LLVM 22.0.0git
SelectionDAG.h
Go to the documentation of this file.
1//===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the SelectionDAG class, and transitively defines the
10// SDNode class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_SELECTIONDAG_H
15#define LLVM_CODEGEN_SELECTIONDAG_H
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/DenseSet.h"
20#include "llvm/ADT/FoldingSet.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/ADT/ilist.h"
24#include "llvm/ADT/iterator.h"
35#include "llvm/IR/DebugLoc.h"
36#include "llvm/IR/Metadata.h"
44#include <cassert>
45#include <cstdint>
46#include <functional>
47#include <map>
48#include <set>
49#include <string>
50#include <tuple>
51#include <utility>
52#include <vector>
53
54namespace llvm {
55
56class DIExpression;
57class DILabel;
58class DIVariable;
59class Function;
60class Pass;
61class Type;
62template <class GraphType> struct GraphTraits;
63template <typename T, unsigned int N> class SmallSetVector;
64template <typename T, typename Enable> struct FoldingSetTrait;
65class BatchAAResults;
66class BlockAddress;
68class Constant;
69class ConstantFP;
70class ConstantInt;
71class DataLayout;
72struct fltSemantics;
74class FunctionVarLocs;
75class GlobalValue;
76struct KnownBits;
77class LLVMContext;
81class MCSymbol;
84class SDDbgValue;
85class SDDbgOperand;
86class SDDbgLabel;
87class SelectionDAG;
90class TargetLowering;
91class TargetMachine;
93class Value;
94
95template <typename T> class GenericSSAContext;
97template <typename T> class GenericUniformityInfo;
99
101 friend struct FoldingSetTrait<SDVTListNode>;
102
103 /// A reference to an Interned FoldingSetNodeID for this node.
104 /// The Allocator in SelectionDAG holds the data.
105 /// SDVTList contains all types which are frequently accessed in SelectionDAG.
106 /// The size of this list is not expected to be big so it won't introduce
107 /// a memory penalty.
108 FoldingSetNodeIDRef FastID;
109 const EVT *VTs;
110 unsigned int NumVTs;
111 /// The hash value for SDVTList is fixed, so cache it to avoid
112 /// hash calculation.
113 unsigned HashValue;
114
115public:
116 SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
117 FastID(ID), VTs(VT), NumVTs(Num) {
118 HashValue = ID.ComputeHash();
119 }
120
122 SDVTList result = {VTs, NumVTs};
123 return result;
124 }
125};
126
127/// Specialize FoldingSetTrait for SDVTListNode
128/// to avoid computing temp FoldingSetNodeID and hash value.
129template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
130 static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
131 ID = X.FastID;
132 }
133
134 static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
135 unsigned IDHash, FoldingSetNodeID &TempID) {
136 if (X.HashValue != IDHash)
137 return false;
138 return ID == X.FastID;
139 }
140
141 static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
142 return X.HashValue;
143 }
144};
145
146template <> struct ilist_alloc_traits<SDNode> {
147 static void deleteNode(SDNode *) {
148 llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
149 }
150};
151
152/// Keeps track of dbg_value information through SDISel. We do
153/// not build SDNodes for these so as not to perturb the generated code;
154/// instead the info is kept off to the side in this structure. Each SDNode may
155/// have one or more associated dbg_value entries. This information is kept in
156/// DbgValMap.
157/// Byval parameters are handled separately because they don't use alloca's,
158/// which busts the normal mechanism. There is good reason for handling all
159/// parameters separately: they may not have code generated for them, they
160/// should always go at the beginning of the function regardless of other code
161/// motion, and debug info for them is potentially useful even if the parameter
162/// is unused. Right now only byval parameters are handled separately.
164 BumpPtrAllocator Alloc;
166 SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
169 DbgValMapType DbgValMap;
170
171public:
172 SDDbgInfo() = default;
173 SDDbgInfo(const SDDbgInfo &) = delete;
174 SDDbgInfo &operator=(const SDDbgInfo &) = delete;
175
176 LLVM_ABI void add(SDDbgValue *V, bool isParameter);
177
178 void add(SDDbgLabel *L) { DbgLabels.push_back(L); }
179
180 /// Invalidate all DbgValues attached to the node and remove
181 /// it from the Node-to-DbgValues map.
182 LLVM_ABI void erase(const SDNode *Node);
183
184 void clear() {
185 DbgValMap.clear();
186 DbgValues.clear();
187 ByvalParmDbgValues.clear();
188 DbgLabels.clear();
189 Alloc.Reset();
190 }
191
192 BumpPtrAllocator &getAlloc() { return Alloc; }
193
194 bool empty() const {
195 return DbgValues.empty() && ByvalParmDbgValues.empty() && DbgLabels.empty();
196 }
197
199 auto I = DbgValMap.find(Node);
200 if (I != DbgValMap.end())
201 return I->second;
202 return ArrayRef<SDDbgValue*>();
203 }
204
207
208 DbgIterator DbgBegin() { return DbgValues.begin(); }
209 DbgIterator DbgEnd() { return DbgValues.end(); }
210 DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
211 DbgIterator ByvalParmDbgEnd() { return ByvalParmDbgValues.end(); }
212 DbgLabelIterator DbgLabelBegin() { return DbgLabels.begin(); }
213 DbgLabelIterator DbgLabelEnd() { return DbgLabels.end(); }
214};
215
216LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force = false);
217
218/// This is used to represent a portion of an LLVM function in a low-level
219/// Data Dependence DAG representation suitable for instruction selection.
220/// This DAG is constructed as the first step of instruction selection in order
221/// to allow implementation of machine specific optimizations
222/// and code simplifications.
223///
224/// The representation used by the SelectionDAG is a target-independent
225/// representation, which has some similarities to the GCC RTL representation,
226/// but is significantly more simple, powerful, and is a graph form instead of a
227/// linear form.
228///
230 const TargetMachine &TM;
231 const SelectionDAGTargetInfo *TSI = nullptr;
232 const TargetLowering *TLI = nullptr;
233 const TargetLibraryInfo *LibInfo = nullptr;
234 const FunctionVarLocs *FnVarLocs = nullptr;
235 MachineFunction *MF;
236 MachineFunctionAnalysisManager *MFAM = nullptr;
237 Pass *SDAGISelPass = nullptr;
238 LLVMContext *Context;
239 CodeGenOptLevel OptLevel;
240
241 UniformityInfo *UA = nullptr;
242 FunctionLoweringInfo * FLI = nullptr;
243
244 /// The function-level optimization remark emitter. Used to emit remarks
245 /// whenever manipulating the DAG.
247
248 ProfileSummaryInfo *PSI = nullptr;
249 BlockFrequencyInfo *BFI = nullptr;
250 MachineModuleInfo *MMI = nullptr;
251
252 /// Extended EVTs used for single value VTLists.
253 std::set<EVT, EVT::compareRawBits> EVTs;
254
255 /// List of non-single value types.
256 FoldingSet<SDVTListNode> VTListMap;
257
258 /// Pool allocation for misc. objects that are created once per SelectionDAG.
259 BumpPtrAllocator Allocator;
260
261 /// The starting token.
262 SDNode EntryNode;
263
264 /// The root of the entire DAG.
265 SDValue Root;
266
267 /// A linked list of nodes in the current DAG.
268 ilist<SDNode> AllNodes;
269
270 /// The AllocatorType for allocating SDNodes. We use
271 /// pool allocation with recycling.
272 using NodeAllocatorType = RecyclingAllocator<BumpPtrAllocator, SDNode,
273 sizeof(LargestSDNode),
274 alignof(MostAlignedSDNode)>;
275
276 /// Pool allocation for nodes.
277 NodeAllocatorType NodeAllocator;
278
279 /// This structure is used to memoize nodes, automatically performing
280 /// CSE with existing nodes when a duplicate is requested.
281 FoldingSet<SDNode> CSEMap;
282
283 /// Pool allocation for machine-opcode SDNode operands.
284 BumpPtrAllocator OperandAllocator;
285 ArrayRecycler<SDUse> OperandRecycler;
286
287 /// Tracks dbg_value and dbg_label information through SDISel.
288 SDDbgInfo *DbgInfo;
289
290 using CallSiteInfo = MachineFunction::CallSiteInfo;
291 using CalledGlobalInfo = MachineFunction::CalledGlobalInfo;
292
293 struct NodeExtraInfo {
294 CallSiteInfo CSInfo;
295 MDNode *HeapAllocSite = nullptr;
296 MDNode *PCSections = nullptr;
297 MDNode *MMRA = nullptr;
298 CalledGlobalInfo CalledGlobal{};
299 bool NoMerge = false;
300 };
301 /// Out-of-line extra information for SDNodes.
303
304 /// PersistentId counter to be used when inserting the next
305 /// SDNode to this SelectionDAG. We do not place that under
306 /// `#if LLVM_ENABLE_ABI_BREAKING_CHECKS` intentionally because
307 /// it adds unneeded complexity without noticeable
308 /// benefits (see discussion with @thakis in D120714).
309 uint16_t NextPersistentId = 0;
310
311public:
312 /// Clients of various APIs that cause global effects on
313 /// the DAG can optionally implement this interface. This allows the clients
314 /// to handle the various sorts of updates that happen.
315 ///
316 /// A DAGUpdateListener automatically registers itself with DAG when it is
317 /// constructed, and removes itself when destroyed in RAII fashion.
321
323 : Next(D.UpdateListeners), DAG(D) {
324 DAG.UpdateListeners = this;
325 }
326
328 assert(DAG.UpdateListeners == this &&
329 "DAGUpdateListeners must be destroyed in LIFO order");
330 DAG.UpdateListeners = Next;
331 }
332
333 /// The node N that was deleted and, if E is not null, an
334 /// equivalent node E that replaced it.
335 virtual void NodeDeleted(SDNode *N, SDNode *E);
336
337 /// The node N that was updated.
338 virtual void NodeUpdated(SDNode *N);
339
340 /// The node N that was inserted.
341 virtual void NodeInserted(SDNode *N);
342 };
343
345 std::function<void(SDNode *, SDNode *)> Callback;
346
350
351 void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
352
353 private:
354 virtual void anchor();
355 };
356
358 std::function<void(SDNode *)> Callback;
359
363
364 void NodeInserted(SDNode *N) override { Callback(N); }
365
366 private:
367 virtual void anchor();
368 };
369
370 /// Help to insert SDNodeFlags automatically in transforming. Use
371 /// RAII to save and resume flags in current scope.
373 SelectionDAG &DAG;
374 SDNodeFlags Flags;
375 FlagInserter *LastInserter;
376
377 public:
379 : DAG(SDAG), Flags(Flags),
380 LastInserter(SDAG.getFlagInserter()) {
381 SDAG.setFlagInserter(this);
382 }
385
386 FlagInserter(const FlagInserter &) = delete;
388 ~FlagInserter() { DAG.setFlagInserter(LastInserter); }
389
390 SDNodeFlags getFlags() const { return Flags; }
391 };
392
393 /// When true, additional steps are taken to
394 /// ensure that getConstant() and similar functions return DAG nodes that
395 /// have legal types. This is important after type legalization since
396 /// any illegally typed nodes generated after this point will not experience
397 /// type legalization.
399
400private:
401 /// DAGUpdateListener is a friend so it can manipulate the listener stack.
402 friend struct DAGUpdateListener;
403
404 /// Linked list of registered DAGUpdateListener instances.
405 /// This stack is maintained by DAGUpdateListener RAII.
406 DAGUpdateListener *UpdateListeners = nullptr;
407
408 /// Implementation of setSubgraphColor.
409 /// Return whether we had to truncate the search.
410 bool setSubgraphColorHelper(SDNode *N, const char *Color,
411 DenseSet<SDNode *> &visited,
412 int level, bool &printed);
413
414 template <typename SDNodeT, typename... ArgTypes>
415 SDNodeT *newSDNode(ArgTypes &&... Args) {
416 return new (NodeAllocator.template Allocate<SDNodeT>())
417 SDNodeT(std::forward<ArgTypes>(Args)...);
418 }
419
420 /// Build a synthetic SDNodeT with the given args and extract its subclass
421 /// data as an integer (e.g. for use in a folding set).
422 ///
423 /// The args to this function are the same as the args to SDNodeT's
424 /// constructor, except the second arg (assumed to be a const DebugLoc&) is
425 /// omitted.
426 template <typename SDNodeT, typename... ArgTypes>
427 static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
428 ArgTypes &&... Args) {
429 // The compiler can reduce this expression to a constant iff we pass an
430 // empty DebugLoc. Thankfully, the debug location doesn't have any bearing
431 // on the subclass data.
432 return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
433 .getRawSubclassData();
434 }
435
436 template <typename SDNodeTy>
437 static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order,
438 SDVTList VTs, EVT MemoryVT,
439 MachineMemOperand *MMO) {
440 return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO)
441 .getRawSubclassData();
442 }
443
444 void createOperands(SDNode *Node, ArrayRef<SDValue> Vals);
445
446 void removeOperands(SDNode *Node) {
447 if (!Node->OperandList)
448 return;
449 OperandRecycler.deallocate(
451 Node->OperandList);
452 Node->NumOperands = 0;
453 Node->OperandList = nullptr;
454 }
455 void CreateTopologicalOrder(std::vector<SDNode*>& Order);
456
457public:
458 // Maximum depth for recursive analysis such as computeKnownBits, etc.
459 static constexpr unsigned MaxRecursionDepth = 6;
460
461 // Returns the maximum steps for SDNode->hasPredecessor() like searches.
462 LLVM_ABI static unsigned getHasPredecessorMaxSteps();
463
465 SelectionDAG(const SelectionDAG &) = delete;
468
469 /// Prepare this SelectionDAG to process code in the given MachineFunction.
471 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
474 FunctionVarLocs const *FnVarLocs);
475
478 const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA,
480 MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs) {
481 init(NewMF, NewORE, nullptr, LibraryInfo, UA, PSIin, BFIin, MMI, FnVarLocs);
482 MFAM = &AM;
483 }
484
486 FLI = FuncInfo;
487 }
488
489 /// Clear state and free memory necessary to make this
490 /// SelectionDAG ready to process a new block.
