LLVM 22.0.0git
SelectionDAG.cpp
Go to the documentation of this file.
1//===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the SelectionDAG class.
10//
11//===----------------------------------------------------------------------===//
12
14#include "SDNodeDbgValue.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/APSInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/BitVector.h"
20#include "llvm/ADT/DenseSet.h"
21#include "llvm/ADT/FoldingSet.h"
22#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/Twine.h"
51#include "llvm/IR/Constant.h"
52#include "llvm/IR/Constants.h"
53#include "llvm/IR/DataLayout.h"
55#include "llvm/IR/DebugLoc.h"
57#include "llvm/IR/Function.h"
58#include "llvm/IR/GlobalValue.h"
59#include "llvm/IR/Metadata.h"
60#include "llvm/IR/Type.h"
64#include "llvm/Support/Debug.h"
73#include <algorithm>
74#include <cassert>
75#include <cstdint>
76#include <cstdlib>
77#include <limits>
78#include <optional>
79#include <set>
80#include <string>
81#include <utility>
82#include <vector>
83
84using namespace llvm;
85using namespace llvm::SDPatternMatch;
86
87/// makeVTList - Return an instance of the SDVTList struct initialized with the
88/// specified members.
89static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
90 SDVTList Res = {VTs, NumVTs};
91 return Res;
92}
93
94// Default null implementations of the callbacks.
98
99void SelectionDAG::DAGNodeDeletedListener::anchor() {}
100void SelectionDAG::DAGNodeInsertedListener::anchor() {}
101
102#define DEBUG_TYPE "selectiondag"
103
104static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
105 cl::Hidden, cl::init(true),
106 cl::desc("Gang up loads and stores generated by inlining of memcpy"));
107
108static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
109 cl::desc("Number limit for gluing ld/st of memcpy."),
110 cl::Hidden, cl::init(0));
111
113 MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192),
114 cl::desc("DAG combiner limit number of steps when searching DAG "
115 "for predecessor nodes"));
116
118 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
119}
120
122
123//===----------------------------------------------------------------------===//
124// ConstantFPSDNode Class
125//===----------------------------------------------------------------------===//
126
127/// isExactlyValue - We don't rely on operator== working on double values, as
128/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
129/// As such, this method can be used to do an exact bit-for-bit comparison of
130/// two floating point values.
132 return getValueAPF().bitwiseIsEqual(V);
133}
134
136 const APFloat& Val) {
137 assert(VT.isFloatingPoint() && "Can only convert between FP types");
138
139 // convert modifies in place, so make a copy.
140 APFloat Val2 = APFloat(Val);
141 bool losesInfo;
143 &losesInfo);
144 return !losesInfo;
145}
146
147//===----------------------------------------------------------------------===//
148// ISD Namespace
149//===----------------------------------------------------------------------===//
150
151bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
152 if (N->getOpcode() == ISD::SPLAT_VECTOR) {
153 if (auto OptAPInt = N->getOperand(0)->bitcastToAPInt()) {
154 unsigned EltSize =
155 N->getValueType(0).getVectorElementType().getSizeInBits();
156 SplatVal = OptAPInt->trunc(EltSize);
157 return true;
158 }
159 }
160
161 auto *BV = dyn_cast<BuildVectorSDNode>(N);
162 if (!BV)
163 return false;
164
165 APInt SplatUndef;
166 unsigned SplatBitSize;
167 bool HasUndefs;
168 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
169 // Endianness does not matter here. We are checking for a splat given the
170 // element size of the vector, and if we find such a splat for little endian
171 // layout, then that should be valid also for big endian (as the full vector
172 // size is known to be a multiple of the element size).
173 const bool IsBigEndian = false;
174 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
175 EltSize, IsBigEndian) &&
176 EltSize == SplatBitSize;
177}
178
179// FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
180// specializations of the more general isConstantSplatVector()?
181
182bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
183 // Look through a bit convert.
184 while (N->getOpcode() == ISD::BITCAST)
185 N = N->getOperand(0).getNode();
186
187 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
188 APInt SplatVal;
189 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
190 }
191
192 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
193
194 unsigned i = 0, e = N->getNumOperands();
195
196 // Skip over all of the undef values.
197 while (i != e && N->getOperand(i).isUndef())
198 ++i;
199
200 // Do not accept an all-undef vector.
201 if (i == e) return false;
202
203 // Do not accept build_vectors that aren't all constants or which have non-~0
204 // elements. We have to be a bit careful here, as the type of the constant
205 // may not be the same as the type of the vector elements due to type
206 // legalization (the elements are promoted to a legal type for the target and
207 // a vector of a type may be legal when the base element type is not).
208 // We only want to check enough bits to cover the vector elements, because
209 // we care if the resultant vector is all ones, not whether the individual
210 // constants are.
211 SDValue NotZero = N->getOperand(i);
212 if (auto OptAPInt = NotZero->bitcastToAPInt()) {
213 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
214 if (OptAPInt->countr_one() < EltSize)
215 return false;
216 } else
217 return false;
218
219 // Okay, we have at least one ~0 value, check to see if the rest match or are
220 // undefs. Even with the above element type twiddling, this should be OK, as
221 // the same type legalization should have applied to all the elements.
222 for (++i; i != e; ++i)
223 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
224 return false;
225 return true;
226}
227
228bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
229 // Look through a bit convert.
230 while (N->getOpcode() == ISD::BITCAST)
231 N = N->getOperand(0).getNode();
232
233 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
234 APInt SplatVal;
235 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
236 }
237
238 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
239
240 bool IsAllUndef = true;
241 for (const SDValue &Op : N->op_values()) {
242 if (Op.isUndef())
243 continue;
244 IsAllUndef = false;
245 // Do not accept build_vectors that aren't all constants or which have non-0
246 // elements. We have to be a bit careful here, as the type of the constant
247 // may not be the same as the type of the vector elements due to type
248 // legalization (the elements are promoted to a legal type for the target
249 // and a vector of a type may be legal when the base element type is not).
250 // We only want to check enough bits to cover the vector elements, because
251 // we care if the resultant vector is all zeros, not whether the individual
252 // constants are.
253 if (auto OptAPInt = Op->bitcastToAPInt()) {
254 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
255 if (OptAPInt->countr_zero() < EltSize)
256 return false;
257 } else
258 return false;
259 }
260
261 // Do not accept an all-undef vector.
262 if (IsAllUndef)
263 return false;
264 return true;
265}
266
268 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
269}
270
272 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
273}
274
276 if (N->getOpcode() != ISD::BUILD_VECTOR)
277 return false;
278
279 for (const SDValue &Op : N->op_values()) {
280 if (Op.isUndef())
281 continue;
283 return false;
284 }
285 return true;
286}
287
289 if (N->getOpcode() != ISD::BUILD_VECTOR)
290 return false;
291
292 for (const SDValue &Op : N->op_values()) {
293 if (Op.isUndef())
294 continue;
296 return false;
297 }
298 return true;
299}
300
301bool ISD::isVectorShrinkable(const SDNode *N, unsigned NewEltSize,
302 bool Signed) {
303 assert(N->getValueType(0).isVector() && "Expected a vector!");
304
305 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
306 if (EltSize <= NewEltSize)
307 return false;
308
309 if (N->getOpcode() == ISD::ZERO_EXTEND) {
310 return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
311 NewEltSize) &&
312 !Signed;
313 }
314 if (N->getOpcode() == ISD::SIGN_EXTEND) {
315 return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
316 NewEltSize) &&
317 Signed;
318 }
319 if (N->getOpcode() != ISD::BUILD_VECTOR)
320 return false;
321
322 for (const SDValue &Op : N->op_values()) {
323 if (Op.isUndef())
324 continue;
326 return false;
327
328 APInt C = Op->getAsAPIntVal().trunc(EltSize);
329 if (Signed && C.trunc(NewEltSize).sext(EltSize) != C)
330 return false;
331 if (!Signed && C.trunc(NewEltSize).zext(EltSize) != C)
332 return false;
333 }
334
335 return true;
336}
337
339 // Return false if the node has no operands.
340 // This is "logically inconsistent" with the definition of "all" but
341 // is probably the desired behavior.
342 if (N->getNumOperands() == 0)
343 return false;
344 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
345}
346
348 return N->getOpcode() == ISD::FREEZE && N->getOperand(0).isUndef();
349}
350
351template <typename ConstNodeType>
353 std::function<bool(ConstNodeType *)> Match,
354 bool AllowUndefs, bool AllowTruncation) {
355 // FIXME: Add support for scalar UNDEF cases?
356 if (auto *C = dyn_cast<ConstNodeType>(Op))
357 return Match(C);
358
359 // FIXME: Add support for vector UNDEF cases?
360 if (ISD::BUILD_VECTOR != Op.getOpcode() &&
361 ISD::SPLAT_VECTOR != Op.getOpcode())
362 return false;
363
364 EVT SVT = Op.getValueType().getScalarType();
365 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
366 if (AllowUndefs && Op.getOperand(i).isUndef()) {
367 if (!Match(nullptr))
368 return false;
369 continue;
370 }
371
372 auto *Cst = dyn_cast<ConstNodeType>(Op.getOperand(i));
373 if (!Cst || (!AllowTruncation && Cst->getValueType(0) != SVT) ||
374 !Match(Cst))
375 return false;
376 }
377 return true;
378}
379// Build used template types.
381 SDValue, std::function<bool(ConstantSDNode *)>, bool, bool);
383 SDValue, std::function<bool(ConstantFPSDNode *)>, bool, bool);
384
386 SDValue LHS, SDValue RHS,
387 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
388 bool AllowUndefs, bool AllowTypeMismatch) {
389 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
390 return false;
391
392 // TODO: Add support for scalar UNDEF cases?
393 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
394 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
395 return Match(LHSCst, RHSCst);
396
397 // TODO: Add support for vector UNDEF cases?
398 if (LHS.getOpcode() != RHS.getOpcode() ||
399 (LHS.getOpcode() != ISD::BUILD_VECTOR &&
400 LHS.getOpcode() != ISD::SPLAT_VECTOR))
401 return false;
402
403 EVT SVT = LHS.getValueType().getScalarType();
404 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
405 SDValue LHSOp = LHS.getOperand(i);
406 SDValue RHSOp = RHS.getOperand(i);
407 bool LHSUndef = AllowUndefs && LHSOp.isUndef();
408 bool RHSUndef = AllowUndefs && RHSOp.isUndef();
409 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
410 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
411 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
412 return false;
413 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
414 LHSOp.getValueType() != RHSOp.getValueType()))
415 return false;
416 if (!Match(LHSCst, RHSCst))
417 return false;
418 }
419 return true;
420}
421
423 switch (MinMaxOpc) {
424 default:
425 llvm_unreachable("unrecognized opcode");
426 case ISD::UMIN:
427 return ISD::UMAX;
428 case ISD::UMAX:
429 return ISD::UMIN;
430 case ISD::SMIN:
431 return ISD::SMAX;
432 case ISD::SMAX:
433 return ISD::SMIN;
434 }
435}
436
438 switch (VecReduceOpcode) {
439 default:
440 llvm_unreachable("Expected VECREDUCE opcode");
441 case ISD::VECREDUCE_FADD:
442 case ISD::VECREDUCE_SEQ_FADD:
443 case ISD::VP_REDUCE_FADD:
444 case ISD::VP_REDUCE_SEQ_FADD:
445 return ISD::FADD;
446 case ISD::VECREDUCE_FMUL:
447 case ISD::VECREDUCE_SEQ_FMUL:
448 case ISD::VP_REDUCE_FMUL:
449 case ISD::VP_REDUCE_SEQ_FMUL:
450 return ISD::FMUL;
451 case ISD::VECREDUCE_ADD:
452 case ISD::VP_REDUCE_ADD:
453 return ISD::ADD;
454 case ISD::VECREDUCE_MUL:
455 case ISD::VP_REDUCE_MUL:
456 return ISD::MUL;
457 case ISD::VECREDUCE_AND:
458 case ISD::VP_REDUCE_AND:
459 return ISD::AND;
460 case ISD::VECREDUCE_OR:
461 case ISD::VP_REDUCE_OR:
462 return ISD::OR;
463 case ISD::VECREDUCE_XOR:
464 case ISD::VP_REDUCE_XOR:
465 return ISD::XOR;
466 case ISD::VECREDUCE_SMAX:
467 case ISD::VP_REDUCE_SMAX:
468 return ISD::SMAX;
469 case ISD::VECREDUCE_SMIN:
470 case ISD::VP_REDUCE_SMIN:
471 return ISD::SMIN;
472 case ISD::VECREDUCE_UMAX:
473 case ISD::VP_REDUCE_UMAX:
474 return ISD::UMAX;
475 case ISD::VECREDUCE_UMIN:
476 case ISD::VP_REDUCE_UMIN:
477 return ISD::UMIN;
478 case ISD::VECREDUCE_FMAX:
479 case ISD::VP_REDUCE_FMAX:
480 return ISD::FMAXNUM;
481 case ISD::VECREDUCE_FMIN:
482 case ISD::VP_REDUCE_FMIN:
483 return ISD::FMINNUM;
484 case ISD::VECREDUCE_FMAXIMUM:
485 case ISD::VP_REDUCE_FMAXIMUM:
486 return ISD::FMAXIMUM;
487 case ISD::VECREDUCE_FMINIMUM:
488 case ISD::VP_REDUCE_FMINIMUM:
489 return ISD::FMINIMUM;
490 }
491}
492
493bool ISD::isVPOpcode(unsigned Opcode) {
494 switch (Opcode) {
495 default:
496 return false;
497#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
498 case ISD::VPSD: \
499 return true;
500#include "llvm/IR/VPIntrinsics.def"
501 }
502}
503
504bool ISD::isVPBinaryOp(unsigned Opcode) {
505 switch (Opcode) {
506 default:
507 break;
508#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
509#define VP_PROPERTY_BINARYOP return true;
510#define END_REGISTER_VP_SDNODE(VPSD) break;
511#include "llvm/IR/VPIntrinsics.def"
512 }
513 return false;
514}
515
516bool ISD::isVPReduction(unsigned Opcode) {
517 switch (Opcode) {
518 default:
519 return false;
520 case ISD::VP_REDUCE_ADD:
521 case ISD::VP_REDUCE_MUL:
522 case ISD::VP_REDUCE_AND:
523 case ISD::VP_REDUCE_OR:
524 case ISD::VP_REDUCE_XOR:
525 case ISD::VP_REDUCE_SMAX:
526 case ISD::VP_REDUCE_SMIN:
527 case ISD::VP_REDUCE_UMAX:
528 case ISD::VP_REDUCE_UMIN:
529 case ISD::VP_REDUCE_FMAX:
530 case ISD::VP_REDUCE_FMIN:
531 case ISD::VP_REDUCE_FMAXIMUM:
532 case ISD::VP_REDUCE_FMINIMUM:
533 case ISD::VP_REDUCE_FADD:
534 case ISD::VP_REDUCE_FMUL:
535 case ISD::VP_REDUCE_SEQ_FADD:
536 case ISD::VP_REDUCE_SEQ_FMUL:
537 return true;
538 }
539}
540
541/// The operand position of the vector mask.
542std::optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
543 switch (Opcode) {
544 default:
545 return std::nullopt;
546#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
547 case ISD::VPSD: \
548 return MASKPOS;
549#include "llvm/IR/VPIntrinsics.def"
550 }
551}
552
553/// The operand position of the explicit vector length parameter.
554std::optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
555 switch (Opcode) {
556 default:
557 return std::nullopt;
558#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
559 case ISD::VPSD: \
560 return EVLPOS;
561#include "llvm/IR/VPIntrinsics.def"
562 }
563}
564
565std::optional<unsigned> ISD::getBaseOpcodeForVP(unsigned VPOpcode,
566 bool hasFPExcept) {
567 // FIXME: Return strict opcodes in case of fp exceptions.
568 switch (VPOpcode) {
569 default:
570 return std::nullopt;
571#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
572#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
573#define END_REGISTER_VP_SDNODE(VPOPC) break;
574#include "llvm/IR/VPIntrinsics.def"
575 }
576 return std::nullopt;
577}
578
579std::optional<unsigned> ISD::getVPForBaseOpcode(unsigned Opcode) {
580 switch (Opcode) {
581 default:
582 return std::nullopt;
583#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
584#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
585#define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
586#include "llvm/IR/VPIntrinsics.def"
587 }
588}
589
591 switch (ExtType) {
592 case ISD::EXTLOAD:
593 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
594 case ISD::SEXTLOAD:
595 return ISD::SIGN_EXTEND;
596 case ISD::ZEXTLOAD:
597 return ISD::ZERO_EXTEND;
598 default:
599 break;
600 }
601
602 llvm_unreachable("Invalid LoadExtType");
603}
604
606 // To perform this operation, we just need to swap the L and G bits of the
607 // operation.
608 unsigned OldL = (Operation >> 2) & 1;
609 unsigned OldG = (Operation >> 1) & 1;
610 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
611 (OldL << 1) | // New G bit
612 (OldG << 2)); // New L bit.
613}
614
616 unsigned Operation = Op;
617 if (isIntegerLike)
618 Operation ^= 7; // Flip L, G, E bits, but not U.
619 else
620 Operation ^= 15; // Flip all of the condition bits.
621
623 Operation &= ~8; // Don't let N and U bits get set.
624
625 return ISD::CondCode(Operation);
626}
627
631
633 bool isIntegerLike) {
634 return getSetCCInverseImpl(Op, isIntegerLike);
635}
636
637/// For an integer comparison, return 1 if the comparison is a signed operation
638/// and 2 if the result is an unsigned comparison. Return zero if the operation
639/// does not depend on the sign of the input (setne and seteq).
640static int isSignedOp(ISD::CondCode Opcode) {
641 switch (Opcode) {
642 default: llvm_unreachable("Illegal integer setcc operation!");
643 case ISD::SETEQ:
644 case ISD::SETNE: return 0;
645 case ISD::SETLT:
646 case ISD::SETLE:
647 case ISD::SETGT:
648 case ISD::SETGE: return 1;
649 case ISD::SETULT:
650 case ISD::SETULE:
651 case ISD::SETUGT:
652 case ISD::SETUGE: return 2;
653 }
654}
655
657 EVT Type) {
658 bool IsInteger = Type.isInteger();
659 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
660 // Cannot fold a signed integer setcc with an unsigned integer setcc.
661 return ISD::SETCC_INVALID;
662
663 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
664
665 // If the N and U bits get set, then the resultant comparison DOES suddenly
666 // care about orderedness, and it is true when ordered.
667 if (Op > ISD::SETTRUE2)
668 Op &= ~16; // Clear the U bit if the N bit is set.
669
670 // Canonicalize illegal integer setcc's.
671 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
672 Op = ISD::SETNE;
673
674 return ISD::CondCode(Op);
675}
676
678 EVT Type) {
679 bool IsInteger = Type.isInteger();
680 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
681 // Cannot fold a signed setcc with an unsigned setcc.
682 return ISD::SETCC_INVALID;
683
684 // Combine all of the condition bits.
685 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
686
687 // Canonicalize illegal integer setcc's.
688 if (IsInteger) {
689 switch (Result) {
690 default: break;
691 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
692 case ISD::SETOEQ: // SETEQ & SETU[LG]E
693 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
694 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
695 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
696 }
697 }
698
699 return Result;
700}
701
702//===----------------------------------------------------------------------===//
703// SDNode Profile Support
704//===----------------------------------------------------------------------===//
705
706/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
707static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
708 ID.AddInteger(OpC);
709}
710
711/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
712/// solely with their pointer.
714 ID.AddPointer(VTList.VTs);
715}
716
717/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
720 for (const auto &Op : Ops) {
721 ID.AddPointer(Op.getNode());
722 ID.AddInteger(Op.getResNo());
723 }
724}
725
726/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
729 for (const auto &Op : Ops) {
730 ID.AddPointer(Op.getNode());
731 ID.AddInteger(Op.getResNo());
732 }
733}
734
735static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC,
736 SDVTList VTList, ArrayRef<SDValue> OpList) {
737 AddNodeIDOpcode(ID, OpC);
738 AddNodeIDValueTypes(ID, VTList);
739 AddNodeIDOperands(ID, OpList);
740}
741
742/// If this is an SDNode with special info, add this info to the NodeID data.
