LLVM 22.0.0git
TargetLoweringBase.cpp
Go to the documentation of this file.
1//===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the TargetLoweringBase class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ADT/BitVector.h"
14#include "llvm/ADT/DenseMap.h"
15#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/ADT/Twine.h"
20#include "llvm/Analysis/Loads.h"
39#include "llvm/IR/Attributes.h"
40#include "llvm/IR/CallingConv.h"
41#include "llvm/IR/DataLayout.h"
43#include "llvm/IR/Function.h"
44#include "llvm/IR/GlobalValue.h"
46#include "llvm/IR/IRBuilder.h"
47#include "llvm/IR/Module.h"
48#include "llvm/IR/Type.h"
58#include <algorithm>
59#include <cassert>
60#include <cstdint>
61#include <cstring>
62#include <string>
63#include <tuple>
64#include <utility>
65
66using namespace llvm;
67
69 "jump-is-expensive", cl::init(false),
70 cl::desc("Do not create extra branches to split comparison logic."),
72
74 ("min-jump-table-entries", cl::init(4), cl::Hidden,
75 cl::desc("Set minimum number of entries to use a jump table."));
76
78 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79 cl::desc("Set maximum size of jump tables."));
80
81/// Minimum jump table density for normal functions.
83 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84 cl::desc("Minimum density for building a jump table in "
85 "a normal function"));
86
87/// Minimum jump table density for -Os or -Oz functions.
89 "optsize-jump-table-density", cl::init(40), cl::Hidden,
90 cl::desc("Minimum density for building a jump table in "
91 "an optsize function"));
92
94 "min-bit-test-cmps", cl::init(2), cl::Hidden,
95 cl::desc("Set minimum of largest number of comparisons "
96 "to use bit test for switch."));
97
98// FIXME: This option is only to test if the strict fp operation processed
99// correctly by preventing mutating strict fp operation to normal fp operation
100// during development. When the backend supports strict float operation, this
101// option will be meaningless.
102static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
103 cl::desc("Don't mutate strict-float node to a legalize node"),
104 cl::init(false), cl::Hidden);
105
106LLVM_ABI RTLIB::Libcall RTLIB::getSHL(EVT VT) {
107 if (VT == MVT::i16)
108 return RTLIB::SHL_I16;
109 if (VT == MVT::i32)
110 return RTLIB::SHL_I32;
111 if (VT == MVT::i64)
112 return RTLIB::SHL_I64;
113 if (VT == MVT::i128)
114 return RTLIB::SHL_I128;
115
116 return RTLIB::UNKNOWN_LIBCALL;
117}
118
119LLVM_ABI RTLIB::Libcall RTLIB::getSRL(EVT VT) {
120 if (VT == MVT::i16)
121 return RTLIB::SRL_I16;
122 if (VT == MVT::i32)
123 return RTLIB::SRL_I32;
124 if (VT == MVT::i64)
125 return RTLIB::SRL_I64;
126 if (VT == MVT::i128)
127 return RTLIB::SRL_I128;
128
129 return RTLIB::UNKNOWN_LIBCALL;
130}
131
132LLVM_ABI RTLIB::Libcall RTLIB::getSRA(EVT VT) {
133 if (VT == MVT::i16)
134 return RTLIB::SRA_I16;
135 if (VT == MVT::i32)
136 return RTLIB::SRA_I32;
137 if (VT == MVT::i64)
138 return RTLIB::SRA_I64;
139 if (VT == MVT::i128)
140 return RTLIB::SRA_I128;
141
142 return RTLIB::UNKNOWN_LIBCALL;
143}
144
145LLVM_ABI RTLIB::Libcall RTLIB::getMUL(EVT VT) {
146 if (VT == MVT::i16)
147 return RTLIB::MUL_I16;
148 if (VT == MVT::i32)
149 return RTLIB::MUL_I32;
150 if (VT == MVT::i64)
151 return RTLIB::MUL_I64;
152 if (VT == MVT::i128)
153 return RTLIB::MUL_I128;
154 return RTLIB::UNKNOWN_LIBCALL;
155}
156
157LLVM_ABI RTLIB::Libcall RTLIB::getMULO(EVT VT) {
158 if (VT == MVT::i32)
159 return RTLIB::MULO_I32;
160 if (VT == MVT::i64)
161 return RTLIB::MULO_I64;
162 if (VT == MVT::i128)
163 return RTLIB::MULO_I128;
164 return RTLIB::UNKNOWN_LIBCALL;
165}
166
167LLVM_ABI RTLIB::Libcall RTLIB::getSDIV(EVT VT) {
168 if (VT == MVT::i16)
169 return RTLIB::SDIV_I16;
170 if (VT == MVT::i32)
171 return RTLIB::SDIV_I32;
172 if (VT == MVT::i64)
173 return RTLIB::SDIV_I64;
174 if (VT == MVT::i128)
175 return RTLIB::SDIV_I128;
176 return RTLIB::UNKNOWN_LIBCALL;
177}
178
179LLVM_ABI RTLIB::Libcall RTLIB::getUDIV(EVT VT) {
180 if (VT == MVT::i16)
181 return RTLIB::UDIV_I16;
182 if (VT == MVT::i32)
183 return RTLIB::UDIV_I32;
184 if (VT == MVT::i64)
185 return RTLIB::UDIV_I64;
186 if (VT == MVT::i128)
187 return RTLIB::UDIV_I128;
188 return RTLIB::UNKNOWN_LIBCALL;
189}
190
191LLVM_ABI RTLIB::Libcall RTLIB::getSREM(EVT VT) {
192 if (VT == MVT::i16)
193 return RTLIB::SREM_I16;
194 if (VT == MVT::i32)
195 return RTLIB::SREM_I32;
196 if (VT == MVT::i64)
197 return RTLIB::SREM_I64;
198 if (VT == MVT::i128)
199 return RTLIB::SREM_I128;
200 return RTLIB::UNKNOWN_LIBCALL;
201}
202
203LLVM_ABI RTLIB::Libcall RTLIB::getUREM(EVT VT) {
204 if (VT == MVT::i16)
205 return RTLIB::UREM_I16;
206 if (VT == MVT::i32)
207 return RTLIB::UREM_I32;
208 if (VT == MVT::i64)
209 return RTLIB::UREM_I64;
210 if (VT == MVT::i128)
211 return RTLIB::UREM_I128;
212 return RTLIB::UNKNOWN_LIBCALL;
213}
214
215LLVM_ABI RTLIB::Libcall RTLIB::getCTPOP(EVT VT) {
216 if (VT == MVT::i32)
217 return RTLIB::CTPOP_I32;
218 if (VT == MVT::i64)
219 return RTLIB::CTPOP_I64;
220 if (VT == MVT::i128)
221 return RTLIB::CTPOP_I128;
222 return RTLIB::UNKNOWN_LIBCALL;
223}
224
225/// GetFPLibCall - Helper to return the right libcall for the given floating
226/// point type, or UNKNOWN_LIBCALL if there is none.
227RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
228 RTLIB::Libcall Call_F32,
229 RTLIB::Libcall Call_F64,
230 RTLIB::Libcall Call_F80,
231 RTLIB::Libcall Call_F128,
232 RTLIB::Libcall Call_PPCF128) {
233 return
234 VT == MVT::f32 ? Call_F32 :
235 VT == MVT::f64 ? Call_F64 :
236 VT == MVT::f80 ? Call_F80 :
237 VT == MVT::f128 ? Call_F128 :
238 VT == MVT::ppcf128 ? Call_PPCF128 :
239 RTLIB::UNKNOWN_LIBCALL;
240}
241
242/// getFPEXT - Return the FPEXT_*_* value for the given types, or
243/// UNKNOWN_LIBCALL if there is none.
244RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
245 if (OpVT == MVT::f16) {
246 if (RetVT == MVT::f32)
247 return FPEXT_F16_F32;
248 if (RetVT == MVT::f64)
249 return FPEXT_F16_F64;
250 if (RetVT == MVT::f80)
251 return FPEXT_F16_F80;
252 if (RetVT == MVT::f128)
253 return FPEXT_F16_F128;
254 } else if (OpVT == MVT::f32) {
255 if (RetVT == MVT::f64)
256 return FPEXT_F32_F64;
257 if (RetVT == MVT::f128)
258 return FPEXT_F32_F128;
259 if (RetVT == MVT::ppcf128)
260 return FPEXT_F32_PPCF128;
261 } else if (OpVT == MVT::f64) {
262 if (RetVT == MVT::f128)
263 return FPEXT_F64_F128;
264 else if (RetVT == MVT::ppcf128)
265 return FPEXT_F64_PPCF128;
266 } else if (OpVT == MVT::f80) {
267 if (RetVT == MVT::f128)
268 return FPEXT_F80_F128;
269 } else if (OpVT == MVT::bf16) {
270 if (RetVT == MVT::f32)
271 return FPEXT_BF16_F32;
272 }
273
274 return UNKNOWN_LIBCALL;
275}
276
277/// getFPROUND - Return the FPROUND_*_* value for the given types, or
278/// UNKNOWN_LIBCALL if there is none.
279RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
280 if (RetVT == MVT::f16) {
281 if (OpVT == MVT::f32)
282 return FPROUND_F32_F16;
283 if (OpVT == MVT::f64)
284 return FPROUND_F64_F16;
285 if (OpVT == MVT::f80)
286 return FPROUND_F80_F16;
287 if (OpVT == MVT::f128)
288 return FPROUND_F128_F16;
289 if (OpVT == MVT::ppcf128)
290 return FPROUND_PPCF128_F16;
291 } else if (RetVT == MVT::bf16) {
292 if (OpVT == MVT::f32)
293 return FPROUND_F32_BF16;
294 if (OpVT == MVT::f64)
295 return FPROUND_F64_BF16;
296 if (OpVT == MVT::f80)
297 return FPROUND_F80_BF16;
298 if (OpVT == MVT::f128)
299 return FPROUND_F128_BF16;
300 } else if (RetVT == MVT::f32) {
301 if (OpVT == MVT::f64)
302 return FPROUND_F64_F32;
303 if (OpVT == MVT::f80)
304 return FPROUND_F80_F32;
305 if (OpVT == MVT::f128)
306 return FPROUND_F128_F32;
307 if (OpVT == MVT::ppcf128)
308 return FPROUND_PPCF128_F32;
309 } else if (RetVT == MVT::f64) {
310 if (OpVT == MVT::f80)
311 return FPROUND_F80_F64;
312 if (OpVT == MVT::f128)
313 return FPROUND_F128_F64;
314 if (OpVT == MVT::ppcf128)
315 return FPROUND_PPCF128_F64;
316 } else if (RetVT == MVT::f80) {
317 if (OpVT == MVT::f128)
318 return FPROUND_F128_F80;
319 }
320
321 return UNKNOWN_LIBCALL;
322}
323
324/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
325/// UNKNOWN_LIBCALL if there is none.
326RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
327 if (OpVT == MVT::f16) {
328 if (RetVT == MVT::i32)
329 return FPTOSINT_F16_I32;
330 if (RetVT == MVT::i64)
331 return FPTOSINT_F16_I64;
332 if (RetVT == MVT::i128)
333 return FPTOSINT_F16_I128;
334 } else if (OpVT == MVT::f32) {
335 if (RetVT == MVT::i32)
336 return FPTOSINT_F32_I32;
337 if (RetVT == MVT::i64)
338 return FPTOSINT_F32_I64;
339 if (RetVT == MVT::i128)
340 return FPTOSINT_F32_I128;
341 } else if (OpVT == MVT::f64) {
342 if (RetVT == MVT::i32)
343 return FPTOSINT_F64_I32;
344 if (RetVT == MVT::i64)
345 return FPTOSINT_F64_I64;
346 if (RetVT == MVT::i128)
347 return FPTOSINT_F64_I128;
348 } else if (OpVT == MVT::f80) {
349 if (RetVT == MVT::i32)
350 return FPTOSINT_F80_I32;
351 if (RetVT == MVT::i64)
352 return FPTOSINT_F80_I64;
353 if (RetVT == MVT::i128)
354 return FPTOSINT_F80_I128;
355 } else if (OpVT == MVT::f128) {
356 if (RetVT == MVT::i32)
357 return FPTOSINT_F128_I32;
358 if (RetVT == MVT::i64)
359 return FPTOSINT_F128_I64;
360 if (RetVT == MVT::i128)
361 return FPTOSINT_F128_I128;
362 } else if (OpVT == MVT::ppcf128) {
363 if (RetVT == MVT::i32)
364 return FPTOSINT_PPCF128_I32;
365 if (RetVT == MVT::i64)
366 return FPTOSINT_PPCF128_I64;
367 if (RetVT == MVT::i128)
368 return FPTOSINT_PPCF128_I128;
369 }
370 return UNKNOWN_LIBCALL;
371}
372
373/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
374/// UNKNOWN_LIBCALL if there is none.
375RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
376 if (OpVT == MVT::f16) {
377 if (RetVT == MVT::i32)
378 return FPTOUINT_F16_I32;
379 if (RetVT == MVT::i64)
380 return FPTOUINT_F16_I64;
381 if (RetVT == MVT::i128)
382 return FPTOUINT_F16_I128;
383 } else if (OpVT == MVT::f32) {
384 if (RetVT == MVT::i32)
385 return FPTOUINT_F32_I32;
386 if (RetVT == MVT::i64)
387 return FPTOUINT_F32_I64;
388 if (RetVT == MVT::i128)
389 return FPTOUINT_F32_I128;
390 } else if (OpVT == MVT::f64) {
391 if (RetVT == MVT::i32)
392 return FPTOUINT_F64_I32;
393 if (RetVT == MVT::i64)
394 return FPTOUINT_F64_I64;
395 if (RetVT == MVT::i128)
396 return FPTOUINT_F64_I128;
397 } else if (OpVT == MVT::f80) {
398 if (RetVT == MVT::i32)
399 return FPTOUINT_F80_I32;
400 if (RetVT == MVT::i64)
401 return FPTOUINT_F80_I64;
402 if (RetVT == MVT::i128)
403 return FPTOUINT_F80_I128;
404 } else if (OpVT == MVT::f128) {
405 if (RetVT == MVT::i32)
406 return FPTOUINT_F128_I32;
407 if (RetVT == MVT::i64)
408 return FPTOUINT_F128_I64;
409 if (RetVT == MVT::i128)
410 return FPTOUINT_F128_I128;
411 } else if (OpVT == MVT::ppcf128) {
412 if (RetVT == MVT::i32)
413 return FPTOUINT_PPCF128_I32;
414 if (RetVT == MVT::i64)
415 return FPTOUINT_PPCF128_I64;
416 if (RetVT == MVT::i128)
417 return FPTOUINT_PPCF128_I128;
418 }
419 return UNKNOWN_LIBCALL;
420}
421
422/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
423/// UNKNOWN_LIBCALL if there is none.
424RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
425 if (OpVT == MVT::i32) {
426 if (RetVT == MVT::f16)
427 return SINTTOFP_I32_F16;
428 if (RetVT == MVT::f32)
429 return SINTTOFP_I32_F32;
430 if (RetVT == MVT::f64)
431 return SINTTOFP_I32_F64;
432 if (RetVT == MVT::f80)
433 return SINTTOFP_I32_F80;
434 if (RetVT == MVT::f128)
435 return SINTTOFP_I32_F128;
436 if (RetVT == MVT::ppcf128)
437 return SINTTOFP_I32_PPCF128;
438 } else if (OpVT == MVT::i64) {
439 if (RetVT == MVT::bf16)
440 return SINTTOFP_I64_BF16;
441 if (RetVT == MVT::f16)
442 return SINTTOFP_I64_F16;
443 if (RetVT == MVT::f32)
444 return SINTTOFP_I64_F32;
445 if (RetVT == MVT::f64)
446 return SINTTOFP_I64_F64;
447 if (RetVT == MVT::f80)
448 return SINTTOFP_I64_F80;
449 if (RetVT == MVT::f128)
450 return SINTTOFP_I64_F128;
451 if (RetVT == MVT::ppcf128)
452 return SINTTOFP_I64_PPCF128;
453 } else if (OpVT == MVT::i128) {
454 if (RetVT == MVT::f16)
455 return SINTTOFP_I128_F16;
456 if (RetVT == MVT::f32)
457 return SINTTOFP_I128_F32;
458 if (RetVT == MVT::f64)
459 return SINTTOFP_I128_F64;
460 if (RetVT == MVT::f80)
461 return SINTTOFP_I128_F80;
462 if (RetVT == MVT::f128)
463 return SINTTOFP_I128_F128;
464 if (RetVT == MVT::ppcf128)
465 return SINTTOFP_I128_PPCF128;
466 }
467 return UNKNOWN_LIBCALL;
468}
469
470/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
471/// UNKNOWN_LIBCALL if there is none.
472RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
473 if (OpVT == MVT::i32) {
474 if (RetVT == MVT::f16)
475 return UINTTOFP_I32_F16;
476 if (RetVT == MVT::f32)
477 return UINTTOFP_I32_F32;
478 if (RetVT == MVT::f64)
479 return UINTTOFP_I32_F64;
480 if (RetVT == MVT::f80)
481 return UINTTOFP_I32_F80;
482 if (RetVT == MVT::f128)
483 return UINTTOFP_I32_F128;
484 if (RetVT == MVT::ppcf128)
485 return UINTTOFP_I32_PPCF128;
486 } else if (OpVT == MVT::i64) {
487 if (RetVT == MVT::bf16)
488 return UINTTOFP_I64_BF16;
489 if (RetVT == MVT::f16)
490 return UINTTOFP_I64_F16;
491 if (RetVT == MVT::f32)
492 return UINTTOFP_I64_F32;
493 if (RetVT == MVT::f64)
494 return UINTTOFP_I64_F64;
495 if (RetVT == MVT::f80)
496 return UINTTOFP_I64_F80;
497 if (RetVT == MVT::f128)
498 return UINTTOFP_I64_F128;
499 if (RetVT == MVT::ppcf128)
500 return UINTTOFP_I64_PPCF128;
501 } else if (OpVT == MVT::i128) {
502 if (RetVT == MVT::f16)
503 return UINTTOFP_I128_F16;
504 if (RetVT == MVT::f32)
505 return UINTTOFP_I128_F32;
506 if (RetVT == MVT::f64)
507 return UINTTOFP_I128_F64;
508 if (RetVT == MVT::f80)
509 return UINTTOFP_I128_F80;
510 if (RetVT == MVT::f128)
511 return UINTTOFP_I128_F128;
512 if (RetVT == MVT::ppcf128)
513 return UINTTOFP_I128_PPCF128;
514 }
515 return UNKNOWN_LIBCALL;
516}
517
518RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
519 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
520 POWI_PPCF128);
521}
522
523RTLIB::Libcall RTLIB::getPOW(EVT RetVT) {
524 return getFPLibCall(RetVT, POW_F32, POW_F64, POW_F80, POW_F128, POW_PPCF128);
525}
526
527RTLIB::Libcall RTLIB::getLDEXP(EVT RetVT) {
528 return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
529 LDEXP_PPCF128);
530}
531
532RTLIB::Libcall RTLIB::getFREXP(EVT RetVT) {
533 return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
534 FREXP_PPCF128);
535}
536
537RTLIB::Libcall RTLIB::getSIN(EVT RetVT) {
538 return getFPLibCall(RetVT, SIN_F32, SIN_F64, SIN_F80, SIN_F128, SIN_PPCF128);
539}
540
541RTLIB::Libcall RTLIB::getCOS(EVT RetVT) {
542 return getFPLibCall(RetVT, COS_F32, COS_F64, COS_F80, COS_F128, COS_PPCF128);
543}
544
545RTLIB::Libcall RTLIB::getSINCOS(EVT RetVT) {
546 // TODO: Tablegen should generate this function
547 if (RetVT.isVector()) {
548 if (!RetVT.isSimple())
549 return RTLIB::UNKNOWN_LIBCALL;
550 switch (RetVT.getSimpleVT().SimpleTy) {
551 case MVT::v4f32:
552 return RTLIB::SINCOS_V4F32;
553 case MVT::v2f64:
554 return RTLIB::SINCOS_V2F64;
555 case MVT::nxv4f32:
556 return RTLIB::SINCOS_NXV4F32;
557 case MVT::nxv2f64:
558 return RTLIB::SINCOS_NXV2F64;
559 default:
560 return RTLIB::UNKNOWN_LIBCALL;
561 }
562 }
563
564 return getFPLibCall(RetVT, SINCOS_F32, SINCOS_F64, SINCOS_F80, SINCOS_F128,
565 SINCOS_PPCF128);
566}
567
568RTLIB::Libcall RTLIB::getSINCOSPI(EVT RetVT) {
569 // TODO: Tablegen should generate this function
570 if (RetVT.isVector()) {
571 if (!RetVT.isSimple())
572 return RTLIB::UNKNOWN_LIBCALL;
573 switch (RetVT.getSimpleVT().SimpleTy) {
574 case MVT::v4f32:
575 return RTLIB::SINCOSPI_V4F32;
576 case MVT::v2f64:
577 return RTLIB::SINCOSPI_V2F64;
578 case MVT::nxv4f32:
579 return RTLIB::SINCOSPI_NXV4F32;
580 case MVT::nxv2f64:
581 return RTLIB::SINCOSPI_NXV2F64;
582 default:
583 return RTLIB::UNKNOWN_LIBCALL;
584 }
585 }
586
587 return getFPLibCall(RetVT, SINCOSPI_F32, SINCOSPI_F64, SINCOSPI_F80,
588 SINCOSPI_F128, SINCOSPI_PPCF128);
589}
590
591RTLIB::Libcall RTLIB::getSINCOS_STRET(EVT RetVT) {
592 return getFPLibCall(RetVT, SINCOS_STRET_F32, SINCOS_STRET_F64,
593 UNKNOWN_LIBCALL, UNKNOWN_LIBCALL, UNKNOWN_LIBCALL);
594}
595
596RTLIB::Libcall RTLIB::getREM(EVT VT) {
597 // TODO: Tablegen should generate this function
598 if (VT.isVector()) {
599 if (!VT.isSimple())
600 return RTLIB::UNKNOWN_LIBCALL;
601 switch (VT.getSimpleVT().SimpleTy) {
602 case MVT::v4f32:
603 return RTLIB::REM_V4F32;
604 case MVT::v2f64:
605 return RTLIB::REM_V2F64;
606 case MVT::nxv4f32:
607 return RTLIB::REM_NXV4F32;
608 case MVT::nxv2f64:
609 return RTLIB::REM_NXV2F64;
610 default:
611 return RTLIB::UNKNOWN_LIBCALL;
612 }
613 }
614
615 return getFPLibCall(VT, REM_F32, REM_F64, REM_F80, REM_F128, REM_PPCF128);
616}
617
618RTLIB::Libcall RTLIB::getMODF(EVT RetVT) {
619 // TODO: Tablegen should generate this function
620 if (RetVT.isVector()) {
621 if (!RetVT.isSimple())
622 return RTLIB::UNKNOWN_LIBCALL;
623 switch (RetVT.getSimpleVT().SimpleTy) {
624 case MVT::v4f32:
625 return RTLIB::MODF_V4F32;
626 case MVT::v2f64:
627 return RTLIB::MODF_V2F64;
628 case MVT::nxv4f32:
629 return RTLIB::MODF_NXV4F32;
630 case MVT::nxv2f64:
631 return RTLIB::MODF_NXV2F64;
632 default:
633 return RTLIB::UNKNOWN_LIBCALL;
634 }
635 }
636
637 return getFPLibCall(RetVT, MODF_F32, MODF_F64, MODF_F80, MODF_F128,
638 MODF_PPCF128);
639}
640
641RTLIB::Libcall RTLIB::getLROUND(EVT VT) {
642 if (VT == MVT::f32)
643 return RTLIB::LROUND_F32;
644 if (VT == MVT::f64)
645 return RTLIB::LROUND_F64;
646 if (VT == MVT::f80)
647 return RTLIB::LROUND_F80;
648 if (VT == MVT::f128)
649 return RTLIB::LROUND_F128;
650 if (VT == MVT::ppcf128)
651 return RTLIB::LROUND_PPCF128;
652
653 return RTLIB::UNKNOWN_LIBCALL;
654}
655
656RTLIB::Libcall RTLIB::getLLROUND(EVT VT) {
657 if (VT == MVT::f32)
658 return RTLIB::LLROUND_F32;
659 if (VT == MVT::f64)
660 return RTLIB::LLROUND_F64;
661 if (VT == MVT::f80)
662 return RTLIB::LLROUND_F80;
663 if (VT == MVT::f128)
664 return RTLIB::LLROUND_F128;
665 if (VT == MVT::ppcf128)
666 return RTLIB::LLROUND_PPCF128;
667
668 return RTLIB::UNKNOWN_LIBCALL;
669}
670
671RTLIB::Libcall RTLIB::getLRINT(EVT VT) {
672 if (VT == MVT::f32)
673 return RTLIB::LRINT_F32;
674 if (VT == MVT::f64)
675 return RTLIB::LRINT_F64;
676 if (VT == MVT::f80)
677 return RTLIB::LRINT_F80;
678 if (VT == MVT::f128)
679 return RTLIB::LRINT_F128;
680 if (VT == MVT::ppcf128)
681 return RTLIB::LRINT_PPCF128;
682 return RTLIB::UNKNOWN_LIBCALL;
683}
684
685RTLIB::Libcall RTLIB::getLLRINT(EVT VT) {
686 if (VT == MVT::f32)
687 return RTLIB::LLRINT_F32;
688 if (VT == MVT::f64)
689 return RTLIB::LLRINT_F64;
690 if (VT == MVT::f80)
691 return RTLIB::LLRINT_F80;
692 if (VT == MVT::f128)
693 return RTLIB::LLRINT_F128;
694 if (VT == MVT::ppcf128)
695 return RTLIB::LLRINT_PPCF128;
696 return RTLIB::UNKNOWN_LIBCALL;
697}
698
699RTLIB::Libcall RTLIB::getOutlineAtomicHelper(const Libcall (&LC)[5][4],
700 AtomicOrdering Order,
701 uint64_t MemSize) {
702 unsigned ModeN, ModelN;
703 switch (MemSize) {
704 case 1:
705 ModeN = 0;
706 break;
707 case 2:
708 ModeN = 1;
709 break;
710 case 4:
711 ModeN = 2;
712 break;
713 case 8:
714 ModeN = 3;
715 break;
716 case 16:
717 ModeN = 4;
718 break;
719 default:
720 return RTLIB::UNKNOWN_LIBCALL;
721 }
722
723 switch (Order) {
725 ModelN = 0;
726 break;
728 ModelN = 1;
729 break;
731 ModelN = 2;
732 break;
735 ModelN = 3;
736 break;
737 default:
738 return UNKNOWN_LIBCALL;
739 }
740
741 return LC[ModeN][ModelN];
742}
743
744RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
745 MVT VT) {
746 if (!VT.isScalarInteger())
747 return UNKNOWN_LIBCALL;
748 uint64_t MemSize = VT.getScalarSizeInBits() / 8;
749
750#define LCALLS(A, B) \
751 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
752#define LCALL5(A) \
753 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
754 switch (Opc) {
756 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
757 return getOutlineAtomicHelper(LC, Order, MemSize);
758 }
759 case ISD::ATOMIC_SWAP: {
760 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
761 return getOutlineAtomicHelper(LC, Order, MemSize);
762 }
764 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
765 return getOutlineAtomicHelper(LC, Order, MemSize);
766 }
767 case ISD::ATOMIC_LOAD_OR: {
768 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
769 return getOutlineAtomicHelper(LC, Order, MemSize);
770 }
772 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
773 return getOutlineAtomicHelper(LC, Order, MemSize);
774 }
776 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
777 return getOutlineAtomicHelper(LC, Order, MemSize);