491 LLVM_ABI void clear();
492
493 MachineFunction &getMachineFunction() const { return *MF; }
494 const Pass *getPass() const { return SDAGISelPass; }
496
497 CodeGenOptLevel getOptLevel() const { return OptLevel; }
498 const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
499 const TargetMachine &getTarget() const { return TM; }
500 const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
501 template <typename STC> const STC &getSubtarget() const {
502 return MF->getSubtarget<STC>();
503 }
504 const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
505 const TargetLibraryInfo &getLibInfo() const { return *LibInfo; }
506 const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
507 const UniformityInfo *getUniformityInfo() const { return UA; }
508 /// Returns the result of the AssignmentTrackingAnalysis pass if it's
509 /// available, otherwise return nullptr.
510 const FunctionVarLocs *getFunctionVarLocs() const { return FnVarLocs; }
511 LLVMContext *getContext() const { return Context; }
512 OptimizationRemarkEmitter &getORE() const { return *ORE; }
513 ProfileSummaryInfo *getPSI() const { return PSI; }
514 BlockFrequencyInfo *getBFI() const { return BFI; }
515 MachineModuleInfo *getMMI() const { return MMI; }
516
517 FlagInserter *getFlagInserter() { return Inserter; }
518 void setFlagInserter(FlagInserter *FI) { Inserter = FI; }
519
520 /// Just dump dot graph to a user-provided path and title.
521 /// This doesn't open the dot viewer program and
522 /// helps visualization when outside debugging session.
523 /// FileName expects absolute path. If provided
524 /// without any path separators then the file
525 /// will be created in the current directory.
526 /// Error will be emitted if the path is insane.
527#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
528 LLVM_DUMP_METHOD void dumpDotGraph(const Twine &FileName, const Twine &Title);
529#endif
530
531 /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
532 LLVM_ABI void viewGraph(const std::string &Title);
533 LLVM_ABI void viewGraph();
534
535#if LLVM_ENABLE_ABI_BREAKING_CHECKS
536 std::map<const SDNode *, std::string> NodeGraphAttrs;
537#endif
538
539 /// Clear all previously defined node graph attributes.
540 /// Intended to be used from a debugging tool (eg. gdb).
542
543 /// Set graph attributes for a node. (eg. "color=red".)
544 LLVM_ABI void setGraphAttrs(const SDNode *N, const char *Attrs);
545
546 /// Get graph attributes for a node. (eg. "color=red".)
547 /// Used from getNodeAttributes.
548 LLVM_ABI std::string getGraphAttrs(const SDNode *N) const;
549
550 /// Convenience for setting node color attribute.
551 LLVM_ABI void setGraphColor(const SDNode *N, const char *Color);
552
553 /// Convenience for setting subgraph color attribute.
554 LLVM_ABI void setSubgraphColor(SDNode *N, const char *Color);
555
557
558 allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
559 allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
560
562
563 allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
564 allnodes_iterator allnodes_end() { return AllNodes.end(); }
565
567 return AllNodes.size();
568 }
569
576
577 /// Return the root tag of the SelectionDAG.
578 const SDValue &getRoot() const { return Root; }
579
580 /// Return the token chain corresponding to the entry of the function.
582 return SDValue(const_cast<SDNode *>(&EntryNode), 0);
583 }
584
585 /// Set the current root tag of the SelectionDAG.
586 ///
588 assert((!N.getNode() || N.getValueType() == MVT::Other) &&
589 "DAG root value is not a chain!");
590 if (N.getNode())
591 checkForCycles(N.getNode(), this);
592 Root = N;
593 if (N.getNode())
594 checkForCycles(this);
595 return Root;
596 }
597
598#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
599 void VerifyDAGDivergence();
600#endif
601
602 /// This iterates over the nodes in the SelectionDAG, folding
603 /// certain types of nodes together, or eliminating superfluous nodes. The
604 /// Level argument controls whether Combine is allowed to produce nodes and
605 /// types that are illegal on the target.
606 LLVM_ABI void Combine(CombineLevel Level, BatchAAResults *BatchAA,
607 CodeGenOptLevel OptLevel);
608
609 /// This transforms the SelectionDAG into a SelectionDAG that
610 /// only uses types natively supported by the target.
611 /// Returns "true" if it made any changes.
612 ///
613 /// Note that this is an involved process that may invalidate pointers into
614 /// the graph.
615 LLVM_ABI bool LegalizeTypes();
616
617 /// This transforms the SelectionDAG into a SelectionDAG that is
618 /// compatible with the target instruction selector, as indicated by the
619 /// TargetLowering object.
620 ///
621 /// Note that this is an involved process that may invalidate pointers into
622 /// the graph.
623 LLVM_ABI void Legalize();
624
625 /// Transforms a SelectionDAG node and any operands to it into a node
626 /// that is compatible with the target instruction selector, as indicated by
627 /// the TargetLowering object.
628 ///
629 /// \returns true if \c N is a valid, legal node after calling this.
630 ///
631 /// This essentially runs a single recursive walk of the \c Legalize process
632 /// over the given node (and its operands). This can be used to incrementally
633 /// legalize the DAG. All of the nodes which are directly replaced,
634 /// potentially including N, are added to the output parameter \c
635 /// UpdatedNodes so that the delta to the DAG can be understood by the
636 /// caller.
637 ///
638 /// When this returns false, N has been legalized in a way that make the
639 /// pointer passed in no longer valid. It may have even been deleted from the
640 /// DAG, and so it shouldn't be used further. When this returns true, the
641 /// N passed in is a legal node, and can be immediately processed as such.
642 /// This may still have done some work on the DAG, and will still populate
643 /// UpdatedNodes with any new nodes replacing those originally in the DAG.
645 SmallSetVector<SDNode *, 16> &UpdatedNodes);
646
647 /// This transforms the SelectionDAG into a SelectionDAG
648 /// that only uses vector math operations supported by the target. This is
649 /// necessary as a separate step from Legalize because unrolling a vector
650 /// operation can introduce illegal types, which requires running
651 /// LegalizeTypes again.
652 ///
653 /// This returns true if it made any changes; in that case, LegalizeTypes
654 /// is called again before Legalize.
655 ///
656 /// Note that this is an involved process that may invalidate pointers into
657 /// the graph.
659
660 /// This method deletes all unreachable nodes in the SelectionDAG.
662
663 /// Remove the specified node from the system. This node must
664 /// have no referrers.
666
667 /// Return an SDVTList that represents the list of values specified.
670 LLVM_ABI SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
671 LLVM_ABI SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
673
674 //===--------------------------------------------------------------------===//
675 // Node creation methods.
676
677 /// Create a ConstantSDNode wrapping a constant value.
678 /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
679 ///
680 /// If only legal types can be produced, this does the necessary
681 /// transformations (e.g., if the vector element type is illegal).
682 /// @{
684 bool isTarget = false, bool isOpaque = false);
685 LLVM_ABI SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
686 bool isTarget = false, bool isOpaque = false);
687
688 LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT,
689 bool isTarget = false,
690 bool isOpaque = false);
691
693 bool IsTarget = false,
694 bool IsOpaque = false);
695
696 LLVM_ABI SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
697 bool isTarget = false, bool isOpaque = false);
699 bool isTarget = false);
701 const SDLoc &DL);
703 const SDLoc &DL);
705 bool isTarget = false);
706
708 bool isOpaque = false) {
709 return getConstant(Val, DL, VT, true, isOpaque);
710 }
711 SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
712 bool isOpaque = false) {
713 return getConstant(Val, DL, VT, true, isOpaque);
714 }
716 bool isOpaque = false) {
717 return getConstant(Val, DL, VT, true, isOpaque);
718 }
719 SDValue getSignedTargetConstant(int64_t Val, const SDLoc &DL, EVT VT,
720 bool isOpaque = false) {
721 return getSignedConstant(Val, DL, VT, true, isOpaque);
722 }
723
724 /// Create a true or false constant of type \p VT using the target's
725 /// BooleanContent for type \p OpVT.
726 LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT);
727 /// @}
728
729 /// Create a ConstantFPSDNode wrapping a constant value.
730 /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
731 ///
732 /// If only legal types can be produced, this does the necessary
733 /// transformations (e.g., if the vector element type is illegal).
734 /// The forms that take a double should only be used for simple constants
735 /// that can be exactly represented in VT. No checks are made.
736 /// @{
737 LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
738 bool isTarget = false);
739 LLVM_ABI SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
740 bool isTarget = false);
741 LLVM_ABI SDValue getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT,
742 bool isTarget = false);
743 SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
744 return getConstantFP(Val, DL, VT, true);
745 }
746 SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
747 return getConstantFP(Val, DL, VT, true);
748 }
750 return getConstantFP(Val, DL, VT, true);
751 }
752 /// @}
753
755 EVT VT, int64_t offset = 0,
756 bool isTargetGA = false,
757 unsigned TargetFlags = 0);
759 int64_t offset = 0, unsigned TargetFlags = 0) {
760 return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
761 }
763 LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
765 return getFrameIndex(FI, VT, true);
766 }
767 LLVM_ABI SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
768 unsigned TargetFlags = 0);
769 SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags = 0) {
770 return getJumpTable(JTI, VT, true, TargetFlags);
771 }
773 const SDLoc &DL);
775 MaybeAlign Align = std::nullopt,
776 int Offs = 0, bool isT = false,
777 unsigned TargetFlags = 0);
779 MaybeAlign Align = std::nullopt, int Offset = 0,
780 unsigned TargetFlags = 0) {
781 return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
782 }
784 MaybeAlign Align = std::nullopt,
785 int Offs = 0, bool isT = false,
786 unsigned TargetFlags = 0);
788 MaybeAlign Align = std::nullopt, int Offset = 0,
789 unsigned TargetFlags = 0) {
790 return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
791 }
792 // When generating a branch to a BB, we don't in general know enough
793 // to provide debug info for the BB at that time, so keep this one around.
795 LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT);
796 LLVM_ABI SDValue getExternalSymbol(RTLIB::LibcallImpl LCImpl, EVT VT);
797 LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
798 unsigned TargetFlags = 0);
799 LLVM_ABI SDValue getTargetExternalSymbol(RTLIB::LibcallImpl LCImpl, EVT VT,
800 unsigned TargetFlags = 0);
801
803
807 LLVM_ABI SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
808 LLVM_ABI SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root,
809 MCSymbol *Label);
811 int64_t Offset = 0, bool isTarget = false,
812 unsigned TargetFlags = 0);
814 int64_t Offset = 0, unsigned TargetFlags = 0) {
815 return getBlockAddress(BA, VT, Offset, true, TargetFlags);
816 }
817
819 SDValue N) {
820 return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
821 getRegister(Reg, N.getValueType()), N);
822 }
823
824 // This version of the getCopyToReg method takes an extra operand, which
825 // indicates that there is potentially an incoming glue value (if Glue is not
826 // null) and that there should be a glue result.
828 SDValue Glue) {
829 SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
830 SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
831 return getNode(ISD::CopyToReg, dl, VTs,
832 ArrayRef(Ops, Glue.getNode() ? 4 : 3));
833 }
834
835 // Similar to last getCopyToReg() except parameter Reg is a SDValue
837 SDValue Glue) {
838 SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
839 SDValue Ops[] = { Chain, Reg, N, Glue };
840 return getNode(ISD::CopyToReg, dl, VTs,
841 ArrayRef(Ops, Glue.getNode() ? 4 : 3));
842 }
843
845 SDVTList VTs = getVTList(VT, MVT::Other);
846 SDValue Ops[] = { Chain, getRegister(Reg, VT) };
847 return getNode(ISD::CopyFromReg, dl, VTs, Ops);
848 }
849
850 // This version of the getCopyFromReg method takes an extra operand, which
851 // indicates that there is potentially an incoming glue value (if Glue is not
852 // null) and that there should be a glue result.
854 SDValue Glue) {
855 SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
856 SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
857 return getNode(ISD::CopyFromReg, dl, VTs,
858 ArrayRef(Ops, Glue.getNode() ? 3 : 2));
859 }
860
862
863 /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
864 /// which must be a vector type, must match the number of mask elements
865 /// NumElts. An integer mask element equal to -1 is treated as undefined.
867 SDValue N2, ArrayRef<int> Mask);
868
869 /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
870 /// which must be a vector type, must match the number of operands in Ops.
871 /// The operands must have the same type as (or, for integers, a type wider
872 /// than) VT's element type.
874 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
875 return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
876 }
877
878 /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
879 /// which must be a vector type, must match the number of operands in Ops.
880 /// The operands must have the same type as (or, for integers, a type wider
881 /// than) VT's element type.
883 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
884 return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
885 }
886
887 /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
888 /// elements. VT must be a vector type. Op's type must be the same as (or,
889 /// for integers, a type wider than) VT's element type.
891 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
892 if (Op.isUndef()) {
893 assert((VT.getVectorElementType() == Op.getValueType() ||
894 (VT.isInteger() &&
895 VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
896 "A splatted value must have a width equal or (for integers) "
897 "greater than the vector element type!");
898 return getNode(ISD::UNDEF, SDLoc(), VT);
899 }
900
902 return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
903 }
904
905 // Return a splat ISD::SPLAT_VECTOR node, consisting of Op splatted to all
906 // elements.
908 if (Op.isUndef()) {
909 assert((VT.getVectorElementType() == Op.getValueType() ||
910 (VT.isInteger() &&
911 VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
912 "A splatted value must have a width equal or (for integers) "
913 "greater than the vector element type!");
914 return getNode(ISD::UNDEF, SDLoc(), VT);
915 }
916 return getNode(ISD::SPLAT_VECTOR, DL, VT, Op);
917 }
918
919 /// Returns a node representing a splat of one value into all lanes
920 /// of the provided vector type. This is a utility which returns
921 /// either a BUILD_VECTOR or SPLAT_VECTOR depending on the
922 /// scalability of the desired vector type.
924 assert(VT.isVector() && "Can't splat to non-vector type");
925 return VT.isScalableVector() ?
927 }
928
929 /// Returns a vector of type ResVT whose elements contain the linear sequence
930 /// <0, Step, Step * 2, Step * 3, ...>
932 const APInt &StepVal);
933
934 /// Returns a vector of type ResVT whose elements contain the linear sequence
935 /// <0, 1, 2, 3, ...>
936 LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT);
937
938 /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
939 /// the shuffle node in input but with swapped operands.
940 ///
941 /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
943
944 /// Extract element at \p Idx from \p Vec. See EXTRACT_VECTOR_ELT
945 /// description for result type handling.
947 unsigned Idx) {
948 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Vec,
950 }
951
952 /// Insert \p Elt into \p Vec at offset \p Idx. See INSERT_VECTOR_ELT
953 /// description for element type handling.