744 switch (N->getOpcode()) {
747 case ISD::MCSymbol:
748 llvm_unreachable("Should only be used on nodes with operands");
749 default: break; // Normal nodes don't need extra info.
751 case ISD::Constant: {
753 ID.AddPointer(C->getConstantIntValue());
754 ID.AddBoolean(C->isOpaque());
755 break;
756 }
758 case ISD::ConstantFP:
759 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
760 break;
766 ID.AddPointer(GA->getGlobal());
767 ID.AddInteger(GA->getOffset());
768 ID.AddInteger(GA->getTargetFlags());
769 break;
770 }
771 case ISD::BasicBlock:
773 break;
774 case ISD::Register:
775 ID.AddInteger(cast<RegisterSDNode>(N)->getReg().id());
776 break;
778 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
779 break;
780 case ISD::SRCVALUE:
781 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
782 break;
783 case ISD::FrameIndex:
785 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
786 break;
787 case ISD::PSEUDO_PROBE:
788 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
789 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
790 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
791 break;
792 case ISD::JumpTable:
794 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
795 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
796 break;
800 ID.AddInteger(CP->getAlign().value());
801 ID.AddInteger(CP->getOffset());
802 if (CP->isMachineConstantPoolEntry())
803 CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
804 else
805 ID.AddPointer(CP->getConstVal());
806 ID.AddInteger(CP->getTargetFlags());
807 break;
808 }
809 case ISD::TargetIndex: {
811 ID.AddInteger(TI->getIndex());
812 ID.AddInteger(TI->getOffset());
813 ID.AddInteger(TI->getTargetFlags());
814 break;
815 }
816 case ISD::LOAD: {
817 const LoadSDNode *LD = cast<LoadSDNode>(N);
818 ID.AddInteger(LD->getMemoryVT().getRawBits());
819 ID.AddInteger(LD->getRawSubclassData());
820 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
821 ID.AddInteger(LD->getMemOperand()->getFlags());
822 break;
823 }
824 case ISD::STORE: {
825 const StoreSDNode *ST = cast<StoreSDNode>(N);
826 ID.AddInteger(ST->getMemoryVT().getRawBits());
827 ID.AddInteger(ST->getRawSubclassData());
828 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
829 ID.AddInteger(ST->getMemOperand()->getFlags());
830 break;
831 }
832 case ISD::VP_LOAD: {
833 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
834 ID.AddInteger(ELD->getMemoryVT().getRawBits());
835 ID.AddInteger(ELD->getRawSubclassData());
836 ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
837 ID.AddInteger(ELD->getMemOperand()->getFlags());
838 break;
839 }
840 case ISD::VP_LOAD_FF: {
841 const auto *LD = cast<VPLoadFFSDNode>(N);
842 ID.AddInteger(LD->getMemoryVT().getRawBits());
843 ID.AddInteger(LD->getRawSubclassData());
844 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
845 ID.AddInteger(LD->getMemOperand()->getFlags());
846 break;
847 }
848 case ISD::VP_STORE: {
849 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
850 ID.AddInteger(EST->getMemoryVT().getRawBits());
851 ID.AddInteger(EST->getRawSubclassData());
852 ID.AddInteger(EST->getPointerInfo().getAddrSpace());
853 ID.AddInteger(EST->getMemOperand()->getFlags());
854 break;
855 }
856 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
858 ID.AddInteger(SLD->getMemoryVT().getRawBits());
859 ID.AddInteger(SLD->getRawSubclassData());
860 ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
861 break;
862 }
863 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
865 ID.AddInteger(SST->getMemoryVT().getRawBits());
866 ID.AddInteger(SST->getRawSubclassData());
867 ID.AddInteger(SST->getPointerInfo().getAddrSpace());
868 break;
869 }
870 case ISD::VP_GATHER: {
872 ID.AddInteger(EG->getMemoryVT().getRawBits());
873 ID.AddInteger(EG->getRawSubclassData());
874 ID.AddInteger(EG->getPointerInfo().getAddrSpace());
875 ID.AddInteger(EG->getMemOperand()->getFlags());
876 break;
877 }
878 case ISD::VP_SCATTER: {
880 ID.AddInteger(ES->getMemoryVT().getRawBits());
881 ID.AddInteger(ES->getRawSubclassData());
882 ID.AddInteger(ES->getPointerInfo().getAddrSpace());
883 ID.AddInteger(ES->getMemOperand()->getFlags());
884 break;
885 }
886 case ISD::MLOAD: {
888 ID.AddInteger(MLD->getMemoryVT().getRawBits());
889 ID.AddInteger(MLD->getRawSubclassData());
890 ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
891 ID.AddInteger(MLD->getMemOperand()->getFlags());
892 break;
893 }
894 case ISD::MSTORE: {
896 ID.AddInteger(MST->getMemoryVT().getRawBits());
897 ID.AddInteger(MST->getRawSubclassData());
898 ID.AddInteger(MST->getPointerInfo().getAddrSpace());
899 ID.AddInteger(MST->getMemOperand()->getFlags());
900 break;
901 }
902 case ISD::MGATHER: {
904 ID.AddInteger(MG->getMemoryVT().getRawBits());
905 ID.AddInteger(MG->getRawSubclassData());
906 ID.AddInteger(MG->getPointerInfo().getAddrSpace());
907 ID.AddInteger(MG->getMemOperand()->getFlags());
908 break;
909 }
910 case ISD::MSCATTER: {
912 ID.AddInteger(MS->getMemoryVT().getRawBits());
913 ID.AddInteger(MS->getRawSubclassData());
914 ID.AddInteger(MS->getPointerInfo().getAddrSpace());
915 ID.AddInteger(MS->getMemOperand()->getFlags());
916 break;
917 }
918 case ISD::ATOMIC_CMP_SWAP:
919 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
920 case ISD::ATOMIC_SWAP:
921 case ISD::ATOMIC_LOAD_ADD:
922 case ISD::ATOMIC_LOAD_SUB:
923 case ISD::ATOMIC_LOAD_AND:
924 case ISD::ATOMIC_LOAD_CLR:
925 case ISD::ATOMIC_LOAD_OR:
926 case ISD::ATOMIC_LOAD_XOR:
927 case ISD::ATOMIC_LOAD_NAND:
928 case ISD::ATOMIC_LOAD_MIN:
929 case ISD::ATOMIC_LOAD_MAX:
930 case ISD::ATOMIC_LOAD_UMIN:
931 case ISD::ATOMIC_LOAD_UMAX:
932 case ISD::ATOMIC_LOAD:
933 case ISD::ATOMIC_STORE: {
934 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
935 ID.AddInteger(AT->getMemoryVT().getRawBits());
936 ID.AddInteger(AT->getRawSubclassData());
937 ID.AddInteger(AT->getPointerInfo().getAddrSpace());
938 ID.AddInteger(AT->getMemOperand()->getFlags());
939 break;
940 }
941 case ISD::VECTOR_SHUFFLE: {
942 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
943 for (int M : Mask)
944 ID.AddInteger(M);
945 break;
946 }
947 case ISD::ADDRSPACECAST: {
949 ID.AddInteger(ASC->getSrcAddressSpace());
950 ID.AddInteger(ASC->getDestAddressSpace());
951 break;
952 }
954 case ISD::BlockAddress: {
956 ID.AddPointer(BA->getBlockAddress());
957 ID.AddInteger(BA->getOffset());
958 ID.AddInteger(BA->getTargetFlags());
959 break;
960 }
961 case ISD::AssertAlign:
962 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value());
963 break;
964 case ISD::PREFETCH:
967 // Handled by MemIntrinsicSDNode check after the switch.
968 break;
969 case ISD::MDNODE_SDNODE:
970 ID.AddPointer(cast<MDNodeSDNode>(N)->getMD());
971 break;
972 } // end switch (N->getOpcode())
973
974 // MemIntrinsic nodes could also have subclass data, address spaces, and flags
975 // to check.
976 if (auto *MN = dyn_cast<MemIntrinsicSDNode>(N)) {
977 ID.AddInteger(MN->getRawSubclassData());
978 ID.AddInteger(MN->getPointerInfo().getAddrSpace());
979 ID.AddInteger(MN->getMemOperand()->getFlags());
980 ID.AddInteger(MN->getMemoryVT().getRawBits());
981 }
982}
983
984/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
985/// data.
986static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
987 AddNodeIDOpcode(ID, N->getOpcode());
988 // Add the return value info.
989 AddNodeIDValueTypes(ID, N->getVTList());
990 // Add the operand info.
991 AddNodeIDOperands(ID, N->ops());
992
993 // Handle SDNode leafs with special info.
995}
996
997//===----------------------------------------------------------------------===//
998// SelectionDAG Class
999//===----------------------------------------------------------------------===//
1000
1001/// doNotCSE - Return true if CSE should not be performed for this node.
1002static bool doNotCSE(SDNode *N) {
1003 if (N->getValueType(0) == MVT::Glue)
1004 return true; // Never CSE anything that produces a glue result.
1005
1006 switch (N->getOpcode()) {
1007 default: break;
1008 case ISD::HANDLENODE:
1009 case ISD::EH_LABEL:
1010 return true; // Never CSE these nodes.
1011 }
1012
1013 // Check that remaining values produced are not flags.
1014 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
1015 if (N->getValueType(i) == MVT::Glue)
1016 return true; // Never CSE anything that produces a glue result.
1017
1018 return false;
1019}
1020
1021/// RemoveDeadNodes - This method deletes all unreachable nodes in the
1022/// SelectionDAG.
1024 // Create a dummy node (which is not added to allnodes), that adds a reference
1025 // to the root node, preventing it from being deleted.
1026 HandleSDNode Dummy(getRoot());
1027
1028 SmallVector<SDNode*, 128> DeadNodes;
1029
1030 // Add all obviously-dead nodes to the DeadNodes worklist.
1031 for (SDNode &Node : allnodes())
1032 if (Node.use_empty())
1033 DeadNodes.push_back(&Node);
1034
1035 RemoveDeadNodes(DeadNodes);
1036
1037 // If the root changed (e.g. it was a dead load, update the root).
1038 setRoot(Dummy.getValue());
1039}
1040
1041/// RemoveDeadNodes - This method deletes the unreachable nodes in the
1042/// given list, and any nodes that become unreachable as a result.
1044
1045 // Process the worklist, deleting the nodes and adding their uses to the
1046 // worklist.
1047 while (!DeadNodes.empty()) {
1048 SDNode *N = DeadNodes.pop_back_val();
1049 // Skip to next node if we've already managed to delete the node. This could
1050 // happen if replacing a node causes a node previously added to the node to
1051 // be deleted.
1052 if (N->getOpcode() == ISD::DELETED_NODE)
1053 continue;
1054
1055 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1056 DUL->NodeDeleted(N, nullptr);
1057
1058 // Take the node out of the appropriate CSE map.
1059 RemoveNodeFromCSEMaps(N);
1060
1061 // Next, brutally remove the operand list. This is safe to do, as there are
1062 // no cycles in the graph.
1063 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
1064 SDUse &Use = *I++;
1065 SDNode *Operand = Use.getNode();
1066 Use.set(SDValue());
1067
1068 // Now that we removed this operand, see if there are no uses of it left.
1069 if (Operand->use_empty())
1070 DeadNodes.push_back(Operand);
1071 }
1072
1073 DeallocateNode(N);
1074 }
1075}
1076
1078 SmallVector<SDNode*, 16> DeadNodes(1, N);
1079
1080 // Create a dummy node that adds a reference to the root node, preventing
1081 // it from being deleted. (This matters if the root is an operand of the
1082 // dead node.)
1083 HandleSDNode Dummy(getRoot());
1084
1085 RemoveDeadNodes(DeadNodes);
1086}
1087
1089 // First take this out of the appropriate CSE map.
1090 RemoveNodeFromCSEMaps(N);
1091
1092 // Finally, remove uses due to operands of this node, remove from the
1093 // AllNodes list, and delete the node.
1094 DeleteNodeNotInCSEMaps(N);
1095}
1096
1097void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
1098 assert(N->getIterator() != AllNodes.begin() &&
1099 "Cannot delete the entry node!");
1100 assert(N->use_empty() && "Cannot delete a node that is not dead!");
1101
1102 // Drop all of the operands and decrement used node's use counts.
1103 N->DropOperands();
1104
1105 DeallocateNode(N);
1106}
1107
1108void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
1109 assert(!(V->isVariadic() && isParameter));
1110 if (isParameter)
1111 ByvalParmDbgValues.push_back(V);
1112 else
1113 DbgValues.push_back(V);
1114 for (const SDNode *Node : V->getSDNodes())
1115 if (Node)
1116 DbgValMap[Node].push_back(V);
1117}
1118
1120 DbgValMapType::iterator I = DbgValMap.find(Node);
1121 if (I == DbgValMap.end())
1122 return;
1123 for (auto &Val: I->second)
1124 Val->setIsInvalidated();
1125 DbgValMap.erase(I);
1126}
1127
1128void SelectionDAG::DeallocateNode(SDNode *N) {
1129 // If we have operands, deallocate them.
1131
1132 NodeAllocator.Deallocate(AllNodes.remove(N));
1133
1134 // Set the opcode to DELETED_NODE to help catch bugs when node
1135 // memory is reallocated.
1136 // FIXME: There are places in SDag that have grown a dependency on the opcode
1137 // value in the released node.
1138 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
1139 N->NodeType = ISD::DELETED_NODE;
1140
1141 // If any of the SDDbgValue nodes refer to this SDNode, invalidate
1142 // them and forget about that node.
1143 DbgInfo->erase(N);
1144
1145 // Invalidate extra info.
1146 SDEI.erase(N);
1147}
1148
1149#ifndef NDEBUG
1150/// VerifySDNode - Check the given SDNode. Aborts if it is invalid.
1151void SelectionDAG::verifyNode(SDNode *N) const {
1152 switch (N->getOpcode()) {
1153 default:
1154 if (N->isTargetOpcode())
1156 break;
1157 case ISD::BUILD_PAIR: {
1158 EVT VT = N->getValueType(0);
1159 assert(N->getNumValues() == 1 && "Too many results!");
1160 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1161 "Wrong return type!");
1162 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1163 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1164 "Mismatched operand types!");
1165 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1166 "Wrong operand type!");
1167 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1168 "Wrong return type size");
1169 break;
1170 }
1171 case ISD::BUILD_VECTOR: {
1172 assert(N->getNumValues() == 1 && "Too many results!");
1173 assert(N->getValueType(0).isVector() && "Wrong return type!");
1174 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1175 "Wrong number of operands!");
1176 EVT EltVT = N->getValueType(0).getVectorElementType();
1177 for (const SDUse &Op : N->ops()) {
1178 assert((Op.getValueType() == EltVT ||
1179 (EltVT.isInteger() && Op.getValueType().isInteger() &&
1180 EltVT.bitsLE(Op.getValueType()))) &&
1181 "Wrong operand type!");
1182 assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1183 "Operands must all have the same type");
1184 }
1185 break;
1186 }
1187 }
1188}
1189#endif // NDEBUG
1190
1191/// Insert a newly allocated node into the DAG.
1192///
1193/// Handles insertion into the all nodes list and CSE map, as well as
1194/// verification and other common operations when a new node is allocated.
1195void SelectionDAG::InsertNode(SDNode *N) {
1196 AllNodes.push_back(N);
1197#ifndef NDEBUG
1198 N->PersistentId = NextPersistentId++;
1199 verifyNode(N);
1200#endif
1201 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1202 DUL->NodeInserted(N);
1203}
1204
1205/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1206/// correspond to it. This is useful when we're about to delete or repurpose
1207/// the node. We don't want future request for structurally identical nodes
1208/// to return N anymore.
1209bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1210 bool Erased = false;
1211 switch (N->getOpcode()) {
1212 case ISD::HANDLENODE: return false; // noop.
1213 case ISD::CONDCODE:
1214 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1215 "Cond code doesn't exist!");
1216 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1217 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1218 break;
1220 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1221 break;
1223 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1224 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1225 ESN->getSymbol(), ESN->getTargetFlags()));
1226 break;
1227 }
1228 case ISD::MCSymbol: {
1229 auto *MCSN = cast<MCSymbolSDNode>(N);
1230 Erased = MCSymbols.erase(MCSN->getMCSymbol());
1231 break;
1232 }
1233 case ISD::VALUETYPE: {
1234 EVT VT = cast<VTSDNode>(N)->getVT();
1235 if (VT.isExtended()) {
1236 Erased = ExtendedValueTypeNodes.erase(VT);
1237 } else {
1238 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1239 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1240 }
1241 break;
1242 }
1243 default:
1244 // Remove it from the CSE Map.
1245 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1246 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1247 Erased = CSEMap.RemoveNode(N);
1248 break;
1249 }
1250#ifndef NDEBUG
1251 // Verify that the node was actually in one of the CSE maps, unless it has a
1252 // glue result (which cannot be CSE'd) or is one of the special cases that are
1253 // not subject to CSE.
1254 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1255 !N->isMachineOpcode() && !doNotCSE(N)) {
1256 N->dump(this);
1257 dbgs() << "\n";
1258 llvm_unreachable("Node is not in map!");
1259 }
1260#endif
1261 return Erased;
1262}
1263
1264/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1265/// maps and modified in place. Add it back to the CSE maps, unless an identical
1266/// node already exists, in which case transfer all its users to the existing
1267/// node. This transfer can potentially trigger recursive merging.
1268void
1269SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1270 // For node types that aren't CSE'd, just act as if no identical node
1271 // already exists.
1272 if (!doNotCSE(N)) {
1273 SDNode *Existing = CSEMap.GetOrInsertNode(N);
1274 if (Existing != N) {
1275 // If there was already an existing matching node, use ReplaceAllUsesWith
1276 // to replace the dead one with the existing one. This can cause
1277 // recursive merging of other unrelated nodes down the line.
1278 Existing->intersectFlagsWith(N->getFlags());
1279 if (auto *MemNode = dyn_cast<MemSDNode>(Existing))
1280 MemNode->refineRanges(cast<MemSDNode>(N)->getMemOperand());
1281 ReplaceAllUsesWith(N, Existing);
1282
1283 // N is now dead. Inform the listeners and delete it.
1284 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1285 DUL->NodeDeleted(N, Existing);
1286 DeleteNodeNotInCSEMaps(N);
1287 return;
1288 }
1289 }
1290
1291 // If the node doesn't already exist, we updated it. Inform listeners.
1292 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1293 DUL->NodeUpdated(N);
1294}
1295
1296/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1297/// were replaced with those specified. If this node is never memoized,
1298/// return null, otherwise return a pointer to the slot it would take. If a
1299/// node already exists with these operands, the slot will be non-null.
1300SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1301 void *&InsertPos) {
1302 if (doNotCSE(N))
1303 return nullptr;
1304
1305 SDValue Ops[] = { Op };
1306 FoldingSetNodeID ID;
1307 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1309 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1310 if (Node)
1311 Node->intersectFlagsWith(N->getFlags());
1312 return Node;
1313}
1314
1315/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1316/// were replaced with those specified. If this node is never memoized,
1317/// return null, otherwise return a pointer to the slot it would take. If a
1318/// node already exists with these operands, the slot will be non-null.
1319SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1320 SDValue Op1, SDValue Op2,
1321 void *&InsertPos) {
1322 if (doNotCSE(N))
1323 return nullptr;
1324
1325 SDValue Ops[] = { Op1, Op2 };
1326 FoldingSetNodeID ID;
1327 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1329 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1330 if (Node)
1331 Node->intersectFlagsWith(N->getFlags());
1332 return Node;
1333}
1334
1335/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1336/// were replaced with those specified. If this node is never memoized,
1337/// return null, otherwise return a pointer to the slot it would take. If a
1338/// node already exists with these operands, the slot will be non-null.
1339SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1340 void *&InsertPos) {
1341 if (doNotCSE(N))
1342 return nullptr;
1343
1344 FoldingSetNodeID ID;
1345 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1347 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1348 if (Node)
1349 Node->intersectFlagsWith(N->getFlags());
1350 return Node;
1351}
1352
1354 Type *Ty = VT == MVT::iPTR ? PointerType::get(*getContext(), 0)
1355 : VT.getTypeForEVT(*getContext());
1356
1357 return getDataLayout().getABITypeAlign(Ty);
1358}
1359
1360// EntryNode could meaningfully have debug info if we can find it...
