LLVM  13.0.0git
ConstantRange.cpp
Go to the documentation of this file.
1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Represent a range of possible values that may occur when the program is run
10 // for an integral value. This keeps track of a lower and upper bound for the
11 // constant, which MAY wrap around the end of the numeric range. To do this, it
12 // keeps track of a [lower, upper) bound, which specifies an interval just like
13 // STL iterators. When used with boolean values, the following are important
14 // ranges (other integral ranges use min/max values for special range values):
15 //
16 // [F, F) = {} = Empty set
17 // [T, F) = {T}
18 // [F, T) = {F}
19 // [T, T) = {F, T} = Full set
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/KnownBits.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
40 
41 using namespace llvm;
42 
45  Upper(Lower) {}
46 
48  : Lower(std::move(V)), Upper(Lower + 1) {}
49 
51  : Lower(std::move(L)), Upper(std::move(U)) {
52  assert(Lower.getBitWidth() == Upper.getBitWidth() &&
53  "ConstantRange with unequal bit widths");
54  assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
55  "Lower == Upper, but they aren't min or max value!");
56 }
57 
59  bool IsSigned) {
60  assert(!Known.hasConflict() && "Expected valid KnownBits");
61 
62  if (Known.isUnknown())
63  return getFull(Known.getBitWidth());
64 
65  // For unsigned ranges, or signed ranges with known sign bit, create a simple
66  // range between the smallest and largest possible value.
67  if (!IsSigned || Known.isNegative() || Known.isNonNegative())
68  return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1);
69 
70  // If we don't know the sign bit, pick the lower bound as a negative number
71  // and the upper bound as a non-negative one.
72  APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue();
73  Lower.setSignBit();
74  Upper.clearSignBit();
75  return ConstantRange(Lower, Upper + 1);
76 }
77 
79  const ConstantRange &CR) {
80  if (CR.isEmptySet())
81  return CR;
82 
83  uint32_t W = CR.getBitWidth();
84  switch (Pred) {
85  default:
86  llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
87  case CmpInst::ICMP_EQ:
88  return CR;
89  case CmpInst::ICMP_NE:
90  if (CR.isSingleElement())
91  return ConstantRange(CR.getUpper(), CR.getLower());
92  return getFull(W);
93  case CmpInst::ICMP_ULT: {
95  if (UMax.isMinValue())
96  return getEmpty(W);
98  }
99  case CmpInst::ICMP_SLT: {
100  APInt SMax(CR.getSignedMax());
101  if (SMax.isMinSignedValue())
102  return getEmpty(W);
104  }
105  case CmpInst::ICMP_ULE:
106  return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
107  case CmpInst::ICMP_SLE:
109  case CmpInst::ICMP_UGT: {
110  APInt UMin(CR.getUnsignedMin());
111  if (UMin.isMaxValue())
112  return getEmpty(W);
114  }
115  case CmpInst::ICMP_SGT: {
116  APInt SMin(CR.getSignedMin());
117  if (SMin.isMaxSignedValue())
118  return getEmpty(W);
120  }
121  case CmpInst::ICMP_UGE:
123  case CmpInst::ICMP_SGE:
125  }
126 }
127 
129  const ConstantRange &CR) {
130  // Follows from De-Morgan's laws:
131  //
132  // ~(~A union ~B) == A intersect B.
133  //
135  .inverse();
136 }
137 
139  const APInt &C) {
140  // Computes the exact range that is equal to both the constant ranges returned
141  // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
142  // when RHS is a singleton such as an APInt and so the assert is valid.
143  // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
144  // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
145  //
147  return makeAllowedICmpRegion(Pred, C);
148 }
149 
151  APInt &RHS) const {
152  bool Success = false;
153 
154  if (isFullSet() || isEmptySet()) {
156  RHS = APInt(getBitWidth(), 0);
157  Success = true;
158  } else if (auto *OnlyElt = getSingleElement()) {
159  Pred = CmpInst::ICMP_EQ;
160  RHS = *OnlyElt;
161  Success = true;
162  } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
163  Pred = CmpInst::ICMP_NE;
164  RHS = *OnlyMissingElt;
165  Success = true;
166  } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
167  Pred =
169  RHS = getUpper();
170  Success = true;
171  } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
172  Pred =
174  RHS = getLower();
175  Success = true;
176  }
177 
178  assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
179  "Bad result!");
180 
181  return Success;
182 }
183 
184 /// Exact mul nuw region for single element RHS.
186  unsigned BitWidth = V.getBitWidth();
187  if (V == 0)
188  return ConstantRange::getFull(V.getBitWidth());
189 
194  APInt::Rounding::DOWN) + 1);
195 }
196 
197 /// Exact mul nsw region for single element RHS.
199  // Handle special case for 0, -1 and 1. See the last for reason why we
200  // specialize -1 and 1.
201  unsigned BitWidth = V.getBitWidth();
202  if (V == 0 || V.isOneValue())
203  return ConstantRange::getFull(BitWidth);
204 
207  // e.g. Returning [-127, 127], represented as [-127, -128).
208  if (V.isAllOnesValue())
209  return ConstantRange(-MaxValue, MinValue);
210 
211  APInt Lower, Upper;
212  if (V.isNegative()) {
215  } else {
218  }
219  // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
220  // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1,
221  // and 1 are already handled as special cases.
222  return ConstantRange(Lower, Upper + 1);
223 }
224 
227  const ConstantRange &Other,
228  unsigned NoWrapKind) {
229  using OBO = OverflowingBinaryOperator;
230 
231  assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
232 
233  assert((NoWrapKind == OBO::NoSignedWrap ||
234  NoWrapKind == OBO::NoUnsignedWrap) &&
235  "NoWrapKind invalid!");
236 
237  bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
238  unsigned BitWidth = Other.getBitWidth();
239 
240  switch (BinOp) {
241  default:
242  llvm_unreachable("Unsupported binary op");
243 
244  case Instruction::Add: {
245  if (Unsigned)
247  -Other.getUnsignedMax());
248 
249  APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
250  APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
251  return getNonEmpty(
252  SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
253  SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
254  }
255 
256  case Instruction::Sub: {
257  if (Unsigned)
258  return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));
259 
260  APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
261  APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
262  return getNonEmpty(
263  SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
264  SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
265  }
266 
267  case Instruction::Mul:
268  if (Unsigned)
269  return makeExactMulNUWRegion(Other.getUnsignedMax());
270 
271  return makeExactMulNSWRegion(Other.getSignedMin())
272  .intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));
273 
274  case Instruction::Shl: {
275  // For given range of shift amounts, if we ignore all illegal shift amounts
276  // (that always produce poison), what shift amount range is left?
277  ConstantRange ShAmt = Other.intersectWith(
278  ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1)));
279  if (ShAmt.isEmptySet()) {
280  // If the entire range of shift amounts is already poison-producing,
281  // then we can freely add more poison-producing flags ontop of that.
282  return getFull(BitWidth);
283  }
284  // There are some legal shift amounts, we can compute conservatively-correct
285  // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
286  // to be at most bitwidth-1, which results in most conservative range.
287  APInt ShAmtUMax = ShAmt.getUnsignedMax();
288  if (Unsigned)
290  APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1);
292  APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1);
293  }
294  }
295 }
296 
298  const APInt &Other,
299  unsigned NoWrapKind) {
300  // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
301  // "for all" and "for any" coincide in this case.
302  return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
303 }
304 
306  return Lower == Upper && Lower.isMaxValue();
307 }
308 
310  return Lower == Upper && Lower.isMinValue();
311 }
312 
314  return Lower.ugt(Upper) && !Upper.isNullValue();
315 }
316 
318  return Lower.ugt(Upper);
319 }
320 
322  return Lower.sgt(Upper) && !Upper.isMinSignedValue();
323 }
324 
326  return Lower.sgt(Upper);
327 }
328 
329 bool
331  assert(getBitWidth() == Other.getBitWidth());
332  if (isFullSet())
333  return false;
334  if (Other.isFullSet())
335  return true;
336  return (Upper - Lower).ult(Other.Upper - Other.Lower);
337 }
338 
339 bool
340 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
341  assert(MaxSize && "MaxSize can't be 0.");
342  // If this a full set, we need special handling to avoid needing an extra bit
343  // to represent the size.
344  if (isFullSet())
345  return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
346 
347  return (Upper - Lower).ugt(MaxSize);
348 }
349 
351  // Empty set is all negative, full set is not.
352  if (isEmptySet())
353  return true;
354  if (isFullSet())
355  return false;
356 
357  return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
358 }
359 
361  // Empty and full set are automatically treated correctly.
362  return !isSignWrappedSet() && Lower.isNonNegative();
363 }
364 
366  if (isFullSet() || isUpperWrapped())
368  return getUpper() - 1;
369 }
370 
372  if (isFullSet() || isWrappedSet())
374  return getLower();
375 }
376 
378  if (isFullSet() || isUpperSignWrapped())
380  return getUpper() - 1;
381 }
382 
384  if (isFullSet() || isSignWrappedSet())
386  return getLower();
387 }
388 
389 bool ConstantRange::contains(const APInt &V) const {
390  if (Lower == Upper)
391  return isFullSet();
392 
393  if (!isUpperWrapped())
394  return Lower.ule(V) && V.ult(Upper);
395  return Lower.ule(V) || V.ult(Upper);
396 }
397 
399  if (isFullSet() || Other.isEmptySet()) return true;
400  if (isEmptySet() || Other.isFullSet()) return false;
401 
402  if (!isUpperWrapped()) {
403  if (Other.isUpperWrapped())
404  return false;
405 
406  return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
407  }
408 
409  if (!Other.isUpperWrapped())
410  return Other.getUpper().ule(Upper) ||
411  Lower.ule(Other.getLower());
412 
413  return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
414 }
415 
417  if (isEmptySet())
418  return 0;
419 
420  return getUnsignedMax().getActiveBits();
421 }
422 
424  if (isEmptySet())
425  return 0;
426 
429 }
430 
432  assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
433  // If the set is empty or full, don't modify the endpoints.