778 }
779 default:
780 return UNKNOWN_LIBCALL;
781 }
782#undef LCALLS
783#undef LCALL5
784}
785
786RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
787#define OP_TO_LIBCALL(Name, Enum) \
788 case Name: \
789 switch (VT.SimpleTy) { \
790 default: \
791 return UNKNOWN_LIBCALL; \
792 case MVT::i8: \
793 return Enum##_1; \
794 case MVT::i16: \
795 return Enum##_2; \
796 case MVT::i32: \
797 return Enum##_4; \
798 case MVT::i64: \
799 return Enum##_8; \
800 case MVT::i128: \
801 return Enum##_16; \
802 }
803
804 switch (Opc) {
805 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
806 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
807 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
808 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
809 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
810 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
811 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
812 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
813 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
814 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
815 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
816 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
817 }
818
819#undef OP_TO_LIBCALL
820
821 return UNKNOWN_LIBCALL;
822}
823
825 switch (ElementSize) {
826 case 1:
827 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
828 case 2:
829 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
830 case 4:
831 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
832 case 8:
833 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
834 case 16:
835 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
836 default:
837 return UNKNOWN_LIBCALL;
838 }
839}
840
842 switch (ElementSize) {
843 case 1:
844 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
845 case 2:
846 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
847 case 4:
848 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
849 case 8:
850 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
851 case 16:
852 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
853 default:
854 return UNKNOWN_LIBCALL;
855 }
856}
857
859 switch (ElementSize) {
860 case 1:
861 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
862 case 2:
863 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
864 case 4:
865 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
866 case 8:
867 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
868 case 16:
869 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
870 default:
871 return UNKNOWN_LIBCALL;
872 }
873}
874
876 RTLIB::LibcallImpl Impl) const {
877 switch (Impl) {
878 case RTLIB::impl___aeabi_dcmpeq__une:
879 case RTLIB::impl___aeabi_fcmpeq__une:
880 // Usage in the eq case, so we have to invert the comparison.
881 return ISD::SETEQ;
882 case RTLIB::impl___aeabi_dcmpeq__oeq:
883 case RTLIB::impl___aeabi_fcmpeq__oeq:
884 // Normal comparison to boolean value.
885 return ISD::SETNE;
886 case RTLIB::impl___aeabi_dcmplt:
887 case RTLIB::impl___aeabi_dcmple:
888 case RTLIB::impl___aeabi_dcmpge:
889 case RTLIB::impl___aeabi_dcmpgt:
890 case RTLIB::impl___aeabi_dcmpun:
891 case RTLIB::impl___aeabi_fcmplt:
892 case RTLIB::impl___aeabi_fcmple:
893 case RTLIB::impl___aeabi_fcmpge:
894 case RTLIB::impl___aeabi_fcmpgt:
895 /// The AEABI versions return a typical boolean value, so we can compare
896 /// against the integer result as simply != 0.
897 return ISD::SETNE;
898 default:
899 break;
900 }
901
902 // Assume libgcc/compiler-rt behavior. Most of the cases are really aliases of
903 // each other, and return a 3-way comparison style result of -1, 0, or 1
904 // depending on lt/eq/gt.
905 //
906 // FIXME: It would be cleaner to directly express this as a 3-way comparison
907 // soft FP libcall instead of individual compares.
908 RTLIB::Libcall LC = RTLIB::RuntimeLibcallsInfo::getLibcallFromImpl(Impl);
909 switch (LC) {
910 case RTLIB::OEQ_F32:
911 case RTLIB::OEQ_F64:
912 case RTLIB::OEQ_F128:
913 case RTLIB::OEQ_PPCF128:
914 return ISD::SETEQ;
915 case RTLIB::UNE_F32:
916 case RTLIB::UNE_F64:
917 case RTLIB::UNE_F128:
918 case RTLIB::UNE_PPCF128:
919 return ISD::SETNE;
920 case RTLIB::OGE_F32:
921 case RTLIB::OGE_F64:
922 case RTLIB::OGE_F128:
923 case RTLIB::OGE_PPCF128:
924 return ISD::SETGE;
925 case RTLIB::OLT_F32:
926 case RTLIB::OLT_F64:
927 case RTLIB::OLT_F128:
928 case RTLIB::OLT_PPCF128:
929 return ISD::SETLT;
930 case RTLIB::OLE_F32:
931 case RTLIB::OLE_F64:
932 case RTLIB::OLE_F128:
933 case RTLIB::OLE_PPCF128:
934 return ISD::SETLE;
935 case RTLIB::OGT_F32:
936 case RTLIB::OGT_F64:
937 case RTLIB::OGT_F128:
938 case RTLIB::OGT_PPCF128:
939 return ISD::SETGT;
940 case RTLIB::UO_F32:
941 case RTLIB::UO_F64:
942 case RTLIB::UO_F128:
943 case RTLIB::UO_PPCF128:
944 return ISD::SETNE;
945 default:
946 llvm_unreachable("not a compare libcall");
947 }
948}
949
950/// NOTE: The TargetMachine owns TLOF.
952 const TargetSubtargetInfo &STI)
953 : TM(tm),
954 RuntimeLibcallInfo(TM.getTargetTriple(), TM.Options.ExceptionModel,
955 TM.Options.FloatABIType, TM.Options.EABIVersion,
956 TM.Options.MCOptions.getABIName(), TM.Options.VecLib),
957 Libcalls(RuntimeLibcallInfo, STI) {
958 initActions();
959
960 // Perform these initializations only once.
966 HasExtractBitsInsn = false;
967 JumpIsExpensive = JumpIsExpensiveOverride;
969 EnableExtLdPromotion = false;
970 StackPointerRegisterToSaveRestore = 0;
971 BooleanContents = UndefinedBooleanContent;
972 BooleanFloatContents = UndefinedBooleanContent;
973 BooleanVectorContents = UndefinedBooleanContent;
974 SchedPreferenceInfo = Sched::ILP;
977 MaxBytesForAlignment = 0;
978 MaxAtomicSizeInBitsSupported = 0;
979
980 // Assume that even with libcalls, no target supports wider than 128 bit
981 // division.
982 MaxDivRemBitWidthSupported = 128;
983
984 MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS;
985
986 MinCmpXchgSizeInBits = 0;
987 SupportsUnalignedAtomics = false;
988
989 MinimumBitTestCmps = MinimumBitTestCmpsOverride;
990}
991
992// Define the virtual destructor out-of-line to act as a key method to anchor
993// debug info (see coding standards).
995
997 // All operations default to being supported.
998 memset(OpActions, 0, sizeof(OpActions));
999 memset(LoadExtActions, 0, sizeof(LoadExtActions));
1000 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
1001 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
1002 memset(CondCodeActions, 0, sizeof(CondCodeActions));
1003 llvm::fill(RegClassForVT, nullptr);
1004 llvm::fill(TargetDAGCombineArray, 0);
1005
1006 // Let extending atomic loads be unsupported by default.
1007 for (MVT ValVT : MVT::all_valuetypes())
1008 for (MVT MemVT : MVT::all_valuetypes())
1010 Expand);
1011
1012 // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
1013 // remove this and targets should individually set these types if not legal.
1016 for (MVT VT : {MVT::i2, MVT::i4})
1017 OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
1018 }
1019 for (MVT AVT : MVT::all_valuetypes()) {
1020 for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
1021 setTruncStoreAction(AVT, VT, Expand);
1024 }
1025 }
1026 for (unsigned IM = (unsigned)ISD::PRE_INC;
1027 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
1028 for (MVT VT : {MVT::i2, MVT::i4}) {
1033 }
1034 }
1035
1036 for (MVT VT : MVT::fp_valuetypes()) {
1037 MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
1038 if (IntVT.isValid()) {
1041 }
1042 }
1043
1044 // If f16 fma is not natively supported, the value must be promoted to an f64
1045 // (and not to f32!) to prevent double rounding issues.
1046 AddPromotedToType(ISD::FMA, MVT::f16, MVT::f64);
1047 AddPromotedToType(ISD::STRICT_FMA, MVT::f16, MVT::f64);
1048
1049 // Set default actions for various operations.
1050 for (MVT VT : MVT::all_valuetypes()) {
1051 // Default all indexed load / store to expand.
1052 for (unsigned IM = (unsigned)ISD::PRE_INC;
1053 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
1058 }
1059
1060 // Most backends expect to see the node which just returns the value loaded.
1062
1063 // These operations default to expand.
1092 ISD::FMULADD},
1093 VT, Expand);
1094
1095 // Overflow operations default to expand
1098 VT, Expand);
1099
1100 // Carry-using overflow operations default to expand.
1103 VT, Expand);
1104
1105 // ADDC/ADDE/SUBC/SUBE default to expand.
1107 Expand);
1108
1109 // [US]CMP default to expand
1111
1112 // Halving adds
1115 Expand);
1116
1117 // Absolute difference
1119
1120 // Carry-less multiply
1122
1123 // Saturated trunc
1127
1128 // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
1130 Expand);
1132
1134
1135 // These library functions default to expand.
1138 VT, Expand);
1139
1140 // These operations default to expand for vector types.
1141 if (VT.isVector())
1147 VT, Expand);
1148
1149 // Constrained floating-point operations default to expand.
1150#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
1151 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
1152#include "llvm/IR/ConstrainedOps.def"
1153
1154 // For most targets @llvm.get.dynamic.area.offset just returns 0.
1156
1157 // Vector reduction default to expand.
1165 VT, Expand);
1166
1167 // Named vector shuffles default to expand.
1169 Expand);
1170
1171 // Only some target support this vector operation. Most need to expand it.
1173
1174 // VP operations default to expand.
1175#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \
1176 setOperationAction(ISD::SDOPC, VT, Expand);
1177#include "llvm/IR/VPIntrinsics.def"
1178
1179 // Masked vector extracts default to expand.
1181
1184
1185 // FP environment operations default to expand.
1189
1191 }
1192
1193 // Most targets ignore the @llvm.prefetch intrinsic.
1195
1196 // Most targets also ignore the @llvm.readcyclecounter intrinsic.
1198
1199 // Most targets also ignore the @llvm.readsteadycounter intrinsic.
1201
1202 // ConstantFP nodes default to expand. Targets can either change this to
1203 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
1204 // to optimize expansions for certain constants.
1206 {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
1207 Expand);
1208
1209 // Insert custom handling default for llvm.canonicalize.*.
1211 {MVT::f16, MVT::f32, MVT::f64, MVT::f128}, Expand);
1212
1213 // FIXME: Query RuntimeLibCalls to make the decision.
1215 {MVT::f32, MVT::f64, MVT::f128}, LibCall);
1216
1219 MVT::f16, Promote);
1220 // Default ISD::TRAP to expand (which turns it into abort).
1221 setOperationAction(ISD::TRAP, MVT::Other, Expand);
1222
1223 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
1224 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
1226
1228
1231
1232 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
1235 }
1237
1238 // This one by default will call __clear_cache unless the target
1239 // wants something different.