1362 : TM(tm), OptLevel(OL), EntryNode(ISD::EntryToken, 0, DebugLoc(),
1363 getVTList(MVT::Other, MVT::Glue)),
1364 Root(getEntryNode()) {
1365 InsertNode(&EntryNode);
1366 DbgInfo = new SDDbgInfo();
1367}
1368
1370 OptimizationRemarkEmitter &NewORE, Pass *PassPtr,
1371 const TargetLibraryInfo *LibraryInfo,
1372 UniformityInfo *NewUA, ProfileSummaryInfo *PSIin,
1374 FunctionVarLocs const *VarLocs) {
1375 MF = &NewMF;
1376 SDAGISelPass = PassPtr;
1377 ORE = &NewORE;
1380 LibInfo = LibraryInfo;
1381 Context = &MF->getFunction().getContext();
1382 UA = NewUA;
1383 PSI = PSIin;
1384 BFI = BFIin;
1385 MMI = &MMIin;
1386 FnVarLocs = VarLocs;
1387}
1388
1390 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1391 allnodes_clear();
1392 OperandRecycler.clear(OperandAllocator);
1393 delete DbgInfo;
1394}
1395
1397 return llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1398}
1399
1400void SelectionDAG::allnodes_clear() {
1401 assert(&*AllNodes.begin() == &EntryNode);
1402 AllNodes.remove(AllNodes.begin());
1403 while (!AllNodes.empty())
1404 DeallocateNode(&AllNodes.front());
1405#ifndef NDEBUG
1406 NextPersistentId = 0;
1407#endif
1408}
1409
1410SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1411 void *&InsertPos) {
1412 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1413 if (N) {
1414 switch (N->getOpcode()) {
1415 default: break;
1416 case ISD::Constant:
1417 case ISD::ConstantFP:
1418 llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1419 "debug location. Use another overload.");
1420 }
1421 }
1422 return N;
1423}
1424
1425SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1426 const SDLoc &DL, void *&InsertPos) {
1427 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1428 if (N) {
1429 switch (N->getOpcode()) {
1430 case ISD::Constant:
1431 case ISD::ConstantFP:
1432 // Erase debug location from the node if the node is used at several
1433 // different places. Do not propagate one location to all uses as it
1434 // will cause a worse single stepping debugging experience.
1435 if (N->getDebugLoc() != DL.getDebugLoc())
1436 N->setDebugLoc(DebugLoc());
1437 break;
1438 default:
1439 // When the node's point of use is located earlier in the instruction
1440 // sequence than its prior point of use, update its debug info to the
1441 // earlier location.
1442 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1443 N->setDebugLoc(DL.getDebugLoc());
1444 break;
1445 }
1446 }
1447 return N;
1448}
1449
1451 allnodes_clear();
1452 OperandRecycler.clear(OperandAllocator);
1453 OperandAllocator.Reset();
1454 CSEMap.clear();
1455
1456 ExtendedValueTypeNodes.clear();
1457 ExternalSymbols.clear();
1458 TargetExternalSymbols.clear();
1459 MCSymbols.clear();
1460 SDEI.clear();
1461 llvm::fill(CondCodeNodes, nullptr);
1462 llvm::fill(ValueTypeNodes, nullptr);
1463
1464 EntryNode.UseList = nullptr;
1465 InsertNode(&EntryNode);
1466 Root = getEntryNode();
1467 DbgInfo->clear();
1468}
1469
1471 return VT.bitsGT(Op.getValueType())
1472 ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1473 : getNode(ISD::FP_ROUND, DL, VT, Op,
1474 getIntPtrConstant(0, DL, /*isTarget=*/true));
1475}
1476
1477std::pair<SDValue, SDValue>
1479 const SDLoc &DL, EVT VT) {
1480 assert(!VT.bitsEq(Op.getValueType()) &&
1481 "Strict no-op FP extend/round not allowed.");
1482 SDValue Res =
1483 VT.bitsGT(Op.getValueType())
1484 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1485 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1486 {Chain, Op, getIntPtrConstant(0, DL, /*isTarget=*/true)});
1487
1488 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1489}
1490
1492 return VT.bitsGT(Op.getValueType()) ?
1493 getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1494 getNode(ISD::TRUNCATE, DL, VT, Op);
1495}
1496
1498 return VT.bitsGT(Op.getValueType()) ?
1499 getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1500 getNode(ISD::TRUNCATE, DL, VT, Op);
1501}
1502
1504 return VT.bitsGT(Op.getValueType()) ?
1505 getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1506 getNode(ISD::TRUNCATE, DL, VT, Op);
1507}
1508
1510 EVT VT) {
1511 assert(!VT.isVector());
1512 auto Type = Op.getValueType();
1513 SDValue DestOp;
1514 if (Type == VT)
1515 return Op;
1516 auto Size = Op.getValueSizeInBits();
1517 DestOp = getBitcast(EVT::getIntegerVT(*Context, Size), Op);
1518 if (DestOp.getValueType() == VT)
1519 return DestOp;
1520
1521 return getAnyExtOrTrunc(DestOp, DL, VT);
1522}
1523
1525 EVT VT) {
1526 assert(!VT.isVector());
1527 auto Type = Op.getValueType();
1528 SDValue DestOp;
1529 if (Type == VT)
1530 return Op;
1531 auto Size = Op.getValueSizeInBits();
1532 DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1533 if (DestOp.getValueType() == VT)
1534 return DestOp;
1535
1536 return getSExtOrTrunc(DestOp, DL, VT);
1537}
1538
1540 EVT VT) {
1541 assert(!VT.isVector());
1542 auto Type = Op.getValueType();
1543 SDValue DestOp;
1544 if (Type == VT)
1545 return Op;
1546 auto Size = Op.getValueSizeInBits();
1547 DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1548 if (DestOp.getValueType() == VT)
1549 return DestOp;
1550
1551 return getZExtOrTrunc(DestOp, DL, VT);
1552}
1553
1555 EVT OpVT) {
1556 if (VT.bitsLE(Op.getValueType()))
1557 return getNode(ISD::TRUNCATE, SL, VT, Op);
1558
1559 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1560 return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1561}
1562
1564 EVT OpVT = Op.getValueType();
1565 assert(VT.isInteger() && OpVT.isInteger() &&
1566 "Cannot getZeroExtendInReg FP types");
1567 assert(VT.isVector() == OpVT.isVector() &&
1568 "getZeroExtendInReg type should be vector iff the operand "
1569 "type is vector!");
1570 assert((!VT.isVector() ||
1572 "Vector element counts must match in getZeroExtendInReg");
1573 assert(VT.bitsLE(OpVT) && "Not extending!");
1574 if (OpVT == VT)
1575 return Op;
1577 VT.getScalarSizeInBits());
1578 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1579}
1580
1582 SDValue EVL, const SDLoc &DL,
1583 EVT VT) {
1584 EVT OpVT = Op.getValueType();
1585 assert(VT.isInteger() && OpVT.isInteger() &&
1586 "Cannot getVPZeroExtendInReg FP types");
1587 assert(VT.isVector() && OpVT.isVector() &&
1588 "getVPZeroExtendInReg type and operand type should be vector!");
1590 "Vector element counts must match in getZeroExtendInReg");
1591 assert(VT.bitsLE(OpVT) && "Not extending!");
1592 if (OpVT == VT)
1593 return Op;
1595 VT.getScalarSizeInBits());
1596 return getNode(ISD::VP_AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT), Mask,
1597 EVL);
1598}
1599
1601 // Only unsigned pointer semantics are supported right now. In the future this
1602 // might delegate to TLI to check pointer signedness.
1603 return getZExtOrTrunc(Op, DL, VT);
1604}
1605
1607 // Only unsigned pointer semantics are supported right now. In the future this
1608 // might delegate to TLI to check pointer signedness.
1609 return getZeroExtendInReg(Op, DL, VT);
1610}
1611
1613 return getNode(ISD::SUB, DL, VT, getConstant(0, DL, VT), Val);
1614}
1615
1616/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1618 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1619}
1620
1622 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1623 return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1624}
1625
1627 SDValue Mask, SDValue EVL, EVT VT) {
1628 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1629 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL);
1630}
1631
1633 SDValue Mask, SDValue EVL) {
1634 return getVPZExtOrTrunc(DL, VT, Op, Mask, EVL);
1635}
1636
1638 SDValue Mask, SDValue EVL) {
1639 if (VT.bitsGT(Op.getValueType()))
1640 return getNode(ISD::VP_ZERO_EXTEND, DL, VT, Op, Mask, EVL);
1641 if (VT.bitsLT(Op.getValueType()))
1642 return getNode(ISD::VP_TRUNCATE, DL, VT, Op, Mask, EVL);
1643 return Op;
1644}
1645
1647 EVT OpVT) {
1648 if (!V)
1649 return getConstant(0, DL, VT);
1650
1651 switch (TLI->getBooleanContents(OpVT)) {
1654 return getConstant(1, DL, VT);
1656 return getAllOnesConstant(DL, VT);
1657 }
1658 llvm_unreachable("Unexpected boolean content enum!");
1659}
1660
1662 bool isT, bool isO) {
1663 return getConstant(APInt(VT.getScalarSizeInBits(), Val, /*isSigned=*/false),
1664 DL, VT, isT, isO);
1665}
1666
1668 bool isT, bool isO) {
1669 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1670}
1671
1673 EVT VT, bool isT, bool isO) {
1674 assert(VT.isInteger() && "Cannot create FP integer constant!");
1675
1676 EVT EltVT = VT.getScalarType();
1677 const ConstantInt *Elt = &Val;
1678
1679 // Vector splats are explicit within the DAG, with ConstantSDNode holding the
1680 // to-be-splatted scalar ConstantInt.
1681 if (isa<VectorType>(Elt->getType()))
1682 Elt = ConstantInt::get(*getContext(), Elt->getValue());
1683
1684 // In some cases the vector type is legal but the element type is illegal and
1685 // needs to be promoted, for example v8i8 on ARM. In this case, promote the
1686 // inserted value (the type does not need to match the vector element type).
1687 // Any extra bits introduced will be truncated away.
1688 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1690 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1691 APInt NewVal;
1692 if (TLI->isSExtCheaperThanZExt(VT.getScalarType(), EltVT))
1693 NewVal = Elt->getValue().sextOrTrunc(EltVT.getSizeInBits());
1694 else
1695 NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1696 Elt = ConstantInt::get(*getContext(), NewVal);
1697 }
1698 // In other cases the element type is illegal and needs to be expanded, for
1699 // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1700 // the value into n parts and use a vector type with n-times the elements.
1701 // Then bitcast to the type requested.
1702 // Legalizing constants too early makes the DAGCombiner's job harder so we
1703 // only legalize if the DAG tells us we must produce legal types.
1704 else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1705 TLI->getTypeAction(*getContext(), EltVT) ==
1707 const APInt &NewVal = Elt->getValue();
1708 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1709 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1710
1711 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1712 if (VT.isScalableVector() ||
1713 TLI->isOperationLegal(ISD::SPLAT_VECTOR, VT)) {
1714 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1715 "Can only handle an even split!");
1716 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1717
1718 SmallVector<SDValue, 2> ScalarParts;
1719 for (unsigned i = 0; i != Parts; ++i)
1720 ScalarParts.push_back(getConstant(
1721 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1722 ViaEltVT, isT, isO));
1723
1724 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1725 }
1726
1727 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1728 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1729
1730 // Check the temporary vector is the correct size. If this fails then
1731 // getTypeToTransformTo() probably returned a type whose size (in bits)
1732 // isn't a power-of-2 factor of the requested type size.
1733 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1734
1735 SmallVector<SDValue, 2> EltParts;
1736 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1737 EltParts.push_back(getConstant(
1738 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1739 ViaEltVT, isT, isO));
1740
1741 // EltParts is currently in little endian order. If we actually want
1742 // big-endian order then reverse it now.
1743 if (getDataLayout().isBigEndian())
1744 std::reverse(EltParts.begin(), EltParts.end());
1745
1746 // The elements must be reversed when the element order is different
1747 // to the endianness of the elements (because the BITCAST is itself a
1748 // vector shuffle in this situation). However, we do not need any code to
1749 // perform this reversal because getConstant() is producing a vector
1750 // splat.
1751 // This situation occurs in MIPS MSA.
1752
1754 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1755 llvm::append_range(Ops, EltParts);
1756
1757 SDValue V =
1758 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1759 return V;
1760 }
1761
1762 assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1763 "APInt size does not match type size!");
1764 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1765 SDVTList VTs = getVTList(EltVT);
1767 AddNodeIDNode(ID, Opc, VTs, {});
1768 ID.AddPointer(Elt);
1769 ID.AddBoolean(isO);
1770 void *IP = nullptr;
1771 SDNode *N = nullptr;
1772 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1773 if (!VT.isVector())
1774 return SDValue(N, 0);
1775
1776 if (!N) {
1777 N = newSDNode<ConstantSDNode>(isT, isO, Elt, VTs);
1778 CSEMap.InsertNode(N, IP);
1779 InsertNode(N);
1780 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1781 }
1782
1783 SDValue Result(N, 0);
1784 if (VT.isVector())
1785 Result = getSplat(VT, DL, Result);
1786 return Result;
1787}
1788
1790 bool isT, bool isO) {
1791 unsigned Size = VT.getScalarSizeInBits();
1792 return getConstant(APInt(Size, Val, /*isSigned=*/true), DL, VT, isT, isO);
1793}
1794
1796 bool IsOpaque) {
1798 IsTarget, IsOpaque);
1799}
1800
1802 bool isTarget) {
1803 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1804}
1805
1807 const SDLoc &DL) {
1808 assert(VT.isInteger() && "Shift amount is not an integer type!");
1809 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout());
1810 return getConstant(Val, DL, ShiftVT);
1811}
1812
1814 const SDLoc &DL) {
1815 assert(Val.ult(VT.getScalarSizeInBits()) && "Out of range shift");
1816 return getShiftAmountConstant(Val.getZExtValue(), VT, DL);
1817}
1818
1820 bool isTarget) {
1821 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1822}
1823
1825 bool isTarget) {
1826 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1827}
1828
1830 EVT VT, bool isTarget) {
1831 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1832
1833 EVT EltVT = VT.getScalarType();
1834 const ConstantFP *Elt = &V;
1835
1836 // Vector splats are explicit within the DAG, with ConstantFPSDNode holding
1837 // the to-be-splatted scalar ConstantFP.
1838 if (isa<VectorType>(Elt->getType()))
1839 Elt = ConstantFP::get(*getContext(), Elt->getValue());
1840
1841 // Do the map lookup using the actual bit pattern for the floating point
1842 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1843 // we don't have issues with SNANs.
1844 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1845 SDVTList VTs = getVTList(EltVT);
1847 AddNodeIDNode(ID, Opc, VTs, {});
1848 ID.AddPointer(Elt);
1849 void *IP = nullptr;
1850 SDNode *N = nullptr;
1851 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1852 if (!VT.isVector())
1853 return SDValue(N, 0);
1854
1855 if (!N) {
1856 N = newSDNode<ConstantFPSDNode>(isTarget, Elt, VTs);
1857 CSEMap.InsertNode(N, IP);
1858 InsertNode(N);
1859 }
1860
1861 SDValue Result(N, 0);
1862 if (VT.isVector())
1863 Result = getSplat(VT, DL, Result);
1864 NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1865 return Result;
1866}
1867
1869 bool isTarget) {
1870 EVT EltVT = VT.getScalarType();
1871 if (EltVT == MVT::f32)
1872 return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1873 if (EltVT == MVT::f64)
1874 return getConstantFP(APFloat(Val), DL, VT, isTarget);
1875 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1876 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1877 bool Ignored;
1878 APFloat APF = APFloat(Val);
1880 &Ignored);
1881 return getConstantFP(APF, DL, VT, isTarget);
1882 }
1883 llvm_unreachable("Unsupported type in getConstantFP");
1884}
1885
1887 EVT VT, int64_t Offset, bool isTargetGA,
1888 unsigned TargetFlags) {
1889 assert((TargetFlags == 0 || isTargetGA) &&
1890 "Cannot set target flags on target-independent globals");
1891
1892 // Truncate (with sign-extension) the offset value to the pointer size.
1894 if (BitWidth < 64)
1896
1897 unsigned Opc;
1898 if (GV->isThreadLocal())
1900 else
1902
1903 SDVTList VTs = getVTList(VT);
1905 AddNodeIDNode(ID, Opc, VTs, {});
1906 ID.AddPointer(GV);
1907 ID.AddInteger(Offset);
1908 ID.AddInteger(TargetFlags);
1909 void *IP = nullptr;
1910 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1911 return SDValue(E, 0);
1912
1913 auto *N = newSDNode<GlobalAddressSDNode>(
1914 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VTs, Offset, TargetFlags);
1915 CSEMap.InsertNode(N, IP);
1916 InsertNode(N);
1917 return SDValue(N, 0);
1918}
1919
1920SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1921 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1922 SDVTList VTs = getVTList(VT);
1924 AddNodeIDNode(ID, Opc, VTs, {});
1925 ID.AddInteger(FI);
1926 void *IP = nullptr;
1927 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1928 return SDValue(E, 0);
1929
1930 auto *N = newSDNode<FrameIndexSDNode>(FI, VTs, isTarget);
1931 CSEMap.InsertNode(N, IP);
1932 InsertNode(N);
1933 return SDValue(N, 0);
1934}
1935
1936SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1937 unsigned TargetFlags) {
1938 assert((TargetFlags == 0 || isTarget) &&
1939 "Cannot set target flags on target-independent jump tables");
1940 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1941 SDVTList VTs = getVTList(VT);
1943 AddNodeIDNode(ID, Opc, VTs, {});
1944 ID.AddInteger(JTI);
1945 ID.AddInteger(TargetFlags);
1946 void *IP = nullptr;
1947 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1948 return SDValue(E, 0);
1949
1950 auto *N = newSDNode<JumpTableSDNode>(JTI, VTs, isTarget, TargetFlags);
1951 CSEMap.InsertNode(N, IP);
1952 InsertNode(N);
1953 return SDValue(N, 0);
1954}
1955
1957 const SDLoc &DL) {
1959 return getNode(ISD::JUMP_TABLE_DEBUG_INFO, DL, MVT::Glue, Chain,
1960 getTargetConstant(static_cast<uint64_t>(JTI), DL, PTy, true));
1961}
1962
1964 MaybeAlign Alignment, int Offset,
1965 bool isTarget, unsigned TargetFlags) {
1966 assert((TargetFlags == 0 || isTarget) &&
1967 "Cannot set target flags on target-independent globals");
1968 if (!Alignment)
1969 Alignment = shouldOptForSize()
1970 ? getDataLayout().getABITypeAlign(C->getType())
1971 : getDataLayout().getPrefTypeAlign(C->getType());
1972 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1973 SDVTList VTs = getVTList(VT);
1975 AddNodeIDNode(ID, Opc, VTs, {});
1976 ID.AddInteger(Alignment->value());
1977 ID.AddInteger(Offset);
1978 ID.AddPointer(C);
1979 ID.AddInteger(TargetFlags);
1980 void *IP = nullptr;
1981 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1982 return SDValue(E, 0);
1983
1984 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VTs, Offset, *Alignment,
1985 TargetFlags);
1986 CSEMap.InsertNode(N, IP);
1987 InsertNode(N);
1988 SDValue V = SDValue(N, 0);
1989 NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1990 return V;
1991}
1992
1994 MaybeAlign Alignment, int Offset,
1995 bool isTarget, unsigned TargetFlags) {
1996 assert((TargetFlags == 0 || isTarget) &&
1997 "Cannot set target flags on target-independent globals");
1998 if (!Alignment)
1999 Alignment = getDataLayout().getPrefTypeAlign(C->getType());
2000 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
2001 SDVTList VTs = getVTList(VT);
2003 AddNodeIDNode(ID, Opc, VTs, {});
2004 ID.AddInteger(Alignment->value());
2005 ID.AddInteger(Offset);
2006 C->addSelectionDAGCSEId(ID);
2007 ID.AddInteger(TargetFlags);
2008 void *IP = nullptr;
2009 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2010 return SDValue(E, 0);
2011
2012 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VTs, Offset, *Alignment,
2013 TargetFlags);
2014 CSEMap.InsertNode(N, IP);
2015 InsertNode(N);
2016 return SDValue(N, 0);
2017}
2018
2021 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), {});
2022 ID.AddPointer(MBB);
2023 void *IP = nullptr;
2024 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2025 return SDValue(E, 0);
2026
2027 auto *N = newSDNode<BasicBlockSDNode>(MBB);
2028 CSEMap.InsertNode(N, IP);
2029 InsertNode(N);
2030 return SDValue(N, 0);