434  if (Lower == Upper)
435  return *this;
436  return ConstantRange(Lower - Val, Upper - Val);
437 }
438 
440  return intersectWith(CR.inverse());
441 }
442 
444  const ConstantRange &CR1, const ConstantRange &CR2,
446  if (Type == ConstantRange::Unsigned) {
447  if (!CR1.isWrappedSet() && CR2.isWrappedSet())
448  return CR1;
449  if (CR1.isWrappedSet() && !CR2.isWrappedSet())
450  return CR2;
451  } else if (Type == ConstantRange::Signed) {
452  if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
453  return CR1;
454  if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
455  return CR2;
456  }
457 
458  if (CR1.isSizeStrictlySmallerThan(CR2))
459  return CR1;
460  return CR2;
461 }
462 
464  PreferredRangeType Type) const {
465  assert(getBitWidth() == CR.getBitWidth() &&
466  "ConstantRange types don't agree!");
467 
468  // Handle common cases.
469  if ( isEmptySet() || CR.isFullSet()) return *this;
470  if (CR.isEmptySet() || isFullSet()) return CR;
471 
472  if (!isUpperWrapped() && CR.isUpperWrapped())
473  return CR.intersectWith(*this, Type);
474 
475  if (!isUpperWrapped() && !CR.isUpperWrapped()) {
476  if (Lower.ult(CR.Lower)) {
477  // L---U : this
478  // L---U : CR
479  if (Upper.ule(CR.Lower))
480  return getEmpty();
481 
482  // L---U : this
483  // L---U : CR
484  if (Upper.ult(CR.Upper))
485  return ConstantRange(CR.Lower, Upper);
486 
487  // L-------U : this
488  // L---U : CR
489  return CR;
490  }
491  // L---U : this
492  // L-------U : CR
493  if (Upper.ult(CR.Upper))
494  return *this;
495 
496  // L-----U : this
497  // L-----U : CR
498  if (Lower.ult(CR.Upper))
499  return ConstantRange(Lower, CR.Upper);
500 
501  // L---U : this
502  // L---U : CR
503  return getEmpty();
504  }
505 
506  if (isUpperWrapped() && !CR.isUpperWrapped()) {
507  if (CR.Lower.ult(Upper)) {
508  // ------U L--- : this
509  // L--U : CR
510  if (CR.Upper.ult(Upper))
511  return CR;
512 
513  // ------U L--- : this
514  // L------U : CR
515  if (CR.Upper.ule(Lower))
516  return ConstantRange(CR.Lower, Upper);
517 
518  // ------U L--- : this
519  // L----------U : CR
520  return getPreferredRange(*this, CR, Type);
521  }
522  if (CR.Lower.ult(Lower)) {
523  // --U L---- : this
524  // L--U : CR
525  if (CR.Upper.ule(Lower))
526  return getEmpty();
527 
528  // --U L---- : this
529  // L------U : CR
530  return ConstantRange(Lower, CR.Upper);
531  }
532 
533  // --U L------ : this
534  // L--U : CR
535  return CR;
536  }
537 
538  if (CR.Upper.ult(Upper)) {
539  // ------U L-- : this
540  // --U L------ : CR
541  if (CR.Lower.ult(Upper))
542  return getPreferredRange(*this, CR, Type);
543 
544  // ----U L-- : this
545  // --U L---- : CR
546  if (CR.Lower.ult(Lower))
547  return ConstantRange(Lower, CR.Upper);
548 
549  // ----U L---- : this
550  // --U L-- : CR
551  return CR;
552  }
553  if (CR.Upper.ule(Lower)) {
554  // --U L-- : this
555  // ----U L---- : CR
556  if (CR.Lower.ult(Lower))
557  return *this;
558 
559  // --U L---- : this
560  // ----U L-- : CR
561  return ConstantRange(CR.Lower, Upper);
562  }
563 
564  // --U L------ : this
565  // ------U L-- : CR
566  return getPreferredRange(*this, CR, Type);
567 }
568 
570  PreferredRangeType Type) const {
571  assert(getBitWidth() == CR.getBitWidth() &&
572  "ConstantRange types don't agree!");
573 
574  if ( isFullSet() || CR.isEmptySet()) return *this;
575  if (CR.isFullSet() || isEmptySet()) return CR;
576 
577  if (!isUpperWrapped() && CR.isUpperWrapped())
578  return CR.unionWith(*this, Type);
579 
580  if (!isUpperWrapped() && !CR.isUpperWrapped()) {
581  // L---U and L---U : this
582  // L---U L---U : CR
583  // result in one of
584  // L---------U
585  // -----U L-----
586  if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
587  return getPreferredRange(
588  ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
589 
590  APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
591  APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
592 
593  if (L.isNullValue() && U.isNullValue())
594  return getFull();
595 
596  return ConstantRange(std::move(L), std::move(U));
597  }
598 
599  if (!CR.isUpperWrapped()) {
600  // ------U L----- and ------U L----- : this
601  // L--U L--U : CR
602  if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
603  return *this;
604 
605  // ------U L----- : this
606  // L---------U : CR
607  if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
608  return getFull();
609 
610  // ----U L---- : this
611  // L---U : CR
612  // results in one of
613  // ----------U L----
614  // ----U L----------
615  if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
616  return getPreferredRange(
617  ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
618 
619  // ----U L----- : this
620  // L----U : CR
621  if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
622  return ConstantRange(CR.Lower, Upper);
623 
624  // ------U L---- : this
625  // L-----U : CR
626  assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
627  "ConstantRange::unionWith missed a case with one range wrapped");
628  return ConstantRange(Lower, CR.Upper);
629  }
630 
631  // ------U L---- and ------U L---- : this
632  // -U L----------- and ------------U L : CR
633  if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
634  return getFull();
635 
636  APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
637  APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
638 
639  return ConstantRange(std::move(L), std::move(U));
640 }
641 
643  uint32_t ResultBitWidth) const {
644  switch (CastOp) {
645  default:
646  llvm_unreachable("unsupported cast type");
647  case Instruction::Trunc:
648  return truncate(ResultBitWidth);
649  case Instruction::SExt:
650  return signExtend(ResultBitWidth);
651  case Instruction::ZExt:
652  return zeroExtend(ResultBitWidth);
653  case Instruction::BitCast:
654  return *this;
655  case Instruction::FPToUI:
656  case Instruction::FPToSI:
657  if (getBitWidth() == ResultBitWidth)
658  return *this;
659  else
660  return getFull(ResultBitWidth);
661  case Instruction::UIToFP: {
662  // TODO: use input range if available
663  auto BW = getBitWidth();
664  APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
665  APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
666  return ConstantRange(std::move(Min), std::move(Max));
667  }
668  case Instruction::SIToFP: {
669  // TODO: use input range if available
670  auto BW = getBitWidth();
671  APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
672  APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
674  }
675  case Instruction::FPTrunc:
676  case Instruction::FPExt:
677  case Instruction::IntToPtr:
678  case Instruction::PtrToInt:
679  case Instruction::AddrSpaceCast:
680  // Conservatively return getFull set.
681  return getFull(ResultBitWidth);
682  };
683 }
684 
686  if (isEmptySet()) return getEmpty(DstTySize);
687 
688  unsigned SrcTySize = getBitWidth();
689  assert(SrcTySize < DstTySize && "Not a value extension");
690  if (isFullSet() || isUpperWrapped()) {
691  // Change into [0, 1 << src bit width)
692  APInt LowerExt(DstTySize, 0);
693  if (!Upper) // special case: [X, 0) -- not really wrapping around
694  LowerExt = Lower.zext(DstTySize);
695  return ConstantRange(std::move(LowerExt),
696  APInt::getOneBitSet(DstTySize, SrcTySize));
697  }
698 
699  return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
700 }
701 
703  if (isEmptySet()) return getEmpty(DstTySize);
704 
705  unsigned SrcTySize = getBitWidth();
706  assert(SrcTySize < DstTySize && "Not a value extension");
707 
708  // special case: [X, INT_MIN) -- not really wrapping around
709  if (Upper.isMinSignedValue())
710  return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
711 
712  if (isFullSet() || isSignWrappedSet()) {
713  return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
714  APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
715  }
716 
717  return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
718 }
719 
721  assert(getBitWidth() > DstTySize && "Not a value truncation");
722  if (isEmptySet())
723  return getEmpty(DstTySize);
724  if (isFullSet())
725  return getFull(DstTySize);
726 
727  APInt LowerDiv(Lower), UpperDiv(Upper);
728  ConstantRange Union(DstTySize, /*isFullSet=*/false);
729 
730  // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
731  // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
732  // then we do the union with [MaxValue, Upper)
733  if (isUpperWrapped()) {
734  // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
735  // truncated range.