1241}
1242
1244 EVT) const {
1245 return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
1246}
1247
1249 const DataLayout &DL) const {
1250 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
1251 if (LHSTy.isVector())
1252 return LHSTy;
1253 MVT ShiftVT = getScalarShiftAmountTy(DL, LHSTy);
1254 // If any possible shift value won't fit in the prefered type, just use
1255 // something safe. Assume it will be legalized when the shift is expanded.
1256 if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
1257 ShiftVT = MVT::i32;
1258 assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
1259 "ShiftVT is still too small!");
1260 return ShiftVT;
1261}
1262
1263bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
1264 assert(isTypeLegal(VT));
1265 switch (Op) {
1266 default:
1267 return false;
1268 case ISD::SDIV:
1269 case ISD::UDIV:
1270 case ISD::SREM:
1271 case ISD::UREM:
1272 return true;
1273 }
1274}
1275
1277 unsigned DestAS) const {
1278 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1279}
1280
1282 Type *RetTy, ElementCount EC, bool ZeroIsPoison,
1283 const ConstantRange *VScaleRange) const {
1284 // Find the smallest "sensible" element type to use for the expansion.
1285 ConstantRange CR(APInt(64, EC.getKnownMinValue()));
1286 if (EC.isScalable())
1287 CR = CR.umul_sat(*VScaleRange);
1288
1289 if (ZeroIsPoison)
1290 CR = CR.subtract(APInt(64, 1));
1291
1292 unsigned EltWidth = RetTy->getScalarSizeInBits();
1293 EltWidth = std::min(EltWidth, CR.getActiveBits());
1294 EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
1295
1296 return EltWidth;
1297}
1298
1300 // If the command-line option was specified, ignore this request.
1301 if (!JumpIsExpensiveOverride.getNumOccurrences())
1302 JumpIsExpensive = isExpensive;
1303}
1304
1307 // If this is a simple type, use the ComputeRegisterProp mechanism.
1308 if (VT.isSimple()) {
1309 MVT SVT = VT.getSimpleVT();
1310 assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
1311 MVT NVT = TransformToType[SVT.SimpleTy];
1312 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1313
1314 assert((LA == TypeLegal || LA == TypeSoftenFloat ||
1315 LA == TypeSoftPromoteHalf ||
1316 (NVT.isVector() ||
1317 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
1318 "Promote may not follow Expand or Promote");
1319
1320 if (LA == TypeSplitVector)
1321 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
1322 if (LA == TypeScalarizeVector)
1323 return LegalizeKind(LA, SVT.getVectorElementType());
1324 return LegalizeKind(LA, NVT);
1325 }
1326
1327 // Handle Extended Scalar Types.
1328 if (!VT.isVector()) {
1329 assert(VT.isInteger() && "Float types must be simple");
1330 unsigned BitSize = VT.getSizeInBits();
1331 // First promote to a power-of-two size, then expand if necessary.
1332 if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1333 EVT NVT = VT.getRoundIntegerType(Context);
1334 assert(NVT != VT && "Unable to round integer VT");
1335 LegalizeKind NextStep = getTypeConversion(Context, NVT);
1336 // Avoid multi-step promotion.
1337 if (NextStep.first == TypePromoteInteger)
1338 return NextStep;
1339 // Return rounded integer type.
1340 return LegalizeKind(TypePromoteInteger, NVT);
1341 }
1342
1344 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1345 }
1346
1347 // Handle vector types.
1348 ElementCount NumElts = VT.getVectorElementCount();
1349 EVT EltVT = VT.getVectorElementType();
1350
1351 // Vectors with only one element are always scalarized.
1352 if (NumElts.isScalar())
1353 return LegalizeKind(TypeScalarizeVector, EltVT);
1354
1355 // Try to widen vector elements until the element type is a power of two and
1356 // promote it to a legal type later on, for example:
1357 // <3 x i8> -> <4 x i8> -> <4 x i32>
1358 if (EltVT.isInteger()) {
1359 // Vectors with a number of elements that is not a power of two are always
1360 // widened, for example <3 x i8> -> <4 x i8>.
1361 if (!VT.isPow2VectorType()) {
1362 NumElts = NumElts.coefficientNextPowerOf2();
1363 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1364 return LegalizeKind(TypeWidenVector, NVT);
1365 }
1366
1367 // Examine the element type.
1368 LegalizeKind LK = getTypeConversion(Context, EltVT);
1369
1370 // If type is to be expanded, split the vector.
1371 // <4 x i140> -> <2 x i140>
1372 if (LK.first == TypeExpandInteger) {
1373 if (NumElts.isScalable() && NumElts.getKnownMinValue() == 1)
1376 VT.getHalfNumVectorElementsVT(Context));
1377 }
1378
1379 // Promote the integer element types until a legal vector type is found
1380 // or until the element integer type is too big. If a legal type was not
1381 // found, fallback to the usual mechanism of widening/splitting the
1382 // vector.
1383 EVT OldEltVT = EltVT;
1384 while (true) {
1385 // Increase the bitwidth of the element to the next pow-of-two
1386 // (which is greater than 8 bits).
1387 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1388 .getRoundIntegerType(Context);
1389
1390 // Stop trying when getting a non-simple element type.
1391 // Note that vector elements may be greater than legal vector element
1392 // types. Example: X86 XMM registers hold 64bit element on 32bit
1393 // systems.
1394 if (!EltVT.isSimple())
1395 break;
1396
1397 // Build a new vector type and check if it is legal.
1398 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1399 // Found a legal promoted vector type.
1400 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1402 EVT::getVectorVT(Context, EltVT, NumElts));
1403 }
1404
1405 // Reset the type to the unexpanded type if we did not find a legal vector
1406 // type with a promoted vector element type.
1407 EltVT = OldEltVT;
1408 }
1409
1410 // Try to widen the vector until a legal type is found.
1411 // If there is no wider legal type, split the vector.
1412 while (true) {
1413 // Round up to the next power of 2.
1414 NumElts = NumElts.coefficientNextPowerOf2();
1415
1416 // If there is no simple vector type with this many elements then there
1417 // cannot be a larger legal vector type. Note that this assumes that
1418 // there are no skipped intermediate vector types in the simple types.
1419 if (!EltVT.isSimple())
1420 break;
1421 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1422 if (LargerVector == MVT())
1423 break;
1424
1425 // If this type is legal then widen the vector.
1426 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1427 return LegalizeKind(TypeWidenVector, LargerVector);
1428 }
1429
1430 // Widen odd vectors to next power of two.
1431 if (!VT.isPow2VectorType()) {
1432 EVT NVT = VT.getPow2VectorType(Context);
1433 return LegalizeKind(TypeWidenVector, NVT);
1434 }
1435
1438
1439 // Vectors with illegal element types are expanded.
1440 EVT NVT = EVT::getVectorVT(Context, EltVT,
1442 return LegalizeKind(TypeSplitVector, NVT);
1443}
1444
1445static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1446 unsigned &NumIntermediates,
1447 MVT &RegisterVT,
1448 TargetLoweringBase *TLI) {
1449 // Figure out the right, legal destination reg to copy into.
1451 MVT EltTy = VT.getVectorElementType();
1452
1453 unsigned NumVectorRegs = 1;
1454
1455 // Scalable vectors cannot be scalarized, so splitting or widening is
1456 // required.
1457 if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1459 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1460
1461 // FIXME: We don't support non-power-of-2-sized vectors for now.
1462 // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1463 if (!isPowerOf2_32(EC.getKnownMinValue())) {
1464 // Split EC to unit size (scalable property is preserved).
1465 NumVectorRegs = EC.getKnownMinValue();
1466 EC = ElementCount::getFixed(1);
1467 }
1468
1469 // Divide the input until we get to a supported size. This will
1470 // always end up with an EC that represent a scalar or a scalable
1471 // scalar.
1472 while (EC.getKnownMinValue() > 1 &&
1473 !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1474 EC = EC.divideCoefficientBy(2);
1475 NumVectorRegs <<= 1;
1476 }
1477
1478 NumIntermediates = NumVectorRegs;
1479
1480 MVT NewVT = MVT::getVectorVT(EltTy, EC);
1481 if (!TLI->isTypeLegal(NewVT))
1482 NewVT = EltTy;
1483 IntermediateVT = NewVT;
1484
1485 unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1486
1487 // Convert sizes such as i33 to i64.
1488 LaneSizeInBits = llvm::bit_ceil(LaneSizeInBits);
1489
1490 MVT DestVT = TLI->getRegisterType(NewVT);
1491 RegisterVT = DestVT;
1492 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
1493 return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1494
1495 // Otherwise, promotion or legal types use the same number of registers as
1496 // the vector decimated to the appropriate level.
1497 return NumVectorRegs;
1498}
1499
1500/// isLegalRC - Return true if the value types that can be represented by the
1501/// specified register class are all legal.
1503 const TargetRegisterClass &RC) const {
1504 for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1505 if (isTypeLegal(*I))
1506 return true;
1507 return false;
1508}
1509
1510/// Replace/modify any TargetFrameIndex operands with a targte-dependent
1511/// sequence of memory operands that is recognized by PrologEpilogInserter.
1514 MachineBasicBlock *MBB) const {
1515 MachineInstr *MI = &InitialMI;
1516 MachineFunction &MF = *MI->getMF();
1517 MachineFrameInfo &MFI = MF.getFrameInfo();
1518
1519 // We're handling multiple types of operands here:
1520 // PATCHPOINT MetaArgs - live-in, read only, direct
1521 // STATEPOINT Deopt Spill - live-through, read only, indirect
1522 // STATEPOINT Deopt Alloca - live-through, read only, direct
1523 // (We're currently conservative and mark the deopt slots read/write in
1524 // practice.)
1525 // STATEPOINT GC Spill - live-through, read/write, indirect
1526 // STATEPOINT GC Alloca - live-through, read/write, direct
1527 // The live-in vs live-through is handled already (the live through ones are
1528 // all stack slots), but we need to handle the different type of stackmap
1529 // operands and memory effects here.
1530
1531 if (llvm::none_of(MI->operands(),
1532 [](MachineOperand &Operand) { return Operand.isFI(); }))
1533 return MBB;
1534
1535 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1536
1537 // Inherit previous memory operands.
1538 MIB.cloneMemRefs(*MI);
1539
1540 for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1541 MachineOperand &MO = MI->getOperand(i);
1542 if (!MO.isFI()) {
1543 // Index of Def operand this Use it tied to.
1544 // Since Defs are coming before Uses, if Use is tied, then
1545 // index of Def must be smaller that index of that Use.
1546 // Also, Defs preserve their position in new MI.
1547 unsigned TiedTo = i;
1548 if (MO.isReg() && MO.isTied())
1549 TiedTo = MI->findTiedOperandIdx(i);
1550 MIB.add(MO);
1551 if (TiedTo < i)
1552 MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1553 continue;
1554 }
1555
1556 // foldMemoryOperand builds a new MI after replacing a single FI operand
1557 // with the canonical set of five x86 addressing-mode operands.
1558 int FI = MO.getIndex();
1559
1560 // Add frame index operands recognized by stackmaps.cpp
1562 // indirect-mem-ref tag, size, #FI, offset.
1563 // Used for spills inserted by StatepointLowering. This codepath is not
1564 // used for patchpoints/stackmaps at all, for these spilling is done via
1565 // foldMemoryOperand callback only.
1566 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1567 MIB.addImm(StackMaps::IndirectMemRefOp);
1568 MIB.addImm(MFI.getObjectSize(FI));
1569 MIB.add(MO);
1570 MIB.addImm(0);
1571 } else {
1572 // direct-mem-ref tag, #FI, offset.
1573 // Used by patchpoint, and direct alloca arguments to statepoints
1574 MIB.addImm(StackMaps::DirectMemRefOp);
1575 MIB.add(MO);
1576 MIB.addImm(0);
1577 }
1578
1579 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1580
1581 // Add a new memory operand for this FI.
1582 assert(MFI.getObjectOffset(FI) != -1);
1583
1584 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and
1585 // PATCHPOINT should be updated to do the same. (TODO)
1586 if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1587 auto Flags = MachineMemOperand::MOLoad;
1589 MachinePointerInfo::getFixedStack(MF, FI), Flags,
1591 MIB->addMemOperand(MF, MMO);
1592 }
1593 }
1594 MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1595 MI->eraseFromParent();
1596 return MBB;
1597}
1598
1599/// findRepresentativeClass - Return the largest legal super-reg register class
1600/// of the register class for the specified type and its associated "cost".
1601// This function is in TargetLowering because it uses RegClassForVT which would
1602// need to be moved to TargetRegisterInfo and would necessitate moving
1603// isTypeLegal over as well - a massive change that would just require
1604// TargetLowering having a TargetRegisterInfo class member that it would use.
1605std::pair<const TargetRegisterClass *, uint8_t>
1607 MVT VT) const {
1608 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1609 if (!RC)
1610 return std::make_pair(RC, 0);
1611
1612 // Compute the set of all super-register classes.