955 unsigned Idx) {
956 return getNode(ISD::INSERT_VECTOR_ELT, DL, Vec.getValueType(), Vec, Elt,
958 }
959
960 /// Insert \p SubVec at the \p Idx element of \p Vec.
962 unsigned Idx) {
963 return getNode(ISD::INSERT_SUBVECTOR, DL, Vec.getValueType(), Vec, SubVec,
965 }
966
967 /// Return the \p VT typed sub-vector of \p Vec at \p Idx
969 unsigned Idx) {
970 return getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
972 }
973
974 /// Convert Op, which must be of float type, to the
975 /// float type VT, by either extending or rounding (by truncation).
977
978 /// Convert Op, which must be a STRICT operation of float type, to the
979 /// float type VT, by either extending or rounding (by truncation).
980 LLVM_ABI std::pair<SDValue, SDValue>
982
983 /// Convert *_EXTEND_VECTOR_INREG to *_EXTEND opcode.
984 static unsigned getOpcode_EXTEND(unsigned Opcode) {
985 switch (Opcode) {
986 case ISD::ANY_EXTEND:
988 return ISD::ANY_EXTEND;
989 case ISD::ZERO_EXTEND:
991 return ISD::ZERO_EXTEND;
992 case ISD::SIGN_EXTEND:
994 return ISD::SIGN_EXTEND;
995 }
996 llvm_unreachable("Unknown opcode");
997 }
998
999 /// Convert *_EXTEND to *_EXTEND_VECTOR_INREG opcode.
1000 static unsigned getOpcode_EXTEND_VECTOR_INREG(unsigned Opcode) {
1001 switch (Opcode) {
1002 case ISD::ANY_EXTEND:
1005 case ISD::ZERO_EXTEND:
1008 case ISD::SIGN_EXTEND:
1011 }
1012 llvm_unreachable("Unknown opcode");
1013 }
1014
1015 /// Convert Op, which must be of integer type, to the
1016 /// integer type VT, by either any-extending or truncating it.
1018
1019 /// Convert Op, which must be of integer type, to the
1020 /// integer type VT, by either sign-extending or truncating it.
1022
1023 /// Convert Op, which must be of integer type, to the
1024 /// integer type VT, by either zero-extending or truncating it.
1026
1027 /// Convert Op, which must be of integer type, to the
1028 /// integer type VT, by either any/sign/zero-extending (depending on IsAny /
1029 /// IsSigned) or truncating it.
1031 EVT VT, unsigned Opcode) {
1032 switch(Opcode) {
1033 case ISD::ANY_EXTEND:
1034 return getAnyExtOrTrunc(Op, DL, VT);
1035 case ISD::ZERO_EXTEND:
1036 return getZExtOrTrunc(Op, DL, VT);
1037 case ISD::SIGN_EXTEND:
1038 return getSExtOrTrunc(Op, DL, VT);
1039 }
1040 llvm_unreachable("Unsupported opcode");
1041 }
1042
1043 /// Convert Op, which must be of integer type, to the
1044 /// integer type VT, by either sign/zero-extending (depending on IsSigned) or
1045 /// truncating it.
1046 SDValue getExtOrTrunc(bool IsSigned, SDValue Op, const SDLoc &DL, EVT VT) {
1047 return IsSigned ? getSExtOrTrunc(Op, DL, VT) : getZExtOrTrunc(Op, DL, VT);
1048 }
1049
1050 /// Convert Op, which must be of integer type, to the
1051 /// integer type VT, by first bitcasting (from potential vector) to
1052 /// corresponding scalar type then either any-extending or truncating it.
1054 EVT VT);
1055
1056 /// Convert Op, which must be of integer type, to the
1057 /// integer type VT, by first bitcasting (from potential vector) to
1058 /// corresponding scalar type then either sign-extending or truncating it.
1060
1061 /// Convert Op, which must be of integer type, to the
1062 /// integer type VT, by first bitcasting (from potential vector) to
1063 /// corresponding scalar type then either zero-extending or truncating it.
1065
1066 /// Return the expression required to zero extend the Op
1067 /// value assuming it was the smaller SrcTy value.
1069
1070 /// Return the expression required to zero extend the Op
1071 /// value assuming it was the smaller SrcTy value.
1073 const SDLoc &DL, EVT VT);
1074
1075 /// Convert Op, which must be of integer type, to the integer type VT, by
1076 /// either truncating it or performing either zero or sign extension as
1077 /// appropriate extension for the pointer's semantics.
1079
1080 /// Return the expression required to extend the Op as a pointer value
1081 /// assuming it was the smaller SrcTy value. This may be either a zero extend
1082 /// or a sign extend.
1084
1085 /// Convert Op, which must be of integer type, to the integer type VT,
1086 /// by using an extension appropriate for the target's
1087 /// BooleanContent for type OpVT or truncating it.
1089 EVT OpVT);
1090
1091 /// Create negative operation as (SUB 0, Val).
1092 LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT);
1093
1094 /// Create a bitwise NOT operation as (XOR Val, -1).
1095 LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
1096
1097 /// Create a logical NOT operation as (XOR Val, BooleanOne).
1098 LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
1099
1100 /// Create a vector-predicated logical NOT operation as (VP_XOR Val,
1101 /// BooleanOne, Mask, EVL).
1103 SDValue EVL, EVT VT);
1104
1105 /// Convert a vector-predicated Op, which must be an integer vector, to the
1106 /// vector-type VT, by performing either vector-predicated zext or truncating
1107 /// it. The Op will be returned as-is if Op and VT are vectors containing
1108 /// integer with same width.
1110 SDValue Mask, SDValue EVL);
1111
1112 /// Convert a vector-predicated Op, which must be of integer type, to the
1113 /// vector-type integer type VT, by either truncating it or performing either
1114 /// vector-predicated zero or sign extension as appropriate extension for the
1115 /// pointer's semantics. This function just redirects to getVPZExtOrTrunc
1116 /// right now.
1118 SDValue Mask, SDValue EVL);
1119
1120 /// Returns sum of the base pointer and offset.
1121 /// Unlike getObjectPtrOffset this does not set NoUnsignedWrap and InBounds by
1122 /// default.
1125 const SDNodeFlags Flags = SDNodeFlags());
1128 const SDNodeFlags Flags = SDNodeFlags());
1129
1130 /// Create an add instruction with appropriate flags when used for
1131 /// addressing some offset of an object. i.e. if a load is split into multiple
1132 /// components, create an add nuw (or ptradd nuw inbounds) from the base
1133 /// pointer to the offset.
1138
1140 // The object itself can't wrap around the address space, so it shouldn't be
1141 // possible for the adds of the offsets to the split parts to overflow.
1142 return getMemBasePlusOffset(
1144 }
1145
1146 /// Return a new CALLSEQ_START node, that starts new call frame, in which
1147 /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
1148 /// OutSize specifies part of the frame set up prior to the sequence.
1150 const SDLoc &DL) {
1151 SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
1152 SDValue Ops[] = { Chain,
1153 getIntPtrConstant(InSize, DL, true),
1154 getIntPtrConstant(OutSize, DL, true) };
1155 return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
1156 }
1157
1158 /// Return a new CALLSEQ_END node, which always must have a
1159 /// glue result (to ensure it's not CSE'd).
1160 /// CALLSEQ_END does not have a useful SDLoc.
1162 SDValue InGlue, const SDLoc &DL) {
1163 SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
1165 Ops.push_back(Chain);
1166 Ops.push_back(Op1);
1167 Ops.push_back(Op2);
1168 if (InGlue.getNode())
1169 Ops.push_back(InGlue);
1170 return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
1171 }
1172
1174 SDValue Glue, const SDLoc &DL) {
1175 return getCALLSEQ_END(
1176 Chain, getIntPtrConstant(Size1, DL, /*isTarget=*/true),
1177 getIntPtrConstant(Size2, DL, /*isTarget=*/true), Glue, DL);
1178 }
1179
1180 /// Return true if the result of this operation is always undefined.
1181 LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops);
1182
1183 /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
1185 return getNode(ISD::UNDEF, SDLoc(), VT);
1186 }
1187
1188 /// Return a POISON node. POISON does not have a useful SDLoc.
1190
1191 /// Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
1192 LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm);
1193
1195
1197
1198 /// Return a vector with the first 'Len' lanes set to true and remaining lanes
1199 /// set to false. The mask's ValueType is the same as when comparing vectors
1200 /// of type VT.
1202 ElementCount Len);
1203
1204 /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
1208
1209 /// Gets or creates the specified node.
1210 ///
1211 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
1213 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
1214 ArrayRef<SDValue> Ops, const SDNodeFlags Flags);
1215 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL,
1217 const SDNodeFlags Flags);
1218 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
1219 ArrayRef<SDValue> Ops, const SDNodeFlags Flags);
1220
1221 // Use flags from current flag inserter.
1222 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
1224 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL,
1226 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
1228 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
1229 SDValue Operand);
1230 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
1231 SDValue N2);
1232 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
1233 SDValue N2, SDValue N3);
1234
1235 // Specialize based on number of operands.
1236 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
1237 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
1238 SDValue Operand, const SDNodeFlags Flags);
1239 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
1240 SDValue N2, const SDNodeFlags Flags);
1241 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
1242 SDValue N2, SDValue N3, const SDNodeFlags Flags);
1243 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
1244 SDValue N2, SDValue N3, SDValue N4);
1245 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
1246 SDValue N2, SDValue N3, SDValue N4,
1247 const SDNodeFlags Flags);
1248 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
1249 SDValue N2, SDValue N3, SDValue N4, SDValue N5);
1250 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
1251 SDValue N2, SDValue N3, SDValue N4, SDValue N5,
1252 const SDNodeFlags Flags);
1253
1254 // Specialize again based on number of operands for nodes with a VTList
1255 // rather than a single VT.
1256 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList);
1257 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
1258 SDValue N);
1259 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
1260 SDValue N1, SDValue N2);
1261 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
1262 SDValue N1, SDValue N2, SDValue N3);
1263 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
1264 SDValue N1, SDValue N2, SDValue N3, SDValue N4);
1265 LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
1266 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
1267 SDValue N5);
1268
1269 /// Compute a TokenFactor to force all the incoming stack arguments to be
1270 /// loaded from the stack. This is used in tail call lowering to protect
1271 /// stack arguments from being clobbered.
1273
1274 /// Lower a memcmp operation into a target library call and return the
1275 /// resulting chain and call result as SelectionDAG SDValues.
1276 LLVM_ABI std::pair<SDValue, SDValue> getMemcmp(SDValue Chain, const SDLoc &dl,
1277 SDValue Dst, SDValue Src,
1278 SDValue Size,
1279 const CallInst *CI);
1280
1281 /// Lower a strcpy operation into a target library call and return the
1282 /// resulting chain and call result as SelectionDAG SDValues.
1283 LLVM_ABI std::pair<SDValue, SDValue> getStrcpy(SDValue Chain, const SDLoc &dl,
1284 SDValue Dst, SDValue Src,
1285 const CallInst *CI);
1286
1287 /// Lower a strlen operation into a target library call and return the
1288 /// resulting chain and call result as SelectionDAG SDValues.
1289 LLVM_ABI std::pair<SDValue, SDValue>
1290 getStrlen(SDValue Chain, const SDLoc &dl, SDValue Src, const CallInst *CI);
1291
1292 /* \p CI if not null is the memset call being lowered.
1293 * \p OverrideTailCall is an optional parameter that can be used to override
1294 * the tail call optimization decision. */
1295 LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
1296 SDValue Src, SDValue Size, Align Alignment,
1297 bool isVol, bool AlwaysInline, const CallInst *CI,
1298 std::optional<bool> OverrideTailCall,
1299 MachinePointerInfo DstPtrInfo,
1300 MachinePointerInfo SrcPtrInfo,
1301 const AAMDNodes &AAInfo = AAMDNodes(),
1302 BatchAAResults *BatchAA = nullptr);
1303
1304 /* \p CI if not null is the memset call being lowered.
1305 * \p OverrideTailCall is an optional parameter that can be used to override
1306 * the tail call optimization decision. */
1307 LLVM_ABI SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
1308 SDValue Src, SDValue Size, Align Alignment,
1309 bool isVol, const CallInst *CI,
1310 std::optional<bool> OverrideTailCall,
1311 MachinePointerInfo DstPtrInfo,
1312 MachinePointerInfo SrcPtrInfo,
1313 const AAMDNodes &AAInfo = AAMDNodes(),
1314 BatchAAResults *BatchAA = nullptr);
1315
1316 LLVM_ABI SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
1317 SDValue Src, SDValue Size, Align Alignment,
1318 bool isVol, bool AlwaysInline, const CallInst *CI,
1319 MachinePointerInfo DstPtrInfo,
1320 const AAMDNodes &AAInfo = AAMDNodes());
1321
1322 LLVM_ABI SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
1323 SDValue Src, SDValue Size, Type *SizeTy,
1324 unsigned ElemSz, bool isTailCall,
1325 MachinePointerInfo DstPtrInfo,
1326 MachinePointerInfo SrcPtrInfo);
1327
1328 LLVM_ABI SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
1329 SDValue Src, SDValue Size, Type *SizeTy,
1330 unsigned ElemSz, bool isTailCall,
1331 MachinePointerInfo DstPtrInfo,
1332 MachinePointerInfo SrcPtrInfo);
1333
1334 LLVM_ABI SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
1335 SDValue Value, SDValue Size, Type *SizeTy,
1336 unsigned ElemSz, bool isTailCall,
1337 MachinePointerInfo DstPtrInfo);
1338
1339 /// Helper function to make it easier to build SetCC's if you just have an
1340 /// ISD::CondCode instead of an SDValue.
1342 ISD::CondCode Cond, SDValue Chain = SDValue(),
1343 bool IsSignaling = false) {
1344 assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
1345 "Vector/scalar operand type mismatch for setcc");
1346 assert(LHS.getValueType().isVector() == VT.isVector() &&
1347 "Vector/scalar result type mismatch for setcc");
1349 "Cannot create a setCC of an invalid node.");
1350 if (Chain)
1351 return getNode(IsSignaling ? ISD::STRICT_FSETCCS : ISD::STRICT_FSETCC, DL,
1352 {VT, MVT::Other}, {Chain, LHS, RHS, getCondCode(Cond)});
1353 return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
1354 }
1355
1356 /// Helper function to make it easier to build VP_SETCCs if you just have an
1357 /// ISD::CondCode instead of an SDValue.