736  if (Upper.getActiveBits() > DstTySize ||
737  Upper.countTrailingOnes() == DstTySize)
738  return getFull(DstTySize);
739 
740  Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
741  UpperDiv.setAllBits();
742 
743  // Union covers the MaxValue case, so return if the remaining range is just
744  // MaxValue(DstTy).
745  if (LowerDiv == UpperDiv)
746  return Union;
747  }
748 
749  // Chop off the most significant bits that are past the destination bitwidth.
750  if (LowerDiv.getActiveBits() > DstTySize) {
751  // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
752  APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
753  LowerDiv -= Adjust;
754  UpperDiv -= Adjust;
755  }
756 
757  unsigned UpperDivWidth = UpperDiv.getActiveBits();
758  if (UpperDivWidth <= DstTySize)
759  return ConstantRange(LowerDiv.trunc(DstTySize),
760  UpperDiv.trunc(DstTySize)).unionWith(Union);
761 
762  // The truncated value wraps around. Check if we can do better than fullset.
763  if (UpperDivWidth == DstTySize + 1) {
764  // Clear the MSB so that UpperDiv wraps around.
765  UpperDiv.clearBit(DstTySize);
766  if (UpperDiv.ult(LowerDiv))
767  return ConstantRange(LowerDiv.trunc(DstTySize),
768  UpperDiv.trunc(DstTySize)).unionWith(Union);
769  }
770 
771  return getFull(DstTySize);
772 }
773 
775  unsigned SrcTySize = getBitWidth();
776  if (SrcTySize > DstTySize)
777  return truncate(DstTySize);
778  if (SrcTySize < DstTySize)
779  return zeroExtend(DstTySize);
780  return *this;
781 }
782 
784  unsigned SrcTySize = getBitWidth();
785  if (SrcTySize > DstTySize)
786  return truncate(DstTySize);
787  if (SrcTySize < DstTySize)
788  return signExtend(DstTySize);
789  return *this;
790 }
791 
793  const ConstantRange &Other) const {
794  assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
795 
796  switch (BinOp) {
797  case Instruction::Add:
798  return add(Other);
799  case Instruction::Sub:
800  return sub(Other);
801  case Instruction::Mul:
802  return multiply(Other);
803  case Instruction::UDiv:
804  return udiv(Other);
805  case Instruction::SDiv:
806  return sdiv(Other);
807  case Instruction::URem:
808  return urem(Other);
809  case Instruction::SRem:
810  return srem(Other);
811  case Instruction::Shl:
812  return shl(Other);
813  case Instruction::LShr:
814  return lshr(Other);
815  case Instruction::AShr:
816  return ashr(Other);
817  case Instruction::And:
818  return binaryAnd(Other);
819  case Instruction::Or:
820  return binaryOr(Other);
821  case Instruction::Xor:
822  return binaryXor(Other);
823  // Note: floating point operations applied to abstract ranges are just
824  // ideal integer operations with a lossy representation
825  case Instruction::FAdd:
826  return add(Other);
827  case Instruction::FSub:
828  return sub(Other);
829  case Instruction::FMul:
830  return multiply(Other);
831  default:
832  // Conservatively return getFull set.
833  return getFull();
834  }
835 }
836 
838  const ConstantRange &Other,
839  unsigned NoWrapKind) const {
840  assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
841 
842  switch (BinOp) {
843  case Instruction::Add:
844  return addWithNoWrap(Other, NoWrapKind);
845  case Instruction::Sub:
846  return subWithNoWrap(Other, NoWrapKind);
847  default:
848  // Don't know about this Overflowing Binary Operation.
849  // Conservatively fallback to plain binop handling.
850  return binaryOp(BinOp, Other);
851  }
852 }
853 
855  switch (IntrinsicID) {
856  case Intrinsic::uadd_sat:
857  case Intrinsic::usub_sat:
858  case Intrinsic::sadd_sat:
859  case Intrinsic::ssub_sat:
860  case Intrinsic::umin:
861  case Intrinsic::umax:
862  case Intrinsic::smin:
863  case Intrinsic::smax:
864  case Intrinsic::abs:
865  return true;
866  default:
867  return false;
868  }
869 }
870 
873  switch (IntrinsicID) {
874  case Intrinsic::uadd_sat:
875  return Ops[0].uadd_sat(Ops[1]);
876  case Intrinsic::usub_sat:
877  return Ops[0].usub_sat(Ops[1]);
878  case Intrinsic::sadd_sat:
879  return Ops[0].sadd_sat(Ops[1]);
880  case Intrinsic::ssub_sat:
881  return Ops[0].ssub_sat(Ops[1]);
882  case Intrinsic::umin:
883  return Ops[0].umin(Ops[1]);
884  case Intrinsic::umax:
885  return Ops[0].umax(Ops[1]);
886  case Intrinsic::smin:
887  return Ops[0].smin(Ops[1]);
888  case Intrinsic::smax:
889  return Ops[0].smax(Ops[1]);
890  case Intrinsic::abs: {
891  const APInt *IntMinIsPoison = Ops[1].getSingleElement();
892  assert(IntMinIsPoison && "Must be known (immarg)");
893  assert(IntMinIsPoison->getBitWidth() == 1 && "Must be boolean");
894  return Ops[0].abs(IntMinIsPoison->getBoolValue());
895  }
896  default:
897  assert(!isIntrinsicSupported(IntrinsicID) && "Shouldn't be supported");
898  llvm_unreachable("Unsupported intrinsic");
899  }
900 }
901 
904  if (isEmptySet() || Other.isEmptySet())
905  return getEmpty();
906  if (isFullSet() || Other.isFullSet())
907  return getFull();
908 
909  APInt NewLower = getLower() + Other.getLower();
910  APInt NewUpper = getUpper() + Other.getUpper() - 1;
911  if (NewLower == NewUpper)
912  return getFull();
913 
914  ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
915  if (X.isSizeStrictlySmallerThan(*this) ||
916  X.isSizeStrictlySmallerThan(Other))
917  // We've wrapped, therefore, full set.
918  return getFull();
919  return X;
920 }
921 
923  unsigned NoWrapKind,
924  PreferredRangeType RangeType) const {
925  // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
926  // (X is from this, and Y is from Other)
927  if (isEmptySet() || Other.isEmptySet())
928  return getEmpty();
929  if (isFullSet() && Other.isFullSet())
930  return getFull();
931 
932  using OBO = OverflowingBinaryOperator;
933  ConstantRange Result = add(Other);
934 
935  // If an overflow happens for every value pair in these two constant ranges,
936  // we must return Empty set. In this case, we get that for free, because we
937  // get lucky that intersection of add() with uadd_sat()/sadd_sat() results
938  // in an empty set.
939 
940  if (NoWrapKind & OBO::NoSignedWrap)
941  Result = Result.intersectWith(sadd_sat(Other), RangeType);
942 
943  if (NoWrapKind & OBO::NoUnsignedWrap)
944  Result = Result.intersectWith(uadd_sat(Other), RangeType);
945 
946  return Result;
947 }
948 
951  if (isEmptySet() || Other.isEmptySet())
952  return getEmpty();
953  if (isFullSet() || Other.isFullSet())
954  return getFull();
955 
956  APInt NewLower = getLower() - Other.getUpper() + 1;
957  APInt NewUpper = getUpper() - Other.getLower();
958  if (NewLower == NewUpper)
959  return getFull();
960 
961  ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
962  if (X.isSizeStrictlySmallerThan(*this) ||
963  X.isSizeStrictlySmallerThan(Other))
964  // We've wrapped, therefore, full set.
965  return getFull();
966  return X;
967 }
968 
970  unsigned NoWrapKind,
971  PreferredRangeType RangeType) const {
972  // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow).
973  // (X is from this, and Y is from Other)
974  if (isEmptySet() || Other.isEmptySet())
975  return getEmpty();
976  if (isFullSet() && Other.isFullSet())
977  return getFull();
978 
979  using OBO = OverflowingBinaryOperator;
980  ConstantRange Result = sub(Other);
981 
982  // If an overflow happens for every value pair in these two constant ranges,
983  // we must return Empty set. In signed case, we get that for free, because we
984  // get lucky that intersection of sub() with ssub_sat() results in an
985  // empty set. But for unsigned we must perform the overflow check manually.
986 
987  if (NoWrapKind & OBO::NoSignedWrap)
988  Result = Result.intersectWith(ssub_sat(Other), RangeType);
989 
990  if (NoWrapKind & OBO::NoUnsignedWrap) {
991  if (getUnsignedMax().ult(Other.getUnsignedMin()))
992  return getEmpty(); // Always overflows.
993  Result = Result.intersectWith(usub_sat(Other), RangeType);
994  }
995 
996  return Result;
997 }
998 
1001  // TODO: If either operand is a single element and the multiply is known to
1002  // be non-wrapping, round the result min and max value to the appropriate
1003  // multiple of that element. If wrapping is possible, at least adjust the
1004  // range according to the greatest power-of-two factor of the single element.
1005 
1006  if (isEmptySet() || Other.isEmptySet())
1007  return getEmpty();
1008 
1009  // Multiplication is signedness-independent. However different ranges can be
1010  // obtained depending on how the input ranges are treated. These different
1011  // ranges are all conservatively correct, but one might be better than the
1012  // other. We calculate two ranges; one treating the inputs as unsigned
1013  // and the other signed, then return the smallest of these ranges.
1014 
1015  // Unsigned range first.
