99void SelectionDAG::DAGNodeDeletedListener::anchor() {}
100void SelectionDAG::DAGNodeInsertedListener::anchor() {}
102#define DEBUG_TYPE "selectiondag"
106 cl::desc(
"Gang up loads and stores generated by inlining of memcpy"));
109 cl::desc(
"Number limit for gluing ld/st of memcpy."),
114 cl::desc(
"DAG combiner limit number of steps when searching DAG "
115 "for predecessor nodes"));
153 if (
auto OptAPInt =
N->getOperand(0)->bitcastToAPInt()) {
155 N->getValueType(0).getVectorElementType().getSizeInBits();
156 SplatVal = OptAPInt->
trunc(EltSize);
166 unsigned SplatBitSize;
168 unsigned EltSize =
N->getValueType(0).getVectorElementType().getSizeInBits();
173 const bool IsBigEndian =
false;
174 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
175 EltSize, IsBigEndian) &&
176 EltSize == SplatBitSize;
184 while (
N->getOpcode() == ISD::BITCAST)
185 N =
N->getOperand(0).getNode();
194 unsigned i = 0, e =
N->getNumOperands();
197 while (i != e &&
N->getOperand(i).isUndef())
201 if (i == e)
return false;
213 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
214 if (OptAPInt->countr_one() < EltSize)
222 for (++i; i != e; ++i)
223 if (
N->getOperand(i) != NotZero && !
N->getOperand(i).isUndef())
230 while (
N->getOpcode() == ISD::BITCAST)
231 N =
N->getOperand(0).getNode();
240 bool IsAllUndef =
true;
253 if (
auto OptAPInt =
Op->bitcastToAPInt()) {
254 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
255 if (OptAPInt->countr_zero() < EltSize)
303 assert(
N->getValueType(0).isVector() &&
"Expected a vector!");
305 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
306 if (EltSize <= NewEltSize)
310 return (
N->getOperand(0).getValueType().getScalarSizeInBits() <=
315 return (
N->getOperand(0).getValueType().getScalarSizeInBits() <=
328 APInt C =
Op->getAsAPIntVal().trunc(EltSize);
329 if (
Signed &&
C.trunc(NewEltSize).sext(EltSize) !=
C)
331 if (!
Signed &&
C.trunc(NewEltSize).zext(EltSize) !=
C)
342 if (
N->getNumOperands() == 0)
348 return N->getOpcode() ==
ISD::FREEZE &&
N->getOperand(0).isUndef();
351template <
typename ConstNodeType>
353 std::function<
bool(ConstNodeType *)> Match,
354 bool AllowUndefs,
bool AllowTruncation) {
364 EVT SVT =
Op.getValueType().getScalarType();
365 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
366 if (AllowUndefs &&
Op.getOperand(i).isUndef()) {
373 if (!Cst || (!AllowTruncation && Cst->getValueType(0) != SVT) ||
388 bool AllowUndefs,
bool AllowTypeMismatch) {
389 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
395 return Match(LHSCst, RHSCst);
398 if (LHS.getOpcode() != RHS.getOpcode() ||
404 for (
unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
407 bool LHSUndef = AllowUndefs && LHSOp.
isUndef();
408 bool RHSUndef = AllowUndefs && RHSOp.
isUndef();
411 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
413 if (!AllowTypeMismatch && (LHSOp.
getValueType() != SVT ||
416 if (!Match(LHSCst, RHSCst))
438 switch (VecReduceOpcode) {
441 case ISD::VECREDUCE_FADD:
442 case ISD::VECREDUCE_SEQ_FADD:
443 case ISD::VP_REDUCE_FADD:
444 case ISD::VP_REDUCE_SEQ_FADD:
446 case ISD::VECREDUCE_FMUL:
447 case ISD::VECREDUCE_SEQ_FMUL:
448 case ISD::VP_REDUCE_FMUL:
449 case ISD::VP_REDUCE_SEQ_FMUL:
451 case ISD::VECREDUCE_ADD:
452 case ISD::VP_REDUCE_ADD:
454 case ISD::VECREDUCE_MUL:
455 case ISD::VP_REDUCE_MUL:
457 case ISD::VECREDUCE_AND:
458 case ISD::VP_REDUCE_AND:
460 case ISD::VECREDUCE_OR:
461 case ISD::VP_REDUCE_OR:
463 case ISD::VECREDUCE_XOR:
464 case ISD::VP_REDUCE_XOR:
466 case ISD::VECREDUCE_SMAX:
467 case ISD::VP_REDUCE_SMAX:
469 case ISD::VECREDUCE_SMIN:
470 case ISD::VP_REDUCE_SMIN:
472 case ISD::VECREDUCE_UMAX:
473 case ISD::VP_REDUCE_UMAX:
475 case ISD::VECREDUCE_UMIN:
476 case ISD::VP_REDUCE_UMIN:
478 case ISD::VECREDUCE_FMAX:
479 case ISD::VP_REDUCE_FMAX:
481 case ISD::VECREDUCE_FMIN:
482 case ISD::VP_REDUCE_FMIN:
484 case ISD::VECREDUCE_FMAXIMUM:
485 case ISD::VP_REDUCE_FMAXIMUM:
486 return ISD::FMAXIMUM;
487 case ISD::VECREDUCE_FMINIMUM:
488 case ISD::VP_REDUCE_FMINIMUM:
489 return ISD::FMINIMUM;
497#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
500#include "llvm/IR/VPIntrinsics.def"
508#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
509#define VP_PROPERTY_BINARYOP return true;
510#define END_REGISTER_VP_SDNODE(VPSD) break;
511#include "llvm/IR/VPIntrinsics.def"
520 case ISD::VP_REDUCE_ADD:
521 case ISD::VP_REDUCE_MUL:
522 case ISD::VP_REDUCE_AND:
523 case ISD::VP_REDUCE_OR:
524 case ISD::VP_REDUCE_XOR:
525 case ISD::VP_REDUCE_SMAX:
526 case ISD::VP_REDUCE_SMIN:
527 case ISD::VP_REDUCE_UMAX:
528 case ISD::VP_REDUCE_UMIN:
529 case ISD::VP_REDUCE_FMAX:
530 case ISD::VP_REDUCE_FMIN:
531 case ISD::VP_REDUCE_FMAXIMUM:
532 case ISD::VP_REDUCE_FMINIMUM:
533 case ISD::VP_REDUCE_FADD:
534 case ISD::VP_REDUCE_FMUL:
535 case ISD::VP_REDUCE_SEQ_FADD:
536 case ISD::VP_REDUCE_SEQ_FMUL:
546#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
549#include "llvm/IR/VPIntrinsics.def"
558#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
561#include "llvm/IR/VPIntrinsics.def"
571#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
572#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
573#define END_REGISTER_VP_SDNODE(VPOPC) break;
574#include "llvm/IR/VPIntrinsics.def"
583#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
584#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
585#define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
586#include "llvm/IR/VPIntrinsics.def"
633 bool isIntegerLike) {
658 bool IsInteger =
Type.isInteger();
663 unsigned Op = Op1 | Op2;
679 bool IsInteger =
Type.isInteger();
714 ID.AddPointer(VTList.
VTs);
720 for (
const auto &
Op :
Ops) {
721 ID.AddPointer(
Op.getNode());
722 ID.AddInteger(
Op.getResNo());
729 for (
const auto &
Op :
Ops) {
730 ID.AddPointer(
Op.getNode());
731 ID.AddInteger(
Op.getResNo());
744 switch (
N->getOpcode()) {
753 ID.AddPointer(
C->getConstantIntValue());
754 ID.AddBoolean(
C->isOpaque());
787 case ISD::PSEUDO_PROBE:
800 ID.AddInteger(CP->getAlign().value());
801 ID.AddInteger(CP->getOffset());
802 if (CP->isMachineConstantPoolEntry())
803 CP->getMachineCPVal()->addSelectionDAGCSEId(
ID);
805 ID.AddPointer(CP->getConstVal());
806 ID.AddInteger(CP->getTargetFlags());
818 ID.AddInteger(LD->getMemoryVT().getRawBits());
819 ID.AddInteger(LD->getRawSubclassData());
820 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
821 ID.AddInteger(LD->getMemOperand()->getFlags());
826 ID.AddInteger(ST->getMemoryVT().getRawBits());
827 ID.AddInteger(ST->getRawSubclassData());
828 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
829 ID.AddInteger(ST->getMemOperand()->getFlags());
840 case ISD::VP_LOAD_FF: {
842 ID.AddInteger(LD->getMemoryVT().getRawBits());
843 ID.AddInteger(LD->getRawSubclassData());
844 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
845 ID.AddInteger(LD->getMemOperand()->getFlags());
848 case ISD::VP_STORE: {
856 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
863 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
870 case ISD::VP_GATHER: {
878 case ISD::VP_SCATTER: {
910 case ISD::MSCATTER: {
918 case ISD::ATOMIC_CMP_SWAP:
919 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
920 case ISD::ATOMIC_SWAP:
921 case ISD::ATOMIC_LOAD_ADD:
922 case ISD::ATOMIC_LOAD_SUB:
923 case ISD::ATOMIC_LOAD_AND:
924 case ISD::ATOMIC_LOAD_CLR:
925 case ISD::ATOMIC_LOAD_OR:
926 case ISD::ATOMIC_LOAD_XOR:
927 case ISD::ATOMIC_LOAD_NAND:
928 case ISD::ATOMIC_LOAD_MIN:
929 case ISD::ATOMIC_LOAD_MAX:
930 case ISD::ATOMIC_LOAD_UMIN:
931 case ISD::ATOMIC_LOAD_UMAX:
932 case ISD::ATOMIC_LOAD:
933 case ISD::ATOMIC_STORE: {
947 case ISD::ADDRSPACECAST: {
969 case ISD::MDNODE_SDNODE:
977 ID.AddInteger(MN->getRawSubclassData());
978 ID.AddInteger(MN->getPointerInfo().getAddrSpace());
979 ID.AddInteger(MN->getMemOperand()->getFlags());
980 ID.AddInteger(MN->getMemoryVT().getRawBits());
1003 if (
N->getValueType(0) == MVT::Glue)
1006 switch (
N->getOpcode()) {
1008 case ISD::HANDLENODE:
1014 for (
unsigned i = 1, e =
N->getNumValues(); i != e; ++i)
1015 if (
N->getValueType(i) == MVT::Glue)
1032 if (
Node.use_empty())
1047 while (!DeadNodes.
empty()) {
1056 DUL->NodeDeleted(
N,
nullptr);
1059 RemoveNodeFromCSEMaps(
N);
1090 RemoveNodeFromCSEMaps(
N);
1094 DeleteNodeNotInCSEMaps(
N);
1097void SelectionDAG::DeleteNodeNotInCSEMaps(
SDNode *
N) {
1098 assert(
N->getIterator() != AllNodes.begin() &&
1099 "Cannot delete the entry node!");
1100 assert(
N->use_empty() &&
"Cannot delete a node that is not dead!");
1109 assert(!(V->isVariadic() && isParameter));
1111 ByvalParmDbgValues.push_back(V);
1113 DbgValues.push_back(V);
1116 DbgValMap[
Node].push_back(V);
1120 DbgValMapType::iterator
I = DbgValMap.find(
Node);
1121 if (
I == DbgValMap.end())
1123 for (
auto &Val:
I->second)
1124 Val->setIsInvalidated();
1128void SelectionDAG::DeallocateNode(
SDNode *
N) {
1151void SelectionDAG::verifyNode(
SDNode *
N)
const {
1152 switch (
N->getOpcode()) {
1154 if (
N->isTargetOpcode())
1158 EVT VT =
N->getValueType(0);
1159 assert(
N->getNumValues() == 1 &&
"Too many results!");
1161 "Wrong return type!");
1162 assert(
N->getNumOperands() == 2 &&
"Wrong number of operands!");
1163 assert(
N->getOperand(0).getValueType() ==
N->getOperand(1).getValueType() &&
1164 "Mismatched operand types!");
1166 "Wrong operand type!");
1168 "Wrong return type size");
1172 assert(
N->getNumValues() == 1 &&
"Too many results!");
1173 assert(
N->getValueType(0).isVector() &&
"Wrong return type!");
1174 assert(
N->getNumOperands() ==
N->getValueType(0).getVectorNumElements() &&
1175 "Wrong number of operands!");
1176 EVT EltVT =
N->getValueType(0).getVectorElementType();
1177 for (
const SDUse &
Op :
N->ops()) {
1178 assert((
Op.getValueType() == EltVT ||
1179 (EltVT.
isInteger() &&
Op.getValueType().isInteger() &&
1180 EltVT.
bitsLE(
Op.getValueType()))) &&
1181 "Wrong operand type!");
1182 assert(
Op.getValueType() ==
N->getOperand(0).getValueType() &&
1183 "Operands must all have the same type");
1195void SelectionDAG::InsertNode(SDNode *
N) {
1196 AllNodes.push_back(
N);
1198 N->PersistentId = NextPersistentId++;
1202 DUL->NodeInserted(
N);
1209bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *
N) {
1210 bool Erased =
false;
1211 switch (
N->getOpcode()) {
1212 case ISD::HANDLENODE:
return false;
1215 "Cond code doesn't exist!");
1224 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1230 Erased = MCSymbols.erase(MCSN->getMCSymbol());
1236 Erased = ExtendedValueTypeNodes.erase(VT);
1247 Erased = CSEMap.RemoveNode(
N);
1254 if (!Erased &&
N->getValueType(
N->getNumValues()-1) != MVT::Glue &&
1269SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *
N) {
1273 SDNode *Existing = CSEMap.GetOrInsertNode(
N);
1274 if (Existing !=
N) {
1285 DUL->NodeDeleted(
N, Existing);
1286 DeleteNodeNotInCSEMaps(
N);
1293 DUL->NodeUpdated(
N);
1300SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *
N,
SDValue Op,
1306 FoldingSetNodeID
ID;
1309 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1311 Node->intersectFlagsWith(
N->getFlags());
1319SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *
N,
1326 FoldingSetNodeID
ID;
1329 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1331 Node->intersectFlagsWith(
N->getFlags());
1344 FoldingSetNodeID
ID;
1347 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1349 Node->intersectFlagsWith(
N->getFlags());
1362 : TM(tm), OptLevel(OL), EntryNode(
ISD::EntryToken, 0,
DebugLoc(),
1365 InsertNode(&EntryNode);
1376 SDAGISelPass = PassPtr;
1380 LibInfo = LibraryInfo;
1381 Context = &MF->getFunction().getContext();
1386 FnVarLocs = VarLocs;
1390 assert(!UpdateListeners &&
"Dangling registered DAGUpdateListeners");
1392 OperandRecycler.clear(OperandAllocator);
1400void SelectionDAG::allnodes_clear() {
1401 assert(&*AllNodes.begin() == &EntryNode);
1402 AllNodes.remove(AllNodes.begin());
1403 while (!AllNodes.empty())
1404 DeallocateNode(&AllNodes.front());
1406 NextPersistentId = 0;
1412 SDNode *
N = CSEMap.FindNodeOrInsertPos(
ID, InsertPos);
1414 switch (
N->getOpcode()) {
1419 "debug location. Use another overload.");
1426 const SDLoc &
DL,
void *&InsertPos) {
1427 SDNode *
N = CSEMap.FindNodeOrInsertPos(
ID, InsertPos);
1429 switch (
N->getOpcode()) {
1435 if (
N->getDebugLoc() !=
DL.getDebugLoc())
1442 if (
DL.getIROrder() &&
DL.getIROrder() <
N->getIROrder())
1443 N->setDebugLoc(
DL.getDebugLoc());
1452 OperandRecycler.clear(OperandAllocator);
1453 OperandAllocator.Reset();
1456 ExtendedValueTypeNodes.clear();
1457 ExternalSymbols.clear();
1458 TargetExternalSymbols.clear();
1464 EntryNode.UseList =
nullptr;
1465 InsertNode(&EntryNode);
1471 return VT.
bitsGT(
Op.getValueType())
1477std::pair<SDValue, SDValue>
1481 "Strict no-op FP extend/round not allowed.");
1488 return std::pair<SDValue, SDValue>(Res,
SDValue(Res.
getNode(), 1));
1492 return VT.
bitsGT(
Op.getValueType()) ?
1498 return VT.
bitsGT(
Op.getValueType()) ?
1504 return VT.
bitsGT(
Op.getValueType()) ?
1512 auto Type =
Op.getValueType();
1516 auto Size =
Op.getValueSizeInBits();
1527 auto Type =
Op.getValueType();
1531 auto Size =
Op.getValueSizeInBits();
1542 auto Type =
Op.getValueType();
1546 auto Size =
Op.getValueSizeInBits();
1560 return getNode(TLI->getExtendForContent(BType), SL, VT,
Op);
1564 EVT OpVT =
Op.getValueType();
1566 "Cannot getZeroExtendInReg FP types");
1568 "getZeroExtendInReg type should be vector iff the operand "
1572 "Vector element counts must match in getZeroExtendInReg");
1584 EVT OpVT =
Op.getValueType();
1586 "Cannot getVPZeroExtendInReg FP types");
1588 "getVPZeroExtendInReg type and operand type should be vector!");
1590 "Vector element counts must match in getZeroExtendInReg");
1629 return getNode(ISD::VP_XOR,
DL, VT, Val, TrueValue, Mask, EVL);
1640 return getNode(ISD::VP_ZERO_EXTEND,
DL, VT,
Op, Mask, EVL);
1642 return getNode(ISD::VP_TRUNCATE,
DL, VT,
Op, Mask, EVL);
1651 switch (TLI->getBooleanContents(OpVT)) {
1662 bool isT,
bool isO) {
1668 bool isT,
bool isO) {
1669 return getConstant(*ConstantInt::get(*Context, Val),
DL, VT, isT, isO);
1673 EVT VT,
bool isT,
bool isO) {
1690 EltVT = TLI->getTypeToTransformTo(*
getContext(), EltVT);
1696 Elt = ConstantInt::get(*
getContext(), NewVal);
1708 EVT ViaEltVT = TLI->getTypeToTransformTo(*
getContext(), EltVT);
1715 "Can only handle an even split!");
1719 for (
unsigned i = 0; i != Parts; ++i)
1721 NewVal.
extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits),
DL,
1722 ViaEltVT, isT, isO));
1727 unsigned ViaVecNumElts = VT.
getSizeInBits() / ViaEltSizeInBits;
1738 NewVal.
extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits),
DL,
1739 ViaEltVT, isT, isO));
1744 std::reverse(EltParts.
begin(), EltParts.