1613 BitVector SuperRegRC(TRI->getNumRegClasses());
1614 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1615 SuperRegRC.setBitsInMask(RCI.getMask());
1616
1617 // Find the first legal register class with the largest spill size.
1618 const TargetRegisterClass *BestRC = RC;
1619 for (unsigned i : SuperRegRC.set_bits()) {
1620 const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1621 // We want the largest possible spill size.
1622 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1623 continue;
1624 if (!isLegalRC(*TRI, *SuperRC))
1625 continue;
1626 BestRC = SuperRC;
1627 }
1628 return std::make_pair(BestRC, 1);
1629}
1630
1631/// computeRegisterProperties - Once all of the register classes are added,
1632/// this allows us to compute derived properties we expose.
1634 const TargetRegisterInfo *TRI) {
1635 // Everything defaults to needing one register.
1636 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1637 NumRegistersForVT[i] = 1;
1638 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1639 }
1640 // ...except isVoid, which doesn't need any registers.
1641 NumRegistersForVT[MVT::isVoid] = 0;
1642
1643 // Find the largest integer register class.
1644 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1645 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1646 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1647
1648 // Every integer value type larger than this largest register takes twice as
1649 // many registers to represent as the previous ValueType.
1650 for (unsigned ExpandedReg = LargestIntReg + 1;
1651 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1652 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1653 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1654 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1655 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1657 }
1658
1659 // Inspect all of the ValueType's smaller than the largest integer
1660 // register to see which ones need promotion.
1661 unsigned LegalIntReg = LargestIntReg;
1662 for (unsigned IntReg = LargestIntReg - 1;
1663 IntReg >= (unsigned)MVT::i1; --IntReg) {
1664 MVT IVT = (MVT::SimpleValueType)IntReg;
1665 if (isTypeLegal(IVT)) {
1666 LegalIntReg = IntReg;
1667 } else {
1668 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1669 (MVT::SimpleValueType)LegalIntReg;
1670 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1671 }
1672 }
1673
1674 // ppcf128 type is really two f64's.
1675 if (!isTypeLegal(MVT::ppcf128)) {
1676 if (isTypeLegal(MVT::f64)) {
1677 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1678 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1679 TransformToType[MVT::ppcf128] = MVT::f64;
1680 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1681 } else {
1682 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1683 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1684 TransformToType[MVT::ppcf128] = MVT::i128;
1685 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1686 }
1687 }
1688
1689 // Decide how to handle f128. If the target does not have native f128 support,
1690 // expand it to i128 and we will be generating soft float library calls.
1691 if (!isTypeLegal(MVT::f128)) {
1692 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1693 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1694 TransformToType[MVT::f128] = MVT::i128;
1695 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1696 }
1697
1698 // Decide how to handle f80. If the target does not have native f80 support,
1699 // expand it to i96 and we will be generating soft float library calls.
1700 if (!isTypeLegal(MVT::f80)) {
1701 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1702 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1703 TransformToType[MVT::f80] = MVT::i32;
1704 ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1705 }
1706
1707 // Decide how to handle f64. If the target does not have native f64 support,
1708 // expand it to i64 and we will be generating soft float library calls.
1709 if (!isTypeLegal(MVT::f64)) {
1710 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1711 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1712 TransformToType[MVT::f64] = MVT::i64;
1713 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1714 }
1715
1716 // Decide how to handle f32. If the target does not have native f32 support,
1717 // expand it to i32 and we will be generating soft float library calls.
1718 if (!isTypeLegal(MVT::f32)) {
1719 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1720 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1721 TransformToType[MVT::f32] = MVT::i32;
1722 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1723 }
1724
1725 // Decide how to handle f16. If the target does not have native f16 support,
1726 // promote it to f32, because there are no f16 library calls (except for
1727 // conversions).
1728 if (!isTypeLegal(MVT::f16)) {
1729 // Allow targets to control how we legalize half.
1730 bool SoftPromoteHalfType = softPromoteHalfType();
1731 bool UseFPRegsForHalfType = !SoftPromoteHalfType || useFPRegsForHalfType();
1732
1733 if (!UseFPRegsForHalfType) {
1734 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1735 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1736 } else {
1737 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1738 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1739 }
1740 TransformToType[MVT::f16] = MVT::f32;
1741 if (SoftPromoteHalfType) {
1742 ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1743 } else {
1744 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1745 }
1746 }
1747
1748 // Decide how to handle bf16. If the target does not have native bf16 support,
1749 // promote it to f32, because there are no bf16 library calls (except for
1750 // converting from f32 to bf16).
1751 if (!isTypeLegal(MVT::bf16)) {
1752 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1753 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1754 TransformToType[MVT::bf16] = MVT::f32;
1755 ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf);
1756 }
1757
1758 // Loop over all of the vector value types to see which need transformations.
1759 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1760 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1761 MVT VT = (MVT::SimpleValueType) i;
1762 if (isTypeLegal(VT))
1763 continue;
1764
1765 MVT EltVT = VT.getVectorElementType();
1767 bool IsLegalWiderType = false;
1768 bool IsScalable = VT.isScalableVector();
1769 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1770 switch (PreferredAction) {
1771 case TypePromoteInteger: {
1772 MVT::SimpleValueType EndVT = IsScalable ?
1773 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1774 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1775 // Try to promote the elements of integer vectors. If no legal
1776 // promotion was found, fall through to the widen-vector method.
1777 for (unsigned nVT = i + 1;
1778 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1779 MVT SVT = (MVT::SimpleValueType) nVT;
1780 // Promote vectors of integers to vectors with the same number
1781 // of elements, with a wider element type.
1782 if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1783 SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1784 TransformToType[i] = SVT;
1785 RegisterTypeForVT[i] = SVT;
1786 NumRegistersForVT[i] = 1;
1787 ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1788 IsLegalWiderType = true;
1789 break;
1790 }
1791 }
1792 if (IsLegalWiderType)
1793 break;
1794 [[fallthrough]];
1795 }
1796
1797 case TypeWidenVector:
1798 if (isPowerOf2_32(EC.getKnownMinValue())) {
1799 // Try to widen the vector.
1800 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1801 MVT SVT = (MVT::SimpleValueType) nVT;
1802 if (SVT.getVectorElementType() == EltVT &&
1803 SVT.isScalableVector() == IsScalable &&
1805 EC.getKnownMinValue() &&
1806 isTypeLegal(SVT)) {
1807 TransformToType[i] = SVT;
1808 RegisterTypeForVT[i] = SVT;
1809 NumRegistersForVT[i] = 1;
1810 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1811 IsLegalWiderType = true;
1812 break;
1813 }
1814 }
1815 if (IsLegalWiderType)
1816 break;
1817 } else {
1818 // Only widen to the next power of 2 to keep consistency with EVT.
1819 MVT NVT = VT.getPow2VectorType();
1820 if (isTypeLegal(NVT)) {
1821 TransformToType[i] = NVT;
1822 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1823 RegisterTypeForVT[i] = NVT;
1824 NumRegistersForVT[i] = 1;
1825 break;
1826 }
1827 }
1828 [[fallthrough]];
1829
1830 case TypeSplitVector:
1831 case TypeScalarizeVector: {
1832 MVT IntermediateVT;
1833 MVT RegisterVT;
1834 unsigned NumIntermediates;
1835 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1836 NumIntermediates, RegisterVT, this);
1837 NumRegistersForVT[i] = NumRegisters;
1838 assert(NumRegistersForVT[i] == NumRegisters &&
1839 "NumRegistersForVT size cannot represent NumRegisters!");
1840 RegisterTypeForVT[i] = RegisterVT;
1841
1842 MVT NVT = VT.getPow2VectorType();
1843 if (NVT == VT) {
1844 // Type is already a power of 2. The default action is to split.
1845 TransformToType[i] = MVT::Other;
1846 if (PreferredAction == TypeScalarizeVector)
1847 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1848 else if (PreferredAction == TypeSplitVector)
1849 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1850 else if (EC.getKnownMinValue() > 1)
1851 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1852 else
1853 ValueTypeActions.setTypeAction(VT, EC.isScalable()
1856 } else {
1857 TransformToType[i] = NVT;
1858 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1859 }
1860 break;
1861 }
1862 default:
1863 llvm_unreachable("Unknown vector legalization action!");
1864 }
1865 }
1866
1867 // Determine the 'representative' register class for each value type.
1868 // An representative register class is the largest (meaning one which is
1869 // not a sub-register class / subreg register class) legal register class for
1870 // a group of value types. For example, on i386, i8, i16, and i32
1871 // representative would be GR32; while on x86_64 it's GR64.
1872 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1873 const TargetRegisterClass* RRC;
1874 uint8_t Cost;
1876 RepRegClassForVT[i] = RRC;
1877 RepRegClassCostForVT[i] = Cost;
1878 }
1879}
1880
1882 EVT VT) const {
1883 assert(!VT.isVector() && "No default SetCC type for vectors!");
1884 return getPointerTy(DL).SimpleTy;
1885}
1886
1888 return MVT::i32; // return the default value
1889}
1890
1891/// getVectorTypeBreakdown - Vector types are broken down into some number of
1892/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
1893/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1894/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1895///
1896/// This method returns the number of registers needed, and the VT for each
1897/// register. It also returns the VT and quantity of the intermediate values
1898/// before they are promoted/expanded.
1900 EVT VT, EVT &IntermediateVT,
1901 unsigned &NumIntermediates,
1902 MVT &RegisterVT) const {
1903 ElementCount EltCnt = VT.getVectorElementCount();
1904
1905 // If there is a wider vector type with the same element type as this one,
1906 // or a promoted vector type that has the same number of elements which
1907 // are wider, then we should convert to that legal vector type.
1908 // This handles things like <2 x float> -> <4 x float> and
1909 // <4 x i1> -> <4 x i32>.
1910 LegalizeTypeAction TA = getTypeAction(Context, VT);
1911 if (!EltCnt.isScalar() &&
1912 (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1913 EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1914 if (isTypeLegal(RegisterEVT)) {
1915 IntermediateVT = RegisterEVT;
1916 RegisterVT = RegisterEVT.getSimpleVT();
1917 NumIntermediates = 1;
1918 return 1;
1919 }
1920 }
1921
1922 // Figure out the right, legal destination reg to copy into.
1923 EVT EltTy = VT.getVectorElementType();
1924
1925 unsigned NumVectorRegs = 1;
1926
1927 // Scalable vectors cannot be scalarized, so handle the legalisation of the
1928 // types like done elsewhere in SelectionDAG.
1929 if (EltCnt.isScalable()) {
1930 LegalizeKind LK;
1931 EVT PartVT = VT;
1932 do {
1933 // Iterate until we've found a legal (part) type to hold VT.
1934 LK = getTypeConversion(Context, PartVT);
1935 PartVT = LK.second;
1936 } while (LK.first != TypeLegal);
1937
1938 if (!PartVT.isVector()) {
1940 "Don't know how to legalize this scalable vector type");
1941 }
1942
1943 NumIntermediates =
1946 IntermediateVT = PartVT;
1947 RegisterVT = getRegisterType(Context, IntermediateVT);
1948 return NumIntermediates;
1949 }
1950
1951 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally
1952 // we could break down into LHS/RHS like LegalizeDAG does.
1953 if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1954 NumVectorRegs = EltCnt.getKnownMinValue();
1955 EltCnt = ElementCount::getFixed(1);
1956 }
1957
1958 // Divide the input until we get to a supported size. This will always
1959 // end with a scalar if the target doesn't support vectors.
1960 while (EltCnt.getKnownMinValue() > 1 &&
1961 !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1962 EltCnt = EltCnt.divideCoefficientBy(2);
1963 NumVectorRegs <<= 1;
1964 }
1965
1966 NumIntermediates = NumVectorRegs;
1967
1968 EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1969 if (!isTypeLegal(NewVT))
1970 NewVT = EltTy;
1971 IntermediateVT = NewVT;
1972
1973 MVT DestVT = getRegisterType(Context, NewVT);
1974 RegisterVT = DestVT;
1975
1976 if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16.
1977 TypeSize NewVTSize = NewVT.getSizeInBits();
1978 // Convert sizes such as i33 to i64.
1980 NewVTSize = NewVTSize.coefficientNextPowerOf2();
1981 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1982 }
1983
1984 // Otherwise, promotion or legal types use the same number of registers as
1985 // the vector decimated to the appropriate level.
1986 return NumVectorRegs;
1987}
1988
1990 uint64_t NumCases,
1992 ProfileSummaryInfo *PSI,
1993 BlockFrequencyInfo *BFI) const {
1994 // FIXME: This function check the maximum table size and density, but the
1995 // minimum size is not checked. It would be nice if the minimum size is
1996 // also combined within this function. Currently, the minimum size check is
1997 // performed in findJumpTable() in SelectionDAGBuiler and
1998 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1999 const bool OptForSize =
2000 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
2001 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
2002 const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
2003
2004 // Check whether the number of cases is small enough and
2005 // the range is dense enough for a jump table.