1016  APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
1017  APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
1018  APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
1019  APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
1020 
1021  ConstantRange Result_zext = ConstantRange(this_min * Other_min,
1022  this_max * Other_max + 1);
1023  ConstantRange UR = Result_zext.truncate(getBitWidth());
1024 
1025  // If the unsigned range doesn't wrap, and isn't negative then it's a range
1026  // from one positive number to another which is as good as we can generate.
1027  // In this case, skip the extra work of generating signed ranges which aren't
1028  // going to be better than this range.
1029  if (!UR.isUpperWrapped() &&
1030  (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
1031  return UR;
1032 
1033  // Now the signed range. Because we could be dealing with negative numbers
1034  // here, the lower bound is the smallest of the cartesian product of the
1035  // lower and upper ranges; for example:
1036  // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1037  // Similarly for the upper bound, swapping min for max.
1038 
1039  this_min = getSignedMin().sext(getBitWidth() * 2);
1040  this_max = getSignedMax().sext(getBitWidth() * 2);
1041  Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
1042  Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
1043 
1044  auto L = {this_min * Other_min, this_min * Other_max,
1045  this_max * Other_min, this_max * Other_max};
1046  auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1047  ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
1048  ConstantRange SR = Result_sext.truncate(getBitWidth());
1049 
1050  return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
1051 }
1052 
1055  // X smax Y is: range(smax(X_smin, Y_smin),
1056  // smax(X_smax, Y_smax))
1057  if (isEmptySet() || Other.isEmptySet())
1058  return getEmpty();
1059  APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
1060  APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
1061  ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1062  if (isSignWrappedSet() || Other.isSignWrappedSet())
1063  return Res.intersectWith(unionWith(Other, Signed), Signed);
1064  return Res;
1065 }
1066 
1069  // X umax Y is: range(umax(X_umin, Y_umin),
1070  // umax(X_umax, Y_umax))
1071  if (isEmptySet() || Other.isEmptySet())
1072  return getEmpty();
1073  APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1074  APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1075  ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1076  if (isWrappedSet() || Other.isWrappedSet())
1078  return Res;
1079 }
1080 
1083  // X smin Y is: range(smin(X_smin, Y_smin),
1084  // smin(X_smax, Y_smax))
1085  if (isEmptySet() || Other.isEmptySet())
1086  return getEmpty();
1087  APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
1088  APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
1089  ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1090  if (isSignWrappedSet() || Other.isSignWrappedSet())
1091  return Res.intersectWith(unionWith(Other, Signed), Signed);
1092  return Res;
1093 }
1094 
1097  // X umin Y is: range(umin(X_umin, Y_umin),
1098  // umin(X_umax, Y_umax))
1099  if (isEmptySet() || Other.isEmptySet())
1100  return getEmpty();
1101  APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
1102  APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1103  ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1104  if (isWrappedSet() || Other.isWrappedSet())
1106  return Res;
1107 }
1108 
1111  if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
1112  return getEmpty();
1113 
1115 
1116  APInt RHS_umin = RHS.getUnsignedMin();
1117  if (RHS_umin.isNullValue()) {
1118  // We want the lowest value in RHS excluding zero. Usually that would be 1
1119  // except for a range in the form of [X, 1) in which case it would be X.
1120  if (RHS.getUpper() == 1)
1121  RHS_umin = RHS.getLower();
1122  else
1123  RHS_umin = 1;
1124  }
1125 
1126  APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
1128 }
1129 
1131  // We split up the LHS and RHS into positive and negative components
1132  // and then also compute the positive and negative components of the result
1133  // separately by combining division results with the appropriate signs.
1136  ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin);
1137  ConstantRange NegFilter(SignedMin, Zero);
1138  ConstantRange PosL = intersectWith(PosFilter);
1139  ConstantRange NegL = intersectWith(NegFilter);
1140  ConstantRange PosR = RHS.intersectWith(PosFilter);
1141  ConstantRange NegR = RHS.intersectWith(NegFilter);
1142 
1143  ConstantRange PosRes = getEmpty();
1144  if (!PosL.isEmptySet() && !PosR.isEmptySet())
1145  // pos / pos = pos.
1146  PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
1147  (PosL.Upper - 1).sdiv(PosR.Lower) + 1);
1148 
1149  if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
1150  // neg / neg = pos.
1151  //
1152  // We need to deal with one tricky case here: SignedMin / -1 is UB on the
1153  // IR level, so we'll want to exclude this case when calculating bounds.
1154  // (For APInts the operation is well-defined and yields SignedMin.) We
1155  // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
1156  APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
1157  if (NegL.Lower.isMinSignedValue() && NegR.Upper.isNullValue()) {
1158  // Remove -1 from the LHS. Skip if it's the only element, as this would
1159  // leave us with an empty set.
1160  if (!NegR.Lower.isAllOnesValue()) {
1161  APInt AdjNegRUpper;
1162  if (RHS.Lower.isAllOnesValue())
1163  // Negative part of [-1, X] without -1 is [SignedMin, X].
1164  AdjNegRUpper = RHS.Upper;
1165  else
1166  // [X, -1] without -1 is [X, -2].
1167  AdjNegRUpper = NegR.Upper - 1;
1168 
1169  PosRes = PosRes.unionWith(
1170  ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
1171  }
1172 
1173  // Remove SignedMin from the RHS. Skip if it's the only element, as this
1174  // would leave us with an empty set.
1175  if (NegL.Upper != SignedMin + 1) {
1176  APInt AdjNegLLower;
1177  if (Upper == SignedMin + 1)
1178  // Negative part of [X, SignedMin] without SignedMin is [X, -1].
1179  AdjNegLLower = Lower;
1180  else
1181  // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
1182  AdjNegLLower = NegL.Lower + 1;
1183 
1184  PosRes = PosRes.unionWith(
1186  AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
1187  }
1188  } else {
1189  PosRes = PosRes.unionWith(
1190  ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
1191  }
1192  }
1193 
1194  ConstantRange NegRes = getEmpty();
1195  if (!PosL.isEmptySet() && !NegR.isEmptySet())
1196  // pos / neg = neg.
1197  NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
1198  PosL.Lower.sdiv(NegR.Lower) + 1);
1199 
1200  if (!NegL.isEmptySet() && !PosR.isEmptySet())
1201  // neg / pos = neg.
1202  NegRes = NegRes.unionWith(
1203  ConstantRange(NegL.Lower.sdiv(PosR.Lower),
1204  (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));
1205 
1206  // Prefer a non-wrapping signed range here.
1207  ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);
1208 
1209  // Preserve the zero that we dropped when splitting the LHS by sign.
1210  if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
1211  Res = Res.unionWith(ConstantRange(Zero));
1212  return Res;
1213 }
1214 
1216  if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
1217  return getEmpty();
1218 
1219  // L % R for L < R is L.
1220  if (getUnsignedMax().ult(RHS.getUnsignedMin()))
1221  return *this;
1222 
1223  // L % R is <= L and < R.
1224  APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
1226 }
1227 
1229  if (isEmptySet() || RHS.isEmptySet())
1230  return getEmpty();
1231 
1232  ConstantRange AbsRHS = RHS.abs();
1233  APInt MinAbsRHS = AbsRHS.getUnsignedMin();
1234  APInt MaxAbsRHS = AbsRHS.getUnsignedMax();
1235 
1236  // Modulus by zero is UB.
1237  if (MaxAbsRHS.isNullValue())
1238  return getEmpty();
1239 
1240  if (MinAbsRHS.isNullValue())
1241  ++MinAbsRHS;
1242 
1243  APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();
1244 
1245  if (MinLHS.isNonNegative()) {
1246  // L % R for L < R is L.
1247  if (MaxLHS.ult(MinAbsRHS))
1248  return *this;
1249 
1250  // L % R is <= L and < R.
1251  APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1253  }
1254 
1255  // Same basic logic as above, but the result is negative.
1256  if (MaxLHS.isNegative()) {
1257  if (MinLHS.ugt(-MinAbsRHS))
1258  return *this;
1259 
1260  APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1261  return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
1262  }
1263 
1264  // LHS range crosses zero.
1265  APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1266  APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1268 }
1269 
1271  return ConstantRange(APInt::getAllOnesValue(getBitWidth())).sub(*this);
1272 }
1273 
1276  if (isEmptySet() || Other.isEmptySet())
1277  return getEmpty();
1278 
1279  // Use APInt's implementation of AND for single element ranges.
1280  if (isSingleElement() && Other.isSingleElement())
1281  return {*getSingleElement() & *Other.getSingleElement()};
1282 
1283  // TODO: replace this with something less conservative
1284 
1285  APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
1287 }
1288 
1291  if (isEmptySet() || Other.isEmptySet())
1292  return getEmpty();
1293 
1294  // Use APInt's implementation of OR for single element ranges.
1295  if (isSingleElement() && Other.isSingleElement())
1296  return {*getSingleElement() | *Other.getSingleElement()};
1297 
1298  // TODO: replace this with something less conservative
1299 
1300  APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1302 }
1303 
1305  if (isEmptySet() || Other.isEmptySet())
1306  return getEmpty();
1307 
1308  // Use APInt's implementation of XOR for single element ranges.
1309  if (isSingleElement() && Other.isSingleElement())
1310  return {*getSingleElement() ^ *Other.getSingleElement()};
1311 
1312  // Special-case binary complement, since we can give a precise answer.