end());
1763 "APInt size does not match type size!");
1772 if ((
N = FindNodeOrInsertPos(
ID,
DL, IP)))
1777 N = newSDNode<ConstantSDNode>(isT, isO, Elt, VTs);
1778 CSEMap.InsertNode(
N, IP);
1790 bool isT,
bool isO) {
1798 IsTarget, IsOpaque);
1830 EVT VT,
bool isTarget) {
1851 if ((
N = FindNodeOrInsertPos(
ID,
DL, IP)))
1856 N = newSDNode<ConstantFPSDNode>(isTarget, Elt, VTs);
1857 CSEMap.InsertNode(
N, IP);
1871 if (EltVT == MVT::f32)
1873 if (EltVT == MVT::f64)
1875 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1876 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1887 EVT VT, int64_t
Offset,
bool isTargetGA,
1888 unsigned TargetFlags) {
1889 assert((TargetFlags == 0 || isTargetGA) &&
1890 "Cannot set target flags on target-independent globals");
1908 ID.AddInteger(TargetFlags);
1910 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
1913 auto *
N = newSDNode<GlobalAddressSDNode>(
1914 Opc,
DL.getIROrder(),
DL.getDebugLoc(), GV, VTs,
Offset, TargetFlags);
1915 CSEMap.InsertNode(
N, IP);
1927 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1930 auto *
N = newSDNode<FrameIndexSDNode>(FI, VTs, isTarget);
1931 CSEMap.InsertNode(
N, IP);
1937 unsigned TargetFlags) {
1938 assert((TargetFlags == 0 || isTarget) &&
1939 "Cannot set target flags on target-independent jump tables");
1945 ID.AddInteger(TargetFlags);
1947 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1950 auto *
N = newSDNode<JumpTableSDNode>(JTI, VTs, isTarget, TargetFlags);
1951 CSEMap.InsertNode(
N, IP);
1959 return getNode(ISD::JUMP_TABLE_DEBUG_INFO,
DL, MVT::Glue, Chain,
1965 bool isTarget,
unsigned TargetFlags) {
1966 assert((TargetFlags == 0 || isTarget) &&
1967 "Cannot set target flags on target-independent globals");
1976 ID.AddInteger(Alignment->value());
1979 ID.AddInteger(TargetFlags);
1981 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1984 auto *
N = newSDNode<ConstantPoolSDNode>(isTarget,
C, VTs,
Offset, *Alignment,
1986 CSEMap.InsertNode(
N, IP);
1995 bool isTarget,
unsigned TargetFlags) {
1996 assert((TargetFlags == 0 || isTarget) &&
1997 "Cannot set target flags on target-independent globals");
2004 ID.AddInteger(Alignment->value());
2006 C->addSelectionDAGCSEId(
ID);
2007 ID.AddInteger(TargetFlags);
2009 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2012 auto *
N = newSDNode<ConstantPoolSDNode>(isTarget,
C, VTs,
Offset, *Alignment,
2014 CSEMap.InsertNode(
N, IP);
2024 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2027 auto *
N = newSDNode<BasicBlockSDNode>(
MBB);
2028 CSEMap.InsertNode(
N, IP);
2035 ValueTypeNodes.size())
2042 N = newSDNode<VTSDNode>(VT);
2048 SDNode *&
N = ExternalSymbols[Sym];
2050 N = newSDNode<ExternalSymbolSDNode>(
false, Sym, 0,
getVTList(VT));
2059 N = newSDNode<MCSymbolSDNode>(Sym,
getVTList(VT));
2065 unsigned TargetFlags) {
2067 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
2069 N = newSDNode<ExternalSymbolSDNode>(
true, Sym, TargetFlags,
getVTList(VT));
2075 if ((
unsigned)
Cond >= CondCodeNodes.size())
2076 CondCodeNodes.resize(
Cond+1);
2078 if (!CondCodeNodes[
Cond]) {
2079 auto *
N = newSDNode<CondCodeSDNode>(
Cond);
2080 CondCodeNodes[
Cond] =
N;
2088 bool ConstantFold) {
2090 "APInt size does not match type size!");
2107 bool ConstantFold) {
2108 if (EC.isScalable())
2121 const APInt &StepVal) {
2145 "Must have the same number of vector elements as mask elements!");
2147 "Invalid VECTOR_SHUFFLE");
2155 int NElts = Mask.size();
2157 [&](
int M) {
return M < (NElts * 2) && M >= -1; }) &&
2158 "Index out of range");
2166 for (
int i = 0; i != NElts; ++i)
2167 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2174 if (TLI->hasVectorBlend()) {
2183 for (
int i = 0; i < NElts; ++i) {
2184 if (MaskVec[i] <
Offset || MaskVec[i] >= (
Offset + NElts))
2188 if (UndefElements[MaskVec[i] -
Offset]) {
2194 if (!UndefElements[i])
2199 BlendSplat(N1BV, 0);
2201 BlendSplat(N2BV, NElts);
2206 bool AllLHS =
true, AllRHS =
true;
2208 for (
int i = 0; i != NElts; ++i) {
2209 if (MaskVec[i] >= NElts) {
2214 }
else if (MaskVec[i] >= 0) {
2218 if (AllLHS && AllRHS)
2220 if (AllLHS && !N2Undef)
2233 bool Identity =
true, AllSame =
true;
2234 for (
int i = 0; i != NElts; ++i) {
2235 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity =
false;
2236 if (MaskVec[i] != MaskVec[0]) AllSame =
false;
2238 if (Identity && NElts)
2247 while (V.getOpcode() == ISD::BITCAST)
2271 if (AllSame && SameNumElts) {
2272 EVT BuildVT = BV->getValueType(0);
2279 NewBV =
getNode(ISD::BITCAST, dl, VT, NewBV);
2289 for (
int i = 0; i != NElts; ++i)
2290 ID.AddInteger(MaskVec[i]);
2293 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
2299 int *MaskAlloc = OperandAllocator.Allocate<
int>(NElts);
2302 auto *
N = newSDNode<ShuffleVectorSDNode>(VTs, dl.
getIROrder(),
2304 createOperands(
N,
Ops);
2306 CSEMap.InsertNode(
N, IP);
2327 ID.AddInteger(Reg.id());
2329 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2332 auto *
N = newSDNode<RegisterSDNode>(Reg, VTs);
2333 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(
N, FLI, UA);
2334 CSEMap.InsertNode(
N, IP);
2342 ID.AddPointer(RegMask);
2344 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2347 auto *
N = newSDNode<RegisterMaskSDNode>(RegMask);
2348 CSEMap.InsertNode(
N, IP);
2363 ID.AddPointer(Label);
2365 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2370 createOperands(
N,
Ops);
2372 CSEMap.InsertNode(
N, IP);
2378 int64_t
Offset,
bool isTarget,
2379 unsigned TargetFlags) {
2387 ID.AddInteger(TargetFlags);
2389 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2392 auto *
N = newSDNode<BlockAddressSDNode>(
Opc, VTs, BA,
Offset, TargetFlags);
2393 CSEMap.InsertNode(
N, IP);
2404 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2407 auto *
N = newSDNode<SrcValueSDNode>(V);
2408 CSEMap.InsertNode(
N, IP);
2419 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2422 auto *
N = newSDNode<MDNodeSDNode>(MD);
2423 CSEMap.InsertNode(
N, IP);
2429 if (VT == V.getValueType())
2436 unsigned SrcAS,
unsigned DestAS) {
2441 ID.AddInteger(SrcAS);
2442 ID.AddInteger(DestAS);
2445 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
2449 VTs, SrcAS, DestAS);
2450 createOperands(
N,
Ops);
2452 CSEMap.InsertNode(
N, IP);
2464 EVT OpTy =
Op.getValueType();
2466 if (OpTy == ShTy || OpTy.
isVector())
return Op;
2481 if (
Op.getNode() != FPNode)
2485 while (!Worklist.
empty()) {
2496 if (
Node == FPNode ||
Node->getOpcode() == ISD::CALLSEQ_START)
2499 if (
Node->getOpcode() == ISD::CALLSEQ_END) {
2518 std::optional<unsigned> CallRetResNo) {
2520 EVT VT =
Node->getValueType(0);
2521 unsigned NumResults =
Node->getNumValues();
2523 if (LC == RTLIB::UNKNOWN_LIBCALL)
2526 const char *LCName = TLI->getLibcallName(LC);
2530 auto getVecDesc = [&]() ->
VecDesc const * {
2531 for (
bool Masked : {
false,
true}) {
2542 if (VT.
isVector() && !(VD = getVecDesc()))
2553 SDValue StoreValue = ST->getValue();
2554 unsigned ResNo = StoreValue.
getResNo();
2556 if (CallRetResNo == ResNo)
2559 if (!ST->isSimple() || ST->getAddressSpace() != 0)
2562 if (StoresInChain && ST->getChain() != StoresInChain)
2566 if (ST->getAlign() <
2574 ResultStores[ResNo] = ST;
2575 StoresInChain = ST->getChain();
2582 EVT ArgVT =
Op.getValueType();
2584 Args.emplace_back(
Op, ArgTy);
2591 if (ResNo == CallRetResNo)
2593 EVT ResVT =
Node->getValueType(ResNo);
2595 ResultPtrs[ResNo] = ResultPtr;
2596 Args.emplace_back(ResultPtr,
PointerTy);
2608 Type *RetType = CallRetResNo.has_value()
2609 ?
Node->getValueType(*CallRetResNo).getTypeForEVT(Ctx)
2616 TLI->getLibcallCallingConv(LC), RetType, Callee, std::move(Args));
2618 auto [
Call, CallChain] = TLI->LowerCallTo(CLI);
2621 if (ResNo == CallRetResNo) {
2627 getLoad(
Node->getValueType(ResNo),
DL, CallChain, ResultPtr, PtrInfo);
2633 PtrInfo = ST->getPointerInfo();
2639 Results.push_back(LoadResult);
2649 EVT VT =
Node->getValueType(0);
2658 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2696 Align RedAlign = UseABI ?
DL.getABITypeAlign(Ty) :
DL.getPrefTypeAlign(Ty);
2698 if (TLI->isTypeLegal(VT) || !VT.
isVector())
2706 if (RedAlign > StackAlign) {
2709 unsigned NumIntermediates;
2710 TLI->getVectorTypeBreakdown(*
getContext(), VT, IntermediateVT,
2711 NumIntermediates, RegisterVT);
2713 Align RedAlign2 = UseABI ?
DL.getABITypeAlign(Ty) :
DL.getPrefTypeAlign(Ty);
2714 if (RedAlign2 < RedAlign)
2715 RedAlign = RedAlign2;
2720 RedAlign = std::min(RedAlign, StackAlign);
2735 false,
nullptr, StackID);
2750 "Don't know how to choose the maximum size when creating a stack "
2759 Align Align = std::max(
DL.getPrefTypeAlign(Ty1),
DL.getPrefTypeAlign(Ty2));
2767 auto GetUndefBooleanConstant = [&]() {
2769 TLI->getBooleanContents(OpVT) ==
2806 return GetUndefBooleanConstant();
2811 return GetUndefBooleanConstant();
2820 const APInt &C2 = N2C->getAPIntValue();
2822 const APInt &C1 = N1C->getAPIntValue();
2832 if (N1CFP && N2CFP) {
2837 return GetUndefBooleanConstant();
2842 return GetUndefBooleanConstant();
2848 return GetUndefBooleanConstant();
2853 return GetUndefBooleanConstant();
2858 return GetUndefBooleanConstant();
2864 return GetUndefBooleanConstant();
2891 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.
getSimpleVT()))
2893 return getSetCC(dl, VT, N2, N1, SwappedCond);
2894 }
else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2909 return GetUndefBooleanConstant();
2920 unsigned BitWidth =
Op.getScalarValueSizeInBits();
2928 unsigned Depth)
const {
2936 const APInt &DemandedElts,
2937 unsigned Depth)
const {
2944 unsigned Depth )
const {
2950 unsigned Depth)
const {
2955 const APInt &DemandedElts,
2956 unsigned Depth)
const {
2957 EVT VT =
Op.getValueType();
2964 for (
unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2965 if (!DemandedElts[EltIdx])
2969 KnownZeroElements.
setBit(EltIdx);
2971 return KnownZeroElements;
2981 unsigned Opcode = V.getOpcode();
2982 EVT VT = V.getValueType();
2985 "scalable demanded bits are ignored");
2997 UndefElts = V.getOperand(0).isUndef()
3006 APInt UndefLHS, UndefRHS;
3015 (DemandedElts & UndefLHS) == (DemandedElts & UndefRHS)) {
3016 UndefElts = UndefLHS | UndefRHS;
3029 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *
this,
3046 for (
unsigned i = 0; i != NumElts; ++i) {
3052 if (!DemandedElts[i])
3054 if (Scl && Scl !=
Op)
3065 for (
int i = 0; i != (int)NumElts; ++i) {
3071 if (!DemandedElts[i])
3073 if (M < (
int)NumElts)
3076 DemandedRHS.
setBit(M - NumElts);
3088 auto CheckSplatSrc = [&](
SDValue Src,
const APInt &SrcElts) {
3090 return (SrcElts.popcount() == 1) ||
3092 (SrcElts & SrcUndefs).
isZero());
3094 if (!DemandedLHS.
isZero())
3095 return CheckSplatSrc(V.getOperand(0), DemandedLHS);
3096 return CheckSplatSrc(V.getOperand(1), DemandedRHS);
3102 if (Src.getValueType().isScalableVector())
3104 uint64_t Idx = V.getConstantOperandVal(1);
3105 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3107 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3109 UndefElts = UndefSrcElts.
extractBits(NumElts, Idx);
3120 if (Src.getValueType().isScalableVector())
3124 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts);
3126 UndefElts = UndefSrcElts.
trunc(NumElts);
3131 case ISD::BITCAST: {
3133 EVT SrcVT = Src.getValueType();
3143 if ((
BitWidth % SrcBitWidth) == 0) {
3145 unsigned Scale =
BitWidth / SrcBitWidth;
3147 APInt ScaledDemandedElts =
3149 for (
unsigned I = 0;
I != Scale; ++
I) {
3153 SubDemandedElts &= ScaledDemandedElts;
3157 if (!SubUndefElts.
isZero())
3171 EVT VT = V.getValueType();
3181 (AllowUndefs || !UndefElts);
3187 EVT VT = V.getValueType();
3188 unsigned Opcode = V.getOpcode();
3209 SplatIdx = (UndefElts & DemandedElts).
countr_one();
3224 if (!SVN->isSplat())
3226 int Idx = SVN->getSplatIndex();
3227 int NumElts = V.getValueType().getVectorNumElements();
3228 SplatIdx = Idx % NumElts;
3229 return V.getOperand(Idx / NumElts);
3241 if (LegalTypes && !TLI->isTypeLegal(SVT)) {
3244 LegalSVT = TLI->getTypeToTransformTo(*
getContext(), LegalSVT);
3245 if (LegalSVT.
bitsLT(SVT))
3253std::optional<ConstantRange>
3255 unsigned Depth)
const {
3258 "Unknown shift node");
3260 unsigned BitWidth = V.getScalarValueSizeInBits();
3263 const APInt &ShAmt = Cst->getAPIntValue();
3265 return std::nullopt;
3270 const APInt *MinAmt =
nullptr, *MaxAmt =
nullptr;
3271 for (
unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3272 if (!DemandedElts[i])
3276 MinAmt = MaxAmt =
nullptr;
3279 const APInt &ShAmt = SA->getAPIntValue();
3281 return std::nullopt;
3282 if (!MinAmt || MinAmt->
ugt(ShAmt))
3284 if (!MaxAmt || MaxAmt->ult(ShAmt))
3287 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
3288 "Failed to find matching min/max shift amounts");
3289 if (MinAmt && MaxAmt)
3299 return std::nullopt;
3302std::optional<unsigned>
3304 unsigned Depth)
const {
3307 "Unknown shift node");
3308 if (std::optional<ConstantRange> AmtRange =
3310 if (
const APInt *ShAmt = AmtRange->getSingleElement())
3311 return ShAmt->getZExtValue();
3312 return std::nullopt;
3315std::optional<unsigned>
3317 EVT VT = V.getValueType();
3324std::optional<unsigned>
3326 unsigned Depth)
const {
3329 "Unknown shift node");
3330 if (std::optional<ConstantRange> AmtRange =
3332 return AmtRange->getUnsignedMin().getZExtValue();
3333 return std::nullopt;
3336std::optional<unsigned>
3338 EVT VT = V.getValueType();
3345std::optional<unsigned>
3347 unsigned Depth)
const {
3350 "Unknown shift node");
3351 if (std::optional<ConstantRange> AmtRange =
3353 return AmtRange->getUnsignedMax().getZExtValue();
3354 return std::nullopt;
3357std::optional<unsigned>
3359 EVT VT = V.getValueType();
3370 EVT VT =
Op.getValueType();
3385 unsigned Depth)
const {
3386 unsigned BitWidth =
Op.getScalarValueSizeInBits();
3390 if (
auto OptAPInt =
Op->bitcastToAPInt()) {
3400 assert((!
Op.getValueType().isFixedLengthVector() ||
3401 NumElts ==
Op.getValueType().getVectorNumElements()) &&
3402 "Unexpected vector size");
3407 unsigned Opcode =
Op.getOpcode();
3415 "Expected SPLAT_VECTOR implicit truncation");
3422 unsigned ScalarSize =
Op.getOperand(0).getScalarValueSizeInBits();
3424 "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3431 const APInt &Step =
Op.getConstantOperandAPInt(0);
3440 const APInt MinNumElts =
3446 .
umul_ov(MinNumElts, Overflow);
3450 const APInt MaxValue = (MaxNumElts - 1).
umul_ov(Step, Overflow);
3458 assert(!
Op.getValueType().isScalableVector());
3461 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
3462 if (!DemandedElts[i])
3471 "Expected BUILD_VECTOR implicit truncation");
3495 assert(!
Op.getValueType().isScalableVector());
3498 APInt DemandedLHS, DemandedRHS;
3502 DemandedLHS, DemandedRHS))
3507 if (!!DemandedLHS) {
3515 if (!!DemandedRHS) {
3524 const APInt &Multiplier =
Op.getConstantOperandAPInt(0);
3529 if (
Op.getValueType().isScalableVector())
3533 EVT SubVectorVT =
Op.getOperand(0).getValueType();
3535 unsigned NumSubVectors =
Op.getNumOperands();
3536 for (
unsigned i = 0; i != NumSubVectors; ++i) {
3538 DemandedElts.
extractBits(NumSubVectorElts, i * NumSubVectorElts);
3539 if (!!DemandedSub) {
3551 if (
Op.getValueType().isScalableVector())
3558 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
3560 APInt DemandedSrcElts = DemandedElts;
3561 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
3564 if (!!DemandedSubElts) {
3569 if (!!DemandedSrcElts) {
3579 if (
Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3582 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3583 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3588 if (
Op.getValueType().isScalableVector())
3592 if (DemandedElts != 1)
3602 case ISD::BITCAST: {
3603 if (
Op.getValueType().isScalableVector())
3623 if ((
BitWidth % SubBitWidth) == 0) {
3630 unsigned SubScale =
BitWidth / SubBitWidth;
3631 APInt SubDemandedElts(NumElts * SubScale, 0);
3632 for (
unsigned i = 0; i != NumElts; ++i)
3633 if (DemandedElts[i])
3634 SubDemandedElts.
setBit(i * SubScale);
3636 for (
unsigned i = 0; i != SubScale; ++i) {
3639 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3640 Known.
insertBits(Known2, SubBitWidth * Shifts);
3645 if ((SubBitWidth %
BitWidth) == 0) {
3646 assert(
Op.getValueType().isVector() &&
"Expected bitcast to vector");
3651 unsigned SubScale = SubBitWidth /
BitWidth;
3652 APInt SubDemandedElts =
3657 for (
unsigned i = 0; i != NumElts; ++i)
3658 if (DemandedElts[i]) {
3659 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3690 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3694 Op.getOperand(0), DemandedElts,
false,
Depth + 1);
3700 if (
Op->getFlags().hasNoSignedWrap() &&
3701 Op.getOperand(0) ==
Op.getOperand(1) &&
3728 unsigned SignBits1 =
3732 unsigned SignBits0 =
3738 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3741 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3742 if (
Op.getResNo() == 0)
3749 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3752 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3753 if (
Op.getResNo() == 0)
3806 if (
Op.getResNo() != 1)
3812 if (TLI->getBooleanContents(
Op.getValueType().isVector(),
false) ==
3821 unsigned OpNo =
Op->isStrictFPOpcode() ? 1 : 0;
3823 if (TLI->getBooleanContents(
Op.getOperand(OpNo).getValueType()) ==
3833 bool NUW =
Op->getFlags().hasNoUnsignedWrap();
3834 bool NSW =
Op->getFlags().hasNoSignedWrap();
3841 if (std::optional<unsigned> ShMinAmt =
3850 Op->getFlags().hasExact());
3853 if (std::optional<unsigned> ShMinAmt =
3861 Op->getFlags().hasExact());
3867 unsigned Amt =
C->getAPIntValue().urem(
BitWidth);
3882 unsigned Amt =
C->getAPIntValue().urem(
BitWidth);
3888 DemandedElts,
Depth + 1);
3909 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3912 unsigned LoBits =
Op.getOperand(0).getScalarValueSizeInBits();
3913 unsigned HiBits =
Op.getOperand(1).getScalarValueSizeInBits();
3916 Known = Known2.
concat(Known);
3930 if (
Op.getResNo() == 0)
3975 (Opcode == ISD::MGATHER)
3987 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3992 !