1359 ISD::CondCode Cond, SDValue Mask, SDValue EVL) {
1360 assert(LHS.getValueType().isVector() && RHS.getValueType().isVector() &&
1361 "Cannot compare scalars");
1363 "Cannot create a setCC of an invalid node.");
1364 return getNode(ISD::VP_SETCC, DL, VT, LHS, RHS, getCondCode(Cond), Mask,
1365 EVL);
1366 }
1367
1368 /// Helper function to make it easier to build Select's if you just have
1369 /// operands and don't want to check for vector.
1371 SDValue RHS, SDNodeFlags Flags = SDNodeFlags()) {
1372 assert(LHS.getValueType() == VT && RHS.getValueType() == VT &&
1373 "Cannot use select on differing types");
1374 auto Opcode = Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
1375 return getNode(Opcode, DL, VT, Cond, LHS, RHS, Flags);
1376 }
1377
1378 /// Helper function to make it easier to build SelectCC's if you just have an
1379 /// ISD::CondCode instead of an SDValue.
1381 SDValue False, ISD::CondCode Cond,
1382 SDNodeFlags Flags = SDNodeFlags()) {
1383 return getNode(ISD::SELECT_CC, DL, True.getValueType(), LHS, RHS, True,
1384 False, getCondCode(Cond), Flags);
1385 }
1386
1387 /// Try to simplify a select/vselect into 1 of its operands or a constant.
1389
1390 /// Try to simplify a shift into 1 of its operands or a constant.
1392
1393 /// Try to simplify a floating-point binary operation into 1 of its operands
1394 /// or a constant.
1395 LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
1396 SDNodeFlags Flags);
1397
1398 /// VAArg produces a result and token chain, and takes a pointer
1399 /// and a source value as input.
1400 LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1401 SDValue SV, unsigned Align);
1402
1403 /// Gets a node for an atomic cmpxchg op. There are two
1404 /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
1405 /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
1406 /// a success flag (initially i1), and a chain.
1407 LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1408 SDVTList VTs, SDValue Chain, SDValue Ptr,
1409 SDValue Cmp, SDValue Swp,
1410 MachineMemOperand *MMO);
1411
1412 /// Gets a node for an atomic op, produces result (if relevant)
1413 /// and chain and takes 2 operands.
1414 LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1415 SDValue Chain, SDValue Ptr, SDValue Val,
1416 MachineMemOperand *MMO);
1417
1418 /// Gets a node for an atomic op, produces result and chain and takes N
1419 /// operands.
1420 LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1422 MachineMemOperand *MMO,
1424
1426 EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr,
1427 MachineMemOperand *MMO);
1428
1429 /// Creates a MemIntrinsicNode that may produce a
1430 /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
1431 /// INTRINSIC_W_CHAIN, or a target-specific memory-referencing opcode
1432 // (see `SelectionDAGTargetInfo::isTargetMemoryOpcode`).
1434 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
1435 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
1439 const AAMDNodes &AAInfo = AAMDNodes());
1440
1442 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
1443 EVT MemVT, MachinePointerInfo PtrInfo,
1444 MaybeAlign Alignment = std::nullopt,
1448 const AAMDNodes &AAInfo = AAMDNodes()) {
1449 // Ensure that codegen never sees alignment 0
1450 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, PtrInfo,
1451 Alignment.value_or(getEVTAlign(MemVT)), Flags,
1452 Size, AAInfo);
1453 }
1454
1455 LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
1457 EVT MemVT, MachineMemOperand *MMO);
1458
1459 /// Creates a LifetimeSDNode that starts (`IsStart==true`) or ends
1460 /// (`IsStart==false`) the lifetime of the `FrameIndex`.
1461 LLVM_ABI SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain,
1462 int FrameIndex);
1463
1464 /// Creates a PseudoProbeSDNode with function GUID `Guid` and
1465 /// the index of the block `Index` it is probing, as well as the attributes
1466 /// `attr` of the probe.
1468 uint64_t Guid, uint64_t Index,
1469 uint32_t Attr);
1470
1471 /// Create a MERGE_VALUES node from the given operands.
1473
1474 /// Loads are not normal binary operators: their result type is not
1475 /// determined by their operands, and they produce a value AND a token chain.
1476 ///
1477 /// This function will set the MOLoad flag on MMOFlags, but you can set it if
1478 /// you want. The MOStore flag must not be set.
1480 EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1481 MachinePointerInfo PtrInfo, MaybeAlign Alignment = MaybeAlign(),
1483 const AAMDNodes &AAInfo = AAMDNodes(), const MDNode *Ranges = nullptr);
1484 LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1485 MachineMemOperand *MMO);
1487 getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
1488 SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
1489 MaybeAlign Alignment = MaybeAlign(),
1491 const AAMDNodes &AAInfo = AAMDNodes());
1492 LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
1493 SDValue Chain, SDValue Ptr, EVT MemVT,
1494 MachineMemOperand *MMO);
1495 LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
1499 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
1500 SDValue Chain, SDValue Ptr, SDValue Offset, MachinePointerInfo PtrInfo,
1501 EVT MemVT, Align Alignment,
1503 const AAMDNodes &AAInfo = AAMDNodes(), const MDNode *Ranges = nullptr);
1505 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
1506 SDValue Chain, SDValue Ptr, SDValue Offset, MachinePointerInfo PtrInfo,
1507 EVT MemVT, MaybeAlign Alignment = MaybeAlign(),
1509 const AAMDNodes &AAInfo = AAMDNodes(), const MDNode *Ranges = nullptr) {
1510 // Ensures that codegen never sees a None Alignment.
1511 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, PtrInfo, MemVT,
1512 Alignment.value_or(getEVTAlign(MemVT)), MMOFlags, AAInfo,
1513 Ranges);
1514 }
1516 EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1517 SDValue Offset, EVT MemVT, MachineMemOperand *MMO);
1518
1519 /// Helper function to build ISD::STORE nodes.
1520 ///
1521 /// This function will set the MOStore flag on MMOFlags, but you can set it if
1522 /// you want. The MOLoad and MOInvariant flags must not be set.
1523
1525 getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1526 MachinePointerInfo PtrInfo, Align Alignment,
1528 const AAMDNodes &AAInfo = AAMDNodes());
1529 inline SDValue
1530 getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1531 MachinePointerInfo PtrInfo, MaybeAlign Alignment = MaybeAlign(),
1533 const AAMDNodes &AAInfo = AAMDNodes()) {
1534 return getStore(Chain, dl, Val, Ptr, PtrInfo,
1535 Alignment.value_or(getEVTAlign(Val.getValueType())),
1536 MMOFlags, AAInfo);
1537 }
1538 LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1539 SDValue Ptr, MachineMemOperand *MMO);
1541 getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1542 MachinePointerInfo PtrInfo, EVT SVT, Align Alignment,
1544 const AAMDNodes &AAInfo = AAMDNodes());
1545 inline SDValue
1546 getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1547 MachinePointerInfo PtrInfo, EVT SVT,
1548 MaybeAlign Alignment = MaybeAlign(),
1550 const AAMDNodes &AAInfo = AAMDNodes()) {
1551 return getTruncStore(Chain, dl, Val, Ptr, PtrInfo, SVT,
1552 Alignment.value_or(getEVTAlign(SVT)), MMOFlags,
1553 AAInfo);
1554 }
1555 LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1556 SDValue Ptr, EVT SVT, MachineMemOperand *MMO);
1557 LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl,
1560 LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1561 SDValue Ptr, SDValue Offset, EVT SVT,
1563 bool IsTruncating = false);
1564
1566 EVT VT, const SDLoc &dl, SDValue Chain,
1567 SDValue Ptr, SDValue Offset, SDValue Mask,
1568 SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT,
1569 Align Alignment, MachineMemOperand::Flags MMOFlags,
1570 const AAMDNodes &AAInfo,
1571 const MDNode *Ranges = nullptr,
1572 bool IsExpanding = false);
1573 inline SDValue
1575 const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1576 SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT,
1577 MaybeAlign Alignment = MaybeAlign(),
1579 const AAMDNodes &AAInfo = AAMDNodes(),
1580 const MDNode *Ranges = nullptr, bool IsExpanding = false) {
1581 // Ensures that codegen never sees a None Alignment.
1582 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL,
1583 PtrInfo, MemVT, Alignment.value_or(getEVTAlign(MemVT)),
1584 MMOFlags, AAInfo, Ranges, IsExpanding);
1585 }
1587 EVT VT, const SDLoc &dl, SDValue Chain,
1588 SDValue Ptr, SDValue Offset, SDValue Mask,
1589 SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
1590 bool IsExpanding = false);
1591 LLVM_ABI SDValue getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
1592 SDValue Ptr, SDValue Mask, SDValue EVL,
1593 MachinePointerInfo PtrInfo, MaybeAlign Alignment,
1594 MachineMemOperand::Flags MMOFlags,
1595 const AAMDNodes &AAInfo,
1596 const MDNode *Ranges = nullptr,
1597 bool IsExpanding = false);
1598 LLVM_ABI SDValue getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain,
1599 SDValue Ptr, SDValue Mask, SDValue EVL,
1600 MachineMemOperand *MMO, bool IsExpanding = false);
1602 ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
1603 SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo,
1604 EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags,
1605 const AAMDNodes &AAInfo, bool IsExpanding = false);
1607 EVT VT, SDValue Chain, SDValue Ptr,
1608 SDValue Mask, SDValue EVL, EVT MemVT,
1609 MachineMemOperand *MMO,
1610 bool IsExpanding = false);
1611 LLVM_ABI SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl,
1614 LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
1615 SDValue Ptr, SDValue Offset, SDValue Mask,
1616 SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
1617 ISD::MemIndexedMode AM, bool IsTruncating = false,
1618 bool IsCompressing = false);
1619 LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
1620 SDValue Ptr, SDValue Mask, SDValue EVL,
1621 MachinePointerInfo PtrInfo, EVT SVT,
1622 Align Alignment,
1623 MachineMemOperand::Flags MMOFlags,
1624 const AAMDNodes &AAInfo,
1625 bool IsCompressing = false);
1626 LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val,
1627 SDValue Ptr, SDValue Mask, SDValue EVL,
1628 EVT SVT, MachineMemOperand *MMO,
1629 bool IsCompressing = false);
1630 LLVM_ABI SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl,
1633
1635 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
1636 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
1637 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding = false);
1639 SDValue Ptr, SDValue Stride, SDValue Mask,
1640 SDValue EVL, MachineMemOperand *MMO,
1641 bool IsExpanding = false);
1643 const SDLoc &DL, EVT VT, SDValue Chain,
1644 SDValue Ptr, SDValue Stride,
1645 SDValue Mask, SDValue EVL, EVT MemVT,
1646 MachineMemOperand *MMO,
1647 bool IsExpanding = false);
1649 SDValue Val, SDValue Ptr, SDValue Offset,
1650 SDValue Stride, SDValue Mask, SDValue EVL,
1651 EVT MemVT, MachineMemOperand *MMO,
1653 bool IsTruncating = false,
1654 bool IsCompressing = false);
1656 SDValue Val, SDValue Ptr,
1657 SDValue Stride, SDValue Mask,
1658 SDValue EVL, EVT SVT,
1659 MachineMemOperand *MMO,
1660 bool IsCompressing = false);
1661
1662 LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl,
1664 ISD::MemIndexType IndexType);
1665 LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl,
1667 ISD::MemIndexType IndexType);
1668
1669 LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
1671 SDValue Src0, EVT MemVT,
1673 ISD::LoadExtType, bool IsExpanding = false);
1677 LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1679 EVT MemVT, MachineMemOperand *MMO,
1681 bool IsTruncating = false,
1682 bool IsCompressing = false);
1683 LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
1686 LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
1688 MachineMemOperand *MMO,
1689 ISD::MemIndexType IndexType,
1690 ISD::LoadExtType ExtTy);
1691 LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
1693 MachineMemOperand *MMO,
1694 ISD::MemIndexType IndexType,
1695 bool IsTruncating = false);
1696 LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl,
1698 MachineMemOperand *MMO,
1699 ISD::MemIndexType IndexType);
1700 LLVM_ABI SDValue getLoadFFVP(EVT VT, const SDLoc &DL, SDValue Chain,
1701 SDValue Ptr, SDValue Mask, SDValue EVL,
1702 MachineMemOperand *MMO);
1703
1704 LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr,
1705 EVT MemVT, MachineMemOperand *MMO);
1706 LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr,
1707 EVT MemVT, MachineMemOperand *MMO);
1708
1709 /// Construct a node to track a Value* through the backend.
1711
1712 /// Return an MDNodeSDNode which holds an MDNode.
1713 LLVM_ABI SDValue getMDNode(const MDNode *MD);
1714
1715 /// Return a bitcast using the SDLoc of the value operand, and casting to the
1716 /// provided type. Use getNode to set a custom SDLoc.
1718
1719 /// Return an AddrSpaceCastSDNode.
1720 LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1721 unsigned SrcAS, unsigned DestAS);
1722
1723 /// Return a freeze using the SDLoc of the value operand.
1725
1726 /// Return an AssertAlignSDNode.
1728
1729 /// Swap N1 and N2 if Opcode is a commutative binary opcode
1730 /// and the canonical form expects the opposite order.
1731 LLVM_ABI void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1,
1732 SDValue &N2) const;
1733
1734 /// Return the specified value casted to
1735 /// the target's desired shift amount type.
1737
1738 /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
1740
1741 /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
1743
1744 /// Return a GlobalAddress of the function from the current module with
1745 /// name matching the given ExternalSymbol. Additionally can provide the
1746 /// matched function.
1747 /// Panic if the function doesn't exist.
1749 SDValue Op, Function **TargetFunction = nullptr);
1750
1751 /// *Mutate* the specified node in-place to have the
1752 /// specified operands. If the resultant node already exists in the DAG,
1753 /// this does not modify the specified node, instead it returns the node that
1754 /// already exists. If the resultant node does not exist in the DAG, the
1755 /// input node is returned. As a degenerate case, if you specify the same
1756 /// input operands as the node already has, the input node is returned.
1760 SDValue Op3);
1762 SDValue Op3, SDValue Op4);
1764 SDValue Op3, SDValue Op4, SDValue Op5);
1766
1767 /// Creates a new TokenFactor containing \p Vals. If \p Vals contains 64k
1768 /// values or more, move values into new TokenFactors in 64k-1 blocks, until
1769 /// the final TokenFactor has less than 64k operands.
