool UseTLS)
const {
1847 const char *UnsafeStackPtrVar =
"__safestack_unsafe_stack_ptr";
1848 auto UnsafeStackPtr =
1849 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1852 PointerType *StackPtrTy =
DL.getAllocaPtrType(M->getContext());
1854 if (!UnsafeStackPtr) {
1855 auto TLSModel = UseTLS ?
1863 UnsafeStackPtrVar,
nullptr, TLSModel);
1868 if (UnsafeStackPtr->getValueType() != StackPtrTy)
1870 if (UseTLS != UnsafeStackPtr->isThreadLocal())
1872 (UseTLS ?
"" :
"not ") +
"be thread-local");
1874 return UnsafeStackPtr;
1887 M->getOrInsertFunction(
"__safestack_pointer_address", PtrTy);
1946 Constant *
C = M.getOrInsertGlobal(
"__guard_local", PtrTy);
1957 if (!M.getNamedValue(
"__stack_chk_guard")) {
1960 nullptr,
"__stack_chk_guard");
1963 if (M.getDirectAccessExternalData() &&
1969 GV->setDSOLocal(
true);
1976 return M.getNamedValue(
"__stack_chk_guard");
2010 return PrefLoopAlignment;
2015 return MaxBytesForAlignment;
2026 return F.getFnAttribute(
"reciprocal-estimates").getValueAsString();
2036 Name += IsSqrt ?
"sqrt" :
"div";
2045 "Unexpected FP type for reciprocal estimate");
2057 const char RefStepToken =
':';
2058 Position = In.find(RefStepToken);
2062 StringRef RefStepString = In.substr(Position + 1);
2065 if (RefStepString.
size() == 1) {
2066 char RefStepChar = RefStepString[0];
2068 Value = RefStepChar -
'0';
2079 if (Override.
empty())
2083 Override.
split(OverrideVector,
',');
2084 unsigned NumArgs = OverrideVector.
size();
2094 Override = Override.
substr(0, RefPos);
2098 if (Override ==
"all")
2102 if (Override ==
"none")
2106 if (Override ==
"default")
2112 std::string VTNameNoSize = VTName;
2113 VTNameNoSize.pop_back();
2114 static const char DisabledPrefix =
'!';
2116 for (
StringRef RecipType : OverrideVector) {
2120 RecipType = RecipType.substr(0, RefPos);
2123 bool IsDisabled = RecipType[0] == DisabledPrefix;
2125 RecipType = RecipType.substr(1);
2127 if (RecipType == VTName || RecipType == VTNameNoSize)
2139 if (Override.
empty())
2143 Override.
split(OverrideVector,
',');
2144 unsigned NumArgs = OverrideVector.
size();
2156 Override = Override.
substr(0, RefPos);
2157 assert(Override !=
"none" &&
2158 "Disabled reciprocals, but specifed refinement steps?");
2161 if (Override ==
"all" || Override ==
"default")
2167 std::string VTNameNoSize = VTName;
2168 VTNameNoSize.pop_back();
2170 for (
StringRef RecipType : OverrideVector) {
2176 RecipType = RecipType.substr(0, RefPos);
2177 if (RecipType == VTName || RecipType == VTNameNoSize)
2246 if (LI.
hasMetadata(LLVMContext::MD_invariant_load))
2263 if (SI.isVolatile())
2266 if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2279 if (
const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2280 if (RMW->isVolatile())
2283 if (CmpX->isVolatile())
2317 auto &MF = *
MI.getMF();
2318 auto &
MRI = MF.getRegInfo();
2325 auto maxUses = [](
unsigned RematCost) {
2328 return std::numeric_limits<unsigned>::max();
2338 switch (
MI.getOpcode()) {
2343 case TargetOpcode::G_CONSTANT:
2344 case TargetOpcode::G_FCONSTANT:
2345 case TargetOpcode::G_FRAME_INDEX:
2346 case TargetOpcode::G_INTTOPTR:
2348 case TargetOpcode::G_GLOBAL_VALUE: {
2351 unsigned MaxUses = maxUses(RematCost);
2352 if (MaxUses == UINT_MAX)
2354 return MRI.hasAtMostUserInstrs(Reg, MaxUses);
unsigned const MachineRegisterInfo * MRI
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
This file implements the BitVector class.