2031}
2032
2034 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
2035 ValueTypeNodes.size())
2036 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
2037
2038 SDNode *&N = VT.isExtended() ?
2039 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
2040
2041 if (N) return SDValue(N, 0);
2042 N = newSDNode<VTSDNode>(VT);
2043 InsertNode(N);
2044 return SDValue(N, 0);
2045}
2046
2048 SDNode *&N = ExternalSymbols[Sym];
2049 if (N) return SDValue(N, 0);
2050 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, getVTList(VT));
2051 InsertNode(N);
2052 return SDValue(N, 0);
2053}
2054
2056 SDNode *&N = MCSymbols[Sym];
2057 if (N)
2058 return SDValue(N, 0);
2059 N = newSDNode<MCSymbolSDNode>(Sym, getVTList(VT));
2060 InsertNode(N);
2061 return SDValue(N, 0);
2062}
2063
2065 unsigned TargetFlags) {
2066 SDNode *&N =
2067 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
2068 if (N) return SDValue(N, 0);
2069 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, getVTList(VT));
2070 InsertNode(N);
2071 return SDValue(N, 0);
2072}
2073
2075 if ((unsigned)Cond >= CondCodeNodes.size())
2076 CondCodeNodes.resize(Cond+1);
2077
2078 if (!CondCodeNodes[Cond]) {
2079 auto *N = newSDNode<CondCodeSDNode>(Cond);
2080 CondCodeNodes[Cond] = N;
2081 InsertNode(N);
2082 }
2083
2084 return SDValue(CondCodeNodes[Cond], 0);
2085}
2086
2088 bool ConstantFold) {
2089 assert(MulImm.getBitWidth() == VT.getSizeInBits() &&
2090 "APInt size does not match type size!");
2091
2092 if (MulImm == 0)
2093 return getConstant(0, DL, VT);
2094
2095 if (ConstantFold) {
2096 const MachineFunction &MF = getMachineFunction();
2097 const Function &F = MF.getFunction();
2098 ConstantRange CR = getVScaleRange(&F, 64);
2099 if (const APInt *C = CR.getSingleElement())
2100 return getConstant(MulImm * C->getZExtValue(), DL, VT);
2101 }
2102
2103 return getNode(ISD::VSCALE, DL, VT, getConstant(MulImm, DL, VT));
2104}
2105
2107 bool ConstantFold) {
2108 if (EC.isScalable())
2109 return getVScale(DL, VT,
2110 APInt(VT.getSizeInBits(), EC.getKnownMinValue()));
2111
2112 return getConstant(EC.getKnownMinValue(), DL, VT);
2113}
2114
2116 APInt One(ResVT.getScalarSizeInBits(), 1);
2117 return getStepVector(DL, ResVT, One);
2118}
2119
2121 const APInt &StepVal) {
2122 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
2123 if (ResVT.isScalableVector())
2124 return getNode(
2125 ISD::STEP_VECTOR, DL, ResVT,
2126 getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
2127
2128 SmallVector<SDValue, 16> OpsStepConstants;
2129 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
2130 OpsStepConstants.push_back(
2131 getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
2132 return getBuildVector(ResVT, DL, OpsStepConstants);
2133}
2134
2135/// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
2136/// point at N1 to point at N2 and indices that point at N2 to point at N1.
2141
2143 SDValue N2, ArrayRef<int> Mask) {
2144 assert(VT.getVectorNumElements() == Mask.size() &&
2145 "Must have the same number of vector elements as mask elements!");
2146 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2147 "Invalid VECTOR_SHUFFLE");
2148
2149 // Canonicalize shuffle undef, undef -> undef
2150 if (N1.isUndef() && N2.isUndef())
2151 return getUNDEF(VT);
2152
2153 // Validate that all indices in Mask are within the range of the elements
2154 // input to the shuffle.
2155 int NElts = Mask.size();
2156 assert(llvm::all_of(Mask,
2157 [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
2158 "Index out of range");
2159
2160 // Copy the mask so we can do any needed cleanup.
2161 SmallVector<int, 8> MaskVec(Mask);
2162
2163 // Canonicalize shuffle v, v -> v, undef
2164 if (N1 == N2) {
2165 N2 = getUNDEF(VT);
2166 for (int i = 0; i != NElts; ++i)
2167 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2168 }
2169
2170 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
2171 if (N1.isUndef())
2172 commuteShuffle(N1, N2, MaskVec);
2173
2174 if (TLI->hasVectorBlend()) {
2175 // If shuffling a splat, try to blend the splat instead. We do this here so
2176 // that even when this arises during lowering we don't have to re-handle it.
2177 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
2178 BitVector UndefElements;
2179 SDValue Splat = BV->getSplatValue(&UndefElements);
2180 if (!Splat)
2181 return;
2182
2183 for (int i = 0; i < NElts; ++i) {
2184 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
2185 continue;
2186
2187 // If this input comes from undef, mark it as such.
2188 if (UndefElements[MaskVec[i] - Offset]) {
2189 MaskVec[i] = -1;
2190 continue;
2191 }
2192
2193 // If we can blend a non-undef lane, use that instead.
2194 if (!UndefElements[i])
2195 MaskVec[i] = i + Offset;
2196 }
2197 };
2198 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
2199 BlendSplat(N1BV, 0);
2200 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
2201 BlendSplat(N2BV, NElts);
2202 }
2203
2204 // Canonicalize all index into lhs, -> shuffle lhs, undef
2205 // Canonicalize all index into rhs, -> shuffle rhs, undef
2206 bool AllLHS = true, AllRHS = true;
2207 bool N2Undef = N2.isUndef();
2208 for (int i = 0; i != NElts; ++i) {
2209 if (MaskVec[i] >= NElts) {
2210 if (N2Undef)
2211 MaskVec[i] = -1;
2212 else
2213 AllLHS = false;
2214 } else if (MaskVec[i] >= 0) {
2215 AllRHS = false;
2216 }
2217 }
2218 if (AllLHS && AllRHS)
2219 return getUNDEF(VT);
2220 if (AllLHS && !N2Undef)
2221 N2 = getUNDEF(VT);
2222 if (AllRHS) {
2223 N1 = getUNDEF(VT);
2224 commuteShuffle(N1, N2, MaskVec);
2225 }
2226 // Reset our undef status after accounting for the mask.
2227 N2Undef = N2.isUndef();
2228 // Re-check whether both sides ended up undef.
2229 if (N1.isUndef() && N2Undef)
2230 return getUNDEF(VT);
2231
2232 // If Identity shuffle return that node.
2233 bool Identity = true, AllSame = true;
2234 for (int i = 0; i != NElts; ++i) {
2235 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
2236 if (MaskVec[i] != MaskVec[0]) AllSame = false;
2237 }
2238 if (Identity && NElts)
2239 return N1;
2240
2241 // Shuffling a constant splat doesn't change the result.
2242 if (N2Undef) {
2243 SDValue V = N1;
2244
2245 // Look through any bitcasts. We check that these don't change the number
2246 // (and size) of elements and just changes their types.
2247 while (V.getOpcode() == ISD::BITCAST)
2248 V = V->getOperand(0);
2249
2250 // A splat should always show up as a build vector node.
2251 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2252 BitVector UndefElements;
2253 SDValue Splat = BV->getSplatValue(&UndefElements);
2254 // If this is a splat of an undef, shuffling it is also undef.
2255 if (Splat && Splat.isUndef())
2256 return getUNDEF(VT);
2257
2258 bool SameNumElts =
2259 V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
2260
2261 // We only have a splat which can skip shuffles if there is a splatted
2262 // value and no undef lanes rearranged by the shuffle.
2263 if (Splat && UndefElements.none()) {
2264 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
2265 // number of elements match or the value splatted is a zero constant.
2266 if (SameNumElts || isNullConstant(Splat))
2267 return N1;
2268 }
2269
2270 // If the shuffle itself creates a splat, build the vector directly.
2271 if (AllSame && SameNumElts) {
2272 EVT BuildVT = BV->getValueType(0);
2273 const SDValue &Splatted = BV->getOperand(MaskVec[0]);
2274 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
2275
2276 // We may have jumped through bitcasts, so the type of the
2277 // BUILD_VECTOR may not match the type of the shuffle.
2278 if (BuildVT != VT)
2279 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
2280 return NewBV;
2281 }
2282 }
2283 }
2284
2285 SDVTList VTs = getVTList(VT);
2287 SDValue Ops[2] = { N1, N2 };
2289 for (int i = 0; i != NElts; ++i)
2290 ID.AddInteger(MaskVec[i]);
2291
2292 void* IP = nullptr;
2293 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2294 return SDValue(E, 0);
2295
2296 // Allocate the mask array for the node out of the BumpPtrAllocator, since
2297 // SDNode doesn't have access to it. This memory will be "leaked" when
2298 // the node is deallocated, but recovered when the NodeAllocator is released.
2299 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2300 llvm::copy(MaskVec, MaskAlloc);
2301
2302 auto *N = newSDNode<ShuffleVectorSDNode>(VTs, dl.getIROrder(),
2303 dl.getDebugLoc(), MaskAlloc);
2304 createOperands(N, Ops);
2305
2306 CSEMap.InsertNode(N, IP);
2307 InsertNode(N);
2308 SDValue V = SDValue(N, 0);
2309 NewSDValueDbgMsg(V, "Creating new node: ", this);
2310 return V;
2311}
2312
2314 EVT VT = SV.getValueType(0);
2315 SmallVector<int, 8> MaskVec(SV.getMask());
2317
2318 SDValue Op0 = SV.getOperand(0);
2319 SDValue Op1 = SV.getOperand(1);
2320 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2321}
2322
2324 SDVTList VTs = getVTList(VT);
2326 AddNodeIDNode(ID, ISD::Register, VTs, {});
2327 ID.AddInteger(Reg.id());
2328 void *IP = nullptr;
2329 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2330 return SDValue(E, 0);
2331
2332 auto *N = newSDNode<RegisterSDNode>(Reg, VTs);
2333 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, UA);
2334 CSEMap.InsertNode(N, IP);
2335 InsertNode(N);
2336 return SDValue(N, 0);
2337}
2338
2341 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), {});
2342 ID.AddPointer(RegMask);
2343 void *IP = nullptr;
2344 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2345 return SDValue(E, 0);
2346
2347 auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2348 CSEMap.InsertNode(N, IP);
2349 InsertNode(N);
2350 return SDValue(N, 0);
2351}
2352
2354 MCSymbol *Label) {
2355 return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2356}
2357
2358SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2359 SDValue Root, MCSymbol *Label) {
2361 SDValue Ops[] = { Root };
2362 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2363 ID.AddPointer(Label);
2364 void *IP = nullptr;
2365 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2366 return SDValue(E, 0);
2367
2368 auto *N =
2369 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2370 createOperands(N, Ops);
2371
2372 CSEMap.InsertNode(N, IP);
2373 InsertNode(N);
2374 return SDValue(N, 0);
2375}
2376
2378 int64_t Offset, bool isTarget,
2379 unsigned TargetFlags) {
2380 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2381 SDVTList VTs = getVTList(VT);
2382
2384 AddNodeIDNode(ID, Opc, VTs, {});
2385 ID.AddPointer(BA);
2386 ID.AddInteger(Offset);
2387 ID.AddInteger(TargetFlags);
2388 void *IP = nullptr;
2389 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2390 return SDValue(E, 0);
2391
2392 auto *N = newSDNode<BlockAddressSDNode>(Opc, VTs, BA, Offset, TargetFlags);
2393 CSEMap.InsertNode(N, IP);
2394 InsertNode(N);
2395 return SDValue(N, 0);
2396}
2397
2400 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), {});
2401 ID.AddPointer(V);
2402
2403 void *IP = nullptr;
2404 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2405 return SDValue(E, 0);
2406
2407 auto *N = newSDNode<SrcValueSDNode>(V);
2408 CSEMap.InsertNode(N, IP);
2409 InsertNode(N);
2410 return SDValue(N, 0);
2411}
2412
2415 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), {});
2416 ID.AddPointer(MD);
2417
2418 void *IP = nullptr;
2419 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2420 return SDValue(E, 0);
2421
2422 auto *N = newSDNode<MDNodeSDNode>(MD);
2423 CSEMap.InsertNode(N, IP);
2424 InsertNode(N);
2425 return SDValue(N, 0);
2426}
2427
2429 if (VT == V.getValueType())
2430 return V;
2431
2432 return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2433}
2434
2436 unsigned SrcAS, unsigned DestAS) {
2437 SDVTList VTs = getVTList(VT);
2438 SDValue Ops[] = {Ptr};
2440 AddNodeIDNode(ID, ISD::ADDRSPACECAST, VTs, Ops);
2441 ID.AddInteger(SrcAS);
2442 ID.AddInteger(DestAS);
2443
2444 void *IP = nullptr;
2445 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2446 return SDValue(E, 0);
2447
2448 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2449 VTs, SrcAS, DestAS);
2450 createOperands(N, Ops);
2451
2452 CSEMap.InsertNode(N, IP);
2453 InsertNode(N);
2454 return SDValue(N, 0);
2455}
2456
2458 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2459}
2460
2461/// getShiftAmountOperand - Return the specified value casted to
2462/// the target's desired shift amount type.
2464 EVT OpTy = Op.getValueType();
2465 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2466 if (OpTy == ShTy || OpTy.isVector()) return Op;
2467
2468 return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2469}
2470
2471/// Given a store node \p StoreNode, return true if it is safe to fold that node
2472/// into \p FPNode, which expands to a library call with output pointers.
2474 SDNode *FPNode) {
2476 SmallVector<const SDNode *, 8> DeferredNodes;
2478
2479 // Skip FPNode use by StoreNode (that's the use we want to fold into FPNode).
2480 for (SDValue Op : StoreNode->ops())
2481 if (Op.getNode() != FPNode)
2482 Worklist.push_back(Op.getNode());
2483
2485 while (!Worklist.empty()) {
2486 const SDNode *Node = Worklist.pop_back_val();
2487 auto [_, Inserted] = Visited.insert(Node);
2488 if (!Inserted)
2489 continue;
2490
2491 if (MaxSteps > 0 && Visited.size() >= MaxSteps)
2492 return false;
2493
2494 // Reached the FPNode (would result in a cycle).
2495 // OR Reached CALLSEQ_START (would result in nested call sequences).
2496 if (Node == FPNode || Node->getOpcode() == ISD::CALLSEQ_START)
2497 return false;
2498
2499 if (Node->getOpcode() == ISD::CALLSEQ_END) {
2500 // Defer looking into call sequences (so we can check we're outside one).
2501 // We still need to look through these for the predecessor check.
2502 DeferredNodes.push_back(Node);
2503 continue;
2504 }
2505
2506 for (SDValue Op : Node->ops())
2507 Worklist.push_back(Op.getNode());
2508 }
2509
2510 // True if we're outside a call sequence and don't have the FPNode as a
2511 // predecessor. No cycles or nested call sequences possible.
2512 return !SDNode::hasPredecessorHelper(FPNode, Visited, DeferredNodes,
2513 MaxSteps);
2514}
2515
2517 RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl<SDValue> &Results,
2518 std::optional<unsigned> CallRetResNo) {
2519 LLVMContext &Ctx = *getContext();
2520 EVT VT = Node->getValueType(0);
2521 unsigned NumResults = Node->getNumValues();
2522
2523 if (LC == RTLIB::UNKNOWN_LIBCALL)
2524 return false;
2525
2526 const char *LCName = TLI->getLibcallName(LC);
2527 if (!LCName)
2528 return false;
2529
2530 auto getVecDesc = [&]() -> VecDesc const * {
2531 for (bool Masked : {false, true}) {
2532 if (VecDesc const *VD = getLibInfo().getVectorMappingInfo(
2533 LCName, VT.getVectorElementCount(), Masked)) {
2534 return VD;
2535 }
2536 }
2537 return nullptr;
2538 };
2539
2540 // For vector types, we must find a vector mapping for the libcall.
2541 VecDesc const *VD = nullptr;
2542 if (VT.isVector() && !(VD = getVecDesc()))
2543 return false;
2544
2545 // Find users of the node that store the results (and share input chains). The
2546 // destination pointers can be used instead of creating stack allocations.
2547 SDValue StoresInChain;
2548 SmallVector<StoreSDNode *, 2> ResultStores(NumResults);
2549 for (SDNode *User : Node->users()) {
2551 continue;
2552 auto *ST = cast<StoreSDNode>(User);
2553 SDValue StoreValue = ST->getValue();
2554 unsigned ResNo = StoreValue.getResNo();
2555 // Ensure the store corresponds to an output pointer.
2556 if (CallRetResNo == ResNo)
2557 continue;
2558 // Ensure the store to the default address space and not atomic or volatile.
2559 if (!ST->isSimple() || ST->getAddressSpace() != 0)
2560 continue;
2561 // Ensure all store chains are the same (so they don't alias).
2562 if (StoresInChain && ST->getChain() != StoresInChain)
2563 continue;
2564 // Ensure the store is properly aligned.
2565 Type *StoreType = StoreValue.getValueType().getTypeForEVT(Ctx);
2566 if (ST->getAlign() <
2567 getDataLayout().getABITypeAlign(StoreType->getScalarType()))
2568 continue;
2569 // Avoid:
2570 // 1. Creating cyclic dependencies.
2571 // 2. Expanding the node to a call within a call sequence.
2573 continue;
2574 ResultStores[ResNo] = ST;
2575 StoresInChain = ST->getChain();
2576 }
2577
2579
2580 // Pass the arguments.
2581 for (const SDValue &Op : Node->op_values()) {
2582 EVT ArgVT = Op.getValueType();
2583 Type *ArgTy = ArgVT.getTypeForEVT(Ctx);
2584 Args.emplace_back(Op, ArgTy);
2585 }
2586
2587 // Pass the output pointers.
2588 SmallVector<SDValue, 2> ResultPtrs(NumResults);
2590 for (auto [ResNo, ST] : llvm::enumerate(ResultStores)) {
2591 if (ResNo == CallRetResNo)
2592 continue;
2593 EVT ResVT = Node->getValueType(ResNo);
2594 SDValue ResultPtr = ST ? ST->getBasePtr() : CreateStackTemporary(ResVT);
2595 ResultPtrs[ResNo] = ResultPtr;
2596 Args.emplace_back(ResultPtr, PointerTy);
2597 }
2598
2599 SDLoc DL(Node);
2600
2601 // Pass the vector mask (if required).
2602 if (VD && VD->isMasked()) {
2603 EVT MaskVT = TLI->getSetCCResultType(getDataLayout(), Ctx, VT);
2604 SDValue Mask = getBoolConstant(true, DL, MaskVT, VT);
2605 Args.emplace_back(Mask, MaskVT.getTypeForEVT(Ctx));
2606 }
2607
2608 Type *RetType = CallRetResNo.has_value()
2609 ? Node->getValueType(*CallRetResNo).getTypeForEVT(Ctx)
2610 : Type::getVoidTy(Ctx);
2611 SDValue InChain = StoresInChain ? StoresInChain : getEntryNode();
2612 SDValue Callee = getExternalSymbol(VD ? VD->getVectorFnName().data() : LCName,
2613 TLI->getPointerTy(getDataLayout()));
2615 CLI.setDebugLoc(DL).setChain(InChain).setLibCallee(
2616 TLI->getLibcallCallingConv(LC), RetType, Callee, std::move(Args));
2617
2618 auto [Call, CallChain] = TLI->LowerCallTo(CLI);
2619
2620 for (auto [ResNo, ResultPtr] : llvm::enumerate(ResultPtrs)) {
2621 if (ResNo == CallRetResNo) {
2622 Results.push_back(Call);
2623 continue;
2624 }
2625 MachinePointerInfo PtrInfo;
2626 SDValue LoadResult =
2627 getLoad(Node->getValueType(ResNo), DL, CallChain, ResultPtr, PtrInfo);
2628 SDValue OutChain = LoadResult.getValue(1);
2629
2630 if (StoreSDNode *ST = ResultStores[ResNo]) {
2631 // Replace store with the library call.