Op.getValueType().isScalableVector()) {
4005 for (
unsigned i = 0; i != NumElts; ++i) {
4006 if (!DemandedElts[i])
4016 APInt Value = CFP->getValueAPF().bitcastToAPInt();
4035 }
else if (
Op.getResNo() == 0) {
4036 unsigned ScalarMemorySize = LD->getMemoryVT().getScalarSizeInBits();
4037 KnownBits KnownScalarMemory(ScalarMemorySize);
4038 if (
const MDNode *MD = LD->getRanges())
4049 Known = KnownScalarMemory;
4056 if (
Op.getValueType().isScalableVector())
4058 EVT InVT =
Op.getOperand(0).getValueType();
4070 if (
Op.getValueType().isScalableVector())
4072 EVT InVT =
Op.getOperand(0).getValueType();
4088 if (
Op.getValueType().isScalableVector())
4090 EVT InVT =
Op.getOperand(0).getValueType();
4110 Known.
Zero |= (~InMask);
4111 Known.
One &= (~Known.Zero);
4135 Op.getOpcode() ==
ISD::ADD, Flags.hasNoSignedWrap(),
4136 Flags.hasNoUnsignedWrap(), Known, Known2);
4143 if (
Op.getResNo() == 1) {
4145 if (TLI->getBooleanContents(
Op.getOperand(0).getValueType()) ==
4154 "We only compute knownbits for the difference here.");
4161 Borrow = Borrow.
trunc(1);
4175 if (
Op.getResNo() == 1) {
4177 if (TLI->getBooleanContents(
Op.getOperand(0).getValueType()) ==
4186 assert(
Op.getResNo() == 0 &&
"We only compute knownbits for the sum here.");
4196 Carry = Carry.
trunc(1);
4232 const unsigned Index =
Op.getConstantOperandVal(1);
4233 const unsigned EltBitWidth =
Op.getValueSizeInBits();
4240 Known = Known.
trunc(EltBitWidth);
4256 Known = Known.
trunc(EltBitWidth);
4262 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4272 if (
Op.getValueType().isScalableVector())
4281 bool DemandedVal =
true;
4282 APInt DemandedVecElts = DemandedElts;
4284 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4285 unsigned EltIdx = CEltNo->getZExtValue();
4286 DemandedVal = !!DemandedElts[EltIdx];
4294 if (!!DemandedVecElts) {
4312 Known = Known2.
abs();
4345 if (CstLow && CstHigh) {
4350 const APInt &ValueHigh = CstHigh->getAPIntValue();
4351 if (ValueLow.
sle(ValueHigh)) {
4354 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
4377 if (IsMax && CstLow) {
4405 case ISD::ATOMIC_LOAD: {
4407 if (
Op.getResNo() == 0) {
4409 unsigned ScalarMemorySize = AT->getMemoryVT().getScalarSizeInBits();
4410 KnownBits KnownScalarMemory(ScalarMemorySize);
4411 if (
const MDNode *MD = AT->getRanges())
4414 switch (AT->getExtensionType()) {
4422 switch (TLI->getExtendForAtomicOps()) {
4435 Known = KnownScalarMemory;
4442 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4443 if (
Op.getResNo() == 1) {
4448 if (TLI->getBooleanContents(
Op.getValueType().isVector(),
false) ==
4455 case ISD::ATOMIC_CMP_SWAP:
4456 case ISD::ATOMIC_SWAP:
4457 case ISD::ATOMIC_LOAD_ADD:
4458 case ISD::ATOMIC_LOAD_SUB:
4459 case ISD::ATOMIC_LOAD_AND:
4460 case ISD::ATOMIC_LOAD_CLR:
4461 case ISD::ATOMIC_LOAD_OR:
4462 case ISD::ATOMIC_LOAD_XOR:
4463 case ISD::ATOMIC_LOAD_NAND:
4464 case ISD::ATOMIC_LOAD_MIN:
4465 case ISD::ATOMIC_LOAD_MAX:
4466 case ISD::ATOMIC_LOAD_UMIN:
4467 case ISD::ATOMIC_LOAD_UMAX: {
4469 if (
Op.getResNo() == 0) {
4471 unsigned MemBits = AT->getMemoryVT().getScalarSizeInBits();
4493 if (
Op.getValueType().isScalableVector())
4497 TLI->computeKnownBitsForTargetNode(
Op, Known, DemandedElts, *
this,
Depth);
4639 return C->getAPIntValue().zextOrTrunc(
BitWidth).isPowerOf2();
4647 if (
C &&
C->getAPIntValue() == 1)
4657 if (
C &&
C->getAPIntValue().isSignMask())
4669 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4670 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4678 if (
C->getAPIntValue().zextOrTrunc(
BitWidth).isPowerOf2())
4716 return C1->getValueAPF().getExactLog2Abs() >= 0;
4725 EVT VT =
Op.getValueType();
4737 unsigned Depth)
const {
4738 EVT VT =
Op.getValueType();
4743 unsigned FirstAnswer = 1;
4746 const APInt &Val =
C->getAPIntValue();
4756 unsigned Opcode =
Op.getOpcode();
4761 return VTBits-Tmp+1;
4775 unsigned NumSrcBits =
Op.getOperand(0).getValueSizeInBits();
4777 if (NumSrcSignBits > (NumSrcBits - VTBits))
4778 return NumSrcSignBits - (NumSrcBits - VTBits);
4784 for (
unsigned i = 0, e =
Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4785 if (!DemandedElts[i])
4792 APInt T =
C->getAPIntValue().trunc(VTBits);
4793 Tmp2 =
T.getNumSignBits();
4797 if (
SrcOp.getValueSizeInBits() != VTBits) {
4799 "Expected BUILD_VECTOR implicit truncation");
4800 unsigned ExtraBits =
SrcOp.getValueSizeInBits() - VTBits;
4801 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4804 Tmp = std::min(Tmp, Tmp2);
4815 Tmp = std::min(Tmp, Tmp2);
4822 APInt DemandedLHS, DemandedRHS;
4826 DemandedLHS, DemandedRHS))
4829 Tmp = std::numeric_limits<unsigned>::max();
4832 if (!!DemandedRHS) {
4834 Tmp = std::min(Tmp, Tmp2);
4839 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
4843 case ISD::BITCAST: {
4855 if (VTBits == SrcBits)
4861 if ((SrcBits % VTBits) == 0) {
4864 unsigned Scale = SrcBits / VTBits;
4865 APInt SrcDemandedElts =
4875 for (
unsigned i = 0; i != NumElts; ++i)
4876 if (DemandedElts[i]) {
4877 unsigned SubOffset = i % Scale;
4878 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4879 SubOffset = SubOffset * VTBits;
4880 if (Tmp <= SubOffset)
4882 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4892 return VTBits - Tmp + 1;
4894 Tmp = VTBits -
Op.getOperand(0).getScalarValueSizeInBits();
4901 return std::max(Tmp, Tmp2);
4906 EVT SrcVT = Src.getValueType();
4914 if (std::optional<unsigned> ShAmt =
4916 Tmp = std::min(Tmp + *ShAmt, VTBits);
4919 if (std::optional<ConstantRange> ShAmtRange =
4921 unsigned MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
4922 unsigned MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
4930 EVT ExtVT = Ext.getValueType();
4931 SDValue Extendee = Ext.getOperand(0);
4933 unsigned SizeDifference =
4935 if (SizeDifference <= MinShAmt) {
4936 Tmp = SizeDifference +
4939 return Tmp - MaxShAmt;
4945 return Tmp - MaxShAmt;
4955 FirstAnswer = std::min(Tmp, Tmp2);
4965 if (Tmp == 1)
return 1;
4967 return std::min(Tmp, Tmp2);
4970 if (Tmp == 1)
return 1;
4972 return std::min(Tmp, Tmp2);
4984 if (CstLow && CstHigh) {
4989 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4990 return std::min(Tmp, Tmp2);
4999 return std::min(Tmp, Tmp2);
5007 return std::min(Tmp, Tmp2);
5011 if (
Op.getResNo() == 0 &&
Op.getOperand(0) ==
Op.getOperand(1))
5022 if (
Op.getResNo() != 1)
5028 if (TLI->getBooleanContents(VT.
isVector(),
false) ==
5036 unsigned OpNo =
Op->isStrictFPOpcode() ? 1 : 0;
5038 if (TLI->getBooleanContents(
Op.getOperand(OpNo).getValueType()) ==
5053 unsigned RotAmt =
C->getAPIntValue().urem(VTBits);
5057 RotAmt = (VTBits - RotAmt) % VTBits;
5061 if (Tmp > (RotAmt + 1))
return (Tmp - RotAmt);
5069 if (Tmp == 1)
return 1;
5074 if (CRHS->isAllOnes()) {
5080 if ((Known.
Zero | 1).isAllOnes())
5090 if (Tmp2 == 1)
return 1;
5091 return std::min(Tmp, Tmp2) - 1;
5094 if (Tmp2 == 1)
return 1;
5099 if (CLHS->isZero()) {
5104 if ((Known.
Zero | 1).isAllOnes())
5118 if (Tmp == 1)
return 1;
5119 return std::min(Tmp, Tmp2) - 1;
5123 if (SignBitsOp0 == 1)
5126 if (SignBitsOp1 == 1)
5128 unsigned OutValidBits =
5129 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
5130 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
5138 return std::min(Tmp, Tmp2);
5147 unsigned NumSrcBits =
Op.getOperand(0).getScalarValueSizeInBits();
5149 if (NumSrcSignBits > (NumSrcBits - VTBits))
5150 return NumSrcSignBits - (NumSrcBits - VTBits);
5157 const int BitWidth =
Op.getValueSizeInBits();
5158 const int Items =
Op.getOperand(0).getValueSizeInBits() /
BitWidth;
5162 const int rIndex = Items - 1 -
Op.getConstantOperandVal(1);
5177 bool DemandedVal =
true;
5178 APInt DemandedVecElts = DemandedElts;
5180 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
5181 unsigned EltIdx = CEltNo->getZExtValue();
5182 DemandedVal = !!DemandedElts[EltIdx];
5185 Tmp = std::numeric_limits<unsigned>::max();
5191 Tmp = std::min(Tmp, Tmp2);
5193 if (!!DemandedVecElts) {
5195 Tmp = std::min(Tmp, Tmp2);
5197 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5208 const unsigned BitWidth =
Op.getValueSizeInBits();
5209 const unsigned EltBitWidth =
Op.getOperand(0).getScalarValueSizeInBits();
5222 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
5232 if (Src.getValueType().isScalableVector())
5235 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5236 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5244 Tmp = std::numeric_limits<unsigned>::max();
5245 EVT SubVectorVT =
Op.getOperand(0).getValueType();
5247 unsigned NumSubVectors =
Op.getNumOperands();
5248 for (
unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
5250 DemandedElts.
extractBits(NumSubVectorElts, i * NumSubVectorElts);
5254 Tmp = std::min(Tmp, Tmp2);
5256 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5267 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
5269 APInt DemandedSrcElts = DemandedElts;
5270 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
5272 Tmp = std::numeric_limits<unsigned>::max();
5273 if (!!DemandedSubElts) {
5278 if (!!DemandedSrcElts) {
5280 Tmp = std::min(Tmp, Tmp2);
5282 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5287 if (
const MDNode *Ranges = LD->getRanges()) {
5288 if (DemandedElts != 1)
5293 switch (LD->getExtensionType()) {
5313 case ISD::ATOMIC_CMP_SWAP:
5314 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5315 case ISD::ATOMIC_SWAP:
5316 case ISD::ATOMIC_LOAD_ADD:
5317 case ISD::ATOMIC_LOAD_SUB:
5318 case ISD::ATOMIC_LOAD_AND:
5319 case ISD::ATOMIC_LOAD_CLR:
5320 case ISD::ATOMIC_LOAD_OR:
5321 case ISD::ATOMIC_LOAD_XOR:
5322 case ISD::ATOMIC_LOAD_NAND:
5323 case ISD::ATOMIC_LOAD_MIN:
5324 case ISD::ATOMIC_LOAD_MAX:
5325 case ISD::ATOMIC_LOAD_UMIN:
5326 case ISD::ATOMIC_LOAD_UMAX:
5327 case ISD::ATOMIC_LOAD: {
5330 if (
Op.getResNo() == 0) {
5331 Tmp = AT->getMemoryVT().getScalarSizeInBits();
5336 if (
Op->getOpcode() == ISD::ATOMIC_LOAD) {
5337 switch (AT->getExtensionType()) {
5341 return VTBits - Tmp + 1;
5343 return VTBits - Tmp;
5348 return VTBits - Tmp + 1;
5350 return VTBits - Tmp;
5357 if (
Op.getResNo() == 0) {
5360 unsigned ExtType = LD->getExtensionType();
5364 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5365 return VTBits - Tmp + 1;
5367 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5368 return VTBits - Tmp;
5370 if (
const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
5373 Type *CstTy = Cst->getType();
5378 for (
unsigned i = 0; i != NumElts; ++i) {
5379 if (!DemandedElts[i])
5384 Tmp = std::min(Tmp,
Value.getNumSignBits());
5388 APInt Value = CFP->getValueAPF().bitcastToAPInt();
5389 Tmp = std::min(Tmp,
Value.getNumSignBits());
5413 TLI->ComputeNumSignBitsForTargetNode(
Op, DemandedElts, *
this,
Depth);
5415 FirstAnswer = std::max(FirstAnswer, NumBits);
5426 unsigned Depth)
const {
5428 return Op.getScalarValueSizeInBits() - SignBits + 1;
5432 const APInt &DemandedElts,
5433 unsigned Depth)
const {
5435 return Op.getScalarValueSizeInBits() - SignBits + 1;
5439 unsigned Depth)
const {
5444 EVT VT =
Op.getValueType();
5452 const APInt &DemandedElts,
5454 unsigned Depth)
const {
5455 unsigned Opcode =
Op.getOpcode();
5484 for (
unsigned i = 0, e =
Op.getNumOperands(); i < e; ++i) {
5485 if (!DemandedElts[i])
5495 if (Src.getValueType().isScalableVector())
5498 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5499 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5505 if (
Op.getValueType().isScalableVector())
5510 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
5512 APInt DemandedSrcElts = DemandedElts;
5513 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
5527 EVT SrcVT = Src.getValueType();
5531 IndexC->getZExtValue());
5546 if (DemandedElts[IndexC->getZExtValue()] &&
5549 APInt InVecDemandedElts = DemandedElts;
5550 InVecDemandedElts.
clearBit(IndexC->getZExtValue());
5551 if (!!InVecDemandedElts &&
5576 APInt DemandedLHS, DemandedRHS;
5579 DemandedElts, DemandedLHS, DemandedRHS,
5582 if (!DemandedLHS.
isZero() &&
5586 if (!DemandedRHS.
isZero() &&
5634 return isGuaranteedNotToBeUndefOrPoison(V, DemandedElts,
5635 PoisonOnly, Depth + 1);
5647 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
5660 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
5666 unsigned Depth)
const {
5667 EVT VT =
Op.getValueType();
5677 unsigned Depth)
const {
5678 if (ConsiderFlags &&
Op->hasPoisonGeneratingFlags())
5681 unsigned Opcode =
Op.getOpcode();
5761 if (
Op.getOperand(0).getValueType().isInteger())
5768 unsigned CCOp = Opcode ==
ISD::SETCC ? 2 : 4;
5770 return (
unsigned)CCCode & 0x10U;
5790 case ISD::FP_EXTEND:
5816 EVT VecVT =
Op.getOperand(0).getValueType();
5825 for (
auto [Idx, Elt] :
enumerate(SVN->getMask()))
5826 if (Elt < 0 && DemandedElts[Idx])
5835 return TLI->canCreateUndefOrPoisonForTargetNode(
5845 unsigned Opcode =
Op.getOpcode();
5847 return Op->getFlags().hasDisjoint() ||
5860 unsigned Depth)
const {
5861 EVT VT =
Op.getValueType();
5874 bool SNaN,
unsigned Depth)
const {
5875 assert(!DemandedElts.
isZero() &&
"No demanded elements");
5886 return !
C->getValueAPF().isNaN() ||
5887 (SNaN && !
C->getValueAPF().isSignaling());
5890 unsigned Opcode =
Op.getOpcode();
5923 case ISD::FROUNDEVEN:
5929 case ISD::FNEARBYINT:
5943 case ISD::FP_EXTEND:
5965 case ISD::FMINIMUMNUM:
5966 case ISD::FMAXIMUMNUM: {
5972 case ISD::FMINNUM_IEEE:
5973 case ISD::FMAXNUM_IEEE: {
5984 case ISD::FMAXIMUM: {
5992 EVT SrcVT = Src.getValueType();
5996 Idx->getZExtValue());
6003 if (Src.getValueType().isFixedLengthVector()) {
6004 unsigned Idx =
Op.getConstantOperandVal(1);
6005 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
6006 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
6016 unsigned Idx =
Op.getConstantOperandVal(2);
6022 APInt DemandedMask =
6024 APInt DemandedSrcElts = DemandedElts & ~DemandedMask;
6027 bool NeverNaN =
true;
6028 if (!DemandedSrcElts.
isZero())
6031 if (NeverNaN && !DemandedSubElts.
isZero())
6040 unsigned NumElts =
Op.getNumOperands();
6041 for (
unsigned I = 0;
I != NumElts; ++
I)
6042 if (DemandedElts[
I] &&
6059 return TLI->isKnownNeverNaNForTargetNode(
Op, DemandedElts, *
this, SNaN,
6068 assert(
Op.getValueType().isFloatingPoint() &&
6069 "Floating point type expected");
6080 assert(!
Op.getValueType().isFloatingPoint() &&
6081 "Floating point types unsupported - use isKnownNeverZeroFloat");
6090 switch (
Op.getOpcode()) {
6104 if (
Op->getFlags().hasNoSignedWrap() ||
Op->getFlags().hasNoUnsignedWrap())
6108 if (ValKnown.
One[0])
6168 if (
Op->getFlags().hasExact())
6184 if (
Op->getFlags().hasExact())
6189 if (
Op->getFlags().hasNoUnsignedWrap())
6200 std::optional<bool> ne =
6207 if (
Op->getFlags().hasNoSignedWrap() ||
Op->getFlags().hasNoUnsignedWrap())
6218 const APInt &Multiplier =
Op.getConstantOperandAPInt(0);
6232 return !C1->isNegative();
6234 return Op.getOpcode() == ISD::FABS;
6239 if (
A ==
B)
return true;
6244 if (CA->isZero() && CB->isZero())
return true;
6279 NotOperand = NotOperand->getOperand(0);
6281 if (
Other == NotOperand)
6284 return NotOperand ==
Other->getOperand(0) ||
6285 NotOperand ==
Other->getOperand(1);
6291 A =
A->getOperand(0);
6294 B =
B->getOperand(0);
6297 return MatchNoCommonBitsPattern(
A->getOperand(0),
A->getOperand(1),
B) ||
6298 MatchNoCommonBitsPattern(
A->getOperand(1),
A->getOperand(0),
B);
6304 assert(
A.getValueType() ==
B.getValueType() &&
6305 "Values must have the same type");
6327 "BUILD_VECTOR cannot be used with scalable types");
6329 "Incorrect element count in BUILD_VECTOR!");
6337 bool IsIdentity =
true;
6338 for (
int i = 0; i !=
NumOps; ++i) {
6341 (IdentitySrc &&
Ops[i].getOperand(0) != IdentitySrc) ||
6343 Ops[i].getConstantOperandAPInt(1) != i) {
6347 IdentitySrc =
Ops[i].getOperand(0);
6360 assert(!
Ops.empty() &&
"Can't concatenate an empty list of vectors!");
6363 return Ops[0].getValueType() ==
Op.getValueType();
6365 "Concatenation of vectors with inconsistent value types!");
6368 "Incorrect element count in vector concatenation!");
6370 if (
Ops.size() == 1)
6381 bool IsIdentity =
true;
6382 for (
unsigned i = 0, e =
Ops.size(); i != e; ++i) {
6384 unsigned IdentityIndex = i *
Op.getValueType().getVectorMinNumElements();
6386 Op.getOperand(0).getValueType() != VT ||
6387 (IdentitySrc &&
Op.getOperand(0) != IdentitySrc) ||
6388 Op.getConstantOperandVal(1) != IdentityIndex) {
6392 assert((!IdentitySrc || IdentitySrc ==
Op.getOperand(0)) &&
6393 "Unexpected identity source vector for concat of extracts");
6394 IdentitySrc =
Op.getOperand(0);
6397 assert(IdentitySrc &&
"Failed to set source vector of extracts");
6412 EVT OpVT =
Op.getValueType();
6424 SVT = (SVT.
bitsLT(
Op.getValueType()) ?