1313  if (Other.isSingleElement() && Other.getSingleElement()->isAllOnesValue())
1314  return binaryNot();
1315  if (isSingleElement() && getSingleElement()->isAllOnesValue())
1316  return Other.binaryNot();
1317 
1318  // TODO: replace this with something less conservative
1319  return getFull();
1320 }
1321 
1324  if (isEmptySet() || Other.isEmptySet())
1325  return getEmpty();
1326 
1327  APInt max = getUnsignedMax();
1328  APInt Other_umax = Other.getUnsignedMax();
1329 
1330  // If we are shifting by maximum amount of
1331  // zero return return the original range.
1332  if (Other_umax.isNullValue())
1333  return *this;
1334  // there's overflow!
1335  if (Other_umax.ugt(max.countLeadingZeros()))
1336  return getFull();
1337 
1338  // FIXME: implement the other tricky cases
1339 
1340  APInt min = getUnsignedMin();
1341  min <<= Other.getUnsignedMin();
1342  max <<= Other_umax;
1343 
1344  return ConstantRange(std::move(min), std::move(max) + 1);
1345 }
1346 
1349  if (isEmptySet() || Other.isEmptySet())
1350  return getEmpty();
1351 
1352  APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
1353  APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
1354  return getNonEmpty(std::move(min), std::move(max));
1355 }
1356 
1359  if (isEmptySet() || Other.isEmptySet())
1360  return getEmpty();
1361 
1362  // May straddle zero, so handle both positive and negative cases.
1363  // 'PosMax' is the upper bound of the result of the ashr
1364  // operation, when Upper of the LHS of ashr is a non-negative.
1365  // number. Since ashr of a non-negative number will result in a
1366  // smaller number, the Upper value of LHS is shifted right with
1367  // the minimum value of 'Other' instead of the maximum value.
1368  APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
1369 
1370  // 'PosMin' is the lower bound of the result of the ashr
1371  // operation, when Lower of the LHS is a non-negative number.
1372  // Since ashr of a non-negative number will result in a smaller
1373  // number, the Lower value of LHS is shifted right with the
1374  // maximum value of 'Other'.
1375  APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
1376 
1377  // 'NegMax' is the upper bound of the result of the ashr
1378  // operation, when Upper of the LHS of ashr is a negative number.
1379  // Since 'ashr' of a negative number will result in a bigger
1380  // number, the Upper value of LHS is shifted right with the
1381  // maximum value of 'Other'.
1382  APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
1383 
1384  // 'NegMin' is the lower bound of the result of the ashr
1385  // operation, when Lower of the LHS of ashr is a negative number.
1386  // Since 'ashr' of a negative number will result in a bigger
1387  // number, the Lower value of LHS is shifted right with the
1388  // minimum value of 'Other'.
1389  APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
1390 
1391  APInt max, min;
1392  if (getSignedMin().isNonNegative()) {
1393  // Upper and Lower of LHS are non-negative.
1394  min = PosMin;
1395  max = PosMax;
1396  } else if (getSignedMax().isNegative()) {
1397  // Upper and Lower of LHS are negative.
1398  min = NegMin;
1399  max = NegMax;
1400  } else {
1401  // Upper is non-negative and Lower is negative.
1402  min = NegMin;
1403  max = PosMax;
1404  }
1405  return getNonEmpty(std::move(min), std::move(max));
1406 }
1407 
1409  if (isEmptySet() || Other.isEmptySet())
1410  return getEmpty();
1411 
1412  APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
1413  APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
1414  return getNonEmpty(std::move(NewL), std::move(NewU));
1415 }
1416 
1418  if (isEmptySet() || Other.isEmptySet())
1419  return getEmpty();
1420 
1421  APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
1422  APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
1423  return getNonEmpty(std::move(NewL), std::move(NewU));
1424 }
1425 
1427  if (isEmptySet() || Other.isEmptySet())
1428  return getEmpty();
1429 
1430  APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
1431  APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
1432  return getNonEmpty(std::move(NewL), std::move(NewU));
1433 }
1434 
1436  if (isEmptySet() || Other.isEmptySet())
1437  return getEmpty();
1438 
1439  APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
1440  APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
1441  return getNonEmpty(std::move(NewL), std::move(NewU));
1442 }
1443 
1445  if (isEmptySet() || Other.isEmptySet())
1446  return getEmpty();
1447 
1448  APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin());
1449  APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1;
1450  return getNonEmpty(std::move(NewL), std::move(NewU));
1451 }
1452 
1454  if (isEmptySet() || Other.isEmptySet())
1455  return getEmpty();
1456 
1457  // Because we could be dealing with negative numbers here, the lower bound is
1458  // the smallest of the cartesian product of the lower and upper ranges;
1459  // for example:
1460  // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1461  // Similarly for the upper bound, swapping min for max.
1462 
1463  APInt this_min = getSignedMin().sext(getBitWidth() * 2);
1464  APInt this_max = getSignedMax().sext(getBitWidth() * 2);
1465  APInt Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
1466  APInt Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
1467 
1468  auto L = {this_min * Other_min, this_min * Other_max, this_max * Other_min,
1469  this_max * Other_max};
1470  auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1471 
1472  // Note that we wanted to perform signed saturating multiplication,
1473  // so since we performed plain multiplication in twice the bitwidth,
1474  // we need to perform signed saturating truncation.
1475  return getNonEmpty(std::min(L, Compare).truncSSat(getBitWidth()),
1476  std::max(L, Compare).truncSSat(getBitWidth()) + 1);
1477 }
1478 
1480  if (isEmptySet() || Other.isEmptySet())
1481  return getEmpty();
1482 
1483  APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin());
1484  APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1;
1485  return getNonEmpty(std::move(NewL), std::move(NewU));
1486 }
1487 
1489  if (isEmptySet() || Other.isEmptySet())
1490  return getEmpty();
1491 
1492  APInt Min = getSignedMin(), Max = getSignedMax();
1493  APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax();
1494  APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax);
1495  APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1;
1496  return getNonEmpty(std::move(NewL), std::move(NewU));
1497 }
1498 
1500  if (isFullSet())
1501  return getEmpty();
1502  if (isEmptySet())
1503  return getFull();
1504  return ConstantRange(Upper, Lower);
1505 }
1506 
1507 ConstantRange ConstantRange::abs(bool IntMinIsPoison) const {
1508  if (isEmptySet())
1509  return getEmpty();
1510 
1511  if (isSignWrappedSet()) {
1512  APInt Lo;
1513  // Check whether the range crosses zero.
1514  if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
1516  else
1517  Lo = APIntOps::umin(Lower, -Upper + 1);
1518 
1519  // If SignedMin is not poison, then it is included in the result range.
1520  if (IntMinIsPoison)
1522  else
1524  }
1525 
1527 
1528  // Skip SignedMin if it is poison.
1529  if (IntMinIsPoison && SMin.isMinSignedValue()) {
1530  // The range may become empty if it *only* contains SignedMin.
1531  if (SMax.isMinSignedValue())
1532  return getEmpty();
1533  ++SMin;
1534  }
1535 
1536  // All non-negative.
1537  if (SMin.isNonNegative())
1538  return *this;
1539 
1540  // All negative.
1541  if (SMax.isNegative())
1542  return ConstantRange(-SMax, -SMin + 1);
1543 
1544  // Range crosses zero.
1546  APIntOps::umax(-SMin, SMax) + 1);
1547 }
1548 
1550  const ConstantRange &Other) const {
1551  if (isEmptySet() || Other.isEmptySet())
1553 
1554  APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1555  APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1556 
1557  // a u+ b overflows high iff a u> ~b.
1558  if (Min.ugt(~OtherMin))
1560  if (Max.ugt(~OtherMax))
1563 }
1564 
1566  const ConstantRange &Other) const {
1567  if (isEmptySet() || Other.isEmptySet())
1569 
1570  APInt Min = getSignedMin(), Max = getSignedMax();
1571  APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1572 
1575 
1576  // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
1577  // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
1578  if (Min.isNonNegative() && OtherMin.isNonNegative() &&
1579  Min.sgt(SignedMax - OtherMin))
1581  if (Max.isNegative() && OtherMax.isNegative() &&
1582  Max.slt(SignedMin - OtherMax))
1584 
1585  if (Max.isNonNegative() && OtherMax.isNonNegative() &&
1586  Max.sgt(SignedMax - OtherMax))
1588  if (Min.isNegative() && OtherMin.isNegative() &&
1589  Min.slt(SignedMin - OtherMin))
1591 
1593 }
1594 
1596  const ConstantRange &Other) const {
1597  if (isEmptySet() || Other.isEmptySet())
1599 
1600  APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1601  APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1602 
1603  // a u- b overflows low iff a u< b.