2632 ReplaceAllUsesOfValueWith(SDValue(ST, 0), OutChain);
2633 PtrInfo = ST->getPointerInfo();
2634 } else {
2636 getMachineFunction(), cast<FrameIndexSDNode>(ResultPtr)->getIndex());
2637 }
2638
2639 Results.push_back(LoadResult);
2640 }
2641
2642 return true;
2643}
2644
2646 SDLoc dl(Node);
2648 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2649 EVT VT = Node->getValueType(0);
2650 SDValue Tmp1 = Node->getOperand(0);
2651 SDValue Tmp2 = Node->getOperand(1);
2652 const MaybeAlign MA(Node->getConstantOperandVal(3));
2653
2654 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2655 Tmp2, MachinePointerInfo(V));
2656 SDValue VAList = VAListLoad;
2657
2658 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2659 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2660 getConstant(MA->value() - 1, dl, VAList.getValueType()));
2661
2662 VAList = getNode(
2663 ISD::AND, dl, VAList.getValueType(), VAList,
2664 getSignedConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2665 }
2666
2667 // Increment the pointer, VAList, to the next vaarg
2668 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2669 getConstant(getDataLayout().getTypeAllocSize(
2670 VT.getTypeForEVT(*getContext())),
2671 dl, VAList.getValueType()));
2672 // Store the incremented VAList to the legalized pointer
2673 Tmp1 =
2674 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2675 // Load the actual argument out of the pointer VAList
2676 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2677}
2678
2680 SDLoc dl(Node);
2682 // This defaults to loading a pointer from the input and storing it to the
2683 // output, returning the chain.
2684 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2685 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2686 SDValue Tmp1 =
2687 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2688 Node->getOperand(2), MachinePointerInfo(VS));
2689 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2690 MachinePointerInfo(VD));
2691}
2692
2694 const DataLayout &DL = getDataLayout();
2695 Type *Ty = VT.getTypeForEVT(*getContext());
2696 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2697
2698 if (TLI->isTypeLegal(VT) || !VT.isVector())
2699 return RedAlign;
2700
2701 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2702 const Align StackAlign = TFI->getStackAlign();
2703
2704 // See if we can choose a smaller ABI alignment in cases where it's an
2705 // illegal vector type that will get broken down.
2706 if (RedAlign > StackAlign) {
2707 EVT IntermediateVT;
2708 MVT RegisterVT;
2709 unsigned NumIntermediates;
2710 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2711 NumIntermediates, RegisterVT);
2712 Ty = IntermediateVT.getTypeForEVT(*getContext());
2713 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2714 if (RedAlign2 < RedAlign)
2715 RedAlign = RedAlign2;
2716
2717 if (!getMachineFunction().getFrameInfo().isStackRealignable())
2718 // If the stack is not realignable, the alignment should be limited to the
2719 // StackAlignment
2720 RedAlign = std::min(RedAlign, StackAlign);
2721 }
2722
2723 return RedAlign;
2724}
2725
2727 MachineFrameInfo &MFI = MF->getFrameInfo();
2728 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2729 int StackID = 0;
2730 if (Bytes.isScalable())
2731 StackID = TFI->getStackIDForScalableVectors();
2732 // The stack id gives an indication of whether the object is scalable or
2733 // not, so it's safe to pass in the minimum size here.
2734 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinValue(), Alignment,
2735 false, nullptr, StackID);
2736 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2737}
2738
2740 Type *Ty = VT.getTypeForEVT(*getContext());
2741 Align StackAlign =
2742 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2743 return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2744}
2745
2747 TypeSize VT1Size = VT1.getStoreSize();
2748 TypeSize VT2Size = VT2.getStoreSize();
2749 assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2750 "Don't know how to choose the maximum size when creating a stack "
2751 "temporary");
2752 TypeSize Bytes = VT1Size.getKnownMinValue() > VT2Size.getKnownMinValue()
2753 ? VT1Size
2754 : VT2Size;
2755
2756 Type *Ty1 = VT1.getTypeForEVT(*getContext());
2757 Type *Ty2 = VT2.getTypeForEVT(*getContext());
2758 const DataLayout &DL = getDataLayout();
2759 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2760 return CreateStackTemporary(Bytes, Align);
2761}
2762
2764 ISD::CondCode Cond, const SDLoc &dl) {
2765 EVT OpVT = N1.getValueType();
2766
2767 auto GetUndefBooleanConstant = [&]() {
2768 if (VT.getScalarType() == MVT::i1 ||
2769 TLI->getBooleanContents(OpVT) ==
2771 return getUNDEF(VT);
2772 // ZeroOrOne / ZeroOrNegative require specific values for the high bits,
2773 // so we cannot use getUNDEF(). Return zero instead.
2774 return getConstant(0, dl, VT);
2775 };
2776
2777 // These setcc operations always fold.
2778 switch (Cond) {
2779 default: break;
2780 case ISD::SETFALSE:
2781 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2782 case ISD::SETTRUE:
2783 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2784
2785 case ISD::SETOEQ:
2786 case ISD::SETOGT:
2787 case ISD::SETOGE:
2788 case ISD::SETOLT:
2789 case ISD::SETOLE:
2790 case ISD::SETONE:
2791 case ISD::SETO:
2792 case ISD::SETUO:
2793 case ISD::SETUEQ:
2794 case ISD::SETUNE:
2795 assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2796 break;
2797 }
2798
2799 if (OpVT.isInteger()) {
2800 // For EQ and NE, we can always pick a value for the undef to make the
2801 // predicate pass or fail, so we can return undef.
2802 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2803 // icmp eq/ne X, undef -> undef.
2804 if ((N1.isUndef() || N2.isUndef()) &&
2805 (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2806 return GetUndefBooleanConstant();
2807
2808 // If both operands are undef, we can return undef for int comparison.
2809 // icmp undef, undef -> undef.
2810 if (N1.isUndef() && N2.isUndef())
2811 return GetUndefBooleanConstant();
2812
2813 // icmp X, X -> true/false
2814 // icmp X, undef -> true/false because undef could be X.
2815 if (N1.isUndef() || N2.isUndef() || N1 == N2)
2816 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2817 }
2818
2820 const APInt &C2 = N2C->getAPIntValue();
2822 const APInt &C1 = N1C->getAPIntValue();
2823
2825 dl, VT, OpVT);
2826 }
2827 }
2828
2829 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2830 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2831
2832 if (N1CFP && N2CFP) {
2833 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2834 switch (Cond) {
2835 default: break;
2836 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
2837 return GetUndefBooleanConstant();
2838 [[fallthrough]];
2839 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2840 OpVT);
2841 case ISD::SETNE: if (R==APFloat::cmpUnordered)
2842 return GetUndefBooleanConstant();
2843 [[fallthrough]];
2845 R==APFloat::cmpLessThan, dl, VT,
2846 OpVT);
2847 case ISD::SETLT: if (R==APFloat::cmpUnordered)
2848 return GetUndefBooleanConstant();
2849 [[fallthrough]];
2850 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2851 OpVT);
2852 case ISD::SETGT: if (R==APFloat::cmpUnordered)
2853 return GetUndefBooleanConstant();
2854 [[fallthrough]];
2856 VT, OpVT);
2857 case ISD::SETLE: if (R==APFloat::cmpUnordered)
2858 return GetUndefBooleanConstant();
2859 [[fallthrough]];
2861 R==APFloat::cmpEqual, dl, VT,
2862 OpVT);
2863 case ISD::SETGE: if (R==APFloat::cmpUnordered)
2864 return GetUndefBooleanConstant();
2865 [[fallthrough]];
2867 R==APFloat::cmpEqual, dl, VT, OpVT);
2868 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2869 OpVT);
2870 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2871 OpVT);
2873 R==APFloat::cmpEqual, dl, VT,
2874 OpVT);
2875 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2876 OpVT);
2878 R==APFloat::cmpLessThan, dl, VT,
2879 OpVT);
2881 R==APFloat::cmpUnordered, dl, VT,
2882 OpVT);
2884 VT, OpVT);
2885 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2886 OpVT);
2887 }
2888 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2889 // Ensure that the constant occurs on the RHS.
2891 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2892 return SDValue();
2893 return getSetCC(dl, VT, N2, N1, SwappedCond);
2894 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2895 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2896 // If an operand is known to be a nan (or undef that could be a nan), we can
2897 // fold it.
2898 // Choosing NaN for the undef will always make unordered comparison succeed
2899 // and ordered comparison fails.
2900 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2901 switch (ISD::getUnorderedFlavor(Cond)) {
2902 default:
2903 llvm_unreachable("Unknown flavor!");
2904 case 0: // Known false.
2905 return getBoolConstant(false, dl, VT, OpVT);
2906 case 1: // Known true.
2907 return getBoolConstant(true, dl, VT, OpVT);
2908 case 2: // Undefined.
2909 return GetUndefBooleanConstant();
2910 }
2911 }
2912
2913 // Could not fold it.
2914 return SDValue();
2915}
2916
2917/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
2918/// use this predicate to simplify operations downstream.
2920 unsigned BitWidth = Op.getScalarValueSizeInBits();
2922}
2923
2924/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
2925/// this predicate to simplify operations downstream. Mask is known to be zero
2926/// for bits that V cannot have.
2928 unsigned Depth) const {
2929 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2930}
2931
2932/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2933/// DemandedElts. We use this predicate to simplify operations downstream.
2934/// Mask is known to be zero for bits that V cannot have.
2936 const APInt &DemandedElts,
2937 unsigned Depth) const {
2938 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2939}
2940
2941/// MaskedVectorIsZero - Return true if 'Op' is known to be zero in
2942/// DemandedElts. We use this predicate to simplify operations downstream.
2944 unsigned Depth /* = 0 */) const {
2945 return computeKnownBits(V, DemandedElts, Depth).isZero();
2946}
2947
2948/// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2950 unsigned Depth) const {
2951 return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2952}
2953
2955 const APInt &DemandedElts,
2956 unsigned Depth) const {
2957 EVT VT = Op.getValueType();
2958 assert(VT.isVector() && !VT.isScalableVector() && "Only for fixed vectors!");
2959
2960 unsigned NumElts = VT.getVectorNumElements();
2961 assert(DemandedElts.getBitWidth() == NumElts && "Unexpected demanded mask.");
2962
2963 APInt KnownZeroElements = APInt::getZero(NumElts);
2964 for (unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2965 if (!DemandedElts[EltIdx])
2966 continue; // Don't query elements that are not demanded.
2967 APInt Mask = APInt::getOneBitSet(NumElts, EltIdx);
2968 if (MaskedVectorIsZero(Op, Mask, Depth))
2969 KnownZeroElements.setBit(EltIdx);
2970 }
2971 return KnownZeroElements;
2972}
2973
2974/// isSplatValue - Return true if the vector V has the same value
2975/// across all DemandedElts. For scalable vectors, we don't know the
2976/// number of lanes at compile time. Instead, we use a 1 bit APInt
2977/// to represent a conservative value for all lanes; that is, that
2978/// one bit value is implicitly splatted across all lanes.
2979bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2980 APInt &UndefElts, unsigned Depth) const {
2981 unsigned Opcode = V.getOpcode();
2982 EVT VT = V.getValueType();
2983 assert(VT.isVector() && "Vector type expected");
2984 assert((!VT.isScalableVector() || DemandedElts.getBitWidth() == 1) &&
2985 "scalable demanded bits are ignored");
2986
2987 if (!DemandedElts)
2988 return false; // No demanded elts, better to assume we don't know anything.
2989
2990 if (Depth >= MaxRecursionDepth)
2991 return false; // Limit search depth.
2992
2993 // Deal with some common cases here that work for both fixed and scalable
2994 // vector types.
2995 switch (Opcode) {
2996 case ISD::SPLAT_VECTOR:
2997 UndefElts = V.getOperand(0).isUndef()
2998 ? APInt::getAllOnes(DemandedElts.getBitWidth())
2999 : APInt(DemandedElts.getBitWidth(), 0);
3000 return true;
3001 case ISD::ADD:
3002 case ISD::SUB:
3003 case ISD::AND:
3004 case ISD::XOR:
3005 case ISD::OR: {
3006 APInt UndefLHS, UndefRHS;
3007 SDValue LHS = V.getOperand(0);
3008 SDValue RHS = V.getOperand(1);
3009 // Only recognize splats with the same demanded undef elements for both
3010 // operands, otherwise we might fail to handle binop-specific undef
3011 // handling.
3012 // e.g. (and undef, 0) -> 0 etc.
3013 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
3014 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1) &&
3015 (DemandedElts & UndefLHS) == (DemandedElts & UndefRHS)) {
3016 UndefElts = UndefLHS | UndefRHS;
3017 return true;
3018 }
3019 return false;
3020 }
3021 case ISD::ABS:
3022 case ISD::TRUNCATE:
3023 case ISD::SIGN_EXTEND:
3024 case ISD::ZERO_EXTEND:
3025 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
3026 default:
3027 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
3028 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
3029 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *this,
3030 Depth);
3031 break;
3032 }
3033
3034 // We don't support other cases than those above for scalable vectors at
3035 // the moment.
3036 if (VT.isScalableVector())
3037 return false;
3038
3039 unsigned NumElts = VT.getVectorNumElements();
3040 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
3041 UndefElts = APInt::getZero(NumElts);
3042
3043 switch (Opcode) {
3044 case ISD::BUILD_VECTOR: {
3045 SDValue Scl;
3046 for (unsigned i = 0; i != NumElts; ++i) {
3047 SDValue Op = V.getOperand(i);
3048 if (Op.isUndef()) {
3049 UndefElts.setBit(i);
3050 continue;
3051 }
3052 if (!DemandedElts[i])
3053 continue;
3054 if (Scl && Scl != Op)
3055 return false;
3056 Scl = Op;
3057 }
3058 return true;
3059 }
3060 case ISD::VECTOR_SHUFFLE: {
3061 // Check if this is a shuffle node doing a splat or a shuffle of a splat.
3062 APInt DemandedLHS = APInt::getZero(NumElts);
3063 APInt DemandedRHS = APInt::getZero(NumElts);
3064 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
3065 for (int i = 0; i != (int)NumElts; ++i) {
3066 int M = Mask[i];
3067 if (M < 0) {
3068 UndefElts.setBit(i);
3069 continue;
3070 }
3071 if (!DemandedElts[i])
3072 continue;
3073 if (M < (int)NumElts)
3074 DemandedLHS.setBit(M);
3075 else
3076 DemandedRHS.setBit(M - NumElts);
3077 }
3078
3079 // If we aren't demanding either op, assume there's no splat.
3080 // If we are demanding both ops, assume there's no splat.
3081 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
3082 (!DemandedLHS.isZero() && !DemandedRHS.isZero()))
3083 return false;
3084
3085 // See if the demanded elts of the source op is a splat or we only demand
3086 // one element, which should always be a splat.
3087 // TODO: Handle source ops splats with undefs.
3088 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
3089 APInt SrcUndefs;
3090 return (SrcElts.popcount() == 1) ||
3091 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
3092 (SrcElts & SrcUndefs).isZero());
3093 };
3094 if (!DemandedLHS.isZero())
3095 return CheckSplatSrc(V.getOperand(0), DemandedLHS);
3096 return CheckSplatSrc(V.getOperand(1), DemandedRHS);
3097 }
3099 // Offset the demanded elts by the subvector index.
3100 SDValue Src = V.getOperand(0);
3101 // We don't support scalable vectors at the moment.
3102 if (Src.getValueType().isScalableVector())
3103 return false;
3104 uint64_t Idx = V.getConstantOperandVal(1);
3105 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3106 APInt UndefSrcElts;
3107 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3108 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
3109 UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
3110 return true;
3111 }
3112 break;
3113 }
3117 // Widen the demanded elts by the src element count.
3118 SDValue Src = V.getOperand(0);
3119 // We don't support scalable vectors at the moment.
3120 if (Src.getValueType().isScalableVector())
3121 return false;
3122 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3123 APInt UndefSrcElts;
3124 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3125 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
3126 UndefElts = UndefSrcElts.trunc(NumElts);
3127 return true;
3128 }
3129 break;
3130 }
3131 case ISD::BITCAST: {
3132 SDValue Src = V.getOperand(0);
3133 EVT SrcVT = Src.getValueType();
3134 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
3135 unsigned BitWidth = VT.getScalarSizeInBits();
3136
3137 // Ignore bitcasts from unsupported types.
3138 // TODO: Add fp support?
3139 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
3140 break;
3141
3142 // Bitcast 'small element' vector to 'large element' vector.
3143 if ((BitWidth % SrcBitWidth) == 0) {
3144 // See if each sub element is a splat.
3145 unsigned Scale = BitWidth / SrcBitWidth;
3146 unsigned NumSrcElts = SrcVT.getVectorNumElements();
3147 APInt ScaledDemandedElts =
3148 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3149 for (unsigned I = 0; I != Scale; ++I) {
3150 APInt SubUndefElts;
3151 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
3152 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
3153 SubDemandedElts &= ScaledDemandedElts;
3154 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
3155 return false;
3156 // TODO: Add support for merging sub undef elements.
3157 if (!SubUndefElts.isZero())
3158 return false;
3159 }
3160 return true;
3161 }
3162 break;
3163 }
3164 }
3165
3166 return false;
3167}
3168
3169/// Helper wrapper to main isSplatValue function.
3170bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
3171 EVT VT = V.getValueType();
3172 assert(VT.isVector() && "Vector type expected");
3173
3174 APInt UndefElts;
3175 // Since the number of lanes in a scalable vector is unknown at compile time,
3176 // we track one bit which is implicitly broadcast to all lanes. This means
3177 // that all lanes in a scalable vector are considered demanded.
3178 APInt DemandedElts
3180 return isSplatValue(V, DemandedElts, UndefElts) &&
3181 (AllowUndefs || !UndefElts);
3182}
3183
3186
3187 EVT VT = V.getValueType();
3188 unsigned Opcode = V.getOpcode();
3189 switch (Opcode) {
3190 default: {
3191 APInt UndefElts;
3192 // Since the number of lanes in a scalable vector is unknown at compile time,
3193 // we track one bit which is implicitly broadcast to all lanes. This means
3194 // that all lanes in a scalable vector are considered demanded.
3195 APInt DemandedElts
3197
3198 if (isSplatValue(V, DemandedElts, UndefElts)) {
3199 if (VT.isScalableVector()) {
3200 // DemandedElts and UndefElts are ignored for scalable vectors, since
3201 // the only supported cases are SPLAT_VECTOR nodes.
3202 SplatIdx = 0;
3203 } else {
3204 // Handle case where all demanded elements are UNDEF.
3205 if (DemandedElts.isSubsetOf(UndefElts)) {
3206 SplatIdx = 0;
3207 return getUNDEF(VT);
3208 }
3209 SplatIdx = (UndefElts & DemandedElts).countr_one();
3210 }
3211 return V;
3212 }
3213 break;
3214 }
3215 case ISD::SPLAT_VECTOR:
3216 SplatIdx = 0;
3217 return V;
3218 case ISD::VECTOR_SHUFFLE: {
3219 assert(!VT.isScalableVector());
3220 // Check if this is a shuffle node doing a splat.
3221 // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
3222 // getTargetVShiftNode currently struggles without the splat source.
3223 auto *SVN = cast<ShuffleVectorSDNode>(V);
3224 if (!SVN->isSplat())
3225 break;
3226 int Idx = SVN->getSplatIndex();
3227 int NumElts = V.getValueType().getVectorNumElements();
3228 SplatIdx = Idx % NumElts;
3229 return V.getOperand(Idx / NumElts);
3230 }
3231 }
3232
3233 return SDValue();
3234}
3235
3237 int SplatIdx;
3238 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
3239 EVT SVT = SrcVector.getValueType().getScalarType();
3240 EVT LegalSVT = SVT;
3241 if (LegalTypes && !TLI->isTypeLegal(SVT)) {
3242 if (!SVT.isInteger())
3243 return SDValue();
3244 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
3245 if (LegalSVT.bitsLT(SVT))
3246 return SDValue();
3247 }
3248 return getExtractVectorElt(SDLoc(V), LegalSVT, SrcVector, SplatIdx);
3249 }
3250 return SDValue();
3251}
3252
3253std::optional<ConstantRange>
3255 unsigned Depth) const {
3256 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3257 V.getOpcode() == ISD::SRA) &&
3258 "Unknown shift node");
3259 // Shifting more than the bitwidth is not valid.