2006 return (OptForSize || Range <= MaxJumpTableSize) &&
2007 (NumCases * 100 >= Range * MinDensity);
2008}
2009
2011 EVT ConditionVT) const {
2012 return getRegisterType(Context, ConditionVT);
2013}
2014
2015/// Get the EVTs and ArgFlags collections that represent the legalized return
2016/// type of the given function. This does not require a DAG or a return value,
2017/// and is suitable for use before any DAGs for the function are constructed.
2018/// TODO: Move this out of TargetLowering.cpp.
2020 AttributeList attr,
2022 const TargetLowering &TLI, const DataLayout &DL) {
2024 ComputeValueTypes(DL, ReturnType, Types);
2025 unsigned NumValues = Types.size();
2026 if (NumValues == 0) return;
2027
2028 for (Type *Ty : Types) {
2029 EVT VT = TLI.getValueType(DL, Ty);
2030 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2031
2032 if (attr.hasRetAttr(Attribute::SExt))
2033 ExtendKind = ISD::SIGN_EXTEND;
2034 else if (attr.hasRetAttr(Attribute::ZExt))
2035 ExtendKind = ISD::ZERO_EXTEND;
2036
2037 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2038 VT = TLI.getTypeForExtReturn(ReturnType->getContext(), VT, ExtendKind);
2039
2040 unsigned NumParts =
2041 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
2042 MVT PartVT =
2043 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
2044
2045 // 'inreg' on function refers to return value
2047 if (attr.hasRetAttr(Attribute::InReg))
2048 Flags.setInReg();
2049
2050 // Propagate extension type if any
2051 if (attr.hasRetAttr(Attribute::SExt))
2052 Flags.setSExt();
2053 else if (attr.hasRetAttr(Attribute::ZExt))
2054 Flags.setZExt();
2055
2056 for (unsigned i = 0; i < NumParts; ++i)
2057 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, Ty, 0, 0));
2058 }
2059}
2060
2062 const DataLayout &DL) const {
2063 return DL.getABITypeAlign(Ty);
2064}
2065
2067 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
2068 Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
2069 // Check if the specified alignment is sufficient based on the data layout.
2070 // TODO: While using the data layout works in practice, a better solution
2071 // would be to implement this check directly (make this a virtual function).
2072 // For example, the ABI alignment may change based on software platform while
2073 // this function should only be affected by hardware implementation.
2074 Type *Ty = VT.getTypeForEVT(Context);
2075 if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
2076 // Assume that an access that meets the ABI-specified alignment is fast.
2077 if (Fast != nullptr)
2078 *Fast = 1;
2079 return true;
2080 }
2081
2082 // This is a misaligned access.
2083 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
2084}
2085
2087 LLVMContext &Context, const DataLayout &DL, EVT VT,
2088 const MachineMemOperand &MMO, unsigned *Fast) const {
2089 return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
2090 MMO.getAlign(), MMO.getFlags(), Fast);
2091}
2092
2094 const DataLayout &DL, EVT VT,
2095 unsigned AddrSpace, Align Alignment,
2097 unsigned *Fast) const {
2098 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
2099 Flags, Fast);
2100}
2101
2103 const DataLayout &DL, EVT VT,
2104 const MachineMemOperand &MMO,
2105 unsigned *Fast) const {
2106 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
2107 MMO.getFlags(), Fast);
2108}
2109
2111 const DataLayout &DL, LLT Ty,
2112 const MachineMemOperand &MMO,
2113 unsigned *Fast) const {
2114 EVT VT = getApproximateEVTForLLT(Ty, Context);
2115 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
2116 MMO.getFlags(), Fast);
2117}
2118
2119//===----------------------------------------------------------------------===//
2120// TargetTransformInfo Helpers
2121//===----------------------------------------------------------------------===//
2122
2124 enum InstructionOpcodes {
2125#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
2126#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
2127#include "llvm/IR/Instruction.def"
2128 };
2129 switch (static_cast<InstructionOpcodes>(Opcode)) {
2130 case Ret: return 0;
2131 case Br: return 0;
2132 case Switch: return 0;
2133 case IndirectBr: return 0;
2134 case Invoke: return 0;
2135 case CallBr: return 0;
2136 case Resume: return 0;
2137 case Unreachable: return 0;
2138 case CleanupRet: return 0;
2139 case CatchRet: return 0;
2140 case CatchPad: return 0;
2141 case CatchSwitch: return 0;
2142 case CleanupPad: return 0;
2143 case FNeg: return ISD::FNEG;
2144 case Add: return ISD::ADD;
2145 case FAdd: return ISD::FADD;
2146 case Sub: return ISD::SUB;
2147 case FSub: return ISD::FSUB;
2148 case Mul: return ISD::MUL;
2149 case FMul: return ISD::FMUL;
2150 case UDiv: return ISD::UDIV;
2151 case SDiv: return ISD::SDIV;
2152 case FDiv: return ISD::FDIV;
2153 case URem: return ISD::UREM;
2154 case SRem: return ISD::SREM;
2155 case FRem: return ISD::FREM;
2156 case Shl: return ISD::SHL;
2157 case LShr: return ISD::SRL;
2158 case AShr: return ISD::SRA;
2159 case And: return ISD::AND;
2160 case Or: return ISD::OR;
2161 case Xor: return ISD::XOR;
2162 case Alloca: return 0;
2163 case Load: return ISD::LOAD;
2164 case Store: return ISD::STORE;
2165 case GetElementPtr: return 0;
2166 case Fence: return 0;
2167 case AtomicCmpXchg: return 0;
2168 case AtomicRMW: return 0;
2169 case Trunc: return ISD::TRUNCATE;
2170 case ZExt: return ISD::ZERO_EXTEND;
2171 case SExt: return ISD::SIGN_EXTEND;
2172 case FPToUI: return ISD::FP_TO_UINT;
2173 case FPToSI: return ISD::FP_TO_SINT;
2174 case UIToFP: return ISD::UINT_TO_FP;
2175 case SIToFP: return ISD::SINT_TO_FP;
2176 case FPTrunc: return ISD::FP_ROUND;
2177 case FPExt: return ISD::FP_EXTEND;
2178 case PtrToAddr: return ISD::BITCAST;
2179 case PtrToInt: return ISD::BITCAST;
2180 case IntToPtr: return ISD::BITCAST;
2181 case BitCast: return ISD::BITCAST;
2182 case AddrSpaceCast: return ISD::ADDRSPACECAST;
2183 case ICmp: return ISD::SETCC;
2184 case FCmp: return ISD::SETCC;
2185 case PHI: return 0;
2186 case Call: return 0;
2187 case Select: return ISD::SELECT;
2188 case UserOp1: return 0;
2189 case UserOp2: return 0;
2190 case VAArg: return 0;
2191 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
2192 case InsertElement: return ISD::INSERT_VECTOR_ELT;
2193 case ShuffleVector: return ISD::VECTOR_SHUFFLE;
2194 case ExtractValue: return ISD::MERGE_VALUES;
2195 case InsertValue: return ISD::MERGE_VALUES;
2196 case LandingPad: return 0;
2197 case Freeze: return ISD::FREEZE;
2198 }
2199
2200 llvm_unreachable("Unknown instruction type encountered!");
2201}
2202
2204 switch (ID) {
2205 case Intrinsic::exp:
2206 return ISD::FEXP;
2207 case Intrinsic::exp2:
2208 return ISD::FEXP2;
2209 case Intrinsic::log:
2210 return ISD::FLOG;
2211 default:
2212 return ISD::DELETED_NODE;
2213 }
2214}
2215
2216Value *
2218 bool UseTLS) const {
2219 // compiler-rt provides a variable with a magic name. Targets that do not
2220 // link with compiler-rt may also provide such a variable.
2221 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
2222 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
2223 auto UnsafeStackPtr =
2224 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
2225
2226 const DataLayout &DL = M->getDataLayout();
2227 PointerType *StackPtrTy = DL.getAllocaPtrType(M->getContext());
2228
2229 if (!UnsafeStackPtr) {
2230 auto TLSModel = UseTLS ?
2233 // The global variable is not defined yet, define it ourselves.
2234 // We use the initial-exec TLS model because we do not support the
2235 // variable living anywhere other than in the main executable.
2236 UnsafeStackPtr = new GlobalVariable(
2237 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
2238 UnsafeStackPtrVar, nullptr, TLSModel);
2239 } else {
2240 // The variable exists, check its type and attributes.
2241 //
2242 // FIXME: Move to IR verifier.
2243 if (UnsafeStackPtr->getValueType() != StackPtrTy)
2244 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
2245 if (UseTLS != UnsafeStackPtr->isThreadLocal())
2246 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
2247 (UseTLS ? "" : "not ") + "be thread-local");
2248 }
2249 return UnsafeStackPtr;
2250}
2251
2252Value *
2254 // FIXME: Can this triple check be replaced with SAFESTACK_POINTER_ADDRESS
2255 // being available?
2256 if (!TM.getTargetTriple().isAndroid())
2257 return getDefaultSafeStackPointerLocation(IRB, true);
2258
2259 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
2260 auto *PtrTy = PointerType::getUnqual(M->getContext());
2261
2262 const char *SafestackPointerAddressName =
2263 getLibcallName(RTLIB::SAFESTACK_POINTER_ADDRESS);
2264 if (!SafestackPointerAddressName) {
2265 M->getContext().emitError(
2266 "no libcall available for safestack pointer address");
2267 return PoisonValue::get(PtrTy);
2268 }
2269
2270 // Android provides a libc function to retrieve the address of the current
2271 // thread's unsafe stack pointer.
2272 FunctionCallee Fn =
2273 M->getOrInsertFunction(SafestackPointerAddressName, PtrTy);
2274 return IRB.CreateCall(Fn);
2275}
2276
2277//===----------------------------------------------------------------------===//
2278// Loop Strength Reduction hooks
2279//===----------------------------------------------------------------------===//
2280
2281/// isLegalAddressingMode - Return true if the addressing mode represented
2282/// by AM is legal for this target, for a load/store of the specified type.
2284 const AddrMode &AM, Type *Ty,
2285 unsigned AS, Instruction *I) const {
2286 // The default implementation of this implements a conservative RISCy, r+r and
2287 // r+i addr mode.
2288
2289 // Scalable offsets not supported
2290 if (AM.ScalableOffset)
2291 return false;
2292
2293 // Allows a sign-extended 16-bit immediate field.
2294 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2295 return false;
2296
2297 // No global is ever allowed as a base.
2298 if (AM.BaseGV)
2299 return false;
2300
2301 // Only support r+r,
2302 switch (AM.Scale) {
2303 case 0: // "r+i" or just "i", depending on HasBaseReg.
2304 break;
2305 case 1:
2306 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
2307 return false;
2308 // Otherwise we have r+r or r+i.
2309 break;
2310 case 2:
2311 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
2312 return false;
2313 // Allow 2*r as r+r.
2314 break;
2315 default: // Don't allow n * r
2316 return false;
2317 }
2318
2319 return true;
2320}
2321
2322//===----------------------------------------------------------------------===//
2323// Stack Protector
2324//===----------------------------------------------------------------------===//
2325
2326// For OpenBSD return its special guard variable. Otherwise return nullptr,
2327// so that SelectionDAG handle SSP.
2329 RTLIB::LibcallImpl GuardLocalImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2330 if (GuardLocalImpl != RTLIB::impl___guard_local)
2331 return nullptr;
2332
2333 Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
2334 const DataLayout &DL = M.getDataLayout();
2335 PointerType *PtrTy =
2336 PointerType::get(M.getContext(), DL.getDefaultGlobalsAddressSpace());
2337 GlobalVariable *G =
2338 M.getOrInsertGlobal(getLibcallImplName(GuardLocalImpl), PtrTy);
2339 G->setVisibility(GlobalValue::HiddenVisibility);
2340 return G;
2341}
2342
2343// Currently only support "standard" __stack_chk_guard.
2344// TODO: add LOAD_STACK_GUARD support.
2346 RTLIB::LibcallImpl StackGuardImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2347 if (StackGuardImpl == RTLIB::Unsupported)
2348 return;
2349
2350 StringRef StackGuardVarName = getLibcallImplName(StackGuardImpl);
2351 M.getOrInsertGlobal(
2352 StackGuardVarName, PointerType::getUnqual(M.getContext()), [=, &M]() {
2353 auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
2354 false, GlobalVariable::ExternalLinkage,
2355 nullptr, StackGuardVarName);
2356
2357 // FreeBSD has "__stack_chk_guard" defined externally on libc.so
2358 if (M.getDirectAccessExternalData() &&
2359 !TM.getTargetTriple().isOSCygMing() &&
2360 !(TM.getTargetTriple().isPPC64() &&
2361 TM.getTargetTriple().isOSFreeBSD()) &&
2362 (!TM.getTargetTriple().isOSDarwin() ||
2363 TM.getRelocationModel() == Reloc::Static))
2364 GV->setDSOLocal(true);
2365
2366 return GV;
2367 });
2368}
2369
2370// Currently only support "standard" __stack_chk_guard.