Op.getValueType() : SVT);
6448 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
6451 auto *
N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6452 CSEMap.InsertNode(
N, IP);
6464 Flags = Inserter->getFlags();
6465 return getNode(Opcode,
DL, VT, N1, Flags);
6483 case ISD::FP_EXTEND:
6486 case ISD::FP_TO_FP16:
6487 case ISD::FP_TO_BF16:
6494 case ISD::FP16_TO_FP:
6495 case ISD::BF16_TO_FP:
6516 "STEP_VECTOR can only be used with scalable types");
6519 "Unexpected step operand");
6538 case ISD::FP_EXTEND:
6540 "Invalid FP cast!");
6544 "Vector element count mismatch!");
6562 "Invalid SIGN_EXTEND!");
6564 "SIGN_EXTEND result type type should be vector iff the operand "
6569 "Vector element count mismatch!");
6592 unsigned NumSignExtBits =
6603 "Invalid ZERO_EXTEND!");
6605 "ZERO_EXTEND result type type should be vector iff the operand "
6610 "Vector element count mismatch!");
6648 "Invalid ANY_EXTEND!");
6650 "ANY_EXTEND result type type should be vector iff the operand "
6655 "Vector element count mismatch!");
6680 "Invalid TRUNCATE!");
6682 "TRUNCATE result type type should be vector iff the operand "
6687 "Vector element count mismatch!");
6714 assert(VT.
isVector() &&
"This DAG node is restricted to vector types.");
6716 "The input must be the same size or smaller than the result.");
6719 "The destination vector type must have fewer lanes than the input.");
6729 "BSWAP types must be a multiple of 16 bits!");
6743 "Cannot BITCAST between types of different sizes!");
6745 if (OpOpcode == ISD::BITCAST)
6756 "Illegal SCALAR_TO_VECTOR node!");
6771 if (OpOpcode == ISD::FNEG)
6775 if (OpOpcode == ISD::FNEG)
6790 case ISD::VECREDUCE_ADD:
6792 return getNode(ISD::VECREDUCE_XOR,
DL, VT, N1);
6794 case ISD::VECREDUCE_SMIN:
6795 case ISD::VECREDUCE_UMAX:
6797 return getNode(ISD::VECREDUCE_OR,
DL, VT, N1);
6799 case ISD::VECREDUCE_SMAX:
6800 case ISD::VECREDUCE_UMIN:
6802 return getNode(ISD::VECREDUCE_AND,
DL, VT, N1);
6813 "Wrong operand type!");
6820 if (VT != MVT::Glue) {
6824 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
6825 E->intersectFlagsWith(Flags);
6829 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6831 createOperands(
N,
Ops);
6832 CSEMap.InsertNode(
N, IP);
6834 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6835 createOperands(
N,
Ops);
6869 if (!C2.getBoolValue())
6873 if (!C2.getBoolValue())
6877 if (!C2.getBoolValue())
6881 if (!C2.getBoolValue())
6901 return std::nullopt;
6906 bool IsUndef1,
const APInt &C2,
6908 if (!(IsUndef1 || IsUndef2))
6916 return std::nullopt;
6924 if (!TLI->isOffsetFoldingLegal(GA))
6929 int64_t
Offset = C2->getSExtValue();
6949 assert(
Ops.size() == 2 &&
"Div/rem should have 2 operands");
6956 [](
SDValue V) { return V.isUndef() ||
6957 isNullConstant(V); });
6995 const APInt &Val =
C->getAPIntValue();
6999 C->isTargetOpcode(),
C->isOpaque());
7006 C->isTargetOpcode(),
C->isOpaque());
7011 C->isTargetOpcode(),
C->isOpaque());
7013 C->isTargetOpcode(),
C->isOpaque());
7041 case ISD::FP16_TO_FP:
7042 case ISD::BF16_TO_FP: {
7059 if (VT == MVT::f16 &&
C->getValueType(0) == MVT::i16)
7061 if (VT == MVT::f32 &&
C->getValueType(0) == MVT::i32)
7063 if (VT == MVT::f64 &&
C->getValueType(0) == MVT::i64)
7065 if (VT == MVT::f128 &&
C->getValueType(0) == MVT::i128)
7099 case ISD::FP_EXTEND: {
7118 case ISD::FP_TO_FP16:
7119 case ISD::FP_TO_BF16: {
7126 return getConstant(V.bitcastToAPInt().getZExtValue(),
DL, VT);
7129 if (VT == MVT::i16 &&
C->getValueType(0) == MVT::f16)
7132 if (VT == MVT::i16 &&
C->getValueType(0) == MVT::bf16)
7135 if (VT == MVT::i32 &&
C->getValueType(0) == MVT::f32)
7138 if (VT == MVT::i64 &&
C->getValueType(0) == MVT::f64)
7139 return getConstant(V.bitcastToAPInt().getZExtValue(),
DL, VT);
7145 if (Opcode == ISD::BITCAST)
7156 if (C1->isOpaque() || C2->isOpaque())
7159 std::optional<APInt> FoldAttempt =
7160 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
7166 "Can't fold vectors ops with scalar operands");
7174 if (TLI->isCommutativeBinOp(Opcode))
7190 const APInt &Val = C1->getAPIntValue();
7191 return SignExtendInReg(Val, VT);
7204 ScalarOps.
push_back(SignExtendInReg(Val, OpVT));
7212 SignExtendInReg(
Ops[0].getConstantOperandAPInt(0),
7223 if (C1 && C2 && C3) {
7224 if (C1->isOpaque() || C2->isOpaque() || C3->isOpaque())
7226 const APInt &V1 = C1->getAPIntValue(), &V2 = C2->getAPIntValue(),
7227 &V3 = C3->getAPIntValue();
7243 if (C1 && C2 && C3) {
7264 Ops[0].getValueType() == VT &&
Ops[1].getValueType() == VT &&
7265 (
Ops[0].getOpcode() == ISD::BITCAST ||
7266 Ops[1].getOpcode() == ISD::BITCAST)) {
7277 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
7278 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
7282 Opcode, RawBits1[
I], UndefElts1[
I], RawBits2[
I], UndefElts2[
I]);
7293 BVEltVT = BV1->getOperand(0).getValueType();
7296 BVEltVT = BV2->getOperand(0).getValueType();
7302 DstBits, RawBits, DstUndefs,
7305 for (
unsigned I = 0, E = DstBits.
size();
I != E; ++
I) {
7323 ?
Ops[0].getConstantOperandAPInt(0) * RHSVal
7324 :
Ops[0].getConstantOperandAPInt(0) << RHSVal;
7329 auto IsScalarOrSameVectorSize = [NumElts](
const SDValue &
Op) {
7330 return !
Op.getValueType().isVector() ||
7331 Op.getValueType().getVectorElementCount() == NumElts;
7334 auto IsBuildVectorSplatVectorOrUndef = [](
const SDValue &
Op) {
7360 LegalSVT = TLI->getTypeToTransformTo(*
getContext(), LegalSVT);
7372 for (
unsigned I = 0;
I != NumVectorElts;
I++) {
7375 EVT InSVT =
Op.getValueType().getScalarType();
7418 if (LegalSVT != SVT)
7419 ScalarResult =
getNode(ExtendCode,
DL, LegalSVT, ScalarResult);
7433 if (
Ops.size() != 2)
7444 if (N1CFP && N2CFP) {
7474 case ISD::FMINIMUMNUM:
7476 case ISD::FMAXIMUMNUM:
7495 if (N1C && N1C->getValueAPF().isNegZero() && N2.
isUndef())
7518 if (SrcEltVT == DstEltVT)
7526 if (SrcBitSize == DstBitSize) {
7531 if (
Op.getValueType() != SrcEltVT)
7574 for (
unsigned I = 0, E = RawBits.
size();
I != E; ++
I) {
7575 if (UndefElements[
I])
7596 ID.AddInteger(
A.value());
7599 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
7603 newSDNode<AssertAlignSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs,
A);
7604 createOperands(
N, {Val});
7606 CSEMap.InsertNode(
N, IP);
7618 Flags = Inserter->getFlags();
7619 return getNode(Opcode,
DL, VT, N1, N2, Flags);
7624 if (!TLI->isCommutativeBinOp(Opcode))
7633 if ((N1C && !N2C) || (N1CFP && !N2CFP))
7647 "Operand is DELETED_NODE!");
7663 N2.
getValueType() == MVT::Other &&
"Invalid token factor!");
7667 if (N1 == N2)
return N1;
7683 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7685 N1.
getValueType() == VT &&
"Binary operator types must match!");
7688 if (N2CV && N2CV->
isZero())
7698 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7700 N1.
getValueType() == VT &&
"Binary operator types must match!");
7710 if (N2CV && N2CV->
isZero())
7724 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7726 N1.
getValueType() == VT &&
"Binary operator types must match!");
7729 if (N2C && (N1.
getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7731 const APInt &N2CImm = N2C->getAPIntValue();
7745 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7747 N1.
getValueType() == VT &&
"Binary operator types must match!");
7760 "Types of operands of UCMP/SCMP must match");
7762 "Operands and return type of must both be scalars or vectors");
7766 "Result and operands must have the same number of elements");
7772 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7774 N1.
getValueType() == VT &&
"Binary operator types must match!");
7778 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7780 N1.
getValueType() == VT &&
"Binary operator types must match!");
7786 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7788 N1.
getValueType() == VT &&
"Binary operator types must match!");
7794 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7796 N1.
getValueType() == VT &&
"Binary operator types must match!");
7807 N1.
getValueType() == VT &&
"Binary operator types must match!");
7815 "Invalid FCOPYSIGN!");
7818 if (N2C && (N1.
getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7820 const APInt &ShiftImm = N2C->getAPIntValue();
7832 "Shift operators return type must be the same as their first arg");
7834 "Shifts only work on integers");
7836 "Vector shift amounts must be in the same as their first arg");
7843 "Invalid use of small shift amount with oversized value!");
7850 if (N2CV && N2CV->
isZero())
7856 (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
7862 "AssertNoFPClass is used for a non-floating type");
7867 "FPClassTest value too large");
7876 "Cannot *_EXTEND_INREG FP types");
7878 "AssertSExt/AssertZExt type should be the vector element type "
7879 "rather than the vector type!");
7888 "Cannot *_EXTEND_INREG FP types");
7890 "SIGN_EXTEND_INREG type should be vector iff the operand "
7894 "Vector element counts must match in SIGN_EXTEND_INREG");
7896 if (
EVT == VT)
return N1;
7904 "FP_TO_*INT_SAT type should be vector iff the operand type is "
7908 "Vector element counts must match in FP_TO_*INT_SAT");
7910 "Type to saturate to must be a scalar.");
7917 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
7918 element type of the vector.");
7940 N2C->getZExtValue() % Factor);
7949 "BUILD_VECTOR used for scalable vectors");
7972 if (N1Op2C && N2C) {
8002 assert(N2C && (
unsigned)N2C->getZExtValue() < 2 &&
"Bad EXTRACT_ELEMENT!");
8006 "Wrong types for EXTRACT_ELEMENT!");
8017 unsigned Shift = ElementSize * N2C->getZExtValue();
8018 const APInt &Val = N1C->getAPIntValue();
8025 "Extract subvector VTs must be vectors!");
8027 "Extract subvector VTs must have the same element type!");
8029 "Cannot extract a scalable vector from a fixed length vector!");
8032 "Extract subvector must be from larger vector to smaller vector!");
8033 assert(N2C &&
"Extract subvector index must be a constant");
8037 "Extract subvector overflow!");
8038 assert(N2C->getAPIntValue().getBitWidth() ==
8040 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
8042 "Extract index is not a multiple of the output vector length");
8057 return N1.
getOperand(N2C->getZExtValue() / Factor);
8098 if (TLI->isCommutativeBinOp(Opcode)) {
8177 if (VT != MVT::Glue) {
8181 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
8182 E->intersectFlagsWith(Flags);
8186 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8188 createOperands(
N,
Ops);
8189 CSEMap.InsertNode(
N, IP);
8191 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8192 createOperands(
N,
Ops);
8205 Flags = Inserter->getFlags();
8206 return getNode(Opcode,
DL, VT, N1, N2, N3, Flags);
8215 "Operand is DELETED_NODE!");
8234 "SETCC operands must have the same type!");
8236 "SETCC type should be vector iff the operand type is vector!");
8239 "SETCC vector element counts must match!");
8259 "INSERT_VECTOR_ELT vector type mismatch");
8261 "INSERT_VECTOR_ELT scalar fp/int mismatch");
8264 "INSERT_VECTOR_ELT fp scalar type mismatch");
8267 "INSERT_VECTOR_ELT int scalar size mismatch");
8313 "Dest and insert subvector source types must match!");
8315 "Insert subvector VTs must be vectors!");
8317 "Insert subvector VTs must have the same element type!");
8319 "Cannot insert a scalable vector into a fixed length vector!");
8322 "Insert subvector must be from smaller vector to larger vector!");
8324 "Insert subvector index must be constant");
8328 "Insert subvector overflow!");
8331 "Constant index for INSERT_SUBVECTOR has an invalid size");
8375 case ISD::VP_TRUNCATE:
8376 case ISD::VP_SIGN_EXTEND:
8377 case ISD::VP_ZERO_EXTEND:
8386 assert(VT == VecVT &&
"Vector and result type don't match.");
8388 "All inputs must be vectors.");
8389 assert(VecVT == PassthruVT &&
"Vector and passthru types don't match.");
8391 "Vector and mask must have same number of elements.");
8398 case ISD::PARTIAL_REDUCE_UMLA:
8399 case ISD::PARTIAL_REDUCE_SMLA:
8400 case ISD::PARTIAL_REDUCE_SUMLA: {
8405 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8406 "node to have the same type!");
8408 "Expected the first operand of the PARTIAL_REDUCE_MLA node to have "
8409 "the same type as its result!");
8412 "Expected the element count of the second and third operands of the "
8413 "PARTIAL_REDUCE_MLA node to be a positive integer multiple of the "
8414 "element count of the first operand and the result!");
8416 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8417 "node to have an element type which is the same as or smaller than "
8418 "the element type of the first operand and result!");
8440 if (VT != MVT::Glue) {
8444 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
8445 E->intersectFlagsWith(Flags);
8449 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8451 createOperands(
N,
Ops);
8452 CSEMap.InsertNode(
N, IP);
8454 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8455 createOperands(
N,
Ops);
8475 Flags = Inserter->getFlags();
8476 return getNode(Opcode,
DL, VT, N1, N2, N3, N4, Flags);
8491 Flags = Inserter->getFlags();
8492 return getNode(Opcode,
DL, VT, N1, N2, N3, N4, N5, Flags);
8509 if (FI->getIndex() < 0)
8524 assert(
C->getAPIntValue().getBitWidth() == 8);
8529 return DAG.
getConstant(Val, dl, VT,
false, IsOpaque);
8534 assert(
Value.getValueType() == MVT::i8 &&
"memset with non-byte fill value?");
8550 if (VT !=
Value.getValueType())
8563 if (Slice.Array ==
nullptr) {
8566 return DAG.
getNode(ISD::BITCAST, dl, VT,
8572 unsigned NumVTBytes = NumVTBits / 8;
8573 unsigned NumBytes = std::min(NumVTBytes,
unsigned(Slice.Length));
8575 APInt Val(NumVTBits, 0);
8577 for (
unsigned i = 0; i != NumBytes; ++i)
8580 for (
unsigned i = 0; i != NumBytes; ++i)
8581 Val |= (
uint64_t)(
unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
8600 APInt(
Base.getValueSizeInBits().getFixedValue(),
8601 Offset.getKnownMinValue()));
8612 EVT BasePtrVT =
Ptr.getValueType();
8613 if (TLI->shouldPreservePtrArith(this->getMachineFunction().getFunction(),
8625 else if (Src->isAnyAdd() &&
8629 SrcDelta = Src.getConstantOperandVal(1);
8635 SrcDelta +
G->getOffset());
8651 assert(OutLoadChains.
size() &&
"Missing loads in memcpy inlining");
8652 assert(OutStoreChains.
size() &&
"Missing stores in memcpy inlining");
8654 for (
unsigned i = From; i < To; ++i) {
8656 GluedLoadChains.
push_back(OutLoadChains[i]);
8663 for (
unsigned i = From; i < To; ++i) {
8666 ST->getBasePtr(), ST->getMemoryVT(),
8667 ST->getMemOperand());
8689 std::vector<EVT> MemOps;
8690 bool DstAlignCanChange =
false;
8696 DstAlignCanChange =
true;
8698 if (!SrcAlign || Alignment > *SrcAlign)
8699 SrcAlign = Alignment;
8700 assert(SrcAlign &&
"SrcAlign must be set");
8704 bool isZeroConstant = CopyFromConstant && Slice.Array ==
nullptr;
8706 const MemOp Op = isZeroConstant
8710 *SrcAlign, isVol, CopyFromConstant);
8716 if (DstAlignCanChange) {
8717 Type *Ty = MemOps[0].getTypeForEVT(
C);
8718 Align NewAlign =
DL.getABITypeAlign(Ty);
8724 if (!
TRI->hasStackRealignment(MF))
8726 NewAlign = std::min(NewAlign, *StackAlign);
8728 if (NewAlign > Alignment) {
8732 Alignment = NewAlign;
8742 BatchAA && SrcVal &&
8750 unsigned NumMemOps = MemOps.size();
8752 for (
unsigned i = 0; i != NumMemOps; ++i) {
8757 if (VTSize >
Size) {
8760 assert(i == NumMemOps-1 && i != 0);
8761 SrcOff -= VTSize -
Size;
8762 DstOff -= VTSize -
Size;
8765 if (CopyFromConstant &&
8773 if (SrcOff < Slice.Length) {
8775 SubSlice.
move(SrcOff);
8778 SubSlice.
Array =
nullptr;
8780 SubSlice.
Length = VTSize;
8783 if (
Value.getNode()) {
8787 DstPtrInfo.
getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8792 if (!Store.getNode()) {
8801 bool isDereferenceable =
8804 if (isDereferenceable)
8819 DstPtrInfo.
getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
8829 unsigned NumLdStInMemcpy = OutStoreChains.
size();
8831 if (NumLdStInMemcpy) {
8837 for (
unsigned i = 0; i < NumLdStInMemcpy; ++i) {
8843 if (NumLdStInMemcpy <= GluedLdStLimit) {
8845 NumLdStInMemcpy, OutLoadChains,
8848 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
8849 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
8850 unsigned GlueIter = 0;
8852 for (
unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
8853 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
8854 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
8857 OutLoadChains, OutStoreChains);
8858 GlueIter += GluedLdStLimit;
8862 if (RemainingLdStInMemcpy) {
8864 RemainingLdStInMemcpy, OutLoadChains,
8876 bool isVol,
bool AlwaysInline,
8890 std::vector<EVT> MemOps;
8891 bool DstAlignCanChange =
false;
8897 DstAlignCanChange =
true;
8899 if (!SrcAlign || Alignment > *SrcAlign)
8900 SrcAlign = Alignment;
8901 assert(SrcAlign &&
"SrcAlign must be set");
8911 if (DstAlignCanChange) {
8912 Type *Ty = MemOps[0].getTypeForEVT(
C);
8913 Align NewAlign =
DL.getABITypeAlign(Ty);
8919 if (!
TRI->hasStackRealignment(MF))
8921 NewAlign = std::min(NewAlign, *StackAlign);
8923 if (NewAlign > Alignment) {
8927 Alignment = NewAlign;
8941 unsigned NumMemOps = MemOps.size();
8942 for (
unsigned i = 0; i < NumMemOps; i++) {
8947 bool isDereferenceable =
8950 if (isDereferenceable)
8956 SrcPtrInfo.
getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
8963 for (
unsigned i = 0; i < NumMemOps; i++) {
8969 Chain, dl, LoadValues[i],
8971 DstPtrInfo.
getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
9011 std::vector<EVT> MemOps;
9012 bool DstAlignCanChange =
false;
9019 DstAlignCanChange =
true;
9025 MemOp::Set(
Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
9029 if (DstAlignCanChange) {
9032 Align NewAlign =
DL.getABITypeAlign(Ty);
9038 if (!