1604  if (Max.ult(OtherMin))
1606  if (Min.ult(OtherMax))
1609 }
1610 
1612  const ConstantRange &Other) const {
1613  if (isEmptySet() || Other.isEmptySet())
1615 
1616  APInt Min = getSignedMin(), Max = getSignedMax();
1617  APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1618 
1621 
1622  // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
1623  // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
1624  if (Min.isNonNegative() && OtherMax.isNegative() &&
1625  Min.sgt(SignedMax + OtherMax))
1627  if (Max.isNegative() && OtherMin.isNonNegative() &&
1628  Max.slt(SignedMin + OtherMin))
1630 
1631  if (Max.isNonNegative() && OtherMin.isNegative() &&
1632  Max.sgt(SignedMax + OtherMin))
1634  if (Min.isNegative() && OtherMax.isNonNegative() &&
1635  Min.slt(SignedMin + OtherMax))
1637 
1639 }
1640 
1642  const ConstantRange &Other) const {
1643  if (isEmptySet() || Other.isEmptySet())
1645 
1646  APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1647  APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1648  bool Overflow;
1649 
1650  (void) Min.umul_ov(OtherMin, Overflow);
1651  if (Overflow)
1653 
1654  (void) Max.umul_ov(OtherMax, Overflow);
1655  if (Overflow)
1657 
1659 }
1660 
1662  if (isFullSet())
1663  OS << "full-set";
1664  else if (isEmptySet())
1665  OS << "empty-set";
1666  else
1667  OS << "[" << Lower << "," << Upper << ")";
1668 }
1669 
1670 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1672  print(dbgs());
1673 }
1674 #endif
1675 
1677  const unsigned NumRanges = Ranges.getNumOperands() / 2;
1678  assert(NumRanges >= 1 && "Must have at least one range!");
1679  assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
1680 
1681  auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
1682  auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
1683 
1684  ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
1685 
1686  for (unsigned i = 1; i < NumRanges; ++i) {
1687  auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
1688  auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
1689 
1690  // Note: unionWith will potentially create a range that contains values not
1691  // contained in any of the original N ranges.
1692  CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
1693  }
1694 
1695  return CR;
1696 }
llvm::ConstantRange::isFullSet
bool isFullSet() const
Return true if this set contains all of the elements possible for this data-type.
Definition: ConstantRange.cpp:305
i
i
Definition: README.txt:29
llvm::APInt::isStrictlyPositive
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
Definition: APInt.h:391
llvm::ConstantRange::signExtend
ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
Definition: ConstantRange.cpp:702
llvm::ConstantRange::binaryOr
ConstantRange binaryOr(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a binary-or of a value in this ran...
Definition: ConstantRange.cpp:1290
llvm::APInt::setAllBits
void setAllBits()
Set every bit to 1.
Definition: APInt.h:1429
Signed
@ Signed
Definition: NVPTXISelLowering.cpp:4550
LLVM_DUMP_METHOD
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:498
llvm
This class represents lattice values for constants.
Definition: AllocatorList.h:23
llvm::ConstantRange::OverflowResult::AlwaysOverflowsLow
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
llvm::CmpInst::ICMP_EQ
@ ICMP_EQ
equal
Definition: InstrTypes.h:743
llvm::ConstantRange::ushl_sat
ConstantRange ushl_sat(const ConstantRange &Other) const
Perform an unsigned saturating left shift of this constant range by a value in Other.
Definition: ConstantRange.cpp:1479
llvm::HexPrintStyle::Upper
@ Upper
llvm::ConstantRange::binaryAnd
ConstantRange binaryAnd(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a binary-and of a value in this ra...
Definition: ConstantRange.cpp:1275
Metadata.h
llvm::CmpInst::Predicate
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:722
llvm::ConstantRange::sdiv
ConstantRange sdiv(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a signed division of a value in th...
Definition: ConstantRange.cpp:1130
llvm::ConstantRange::sub
ConstantRange sub(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a subtraction of a value in this r...
Definition: ConstantRange.cpp:950
llvm::ConstantRange::dump
void dump() const
Allow printing from a debugger easily.
Definition: ConstantRange.cpp:1671
llvm::KnownBits::getMinValue
APInt getMinValue() const
Return the minimal unsigned value possible given these KnownBits.
Definition: KnownBits.h:118
llvm::ConstantRange::umul_sat
ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
Definition: ConstantRange.cpp:1444
llvm::APInt::ule
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1243
llvm::ConstantRange::udiv
ConstantRange udiv(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an unsigned division of a value in...
Definition: ConstantRange.cpp:1110
llvm::ConstantRange::ssub_sat
ConstantRange ssub_sat(const ConstantRange &Other) const
Perform a signed saturating subtraction of two constant ranges.
Definition: ConstantRange.cpp:1435
High
uint64_t High
Definition: NVVMIntrRange.cpp:61
llvm::RISCVFenceField::W
@ W
Definition: RISCVBaseInfo.h:130
llvm::KnownBits::isUnknown
bool isUnknown() const
Returns true if we don't know any bits.
Definition: KnownBits.h:63
llvm::APInt::getMinValue
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
Definition: APInt.h:547
llvm::ConstantRange::OverflowResult::AlwaysOverflowsHigh
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
llvm::MipsISD::Lo
@ Lo
Definition: MipsISelLowering.h:79
ErrorHandling.h
llvm::APInt::getMaxValue
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition: APInt.h:535
llvm::ConstantRange::isUpperSignWrapped
bool isUpperSignWrapped() const
Return true if the (exclusive) upper bound wraps around the signed domain.
Definition: ConstantRange.cpp:325
llvm::ConstantRange::isAllNonNegative
bool isAllNonNegative() const
Return true if all values in this range are non-negative.
Definition: ConstantRange.cpp:360
llvm::CmpInst::ICMP_NE
@ ICMP_NE
not equal
Definition: InstrTypes.h:744
llvm::CmpInst::getInversePredicate
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition: InstrTypes.h:823
llvm::ConstantRange::getEquivalentICmp
bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const
Set up Pred and RHS such that ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.
Definition: ConstantRange.cpp:150
APInt.h
llvm::CmpInst::ICMP_SGT
@ ICMP_SGT
signed greater than
Definition: InstrTypes.h:749
llvm::APInt::getSignedMaxValue
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition: APInt.h:540
llvm::Type
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:46
llvm::APInt::getBitWidth
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1581
llvm::ConstantRange::isSignWrappedSet
bool isSignWrappedSet() const
Return true if this set wraps around the signed domain.
Definition: ConstantRange.cpp:321
llvm::ConstantRange::uadd_sat
ConstantRange uadd_sat(const ConstantRange &Other) const
Perform an unsigned saturating addition of two constant ranges.
Definition: ConstantRange.cpp:1408
llvm::APInt::ugt
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition: APInt.h:1275
llvm::ConstantRange::multiply
ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
Definition: ConstantRange.cpp:1000
llvm::ConstantRange::shl
ConstantRange shl(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a left shift of a value in this ra...
Definition: ConstantRange.cpp:1323
Operator.h
llvm::CmpInst::ICMP_SLE
@ ICMP_SLE
signed less or equal
Definition: InstrTypes.h:752
llvm::ConstantRange::sshl_sat
ConstantRange sshl_sat(const ConstantRange &Other) const
Perform a signed saturating left shift of this constant range by a value in Other.
Definition: ConstantRange.cpp:1488
llvm::APInt::lshr
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition: APInt.h:987
llvm::getConstantRangeFromMetadata
ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
Definition: ConstantRange.cpp:1676
llvm::RecurKind::SMin
@ SMin
Signed integer min implemented in terms of select(cmp()).
llvm::JumpTable::Full
@ Full
Definition: TargetOptions.h:50
llvm::APInt::Rounding::UP
@ UP
llvm::ConstantRange::unsignedAddMayOverflow
OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
Definition: ConstantRange.cpp:1549
llvm::ConstantRange::makeAllowedICmpRegion
static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other)
Produce the smallest range such that all values that may satisfy the given predicate with any value c...
Definition: ConstantRange.cpp:78
llvm::ConstantRange::isIntrinsicSupported
static bool isIntrinsicSupported(Intrinsic::ID IntrinsicID)
Returns true if ConstantRange calculations are supported for intrinsic with IntrinsicID.
Definition: ConstantRange.cpp:854
llvm::APIntOps::umin
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
Definition: APInt.h:2183
llvm::ConstantRange::OverflowResult
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
Definition: ConstantRange.h:486
getPreferredRange
static ConstantRange getPreferredRange(const ConstantRange &CR1, const ConstantRange &CR2, ConstantRange::PreferredRangeType Type)
Definition: ConstantRange.cpp:443
KnownBits.h
llvm::ConstantRange::binaryOp
ConstantRange binaryOp(Instruction::BinaryOps BinOp, const ConstantRange &Other) const
Return a new range representing the possible values resulting from an application of the specified bi...
Definition: ConstantRange.cpp:792
llvm::MDNode::getNumOperands
unsigned getNumOperands() const
Return number of MDNode operands.
Definition: Metadata.h:1104
llvm::ConstantRange::signedSubMayOverflow
OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
Definition: ConstantRange.cpp:1611
llvm::dbgs
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:132
llvm::ConstantRange::Signed
@ Signed
Definition: ConstantRange.h:288
Instruction.h
llvm::APInt::umul_ov
APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1997
llvm::APInt::uge
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1313
llvm::KnownBits::isNonNegative
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition: KnownBits.h:99
llvm::APInt::isNonNegative
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition: APInt.h:369
llvm::APInt::isNegative
bool isNegative() const
Determine sign of this APInt.
Definition: APInt.h:364
llvm::ConstantRange::binaryXor
ConstantRange binaryXor(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a binary-xor of a value in this ra...
Definition: ConstantRange.cpp:1304
Constants.h
llvm::ConstantRange::isWrappedSet
bool isWrappedSet() const
Return true if this set wraps around the unsigned domain.
Definition: ConstantRange.cpp:313
llvm::ConstantRange::getUnsignedMin
APInt getUnsignedMin() const
Return the smallest unsigned value contained in the ConstantRange.