1772
1773 /// *Mutate* the specified machine node's memory references to the provided
1774 /// list.
1777
1778 // Calculate divergence of node \p N based on its operands.
1780
1781 // Propagates the change in divergence to users
1783
1784 /// These are used for target selectors to *mutate* the
1785 /// specified node to have the specified return type, Target opcode, and
1786 /// operands. Note that target opcodes are stored as
1787 /// ~TargetOpcode in the node opcode field. The resultant node is returned.
1788 LLVM_ABI SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT);
1789 LLVM_ABI SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1790 SDValue Op1);
1791 LLVM_ABI SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1792 SDValue Op1, SDValue Op2);
1793 LLVM_ABI SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1794 SDValue Op1, SDValue Op2, SDValue Op3);
1795 LLVM_ABI SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1797 LLVM_ABI SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1798 EVT VT2);
1799 LLVM_ABI SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1801 LLVM_ABI SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1802 EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1803 LLVM_ABI SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1804 EVT VT2, SDValue Op1, SDValue Op2);
1805 LLVM_ABI SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs,
1807
1808 /// This *mutates* the specified node to have the specified
1809 /// return type, opcode, and operands.
1810 LLVM_ABI SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
1812
1813 /// Mutate the specified strict FP node to its non-strict equivalent,
1814 /// unlinking the node from its chain and dropping the metadata arguments.
1815 /// The node must be a strict FP node.
1817
1818 /// These are used for target selectors to create a new node
1819 /// with specified return type(s), MachineInstr opcode, and operands.
1820 ///
1821 /// Note that getMachineNode returns the resultant node. If there is already
1822 /// a node of the specified opcode and operands, it returns that node instead
1823 /// of the current one.
1824 LLVM_ABI MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1825 EVT VT);
1826 LLVM_ABI MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1827 EVT VT, SDValue Op1);
1828 LLVM_ABI MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1829 EVT VT, SDValue Op1, SDValue Op2);
1830 LLVM_ABI MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1831 EVT VT, SDValue Op1, SDValue Op2,
1832 SDValue Op3);
1833 LLVM_ABI MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1835 LLVM_ABI MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1836 EVT VT1, EVT VT2, SDValue Op1,
1837 SDValue Op2);
1838 LLVM_ABI MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1839 EVT VT1, EVT VT2, SDValue Op1,
1840 SDValue Op2, SDValue Op3);
1841 LLVM_ABI MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1842 EVT VT1, EVT VT2,
1844 LLVM_ABI MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1845 EVT VT1, EVT VT2, EVT VT3, SDValue Op1,
1846 SDValue Op2);
1847 LLVM_ABI MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1848 EVT VT1, EVT VT2, EVT VT3, SDValue Op1,
1849 SDValue Op2, SDValue Op3);
1850 LLVM_ABI MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1851 EVT VT1, EVT VT2, EVT VT3,
1853 LLVM_ABI MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1854 ArrayRef<EVT> ResultTys,
1856 LLVM_ABI MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1858
1859 /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
1860 LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1861 SDValue Operand);
1862
1863 /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
1864 LLVM_ABI SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1865 SDValue Operand, SDValue Subreg);
1866
1867 /// Get the specified node if it's already available, or else return NULL.
1868 LLVM_ABI SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList,
1870 const SDNodeFlags Flags,
1871 bool AllowCommute = false);
1872 LLVM_ABI SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList,
1874 bool AllowCommute = false);
1875
1876 /// Check if a node exists without modifying its flags.
1877 LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList,
1879
1880 /// Creates a SDDbgValue node.
1882 SDNode *N, unsigned R, bool IsIndirect,
1883 const DebugLoc &DL, unsigned O);
1884
1885 /// Creates a constant SDDbgValue node.
1887 const Value *C, const DebugLoc &DL,
1888 unsigned O);
1889
1890 /// Creates a FrameIndex SDDbgValue node.
1892 DIExpression *Expr, unsigned FI,
1893 bool IsIndirect,
1894 const DebugLoc &DL, unsigned O);
1895
1896 /// Creates a FrameIndex SDDbgValue node.
1898 DIExpression *Expr, unsigned FI,
1899 ArrayRef<SDNode *> Dependencies,
1900 bool IsIndirect,
1901 const DebugLoc &DL, unsigned O);
1902
1903 /// Creates a VReg SDDbgValue node.
1905 Register VReg, bool IsIndirect,
1906 const DebugLoc &DL, unsigned O);
1907
1908 /// Creates a SDDbgValue node from a list of locations.
1911 ArrayRef<SDNode *> Dependencies,
1912 bool IsIndirect, const DebugLoc &DL,
1913 unsigned O, bool IsVariadic);
1914
1915 /// Creates a SDDbgLabel node.
1917 unsigned O);
1918
1919 /// Transfer debug values from one node to another, while optionally
1920 /// generating fragment expressions for split-up values. If \p InvalidateDbg
1921 /// is set, debug values are invalidated after they are transferred.
1923 unsigned OffsetInBits = 0,
1924 unsigned SizeInBits = 0,
1925 bool InvalidateDbg = true);
1926
1927 /// Remove the specified node from the system. If any of its
1928 /// operands then becomes dead, remove them as well. Inform UpdateListener
1929 /// for each node deleted.
1931
1932 /// This method deletes the unreachable nodes in the
1933 /// given list, and any nodes that become unreachable as a result.
1935
1936 /// Modify anything using 'From' to use 'To' instead.
1937 /// This can cause recursive merging of nodes in the DAG. Use the first
1938 /// version if 'From' is known to have a single result, use the second
1939 /// if you have two nodes with identical results (or if 'To' has a superset
1940 /// of the results of 'From'), use the third otherwise.
1941 ///
1942 /// These methods all take an optional UpdateListener, which (if not null) is
1943 /// informed about nodes that are deleted and modified due to recursive
1944 /// changes in the dag.
1945 ///
1946 /// These functions only replace all existing uses. It's possible that as
1947 /// these replacements are being performed, CSE may cause the From node
1948 /// to be given new uses. These new uses of From are left in place, and
1949 /// not automatically transferred to To.
1950 ///
1952 LLVM_ABI void ReplaceAllUsesWith(SDNode *From, SDNode *To);
1953 LLVM_ABI void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
1954
1955 /// Replace any uses of From with To, leaving
1956 /// uses of other values produced by From.getNode() alone.
1958
1959 /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
1960 /// This correctly handles the case where
1961 /// there is an overlap between the From values and the To values.
1963 const SDValue *To, unsigned Num);
1964
1965 /// If an existing load has uses of its chain, create a token factor node with
1966 /// that chain and the new memory node's chain and update users of the old
1967 /// chain to the token factor. This ensures that the new memory node will have
1968 /// the same relative memory dependency position as the old load. Returns the
1969 /// new merged load chain.
1971 SDValue NewMemOpChain);
1972
1973 /// If an existing load has uses of its chain, create a token factor node with
1974 /// that chain and the new memory node's chain and update users of the old
1975 /// chain to the token factor. This ensures that the new memory node will have
1976 /// the same relative memory dependency position as the old load. Returns the
1977 /// new merged load chain.
1979 SDValue NewMemOp);
1980
1981 /// Get all the nodes in their topological order without modifying any states.
1983 SmallVectorImpl<const SDNode *> &SortedNodes) const;
1984
1985 /// Topological-sort the AllNodes list and a
1986 /// assign a unique node id for each node in the DAG based on their
1987 /// topological order. Returns the number of nodes.
1989
1990 /// Move node N in the AllNodes list to be immediately
1991 /// before the given iterator Position. This may be used to update the
1992 /// topological ordering when the list of nodes is modified.
1994 AllNodes.insert(Position, AllNodes.remove(N));
1995 }
1996
1997 /// Add a dbg_value SDNode. If SD is non-null that means the
1998 /// value is produced by SD.
1999 LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter);
2000
2001 /// Add a dbg_label SDNode.
2003
2004 /// Get the debug values which reference the given SDNode.
2006 return DbgInfo->getSDDbgValues(SD);
2007 }
2008
2009public:
2010 /// Return true if there are any SDDbgValue nodes associated
2011 /// with this SelectionDAG.
2012 bool hasDebugValues() const { return !DbgInfo->empty(); }
2013
2014 SDDbgInfo::DbgIterator DbgBegin() const { return DbgInfo->DbgBegin(); }
2015 SDDbgInfo::DbgIterator DbgEnd() const { return DbgInfo->DbgEnd(); }
2016
2018 return DbgInfo->ByvalParmDbgBegin();
2019 }
2021 return DbgInfo->ByvalParmDbgEnd();
2022 }
2023
2025 return DbgInfo->DbgLabelBegin();
2026 }
2028 return DbgInfo->DbgLabelEnd();
2029 }
2030
2031 /// To be invoked on an SDNode that is slated to be erased. This
2032 /// function mirrors \c llvm::salvageDebugInfo.
2034
2035 /// Dump the textual format of this DAG. Print nodes in sorted orders if \p
2036 /// Sorted is true.
2037 LLVM_ABI void dump(bool Sorted = false) const;
2038
2039 /// In most cases this function returns the ABI alignment for a given type,
2040 /// except for illegal vector types where the alignment exceeds that of the
2041 /// stack. In such cases we attempt to break the vector down to a legal type
2042 /// and return the ABI alignment for that instead.
2043 LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI);
2044
2045 /// Create a stack temporary based on the size in bytes and the alignment
2047
2048 /// Create a stack temporary, suitable for holding the specified value type.
2049 /// If minAlign is specified, the slot size will have at least that alignment.
2050 LLVM_ABI SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
2051
2052 /// Create a stack temporary suitable for holding either of the specified
2053 /// value types.
2055
2056 LLVM_ABI SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
2057 const GlobalAddressSDNode *GA,
2058 const SDNode *N2);
2059
2060 LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
2062 SDNodeFlags Flags = SDNodeFlags());
2063
2064 /// Fold floating-point operations when all operands are constants and/or
2065 /// undefined.
2066 LLVM_ABI SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT,
2068
2069 /// Fold BUILD_VECTOR of constants/undefs to the destination type
2070 /// BUILD_VECTOR of constants/undefs elements.
2072 const SDLoc &DL, EVT DstEltVT);
2073
2074 /// Constant fold a setcc to true or false.
2076 const SDLoc &dl);
2077
2078 /// Return true if the sign bit of Op is known to be zero.
2079 /// We use this predicate to simplify operations downstream.
2080 LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
2081
2082 /// Return true if the sign bit of Op is known to be zero, for a
2083 /// floating-point value.
2084 LLVM_ABI bool SignBitIsZeroFP(SDValue Op, unsigned Depth = 0) const;
2085
2086 /// Return true if 'Op & Mask' is known to be zero. We
2087 /// use this predicate to simplify operations downstream. Op and Mask are
2088 /// known to be the same type.
2089 LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask,
2090 unsigned Depth = 0) const;
2091
2092 /// Return true if 'Op & Mask' is known to be zero in DemandedElts. We
2093 /// use this predicate to simplify operations downstream. Op and Mask are
2094 /// known to be the same type.
2095 LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask,
2096 const APInt &DemandedElts,
2097 unsigned Depth = 0) const;
2098
2099 /// Return true if 'Op' is known to be zero in DemandedElts. We
2100 /// use this predicate to simplify operations downstream.
2101 LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts,
2102 unsigned Depth = 0) const;
2103
2104 /// Return true if '(Op & Mask) == Mask'.
2105 /// Op and Mask are known to be the same type.
2106 LLVM_ABI bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask,
2107 unsigned Depth = 0) const;
2108
2109 /// For each demanded element of a vector, see if it is known to be zero.
2111 const APInt &DemandedElts,
2112 unsigned Depth = 0) const;
2113
2114 /// Determine which bits of Op are known to be either zero or one and return
2115 /// them in Known. For vectors, the known bits are those that are shared by
2116 /// every vector element.
2117 /// Targets can implement the computeKnownBitsForTargetNode method in the
2118 /// TargetLowering class to allow target nodes to be understood.
2119 LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth = 0) const;
2120
2121 /// Determine which bits of Op are known to be either zero or one and return
2122 /// them in Known. The DemandedElts argument allows us to only collect the
2123 /// known bits that are shared by the requested vector elements.
2124 /// Targets can implement the computeKnownBitsForTargetNode method in the
2125 /// TargetLowering class to allow target nodes to be understood.
2126 LLVM_ABI KnownBits computeKnownBits(SDValue Op, const APInt &DemandedElts,
2127 unsigned Depth = 0) const;
2128
2129 /// Used to represent the possible overflow behavior of an operation.
2130 /// Never: the operation cannot overflow.
2131 /// Always: the operation will always overflow.
2132 /// Sometime: the operation may or may not overflow.
2138
2139 /// Determine if the result of the signed addition of 2 nodes can overflow.
2141 SDValue N1) const;
2142
2143 /// Determine if the result of the unsigned addition of 2 nodes can overflow.
2145 SDValue N1) const;
2146
2147 /// Determine if the result of the addition of 2 nodes can overflow.
2149 SDValue N1) const {
2150 return IsSigned ? computeOverflowForSignedAdd(N0, N1)
2152 }
2153
2154 /// Determine if the result of the addition of 2 nodes can never overflow.
2155 bool willNotOverflowAdd(bool IsSigned, SDValue N0, SDValue N1) const {
2156 return computeOverflowForAdd(IsSigned, N0, N1) == OFK_Never;
2157 }
2158
2159 /// Determine if the result of the signed sub of 2 nodes can overflow.
2161 SDValue N1) const;
2162
2163 /// Determine if the result of the unsigned sub of 2 nodes can overflow.
2165 SDValue N1) const;
2166
2167 /// Determine if the result of the sub of 2 nodes can overflow.
2169 SDValue N1) const {
2170 return IsSigned ? computeOverflowForSignedSub(N0, N1)
2172 }
2173
2174 /// Determine if the result of the sub of 2 nodes can never overflow.
2175 bool willNotOverflowSub(bool IsSigned, SDValue N0, SDValue N1) const {
2176 return computeOverflowForSub(IsSigned, N0, N1) == OFK_Never;
2177 }
2178
2179 /// Determine if the result of the signed mul of 2 nodes can overflow.