3260 unsigned BitWidth = V.getScalarValueSizeInBits();
3261
3262 if (auto *Cst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3263 const APInt &ShAmt = Cst->getAPIntValue();
3264 if (ShAmt.uge(BitWidth))
3265 return std::nullopt;
3266 return ConstantRange(ShAmt);
3267 }
3268
3269 if (auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1))) {
3270 const APInt *MinAmt = nullptr, *MaxAmt = nullptr;
3271 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3272 if (!DemandedElts[i])
3273 continue;
3274 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
3275 if (!SA) {
3276 MinAmt = MaxAmt = nullptr;
3277 break;
3278 }
3279 const APInt &ShAmt = SA->getAPIntValue();
3280 if (ShAmt.uge(BitWidth))
3281 return std::nullopt;
3282 if (!MinAmt || MinAmt->ugt(ShAmt))
3283 MinAmt = &ShAmt;
3284 if (!MaxAmt || MaxAmt->ult(ShAmt))
3285 MaxAmt = &ShAmt;
3286 }
3287 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
3288 "Failed to find matching min/max shift amounts");
3289 if (MinAmt && MaxAmt)
3290 return ConstantRange(*MinAmt, *MaxAmt + 1);
3291 }
3292
3293 // Use computeKnownBits to find a hidden constant/knownbits (usually type
3294 // legalized). e.g. Hidden behind multiple bitcasts/build_vector/casts etc.
3295 KnownBits KnownAmt = computeKnownBits(V.getOperand(1), DemandedElts, Depth);
3296 if (KnownAmt.getMaxValue().ult(BitWidth))
3297 return ConstantRange::fromKnownBits(KnownAmt, /*IsSigned=*/false);
3298
3299 return std::nullopt;
3300}
3301
3302std::optional<unsigned>
3304 unsigned Depth) const {
3305 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3306 V.getOpcode() == ISD::SRA) &&
3307 "Unknown shift node");
3308 if (std::optional<ConstantRange> AmtRange =
3309 getValidShiftAmountRange(V, DemandedElts, Depth))
3310 if (const APInt *ShAmt = AmtRange->getSingleElement())
3311 return ShAmt->getZExtValue();
3312 return std::nullopt;
3313}
3314
3315std::optional<unsigned>
3317 EVT VT = V.getValueType();
3318 APInt DemandedElts = VT.isFixedLengthVector()
3320 : APInt(1, 1);
3321 return getValidShiftAmount(V, DemandedElts, Depth);
3322}
3323
3324std::optional<unsigned>
3326 unsigned Depth) const {
3327 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3328 V.getOpcode() == ISD::SRA) &&
3329 "Unknown shift node");
3330 if (std::optional<ConstantRange> AmtRange =
3331 getValidShiftAmountRange(V, DemandedElts, Depth))
3332 return AmtRange->getUnsignedMin().getZExtValue();
3333 return std::nullopt;
3334}
3335
3336std::optional<unsigned>
3338 EVT VT = V.getValueType();
3339 APInt DemandedElts = VT.isFixedLengthVector()
3341 : APInt(1, 1);
3342 return getValidMinimumShiftAmount(V, DemandedElts, Depth);
3343}
3344
3345std::optional<unsigned>
3347 unsigned Depth) const {
3348 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3349 V.getOpcode() == ISD::SRA) &&
3350 "Unknown shift node");
3351 if (std::optional<ConstantRange> AmtRange =
3352 getValidShiftAmountRange(V, DemandedElts, Depth))
3353 return AmtRange->getUnsignedMax().getZExtValue();
3354 return std::nullopt;
3355}
3356
3357std::optional<unsigned>
3359 EVT VT = V.getValueType();
3360 APInt DemandedElts = VT.isFixedLengthVector()
3362 : APInt(1, 1);
3363 return getValidMaximumShiftAmount(V, DemandedElts, Depth);
3364}
3365
3366/// Determine which bits of Op are known to be either zero or one and return
3367/// them in Known. For vectors, the known bits are those that are shared by
3368/// every vector element.
3370 EVT VT = Op.getValueType();
3371
3372 // Since the number of lanes in a scalable vector is unknown at compile time,
3373 // we track one bit which is implicitly broadcast to all lanes. This means
3374 // that all lanes in a scalable vector are considered demanded.
3375 APInt DemandedElts = VT.isFixedLengthVector()
3377 : APInt(1, 1);
3378 return computeKnownBits(Op, DemandedElts, Depth);
3379}
3380
3381/// Determine which bits of Op are known to be either zero or one and return
3382/// them in Known. The DemandedElts argument allows us to only collect the known
3383/// bits that are shared by the requested vector elements.
3385 unsigned Depth) const {
3386 unsigned BitWidth = Op.getScalarValueSizeInBits();
3387
3388 KnownBits Known(BitWidth); // Don't know anything.
3389
3390 if (auto OptAPInt = Op->bitcastToAPInt()) {
3391 // We know all of the bits for a constant!
3392 return KnownBits::makeConstant(*std::move(OptAPInt));
3393 }
3394
3395 if (Depth >= MaxRecursionDepth)
3396 return Known; // Limit search depth.
3397
3398 KnownBits Known2;
3399 unsigned NumElts = DemandedElts.getBitWidth();
3400 assert((!Op.getValueType().isFixedLengthVector() ||
3401 NumElts == Op.getValueType().getVectorNumElements()) &&
3402 "Unexpected vector size");
3403
3404 if (!DemandedElts)
3405 return Known; // No demanded elts, better to assume we don't know anything.
3406
3407 unsigned Opcode = Op.getOpcode();
3408 switch (Opcode) {
3409 case ISD::MERGE_VALUES:
3410 return computeKnownBits(Op.getOperand(Op.getResNo()), DemandedElts,
3411 Depth + 1);
3412 case ISD::SPLAT_VECTOR: {
3413 SDValue SrcOp = Op.getOperand(0);
3414 assert(SrcOp.getValueSizeInBits() >= BitWidth &&
3415 "Expected SPLAT_VECTOR implicit truncation");
3416 // Implicitly truncate the bits to match the official semantics of
3417 // SPLAT_VECTOR.
3418 Known = computeKnownBits(SrcOp, Depth + 1).trunc(BitWidth);
3419 break;
3420 }
3422 unsigned ScalarSize = Op.getOperand(0).getScalarValueSizeInBits();
3423 assert(ScalarSize * Op.getNumOperands() == BitWidth &&
3424 "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3425 for (auto [I, SrcOp] : enumerate(Op->ops())) {
3426 Known.insertBits(computeKnownBits(SrcOp, Depth + 1), ScalarSize * I);
3427 }
3428 break;
3429 }
3430 case ISD::STEP_VECTOR: {
3431 const APInt &Step = Op.getConstantOperandAPInt(0);
3432
3433 if (Step.isPowerOf2())
3434 Known.Zero.setLowBits(Step.logBase2());
3435
3437
3438 if (!isUIntN(BitWidth, Op.getValueType().getVectorMinNumElements()))
3439 break;
3440 const APInt MinNumElts =
3441 APInt(BitWidth, Op.getValueType().getVectorMinNumElements());
3442
3443 bool Overflow;
3444 const APInt MaxNumElts = getVScaleRange(&F, BitWidth)
3446 .umul_ov(MinNumElts, Overflow);
3447 if (Overflow)
3448 break;
3449
3450 const APInt MaxValue = (MaxNumElts - 1).umul_ov(Step, Overflow);
3451 if (Overflow)
3452 break;
3453
3454 Known.Zero.setHighBits(MaxValue.countl_zero());
3455 break;
3456 }
3457 case ISD::BUILD_VECTOR:
3458 assert(!Op.getValueType().isScalableVector());
3459 // Collect the known bits that are shared by every demanded vector element.
3460 Known.setAllConflict();
3461 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
3462 if (!DemandedElts[i])
3463 continue;
3464
3465 SDValue SrcOp = Op.getOperand(i);
3466 Known2 = computeKnownBits(SrcOp, Depth + 1);
3467
3468 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3469 if (SrcOp.getValueSizeInBits() != BitWidth) {
3470 assert(SrcOp.getValueSizeInBits() > BitWidth &&
3471 "Expected BUILD_VECTOR implicit truncation");
3472 Known2 = Known2.trunc(BitWidth);
3473 }
3474
3475 // Known bits are the values that are shared by every demanded element.
3476 Known = Known.intersectWith(Known2);
3477
3478 // If we don't know any bits, early out.
3479 if (Known.isUnknown())
3480 break;
3481 }
3482 break;
3483 case ISD::VECTOR_COMPRESS: {
3484 SDValue Vec = Op.getOperand(0);
3485 SDValue PassThru = Op.getOperand(2);
3486 Known = computeKnownBits(PassThru, DemandedElts, Depth + 1);
3487 // If we don't know any bits, early out.
3488 if (Known.isUnknown())
3489 break;
3490 Known2 = computeKnownBits(Vec, Depth + 1);
3491 Known = Known.intersectWith(Known2);
3492 break;
3493 }
3494 case ISD::VECTOR_SHUFFLE: {
3495 assert(!Op.getValueType().isScalableVector());
3496 // Collect the known bits that are shared by every vector element referenced
3497 // by the shuffle.
3498 APInt DemandedLHS, DemandedRHS;
3500 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3501 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
3502 DemandedLHS, DemandedRHS))
3503 break;
3504
3505 // Known bits are the values that are shared by every demanded element.
3506 Known.setAllConflict();
3507 if (!!DemandedLHS) {
3508 SDValue LHS = Op.getOperand(0);
3509 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
3510 Known = Known.intersectWith(Known2);
3511 }
3512 // If we don't know any bits, early out.
3513 if (Known.isUnknown())
3514 break;
3515 if (!!DemandedRHS) {
3516 SDValue RHS = Op.getOperand(1);
3517 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
3518 Known = Known.intersectWith(Known2);
3519 }
3520 break;
3521 }
3522 case ISD::VSCALE: {
3524 const APInt &Multiplier = Op.getConstantOperandAPInt(0);
3525 Known = getVScaleRange(&F, BitWidth).multiply(Multiplier).toKnownBits();
3526 break;
3527 }
3528 case ISD::CONCAT_VECTORS: {
3529 if (Op.getValueType().isScalableVector())
3530 break;
3531 // Split DemandedElts and test each of the demanded subvectors.
3532 Known.setAllConflict();
3533 EVT SubVectorVT = Op.getOperand(0).getValueType();
3534 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3535 unsigned NumSubVectors = Op.getNumOperands();
3536 for (unsigned i = 0; i != NumSubVectors; ++i) {
3537 APInt DemandedSub =
3538 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
3539 if (!!DemandedSub) {
3540 SDValue Sub = Op.getOperand(i);
3541 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
3542 Known = Known.intersectWith(Known2);
3543 }
3544 // If we don't know any bits, early out.
3545 if (Known.isUnknown())
3546 break;
3547 }
3548 break;
3549 }
3550 case ISD::INSERT_SUBVECTOR: {
3551 if (Op.getValueType().isScalableVector())
3552 break;
3553 // Demand any elements from the subvector and the remainder from the src its
3554 // inserted into.
3555 SDValue Src = Op.getOperand(0);
3556 SDValue Sub = Op.getOperand(1);
3557 uint64_t Idx = Op.getConstantOperandVal(2);
3558 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3559 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3560 APInt DemandedSrcElts = DemandedElts;
3561 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
3562
3563 Known.setAllConflict();
3564 if (!!DemandedSubElts) {
3565 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
3566 if (Known.isUnknown())
3567 break; // early-out.
3568 }
3569 if (!!DemandedSrcElts) {
3570 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3571 Known = Known.intersectWith(Known2);
3572 }
3573 break;
3574 }
3576 // Offset the demanded elts by the subvector index.
3577 SDValue Src = Op.getOperand(0);
3578 // Bail until we can represent demanded elements for scalable vectors.
3579 if (Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3580 break;
3581 uint64_t Idx = Op.getConstantOperandVal(1);
3582 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3583 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3584 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3585 break;
3586 }
3587 case ISD::SCALAR_TO_VECTOR: {
3588 if (Op.getValueType().isScalableVector())
3589 break;
3590 // We know about scalar_to_vector as much as we know about it source,
3591 // which becomes the first element of otherwise unknown vector.
3592 if (DemandedElts != 1)
3593 break;
3594
3595 SDValue N0 = Op.getOperand(0);
3596 Known = computeKnownBits(N0, Depth + 1);
3597 if (N0.getValueSizeInBits() != BitWidth)
3598 Known = Known.trunc(BitWidth);
3599
3600 break;
3601 }
3602 case ISD::BITCAST: {
3603 if (Op.getValueType().isScalableVector())
3604 break;
3605
3606 SDValue N0 = Op.getOperand(0);
3607 EVT SubVT = N0.getValueType();
3608 unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3609
3610 // Ignore bitcasts from unsupported types.
3611 if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3612 break;
3613
3614 // Fast handling of 'identity' bitcasts.
3615 if (BitWidth == SubBitWidth) {
3616 Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3617 break;
3618 }
3619
3620 bool IsLE = getDataLayout().isLittleEndian();
3621
3622 // Bitcast 'small element' vector to 'large element' scalar/vector.
3623 if ((BitWidth % SubBitWidth) == 0) {
3624 assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3625
3626 // Collect known bits for the (larger) output by collecting the known
3627 // bits from each set of sub elements and shift these into place.
3628 // We need to separately call computeKnownBits for each set of
3629 // sub elements as the knownbits for each is likely to be different.
3630 unsigned SubScale = BitWidth / SubBitWidth;
3631 APInt SubDemandedElts(NumElts * SubScale, 0);
3632 for (unsigned i = 0; i != NumElts; ++i)
3633 if (DemandedElts[i])
3634 SubDemandedElts.setBit(i * SubScale);
3635
3636 for (unsigned i = 0; i != SubScale; ++i) {
3637 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3638 Depth + 1);
3639 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3640 Known.insertBits(Known2, SubBitWidth * Shifts);
3641 }
3642 }
3643
3644 // Bitcast 'large element' scalar/vector to 'small element' vector.
3645 if ((SubBitWidth % BitWidth) == 0) {
3646 assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3647
3648 // Collect known bits for the (smaller) output by collecting the known
3649 // bits from the overlapping larger input elements and extracting the
3650 // sub sections we actually care about.
3651 unsigned SubScale = SubBitWidth / BitWidth;
3652 APInt SubDemandedElts =
3653 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3654 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3655
3656 Known.setAllConflict();
3657 for (unsigned i = 0; i != NumElts; ++i)
3658 if (DemandedElts[i]) {
3659 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3660 unsigned Offset = (Shifts % SubScale) * BitWidth;
3661 Known = Known.intersectWith(Known2.extractBits(BitWidth, Offset));
3662 // If we don't know any bits, early out.
3663 if (Known.isUnknown())
3664 break;
3665 }
3666 }
3667 break;
3668 }
3669 case ISD::AND:
3670 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3671 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3672
3673 Known &= Known2;
3674 break;
3675 case ISD::OR:
3676 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3677 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3678
3679 Known |= Known2;
3680 break;
3681 case ISD::XOR:
3682 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3683 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3684
3685 Known ^= Known2;
3686 break;
3687 case ISD::MUL: {
3688 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3689 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3690 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3691 // TODO: SelfMultiply can be poison, but not undef.
3692 if (SelfMultiply)
3693 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3694 Op.getOperand(0), DemandedElts, false, Depth + 1);
3695 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3696
3697 // If the multiplication is known not to overflow, the product of a number
3698 // with itself is non-negative. Only do this if we didn't already computed
3699 // the opposite value for the sign bit.
3700 if (Op->getFlags().hasNoSignedWrap() &&
3701 Op.getOperand(0) == Op.getOperand(1) &&
3702 !Known.isNegative())
3703 Known.makeNonNegative();
3704 break;
3705 }
3706 case ISD::MULHU: {
3707 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3708 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3709 Known = KnownBits::mulhu(Known, Known2);
3710 break;
3711 }
3712 case ISD::MULHS: {
3713 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3714 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3715 Known = KnownBits::mulhs(Known, Known2);
3716 break;
3717 }
3718 case ISD::ABDU: {
3719 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3720 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3721 Known = KnownBits::abdu(Known, Known2);
3722 break;
3723 }
3724 case ISD::ABDS: {
3725 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3726 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3727 Known = KnownBits::abds(Known, Known2);
3728 unsigned SignBits1 =
3729 ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3730 if (SignBits1 == 1)
3731 break;
3732 unsigned SignBits0 =
3733 ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3734 Known.Zero.setHighBits(std::min(SignBits0, SignBits1) - 1);
3735 break;
3736 }
3737 case ISD::UMUL_LOHI: {
3738 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3739 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3740 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3741 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3742 if (Op.getResNo() == 0)
3743 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3744 else
3745 Known = KnownBits::mulhu(Known, Known2);
3746 break;
3747 }
3748 case ISD::SMUL_LOHI: {
3749 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3750 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3751 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3752 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3753 if (Op.getResNo() == 0)
3754 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3755 else
3756 Known = KnownBits::mulhs(Known, Known2);
3757 break;
3758 }
3759 case ISD::AVGFLOORU: {
3760 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3761 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3762 Known = KnownBits::avgFloorU(Known, Known2);
3763 break;
3764 }
3765 case ISD::AVGCEILU: {
3766 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3767 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3768 Known = KnownBits::avgCeilU(Known, Known2);
3769 break;
3770 }
3771 case ISD::AVGFLOORS: {
3772 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3773 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3774 Known = KnownBits::avgFloorS(Known, Known2);
3775 break;
3776 }
3777 case ISD::AVGCEILS: {
3778 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3779 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3780 Known = KnownBits::avgCeilS(Known, Known2);
3781 break;
3782 }
3783 case ISD::SELECT:
3784 case ISD::VSELECT:
3785 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3786 // If we don't know any bits, early out.
3787 if (Known.isUnknown())
3788 break;
3789 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3790
3791 // Only known if known in both the LHS and RHS.
3792 Known = Known.intersectWith(Known2);
3793 break;
3794 case ISD::SELECT_CC:
3795 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3796 // If we don't know any bits, early out.
3797 if (Known.isUnknown())
3798 break;
3799 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3800
3801 // Only known if known in both the LHS and RHS.
3802 Known = Known.intersectWith(Known2);
3803 break;
3804 case ISD::SMULO:
3805 case ISD::UMULO:
3806 if (Op.getResNo() != 1)
3807 break;
3808 // The boolean result conforms to getBooleanContents.
3809 // If we know the result of a setcc has the top bits zero, use this info.
3810 // We know that we have an integer-based boolean since these operations
3811 // are only available for integer.
3812 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3814 BitWidth > 1)
3815 Known.Zero.setBitsFrom(1);
3816 break;
3817 case ISD::SETCC:
3818 case ISD::SETCCCARRY:
3819 case ISD::STRICT_FSETCC:
3820 case ISD::STRICT_FSETCCS: {
3821 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3822 // If we know the result of a setcc has the top bits zero, use this info.
3823 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3825 BitWidth > 1)
3826 Known.Zero.setBitsFrom(1);
3827 break;
3828 }
3829 case ISD::SHL: {
3830 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3831 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3832
3833 bool NUW = Op->getFlags().hasNoUnsignedWrap();
3834 bool NSW = Op->getFlags().hasNoSignedWrap();
3835
3836 bool ShAmtNonZero = Known2.isNonZero();
3837
3838 Known = KnownBits::shl(Known, Known2, NUW, NSW, ShAmtNonZero);
3839
3840 // Minimum shift low bits are known zero.
3841 if (std::optional<unsigned> ShMinAmt =
3842 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
3843 Known.Zero.setLowBits(*ShMinAmt);
3844 break;
3845 }
3846 case ISD::SRL:
3847 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3848 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3849 Known = KnownBits::lshr(Known, Known2, /*ShAmtNonZero=*/false,
3850 Op->getFlags().hasExact());
3851
3852 // Minimum shift high bits are known zero.