Module.h This file contains the declarations for the Module class.
unsigned const TargetRegisterInfo * TRI
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
static bool isDigit(const char C)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
static cl::opt< bool > JumpIsExpensiveOverride("jump-is-expensive", cl::init(false), cl::desc("Do not create extra branches to split comparison logic."), cl::Hidden)
#define OP_TO_LIBCALL(Name, Enum)
static cl::opt< unsigned > MinimumJumpTableEntries("min-jump-table-entries", cl::init(4), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table."))
static cl::opt< bool > DisableStrictNodeMutation("disable-strictnode-mutation", cl::desc("Don't mutate strict-float node to a legalize node"), cl::init(false), cl::Hidden)
static bool parseRefinementStep(StringRef In, size_t &Position, uint8_t &Value)
Return the character position and value (a single numeric character) of a customized refinement opera...
static cl::opt< unsigned > MaximumJumpTableSize("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, cl::desc("Set maximum size of jump tables."))
static cl::opt< unsigned > JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, cl::desc("Minimum density for building a jump table in " "a normal function"))
Minimum jump table density for normal functions.
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT, TargetLoweringBase *TLI)
static std::string getReciprocalOpName(bool IsSqrt, EVT VT)
Construct a string for the given reciprocal operation of the given type.
static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return the customized refinement step count for this operation on the...
static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return one of the ReciprocalEstimate enum status values (enabled,...
static StringRef getRecipEstimateForFunc(MachineFunction &MF)
Get the reciprocal estimate attribute string for a function that will override the target defaults.
static cl::opt< unsigned > OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, cl::desc("Minimum density for building a jump table in " "an optsize function"))
Minimum jump table density for -Os or -Oz functions.
This file describes how to lower LLVM code to machine code.
Class for arbitrary precision integers.
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
bool hasRetAttr(Attribute::AttrKind Kind) const
Return true if the attribute exists for the return value.
const Function * getParent() const
Return the enclosing method, or null if none.
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
setBitsInMask - Add '1' bits from Mask to this vector.
iterator_range< const_set_bits_iterator > set_bits() const
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
This class represents a range of values.
unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
This is an important base class in LLVM.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
unsigned getPointerSize(unsigned AS=0) const
Layout pointer size in bytes, rounded up to a whole number of bytes.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Module * getParent()
Get the module that this global value is contained inside of...
@ HiddenVisibility
The GV is hidden.
@ ExternalLinkage
Externally visible function.
Common base class shared among various IRBuilders.
FenceInst * CreateFence(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System, const Twine &Name="")
BasicBlock * GetInsertBlock() const
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
bool hasAtomicStore() const LLVM_READONLY
Return true if this atomic instruction stores to memory.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
@ MAX_INT_BITS
Maximum number of bits that can be specified.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Align getAlign() const
Return the alignment of the access that is being performed.
uint64_t getScalarSizeInBits() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto all_valuetypes()
SimpleValueType Iteration.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getPow2VectorType() const
Widens the length of the given vector MVT up to the nearest power of 2 and returns that type.
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
unsigned getNumOperands() const
Retuns the total number of operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
unsigned getAddrSpace() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
void freezeReservedRegs()
freezeReservedRegs - Called by the register allocator to freeze the set of reserved registers before ...
A Module instance is used to store all the information related to an LLVM module.
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
const DataLayout & getDataLayout() const
LLVMContext * getContext() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
constexpr bool empty() const
empty - Check if the string is empty.
constexpr size_t size() const
size - Get the string size.
static constexpr size_t npos
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
Provides information about what library functions are available for the current target.
LegalizeTypeAction getTypeAction(MVT VT) const
void setTypeAction(MVT VT, LegalizeTypeAction Action)
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
void initActions()
Initialize all of the actions to default values.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool canOpTrap(unsigned Op, EVT VT) const
Returns true if the operation can trap for the value type.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const
Check whether or not MI needs to be moved close to its uses.
virtual unsigned getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const
Return the maximum amount of bytes allowed to be emitted when padding for alignment.
void setMaximumJumpTableSize(unsigned)
Indicate the maximum number of entries in jump tables.
virtual unsigned getMinimumJumpTableEntries() const
Return lower limit for number of blocks in a jump table.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
@ TypeScalarizeScalableVector
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
virtual bool useFPRegsForHalfType() const
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
virtual bool softPromoteHalfType() const
unsigned getMaximumJumpTableSize() const
Return upper limit for number of entries in a jump table.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
Value * getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, bool UseTLS) const
virtual Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
bool EnableExtLdPromotion
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual bool isJumpTableRelative() const
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const
Return the type to use for a scalar shift opcode, given the shifted amount type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ UndefinedBooleanContent
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
unsigned getMinimumJumpTableDensity(bool OptForSize) const
Return lower limit of the density in a jump table.