2181 SDValue N1) const;
2182
2183 /// Determine if the result of the unsigned mul of 2 nodes can overflow.
2185 SDValue N1) const;
2186
2187 /// Determine if the result of the mul of 2 nodes can overflow.
2189 SDValue N1) const {
2190 return IsSigned ? computeOverflowForSignedMul(N0, N1)
2192 }
2193
2194 /// Determine if the result of the mul of 2 nodes can never overflow.
2195 bool willNotOverflowMul(bool IsSigned, SDValue N0, SDValue N1) const {
2196 return computeOverflowForMul(IsSigned, N0, N1) == OFK_Never;
2197 }
2198
2199 /// Test if the given value is known to have exactly one bit set. This differs
2200 /// from computeKnownBits in that it doesn't necessarily determine which bit
2201 /// is set.
2202 LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth = 0) const;
2203
2204 /// Test if the given _fp_ value is known to be an integer power-of-2, either
2205 /// positive or negative.
2206 LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth = 0) const;
2207
2208 /// Return the number of times the sign bit of the register is replicated into
2209 /// the other bits. We know that at least 1 bit is always equal to the sign
2210 /// bit (itself), but other cases can give us information. For example,
2211 /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
2212 /// to each other, so we return 3. Targets can implement the
2213 /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
2214 /// target nodes to be understood.
2215 LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
2216
2217 /// Return the number of times the sign bit of the register is replicated into
2218 /// the other bits. We know that at least 1 bit is always equal to the sign
2219 /// bit (itself), but other cases can give us information. For example,
2220 /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
2221 /// to each other, so we return 3. The DemandedElts argument allows
2222 /// us to only collect the minimum sign bits of the requested vector elements.
2223 /// Targets can implement the ComputeNumSignBitsForTarget method in the
2224 /// TargetLowering class to allow target nodes to be understood.
2225 LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
2226 unsigned Depth = 0) const;
2227
2228 /// Get the upper bound on bit size for this Value \p Op as a signed integer.
2229 /// i.e. x == sext(trunc(x to MaxSignedBits) to bitwidth(x)).
2230 /// Similar to the APInt::getSignificantBits function.
2231 /// Helper wrapper to ComputeNumSignBits.
2233 unsigned Depth = 0) const;
2234
2235 /// Get the upper bound on bit size for this Value \p Op as a signed integer.
2236 /// i.e. x == sext(trunc(x to MaxSignedBits) to bitwidth(x)).
2237 /// Similar to the APInt::getSignificantBits function.
2238 /// Helper wrapper to ComputeNumSignBits.
2240 const APInt &DemandedElts,
2241 unsigned Depth = 0) const;
2242
2243 /// Return true if this function can prove that \p Op is never poison
2244 /// and, if \p PoisonOnly is false, does not have undef bits.
2246 bool PoisonOnly = false,
2247 unsigned Depth = 0) const;
2248
2249 /// Return true if this function can prove that \p Op is never poison
2250 /// and, if \p PoisonOnly is false, does not have undef bits. The DemandedElts
2251 /// argument limits the check to the requested vector elements.
2253 const APInt &DemandedElts,
2254 bool PoisonOnly = false,
2255 unsigned Depth = 0) const;
2256
2257 /// Return true if this function can prove that \p Op is never poison.
2258 bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth = 0) const {
2259 return isGuaranteedNotToBeUndefOrPoison(Op, /*PoisonOnly*/ true, Depth);
2260 }
2261
2262 /// Return true if this function can prove that \p Op is never poison. The
2263 /// DemandedElts argument limits the check to the requested vector elements.
2264 bool isGuaranteedNotToBePoison(SDValue Op, const APInt &DemandedElts,
2265 unsigned Depth = 0) const {
2266 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts,
2267 /*PoisonOnly*/ true, Depth);
2268 }
2269
2270 /// Return true if Op can create undef or poison from non-undef & non-poison
2271 /// operands. The DemandedElts argument limits the check to the requested
2272 /// vector elements.
2273 ///
2274 /// \p ConsiderFlags controls whether poison producing flags on the
2275 /// instruction are considered. This can be used to see if the instruction
2276 /// could still introduce undef or poison even without poison generating flags
2277 /// which might be on the instruction. (i.e. could the result of
2278 /// Op->dropPoisonGeneratingFlags() still create poison or undef)
2279 LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts,
2280 bool PoisonOnly = false,
2281 bool ConsiderFlags = true,
2282 unsigned Depth = 0) const;
2283
2284 /// Return true if Op can create undef or poison from non-undef & non-poison
2285 /// operands.
2286 ///
2287 /// \p ConsiderFlags controls whether poison producing flags on the
2288 /// instruction are considered. This can be used to see if the instruction
2289 /// could still introduce undef or poison even without poison generating flags
2290 /// which might be on the instruction. (i.e. could the result of
2291 /// Op->dropPoisonGeneratingFlags() still create poison or undef)
2293 bool ConsiderFlags = true,
2294 unsigned Depth = 0) const;
2295
2296 /// Return true if the specified operand is an ISD::OR or ISD::XOR node
2297 /// that can be treated as an ISD::ADD node.
2298 /// or(x,y) == add(x,y) iff haveNoCommonBitsSet(x,y)
2299 /// xor(x,y) == add(x,y) iff isMinSignedConstant(y) && !NoWrap
2300 /// If \p NoWrap is true, this will not match ISD::XOR.
2301 LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap = false) const;
2302
2303 /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
2304 /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
2305 /// is guaranteed to have the same semantics as an ADD. This handles the
2306 /// equivalence:
2307 /// X|Cst == X+Cst iff X&Cst = 0.
2309
2310 /// Test whether the given SDValue (or all elements of it, if it is a
2311 /// vector) is known to never be NaN in \p DemandedElts. If \p SNaN is true,
2312 /// returns if \p Op is known to never be a signaling NaN (it may still be a
2313 /// qNaN).
2314 LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts,
2315 bool SNaN = false, unsigned Depth = 0) const;
2316
2317 /// Test whether the given SDValue (or all elements of it, if it is a
2318 /// vector) is known to never be NaN. If \p SNaN is true, returns if \p Op is
2319 /// known to never be a signaling NaN (it may still be a qNaN).
2320 LLVM_ABI bool isKnownNeverNaN(SDValue Op, bool SNaN = false,
2321 unsigned Depth = 0) const;
2322
2323 /// \returns true if \p Op is known to never be a signaling NaN in \p
2324 /// DemandedElts.
2325 bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts,
2326 unsigned Depth = 0) const {
2327 return isKnownNeverNaN(Op, DemandedElts, true, Depth);
2328 }
2329
2330 /// \returns true if \p Op is known to never be a signaling NaN.
2331 bool isKnownNeverSNaN(SDValue Op, unsigned Depth = 0) const {
2332 return isKnownNeverNaN(Op, true, Depth);
2333 }
2334
2335 /// Test whether the given floating point SDValue is known to never be
2336 /// positive or negative zero.
2338
2339 /// Test whether the given SDValue is known to contain non-zero value(s).
2340 LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth = 0) const;
2341
2342 /// Test whether the given float value is known to be positive. +0.0, +inf and
2343 /// +nan are considered positive, -0.0, -inf and -nan are not.
2345
2346 /// Check if a use of a float value is insensitive to signed zeros.
2347 LLVM_ABI bool canIgnoreSignBitOfZero(const SDUse &Use) const;
2348
2349 /// Check if at most two uses of a value are insensitive to signed zeros.
2351
2352 /// Test whether two SDValues are known to compare equal. This
2353 /// is true if they are the same value, or if one is negative zero and the
2354 /// other positive zero.
2355 LLVM_ABI bool isEqualTo(SDValue A, SDValue B) const;
2356
2357 /// Return true if A and B have no common bits set. As an example, this can
2358 /// allow an 'add' to be transformed into an 'or'.
2360
2361 /// Test whether \p V has a splatted value for all the demanded elements.
2362 ///
2363 /// On success \p UndefElts will indicate the elements that have UNDEF
2364 /// values instead of the splat value, this is only guaranteed to be correct
2365 /// for \p DemandedElts.
2366 ///
2367 /// NOTE: The function will return true for a demanded splat of UNDEF values.
2368 LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts,
2369 APInt &UndefElts, unsigned Depth = 0) const;
2370
2371 /// Test whether \p V has a splatted value.
2372 LLVM_ABI bool isSplatValue(SDValue V, bool AllowUndefs = false) const;
2373
2374 /// If V is a splatted value, return the source vector and its splat index.
2375 LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex);
2376
2377 /// If V is a splat vector, return its scalar source operand by extracting
2378 /// that element from the source vector. If LegalTypes is true, this method
2379 /// may only return a legally-typed splat value. If it cannot legalize the
2380 /// splatted value it will return SDValue().
2381 LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes = false);
2382
2383 /// If a SHL/SRA/SRL node \p V has shift amounts that are all less than the
2384 /// element bit-width of the shift node, return the valid constant range.
2385 LLVM_ABI std::optional<ConstantRange>
2386 getValidShiftAmountRange(SDValue V, const APInt &DemandedElts,
2387 unsigned Depth) const;
2388
2389 /// If a SHL/SRA/SRL node \p V has a uniform shift amount
2390 /// that is less than the element bit-width of the shift node, return it.
2391 LLVM_ABI std::optional<unsigned>
2392 getValidShiftAmount(SDValue V, const APInt &DemandedElts,
2393 unsigned Depth = 0) const;
2394
2395 /// If a SHL/SRA/SRL node \p V has a uniform shift amount
2396 /// that is less than the element bit-width of the shift node, return it.
2397 LLVM_ABI std::optional<unsigned>
2398 getValidShiftAmount(SDValue V, unsigned Depth = 0) const;
2399
2400 /// If a SHL/SRA/SRL node \p V has shift amounts that are all less than the
2401 /// element bit-width of the shift node, return the minimum possible value.
2402 LLVM_ABI std::optional<unsigned>
2403 getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts,
2404 unsigned Depth = 0) const;
2405
2406 /// If a SHL/SRA/SRL node \p V has shift amounts that are all less than the
2407 /// element bit-width of the shift node, return the minimum possible value.
2408 LLVM_ABI std::optional<unsigned>
2409 getValidMinimumShiftAmount(SDValue V, unsigned Depth = 0) const;
2410
2411 /// If a SHL/SRA/SRL node \p V has shift amounts that are all less than the
2412 /// element bit-width of the shift node, return the maximum possible value.
2413 LLVM_ABI std::optional<unsigned>
2414 getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts,
2415 unsigned Depth = 0) const;
2416
2417 /// If a SHL/SRA/SRL node \p V has shift amounts that are all less than the
2418 /// element bit-width of the shift node, return the maximum possible value.
2419 LLVM_ABI std::optional<unsigned>
2420 getValidMaximumShiftAmount(SDValue V, unsigned Depth = 0) const;
2421
2422 /// Match a binop + shuffle pyramid that represents a horizontal reduction
2423 /// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p
2424 /// Extract. The reduction must use one of the opcodes listed in /p
2425 /// CandidateBinOps and on success /p BinOp will contain the matching opcode.
2426 /// Returns the vector that is being reduced on, or SDValue() if a reduction
2427 /// was not matched. If \p AllowPartials is set then in the case of a
2428 /// reduction pattern that only matches the first few stages, the extracted
2429 /// subvector of the start of the reduction is returned.
2431 ArrayRef<ISD::NodeType> CandidateBinOps,
2432 bool AllowPartials = false);
2433
2434 /// Utility function used by legalize and lowering to
2435 /// "unroll" a vector operation by splitting out the scalars and operating
2436 /// on each element individually. If the ResNE is 0, fully unroll the vector
2437 /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
2438 /// If the ResNE is greater than the width of the vector op, unroll the
2439 /// vector op and fill the end of the resulting vector with UNDEFS.
2440 LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
2441
2442 /// Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
2443 /// This is a separate function because those opcodes have two results.
2444 LLVM_ABI std::pair<SDValue, SDValue>
2445 UnrollVectorOverflowOp(SDNode *N, unsigned ResNE = 0);
2446
2447 /// Return true if loads are next to each other and can be
2448 /// merged. Check that both are nonvolatile and if LD is loading
2449 /// 'Bytes' bytes from a location that is 'Dist' units away from the
2450 /// location that the 'Base' load is loading from.
2452 unsigned Bytes, int Dist) const;
2453
2454 /// Infer alignment of a load / store address. Return std::nullopt if it
2455 /// cannot be inferred.
2457
2458 /// Split the scalar node with EXTRACT_ELEMENT using the provided VTs and
2459 /// return the low/high part.
2460 LLVM_ABI std::pair<SDValue, SDValue> SplitScalar(const SDValue &N,
2461 const SDLoc &DL,
2462 const EVT &LoVT,
2463 const EVT &HiVT);
2464
2465 /// Compute the VTs needed for the low/hi parts of a type
2466 /// which is split (or expanded) into two not necessarily identical pieces.
2467 LLVM_ABI std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
2468
2469 /// Compute the VTs needed for the low/hi parts of a type, dependent on an
2470 /// enveloping VT that has been split into two identical pieces. Sets the
2471 /// HisIsEmpty flag when hi type has zero storage size.
2472 LLVM_ABI std::pair<EVT, EVT> GetDependentSplitDestVTs(const EVT &VT,
2473 const EVT &EnvVT,
2474 bool *HiIsEmpty) const;
2475
2476 /// Split the vector with EXTRACT_SUBVECTOR using the provided
2477 /// VTs and return the low/high part.
2478 LLVM_ABI std::pair<SDValue, SDValue> SplitVector(const SDValue &N,
2479 const SDLoc &DL,
2480 const EVT &LoVT,
2481 const EVT &HiVT);
2482
2483 /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
2484 std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
2485 EVT LoVT, HiVT;
2486 std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
2487 return SplitVector(N, DL, LoVT, HiVT);
2488 }
2489
2490 /// Split the explicit vector length parameter of a VP operation.
2491 LLVM_ABI std::pair<SDValue, SDValue> SplitEVL(SDValue N, EVT VecVT,
2492 const SDLoc &DL);
2493
2494 /// Split the node's operand with EXTRACT_SUBVECTOR and
2495 /// return the low/high part.
2496 std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
2497 {
2498 return SplitVector(N->getOperand(OpNo), SDLoc(N));
2499 }
2500
2501 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
2502 LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL);
2503
2504 /// Append the extracted elements from Start to Count out of the vector Op in
2505 /// Args. If Count is 0, all of the elements will be extracted. The extracted
2506 /// elements will have type EVT if it is provided, and otherwise their type
2507 /// will be Op's element type.