TRI->hasStackRealignment(MF))
9040 NewAlign = std::min(NewAlign, *StackAlign);
9042 if (NewAlign > Alignment) {
9046 Alignment = NewAlign;
9052 unsigned NumMemOps = MemOps.size();
9055 EVT LargestVT = MemOps[0];
9056 for (
unsigned i = 1; i < NumMemOps; i++)
9057 if (MemOps[i].bitsGT(LargestVT))
9058 LargestVT = MemOps[i];
9065 for (
unsigned i = 0; i < NumMemOps; i++) {
9068 if (VTSize >
Size) {
9071 assert(i == NumMemOps-1 && i != 0);
9072 DstOff -= VTSize -
Size;
9079 if (VT.
bitsLT(LargestVT)) {
9094 SDValue TailValue = DAG.
getNode(ISD::BITCAST, dl, SVT, MemSetValue);
9099 assert(
Value.getValueType() == VT &&
"Value with wrong type.");
9126 bool AllowReturnsFirstArg) {
9132 AllowReturnsFirstArg &&
9136std::pair<SDValue, SDValue>
9139 const char *LibCallName = TLI->getLibcallName(RTLIB::MEMCMP);
9156 TLI->getLibcallCallingConv(RTLIB::MEMCMP),
9162 return TLI->LowerCallTo(CLI);
9169 const char *LibCallName = TLI->getLibcallName(RTLIB::STRLEN);
9189 return TLI->LowerCallTo(CLI);
9194 Align Alignment,
bool isVol,
bool AlwaysInline,
const CallInst *CI,
9203 if (ConstantSize->
isZero())
9207 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9208 isVol,
false, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9209 if (Result.getNode())
9216 SDValue Result = TSI->EmitTargetCodeForMemcpy(
9217 *
this, dl, Chain, Dst, Src,
Size, Alignment, isVol, AlwaysInline,
9218 DstPtrInfo, SrcPtrInfo);
9219 if (Result.getNode())
9226 assert(ConstantSize &&
"AlwaysInline requires a constant size!");
9228 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9229 isVol,
true, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9244 Args.emplace_back(Dst, PtrTy);
9245 Args.emplace_back(Src, PtrTy);
9249 bool IsTailCall =
false;
9250 const char *MemCpyName = TLI->getMemcpyName();
9252 if (OverrideTailCall.has_value()) {
9253 IsTailCall = *OverrideTailCall;
9262 TLI->getLibcallCallingConv(RTLIB::MEMCPY),
9263 Dst.getValueType().getTypeForEVT(*
getContext()),
9269 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9270 return CallResult.second;
9275 Type *SizeTy,
unsigned ElemSz,
9282 Args.emplace_back(Dst, ArgTy);
9283 Args.emplace_back(Src, ArgTy);
9284 Args.emplace_back(
Size, SizeTy);
9286 RTLIB::Libcall LibraryCall =
9288 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9302 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9303 return CallResult.second;
9309 std::optional<bool> OverrideTailCall,
9319 if (ConstantSize->
isZero())
9323 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9324 isVol,
false, DstPtrInfo, SrcPtrInfo, AAInfo);
9325 if (Result.getNode())
9333 TSI->EmitTargetCodeForMemmove(*
this, dl, Chain, Dst, Src,
Size,
9334 Alignment, isVol, DstPtrInfo, SrcPtrInfo);
9335 if (Result.getNode())
9348 Args.emplace_back(Dst, PtrTy);
9349 Args.emplace_back(Src, PtrTy);
9354 bool IsTailCall =
false;
9355 if (OverrideTailCall.has_value()) {
9356 IsTailCall = *OverrideTailCall;
9358 bool LowersToMemmove =
9359 TLI->getLibcallName(RTLIB::MEMMOVE) ==
StringRef(
"memmove");
9365 .
setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
9366 Dst.getValueType().getTypeForEVT(*
getContext()),
9373 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9374 return CallResult.second;
9379 Type *SizeTy,
unsigned ElemSz,
9386 Args.emplace_back(Dst, IntPtrTy);
9387 Args.emplace_back(Src, IntPtrTy);
9388 Args.emplace_back(
Size, SizeTy);
9390 RTLIB::Libcall LibraryCall =
9392 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9406 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9407 return CallResult.second;
9412 bool isVol,
bool AlwaysInline,
9421 if (ConstantSize->
isZero())
9426 isVol,
false, DstPtrInfo, AAInfo);
9428 if (Result.getNode())
9435 SDValue Result = TSI->EmitTargetCodeForMemset(
9436 *
this, dl, Chain, Dst, Src,
Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
9437 if (Result.getNode())
9444 assert(ConstantSize &&
"AlwaysInline requires a constant size!");
9447 isVol,
true, DstPtrInfo, AAInfo);
9449 "getMemsetStores must return a valid sequence when AlwaysInline");
9470 Args.emplace_back(
Size,
DL.getIntPtrType(Ctx));
9477 Args.emplace_back(Src, Src.getValueType().getTypeForEVT(Ctx));
9478 Args.emplace_back(
Size,
DL.getIntPtrType(Ctx));
9479 CLI.
setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
9480 Dst.getValueType().getTypeForEVT(Ctx),
9482 TLI->getPointerTy(
DL)),
9485 bool LowersToMemset =
9486 TLI->getLibcallName(RTLIB::MEMSET) ==
StringRef(
"memset");
9496 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9497 return CallResult.second;
9502 Type *SizeTy,
unsigned ElemSz,
9509 Args.emplace_back(
Size, SizeTy);
9511 RTLIB::Libcall LibraryCall =
9513 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9527 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9528 return CallResult.second;
9538 ID.AddInteger(getSyntheticNodeSubclassData<AtomicSDNode>(
9539 dl.
getIROrder(), Opcode, VTList, MemVT, MMO, ExtType));
9544 E->refineAlignment(MMO);
9545 E->refineRanges(MMO);
9550 VTList, MemVT, MMO, ExtType);
9551 createOperands(
N,
Ops);
9553 CSEMap.InsertNode(
N, IP);
9564 assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
9565 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
9575 assert((Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB ||
9576 Opcode == ISD::ATOMIC_LOAD_AND || Opcode == ISD::ATOMIC_LOAD_CLR ||
9577 Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR ||
9578 Opcode == ISD::ATOMIC_LOAD_NAND || Opcode == ISD::ATOMIC_LOAD_MIN ||
9579 Opcode == ISD::ATOMIC_LOAD_MAX || Opcode == ISD::ATOMIC_LOAD_UMIN ||
9580 Opcode == ISD::ATOMIC_LOAD_UMAX || Opcode == ISD::ATOMIC_LOAD_FADD ||
9581 Opcode == ISD::ATOMIC_LOAD_FSUB || Opcode == ISD::ATOMIC_LOAD_FMAX ||
9582 Opcode == ISD::ATOMIC_LOAD_FMIN ||
9583 Opcode == ISD::ATOMIC_LOAD_FMINIMUM ||
9584 Opcode == ISD::ATOMIC_LOAD_FMAXIMUM ||
9585 Opcode == ISD::ATOMIC_LOAD_UINC_WRAP ||
9586 Opcode == ISD::ATOMIC_LOAD_UDEC_WRAP ||
9587 Opcode == ISD::ATOMIC_LOAD_USUB_COND ||
9588 Opcode == ISD::ATOMIC_LOAD_USUB_SAT || Opcode == ISD::ATOMIC_SWAP ||
9589 Opcode == ISD::ATOMIC_STORE) &&
9590 "Invalid Atomic Op");
9605 return getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, VTs,
Ops, MMO, ExtType);
9610 if (
Ops.size() == 1)
9625 if (
Size.hasValue() && !
Size.getValue())
9630 MF.getMachineMemOperand(PtrInfo, Flags,
Size, Alignment, AAInfo);
9641 Opcode == ISD::PREFETCH ||
9642 (Opcode <= (
unsigned)std::numeric_limits<int>::max() &&
9644 "Opcode is not a memory-accessing opcode!");
9648 if (VTList.
VTs[VTList.
NumVTs-1] != MVT::Glue) {
9651 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
9652 Opcode, dl.
getIROrder(), VTList, MemVT, MMO));
9657 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
9663 VTList, MemVT, MMO);
9664 createOperands(
N,
Ops);
9666 CSEMap.InsertNode(
N, IP);
9669 VTList, MemVT, MMO);
9670 createOperands(
N,
Ops);
9679 SDValue Chain,
int FrameIndex) {
9680 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
9690 ID.AddInteger(FrameIndex);
9692 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
9697 createOperands(
N,
Ops);
9698 CSEMap.InsertNode(
N, IP);
9708 const unsigned Opcode = ISD::PSEUDO_PROBE;
9714 ID.AddInteger(Index);
9716 if (
SDNode *E = FindNodeOrInsertPos(
ID, Dl, IP))
9719 auto *
N = newSDNode<PseudoProbeSDNode>(
9721 createOperands(
N,
Ops);
9722 CSEMap.InsertNode(
N, IP);
9776 "Invalid chain type");
9788 Alignment, AAInfo, Ranges);
9799 assert(VT == MemVT &&
"Non-extending load from different memory type!");
9803 "Should only be an extending load, not truncating!");
9805 "Cannot convert from FP to Int or Int -> FP!");
9807 "Cannot use an ext load to convert to or from a vector!");
9810 "Cannot use an ext load to change the number of vector elements!");
9817 "Range metadata and load type must match!");
9828 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
9829 dl.
getIROrder(), VTs, AM, ExtType, MemVT, MMO));
9834 E->refineAlignment(MMO);
9835 E->refineRanges(MMO);
9839 ExtType, MemVT, MMO);
9840 createOperands(
N,
Ops);
9842 CSEMap.InsertNode(
N, IP);
9856 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
9874 MemVT, Alignment, MMOFlags, AAInfo);
9889 assert(LD->getOffset().isUndef() &&
"Load is already a indexed load!");
9892 LD->getMemOperand()->getFlags() &
9895 LD->getChain(),
Base,
Offset, LD->getPointerInfo(),
9896 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
9915 MF.getMachineMemOperand(PtrInfo, MMOFlags,
Size, Alignment, AAInfo);
9929 bool IsTruncating) {
9933 IsTruncating =
false;
9934 }
else if (!IsTruncating) {
9935 assert(VT == SVT &&
"No-truncating store from different memory type!");
9938 "Should only be a truncating store, not extending!");
9941 "Cannot use trunc store to convert to or from a vector!");
9944 "Cannot use trunc store to change the number of vector elements!");
9955 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9956 dl.
getIROrder(), VTs, AM, IsTruncating, SVT, MMO));
9960 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
9965 IsTruncating, SVT, MMO);
9966 createOperands(
N,
Ops);
9968 CSEMap.InsertNode(
N, IP);
9981 "Invalid chain type");
9991 PtrInfo, MMOFlags, SVT.
getStoreSize(), Alignment, AAInfo);
10006 assert(ST->getOffset().isUndef() &&
"Store is already a indexed store!");
10008 ST->getMemoryVT(), ST->getMemOperand(), AM,
10009 ST->isTruncatingStore());
10017 const MDNode *Ranges,
bool IsExpanding) {
10030 Alignment, AAInfo, Ranges);
10031 return getLoadVP(AM, ExtType, VT, dl, Chain,
Ptr,
Offset, Mask, EVL, MemVT,
10040 bool IsExpanding) {
10050 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
10051 dl.
getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10054 void *IP =
nullptr;
10056 E->refineAlignment(MMO);
10057 E->refineRanges(MMO);
10061 ExtType, IsExpanding, MemVT, MMO);
10062 createOperands(
N,
Ops);
10064 CSEMap.InsertNode(
N, IP);
10077 bool IsExpanding) {
10080 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
10089 Mask, EVL, VT, MMO, IsExpanding);
10098 const AAMDNodes &AAInfo,
bool IsExpanding) {
10101 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo,
nullptr,
10111 EVL, MemVT, MMO, IsExpanding);
10118 assert(LD->getOffset().isUndef() &&
"Load is already a indexed load!");
10121 LD->getMemOperand()->getFlags() &
10124 LD->getChain(),
Base,
Offset, LD->getMask(),
10125 LD->getVectorLength(), LD->getPointerInfo(),
10126 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
10127 nullptr, LD->isExpandingLoad());
10134 bool IsCompressing) {
10144 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10145 dl.
getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10148 void *IP =
nullptr;
10149 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10154 IsTruncating, IsCompressing, MemVT, MMO);
10155 createOperands(
N,
Ops);
10157 CSEMap.InsertNode(
N, IP);
10170 bool IsCompressing) {
10181 PtrInfo, MMOFlags, SVT.
getStoreSize(), Alignment, AAInfo);
10190 bool IsCompressing) {
10197 false, IsCompressing);
10200 "Should only be a truncating store, not extending!");
10203 "Cannot use trunc store to convert to or from a vector!");
10206 "Cannot use trunc store to change the number of vector elements!");
10214 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10218 void *IP =
nullptr;
10219 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10226 createOperands(
N,
Ops);
10228 CSEMap.InsertNode(
N, IP);
10239 assert(ST->getOffset().isUndef() &&
"Store is already an indexed store!");
10242 Offset, ST->getMask(), ST->getVectorLength()};
10245 ID.AddInteger(ST->getMemoryVT().getRawBits());
10246 ID.AddInteger(ST->getRawSubclassData());
10247 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
10248 ID.AddInteger(ST->getMemOperand()->getFlags());
10249 void *IP =
nullptr;
10250 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10253 auto *
N = newSDNode<VPStoreSDNode>(
10255 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
10256 createOperands(
N,
Ops);
10258 CSEMap.InsertNode(
N, IP);
10278 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
10279 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10282 void *IP =
nullptr;
10283 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10289 newSDNode<VPStridedLoadSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs, AM,
10290 ExtType, IsExpanding, MemVT, MMO);
10291 createOperands(
N,
Ops);
10292 CSEMap.InsertNode(
N, IP);
10303 bool IsExpanding) {
10306 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
10315 Stride, Mask, EVL, MemVT, MMO, IsExpanding);
10324 bool IsTruncating,
bool IsCompressing) {
10334 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10335 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10337 void *IP =
nullptr;
10338 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10342 auto *
N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(),
DL.getDebugLoc(),
10343 VTs, AM, IsTruncating,
10344 IsCompressing, MemVT, MMO);
10345 createOperands(
N,
Ops);
10347 CSEMap.InsertNode(
N, IP);
10359 bool IsCompressing) {
10366 false, IsCompressing);
10369 "Should only be a truncating store, not extending!");
10372 "Cannot use trunc store to convert to or from a vector!");
10375 "Cannot use trunc store to change the number of vector elements!");
10379 SDValue Ops[] = {Chain, Val,
Ptr, Undef, Stride, Mask, EVL};
10383 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10386 void *IP =
nullptr;
10387 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10391 auto *
N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(),
DL.getDebugLoc(),
10393 IsCompressing, SVT, MMO);
10394 createOperands(
N,
Ops);
10396 CSEMap.InsertNode(
N, IP);
10406 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10411 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
10415 void *IP =
nullptr;
10416 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10422 VT, MMO, IndexType);
10423 createOperands(
N,
Ops);
10425 assert(
N->getMask().getValueType().getVectorElementCount() ==
10426 N->getValueType(0).getVectorElementCount() &&
10427 "Vector width mismatch between mask and data");
10428 assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10429 N->getValueType(0).getVectorElementCount().isScalable() &&
10430 "Scalable flags of index and data do not match");
10432 N->getIndex().getValueType().getVectorElementCount(),
10433 N->getValueType(0).getVectorElementCount()) &&
10434 "Vector width mismatch between index and data");
10436 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10437 "Scale should be a constant power of 2");
10439 CSEMap.InsertNode(
N, IP);
10450 assert(
Ops.size() == 7 &&
"Incompatible number of operands");
10455 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
10459 void *IP =
nullptr;
10460 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10465 VT, MMO, IndexType);
10466 createOperands(
N,
Ops);
10468 assert(
N->getMask().getValueType().getVectorElementCount() ==
10469 N->getValue().getValueType().getVectorElementCount() &&
10470 "Vector width mismatch between mask and data");
10472 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10473 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10474 "Scalable flags of index and data do not match");
10476 N->getIndex().getValueType().getVectorElementCount(),
10477 N->getValue().getValueType().getVectorElementCount()) &&
10478 "Vector width mismatch between index and data");
10480 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10481 "Scale should be a constant power of 2");
10483 CSEMap.InsertNode(
N, IP);
10498 "Unindexed masked load with an offset!");
10505 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
10506 dl.
getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
10509 void *IP =
nullptr;
10510 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10515 AM, ExtTy, isExpanding, MemVT, MMO);
10516 createOperands(
N,
Ops);
10518 CSEMap.InsertNode(
N, IP);
10529 assert(LD->getOffset().isUndef() &&
"Masked load is already a indexed load!");
10531 Offset, LD->getMask(), LD->getPassThru(),
10532 LD->getMemoryVT(), LD->getMemOperand(), AM,
10533 LD->getExtensionType(), LD->isExpandingLoad());
10541 bool IsCompressing) {
10543 "Invalid chain type");
10546 "Unindexed masked store with an offset!");
10553 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
10554 dl.
getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10557 void *IP =
nullptr;
10558 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10564 IsTruncating, IsCompressing, MemVT, MMO);
10565 createOperands(
N,
Ops);
10567 CSEMap.InsertNode(
N, IP);
10578 assert(ST->getOffset().isUndef() &&
10579 "Masked store is already a indexed store!");
10581 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
10582 AM, ST->isTruncatingStore(), ST->isCompressingStore());
10590 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10595 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
10596 dl.
getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
10599 void *IP =
nullptr;
10600 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10606 VTs, MemVT, MMO, IndexType, ExtTy);
10607 createOperands(
N,
Ops);
10609 assert(
N->getPassThru().getValueType() ==
N->getValueType(0) &&
10610 "Incompatible type of the PassThru value in MaskedGatherSDNode");
10611 assert(
N->getMask().getValueType().getVectorElementCount() ==
10612 N->getValueType(0).getVectorElementCount() &&
10613 "Vector width mismatch between mask and data");
10614 assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10615 N->getValueType(0).getVectorElementCount().isScalable() &&
10616 "Scalable flags of index and data do not match");
10618 N->getIndex().getValueType().getVectorElementCount(),
10619 N->getValueType(0).getVectorElementCount()) &&
10620 "Vector width mismatch between index and data");
10622 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10623 "Scale should be a constant power of 2");
10625 CSEMap.InsertNode(
N, IP);
10637 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10642 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
10643 dl.
getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
10646 void *IP =
nullptr;
10647 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10653 VTs, MemVT, MMO, IndexType, IsTrunc);
10654 createOperands(
N,
Ops);
10656 assert(
N->getMask().getValueType().getVectorElementCount() ==
10657 N->getValue().getValueType().getVectorElementCount() &&
10658 "Vector width mismatch between mask and data");
10660 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10661 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10662 "Scalable flags of index and data do not match");
10664 N->getIndex().getValueType().getVectorElementCount(),
10665 N->getValue().getValueType().getVectorElementCount()) &&
10666 "Vector width mismatch between index and data");
10668 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10669 "Scale should be a constant power of 2");
10671 CSEMap.InsertNode(
N, IP);
10682 assert(
Ops.size() == 7 &&
"Incompatible number of operands");
10687 ID.AddInteger(getSyntheticNodeSubclassData<MaskedHistogramSDNode>(
10688 dl.
getIROrder(), VTs, MemVT, MMO, IndexType));
10691 void *IP =
nullptr;
10692 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10698 VTs, MemVT, MMO, IndexType);
10699 createOperands(
N,
Ops);
10701 assert(
N->getMask().getValueType().getVectorElementCount() ==
10702 N->getIndex().getValueType().getVectorElementCount() &&
10703 "Vector width mismatch between mask and data");
10705 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10706 "Scale should be a constant power of 2");
10707 assert(
N->getInc().getValueType().isInteger() &&
"Non integer update value");
10709 CSEMap.InsertNode(
N, IP);
10724 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadFFSDNode>(
DL.getIROrder(),
10728 void *IP =
nullptr;
10729 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10733 auto *
N = newSDNode<VPLoadFFSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs,
10735 createOperands(
N,
Ops);
10737 CSEMap.InsertNode(
N, IP);
10752 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10753 ISD::GET_FPENV_MEM, dl.