3853 if (std::optional<unsigned> ShMinAmt =
3854 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
3855 Known.Zero.setHighBits(*ShMinAmt);
3856 break;
3857 case ISD::SRA:
3858 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3859 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3860 Known = KnownBits::ashr(Known, Known2, /*ShAmtNonZero=*/false,
3861 Op->getFlags().hasExact());
3862 break;
3863 case ISD::ROTL:
3864 case ISD::ROTR:
3865 if (ConstantSDNode *C =
3866 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3867 unsigned Amt = C->getAPIntValue().urem(BitWidth);
3868
3869 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3870
3871 // Canonicalize to ROTR.
3872 if (Opcode == ISD::ROTL && Amt != 0)
3873 Amt = BitWidth - Amt;
3874
3875 Known.Zero = Known.Zero.rotr(Amt);
3876 Known.One = Known.One.rotr(Amt);
3877 }
3878 break;
3879 case ISD::FSHL:
3880 case ISD::FSHR:
3881 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3882 unsigned Amt = C->getAPIntValue().urem(BitWidth);
3883
3884 // For fshl, 0-shift returns the 1st arg.
3885 // For fshr, 0-shift returns the 2nd arg.
3886 if (Amt == 0) {
3887 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3888 DemandedElts, Depth + 1);
3889 break;
3890 }
3891
3892 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3893 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3894 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3895 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3896 if (Opcode == ISD::FSHL) {
3897 Known <<= Amt;
3898 Known2 >>= BitWidth - Amt;
3899 } else {
3900 Known <<= BitWidth - Amt;
3901 Known2 >>= Amt;
3902 }
3903 Known = Known.unionWith(Known2);
3904 }
3905 break;
3906 case ISD::SHL_PARTS:
3907 case ISD::SRA_PARTS:
3908 case ISD::SRL_PARTS: {
3909 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3910
3911 // Collect lo/hi source values and concatenate.
3912 unsigned LoBits = Op.getOperand(0).getScalarValueSizeInBits();
3913 unsigned HiBits = Op.getOperand(1).getScalarValueSizeInBits();
3914 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3915 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3916 Known = Known2.concat(Known);
3917
3918 // Collect shift amount.
3919 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3920
3921 if (Opcode == ISD::SHL_PARTS)
3922 Known = KnownBits::shl(Known, Known2);
3923 else if (Opcode == ISD::SRA_PARTS)
3924 Known = KnownBits::ashr(Known, Known2);
3925 else // if (Opcode == ISD::SRL_PARTS)
3926 Known = KnownBits::lshr(Known, Known2);
3927
3928 // TODO: Minimum shift low/high bits are known zero.
3929
3930 if (Op.getResNo() == 0)
3931 Known = Known.extractBits(LoBits, 0);
3932 else
3933 Known = Known.extractBits(HiBits, LoBits);
3934 break;
3935 }
3937 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3938 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3939 Known = Known.sextInReg(EVT.getScalarSizeInBits());
3940 break;
3941 }
3942 case ISD::CTTZ:
3943 case ISD::CTTZ_ZERO_UNDEF: {
3944 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3945 // If we have a known 1, its position is our upper bound.
3946 unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3947 unsigned LowBits = llvm::bit_width(PossibleTZ);
3948 Known.Zero.setBitsFrom(LowBits);
3949 break;
3950 }
3951 case ISD::CTLZ:
3952 case ISD::CTLZ_ZERO_UNDEF: {
3953 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3954 // If we have a known 1, its position is our upper bound.
3955 unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3956 unsigned LowBits = llvm::bit_width(PossibleLZ);
3957 Known.Zero.setBitsFrom(LowBits);
3958 break;
3959 }
3960 case ISD::CTPOP: {
3961 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3962 // If we know some of the bits are zero, they can't be one.
3963 unsigned PossibleOnes = Known2.countMaxPopulation();
3964 Known.Zero.setBitsFrom(llvm::bit_width(PossibleOnes));
3965 break;
3966 }
3967 case ISD::PARITY: {
3968 // Parity returns 0 everywhere but the LSB.
3969 Known.Zero.setBitsFrom(1);
3970 break;
3971 }
3972 case ISD::MGATHER:
3973 case ISD::MLOAD: {
3974 ISD::LoadExtType ETy =
3975 (Opcode == ISD::MGATHER)
3976 ? cast<MaskedGatherSDNode>(Op)->getExtensionType()
3977 : cast<MaskedLoadSDNode>(Op)->getExtensionType();
3978 if (ETy == ISD::ZEXTLOAD) {
3979 EVT MemVT = cast<MemSDNode>(Op)->getMemoryVT();
3980 KnownBits Known0(MemVT.getScalarSizeInBits());
3981 return Known0.zext(BitWidth);
3982 }
3983 break;
3984 }
3985 case ISD::LOAD: {
3987 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3988 if (ISD::isNON_EXTLoad(LD) && Cst) {
3989 // Determine any common known bits from the loaded constant pool value.
3990 Type *CstTy = Cst->getType();
3991 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits() &&
3992 !Op.getValueType().isScalableVector()) {
3993 // If its a vector splat, then we can (quickly) reuse the scalar path.
3994 // NOTE: We assume all elements match and none are UNDEF.
3995 if (CstTy->isVectorTy()) {
3996 if (const Constant *Splat = Cst->getSplatValue()) {
3997 Cst = Splat;
3998 CstTy = Cst->getType();
3999 }
4000 }
4001 // TODO - do we need to handle different bitwidths?
4002 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
4003 // Iterate across all vector elements finding common known bits.
4004 Known.setAllConflict();
4005 for (unsigned i = 0; i != NumElts; ++i) {
4006 if (!DemandedElts[i])
4007 continue;
4008 if (Constant *Elt = Cst->getAggregateElement(i)) {
4009 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4010 const APInt &Value = CInt->getValue();
4011 Known.One &= Value;
4012 Known.Zero &= ~Value;
4013 continue;
4014 }
4015 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4016 APInt Value = CFP->getValueAPF().bitcastToAPInt();
4017 Known.One &= Value;
4018 Known.Zero &= ~Value;
4019 continue;
4020 }
4021 }
4022 Known.One.clearAllBits();
4023 Known.Zero.clearAllBits();
4024 break;
4025 }
4026 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
4027 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
4028 Known = KnownBits::makeConstant(CInt->getValue());
4029 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
4030 Known =
4031 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
4032 }
4033 }
4034 }
4035 } else if (Op.getResNo() == 0) {
4036 unsigned ScalarMemorySize = LD->getMemoryVT().getScalarSizeInBits();
4037 KnownBits KnownScalarMemory(ScalarMemorySize);
4038 if (const MDNode *MD = LD->getRanges())
4039 computeKnownBitsFromRangeMetadata(*MD, KnownScalarMemory);
4040
4041 // Extend the Known bits from memory to the size of the scalar result.
4042 if (ISD::isZEXTLoad(Op.getNode()))
4043 Known = KnownScalarMemory.zext(BitWidth);
4044 else if (ISD::isSEXTLoad(Op.getNode()))
4045 Known = KnownScalarMemory.sext(BitWidth);
4046 else if (ISD::isEXTLoad(Op.getNode()))
4047 Known = KnownScalarMemory.anyext(BitWidth);
4048 else
4049 Known = KnownScalarMemory;
4050 assert(Known.getBitWidth() == BitWidth);
4051 return Known;
4052 }
4053 break;
4054 }
4056 if (Op.getValueType().isScalableVector())
4057 break;
4058 EVT InVT = Op.getOperand(0).getValueType();
4059 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4060 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4061 Known = Known.zext(BitWidth);
4062 break;
4063 }
4064 case ISD::ZERO_EXTEND: {
4065 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4066 Known = Known.zext(BitWidth);
4067 break;
4068 }
4070 if (Op.getValueType().isScalableVector())
4071 break;
4072 EVT InVT = Op.getOperand(0).getValueType();
4073 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4074 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4075 // If the sign bit is known to be zero or one, then sext will extend
4076 // it to the top bits, else it will just zext.
4077 Known = Known.sext(BitWidth);
4078 break;
4079 }
4080 case ISD::SIGN_EXTEND: {
4081 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4082 // If the sign bit is known to be zero or one, then sext will extend
4083 // it to the top bits, else it will just zext.
4084 Known = Known.sext(BitWidth);
4085 break;
4086 }
4088 if (Op.getValueType().isScalableVector())
4089 break;
4090 EVT InVT = Op.getOperand(0).getValueType();
4091 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4092 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4093 Known = Known.anyext(BitWidth);
4094 break;
4095 }
4096 case ISD::ANY_EXTEND: {
4097 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4098 Known = Known.anyext(BitWidth);
4099 break;
4100 }
4101 case ISD::TRUNCATE: {
4102 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4103 Known = Known.trunc(BitWidth);
4104 break;
4105 }
4106 case ISD::AssertZext: {
4107 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
4109 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4110 Known.Zero |= (~InMask);
4111 Known.One &= (~Known.Zero);
4112 break;
4113 }
4114 case ISD::AssertAlign: {
4115 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
4116 assert(LogOfAlign != 0);
4117
4118 // TODO: Should use maximum with source
4119 // If a node is guaranteed to be aligned, set low zero bits accordingly as
4120 // well as clearing one bits.
4121 Known.Zero.setLowBits(LogOfAlign);
4122 Known.One.clearLowBits(LogOfAlign);
4123 break;
4124 }
4125 case ISD::FGETSIGN:
4126 // All bits are zero except the low bit.
4127 Known.Zero.setBitsFrom(1);
4128 break;
4129 case ISD::ADD:
4130 case ISD::SUB: {
4131 SDNodeFlags Flags = Op.getNode()->getFlags();
4132 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4133 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4135 Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(),
4136 Flags.hasNoUnsignedWrap(), Known, Known2);
4137 break;
4138 }
4139 case ISD::USUBO:
4140 case ISD::SSUBO:
4141 case ISD::USUBO_CARRY:
4142 case ISD::SSUBO_CARRY:
4143 if (Op.getResNo() == 1) {
4144 // If we know the result of a setcc has the top bits zero, use this info.
4145 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
4147 BitWidth > 1)
4148 Known.Zero.setBitsFrom(1);
4149 break;
4150 }
4151 [[fallthrough]];
4152 case ISD::SUBC: {
4153 assert(Op.getResNo() == 0 &&
4154 "We only compute knownbits for the difference here.");
4155
4156 // With USUBO_CARRY and SSUBO_CARRY a borrow bit may be added in.
4157 KnownBits Borrow(1);
4158 if (Opcode == ISD::USUBO_CARRY || Opcode == ISD::SSUBO_CARRY) {
4159 Borrow = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
4160 // Borrow has bit width 1
4161 Borrow = Borrow.trunc(1);
4162 } else {
4163 Borrow.setAllZero();
4164 }
4165
4166 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4167 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4168 Known = KnownBits::computeForSubBorrow(Known, Known2, Borrow);
4169 break;
4170 }
4171 case ISD::UADDO:
4172 case ISD::SADDO:
4173 case ISD::UADDO_CARRY:
4174 case ISD::SADDO_CARRY:
4175 if (Op.getResNo() == 1) {
4176 // If we know the result of a setcc has the top bits zero, use this info.
4177 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
4179 BitWidth > 1)
4180 Known.Zero.setBitsFrom(1);
4181 break;
4182 }
4183 [[fallthrough]];
4184 case ISD::ADDC:
4185 case ISD::ADDE: {
4186 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
4187
4188 // With ADDE and UADDO_CARRY, a carry bit may be added in.
4189 KnownBits Carry(1);
4190 if (Opcode == ISD::ADDE)
4191 // Can't track carry from glue, set carry to unknown.
4192 Carry.resetAll();
4193 else if (Opcode == ISD::UADDO_CARRY || Opcode == ISD::SADDO_CARRY) {
4194 Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
4195 // Carry has bit width 1
4196 Carry = Carry.trunc(1);
4197 } else {
4198 Carry.setAllZero();
4199 }
4200
4201 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4202 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4203 Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
4204 break;
4205 }
4206 case ISD::UDIV: {
4207 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4208 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4209 Known = KnownBits::udiv(Known, Known2, Op->getFlags().hasExact());
4210 break;
4211 }
4212 case ISD::SDIV: {
4213 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4214 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4215 Known = KnownBits::sdiv(Known, Known2, Op->getFlags().hasExact());
4216 break;
4217 }
4218 case ISD::SREM: {
4219 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4220 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4221 Known = KnownBits::srem(Known, Known2);
4222 break;
4223 }
4224 case ISD::UREM: {
4225 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4226 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4227 Known = KnownBits::urem(Known, Known2);
4228 break;
4229 }
4230 case ISD::EXTRACT_ELEMENT: {
4231 Known = computeKnownBits(Op.getOperand(0), Depth+1);
4232 const unsigned Index = Op.getConstantOperandVal(1);
4233 const unsigned EltBitWidth = Op.getValueSizeInBits();
4234
4235 // Remove low part of known bits mask
4236 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
4237 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
4238
4239 // Remove high part of known bit mask
4240 Known = Known.trunc(EltBitWidth);
4241 break;
4242 }
4244 SDValue InVec = Op.getOperand(0);
4245 SDValue EltNo = Op.getOperand(1);
4246 EVT VecVT = InVec.getValueType();
4247 // computeKnownBits not yet implemented for scalable vectors.
4248 if (VecVT.isScalableVector())
4249 break;
4250 const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
4251 const unsigned NumSrcElts = VecVT.getVectorNumElements();
4252
4253 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
4254 // anything about the extended bits.
4255 if (BitWidth > EltBitWidth)
4256 Known = Known.trunc(EltBitWidth);
4257
4258 // If we know the element index, just demand that vector element, else for
4259 // an unknown element index, ignore DemandedElts and demand them all.
4260 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4261 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4262 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4263 DemandedSrcElts =
4264 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4265
4266 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
4267 if (BitWidth > EltBitWidth)
4268 Known = Known.anyext(BitWidth);
4269 break;
4270 }
4272 if (Op.getValueType().isScalableVector())
4273 break;
4274
4275 // If we know the element index, split the demand between the
4276 // source vector and the inserted element, otherwise assume we need
4277 // the original demanded vector elements and the value.
4278 SDValue InVec = Op.getOperand(0);
4279 SDValue InVal = Op.getOperand(1);
4280 SDValue EltNo = Op.getOperand(2);
4281 bool DemandedVal = true;
4282 APInt DemandedVecElts = DemandedElts;
4283 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4284 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4285 unsigned EltIdx = CEltNo->getZExtValue();
4286 DemandedVal = !!DemandedElts[EltIdx];
4287 DemandedVecElts.clearBit(EltIdx);
4288 }
4289 Known.setAllConflict();
4290 if (DemandedVal) {
4291 Known2 = computeKnownBits(InVal, Depth + 1);
4292 Known = Known.intersectWith(Known2.zextOrTrunc(BitWidth));
4293 }
4294 if (!!DemandedVecElts) {
4295 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
4296 Known = Known.intersectWith(Known2);
4297 }
4298 break;
4299 }
4300 case ISD::BITREVERSE: {
4301 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4302 Known = Known2.reverseBits();
4303 break;
4304 }
4305 case ISD::BSWAP: {
4306 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4307 Known = Known2.byteSwap();
4308 break;
4309 }
4310 case ISD::ABS: {
4311 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4312 Known = Known2.abs();
4313 Known.Zero.setHighBits(
4314 ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1) - 1);
4315 break;
4316 }
4317 case ISD::USUBSAT: {
4318 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4319 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4320 Known = KnownBits::usub_sat(Known, Known2);
4321 break;
4322 }
4323 case ISD::UMIN: {
4324 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4325 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4326 Known = KnownBits::umin(Known, Known2);
4327 break;
4328 }
4329 case ISD::UMAX: {
4330 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4331 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4332 Known = KnownBits::umax(Known, Known2);
4333 break;
4334 }
4335 case ISD::SMIN:
4336 case ISD::SMAX: {
4337 // If we have a clamp pattern, we know that the number of sign bits will be
4338 // the minimum of the clamp min/max range.
4339 bool IsMax = (Opcode == ISD::SMAX);
4340 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4341 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4342 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4343 CstHigh =
4344 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4345 if (CstLow && CstHigh) {
4346 if (!IsMax)
4347 std::swap(CstLow, CstHigh);
4348
4349 const APInt &ValueLow = CstLow->getAPIntValue();
4350 const APInt &ValueHigh = CstHigh->getAPIntValue();
4351 if (ValueLow.sle(ValueHigh)) {
4352 unsigned LowSignBits = ValueLow.getNumSignBits();
4353 unsigned HighSignBits = ValueHigh.getNumSignBits();
4354 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
4355 if (ValueLow.isNegative() && ValueHigh.isNegative()) {
4356 Known.One.setHighBits(MinSignBits);
4357 break;
4358 }
4359 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
4360 Known.Zero.setHighBits(MinSignBits);
4361 break;
4362 }
4363 }
4364 }
4365
4366 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4367 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4368 if (IsMax)
4369 Known = KnownBits::smax(Known, Known2);
4370 else
4371 Known = KnownBits::smin(Known, Known2);
4372
4373 // For SMAX, if CstLow is non-negative we know the result will be
4374 // non-negative and thus all sign bits are 0.
4375 // TODO: There's an equivalent of this for smin with negative constant for
4376 // known ones.
4377 if (IsMax && CstLow) {
4378 const APInt &ValueLow = CstLow->getAPIntValue();
4379 if (ValueLow.isNonNegative()) {
4380 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4381 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits()));
4382 }
4383 }
4384
4385 break;
4386 }
4387 case ISD::UINT_TO_FP: {
4388 Known.makeNonNegative();
4389 break;
4390 }
4391 case ISD::SINT_TO_FP: {
4392 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4393 if (Known2.isNonNegative())
4394 Known.makeNonNegative();
4395 else if (Known2.isNegative())
4396 Known.makeNegative();
4397 break;
4398 }
4399 case ISD::FP_TO_UINT_SAT: {
4400 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
4401 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
4403 break;
4404 }
4405 case ISD::ATOMIC_LOAD: {
4406 // If we are looking at the loaded value.
4407 if (Op.getResNo() == 0) {
4408 auto *AT = cast<AtomicSDNode>(Op);
4409 unsigned ScalarMemorySize = AT->getMemoryVT().getScalarSizeInBits();
4410 KnownBits KnownScalarMemory(ScalarMemorySize);
4411 if (const MDNode *MD = AT->getRanges())
4412 computeKnownBitsFromRangeMetadata(*MD, KnownScalarMemory);
4413
4414 switch (AT->getExtensionType()) {
4415 case ISD::ZEXTLOAD:
4416 Known = KnownScalarMemory.zext(BitWidth);
4417 break;
4418 case ISD::SEXTLOAD:
4419 Known = KnownScalarMemory.sext(BitWidth);
4420 break;
4421 case ISD::EXTLOAD:
4422 switch (TLI->getExtendForAtomicOps()) {
4423 case ISD::ZERO_EXTEND:
4424 Known = KnownScalarMemory.zext(BitWidth);
4425 break;
4426 case ISD::SIGN_EXTEND:
4427 Known = KnownScalarMemory.sext(BitWidth);
4428 break;
4429 default:
4430 Known = KnownScalarMemory.anyext(BitWidth);
4431 break;
4432 }
4433 break;
4434 case ISD::NON_EXTLOAD:
4435 Known = KnownScalarMemory;
4436 break;
4437 }
4438 assert(Known.getBitWidth() == BitWidth);
4439 }
4440 break;
4441 }
4442 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4443 if (Op.getResNo() == 1) {
4444 // The boolean result conforms to getBooleanContents.
4445 // If we know the result of a setcc has the top bits zero, use this info.
4446 // We know that we have an integer-based boolean since these operations
4447 // are only available for integer.