2371// TODO: add LOAD_STACK_GUARD support.
2373 RTLIB::LibcallImpl GuardVarImpl = getLibcallImpl(RTLIB::STACK_CHECK_GUARD);
2374 if (GuardVarImpl == RTLIB::Unsupported)
2375 return nullptr;
2376 return M.getNamedValue(getLibcallImplName(GuardVarImpl));
2377}
2378
2380 // MSVC CRT has a function to validate security cookie.
2381 RTLIB::LibcallImpl SecurityCheckCookieLibcall =
2382 getLibcallImpl(RTLIB::SECURITY_CHECK_COOKIE);
2383 if (SecurityCheckCookieLibcall != RTLIB::Unsupported)
2384 return M.getFunction(getLibcallImplName(SecurityCheckCookieLibcall));
2385 return nullptr;
2386}
2387
2391
2395
2396unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2397 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2398}
2399
2403
2407
2411
2413 return MinimumBitTestCmps;
2414}
2415
2417 MinimumBitTestCmps = Val;
2418}
2419
2421 if (TM.Options.LoopAlignment)
2422 return Align(TM.Options.LoopAlignment);
2423 return PrefLoopAlignment;
2424}
2425
2427 MachineBasicBlock *MBB) const {
2428 return MaxBytesForAlignment;
2429}
2430
2431//===----------------------------------------------------------------------===//
2432// Reciprocal Estimates
2433//===----------------------------------------------------------------------===//
2434
2435/// Get the reciprocal estimate attribute string for a function that will
2436/// override the target defaults.
2438 const Function &F = MF.getFunction();
2439 return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2440}
2441
2442/// Construct a string for the given reciprocal operation of the given type.
2443/// This string should match the corresponding option to the front-end's
2444/// "-mrecip" flag assuming those strings have been passed through in an
2445/// attribute string. For example, "vec-divf" for a division of a vXf32.
2446static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2447 std::string Name = VT.isVector() ? "vec-" : "";
2448
2449 Name += IsSqrt ? "sqrt" : "div";
2450
2451 // TODO: Handle other float types?
2452 if (VT.getScalarType() == MVT::f64) {
2453 Name += "d";
2454 } else if (VT.getScalarType() == MVT::f16) {
2455 Name += "h";
2456 } else {
2457 assert(VT.getScalarType() == MVT::f32 &&
2458 "Unexpected FP type for reciprocal estimate");
2459 Name += "f";
2460 }
2461
2462 return Name;
2463}
2464
2465/// Return the character position and value (a single numeric character) of a
2466/// customized refinement operation in the input string if it exists. Return
2467/// false if there is no customized refinement step count.
2468static bool parseRefinementStep(StringRef In, size_t &Position,
2469 uint8_t &Value) {
2470 const char RefStepToken = ':';
2471 Position = In.find(RefStepToken);
2472 if (Position == StringRef::npos)
2473 return false;
2474
2475 StringRef RefStepString = In.substr(Position + 1);
2476 // Allow exactly one numeric character for the additional refinement
2477 // step parameter.
2478 if (RefStepString.size() == 1) {
2479 char RefStepChar = RefStepString[0];
2480 if (isDigit(RefStepChar)) {
2481 Value = RefStepChar - '0';
2482 return true;
2483 }
2484 }
2485 report_fatal_error("Invalid refinement step for -recip.");
2486}
2487
2488/// For the input attribute string, return one of the ReciprocalEstimate enum
2489/// status values (enabled, disabled, or not specified) for this operation on
2490/// the specified data type.
2491static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2492 if (Override.empty())
2494
2495 SmallVector<StringRef, 4> OverrideVector;
2496 Override.split(OverrideVector, ',');
2497 unsigned NumArgs = OverrideVector.size();
2498
2499 // Check if "all", "none", or "default" was specified.
2500 if (NumArgs == 1) {
2501 // Look for an optional setting of the number of refinement steps needed
2502 // for this type of reciprocal operation.
2503 size_t RefPos;
2504 uint8_t RefSteps;
2505 if (parseRefinementStep(Override, RefPos, RefSteps)) {
2506 // Split the string for further processing.
2507 Override = Override.substr(0, RefPos);
2508 }
2509
2510 // All reciprocal types are enabled.
2511 if (Override == "all")
2513
2514 // All reciprocal types are disabled.
2515 if (Override == "none")
2517
2518 // Target defaults for enablement are used.
2519 if (Override == "default")
2521 }
2522
2523 // The attribute string may omit the size suffix ('f'/'d').
2524 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2525 std::string VTNameNoSize = VTName;
2526 VTNameNoSize.pop_back();
2527 static const char DisabledPrefix = '!';
2528
2529 for (StringRef RecipType : OverrideVector) {
2530 size_t RefPos;
2531 uint8_t RefSteps;
2532 if (parseRefinementStep(RecipType, RefPos, RefSteps))
2533 RecipType = RecipType.substr(0, RefPos);
2534
2535 // Ignore the disablement token for string matching.
2536 bool IsDisabled = RecipType[0] == DisabledPrefix;
2537 if (IsDisabled)
2538 RecipType = RecipType.substr(1);
2539
2540 if (RecipType == VTName || RecipType == VTNameNoSize)
2543 }
2544
2546}
2547
2548/// For the input attribute string, return the customized refinement step count
2549/// for this operation on the specified data type. If the step count does not
2550/// exist, return the ReciprocalEstimate enum value for unspecified.
2551static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2552 if (Override.empty())
2554
2555 SmallVector<StringRef, 4> OverrideVector;
2556 Override.split(OverrideVector, ',');
2557 unsigned NumArgs = OverrideVector.size();
2558
2559 // Check if "all", "default", or "none" was specified.
2560 if (NumArgs == 1) {
2561 // Look for an optional setting of the number of refinement steps needed
2562 // for this type of reciprocal operation.
2563 size_t RefPos;
2564 uint8_t RefSteps;
2565 if (!parseRefinementStep(Override, RefPos, RefSteps))
2567
2568 // Split the string for further processing.
2569 Override = Override.substr(0, RefPos);
2570 assert(Override != "none" &&
2571 "Disabled reciprocals, but specifed refinement steps?");
2572
2573 // If this is a general override, return the specified number of steps.
2574 if (Override == "all" || Override == "default")
2575 return RefSteps;
2576 }
2577
2578 // The attribute string may omit the size suffix ('f'/'d').
2579 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2580 std::string VTNameNoSize = VTName;
2581 VTNameNoSize.pop_back();
2582
2583 for (StringRef RecipType : OverrideVector) {
2584 size_t RefPos;
2585 uint8_t RefSteps;
2586 if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2587 continue;
2588
2589 RecipType = RecipType.substr(0, RefPos);
2590 if (RecipType == VTName || RecipType == VTNameNoSize)
2591 return RefSteps;
2592 }
2593
2595}
2596
2601
2606
2611
2616
2618 EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG,
2619 const MachineMemOperand &MMO) const {
2620 // Single-element vectors are scalarized, so we should generally avoid having
2621 // any memory operations on such types, as they would get scalarized too.
2622 if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() &&
2623 BitcastVT.getVectorNumElements() == 1)
2624 return false;
2625
2626 // Don't do if we could do an indexed load on the original type, but not on
2627 // the new one.
2628 if (!LoadVT.isSimple() || !BitcastVT.isSimple())
2629 return true;
2630
2631 MVT LoadMVT = LoadVT.getSimpleVT();
2632
2633 // Don't bother doing this if it's just going to be promoted again later, as
2634 // doing so might interfere with other combines.
2635 if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
2636 getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
2637 return false;
2638
2639 unsigned Fast = 0;
2640 return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
2641 MMO, &Fast) &&
2642 Fast;
2643}
2644
2648
2650 const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC,
2651 const TargetLibraryInfo *LibInfo) const {
2653 if (LI.isVolatile())
2655
2656 if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2658
2659 if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2661
2663 LI.getAlign(), DL, &LI, AC,
2664 /*DT=*/nullptr, LibInfo))
2666
2667 Flags |= getTargetMMOFlags(LI);
2668 return Flags;
2669}
2670
2673 const DataLayout &DL) const {
2675
2676 if (SI.isVolatile())
2678
2679 if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2681
2682 // FIXME: Not preserving dereferenceable
2683 Flags |= getTargetMMOFlags(SI);
2684 return Flags;
2685}
2686
2689 const DataLayout &DL) const {
2691
2692 if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2693 if (RMW->isVolatile())
2695 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2696 if (CmpX->isVolatile())
2698 } else
2699 llvm_unreachable("not an atomic instruction");
2700
2701 // FIXME: Not preserving dereferenceable
2702 Flags |= getTargetMMOFlags(AI);
2703 return Flags;
2704}
2705
2707 const VPIntrinsic &VPIntrin) const {
2709 Intrinsic::ID IntrinID = VPIntrin.getIntrinsicID();
2710
2711 switch (IntrinID) {
2712 default:
2713 llvm_unreachable("unexpected intrinsic. Existing code may be appropriate "
2714 "for it, but support must be explicitly enabled");
2715 case Intrinsic::vp_load:
2716 case Intrinsic::vp_gather:
2717 case Intrinsic::experimental_vp_strided_load:
2719 break;
2720 case Intrinsic::vp_store:
2721 case Intrinsic::vp_scatter:
2722 case Intrinsic::experimental_vp_strided_store:
2724 break;
2725 }
2726
2727 if (VPIntrin.hasMetadata(LLVMContext::MD_nontemporal))
2729
2730 Flags |= getTargetMMOFlags(VPIntrin);
2731 return Flags;
2732}
2733
2735 Instruction *Inst,
2736 AtomicOrdering Ord) const {
2737 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2738 return Builder.CreateFence(Ord);
2739 else
2740 return nullptr;
2741}
2742
2744 Instruction *Inst,
2745 AtomicOrdering Ord) const {
2746 if (isAcquireOrStronger(Ord))
2747 return Builder.CreateFence(Ord);
2748 else
2749 return nullptr;
2750}
2751
2752//===----------------------------------------------------------------------===//
2753// GlobalISel Hooks
2754//===----------------------------------------------------------------------===//
2755
2757 const TargetTransformInfo *TTI) const {
2758 auto &MF = *MI.getMF();
2759 auto &MRI = MF.getRegInfo();
2760 // Assuming a spill and reload of a value has a cost of 1 instruction each,
2761 // this helper function computes the maximum number of uses we should consider
2762 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2763 // break even in terms of code size when the original MI has 2 users vs
2764 // choosing to potentially spill. Any more than 2 users we we have a net code
2765 // size increase. This doesn't take into account register pressure though.
2766 auto maxUses = [](unsigned RematCost) {
2767 // A cost of 1 means remats are basically free.
2768 if (RematCost == 1)
2769 return std::numeric_limits<unsigned>::max();
2770 if (RematCost == 2)
2771 return 2U;
2772
2773 // Remat is too expensive, only sink if there's one user.
2774 if (RematCost > 2)
2775 return 1U;
2776 llvm_unreachable("Unexpected remat cost");
2777 };
2778
2779 switch (MI.getOpcode()) {
2780 default:
2781 return false;
2782 // Constants-like instructions should be close to their users.
2783 // We don't want long live-ranges for them.
2784 case TargetOpcode::G_CONSTANT:
2785 case TargetOpcode::G_FCONSTANT:
2786 case TargetOpcode::G_FRAME_INDEX:
2787 case TargetOpcode::G_INTTOPTR:
2788 return true;
2789 case TargetOpcode::G_GLOBAL_VALUE: {
2790 unsigned RematCost = TTI->getGISelRematGlobalCost();
2791 Register Reg = MI.getOperand(0).getReg();
2792 unsigned MaxUses = maxUses(RematCost);
2793 if (MaxUses == UINT_MAX)
2794 return true; // Remats are "free" so always localize.
2795 return MRI.hasAtMostUserInstrs(Reg, MaxUses);
2796 }
2797 }
2798}
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
Rewrite undef for PHI
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
This file implements the BitVector class.
#define LLVM_ABI
Definition Compiler.h:213
This file defines the DenseMap class.
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
static LVOptions Options
Definition LVOptions.cpp:25
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
#define G(x, y, z)
Definition MD5.cpp:55
Register const TargetRegisterInfo * TRI
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
static cl::opt< unsigned > MinimumBitTestCmpsOverride("min-bit-test-cmps", cl::init(2), cl::Hidden, cl::desc("Set minimum of largest number of comparisons " "to use bit test for switch."))
static cl::opt< bool > JumpIsExpensiveOverride("jump-is-expensive", cl::init(false), cl::desc("Do not create extra branches to split comparison logic."), cl::Hidden)
#define OP_TO_LIBCALL(Name, Enum)
static cl::opt< unsigned > MinimumJumpTableEntries("min-jump-table-entries", cl::init(4), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table."))
static cl::opt< bool > DisableStrictNodeMutation("disable-strictnode-mutation", cl::desc("Don't mutate strict-float node to a legalize node"), cl::init(false), cl::Hidden)
static bool parseRefinementStep(StringRef In, size_t &Position, uint8_t &Value)
Return the character position and value (a single numeric character) of a customized refinement opera...
static cl::opt< unsigned > MaximumJumpTableSize("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, cl::desc("Set maximum size of jump tables."))
static cl::opt< unsigned > JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, cl::desc("Minimum density for building a jump table in " "a normal function"))
Minimum jump table density for normal functions.