getIROrder(), VTs, MemVT, MMO));
10756 void *IP =
nullptr;
10757 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10760 auto *
N = newSDNode<FPStateAccessSDNode>(ISD::GET_FPENV_MEM, dl.
getIROrder(),
10762 createOperands(
N,
Ops);
10764 CSEMap.InsertNode(
N, IP);
10779 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10780 ISD::SET_FPENV_MEM, dl.
getIROrder(), VTs, MemVT, MMO));
10783 void *IP =
nullptr;
10784 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10787 auto *
N = newSDNode<FPStateAccessSDNode>(ISD::SET_FPENV_MEM, dl.
getIROrder(),
10789 createOperands(
N,
Ops);
10791 CSEMap.InsertNode(
N, IP);
10802 if (
Cond.isUndef())
10837 return !Val || Val->getAPIntValue().uge(
X.getScalarValueSizeInBits());
10843 if (
X.getValueType().getScalarType() == MVT::i1)
10856 bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
10858 bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
10861 if (Flags.hasNoNaNs() && (HasNan ||
X.isUndef() ||
Y.isUndef()))
10864 if (Flags.hasNoInfs() && (HasInf ||
X.isUndef() ||
Y.isUndef()))
10887 if (Opcode ==
ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
10902 switch (
Ops.size()) {
10903 case 0:
return getNode(Opcode,
DL, VT);
10913 return getNode(Opcode,
DL, VT, NewOps);
10920 Flags = Inserter->getFlags();
10928 case 0:
return getNode(Opcode,
DL, VT);
10929 case 1:
return getNode(Opcode,
DL, VT,
Ops[0], Flags);
10936 for (
const auto &
Op :
Ops)
10938 "Operand is DELETED_NODE!");
10955 "LHS and RHS of condition must have same type!");
10957 "True and False arms of SelectCC must have same type!");
10959 "select_cc node must be of same type as true and false value!");
10963 "Expected select_cc with vector result to have the same sized "
10964 "comparison type!");
10969 "LHS/RHS of comparison should match types!");
10975 Opcode = ISD::VP_XOR;
10980 Opcode = ISD::VP_AND;
10982 case ISD::VP_REDUCE_MUL:
10985 Opcode = ISD::VP_REDUCE_AND;
10987 case ISD::VP_REDUCE_ADD:
10990 Opcode = ISD::VP_REDUCE_XOR;
10992 case ISD::VP_REDUCE_SMAX:
10993 case ISD::VP_REDUCE_UMIN:
10997 Opcode = ISD::VP_REDUCE_AND;
10999 case ISD::VP_REDUCE_SMIN:
11000 case ISD::VP_REDUCE_UMAX:
11004 Opcode = ISD::VP_REDUCE_OR;
11012 if (VT != MVT::Glue) {
11015 void *IP =
nullptr;
11017 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11018 E->intersectFlagsWith(Flags);
11022 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11023 createOperands(
N,
Ops);
11025 CSEMap.InsertNode(
N, IP);
11027 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11028 createOperands(
N,
Ops);
11031 N->setFlags(Flags);
11042 Flags = Inserter->getFlags();
11056 Flags = Inserter->getFlags();
11066 for (
const auto &
Op :
Ops)
11068 "Operand is DELETED_NODE!");
11077 "Invalid add/sub overflow op!");
11079 Ops[0].getValueType() ==
Ops[1].getValueType() &&
11080 Ops[0].getValueType() == VTList.
VTs[0] &&
11081 "Binary operator types must match!");
11088 if (N2CV && N2CV->
isZero()) {
11119 "Invalid add/sub overflow op!");
11121 Ops[0].getValueType() ==
Ops[1].getValueType() &&
11122 Ops[0].getValueType() == VTList.
VTs[0] &&
11123 Ops[2].getValueType() == VTList.
VTs[1] &&
11124 "Binary operator types must match!");
11128 assert(VTList.
NumVTs == 2 &&
Ops.size() == 2 &&
"Invalid mul lo/hi op!");
11130 VTList.
VTs[0] ==
Ops[0].getValueType() &&
11131 VTList.
VTs[0] ==
Ops[1].getValueType() &&
11132 "Binary operator types must match!");
11138 unsigned OutWidth = Width * 2;
11139 APInt Val = LHS->getAPIntValue();
11142 Val = Val.
sext(OutWidth);
11143 Mul =
Mul.sext(OutWidth);
11145 Val = Val.
zext(OutWidth);
11146 Mul =
Mul.zext(OutWidth);
11157 case ISD::FFREXP: {
11158 assert(VTList.
NumVTs == 2 &&
Ops.size() == 1 &&
"Invalid ffrexp op!");
11160 VTList.
VTs[0] ==
Ops[0].getValueType() &&
"frexp type mismatch");
11168 DL, VTList.
VTs[1]);
11176 "Invalid STRICT_FP_EXTEND!");
11178 Ops[1].getValueType().isFloatingPoint() &&
"Invalid FP cast!");
11180 "STRICT_FP_EXTEND result type should be vector iff the operand "
11181 "type is vector!");
11184 Ops[1].getValueType().getVectorElementCount()) &&
11185 "Vector element count mismatch!");
11187 "Invalid fpext node, dst <= src!");
11190 assert(VTList.
NumVTs == 2 &&
Ops.size() == 3 &&
"Invalid STRICT_FP_ROUND!");
11192 "STRICT_FP_ROUND result type should be vector iff the operand "
11193 "type is vector!");
11196 Ops[1].getValueType().getVectorElementCount()) &&
11197 "Vector element count mismatch!");
11199 Ops[1].getValueType().isFloatingPoint() &&
11202 (
Ops[2]->getAsZExtVal() == 0 ||
Ops[2]->getAsZExtVal() == 1) &&
11203 "Invalid STRICT_FP_ROUND!");
11209 if (VTList.
VTs[VTList.
NumVTs-1] != MVT::Glue) {
11212 void *IP =
nullptr;
11213 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11214 E->intersectFlagsWith(Flags);
11218 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTList);
11219 createOperands(
N,
Ops);
11220 CSEMap.InsertNode(
N, IP);
11222 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTList);
11223 createOperands(
N,
Ops);
11226 N->setFlags(Flags);
11273 return makeVTList(&(*EVTs.insert(VT).first), 1);
11282 void *IP =
nullptr;
11285 EVT *Array = Allocator.Allocate<
EVT>(2);
11288 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 2);
11289 VTListMap.InsertNode(Result, IP);
11291 return Result->getSDVTList();
11301 void *IP =
nullptr;
11304 EVT *Array = Allocator.Allocate<
EVT>(3);
11308 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 3);
11309 VTListMap.InsertNode(Result, IP);
11311 return Result->getSDVTList();
11322 void *IP =
nullptr;
11325 EVT *Array = Allocator.Allocate<
EVT>(4);
11330 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 4);
11331 VTListMap.InsertNode(Result, IP);
11333 return Result->getSDVTList();
11337 unsigned NumVTs = VTs.
size();
11339 ID.AddInteger(NumVTs);
11340 for (
unsigned index = 0; index < NumVTs; index++) {
11341 ID.AddInteger(VTs[index].getRawBits());
11344 void *IP =
nullptr;
11347 EVT *Array = Allocator.Allocate<
EVT>(NumVTs);
11349 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, NumVTs);
11350 VTListMap.InsertNode(Result, IP);
11352 return Result->getSDVTList();
11363 assert(
N->getNumOperands() == 1 &&
"Update with wrong number of operands");
11366 if (
Op ==
N->getOperand(0))
return N;
11369 void *InsertPos =
nullptr;
11370 if (
SDNode *Existing = FindModifiedNodeSlot(
N,
Op, InsertPos))
11375 if (!RemoveNodeFromCSEMaps(
N))
11376 InsertPos =
nullptr;
11379 N->OperandList[0].set(
Op);
11383 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11388 assert(
N->getNumOperands() == 2 &&
"Update with wrong number of operands");
11391 if (Op1 ==
N->getOperand(0) && Op2 ==
N->getOperand(1))
11395 void *InsertPos =
nullptr;
11396 if (
SDNode *Existing = FindModifiedNodeSlot(
N, Op1, Op2, InsertPos))
11401 if (!RemoveNodeFromCSEMaps(
N))
11402 InsertPos =
nullptr;
11405 if (
N->OperandList[0] != Op1)
11406 N->OperandList[0].set(Op1);
11407 if (
N->OperandList[1] != Op2)
11408 N->OperandList[1].set(Op2);
11412 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11432 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
11440 "Update with wrong number of operands");
11443 if (std::equal(
Ops.begin(),
Ops.end(),
N->op_begin()))
11447 void *InsertPos =
nullptr;
11448 if (
SDNode *Existing = FindModifiedNodeSlot(
N,
Ops, InsertPos))
11453 if (!RemoveNodeFromCSEMaps(
N))
11454 InsertPos =
nullptr;
11457 for (
unsigned i = 0; i !=
NumOps; ++i)
11458 if (
N->OperandList[i] !=
Ops[i])
11459 N->OperandList[i].set(
Ops[i]);
11463 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11480 if (NewMemRefs.
empty()) {
11486 if (NewMemRefs.
size() == 1) {
11487 N->MemRefs = NewMemRefs[0];
11493 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.
size());
11495 N->MemRefs = MemRefsBuffer;
11496 N->NumMemRefs =
static_cast<int>(NewMemRefs.
size());
11568 New->setNodeId(-1);
11588 unsigned Order = std::min(
N->getIROrder(), OLoc.
getIROrder());
11589 N->setIROrder(Order);
11612 void *IP =
nullptr;
11613 if (VTs.
VTs[VTs.
NumVTs-1] != MVT::Glue) {
11617 return UpdateSDLocOnMergeSDNode(ON,
SDLoc(
N));
11620 if (!RemoveNodeFromCSEMaps(
N))
11625 N->ValueList = VTs.
VTs;
11635 if (Used->use_empty())
11636 DeadNodeSet.
insert(Used);
11641 MN->clearMemRefs();
11645 createOperands(
N,
Ops);
11649 if (!DeadNodeSet.
empty()) {
11651 for (
SDNode *
N : DeadNodeSet)
11652 if (
N->use_empty())
11658 CSEMap.InsertNode(
N, IP);
11663 unsigned OrigOpc =
Node->getOpcode();
11668#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11669 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
11670#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11671 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
11672#include "llvm/IR/ConstrainedOps.def"
11675 assert(
Node->getNumValues() == 2 &&
"Unexpected number of results!");
11683 for (
unsigned i = 1, e =
Node->getNumOperands(); i != e; ++i)
11684 Ops.push_back(
Node->getOperand(i));
11801 bool DoCSE = VTs.
VTs[VTs.
NumVTs-1] != MVT::Glue;
11803 void *IP =
nullptr;
11809 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11815 N = newSDNode<MachineSDNode>(~Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11816 createOperands(
N,
Ops);
11819 CSEMap.InsertNode(
N, IP);
11832 VT, Operand, SRIdxVal);
11842 VT, Operand, Subreg, SRIdxVal);
11852 Flags = Inserter->getFlags();
11859 if (VTList.
VTs[VTList.
NumVTs - 1] != MVT::Glue) {
11862 void *IP =
nullptr;
11864 E->intersectFlagsWith(Flags);
11874 if (VTList.
VTs[VTList.
NumVTs - 1] != MVT::Glue) {
11877 void *IP =
nullptr;
11878 if (FindNodeOrInsertPos(
ID,
SDLoc(), IP))
11888 SDNode *
N,
unsigned R,
bool IsIndirect,
11891 "Expected inlined-at fields to agree");
11892 return new (DbgInfo->getAlloc())
11894 {}, IsIndirect,
DL, O,
11904 "Expected inlined-at fields to agree");
11905 return new (DbgInfo->getAlloc())
11918 "Expected inlined-at fields to agree");
11930 "Expected inlined-at fields to agree");
11931 return new (DbgInfo->getAlloc())
11933 Dependencies, IsIndirect,
DL, O,
11942 "Expected inlined-at fields to agree");
11943 return new (DbgInfo->getAlloc())
11945 {}, IsIndirect,
DL, O,
11953 unsigned O,
bool IsVariadic) {
11955 "Expected inlined-at fields to agree");
11956 return new (DbgInfo->getAlloc())
11957 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
11958 DL, O, IsVariadic);
11962 unsigned OffsetInBits,
unsigned SizeInBits,
11963 bool InvalidateDbg) {
11966 assert(FromNode && ToNode &&
"Can't modify dbg values");
11971 if (From == To || FromNode == ToNode)
11983 if (Dbg->isInvalidated())
11991 auto NewLocOps = Dbg->copyLocationOps();
11993 NewLocOps.begin(), NewLocOps.end(),
11995 bool Match = Op == FromLocOp;
12005 auto *Expr = Dbg->getExpression();
12011 if (
auto FI = Expr->getFragmentInfo())
12012 if (OffsetInBits + SizeInBits > FI->SizeInBits)
12021 auto AdditionalDependencies = Dbg->getAdditionalDependencies();
12024 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
12025 Dbg->getDebugLoc(), std::max(ToNode->
getIROrder(), Dbg->getOrder()),
12026 Dbg->isVariadic());
12029 if (InvalidateDbg) {
12031 Dbg->setIsInvalidated();
12032 Dbg->setIsEmitted();
12038 "Transferred DbgValues should depend on the new SDNode");
12044 if (!
N.getHasDebugValue())
12047 auto GetLocationOperand = [](
SDNode *
Node,
unsigned ResNo) {
12055 if (DV->isInvalidated())
12057 switch (
N.getOpcode()) {
12067 Offset =
N.getConstantOperandVal(1);
12070 if (!RHSConstant && DV->isIndirect())
12077 auto *DIExpr = DV->getExpression();
12078 auto NewLocOps = DV->copyLocationOps();
12080 size_t OrigLocOpsSize = NewLocOps.size();
12081 for (
size_t i = 0; i < OrigLocOpsSize; ++i) {
12086 NewLocOps[i].getSDNode() != &
N)
12097 const auto *TmpDIExpr =
12105 NewLocOps.push_back(RHS);
12114 DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
12116 auto AdditionalDependencies = DV->getAdditionalDependencies();
12118 DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
12119 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
12121 DV->setIsInvalidated();
12122 DV->setIsEmitted();
12124 N0.
getNode()->dumprFull(
this);
12125 dbgs() <<
" into " << *DIExpr <<
'\n');
12132 TypeSize ToSize =
N.getValueSizeInBits(0);
12136 auto NewLocOps = DV->copyLocationOps();
12138 for (
size_t i = 0; i < NewLocOps.size(); ++i) {
12140 NewLocOps[i].getSDNode() != &
N)
12152 DV->getAdditionalDependencies(), DV->isIndirect(),
12153 DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
12156 DV->setIsInvalidated();
12157 DV->setIsEmitted();
12159 dbgs() <<
" into " << *DbgExpression <<
'\n');
12166 assert((!Dbg->getSDNodes().empty() ||
12169 return Op.getKind() == SDDbgOperand::FRAMEIX;
12171 "Salvaged DbgValue should depend on a new SDNode");
12180 "Expected inlined-at fields to agree");
12181 return new (DbgInfo->getAlloc())
SDDbgLabel(Label,
DL, O);
12196 while (UI != UE &&
N == UI->
getUser())
12204 :
SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
12217 "Cannot replace with this method!");
12218 assert(From != To.
getNode() &&
"Cannot replace uses of with self");
12233 RAUWUpdateListener Listener(*
this, UI, UE);
12238 RemoveNodeFromCSEMaps(
User);
12253 AddModifiedNodeToCSEMaps(
User);
12269 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i)
12272 "Cannot use this version of ReplaceAllUsesWith!");
12280 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i)
12282 assert((i < To->getNumValues()) &&
"Invalid To location");
12291 RAUWUpdateListener Listener(*
this, UI, UE);
12296 RemoveNodeFromCSEMaps(
User);
12312 AddModifiedNodeToCSEMaps(
User);
12329 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i) {
12339 RAUWUpdateListener Listener(*
this, UI, UE);
12344 RemoveNodeFromCSEMaps(
User);
12350 bool To_IsDivergent =
false;
12364 AddModifiedNodeToCSEMaps(
User);
12377 if (From == To)
return;
12393 RAUWUpdateListener Listener(*
this, UI, UE);
12396 bool UserRemovedFromCSEMaps =
false;
12413 if (!UserRemovedFromCSEMaps) {
12414 RemoveNodeFromCSEMaps(
User);
12415 UserRemovedFromCSEMaps =
true;
12425 if (!UserRemovedFromCSEMaps)
12430 AddModifiedNodeToCSEMaps(
User);
12449bool operator<(
const UseMemo &L,
const UseMemo &R) {
12450 return (intptr_t)L.User < (intptr_t)R.User;
12457 SmallVectorImpl<UseMemo> &
Uses;
12459 void NodeDeleted(SDNode *
N, SDNode *
E)
override {
12460 for (UseMemo &Memo :
Uses)
12461 if (Memo.User ==
N)
12462 Memo.User =
nullptr;
12466 RAUOVWUpdateListener(SelectionDAG &d, SmallVectorImpl<UseMemo> &uses)
12467 : SelectionDAG::DAGUpdateListener(d),
Uses(uses) {}
12474 switch (
Node->getOpcode()) {
12486 if (TLI->isSDNodeAlwaysUniform(
N)) {
12487 assert(!TLI->isSDNodeSourceOfDivergence(
N, FLI, UA) &&
12488 "Conflicting divergence information!");
12491 if (TLI->isSDNodeSourceOfDivergence(
N, FLI, UA))
12493 for (
const auto &
Op :
N->ops()) {
12494 EVT VT =
Op.getValueType();
12497 if (VT != MVT::Other &&
Op.getNode()->isDivergent() &&
12509 if (
N->SDNodeBits.IsDivergent != IsDivergent) {
12510 N->SDNodeBits.IsDivergent = IsDivergent;
12513 }
while (!Worklist.
empty());
12516void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
12518 Order.reserve(AllNodes.size());
12520 unsigned NOps =
N.getNumOperands();
12523 Order.push_back(&
N);
12525 for (
size_t I = 0;
I != Order.size(); ++
I) {
12527 for (
auto *U :
N->users()) {
12528 unsigned &UnsortedOps = Degree[U];
12529 if (0 == --UnsortedOps)
12530 Order.push_back(U);
12535#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
12536void SelectionDAG::VerifyDAGDivergence() {
12537 std::vector<SDNode *> TopoOrder;
12538 CreateTopologicalOrder(TopoOrder);
12539 for (
auto *
N : TopoOrder) {
12541 "Divergence bit inconsistency detected");
12564 for (
unsigned i = 0; i != Num; ++i) {
12565 unsigned FromResNo = From[i].
getResNo();
12568 if (
Use.getResNo() == FromResNo) {
12570 Uses.push_back(Memo);
12577 RAUOVWUpdateListener Listener(*
this,
Uses);
12579 for (
unsigned UseIndex = 0, UseIndexEnd =
Uses.size();
12580 UseIndex != UseIndexEnd; ) {
12586 if (
User ==
nullptr) {
12592 RemoveNodeFromCSEMaps(
User);
12599 unsigned i =
Uses[UseIndex].Index;
12604 }
while (UseIndex != UseIndexEnd &&
Uses[UseIndex].