Definition: ConstantRange.cpp:371
Intrinsics.h
C
(vector float) vec_cmpeq(*A, *B) C
Definition: README_ALTIVEC.txt:86
llvm::APInt::usub_sat
APInt usub_sat(const APInt &RHS) const
Definition: APInt.cpp:2066
llvm::CmpInst::ICMP_ULE
@ ICMP_ULE
unsigned less or equal
Definition: InstrTypes.h:748
InstrTypes.h
llvm::ConstantRange::PreferredRangeType
PreferredRangeType
If represented precisely, the result of some range operations may consist of multiple disjoint ranges...
Definition: ConstantRange.h:288
llvm::ConstantRange::isSingleElement
bool isSingleElement() const
Return true if this set contains exactly one member.
Definition: ConstantRange.h:230
llvm::ConstantRange::abs
ConstantRange abs(bool IntMinIsPoison=false) const
Calculate absolute value range.
Definition: ConstantRange.cpp:1507
llvm::KnownBits::hasConflict
bool hasConflict() const
Returns true if there is conflicting information.
Definition: KnownBits.h:47
B
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
llvm::ConstantRange::makeGuaranteedNoWrapRegion
static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, const ConstantRange &Other, unsigned NoWrapKind)
Produce the largest range containing all X such that "X BinOp Y" is guaranteed not to wrap (overflow)...
Definition: ConstantRange.cpp:226
llvm::ConstantRange::srem
ConstantRange srem(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a signed remainder operation of a ...
Definition: ConstantRange.cpp:1228
llvm::Instruction::CastOps
CastOps
Definition: Instruction.h:775
llvm::ConstantRange::getUnsignedMax
APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
Definition: ConstantRange.cpp:365
llvm::ConstantRange::lshr
ConstantRange lshr(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a logical right shift of a value i...
Definition: ConstantRange.cpp:1348
llvm::ConstantRange::isUpperWrapped
bool isUpperWrapped() const
Return true if the exclusive upper bound wraps around the unsigned domain.
Definition: ConstantRange.cpp:317
llvm::ConstantRange::unionWith
ConstantRange unionWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the union of this range with another range.
Definition: ConstantRange.cpp:569
llvm::raw_ostream
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:50
llvm::APInt::getHighBitsSet
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Get a value with high bits set.
Definition: APInt.h:655
llvm::ConstantRange::Unsigned
@ Unsigned
Definition: ConstantRange.h:288
llvm::KnownBits::isNegative
bool isNegative() const
Returns true if this value is known to be negative.
Definition: KnownBits.h:96
llvm::ConstantRange::add
ConstantRange add(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an addition of a value in this ran...
Definition: ConstantRange.cpp:903
llvm::ConstantRange::isSizeLargerThan
bool isSizeLargerThan(uint64_t MaxSize) const
Compare set size of this range with Value.
Definition: ConstantRange.cpp:340
llvm::APInt::isAllOnesValue
bool isAllOnesValue() const
Determine if all bits are set.
Definition: APInt.h:401
X
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
llvm::RecurKind::UMin
@ UMin
Unisgned integer min implemented in terms of select(cmp()).
llvm::ConstantRange::intrinsic
static ConstantRange intrinsic(Intrinsic::ID IntrinsicID, ArrayRef< ConstantRange > Ops)
Compute range of intrinsic result for the given operand ranges.
Definition: ConstantRange.cpp:871
llvm::APInt::ashr
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition: APInt.h:963
llvm::ConstantRange::overflowingBinaryOp
ConstantRange overflowingBinaryOp(Instruction::BinaryOps BinOp, const ConstantRange &Other, unsigned NoWrapKind) const
Return a new range representing the possible values resulting from an application of the specified ov...
Definition: ConstantRange.cpp:837
llvm::APInt::getOneBitSet
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition: APInt.h:593
llvm::MDNode::getOperand
const MDOperand & getOperand(unsigned I) const
Definition: Metadata.h:1098
llvm::ConstantRange::castOp
ConstantRange castOp(Instruction::CastOps CastOp, uint32_t BitWidth) const
Return a new range representing the possible values resulting from an application of the specified ca...
Definition: ConstantRange.cpp:642
llvm::APInt::isOneValue
bool isOneValue() const
Determine if this is a value of 1.
Definition: APInt.h:416
llvm::ConstantRange::isAllNegative
bool isAllNegative() const
Return true if all values in this range are negative.
Definition: ConstantRange.cpp:350
llvm::ConstantRange::zeroExtend
ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
Definition: ConstantRange.cpp:685
llvm::APInt::slt
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition: APInt.h:1224
llvm::ConstantRange::inverse
ConstantRange inverse() const
Return a new range that is the logical not of the current set.
Definition: ConstantRange.cpp:1499
llvm::ConstantRange::getBitWidth
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
Definition: ConstantRange.h:173
llvm::APInt::sdiv
APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
Definition: APInt.cpp:1671
llvm::ConstantRange::getSignedMin
APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
Definition: ConstantRange.cpp:383
move
compiles ldr LCPI1_0 ldr ldr mov lsr tst moveq r1 ldr LCPI1_1 and r0 bx lr It would be better to do something like to fold the shift into the conditional move
Definition: README.txt:546
llvm::APInt::sextOrSelf
APInt sextOrSelf(unsigned width) const
Sign extend or truncate to width.
Definition: APInt.cpp:976
llvm::ConstantRange::zextOrTrunc
ConstantRange zextOrTrunc(uint32_t BitWidth) const
Make this range have the bit width given by BitWidth.
Definition: ConstantRange.cpp:774
llvm::KnownBits::getMaxValue
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
Definition: KnownBits.h:134
llvm::ConstantRange::smul_sat
ConstantRange smul_sat(const ConstantRange &Other) const
Perform a signed saturating multiplication of two constant ranges.
Definition: ConstantRange.cpp:1453
llvm::APInt::getBoolValue
bool getBoolValue() const
Convert APInt to a boolean value.
Definition: APInt.h:483
llvm::ConstantRange::addWithNoWrap
ConstantRange addWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind, PreferredRangeType RangeType=Smallest) const
Return a new range representing the possible values resulting from an addition with wrap type NoWrapK...
Definition: ConstantRange.cpp:922
assert
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
llvm::move
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1556
llvm::ConstantRange::truncate
ConstantRange truncate(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly smaller than the current typ...
Definition: ConstantRange.cpp:720
llvm::ConstantRange::sadd_sat
ConstantRange sadd_sat(const ConstantRange &Other) const
Perform a signed saturating addition of two constant ranges.
Definition: ConstantRange.cpp:1417
llvm::CmpInst::ICMP_UGE
@ ICMP_UGE
unsigned greater or equal
Definition: InstrTypes.h:746
llvm::Instruction::isBinaryOp
bool isBinaryOp() const
Definition: Instruction.h:165
llvm::ConstantRange::unsignedMulMayOverflow
OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
Definition: ConstantRange.cpp:1641
llvm::MDNode
Metadata node.
Definition: Metadata.h:893
llvm::ConstantRange::smax
ConstantRange smax(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a signed maximum of a value in thi...
Definition: ConstantRange.cpp:1054
llvm::APInt
Class for arbitrary precision integers.
Definition: APInt.h:70
llvm::ConstantRange::getSingleElement
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
Definition: ConstantRange.h:215
llvm::CmpInst::ICMP_SLT
@ ICMP_SLT
signed less than
Definition: InstrTypes.h:751
Compare
QP Compare Ordered outs ins xscmpudp No builtin are required Or llvm fcmp order unorder compare DP QP Compare builtin are required DP Compare
Definition: README_P9.txt:309
llvm::APIntOps::smin
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
Definition: APInt.h:2173
llvm::RecurKind::UMax
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
llvm::ArrayRef
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: APInt.h:32
llvm::APInt::getAllOnesValue
static APInt getAllOnesValue(unsigned numBits)
Get the all-ones value.
Definition: APInt.h:567
llvm::min
Expected< ExpressionValue > min(const ExpressionValue &Lhs, const ExpressionValue &Rhs)
Definition: FileCheck.cpp:339
llvm::APInt::zextOrSelf
APInt zextOrSelf(unsigned width) const
Zero extend or truncate to width.
Definition: APInt.cpp:970
llvm::APInt::sshl_sat
APInt sshl_sat(const APInt &RHS) const
Definition: APInt.cpp:2097
llvm::CmpInst::ICMP_ULT
@ ICMP_ULT
unsigned less than
Definition: InstrTypes.h:747
llvm_unreachable
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Definition: ErrorHandling.h:136
A
* A
Definition: README_ALTIVEC.txt:89
uint32_t
makeExactMulNSWRegion
static ConstantRange makeExactMulNSWRegion(const APInt &V)
Exact mul nsw region for single element RHS.
Definition: ConstantRange.cpp:198
Compiler.h
llvm::ConstantRange::umax
ConstantRange umax(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an unsigned maximum of a value in ...
Definition: ConstantRange.cpp:1068
llvm::APInt::ushl_sat
APInt ushl_sat(const APInt &RHS) const
Definition: APInt.cpp:2107
ConstantRange.h
llvm::APIntOps::RoundingSDiv
APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM)
Return A sign-divided by B, rounded by the given rounding mode.
Definition: APInt.cpp:2834
llvm::ConstantRange::ConstantRange
ConstantRange(uint32_t BitWidth, bool isFullSet)
Initialize a full or empty set for the specified bit width.
Definition: ConstantRange.cpp:43
llvm::OverflowingBinaryOperator
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
Definition: Operator.h:66
llvm::APInt::umul_sat
APInt umul_sat(const APInt &RHS) const
Definition: APInt.cpp:2088
llvm::APInt::ult
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.h:1205
llvm::APInt::udiv
APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition: APInt.cpp:1600
llvm::APInt::clearBit
void clearBit(unsigned BitPosition)
Set a given bit to 0.