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT, TargetLoweringBase *TLI)
static std::string getReciprocalOpName(bool IsSqrt, EVT VT)
Construct a string for the given reciprocal operation of the given type.
#define LCALL5(A)
static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return the customized refinement step count for this operation on the...
static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override)
For the input attribute string, return one of the ReciprocalEstimate enum status values (enabled,...
static StringRef getRecipEstimateForFunc(MachineFunction &MF)
Get the reciprocal estimate attribute string for a function that will override the target defaults.
static cl::opt< unsigned > OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, cl::desc("Minimum density for building a jump table in " "an optsize function"))
Minimum jump table density for -Os or -Oz functions.
This file describes how to lower LLVM code to machine code.
This pass exposes codegen information to IR-level passes.
Class for arbitrary precision integers.
Definition APInt.h:78
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
setBitsInMask - Add '1' bits from Mask to this vector.
Definition BitVector.h:726
iterator_range< const_set_bits_iterator > set_bits() const
Definition BitVector.h:159
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
This class represents a range of values.
LLVM_ABI unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
LLVM_ABI ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
LLVM_ABI ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
LLVM_ABI unsigned getPointerSize(unsigned AS=0) const
The pointer representation size in bytes, rounded up to a whole number of bytes.
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Module * getParent()
Get the module that this global value is contained inside of...
@ HiddenVisibility
The GV is hidden.
Definition GlobalValue.h:69
@ ExternalLinkage
Externally visible function.
Definition GlobalValue.h:53
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
BasicBlock * GetInsertBlock() const
Definition IRBuilder.h:201
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition IRBuilder.h:2511
LLVM_ABI bool hasAtomicStore() const LLVM_READONLY
Return true if this atomic instruction stores to memory.
bool hasMetadata() const
Return true if this instruction has any metadata attached to it.
@ MAX_INT_BITS
Maximum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Align getAlign() const
Return the alignment of the access that is being performed.
Machine Value Type.
SimpleValueType SimpleTy
uint64_t getScalarSizeInBits() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
static auto all_valuetypes()
SimpleValueType Iteration.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
MVT getPow2VectorType() const
Widens the length of the given vector MVT up to the nearest power of 2 and returns that type.
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
Representation of each machine instruction.
unsigned getNumOperands() const
Retuns the total number of operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
LLVM_ABI void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
LLVM_ABI void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
unsigned getAddrSpace() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
LLVM_ABI Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
LLVM_ABI void freezeReservedRegs()
freezeReservedRegs - Called by the register allocator to freeze the set of reserved registers before ...
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
const DataLayout & getDataLayout() const
LLVMContext * getContext() const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition StringRef.h:712
static constexpr size_t npos
Definition StringRef.h:57
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition StringRef.h:573
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:143
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
Multiway switch.
Provides information about what library functions are available for the current target.
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
void initActions()
Initialize all of the actions to default values.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
void setMinimumBitTestCmps(unsigned Val)
Set the minimum of largest of number of comparisons to generate BitTest.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool canOpTrap(unsigned Op, EVT VT) const
Returns true if the operation can trap for the value type.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const
Check whether or not MI needs to be moved close to its uses.
virtual unsigned getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const
Return the maximum amount of bytes allowed to be emitted when padding for alignment.
void setMaximumJumpTableSize(unsigned)
Indicate the maximum number of entries in jump tables.
virtual unsigned getMinimumJumpTableEntries() const
Return lower limit for number of blocks in a jump table.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
unsigned getMinimumBitTestCmps() const
Retuen the minimum of largest number of comparisons in BitTest.
virtual bool useFPRegsForHalfType() const
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
virtual bool softPromoteHalfType() const
unsigned getMaximumJumpTableSize() const
Return upper limit for number of entries in a jump table.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
Value * getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, bool UseTLS) const
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual bool isJumpTableRelative() const
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const
Return the type to use for a scalar shift opcode, given the shifted amount type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
TargetLoweringBase(const TargetMachine &TM, const TargetSubtargetInfo &STI)
NOTE: The TargetMachine owns TLOF.
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
unsigned getMinimumJumpTableDensity(bool OptForSize) const
Return lower limit of the density in a jump table.
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
static StringRef getLibcallImplName(RTLIB::LibcallImpl Call)
Get the libcall routine name for the specified libcall implementation.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
int IntrinsicIDToISD(Intrinsic::ID ID) const
Get the ISD node that corresponds to the Intrinsic ID.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
constexpr LeafTy coefficientNextPowerOf2() const
Definition TypeSize.h:260
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:813
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:782
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ SET_FPENV
Sets the current floating-point environment.
@ LOOP_DEPENDENCE_RAW_MASK
@ VECREDUCE_SEQ_FADD
Generic reduction nodes.
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
Definition ISDOpcodes.h:533
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:389
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ RESET_FPENV
Set floating-point environment to default state.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:517
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:395
@ SET_FPMODE
Sets the current dynamic floating-point control modes.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:847
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:513
@ VECTOR_FIND_LAST_ACTIVE
Finds the index of the last active mask element Operands: Mask.
@ FMODF
FMODF - Decomposes the operand into integral and fractional parts, each having the same type and sign...
@ FATAN2
FATAN2 - atan2, inspired by libm.
@ FSINCOSPI
FSINCOSPI - Compute both the sine and cosine times pi more accurately than FSINCOS(pi*x),...
@ ATOMIC_CMP_SWAP_WITH_SUCCESS
Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:874
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:579
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:412
@ VECREDUCE_FMAXIMUM
FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm....
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:741
@ RESET_FPMODE
Sets default dynamic floating-point control modes.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:904
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
Definition ISDOpcodes.h:523
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition ISDOpcodes.h:987
@ CLMUL
Carry-less multiplication operations.
Definition ISDOpcodes.h:768
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition ISDOpcodes.h:402
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:838
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:709
@ READSTEADYCOUNTER
READSTEADYCOUNTER - This corresponds to the readfixedcounter intrinsic.
@ VECREDUCE_FADD
These reductions have relaxed evaluation order semantics, and have a single vector operand.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:781
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ TRUNCATE_SSAT_U
Definition ISDOpcodes.h:867
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
Definition ISDOpcodes.h:821
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:536
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
Definition ISDOpcodes.h:543
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:790
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:666
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ CTLS
Count leading redundant sign bits.
Definition ISDOpcodes.h:786
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ GET_FPMODE
Reads the current dynamic floating-point control modes.
@ GET_FPENV
Gets the current floating-point environment.
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:759
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:644
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:571
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:844
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ UBSANTRAP
UBSANTRAP - Trap with an immediate describing the kind of sanitizer failure.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:381
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ VECTOR_SPLICE_LEFT
VECTOR_SPLICE_LEFT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) left by IMM elements and retu...
Definition ISDOpcodes.h:648
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:893
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:882
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:721
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:408
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:972
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:920
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:733
@ TRAP
TRAP - Trapping instruction.
@ GET_FPENV_MEM
Gets the current floating-point environment.
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:729
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:704
@ VECTOR_SPLICE_RIGHT
VECTOR_SPLICE_RIGHT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) right by IMM elements and re...
Definition ISDOpcodes.h:651
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:560
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FFREXP
FFREXP - frexp, extract fractional and exponent component of a floating-point value.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:953
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:693
@ CLEAR_CACHE
llvm.clear_cache intrinsic Operands: Input Chain, Start Addres, End Address Outputs: Output Chain
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:915
@ ADDRSPACECAST
ADDRSPACECAST - This operator converts between pointers of different address spaces.
Definition ISDOpcodes.h:991
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:939
@ VECREDUCE_FMINIMUM
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:850
@ VECREDUCE_SEQ_FMUL
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:529
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ GET_DYNAMIC_AREA_OFFSET
GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of the most recent dynamic alloca.
@ SET_FPENV_MEM
Sets the current floating point environment.
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ TRUNCATE_SSAT_S
TRUNCATE_[SU]SAT_[SU] - Truncate for saturated operand [SU] located in middle, prefix for SAT means i...
Definition ISDOpcodes.h:865
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:716
@ TRUNCATE_USAT_U
Definition ISDOpcodes.h:869
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:333
@ LOOP_DEPENDENCE_WAR_MASK
The llvm.loop.dependence.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
static const int LAST_INDEXED_MODE
LLVM_ABI Libcall getPOWI(EVT RetVT)
getPOWI - Return the POWI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUREM(EVT VT)
LLVM_ABI Libcall getSHL(EVT VT)
LLVM_ABI Libcall getSYNC(unsigned Opc, MVT VT)
Return the SYNC_FETCH_AND_* value for the given opcode and type, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLDEXP(EVT RetVT)
getLDEXP - Return the LDEXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFREXP(EVT RetVT)
getFREXP - Return the FREXP_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getREM(EVT VT)
LLVM_ABI Libcall getSINCOSPI(EVT RetVT)
getSINCOSPI - Return the SINCOSPI_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSDIV(EVT VT)
LLVM_ABI Libcall getSRL(EVT VT)
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getSRA(EVT VT)
LLVM_ABI Libcall getUDIV(EVT VT)
LLVM_ABI Libcall getFPLibCall(EVT VT, Libcall Call_F32, Libcall Call_F64, Libcall Call_F80, Libcall Call_F128, Libcall Call_PPCF128)
GetFPLibCall - Helper to return the right libcall for the given floating point type,...
LLVM_ABI Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLLROUND(EVT VT)
LLVM_ABI Libcall getCOS(EVT RetVT)
Return the COS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLROUND(EVT VT)
LLVM_ABI Libcall getMODF(EVT VT)
getMODF - Return the MODF_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getLRINT(EVT RetVT)
LLVM_ABI Libcall getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, MVT VT)
Return the outline atomics value for the given opcode, atomic ordering and type, or UNKNOWN_LIBCALL i...
LLVM_ABI Libcall getLLRINT(EVT RetVT)
LLVM_ABI Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getSREM(EVT VT)
LLVM_ABI Libcall getSIN(EVT RetVT)
Return the SIN_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getSINCOS_STRET(EVT RetVT)
Return the SINCOS_STRET_ value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getPOW(EVT RetVT)
getPOW - Return the POW_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getOutlineAtomicHelper(const Libcall(&LC)[5][4], AtomicOrdering Order, uint64_t MemSize)
Return the outline atomics value for the given atomic ordering, access size and set of libcalls for a...
LLVM_ABI Libcall getMUL(EVT VT)
LLVM_ABI Libcall getCTPOP(EVT VT)
LLVM_ABI Libcall getSINCOS(EVT RetVT)
getSINCOS - Return the SINCOS_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getMULO(EVT VT)
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:344
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1757
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
InstructionCost Cost
auto enum_seq(EnumT Begin, EnumT End)
Iterate over an enum type from Begin up to - but not including - End.
Definition Sequence.h:337
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
Definition Loads.cpp:229
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
constexpr force_iteration_on_noniterable_enum_t force_iteration_on_noniterable_enum
Definition Sequence.h:109
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
Definition bit.h:345
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
Definition Analysis.cpp:72
bool isReleaseOrStronger(AtomicOrdering AO)
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
constexpr bool has_single_bit(T Value) noexcept
Definition bit.h:147
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
bool isDigit(char C)
Checks if character C is one of the 10 decimal digits.
AtomicOrdering
Atomic ordering for LLVM's memory model.
LLVM_ABI EVT getApproximateEVTForLLT(LLT Ty, LLVMContext &Ctx)
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:394
TargetTransformInfo TTI
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ FMul
Product of floats.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ FAdd
Sum of floats.
DWARFExpression::Operation Op
bool isAcquireOrStronger(AtomicOrdering AO)
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Extended Value Type.
Definition ValueTypes.h:35
EVT getPow2VectorType(LLVMContext &Context) const
Widens the length of the given vector EVT up to the nearest power of 2 and returns that type.
Definition ValueTypes.h:477
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
Definition ValueTypes.h:470
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isFixedLengthVector() const
Definition ValueTypes.h:181
EVT getRoundIntegerType(LLVMContext &Context) const
Rounds the bit-width of the given integer EVT up to the nearest power of two (and at least to eight),...
Definition ValueTypes.h:419
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool isZeroSized() const
Test if the given EVT has zero size, this will fail if called on a scalable type.
Definition ValueTypes.h:132
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
Definition ValueTypes.h:453
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
Matching combinators.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
static RTLIB::Libcall getLibcallFromImpl(RTLIB::LibcallImpl Impl)
Return the libcall provided by Impl.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...