User ==
User);
12608 AddModifiedNodeToCSEMaps(
User);
12616 unsigned DAGSize = 0;
12632 unsigned Degree =
N.getNumOperands();
12635 N.setNodeId(DAGSize++);
12637 if (Q != SortedPos)
12638 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
12639 assert(SortedPos != AllNodes.end() &&
"Overran node list");
12643 N.setNodeId(Degree);
12655 unsigned Degree =
P->getNodeId();
12656 assert(Degree != 0 &&
"Invalid node degree");
12660 P->setNodeId(DAGSize++);
12661 if (
P->getIterator() != SortedPos)
12662 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(
P));
12663 assert(SortedPos != AllNodes.end() &&
"Overran node list");
12667 P->setNodeId(Degree);
12670 if (
Node.getIterator() == SortedPos) {
12674 dbgs() <<
"Overran sorted position:\n";
12676 dbgs() <<
"Checking if this is due to cycles\n";
12683 assert(SortedPos == AllNodes.end() &&
12684 "Topological sort incomplete!");
12686 "First node in topological sort is not the entry token!");
12687 assert(AllNodes.front().getNodeId() == 0 &&
12688 "First node in topological sort has non-zero id!");
12689 assert(AllNodes.front().getNumOperands() == 0 &&
12690 "First node in topological sort has operands!");
12691 assert(AllNodes.back().getNodeId() == (
int)DAGSize-1 &&
12692 "Last node in topologic sort has unexpected id!");
12693 assert(AllNodes.back().use_empty() &&
12694 "Last node in topologic sort has users!");
12701 SortedNodes.
clear();
12708 unsigned NumOperands =
N.getNumOperands();
12709 if (NumOperands == 0)
12713 RemainingOperands[&
N] = NumOperands;
12718 for (
unsigned i = 0U; i < SortedNodes.
size(); ++i) {
12719 const SDNode *
N = SortedNodes[i];
12720 for (
const SDNode *U :
N->users()) {
12721 unsigned &NumRemOperands = RemainingOperands[U];
12722 assert(NumRemOperands &&
"Invalid number of remaining operands");
12724 if (!NumRemOperands)
12729 assert(SortedNodes.
size() == AllNodes.size() &&
"Node count mismatch");
12731 "First node in topological sort is not the entry token");
12732 assert(SortedNodes.
front()->getNumOperands() == 0 &&
12733 "First node in topological sort has operands");
12735 "Last node in topologic sort has users");
12741 for (
SDNode *SD : DB->getSDNodes()) {
12744 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
12745 SD->setHasDebugValue(
true);
12747 DbgInfo->add(DB, isParameter);
12760 if (OldChain == NewMemOpChain || OldChain.
use_empty())
12761 return NewMemOpChain;
12764 OldChain, NewMemOpChain);
12767 return TokenFactor;
12786 if (OutFunction !=
nullptr)
12794 std::string ErrorStr;
12796 ErrorFormatter <<
"Undefined external symbol ";
12797 ErrorFormatter <<
'"' << Symbol <<
'"';
12807 return Const !=
nullptr && Const->isZero();
12816 return Const !=
nullptr && Const->isZero() && !Const->isNegative();
12821 return Const !=
nullptr && Const->isAllOnes();
12826 return Const !=
nullptr && Const->isOne();
12831 return Const !=
nullptr && Const->isMinSignedValue();
12835 unsigned OperandNo) {
12840 APInt Const = ConstV->getAPIntValue().trunc(V.getScalarValueSizeInBits());
12846 return Const.isZero();
12848 return Const.isOne();
12851 return Const.isAllOnes();
12853 return Const.isMinSignedValue();
12855 return Const.isMaxSignedValue();
12860 return OperandNo == 1 && Const.isZero();
12863 return OperandNo == 1 && Const.isOne();
12868 return ConstFP->isZero() &&
12869 (Flags.hasNoSignedZeros() || ConstFP->isNegative());
12871 return OperandNo == 1 && ConstFP->isZero() &&
12872 (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
12874 return ConstFP->isExactlyValue(1.0);
12876 return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
12878 case ISD::FMAXNUM: {
12880 EVT VT = V.getValueType();
12882 APFloat NeutralAF = !Flags.hasNoNaNs()
12884 : !Flags.hasNoInfs()
12887 if (Opcode == ISD::FMAXNUM)
12890 return ConstFP->isExactlyValue(NeutralAF);
12898 while (V.getOpcode() == ISD::BITCAST)
12904 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
12923 !DemandedElts[IndexC->getZExtValue()]) {
12942 unsigned NumBits = V.getScalarValueSizeInBits();
12945 return C && (
C->getAPIntValue().
countr_one() >= NumBits);
12949 bool AllowTruncation) {
12950 EVT VT =
N.getValueType();
12959 bool AllowTruncation) {
12966 EVT VecEltVT =
N->getValueType(0).getVectorElementType();
12968 EVT CVT = CN->getValueType(0);
12969 assert(CVT.
bitsGE(VecEltVT) &&
"Illegal splat_vector element extension");
12970 if (AllowTruncation || CVT == VecEltVT)
12977 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
12982 if (CN && (UndefElements.
none() || AllowUndefs)) {
12984 EVT NSVT =
N.getValueType().getScalarType();
12985 assert(CVT.
bitsGE(NSVT) &&
"Illegal build vector element extension");
12986 if (AllowTruncation || (CVT == NSVT))
12995 EVT VT =
N.getValueType();
13003 const APInt &DemandedElts,
13004 bool AllowUndefs) {
13011 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
13013 if (CN && (UndefElements.
none() || AllowUndefs))
13028 return C &&
C->isZero();
13034 return C &&
C->isOne();
13039 unsigned BitWidth =
N.getScalarValueSizeInBits();
13041 return C &&
C->isAllOnes() &&
C->getValueSizeInBits(0) ==
BitWidth;
13047 APInt(
C->getAPIntValue().getBitWidth(), 1));
13053 return C &&
C->isZero();
13062 :
SDNode(
Opc, Order, dl, VTs), MemoryVT(memvt),
MMO(mmo) {
13072 (!
MMO->getType().isValid() ||
13086 std::vector<EVT> VTs;
13099const EVT *SDNode::getValueTypeList(
MVT VT) {
13100 static EVTArray SimpleVTArray;
13103 return &SimpleVTArray.VTs[VT.
SimpleTy];
13112 if (U.getResNo() ==
Value)
13150 return any_of(
N->op_values(),
13151 [
this](
SDValue Op) { return this == Op.getNode(); });
13165 unsigned Depth)
const {
13166 if (*
this == Dest)
return true;
13170 if (
Depth == 0)
return false;
13190 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
13196 if (Ld->isUnordered())
13197 return Ld->getChain().reachesChainWithoutSideEffects(Dest,
Depth-1);
13210 this->Flags &= Flags;
13216 bool AllowPartials) {
13231 unsigned CandidateBinOp =
Op.getOpcode();
13232 if (
Op.getValueType().isFloatingPoint()) {
13234 switch (CandidateBinOp) {
13236 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
13246 auto PartialReduction = [&](
SDValue Op,
unsigned NumSubElts) {
13247 if (!AllowPartials || !
Op)
13249 EVT OpVT =
Op.getValueType();
13252 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
13271 unsigned Stages =
Log2_32(
Op.getValueType().getVectorNumElements());
13273 for (
unsigned i = 0; i < Stages; ++i) {
13274 unsigned MaskEnd = (1 << i);
13276 if (
Op.getOpcode() != CandidateBinOp)
13277 return PartialReduction(PrevOp, MaskEnd);
13293 return PartialReduction(PrevOp, MaskEnd);
13296 for (
int Index = 0; Index < (int)MaskEnd; ++Index)
13297 if (Shuffle->
getMaskElt(Index) != (
int)(MaskEnd + Index))
13298 return PartialReduction(PrevOp, MaskEnd);
13305 while (
Op.getOpcode() == CandidateBinOp) {
13306 unsigned NumElts =
Op.getValueType().getVectorNumElements();
13315 if (NumSrcElts != (2 * NumElts))
13330 EVT VT =
N->getValueType(0);
13339 else if (NE > ResNE)
13342 if (
N->getNumValues() == 2) {
13345 EVT VT1 =
N->getValueType(1);
13349 for (i = 0; i != NE; ++i) {
13350 for (
unsigned j = 0, e =
N->getNumOperands(); j != e; ++j) {
13351 SDValue Operand =
N->getOperand(j);
13364 for (; i < ResNE; ++i) {
13376 assert(
N->getNumValues() == 1 &&
13377 "Can't unroll a vector with multiple results!");
13383 for (i= 0; i != NE; ++i) {
13384 for (
unsigned j = 0, e =
N->getNumOperands(); j != e; ++j) {
13385 SDValue Operand =
N->getOperand(j);
13397 switch (
N->getOpcode()) {
13422 case ISD::ADDRSPACECAST: {
13425 ASC->getSrcAddressSpace(),
13426 ASC->getDestAddressSpace()));
13432 for (; i < ResNE; ++i)
13441 unsigned Opcode =
N->getOpcode();
13445 "Expected an overflow opcode");
13447 EVT ResVT =
N->getValueType(0);
13448 EVT OvVT =
N->getValueType(1);
13457 else if (NE > ResNE)
13469 for (
unsigned i = 0; i < NE; ++i) {
13470 SDValue Res =
getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
13493 if (LD->isVolatile() ||
Base->isVolatile())
13496 if (!LD->isSimple())
13498 if (LD->isIndexed() ||
Base->isIndexed())
13500 if (LD->getChain() !=
Base->getChain())
13502 EVT VT = LD->getMemoryVT();
13510 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *
this,
Offset))
13511 return (Dist * (int64_t)Bytes ==
Offset);
13520 int64_t GVOffset = 0;
13521 if (TLI->isGAPlusOffset(
Ptr.getNode(), GV, GVOffset)) {
13532 int FrameIdx = INT_MIN;
13533 int64_t FrameOffset = 0;
13535 FrameIdx = FI->getIndex();
13540 FrameOffset =
Ptr.getConstantOperandVal(1);
13543 if (FrameIdx != INT_MIN) {
13548 return std::nullopt;
13558 "Split node must be a scalar type");
13563 return std::make_pair(
Lo,
Hi);
13572 LoVT = HiVT = TLI->getTypeToTransformTo(*
getContext(), VT);
13576 return std::make_pair(LoVT, HiVT);
13584 bool *HiIsEmpty)
const {
13594 "Mixing fixed width and scalable vectors when enveloping a type");
13599 *HiIsEmpty =
false;
13607 return std::make_pair(LoVT, HiVT);
13612std::pair<SDValue, SDValue>
13617 "Splitting vector with an invalid mixture of fixed and scalable "
13620 N.getValueType().getVectorMinNumElements() &&
13621 "More vector elements requested than available!");
13630 return std::make_pair(
Lo,
Hi);
13637 EVT VT =
N.getValueType();
13639 "Expecting the mask to be an evenly-sized vector");
13647 return std::make_pair(
Lo,
Hi);
13652 EVT VT =
N.getValueType();
13660 unsigned Start,
unsigned Count,
13662 EVT VT =
Op.getValueType();
13665 if (EltVT ==
EVT())
13668 for (
unsigned i = Start, e = Start +
Count; i != e; ++i) {
13680 return Val.MachineCPVal->getType();
13681 return Val.ConstVal->getType();
13685 unsigned &SplatBitSize,
13686 bool &HasAnyUndefs,
13687 unsigned MinSplatBits,
13688 bool IsBigEndian)
const {
13692 if (MinSplatBits > VecWidth)
13697 SplatValue =
APInt(VecWidth, 0);
13698 SplatUndef =
APInt(VecWidth, 0);
13705 assert(
NumOps > 0 &&
"isConstantSplat has 0-size build vector");
13708 for (
unsigned j = 0; j <
NumOps; ++j) {
13709 unsigned i = IsBigEndian ?
NumOps - 1 - j : j;
13711 unsigned BitPos = j * EltWidth;
13714 SplatUndef.
setBits(BitPos, BitPos + EltWidth);
13716 SplatValue.
insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
13718 SplatValue.
insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
13725 HasAnyUndefs = (SplatUndef != 0);
13728 while (VecWidth > 8) {
13733 unsigned HalfSize = VecWidth / 2;
13740 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
13741 MinSplatBits > HalfSize)
13744 SplatValue = HighValue | LowValue;
13745 SplatUndef = HighUndef & LowUndef;
13747 VecWidth = HalfSize;
13756 SplatBitSize = VecWidth;
13763 if (UndefElements) {
13764 UndefElements->
clear();
13771 for (
unsigned i = 0; i !=
NumOps; ++i) {
13772 if (!DemandedElts[i])
13775 if (
Op.isUndef()) {
13777 (*UndefElements)[i] =
true;
13778 }
else if (!Splatted) {
13780 }
else if (Splatted !=
Op) {
13786 unsigned FirstDemandedIdx = DemandedElts.
countr_zero();
13788 "Can only have a splat without a constant for all undefs.");
13805 if (UndefElements) {
13806 UndefElements->
clear();
13817 (*UndefElements)[
I] =
true;
13820 for (
unsigned SeqLen = 1; SeqLen <
NumOps; SeqLen *= 2) {
13821 Sequence.append(SeqLen,
SDValue());
13822 for (
unsigned I = 0;
I !=
NumOps; ++
I) {
13823 if (!DemandedElts[
I])
13825 SDValue &SeqOp = Sequence[
I % SeqLen];
13827 if (
Op.isUndef()) {
13832 if (SeqOp && !SeqOp.
isUndef() && SeqOp !=
Op) {
13838 if (!Sequence.empty())
13842 assert(Sequence.empty() &&
"Failed to empty non-repeating sequence pattern");
13883 const APFloat &APF = CN->getValueAPF();
13889 return IntVal.exactLogBase2();
13895 bool IsLittleEndian,
unsigned DstEltSizeInBits,
13903 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13904 "Invalid bitcast scale");
13909 BitVector SrcUndeElements(NumSrcOps,
false);
13911 for (
unsigned I = 0;
I != NumSrcOps; ++
I) {
13913 if (
Op.isUndef()) {
13914 SrcUndeElements.
set(
I);
13919 assert((CInt || CFP) &&
"Unknown constant");
13920 SrcBitElements[
I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
13921 : CFP->getValueAPF().bitcastToAPInt();
13925 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
13926 SrcBitElements, UndefElements, SrcUndeElements);
13931 unsigned DstEltSizeInBits,
13936 unsigned NumSrcOps = SrcBitElements.
size();
13937 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
13938 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13939 "Invalid bitcast scale");
13940 assert(NumSrcOps == SrcUndefElements.
size() &&
13941 "Vector size mismatch");
13943 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
13944 DstUndefElements.
clear();
13945 DstUndefElements.
resize(NumDstOps,
false);
13949 if (SrcEltSizeInBits <= DstEltSizeInBits) {
13950 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
13951 for (
unsigned I = 0;
I != NumDstOps; ++
I) {
13952 DstUndefElements.
set(
I);
13953 APInt &DstBits = DstBitElements[
I];
13954 for (
unsigned J = 0; J != Scale; ++J) {
13955 unsigned Idx = (
I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13956 if (SrcUndefElements[Idx])
13958 DstUndefElements.
reset(
I);
13959 const APInt &SrcBits = SrcBitElements[Idx];
13961 "Illegal constant bitwidths");
13962 DstBits.
insertBits(SrcBits, J * SrcEltSizeInBits);
13969 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
13970 for (
unsigned I = 0;
I != NumSrcOps; ++
I) {
13971 if (SrcUndefElements[
I]) {
13972 DstUndefElements.
set(
I * Scale, (
I + 1) * Scale);
13975 const APInt &SrcBits = SrcBitElements[
I];
13976 for (
unsigned J = 0; J != Scale; ++J) {
13977 unsigned Idx = (
I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13978 APInt &DstBits = DstBitElements[Idx];
13979 DstBits = SrcBits.
extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
13986 unsigned Opc =
Op.getOpcode();
13993std::optional<std::pair<APInt, APInt>>
13997 return std::nullopt;
14001 return std::nullopt;
14008 return std::nullopt;
14010 for (
unsigned i = 2; i <
NumOps; ++i) {
14012 return std::nullopt;
14015 if (Val != (Start + (Stride * i)))
14016 return std::nullopt;
14019 return std::make_pair(Start, Stride);
14025 for (i = 0, e = Mask.size(); i != e && Mask[i] < 0; ++i)
14035 for (
int Idx = Mask[i]; i != e; ++i)
14036 if (Mask[i] >= 0 && Mask[i] != Idx)
14044 SDValue N,
bool AllowOpaques)
const {
14048 return AllowOpaques || !
C->isOpaque();
14057 TLI->isOffsetFoldingLegal(GA))
14085 return std::nullopt;
14087 EVT VT =
N->getValueType(0);
14089 switch (TLI->getBooleanContents(
N.getValueType())) {
14095 return std::nullopt;
14101 return std::nullopt;
14109 assert(!
Node->OperandList &&
"Node already has operands");
14111 "too many operands to fit into SDNode");
14112 SDUse *
Ops = OperandRecycler.allocate(
14115 bool IsDivergent =
false;
14116 for (
unsigned I = 0;
I != Vals.
size(); ++
I) {
14118 Ops[
I].setInitial(Vals[
I]);
14119 EVT VT =
Ops[
I].getValueType();
14122 if (VT != MVT::Other &&
14125 IsDivergent =
true;
14130 if (!TLI->isSDNodeAlwaysUniform(Node)) {
14131 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
14132 Node->SDNodeBits.IsDivergent = IsDivergent;
14140 while (Vals.
size() > Limit) {
14141 unsigned SliceIdx = Vals.
size() - Limit;
14176 case ISD::FMAXNUM: {
14182 if (Opcode == ISD::FMAXNUM)
14187 case ISD::FMINIMUM:
14188 case ISD::FMAXIMUM: {
14193 if (Opcode == ISD::FMAXIMUM)
14217 const SDLoc &DLoc) {
14221 RTLIB::Libcall LC =
static_cast<RTLIB::Libcall
>(
LibFunc);
14228 return TLI->LowerCallTo(CLI).second;
14232 assert(From && To &&
"Invalid SDNode; empty source SDValue?");
14233 auto I = SDEI.find(From);
14234 if (
I == SDEI.end())
14239 NodeExtraInfo NEI =
I->second;
14248 SDEI[To] = std::move(NEI);
14265 auto VisitFrom = [&](
auto &&Self,
const SDNode *
N,
int MaxDepth) {
14266 if (MaxDepth == 0) {
14272 if (!FromReach.
insert(
N).second)
14275 Self(Self,
Op.getNode(), MaxDepth - 1);
14280 auto DeepCopyTo = [&](
auto &&Self,
const SDNode *
N) {
14283 if (!Visited.
insert(
N).second)
14288 if (
N == To &&
Op.getNode() == EntrySDN) {
14293 if (!Self(Self,
Op.getNode()))
14307 for (
int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
14308 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.
clear()) {
14313 for (
const SDNode *
N : StartFrom)
14314 VisitFrom(VisitFrom,
N, MaxDepth - PrevDepth);
14318 LLVM_DEBUG(
dbgs() << __func__ <<
": MaxDepth=" << MaxDepth <<
" too low\n");
14326 errs() <<
"warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
14327 assert(
false &&
"From subgraph too complex - increase max. MaxDepth?");
14329 SDEI[To] = std::move(NEI);
14343 if (!Visited.
insert(
N).second) {
14344 errs() <<
"Detected cycle in SelectionDAG\n";
14345 dbgs() <<
"Offending node:\n";
14346 N->dumprFull(DAG);
dbgs() <<
"\n";
14362 bool check = force;
14363#ifdef EXPENSIVE_CHECKS
14367 assert(
N &&
"Checking nonexistent SDNode");
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define __asan_unpoison_memory_region(p, size)
#define LLVM_LIKELY(EXPR)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
This file contains constants used for implementing Dwarf debug support.
This file defines a hash set that can be used to remove duplication of nodes in a graph.
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB)
static bool shouldLowerMemFuncForSize(const MachineFunction &MF)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
mir Rename Register Operands
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
Contains matchers for matching SelectionDAG nodes and values.
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo, BatchAAResults *BatchAA)
static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo)
Lower the call to 'memset' intrinsic function into a series of store operations.
static std::optional< APInt > FoldValueWithUndef(unsigned Opcode, const APInt &C1, bool IsUndef1, const APInt &C2, bool IsUndef2)
static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, SelectionDAG &DAG)
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC, SDVTList VTList, ArrayRef< SDValue > OpList)
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, const TargetLowering &TLI, const ConstantDataArraySlice &Slice)
getMemsetStringVal - Similar to getMemsetValue.
static cl::opt< bool > EnableMemCpyDAGOpt("enable-memcpy-dag-opt", cl::Hidden, cl::init(true), cl::desc("Gang up loads and stores generated by inlining of memcpy"))
static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B)
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList)
AddNodeIDValueTypes - Value type lists are intern'd so we can represent them solely with their pointe...
static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef< int > M)
Swaps the values of N1 and N2.