2510 unsigned Start = 0, unsigned Count = 0,
2511 EVT EltVT = EVT());
2512
2513 /// Compute the default alignment value for the given type.
2514 LLVM_ABI Align getEVTAlign(EVT MemoryVT) const;
2515
2516 /// Test whether the given value is a constant int or similar node.
2517 LLVM_ABI bool
2519 bool AllowOpaques = true) const;
2520
2521 /// Test whether the given value is a constant FP or similar node.
2523
2524 /// \returns true if \p N is any kind of constant or build_vector of
2525 /// constants, int or float. If a vector, it may not necessarily be a splat.
2530
2531 /// Check if a value \op N is a constant using the target's BooleanContent for
2532 /// its type.
2533 LLVM_ABI std::optional<bool> isBoolConstant(SDValue N) const;
2534
2535 /// Set CallSiteInfo to be associated with Node.
2536 void addCallSiteInfo(const SDNode *Node, CallSiteInfo &&CallInfo) {
2537 SDEI[Node].CSInfo = std::move(CallInfo);
2538 }
2539 /// Return CallSiteInfo associated with Node, or a default if none exists.
2540 CallSiteInfo getCallSiteInfo(const SDNode *Node) {
2541 auto I = SDEI.find(Node);
2542 return I != SDEI.end() ? std::move(I->second).CSInfo : CallSiteInfo();
2543 }
2544 /// Set HeapAllocSite to be associated with Node.
2546 SDEI[Node].HeapAllocSite = MD;
2547 }
2548 /// Return HeapAllocSite associated with Node, or nullptr if none exists.
2550 auto I = SDEI.find(Node);
2551 return I != SDEI.end() ? I->second.HeapAllocSite : nullptr;
2552 }
2553 /// Set PCSections to be associated with Node.
2554 void addPCSections(const SDNode *Node, MDNode *MD) {
2555 SDEI[Node].PCSections = MD;
2556 }
2557 /// Set MMRAMetadata to be associated with Node.
2558 void addMMRAMetadata(const SDNode *Node, MDNode *MMRA) {
2559 SDEI[Node].MMRA = MMRA;
2560 }
2561 /// Return PCSections associated with Node, or nullptr if none exists.
2563 auto It = SDEI.find(Node);
2564 return It != SDEI.end() ? It->second.PCSections : nullptr;
2565 }
2566 /// Return the MMRA MDNode associated with Node, or nullptr if none
2567 /// exists.
2569 auto It = SDEI.find(Node);
2570 return It != SDEI.end() ? It->second.MMRA : nullptr;
2571 }
2572 /// Set CalledGlobal to be associated with Node.
2573 void addCalledGlobal(const SDNode *Node, const GlobalValue *GV,
2574 unsigned OpFlags) {
2575 SDEI[Node].CalledGlobal = {GV, OpFlags};
2576 }
2577 /// Return CalledGlobal associated with Node, or a nullopt if none exists.
2578 std::optional<CalledGlobalInfo> getCalledGlobal(const SDNode *Node) {
2579 auto I = SDEI.find(Node);
2580 return I != SDEI.end()
2581 ? std::make_optional(std::move(I->second).CalledGlobal)
2582 : std::nullopt;
2583 }
2584 /// Set NoMergeSiteInfo to be associated with Node if NoMerge is true.
2585 void addNoMergeSiteInfo(const SDNode *Node, bool NoMerge) {
2586 if (NoMerge)
2587 SDEI[Node].NoMerge = NoMerge;
2588 }
2589 /// Return NoMerge info associated with Node.
2590 bool getNoMergeSiteInfo(const SDNode *Node) const {
2591 auto I = SDEI.find(Node);
2592 return I != SDEI.end() ? I->second.NoMerge : false;
2593 }
2594
2595 /// Copy extra info associated with one node to another.
2596 LLVM_ABI void copyExtraInfo(SDNode *From, SDNode *To);
2597
2598 /// Return the current function's default denormal handling kind for the given
2599 /// floating point type.
2601 return MF->getDenormalMode(VT.getFltSemantics());
2602 }
2603
2604 LLVM_ABI bool shouldOptForSize() const;
2605
2606 /// Get the (commutative) neutral element for the given opcode, if it exists.
2607 LLVM_ABI SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT,
2608 SDNodeFlags Flags);
2609
2610 /// Some opcodes may create immediate undefined behavior when used with some
2611 /// values (integer division-by-zero for example). Therefore, these operations
2612 /// are not generally safe to move around or change.
2613 bool isSafeToSpeculativelyExecute(unsigned Opcode) const {
2614 switch (Opcode) {
2615 case ISD::SDIV:
2616 case ISD::SREM:
2617 case ISD::SDIVREM:
2618 case ISD::UDIV:
2619 case ISD::UREM:
2620 case ISD::UDIVREM:
2621 return false;
2622 default:
2623 return true;
2624 }
2625 }
2626
2627 /// Check if the provided node is save to speculatively executed given its
2628 /// current arguments. So, while `udiv` the opcode is not safe to
2629 /// speculatively execute, a given `udiv` node may be if the denominator is
2630 /// known nonzero.
2632 switch (N->getOpcode()) {
2633 case ISD::UDIV:
2634 return isKnownNeverZero(N->getOperand(1));
2635 default:
2636 return isSafeToSpeculativelyExecute(N->getOpcode());
2637 }
2638 }
2639
2640 LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr,
2641 SDValue InChain, const SDLoc &DLoc);
2642
2643private:
2644#ifndef NDEBUG
2645 void verifyNode(SDNode *N) const;
2646#endif
2647 void InsertNode(SDNode *N);
2648 bool RemoveNodeFromCSEMaps(SDNode *N);
2649 void AddModifiedNodeToCSEMaps(SDNode *N);
2650 SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
2651 SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
2652 void *&InsertPos);
2653 SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
2654 void *&InsertPos);
2655 SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
2656
2657 void DeleteNodeNotInCSEMaps(SDNode *N);
2658 void DeallocateNode(SDNode *N);
2659
2660 void allnodes_clear();
2661
2662 /// Look up the node specified by ID in CSEMap. If it exists, return it. If
2663 /// not, return the insertion token that will make insertion faster. This
2664 /// overload is for nodes other than Constant or ConstantFP, use the other one
2665 /// for those.
2666 SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
2667
2668 /// Look up the node specified by ID in CSEMap. If it exists, return it. If
2669 /// not, return the insertion token that will make insertion faster. Performs
2670 /// additional processing for constant nodes.
2671 SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
2672 void *&InsertPos);
2673
2674 /// Maps to auto-CSE operations.
2675 std::vector<CondCodeSDNode*> CondCodeNodes;
2676
2677 std::vector<SDNode*> ValueTypeNodes;
2678 std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
2679 StringMap<SDNode*> ExternalSymbols;
2680
2681 std::map<std::pair<std::string, unsigned>, SDNode *> TargetExternalSymbols;
2683
2684 FlagInserter *Inserter = nullptr;
2685};
2686
2687template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
2689
2691 return nodes_iterator(G->allnodes_begin());
2692 }
2693
2695 return nodes_iterator(G->allnodes_end());
2696 }
2697};
2698
2699} // end namespace llvm
2700
2701#endif // LLVM_CODEGEN_SELECTIONDAG_H
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file defines the StringMap class.
AMDGPU Uniform Intrinsic Combine
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file defines the BumpPtrAllocator interface.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_ABI
Definition Compiler.h:213
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition Compiler.h:638
This file defines the DenseMap class.
This file defines the DenseSet and SmallDenseSet classes.
This file defines a hash set that can be used to remove duplication of nodes in a graph.
@ CallSiteInfo
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define I(x, y, z)
Definition MD5.cpp:57
#define G(x, y, z)
Definition MD5.cpp:55
Register Reg
This file contains the declarations for metadata subclasses.
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static void removeOperands(MachineInstr &MI, unsigned i)
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition APInt.h:78
static Capacity get(size_t N)
Get the capacity of an array that can hold at least N elements.
Recycle small arrays allocated from a BumpPtrAllocator.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
The address of a basic block.
Definition Constants.h:904
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
A "pseudo-class" with methods for operating on BUILD_VECTORs.
This class represents a function call, abstracting a target machine's calling convention.
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:282
This is the shared class of boolean and integer constants.
Definition Constants.h:87
This is an important base class in LLVM.
Definition Constant.h:43
DWARF expression.
Base class for variables.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
A debug info location.
Definition DebugLoc.h:123
Implements a dense probed hash-table based set.
Definition DenseSet.h:279
FoldingSetNodeIDRef - This class describes a reference to an interned FoldingSetNodeID,...
Definition FoldingSet.h:172
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition FoldingSet.h:209
FoldingSet - This template class is used to instantiate a specialized implementation of the folding s...
Definition FoldingSet.h:535
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
Data structure describing the variable locations in a function.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
This class is used to represent ISD::LOAD nodes.
static LocationSize precise(uint64_t Value)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition MCSymbol.h:42
Metadata node.
Definition Metadata.h:1078
Abstract base class for all machine specific constantpool value subclasses.
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
This class contains meta information specific to a module.
An SDNode that represents everything that will be needed to construct a MachineInstr.
The optimization diagnostic interface.
Pass interface - Implemented by all 'passes'.
Definition Pass.h:99
Analysis providing profile information.
RecyclingAllocator - This class wraps an Allocator, adding the functionality of recycling deleted obj...
Wrapper class representing virtual and physical registers.
Definition Register.h:20
Keeps track of dbg_value information through SDISel.
BumpPtrAllocator & getAlloc()
DbgIterator ByvalParmDbgBegin()
DbgIterator DbgEnd()
SDDbgInfo & operator=(const SDDbgInfo &)=delete
SmallVectorImpl< SDDbgLabel * >::iterator DbgLabelIterator
SDDbgInfo()=default
LLVM_ABI void add(SDDbgValue *V, bool isParameter)
bool empty() const
DbgLabelIterator DbgLabelEnd()
DbgIterator ByvalParmDbgEnd()
SmallVectorImpl< SDDbgValue * >::iterator DbgIterator
SDDbgInfo(const SDDbgInfo &)=delete
DbgLabelIterator DbgLabelBegin()
void add(SDDbgLabel *L)
DbgIterator DbgBegin()
LLVM_ABI void erase(const SDNode *Node)
Invalidate all DbgValues attached to the node and remove it from the Node-to-DbgValues map.
ArrayRef< SDDbgValue * > getSDDbgValues(const SDNode *Node) const
Holds the information from a dbg_label node through SDISel.
Holds the information for a single machine location through SDISel; either an SDNode,...
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
Represents a use of a SDNode.
SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num)
SDVTList getSDVTList()
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
EVT getValueType() const
Return the ValueType of the referenced return value.
Targets can subclass this to parameterize the SelectionDAG lowering and instruction selection process...
Help to insert SDNodeFlags automatically in transforming.
FlagInserter(SelectionDAG &SDAG, SDNodeFlags Flags)
FlagInserter(const FlagInserter &)=delete
FlagInserter(SelectionDAG &SDAG, SDNode *N)
FlagInserter & operator=(const FlagInserter &)=delete
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC)
bool willNotOverflowAdd(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the addition of 2 nodes can never overflow.
static unsigned getOpcode_EXTEND_VECTOR_INREG(unsigned Opcode)
Convert *_EXTEND to *_EXTEND_VECTOR_INREG opcode.
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsExpanding=false)
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT, SDValue Glue)
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const
Determine if the result of the unsigned sub of 2 nodes can overflow.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI std::pair< SDValue, SDValue > getStrlen(SDValue Chain, const SDLoc &dl, SDValue Src, const CallInst *CI)
Lower a strlen operation into a target library call and return the resulting chain and call result as...
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
bool isKnownNeverSNaN(SDValue Op, unsigned Depth=0) const
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
const Pass * getPass() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
OptimizationRemarkEmitter & getORE() const
BlockFrequencyInfo * getBFI() const
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI void updateDivergence(SDNode *N)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, SDNodeFlags Flags)
Get the (commutative) neutral element for the given opcode, if it exists.
LLVM_ABI SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo)
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI bool LegalizeVectors()
This transforms the SelectionDAG into a SelectionDAG that only uses vector math operations supported ...
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags, bool AllowCommute=false)
Get the specified node if it's already available, or else return NULL.
SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT)
LLVM_ABI SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, uint64_t Index, uint32_t Attr)
Creates a PseudoProbeSDNode with function GUID Guid and the index of the block Index it is probing,...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDNode * SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT)
These are used for target selectors to mutate the specified node to have the specified return type,...
LLVM_ABI SelectionDAG(const TargetMachine &TM, CodeGenOptLevel)
LLVM_ABI SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
SDDbgInfo::DbgIterator ByvalParmDbgEnd() const
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
MachineModuleInfo * getMMI() const
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num)
Like ReplaceAllUsesOfValueWith, but for multiple values at once.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
bool isSafeToSpeculativelyExecute(unsigned Opcode) const
Some opcodes may create immediate undefined behavior when used with some values (integer division-by-...
void addMMRAMetadata(const SDNode *Node, MDNode *MMRA)
Set MMRAMetadata to be associated with Node.
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
OverflowKind computeOverflowForSub(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the sub of 2 nodes can overflow.
void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, MachineFunctionAnalysisManager &AM, const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs)
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
SDDbgInfo::DbgIterator ByvalParmDbgBegin() const
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
void setFunctionLoweringInfo(FunctionLoweringInfo *FuncInfo)
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI bool calculateDivergence(SDNode *N)
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDNode * mutateStrictFPToFP(SDNode *Node)
Mutate the specified strict FP node to its non-strict equivalent, unlinking the node from its chain a...
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI bool canIgnoreSignBitOfZero(const SDUse &Use) const
Check if a use of a float value is insensitive to signed zeros.
SDValue getGLOBAL_OFFSET_TABLE(EVT VT)
Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
LLVM_ABI bool SignBitIsZeroFP(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero, for a floating-point value.
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
SelectionDAG(const SelectionDAG &)=delete
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
bool willNotOverflowSub(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the sub of 2 nodes can never overflow.
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
void addNoMergeSiteInfo(const SDNode *Node, bool NoMerge)
Set NoMergeSiteInfo to be associated with Node if NoMerge is true.