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
TargetLoweringBase(const TargetMachine &TM)
NOTE: The TargetMachine owns TLOF.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
Reloc::Model getRelocationModel() const
Returns the code generation relocation model.
unsigned LoopAlignment
If greater than 0, override TargetLoweringBase::PrefLoopAlignment.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
bool isWindowsGNUEnvironment() const
bool isAndroid() const
Tests whether the target is Android.
bool isPPC64() const
Tests whether the target is 64-bit PowerPC (little and big endian).
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, XROS, or DriverKit).
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
constexpr LeafTy coefficientNextPowerOf2() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ SET_FPENV
Sets the current floating-point environment.
@ VECREDUCE_SEQ_FADD
Generic reduction nodes.
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ RESET_FPENV
Set floating-point environment to default state.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ SET_FPMODE
Sets the current dynamic floating-point control modes.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FATAN2
FATAN2 - atan2, inspired by libm.
@ ATOMIC_CMP_SWAP_WITH_SUCCESS
Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
@ VECREDUCE_FMAXIMUM
FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm....
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ RESET_FPMODE
Sets default dynamic floating-point control modes.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ READSTEADYCOUNTER
READSTEADYCOUNTER - This corresponds to the readfixedcounter intrinsic.
@ VECREDUCE_FADD
These reductions have relaxed evaluation order semantics, and have a single vector operand.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ SSUBO
Same for subtraction.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ GET_FPMODE
Reads the current dynamic floating-point control modes.
@ GET_FPENV
Gets the current floating-point environment.
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two values.
@ UBSANTRAP
UBSANTRAP - Trap with an immediate describing the kind of sanitizer failure.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ TRAP
TRAP - Trapping instruction.
@ GET_FPENV_MEM
Gets the current floating-point environment.
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FFREXP
FFREXP - frexp, extract fractional and exponent component of a floating-point value.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ ADDRSPACECAST
ADDRSPACECAST - This operator converts between pointers of different address spaces.
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ GET_DYNAMIC_AREA_OFFSET
GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of the most recent dynamic alloca.
@ SET_FPENV_MEM
Sets the current floating point environment.
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ TRUNCATE_SSAT_S
TRUNCATE_[SU]SAT_[SU] - Truncate for saturated operand [SU] located in middle, prefix for SAT means i...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
static const int LAST_INDEXED_MODE
Libcall getFSINCOS(EVT RetVT)
getFSINCOS - Return the FSINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getPOWI(EVT RetVT)
getPOWI - Return the POWI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
void initCmpLibcallCCs(ISD::CondCode *CmpLibcallCCs)
Initialize the default condition code on the libcalls.
Libcall getSYNC(unsigned Opc, MVT VT)
Return the SYNC_FETCH_AND_* value for the given opcode and type, or UNKNOWN_LIBCALL if there is none.
Libcall getLDEXP(EVT RetVT)
getLDEXP - Return the LDEXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getFREXP(EVT RetVT)
getFREXP - Return the FREXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall
RTLIB::Libcall enum - This enum defines all of the runtime library calls the backend can emit.
Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT)
Return the outline atomics value for the given opcode, atomic ordering and type, or UNKNOWN_LIBCALL i...
Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
Libcall getOutlineAtomicHelper(const Libcall(&LC)[5][4], AtomicOrdering Order, uint64_t MemSize)
Return the outline atomics value for the given atomic ordering, access size and set of libcalls for a...
Libcall getFPLibCall(EVT VT, Libcall Call_F32, Libcall Call_F64, Libcall Call_F80, Libcall Call_F128, Libcall Call_PPCF128)
GetFPLibCall - Helper to return the right libcall for the given floating point type,...
Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
auto enum_seq(EnumT Begin, EnumT End)
Iterate over an enum type from Begin up to - but not including - End.
bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
constexpr force_iteration_on_noniterable_enum_t force_iteration_on_noniterable_enum
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
bool isReleaseOrStronger(AtomicOrdering AO)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
AtomicOrdering
Atomic ordering for LLVM's memory model.
EVT getApproximateEVTForLLT(LLT Ty, LLVMContext &Ctx)
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ And
Bitwise or logical AND of integers.
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
bool isAcquireOrStronger(AtomicOrdering AO)
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT getPow2VectorType(LLVMContext &Context) const
Widens the length of the given vector EVT up to the nearest power of 2 and returns that type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isFixedLengthVector() const
EVT getRoundIntegerType(LLVMContext &Context) const
Rounds the bit-width of the given integer EVT up to the nearest power of two (and at least to eight),...
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isZeroSized() const
Test if the given EVT has zero size, this will fail if called on a scalable type.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...