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice)
Returns true if memcpy source is constant data.
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo)
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)
AddNodeIDOpcode - Add the node opcode to the NodeID data.
static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike)
static bool doNotCSE(SDNode *N)
doNotCSE - Return true if CSE should not be performed for this node.
static cl::opt< int > MaxLdStGlue("ldstmemcpy-glue-max", cl::desc("Number limit for gluing ld/st of memcpy."), cl::Hidden, cl::init(0))
static void AddNodeIDOperands(FoldingSetNodeID &ID, ArrayRef< SDValue > Ops)
AddNodeIDOperands - Various routines for adding operands to the NodeID data.
static bool canFoldStoreIntoLibCallOutputPointers(StoreSDNode *StoreNode, SDNode *FPNode)
Given a store node StoreNode, return true if it is safe to fold that node into FPNode,...
static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
Try to simplify vector concatenation to an input value, undef, or build vector.
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, SelectionDAG &DAG, SDValue Ptr, int64_t Offset=0)
InferPointerInfo - If the specified ptr/offset is a frame index, infer a MachinePointerInfo record fr...
static bool isInTailCallPositionWrapper(const CallInst *CI, const SelectionDAG *SelDAG, bool AllowReturnsFirstArg)
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N)
If this is an SDNode with special info, add this info to the NodeID data.
static bool gluePropagatesDivergence(const SDNode *Node)
Return true if a glue output should propagate divergence information.
static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G)
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs)
makeVTList - Return an instance of the SDVTList struct initialized with the specified members.
static void checkForCyclesHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallPtrSetImpl< const SDNode * > &Checked, const llvm::SelectionDAG *DAG)
static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, SmallVector< SDValue, 32 > &OutChains, unsigned From, unsigned To, SmallVector< SDValue, 16 > &OutLoadChains, SmallVector< SDValue, 16 > &OutStoreChains)
static int isSignedOp(ISD::CondCode Opcode)
For an integer comparison, return 1 if the comparison is a signed operation and 2 if the result is an...
static std::optional< APInt > FoldValue(unsigned Opcode, const APInt &C1, const APInt &C2)
static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, unsigned AS)
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static void removeOperands(MachineInstr &MI, unsigned i)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
opStatus divide(const APFloat &RHS, roundingMode RM)
void copySign(const APFloat &RHS)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
opStatus add(const APFloat &RHS, roundingMode RM)
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
opStatus multiply(const APFloat &RHS, roundingMode RM)
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
opStatus mod(const APFloat &RHS)
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt usub_sat(const APInt &RHS) const
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
void clearAllBits()
Set every bit to 0.
LLVM_ABI APInt rotr(unsigned rotateAmt) const
Rotate right by rotateAmt.
LLVM_ABI APInt reverseBits() const
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
bool sle(const APInt &RHS) const
Signed less or equal comparison.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sshl_sat(const APInt &RHS) const
LLVM_ABI APInt ushl_sat(const APInt &RHS) const
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
LLVM_ABI APInt rotl(unsigned rotateAmt) const
Rotate left by rotateAmt.
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
unsigned logBase2() const
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
APInt shl(unsigned shiftAmt) const
Left-shift function.
LLVM_ABI APInt byteSwap() const
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
bool isOne() const
Determine if this is a value of 1.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
An arbitrary precision integer that knows its signedness.
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
static Capacity get(size_t N)
Get the capacity of an array that can hold at least N elements.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
This is an SDNode representing atomic operations.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal=false)
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
void clear()
clear - Removes all bits from the bitvector.
bool none() const
none - Returns true if none of the bits are set.
size_type size() const
size - Returns the number of bits in this bitvector.
int64_t getOffset() const
unsigned getTargetFlags() const
const BlockAddress * getBlockAddress() const
The address of a basic block.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &RawBitElements, BitVector &UndefElements) const
Extract the raw bit data from a build vector of Undef, Constant or ConstantFP node elements.
static LLVM_ABI void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &DstBitElements, ArrayRef< APInt > SrcBitElements, BitVector &DstUndefElements, const BitVector &SrcUndefElements)
Recast bit data SrcBitElements to DstEltSizeInBits wide elements.
LLVM_ABI bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl< SDValue > &Sequence, BitVector *UndefElements=nullptr) const
Find the shortest repeating sequence of values in the build vector.
LLVM_ABI ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant FP or null if this is not a constant FP splat.
LLVM_ABI std::optional< std::pair< APInt, APInt > > isConstantSequence() const
If this BuildVector is constant and represents the numerical series "<a, a+n, a+2n,...
LLVM_ABI SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted value or a null value if this is not a splat.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
LLVM_ABI bool isConstant() const
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
ConstantFP - Floating Point Values [float, double].
const APFloat & getValue() const
This is the shared class of boolean and integer constants.
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
const APInt & getValue() const
Return the constant as an APInt value reference.
bool isMachineConstantPoolEntry() const
LLVM_ABI Type * getType() const
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
static LLVM_ABI ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
Base class for variables.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Implements a dense probed hash-table based set.
const char * getSymbol() const
unsigned getTargetFlags() const
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Data structure describing the variable locations in a function.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
AttributeList getAttributes() const
Return the attribute list for this Function.
int64_t getOffset() const
LLVM_ABI unsigned getAddressSpace() const
unsigned getTargetFlags() const
const GlobalValue * getGlobal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
This class is used to form a handle around another node that is persistent and is updated across invo...
const SDValue & getValue() const
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This is an important class for using LLVM in a threaded context.
This SDNode is used for LIFETIME_START/LIFETIME_END values.
This class is used to represent ISD::LOAD nodes.
static LocationSize precise(uint64_t Value)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
const MDOperand & getOperand(unsigned I) const
static MVT getIntegerVT(unsigned BitWidth)
Abstract base class for all machine specific constantpool value subclasses.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
A description of a memory reference used in the backend.
const MDNode * getRanges() const
Return the range tag for the memory reference.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
This class contains meta information specific to a module.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This class is used to represent an MGATHER node.
This class is used to represent an MLOAD node.
This class is used to represent an MSCATTER node.
This class is used to represent an MSTORE node.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
LLVM_ABI MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *MMO)
MachineMemOperand * MMO
Memory reference information.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
unsigned getRawSubclassData() const
Return the SubclassData value, without HasDebugValue.
EVT getMemoryVT() const
Return the type of the in-memory value.
Representation for a specific memory location.
A Module instance is used to store all the information related to an LLVM module.
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Pass interface - Implemented by all 'passes'.
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Analysis providing profile information.
void Deallocate(SubClass *E)
Deallocate - Release storage for the pointed-to object.
Wrapper class representing virtual and physical registers.
Keeps track of dbg_value information through SDISel.
LLVM_ABI void add(SDDbgValue *V, bool isParameter)
LLVM_ABI void erase(const SDNode *Node)
Invalidate all DbgValues attached to the node and remove it from the Node-to-DbgValues map.
Holds the information from a dbg_label node through SDISel.
Holds the information for a single machine location through SDISel; either an SDNode,...
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
@ SDNODE
Value is the result of an expression.
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
unsigned getIROrder() const
This class provides iterator support for SDUse operands that use a specific SDNode.
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
LLVM_ABI void dumprFull(const SelectionDAG *G=nullptr) const
printrFull to dbgs().
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
static constexpr size_t getMaxNumOperands()
Return the maximum number of operands that a SDNode can hold.
iterator_range< use_iterator > uses()
MemSDNodeBitfields MemSDNodeBits
LLVM_ABI void Profile(FoldingSetNodeID &ID) const
Gather unique data for the node.
bool getHasDebugValue() const
SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
LLVM_ABI void intersectFlagsWith(const SDNodeFlags Flags)
Clear any flags in this node that aren't also set in Flags.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
static LLVM_ABI bool areOnlyUsersOf(ArrayRef< const SDNode * > Nodes, const SDNode *N)
Return true if all the users of N are contained in Nodes.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
std::optional< APInt > bitcastToAPInt() const
LLVM_ABI bool hasPredecessor(const SDNode *N) const
Return true if N is a predecessor of this node.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
op_iterator op_end() const
op_iterator op_begin() const
static use_iterator use_end()
LLVM_ABI void DropOperands()
Release the operands and set this node to have zero operands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
Create an SDNode.
Represents a use of a SDNode.
SDNode * getUser()
This returns the SDNode that contains this Use.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if the referenced return value is an operand of N.
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
virtual void verifyTargetNode(const SelectionDAG &DAG, const SDNode *N) const
Checks that the given target-specific node is valid. Aborts if it is not.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsExpanding=false)
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const
Determine if the result of the unsigned sub of 2 nodes can overflow.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI std::pair< SDValue, SDValue > getStrlen(SDValue Chain, const SDLoc &dl, SDValue Src, const CallInst *CI)
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI void updateDivergence(SDNode *N)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, SDNodeFlags Flags)
Get the (commutative) neutral element for the given opcode, if it exists.
LLVM_ABI SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo)
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, bool ConstantFold=true)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, uint64_t Index, uint32_t Attr)
Creates a PseudoProbeSDNode with function GUID Guid and the index of the block Index it is probing,...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDNode * SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT)
These are used for target selectors to mutate the specified node to have the specified return type,...
LLVM_ABI SelectionDAG(const TargetMachine &TM, CodeGenOptLevel)
LLVM_ABI SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num)
Like ReplaceAllUsesOfValueWith, but for multiple values at once.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI bool calculateDivergence(SDNode *N)
LLVM_ABI SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC, bool ConstantFold=true)
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDNode * mutateStrictFPToFP(SDNode *Node)
Mutate the specified strict FP node to its non-strict equivalent, unlinking the node from its chain a...
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
LLVM_ABI SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be an integer vector, to the vector-type VT,...
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI bool isEqualTo(SDValue A, SDValue B) const
Test whether two SDValues are known to compare equal.
static constexpr unsigned MaxRecursionDepth
LLVM_ABI SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth=0) const
Return true if this function can prove that Op is never poison.
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI void dump(bool Sorted=false) const
Dump the textual format of this DAG.
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
bool NewNodesMustHaveLegalTypes
When true, additional steps are taken to ensure that getConstant() and similar functions return DAG n...
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
LLVM_ABI void salvageDebugInfo(SDNode &N)
To be invoked on an SDNode that is slated to be erased.
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
LLVM_ABI std::pair< SDValue, SDValue > UnrollVectorOverflowOp(SDNode *N, unsigned ResNE=0)
Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDDbgLabel * getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O)
Creates a SDDbgLabel node.
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const
Determine if the result of the unsigned mul of 2 nodes can overflow.
LLVM_ABI void copyExtraInfo(SDNode *From, SDNode *To)
Copy extra info associated with one node to another.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getLoadFFVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachineMemOperand *MMO)
LLVM_ABI SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
LLVM_ABI void clear()
Clear state and free memory necessary to make this SelectionDAG ready to process a new block.
std::pair< SDValue, SDValue > getMemcmp(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, const CallInst *CI)
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
LLVM_ABI SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getSrcValue(const Value *v)
Construct a node to track a Value* through the backend.
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const
Determine if the result of the signed mul of 2 nodes can overflow.
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
LLVM_ABI bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if '(Op & Mask) == Mask'.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI void AddDbgLabel(SDDbgLabel *DB)
Add a dbg_label SDNode.
bool isConstantValueOfAnyType(SDValue N) const
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDDbgValue * getVRegDbgValue(DIVariable *Var, DIExpression *Expr, Register VReg, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a VReg SDDbgValue node.
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI std::optional< unsigned > getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
LLVM_ABI std::pair< SDValue, SDValue > SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL)
Split the explicit vector length parameter of a VP operation.
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
LLVM_ABI SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDDbgValue * getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O)
Creates a constant SDDbgValue node.
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, int FrameIndex)
Creates a LifetimeSDNode that starts (IsStart==true) or ends (IsStart==false) the lifetime of the Fra...
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the signed addition of 2 nodes can overflow.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
ilist< SDNode >::size_type allnodes_size() const
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
LLVM_ABI SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsCompressing=false)
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
const TargetLibraryInfo & getLibInfo() const
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDDbgValue * getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a FrameIndex SDDbgValue node.
LLVM_ABI SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getJumpTable(int JTI, EVT VT, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be of integer type, to the vector-type integer type VT,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void getTopologicallyOrderedNodes(SmallVectorImpl< const SDNode * > &SortedNodes) const
Get all the nodes in their topological order without modifying any states.
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to extend the Op as a pointer value assuming it was the smaller SrcTy ...
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT SVT, MachineMemOperand *MMO, bool IsCompressing=false)
LLVM_ABI void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, SDValue &N2) const
Swap N1 and N2 if Opcode is a commutative binary opcode and the canonical form expects the opposite o...
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVM_ABI OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const
Determine if the result of the signed sub of 2 nodes can overflow.
LLVM_ABI bool expandMultipleResultFPLibCall(RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl< SDValue > &Results, std::optional< unsigned > CallRetResNo={})
Expands a node with multiple results to an FP or vector libcall.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI std::pair< EVT, EVT > GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, bool *HiIsEmpty) const
Compute the VTs needed for the low/hi parts of a type, dependent on an enveloping VT that has been sp...
LLVM_ABI SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops)
Fold floating-point operations when all operands are constants and/or undefined.
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags)
Get the specified node if it's already available, or else return NULL.
LLVM_ABI void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs)
Prepare this SelectionDAG to process code in the given MachineFunction.
LLVM_ABI std::optional< ConstantRange > getValidShiftAmountRange(SDValue V, const APInt &DemandedElts, unsigned Depth) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2)
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg)
A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDDbgValue * getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a SDDbgValue node.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef< ISD::NodeType > CandidateBinOps, bool AllowPartials=false)
Match a binop + shuffle pyramid that represents a horizontal reduction over the elements of a vector ...
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
ilist< SDNode >::iterator allnodes_iterator
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
static LLVM_ABI bool isSplatMask(ArrayRef< int > Mask)
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
Completely target-dependent object reference.
int64_t getOffset() const
unsigned getTargetFlags() const
Provides information about what library functions are available for the current target.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
const TargetMachine & getTargetMachine() const
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
BooleanContent
Enum that describes how the target represents true/false values.
@ ZeroOrOneBooleanContent
@ UndefinedBooleanContent
@ ZeroOrNegativeOneBooleanContent
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
std::vector< ArgListEntry > ArgListTy
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
Primary interface to the complete machine description for the target machine.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const SelectionDAGTargetInfo * getSelectionDAGInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
A Use represents the edge between a Value definition and its users.
LLVM_ABI void set(Value *Val)
User * getUser() const
Returns the User that contains this Use.
This class is used to represent an VP_GATHER node.
This class is used to represent a VP_LOAD node.
This class is used to represent an VP_SCATTER node.
This class is used to represent a VP_STORE node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
Provides info so a possible vectorization of a function can be computed.
StringRef getVectorFnName() const
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr bool isKnownEven() const
A return value of true indicates we know at compile time that the number of elements (vscale * Min) i...
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt mulhu(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on zero-extended operands.
LLVM_ABI APInt avgCeilU(const APInt &C1, const APInt &C2)
Compute the ceil of the unsigned average of C1 and C2.
LLVM_ABI APInt avgFloorU(const APInt &C1, const APInt &C2)
Compute the floor of the unsigned average of C1 and C2.
LLVM_ABI APInt fshr(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift right.
LLVM_ABI APInt mulhs(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on sign-extended operands.
APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
LLVM_ABI APInt fshl(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift left.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
LLVM_ABI APInt avgFloorS(const APInt &C1, const APInt &C2)
Compute the floor of the signed average of C1 and C2.
LLVM_ABI APInt avgCeilS(const APInt &C1, const APInt &C2)
Compute the ceil of the signed average of C1 and C2.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
LLVM_ABI CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X...
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ POISON
POISON - A poison node.
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ TargetIndex
TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ SSUBO
Same for subtraction.
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ UNDEF
UNDEF - An undefined node.
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
@ BasicBlock
Various leaf nodes.
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
bool isExtOpcode(unsigned Opcode)
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed)
Returns true if the specified node is a vector where all elements can be truncated to the specified e...
LLVM_ABI bool isVPBinaryOp(unsigned Opcode)
Whether this is a vector-predicated binary operation opcode.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI std::optional< unsigned > getBaseOpcodeForVP(unsigned Opcode, bool hasFPExcept)
Translate this VP Opcode to its corresponding non-VP Opcode.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI std::optional< unsigned > getVPForBaseOpcode(unsigned Opcode)
Translate this non-VP Opcode to its corresponding VP Opcode.
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool matchUnaryPredicateImpl(SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUI...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI NodeType getInverseMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns ISD::(U|S)MAX and ISD::(U|S)MIN,...
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
LLVM_ABI bool isVPReduction(unsigned Opcode)
Whether this is a vector-predicated reduction opcode.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X ...
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
bool operator<(int64_t V1, const APSInt &V2)
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI SDValue peekThroughExtractSubvectors(SDValue V)
Return the non-extracted vector source operand of V if it exists.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
auto cast_or_null(const Y &Val)
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
LLVM_ABI SDValue peekThroughInsertVectorElt(SDValue V, const APInt &DemandedElts)
Recursively peek through INSERT_VECTOR_ELT nodes, returning the source vector operand of V,...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force=false)
void sort(IteratorTy Start, IteratorTy End)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
constexpr std::underlying_type_t< Enum > to_underlying(Enum E)
Returns underlying integer value of an enum.
FunctionAddr VTableAddr Count
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
CodeGenOptLevel
Code generation optimization level.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
LLVM_ABI bool isNullConstantOrUndef(SDValue V)
Returns true if V is a constant integer zero or an UNDEF node.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
OutputIt copy(R &&Range, OutputIt Out)
constexpr unsigned BitWidth
bool funcReturnsFirstArgOfCall(const CallInst &CI)
Returns true if the parent of CI returns CI's first argument after calling CI.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
LLVM_ABI bool isOnesOrOnesSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
MDNode * TBAAStruct
The tag for type-based alias analysis (tbaa struct).
MDNode * TBAA
The tag for type-based alias analysis.
static LLVM_ABI const fltSemantics & IEEEsingle() LLVM_READNONE
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
static constexpr roundingMode rmTowardNegative
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardZero
static LLVM_ABI const fltSemantics & IEEEquad() LLVM_READNONE
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
static constexpr roundingMode rmTowardPositive
static LLVM_ABI const fltSemantics & BFloat() LLVM_READNONE
opStatus
IEEE-754R 7: Default exception handling.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
void move(uint64_t Delta)
Moves the Offset and adjusts Length accordingly.
const ConstantDataArray * Array
ConstantDataArray pointer.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
intptr_t getRawBits() const
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
void makeNonNegative()
Make this value non-negative.
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
void makeNegative()
Make this value negative.
void setAllConflict()
Make all bits known to be both zero and one.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
void setAllZero()
Make all bits known to be zero and discard any previous information.
KnownBits reverseBits() const
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
static LLVM_ABI KnownBits abdu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for abdu(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
static LLVM_ABI KnownBits avgFloorU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorU.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
static LLVM_ABI KnownBits computeForSubBorrow(const KnownBits &LHS, KnownBits RHS, const KnownBits &Borrow)
Compute known bits results from subtracting RHS from LHS with 1-bit Borrow.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits abds(KnownBits LHS, KnownBits RHS)
Compute known bits for abds(LHS, RHS).
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
bool isStrictlyPositive() const
Returns true if this value is known to be positive.
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static LLVM_ABI KnownBits avgFloorS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorS.
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
bool isNegative() const
Returns true if this value is known to be negative.
static LLVM_ABI KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry)
Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits avgCeilU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilU.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
static LLVM_ABI KnownBits avgCeilS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilS.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI bool isDereferenceable(unsigned Size, LLVMContext &C, const DataLayout &DL) const
Return true if memory region [V, V+Offset+Size) is known to be dereferenceable.
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
These are IR-level optimization flags that may be propagated to SDNodes.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
DAGUpdateListener *const Next
virtual void NodeDeleted(SDNode *N, SDNode *E)
The node N that was deleted and, if E is not null, an equivalent node E that replaced it.
virtual void NodeInserted(SDNode *N)
The node N that was inserted.
virtual void NodeUpdated(SDNode *N)
The node N that was updated.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)