LLVM_ABI bool shouldOptForSize() const
std::pair< SDValue, SDValue > SplitVectorOperand(const SDNode *N, unsigned OpNo)
Split the node's operand with EXTRACT_SUBVECTOR and return the low/high part.
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
LLVM_ABI SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be an integer vector, to the vector-type VT,...
const STC & getSubtarget() const
SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI bool isEqualTo(SDValue A, SDValue B) const
Test whether two SDValues are known to compare equal.
std::optional< CalledGlobalInfo > getCalledGlobal(const SDNode *Node)
Return CalledGlobal associated with Node, or a nullopt if none exists.
static constexpr unsigned MaxRecursionDepth
LLVM_ABI SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth=0) const
Return true if this function can prove that Op is never poison.
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI void dump(bool Sorted=false) const
Dump the textual format of this DAG.
SelectionDAG & operator=(const SelectionDAG &)=delete
SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, MaybeAlign Alignment=std::nullopt, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
bool NewNodesMustHaveLegalTypes
When true, additional steps are taken to ensure that getConstant() and similar functions return DAG n...
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
MDNode * getHeapAllocSite(const SDNode *Node) const
Return HeapAllocSite associated with Node, or nullptr if none exists.
LLVM_ABI void salvageDebugInfo(SDNode &N)
To be invoked on an SDNode that is slated to be erased.
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags=0)
MDNode * getMMRAMetadata(const SDNode *Node) const
Return the MMRA MDNode associated with Node, or nullptr if none exists.
SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI std::pair< SDValue, SDValue > UnrollVectorOverflowOp(SDNode *N, unsigned ResNE=0)
Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
allnodes_const_iterator allnodes_end() const
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
LLVM_ABI std::pair< SDValue, SDValue > getStrcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, const CallInst *CI)
Lower a strcpy operation into a target library call and return the resulting chain and call result as...
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
SDDbgInfo::DbgIterator DbgEnd() const
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
CallSiteInfo getCallSiteInfo(const SDNode *Node)
Return CallSiteInfo associated with Node, or a default if none exists.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
allnodes_iterator allnodes_begin()
iterator_range< allnodes_const_iterator > allnodes() const
MDNode * getPCSections(const SDNode *Node) const
Return PCSections associated with Node, or nullptr if none exists.
ProfileSummaryInfo * getPSI() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
SDValue getTargetFrameIndex(int FI, EVT VT)
LLVM_ABI void Legalize()
This transforms the SelectionDAG into a SelectionDAG that is compatible with the target instruction s...
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI void setGraphAttrs(const SDNode *N, const char *Attrs)
Set graph attributes for a node. (eg. "color=red".)
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N, SDValue Glue)
LLVM_ABI bool LegalizeOp(SDNode *N, SmallSetVector< SDNode *, 16 > &UpdatedNodes)
Transforms a SelectionDAG node and any operands to it into a node that is compatible with the target ...
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
void addHeapAllocSite(const SDNode *Node, MDNode *MD)
Set HeapAllocSite to be associated with Node.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDDbgLabel * getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O)
Creates a SDDbgLabel node.
SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL)
Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
LLVM_ABI OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const
Determine if the result of the unsigned mul of 2 nodes can overflow.
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N, SDValue Glue)
LLVM_ABI void copyExtraInfo(SDNode *From, SDNode *To)
Copy extra info associated with one node to another.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI void setGraphColor(const SDNode *N, const char *Color)
Convenience for setting node color attribute.
SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
bool willNotOverflowMul(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the mul of 2 nodes can never overflow.
SDValue getSignedTargetConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
OverflowKind computeOverflowForMul(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the mul of 2 nodes can overflow.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getLoadFFVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachineMemOperand *MMO)
LLVM_ABI SDValue getTypeSize(const SDLoc &DL, EVT VT, TypeSize TS)
LLVM_ABI SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
LLVM_ABI void clear()
Clear state and free memory necessary to make this SelectionDAG ready to process a new block.
SDValue getCALLSEQ_END(SDValue Chain, uint64_t Size1, uint64_t Size2, SDValue Glue, const SDLoc &DL)
LLVM_ABI std::pair< SDValue, SDValue > getMemcmp(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, const CallInst *CI)
Lower a memcmp operation into a target library call and return the resulting chain and call result as...
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
LLVM_ABI SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getSrcValue(const Value *v)
Construct a node to track a Value* through the backend.
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const
Determine if the result of the signed mul of 2 nodes can overflow.
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
FlagInserter * getFlagInserter()
LLVM_ABI bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if '(Op & Mask) == Mask'.
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
bool hasDebugValues() const
Return true if there are any SDDbgValue nodes associated with this SelectionDAG.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDUse > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI void AddDbgLabel(SDDbgLabel *DB)
Add a dbg_label SDNode.
bool isConstantValueOfAnyType(SDValue N) const
SDDbgInfo::DbgLabelIterator DbgLabelEnd() const
SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
allnodes_iterator allnodes_end()
SDDbgInfo::DbgLabelIterator DbgLabelBegin() const
SDValue getInsertVectorElt(const SDLoc &DL, SDValue Vec, SDValue Elt, unsigned Idx)
Insert Elt into Vec at offset Idx.
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
MachineFunctionAnalysisManager * getMFAM()
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDDbgValue * getVRegDbgValue(DIVariable *Var, DIExpression *Expr, Register VReg, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a VReg SDDbgValue node.
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI std::string getGraphAttrs(const SDNode *N) const
Get graph attributes for a node.
LLVM_ABI SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI std::optional< unsigned > getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
bool getNoMergeSiteInfo(const SDNode *Node) const
Return NoMerge info associated with Node.
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, SDValue Offset)
LLVM_ABI std::pair< SDValue, SDValue > SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL)
Split the explicit vector length parameter of a VP operation.
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getMaskFromElementCount(const SDLoc &DL, EVT VT, ElementCount Len)
Return a vector with the first 'Len' lanes set to true and remaining lanes set to false.
SDDbgInfo::DbgIterator DbgBegin() const
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
OverflowKind computeOverflowForAdd(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the addition of 2 nodes can overflow.
LLVM_ABI SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDDbgValue * getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O)
Creates a constant SDDbgValue node.
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT)
LLVM_ABI SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, int FrameIndex)
Creates a LifetimeSDNode that starts (IsStart==true) or ends (IsStart==false) the lifetime of the Fra...
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the signed addition of 2 nodes can overflow.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
ilist< SDNode >::size_type allnodes_size() const
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
ilist< SDNode >::const_iterator allnodes_const_iterator
LLVM_ABI SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsCompressing=false)
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
const TargetLibraryInfo & getLibInfo() const
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
void addCalledGlobal(const SDNode *Node, const GlobalValue *GV, unsigned OpFlags)
Set CalledGlobal to be associated with Node.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
LLVM_ABI SDDbgValue * getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a FrameIndex SDDbgValue node.
const UniformityInfo * getUniformityInfo() const
LLVM_ABI SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
CodeGenOptLevel getOptLevel() const
LLVM_ABI SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getJumpTable(int JTI, EVT VT, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be of integer type, to the vector-type integer type VT,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void getTopologicallyOrderedNodes(SmallVectorImpl< const SDNode * > &SortedNodes) const
Get all the nodes in their topological order without modifying any states.
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to extend the Op as a pointer value assuming it was the smaller SrcTy ...
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
void setFlagInserter(FlagInserter *FI)
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
bool isSafeToSpeculativelyExecuteNode(const SDNode *N) const
Check if the provided node is save to speculatively executed given its current arguments.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT SVT, MachineMemOperand *MMO, bool IsCompressing=false)
const FunctionVarLocs * getFunctionVarLocs() const
Returns the result of the AssignmentTrackingAnalysis pass if it's available, otherwise return nullptr...
LLVM_ABI void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, SDValue &N2) const
Swap N1 and N2 if Opcode is a commutative binary opcode and the canonical form expects the opposite o...
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
void addCallSiteInfo(const SDNode *Node, CallSiteInfo &&CallInfo)
Set CallSiteInfo to be associated with Node.
SDValue getExtOrTrunc(bool IsSigned, SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign/zero-extending (dep...
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVM_ABI OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const
Determine if the result of the signed sub of 2 nodes can overflow.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
void addPCSections(const SDNode *Node, MDNode *MD)
Set PCSections to be associated with Node.
bool isGuaranteedNotToBePoison(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if this function can prove that Op is never poison.
SDValue getTargetConstantPool(MachineConstantPoolValue *C, EVT VT, MaybeAlign Align=std::nullopt, int Offset=0, unsigned TargetFlags=0)
LLVM_ABI SDValue getDeactivationSymbol(const GlobalValue *GV)
LLVM_ABI void clearGraphAttrs()
Clear all previously defined node graph attributes.
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
SDValue getSetCCVP(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Mask, SDValue EVL)
Helper function to make it easier to build VP_SETCCs if you just have an ISD::CondCode instead of an ...
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI std::pair< EVT, EVT > GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, bool *HiIsEmpty) const
Compute the VTs needed for the low/hi parts of a type, dependent on an enveloping VT that has been sp...
LLVM_ABI SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops)
Fold floating-point operations when all operands are constants and/or undefined.
SDValue getTargetConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offset=0, unsigned TargetFlags=0)
LLVM_ABI void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs)
Prepare this SelectionDAG to process code in the given MachineFunction.
LLVM_ABI std::optional< ConstantRange > getValidShiftAmountRange(SDValue V, const APInt &DemandedElts, unsigned Depth) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2)
void RepositionNode(allnodes_iterator Position, SDNode *N)
Move node N in the AllNodes list to be immediately before the given iterator Position.
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg)
A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDDbgValue * getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a SDDbgValue node.
LLVM_ABI void setSubgraphColor(SDNode *N, const char *Color)
Convenience for setting subgraph color attribute.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT)
DenormalMode getDenormalMode(EVT VT) const
Return the current function's default denormal handling kind for the given floating point type.
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
static unsigned getOpcode_EXTEND(unsigned Opcode)
Convert *_EXTEND_VECTOR_INREG to *_EXTEND opcode.
LLVM_ABI SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef< ISD::NodeType > CandidateBinOps, bool AllowPartials=false)
Match a binop + shuffle pyramid that represents a horizontal reduction over the elements of a vector ...
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_DUMP_METHOD void dumpDotGraph(const Twine &FileName, const Twine &Title)
Just dump dot graph to a user-provided path and title.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
ilist< SDNode >::iterator allnodes_iterator
LLVM_ABI bool LegalizeTypes()
This transforms the SelectionDAG into a SelectionDAG that only uses types natively supported by the t...
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:339
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
typename SuperClass::iterator iterator
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringMap - This is an unconventional map that is specialized for handling keys that are "strings",...
Definition StringMap.h:133
Provides information about what library functions are available for the current target.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
Primary interface to the complete machine description for the target machine.
TargetSubtargetInfo - Generic base class for all target subtargets.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM Value Representation.
Definition Value.h:75
typename base_list_type::const_iterator const_iterator
Definition ilist.h:122
A range adaptor for a pair of iterators.
This file defines classes to implement an intrusive doubly linked list class (i.e.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:818
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
Definition ISDOpcodes.h:511
@ POISON
POISON - A poison node.
Definition ISDOpcodes.h:236
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:600
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:852
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:909
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
Definition ISDOpcodes.h:280
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:843
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:795
@ UNDEF
UNDEF - An undefined node.
Definition ISDOpcodes.h:233
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:671
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:230
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:614
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:576
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
Definition ISDOpcodes.h:224
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:849
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition ISDOpcodes.h:810
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:898
@ GLOBAL_OFFSET_TABLE
The address of the GOT.
Definition ISDOpcodes.h:103
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:804
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:565
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:920
@ CALLSEQ_START
CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of a call sequence,...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:556
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
NodeAddr< NodeBase * > Node
Definition RDFGraph.h:381
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
GenericUniformityInfo< SSAContext > UniformityInfo
@ Offset
Definition DWP.cpp:532
GenericSSAContext< Function > SSAContext
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
FoldingSetBase::Node FoldingSetNode
Definition FoldingSet.h:408
AnalysisManager< MachineFunction > MachineFunctionAnalysisManager
iplist< T, Options... > ilist
Definition ilist.h:344
LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force=false)
AlignedCharArrayUnion< AtomicSDNode, TargetIndexSDNode, BlockAddressSDNode, GlobalAddressSDNode, PseudoProbeSDNode > LargestSDNode
A representation of the largest SDNode, for use in sizeof().
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
GlobalAddressSDNode MostAlignedSDNode
The SDNode class with the greatest alignment requirement.
CodeGenOptLevel
Code generation optimization level.
Definition CodeGen.h:82
CombineLevel
Definition DAGCombine.h:15
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1915
BumpPtrAllocatorImpl<> BumpPtrAllocator
The standard BumpPtrAllocator which just uses the default template parameters.
Definition Allocator.h:383
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:870
#define N
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition Metadata.h:761
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
DefaultFoldingSetTrait - This class provides default implementations for FoldingSetTrait implementati...
Definition FoldingSet.h:115
Represent subnormal handling kind for floating point instruction inputs and outputs.
Extended Value Type.
Definition ValueTypes.h:35
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
Definition ValueTypes.h:308
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID)
static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID)
static void Profile(const SDVTListNode &X, FoldingSetNodeID &ID)
FoldingSetTrait - This trait class is used to define behavior of how to "profile" (in the FoldingSet ...
Definition FoldingSet.h:145
static nodes_iterator nodes_begin(SelectionDAG *G)
static nodes_iterator nodes_end(SelectionDAG *G)
pointer_iterator< SelectionDAG::allnodes_iterator > nodes_iterator
This class contains a discriminated union of information about pointers in memory operands,...
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:106
These are IR-level optimization flags that may be propagated to SDNodes.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
DAGNodeDeletedListener(SelectionDAG &DAG, std::function< void(SDNode *, SDNode *)> Callback)
void NodeDeleted(SDNode *N, SDNode *E) override
The node N that was deleted and, if E is not null, an equivalent node E that replaced it.
std::function< void(SDNode *, SDNode *)> Callback
std::function< void(SDNode *)> Callback
void NodeInserted(SDNode *N) override
The node N that was inserted.
DAGNodeInsertedListener(SelectionDAG &DAG, std::function< void(SDNode *)> Callback)
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
static void deleteNode(SDNode *)
Use delete by default for iplist and ilist.
Definition ilist.h:41