Definition: APInt.h:1525
llvm::APInt::zext
APInt zext(unsigned width) const
Zero extend to a new width.
Definition: APInt.cpp:930
llvm::APInt::getNullValue
static APInt getNullValue(unsigned numBits)
Get the '0' value.
Definition: APInt.h:574
llvm::APInt::Rounding::DOWN
@ DOWN
llvm::ConstantRange::isSizeStrictlySmallerThan
bool isSizeStrictlySmallerThan(const ConstantRange &CR) const
Compare set size of this range with the range CR.
Definition: ConstantRange.cpp:330
llvm::APInt::ssub_sat
APInt ssub_sat(const APInt &RHS) const
Definition: APInt.cpp:2056
llvm::ConstantRange::difference
ConstantRange difference(const ConstantRange &CR) const
Subtract the specified range from this range (aka relative complement of the sets).
Definition: ConstantRange.cpp:439
llvm::APIntOps::umax
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
Definition: APInt.h:2188
llvm::ConstantRange::getSignedMax
APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
Definition: ConstantRange.cpp:377
llvm::ConstantRange::getLower
const APInt & getLower() const
Return the lower value for this range.
Definition: ConstantRange.h:167
llvm::APInt::uadd_sat
APInt uadd_sat(const APInt &RHS) const
Definition: APInt.cpp:2047
std
Definition: BitVector.h:941
llvm::APInt::trunc
APInt trunc(unsigned width) const
Truncate to new width.
Definition: APInt.cpp:858
llvm::KnownBits
Definition: KnownBits.h:23
llvm::APInt::isMinSignedValue
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition: APInt.h:448
llvm::APInt::clearSignBit
void clearSignBit()
Set the sign bit to 0.
Definition: APInt.h:1542
llvm::ConstantRange::smin
ConstantRange smin(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a signed minimum of a value in thi...
Definition: ConstantRange.cpp:1082
llvm::ConstantRange::getMinSignedBits
unsigned getMinSignedBits() const
Compute the maximal number of bits needed to represent every value in this signed range.
Definition: ConstantRange.cpp:423
Success
#define Success
Definition: AArch64Disassembler.cpp:248
llvm::ConstantRange::subWithNoWrap
ConstantRange subWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind, PreferredRangeType RangeType=Smallest) const
Return a new range representing the possible values resulting from an subtraction with wrap type NoWr...
Definition: ConstantRange.cpp:969
llvm::BitWidth
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:147
llvm::ConstantRange::getActiveBits
unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
Definition: ConstantRange.cpp:416
llvm::ConstantRange::contains
bool contains(const APInt &Val) const
Return true if the specified value is in the set.
Definition: ConstantRange.cpp:389
llvm::CmpInst::ICMP_SGE
@ ICMP_SGE
signed greater or equal
Definition: InstrTypes.h:750
llvm::MCID::Add
@ Add
Definition: MCInstrDesc.h:184
llvm::ConstantRange::getSingleMissingElement
const APInt * getSingleMissingElement() const
If this set contains all but a single element, return it, otherwise return null.
Definition: ConstantRange.h:223
llvm::APInt::getSignedMinValue
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition: APInt.h:550
llvm::ConstantRange
This class represents a range of values.
Definition: ConstantRange.h:47
llvm::APInt::sext
APInt sext(unsigned width) const
Sign extend to a new width.
Definition: APInt.cpp:906
llvm::APInt::isNullValue
bool isNullValue() const
Determine if all bits are clear.
Definition: APInt.h:411
llvm::ConstantRange::urem
ConstantRange urem(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an unsigned remainder operation of...
Definition: ConstantRange.cpp:1215
llvm::ConstantRange::getNonEmpty
static ConstantRange getNonEmpty(APInt Lower, APInt Upper)
Create non-empty constant range with the given bounds.
Definition: ConstantRange.h:84
llvm::Instruction::BinaryOps
BinaryOps
Definition: Instruction.h:761
llvm::ConstantRange::binaryNot
ConstantRange binaryNot() const
Return a new range representing the possible values resulting from a binary-xor of a value in this ra...
Definition: ConstantRange.cpp:1270
llvm::HexagonMCInstrInfo::getMaxValue
int getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI)
Return the maximum value of an extendable operand.
Definition: HexagonMCInstrInfo.cpp:346
llvm::ConstantRange::ashr
ConstantRange ashr(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a arithmetic right shift of a valu...
Definition: ConstantRange.cpp:1358
llvm::ConstantRange::intersectWith
ConstantRange intersectWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the intersection of this range with another range.
Definition: ConstantRange.cpp:463
llvm::ConstantRange::fromKnownBits
static ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
Definition: ConstantRange.cpp:58
llvm::CmpInst::ICMP_UGT
@ ICMP_UGT
unsigned greater than
Definition: InstrTypes.h:745
llvm::ConstantRange::signedAddMayOverflow
OverflowResult signedAddMayOverflow(const ConstantRange &Other) const
Return whether signed add of the two ranges always/never overflows.
Definition: ConstantRange.cpp:1565
llvm::APInt::countTrailingOnes
unsigned countTrailingOnes() const
Count the number of trailing one bits.
Definition: APInt.h:1714
llvm::max
Align max(MaybeAlign Lhs, Align Rhs)
Definition: Alignment.h:350
llvm::APInt::getActiveBits
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition: APInt.h:1605
llvm::ConstantRange::print
void print(raw_ostream &OS) const
Print out the bounds to a stream.
Definition: ConstantRange.cpp:1661
llvm::ConstantRange::usub_sat
ConstantRange usub_sat(const ConstantRange &Other) const
Perform an unsigned saturating subtraction of two constant ranges.
Definition: ConstantRange.cpp:1426
makeExactMulNUWRegion
static ConstantRange makeExactMulNUWRegion(const APInt &V)
Exact mul nuw region for single element RHS.
Definition: ConstantRange.cpp:185
llvm::ConstantRange::OverflowResult::NeverOverflows
@ NeverOverflows
Never overflows.
llvm::ConstantRange::makeExactICmpRegion
static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
Definition: ConstantRange.cpp:138
llvm::HexagonMCInstrInfo::getMinValue
int getMinValue(MCInstrInfo const &MCII, MCInst const &MCI)
Return the minimum value of an extendable operand.
Definition: HexagonMCInstrInfo.cpp:357
llvm::ConstantRange::unsignedSubMayOverflow
OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
Definition: ConstantRange.cpp:1595
llvm::APInt::sgt
bool sgt(const APInt &RHS) const
Signed greater than comparison.
Definition: APInt.h:1294
llvm::APInt::sadd_sat
APInt sadd_sat(const APInt &RHS) const
Definition: APInt.cpp:2037
llvm::APIntOps::RoundingUDiv
APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM)
Return A unsign-divided by B, rounded by the given rounding mode.
Definition: APInt.cpp:2816
llvm::APInt::getLowBitsSet
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Get a value with low bits set.
Definition: APInt.h:667
llvm::ConstantRange::subtract
ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
Definition: ConstantRange.cpp:431
llvm::ConstantRange::makeSatisfyingICmpRegion
static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other)
Produce the largest range such that all values in the returned range satisfy the given predicate with...
Definition: ConstantRange.cpp:128
llvm::KnownBits::getBitWidth
unsigned getBitWidth() const
Get the bit width of this value.
Definition: KnownBits.h:40
llvm::APInt::getBitsSetFrom
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Get a value with upper bits starting at loBit set.
Definition: APInt.h:643
llvm::ConstantRange::isEmptySet
bool isEmptySet() const
Return true if this set contains no members.
Definition: ConstantRange.cpp:309
llvm::ConstantRange::sextOrTrunc
ConstantRange sextOrTrunc(uint32_t BitWidth) const
Make this range have the bit width given by BitWidth.
Definition: ConstantRange.cpp:783
raw_ostream.h
llvm::LegalizeActions::Lower
@ Lower
The operation itself must be expressed in terms of simpler actions on this target.
Definition: LegalizerInfo.h:76
llvm::abs
APFloat abs(APFloat X)
Returns the absolute value of the argument.
Definition: APFloat.h:1272
llvm::ConstantRange::getUpper
const APInt & getUpper() const
Return the upper value for this range.
Definition: ConstantRange.h:170
llvm::RecurKind::SMax
@ SMax
Signed integer max implemented in terms of select(cmp()).
isNonNegative
static bool isNonNegative(Value *V, LazyValueInfo *LVI, Instruction *CxtI)
Definition: CorrelatedValuePropagation.cpp:561
Debug.h
llvm::APIntOps::smax
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
Definition: APInt.h:2178
llvm::ConstantRange::umin
ConstantRange umin(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an unsigned minimum of a value in ...
Definition: ConstantRange.cpp:1096
llvm::ConstantRange::OverflowResult::MayOverflow
@ MayOverflow
May or may not overflow.
Other
Optional< std::vector< StOtherPiece > > Other
Definition: ELFYAML.cpp:1131
llvm::Intrinsic::ID
unsigned ID
Definition: TargetTransformInfo.h:37
llvm::ConstantRange::makeExactNoWrapRegion
static ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp, const APInt &Other, unsigned NoWrapKind)
Produce the range that contains X if and only if "X BinOp Other" does not wrap.
Definition: ConstantRange.cpp:297