4448 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
4450 BitWidth > 1)
4451 Known.Zero.setBitsFrom(1);
4452 break;
4453 }
4454 [[fallthrough]];
4455 case ISD::ATOMIC_CMP_SWAP:
4456 case ISD::ATOMIC_SWAP:
4457 case ISD::ATOMIC_LOAD_ADD:
4458 case ISD::ATOMIC_LOAD_SUB:
4459 case ISD::ATOMIC_LOAD_AND:
4460 case ISD::ATOMIC_LOAD_CLR:
4461 case ISD::ATOMIC_LOAD_OR:
4462 case ISD::ATOMIC_LOAD_XOR:
4463 case ISD::ATOMIC_LOAD_NAND:
4464 case ISD::ATOMIC_LOAD_MIN:
4465 case ISD::ATOMIC_LOAD_MAX:
4466 case ISD::ATOMIC_LOAD_UMIN:
4467 case ISD::ATOMIC_LOAD_UMAX: {
4468 // If we are looking at the loaded value.
4469 if (Op.getResNo() == 0) {
4470 auto *AT = cast<AtomicSDNode>(Op);
4471 unsigned MemBits = AT->getMemoryVT().getScalarSizeInBits();
4472
4473 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4474 Known.Zero.setBitsFrom(MemBits);
4475 }
4476 break;
4477 }
4478 case ISD::FrameIndex:
4480 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
4481 Known, getMachineFunction());
4482 break;
4483
4484 default:
4485 if (Opcode < ISD::BUILTIN_OP_END)
4486 break;
4487 [[fallthrough]];
4491 // TODO: Probably okay to remove after audit; here to reduce change size
4492 // in initial enablement patch for scalable vectors
4493 if (Op.getValueType().isScalableVector())
4494 break;
4495
4496 // Allow the target to implement this method for its nodes.
4497 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
4498 break;
4499 }
4500
4501 return Known;
4502}
4503
4504/// Convert ConstantRange OverflowResult into SelectionDAG::OverflowKind.
4517
4520 // X + 0 never overflow
4521 if (isNullConstant(N1))
4522 return OFK_Never;
4523
4524 // If both operands each have at least two sign bits, the addition
4525 // cannot overflow.
4526 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4527 return OFK_Never;
4528
4529 // TODO: Add ConstantRange::signedAddMayOverflow handling.
4530 return OFK_Sometime;
4531}
4532
4535 // X + 0 never overflow
4536 if (isNullConstant(N1))
4537 return OFK_Never;
4538
4539 // mulhi + 1 never overflow
4540 KnownBits N1Known = computeKnownBits(N1);
4541 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
4542 N1Known.getMaxValue().ult(2))
4543 return OFK_Never;
4544
4545 KnownBits N0Known = computeKnownBits(N0);
4546 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1 &&
4547 N0Known.getMaxValue().ult(2))
4548 return OFK_Never;
4549
4550 // Fallback to ConstantRange::unsignedAddMayOverflow handling.
4551 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4552 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4553 return mapOverflowResult(N0Range.unsignedAddMayOverflow(N1Range));
4554}
4555
4558 // X - 0 never overflow
4559 if (isNullConstant(N1))
4560 return OFK_Never;
4561
4562 // If both operands each have at least two sign bits, the subtraction
4563 // cannot overflow.
4564 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4565 return OFK_Never;
4566
4567 KnownBits N0Known = computeKnownBits(N0);
4568 KnownBits N1Known = computeKnownBits(N1);
4569 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, true);
4570 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, true);
4571 return mapOverflowResult(N0Range.signedSubMayOverflow(N1Range));
4572}
4573
4576 // X - 0 never overflow
4577 if (isNullConstant(N1))
4578 return OFK_Never;
4579
4580 KnownBits N0Known = computeKnownBits(N0);
4581 KnownBits N1Known = computeKnownBits(N1);
4582 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4583 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4584 return mapOverflowResult(N0Range.unsignedSubMayOverflow(N1Range));
4585}
4586
4589 // X * 0 and X * 1 never overflow.
4590 if (isNullConstant(N1) || isOneConstant(N1))
4591 return OFK_Never;
4592
4593 KnownBits N0Known = computeKnownBits(N0);
4594 KnownBits N1Known = computeKnownBits(N1);
4595 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4596 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4597 return mapOverflowResult(N0Range.unsignedMulMayOverflow(N1Range));
4598}
4599
4602 // X * 0 and X * 1 never overflow.
4603 if (isNullConstant(N1) || isOneConstant(N1))
4604 return OFK_Never;
4605
4606 // Get the size of the result.
4607 unsigned BitWidth = N0.getScalarValueSizeInBits();
4608
4609 // Sum of the sign bits.
4610 unsigned SignBits = ComputeNumSignBits(N0) + ComputeNumSignBits(N1);
4611
4612 // If we have enough sign bits, then there's no overflow.
4613 if (SignBits > BitWidth + 1)
4614 return OFK_Never;
4615
4616 if (SignBits == BitWidth + 1) {
4617 // The overflow occurs when the true multiplication of the
4618 // the operands is the minimum negative number.
4619 KnownBits N0Known = computeKnownBits(N0);
4620 KnownBits N1Known = computeKnownBits(N1);
4621 // If one of the operands is non-negative, then there's no
4622 // overflow.
4623 if (N0Known.isNonNegative() || N1Known.isNonNegative())
4624 return OFK_Never;
4625 }
4626
4627 return OFK_Sometime;
4628}
4629
4631 if (Depth >= MaxRecursionDepth)
4632 return false; // Limit search depth.
4633
4634 EVT OpVT = Val.getValueType();
4635 unsigned BitWidth = OpVT.getScalarSizeInBits();
4636
4637 // Is the constant a known power of 2?
4639 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4640 }))
4641 return true;
4642
4643 // A left-shift of a constant one will have exactly one bit set because
4644 // shifting the bit off the end is undefined.
4645 if (Val.getOpcode() == ISD::SHL) {
4646 auto *C = isConstOrConstSplat(Val.getOperand(0));
4647 if (C && C->getAPIntValue() == 1)
4648 return true;
4649 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4650 isKnownNeverZero(Val, Depth);
4651 }
4652
4653 // Similarly, a logical right-shift of a constant sign-bit will have exactly
4654 // one bit set.
4655 if (Val.getOpcode() == ISD::SRL) {
4656 auto *C = isConstOrConstSplat(Val.getOperand(0));
4657 if (C && C->getAPIntValue().isSignMask())
4658 return true;
4659 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4660 isKnownNeverZero(Val, Depth);
4661 }
4662
4663 if (Val.getOpcode() == ISD::ROTL || Val.getOpcode() == ISD::ROTR)
4664 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4665
4666 // Are all operands of a build vector constant powers of two?
4667 if (Val.getOpcode() == ISD::BUILD_VECTOR)
4668 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
4669 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4670 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4671 return false;
4672 }))
4673 return true;
4674
4675 // Is the operand of a splat vector a constant power of two?
4676 if (Val.getOpcode() == ISD::SPLAT_VECTOR)
4678 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
4679 return true;
4680
4681 // vscale(power-of-two) is a power-of-two for some targets
4682 if (Val.getOpcode() == ISD::VSCALE &&
4683 getTargetLoweringInfo().isVScaleKnownToBeAPowerOfTwo() &&
4685 return true;
4686
4687 if (Val.getOpcode() == ISD::SMIN || Val.getOpcode() == ISD::SMAX ||
4688 Val.getOpcode() == ISD::UMIN || Val.getOpcode() == ISD::UMAX)
4689 return isKnownToBeAPowerOfTwo(Val.getOperand(1), Depth + 1) &&
4691
4692 if (Val.getOpcode() == ISD::SELECT || Val.getOpcode() == ISD::VSELECT)
4693 return isKnownToBeAPowerOfTwo(Val.getOperand(2), Depth + 1) &&
4695
4696 // Looking for `x & -x` pattern:
4697 // If x == 0:
4698 // x & -x -> 0
4699 // If x != 0:
4700 // x & -x -> non-zero pow2
4701 // so if we find the pattern return whether we know `x` is non-zero.
4702 SDValue X;
4703 if (sd_match(Val, m_And(m_Value(X), m_Neg(m_Deferred(X)))))
4704 return isKnownNeverZero(X, Depth);
4705
4706 if (Val.getOpcode() == ISD::ZERO_EXTEND)
4707 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4708
4709 // More could be done here, though the above checks are enough
4710 // to handle some common cases.
4711 return false;
4712}
4713
4715 if (ConstantFPSDNode *C1 = isConstOrConstSplatFP(Val, true))
4716 return C1->getValueAPF().getExactLog2Abs() >= 0;
4717
4718 if (Val.getOpcode() == ISD::UINT_TO_FP || Val.getOpcode() == ISD::SINT_TO_FP)
4719 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4720
4721 return false;
4722}
4723
4725 EVT VT = Op.getValueType();
4726
4727 // Since the number of lanes in a scalable vector is unknown at compile time,
4728 // we track one bit which is implicitly broadcast to all lanes. This means
4729 // that all lanes in a scalable vector are considered demanded.
4730 APInt DemandedElts = VT.isFixedLengthVector()
4732 : APInt(1, 1);
4733 return ComputeNumSignBits(Op, DemandedElts, Depth);
4734}
4735
4736unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
4737 unsigned Depth) const {
4738 EVT VT = Op.getValueType();
4739 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
4740 unsigned VTBits = VT.getScalarSizeInBits();
4741 unsigned NumElts = DemandedElts.getBitWidth();
4742 unsigned Tmp, Tmp2;
4743 unsigned FirstAnswer = 1;
4744
4745 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
4746 const APInt &Val = C->getAPIntValue();
4747 return Val.getNumSignBits();
4748 }
4749
4750 if (Depth >= MaxRecursionDepth)
4751 return 1; // Limit search depth.
4752
4753 if (!DemandedElts)
4754 return 1; // No demanded elts, better to assume we don't know anything.
4755
4756 unsigned Opcode = Op.getOpcode();
4757 switch (Opcode) {
4758 default: break;
4759 case ISD::AssertSext:
4760 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4761 return VTBits-Tmp+1;
4762 case ISD::AssertZext:
4763 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4764 return VTBits-Tmp;
4765 case ISD::FREEZE:
4766 if (isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedElts,
4767 /*PoisonOnly=*/false))
4768 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4769 break;
4770 case ISD::MERGE_VALUES:
4771 return ComputeNumSignBits(Op.getOperand(Op.getResNo()), DemandedElts,
4772 Depth + 1);
4773 case ISD::SPLAT_VECTOR: {
4774 // Check if the sign bits of source go down as far as the truncated value.
4775 unsigned NumSrcBits = Op.getOperand(0).getValueSizeInBits();
4776 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4777 if (NumSrcSignBits > (NumSrcBits - VTBits))
4778 return NumSrcSignBits - (NumSrcBits - VTBits);
4779 break;
4780 }
4781 case ISD::BUILD_VECTOR:
4782 assert(!VT.isScalableVector());
4783 Tmp = VTBits;
4784 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4785 if (!DemandedElts[i])
4786 continue;
4787
4788 SDValue SrcOp = Op.getOperand(i);
4789 // BUILD_VECTOR can implicitly truncate sources, we handle this specially
4790 // for constant nodes to ensure we only look at the sign bits.
4792 APInt T = C->getAPIntValue().trunc(VTBits);
4793 Tmp2 = T.getNumSignBits();
4794 } else {
4795 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
4796
4797 if (SrcOp.getValueSizeInBits() != VTBits) {
4798 assert(SrcOp.getValueSizeInBits() > VTBits &&
4799 "Expected BUILD_VECTOR implicit truncation");
4800 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
4801 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4802 }
4803 }
4804 Tmp = std::min(Tmp, Tmp2);
4805 }
4806 return Tmp;
4807
4808 case ISD::VECTOR_COMPRESS: {
4809 SDValue Vec = Op.getOperand(0);
4810 SDValue PassThru = Op.getOperand(2);
4811 Tmp = ComputeNumSignBits(PassThru, DemandedElts, Depth + 1);
4812 if (Tmp == 1)
4813 return 1;
4814 Tmp2 = ComputeNumSignBits(Vec, Depth + 1);
4815 Tmp = std::min(Tmp, Tmp2);
4816 return Tmp;
4817 }
4818
4819 case ISD::VECTOR_SHUFFLE: {
4820 // Collect the minimum number of sign bits that are shared by every vector
4821 // element referenced by the shuffle.
4822 APInt DemandedLHS, DemandedRHS;
4824 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
4825 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
4826 DemandedLHS, DemandedRHS))
4827 return 1;
4828
4829 Tmp = std::numeric_limits<unsigned>::max();
4830 if (!!DemandedLHS)
4831 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
4832 if (!!DemandedRHS) {
4833 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
4834 Tmp = std::min(Tmp, Tmp2);
4835 }
4836 // If we don't know anything, early out and try computeKnownBits fall-back.
4837 if (Tmp == 1)
4838 break;
4839 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4840 return Tmp;
4841 }
4842
4843 case ISD::BITCAST: {
4844 if (VT.isScalableVector())
4845 break;
4846 SDValue N0 = Op.getOperand(0);
4847 EVT SrcVT = N0.getValueType();
4848 unsigned SrcBits = SrcVT.getScalarSizeInBits();
4849
4850 // Ignore bitcasts from unsupported types..
4851 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
4852 break;
4853
4854 // Fast handling of 'identity' bitcasts.
4855 if (VTBits == SrcBits)
4856 return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
4857
4858 bool IsLE = getDataLayout().isLittleEndian();
4859
4860 // Bitcast 'large element' scalar/vector to 'small element' vector.
4861 if ((SrcBits % VTBits) == 0) {
4862 assert(VT.isVector() && "Expected bitcast to vector");
4863
4864 unsigned Scale = SrcBits / VTBits;
4865 APInt SrcDemandedElts =
4866 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
4867
4868 // Fast case - sign splat can be simply split across the small elements.
4869 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
4870 if (Tmp == SrcBits)
4871 return VTBits;
4872
4873 // Slow case - determine how far the sign extends into each sub-element.
4874 Tmp2 = VTBits;
4875 for (unsigned i = 0; i != NumElts; ++i)
4876 if (DemandedElts[i]) {
4877 unsigned SubOffset = i % Scale;
4878 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4879 SubOffset = SubOffset * VTBits;
4880 if (Tmp <= SubOffset)
4881 return 1;
4882 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4883 }
4884 return Tmp2;
4885 }
4886 break;
4887 }
4888
4890 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
4891 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4892 return VTBits - Tmp + 1;
4893 case ISD::SIGN_EXTEND:
4894 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
4895 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
4897 // Max of the input and what this extends.
4898 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4899 Tmp = VTBits-Tmp+1;
4900 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4901 return std::max(Tmp, Tmp2);
4903 if (VT.isScalableVector())
4904 break;
4905 SDValue Src = Op.getOperand(0);
4906 EVT SrcVT = Src.getValueType();
4907 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
4908 Tmp = VTBits - SrcVT.getScalarSizeInBits();
4909 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
4910 }
4911 case ISD::SRA:
4912 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4913 // SRA X, C -> adds C sign bits.
4914 if (std::optional<unsigned> ShAmt =
4915 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
4916 Tmp = std::min(Tmp + *ShAmt, VTBits);
4917 return Tmp;
4918 case ISD::SHL:
4919 if (std::optional<ConstantRange> ShAmtRange =
4920 getValidShiftAmountRange(Op, DemandedElts, Depth + 1)) {
4921 unsigned MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
4922 unsigned MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
4923 // Try to look through ZERO/SIGN/ANY_EXTEND. If all extended bits are
4924 // shifted out, then we can compute the number of sign bits for the
4925 // operand being extended. A future improvement could be to pass along the
4926 // "shifted left by" information in the recursive calls to
4927 // ComputeKnownSignBits. Allowing us to handle this more generically.
4928 if (ISD::isExtOpcode(Op.getOperand(0).getOpcode())) {
4929 SDValue Ext = Op.getOperand(0);
4930 EVT ExtVT = Ext.getValueType();
4931 SDValue Extendee = Ext.getOperand(0);
4932 EVT ExtendeeVT = Extendee.getValueType();
4933 unsigned SizeDifference =
4934 ExtVT.getScalarSizeInBits() - ExtendeeVT.getScalarSizeInBits();
4935 if (SizeDifference <= MinShAmt) {
4936 Tmp = SizeDifference +
4937 ComputeNumSignBits(Extendee, DemandedElts, Depth + 1);
4938 if (MaxShAmt < Tmp)
4939 return Tmp - MaxShAmt;
4940 }
4941 }
4942 // shl destroys sign bits, ensure it doesn't shift out all sign bits.
4943 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4944 if (MaxShAmt < Tmp)
4945 return Tmp - MaxShAmt;
4946 }
4947 break;
4948 case ISD::AND:
4949 case ISD::OR:
4950 case ISD::XOR: // NOT is handled here.
4951 // Logical binary ops preserve the number of sign bits at the worst.
4952 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4953 if (Tmp != 1) {
4954 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4955 FirstAnswer = std::min(Tmp, Tmp2);
4956 // We computed what we know about the sign bits as our first
4957 // answer. Now proceed to the generic code that uses
4958 // computeKnownBits, and pick whichever answer is better.
4959 }
4960 break;
4961
4962 case ISD::SELECT:
4963 case ISD::VSELECT:
4964 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4965 if (Tmp == 1) return 1; // Early out.
4966 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4967 return std::min(Tmp, Tmp2);
4968 case ISD::SELECT_CC:
4969 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4970 if (Tmp == 1) return 1; // Early out.
4971 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
4972 return std::min(Tmp, Tmp2);
4973
4974 case ISD::SMIN:
4975 case ISD::SMAX: {
4976 // If we have a clamp pattern, we know that the number of sign bits will be
4977 // the minimum of the clamp min/max range.
4978 bool IsMax = (Opcode == ISD::SMAX);
4979 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4980 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4981 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4982 CstHigh =
4983 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4984 if (CstLow && CstHigh) {
4985 if (!IsMax)
4986 std::swap(CstLow, CstHigh);
4987 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
4988 Tmp = CstLow->getAPIntValue().getNumSignBits();
4989 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4990 return std::min(Tmp, Tmp2);
4991 }
4992 }
4993
4994 // Fallback - just get the minimum number of sign bits of the operands.
4995 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4996 if (Tmp == 1)
4997 return 1; // Early out.
4998 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4999 return std::min(Tmp, Tmp2);
5000 }
5001 case ISD::UMIN:
5002 case ISD::UMAX:
5003 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5004 if (Tmp == 1)
5005 return 1; // Early out.
5006 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5007 return std::min(Tmp, Tmp2);
5008 case ISD::SSUBO_CARRY:
5009 case ISD::USUBO_CARRY:
5010 // sub_carry(x,x,c) -> 0/-1 (sext carry)
5011 if (Op.getResNo() == 0 && Op.getOperand(0) == Op.getOperand(1))
5012 return VTBits;
5013 [[fallthrough]];
5014 case ISD::SADDO:
5015 case ISD::UADDO:
5016 case ISD::SADDO_CARRY:
5017 case ISD::UADDO_CARRY:
5018 case ISD::SSUBO:
5019 case ISD::USUBO:
5020 case ISD::SMULO:
5021 case ISD::UMULO:
5022 if (Op.getResNo() != 1)
5023 break;
5024 // The boolean result conforms to getBooleanContents. Fall through.
5025 // If setcc returns 0/-1, all bits are sign bits.
5026 // We know that we have an integer-based boolean since these operations
5027 // are only available for integer.
5028 if (TLI->getBooleanContents(VT.isVector(), false) ==
5030 return VTBits;
5031 break;
5032 case ISD::SETCC:
5033 case ISD::SETCCCARRY:
5034 case ISD::STRICT_FSETCC:
5035 case ISD::STRICT_FSETCCS: {
5036 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
5037 // If setcc returns 0/-1, all bits are sign bits.
5038 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
5040 return VTBits;
5041 break;
5042 }
5043 case ISD::ROTL:
5044 case ISD::ROTR:
5045 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5046
5047 // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
5048 if (Tmp == VTBits)
5049 return VTBits;
5050
5051 if (ConstantSDNode *C =
5052 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
5053 unsigned RotAmt = C->getAPIntValue().urem(VTBits);
5054
5055 // Handle rotate right by N like a rotate left by 32-N.
5056 if (Opcode == ISD::ROTR)
5057 RotAmt = (VTBits - RotAmt) % VTBits;
5058
5059 // If we aren't rotating out all of the known-in sign bits, return the
5060 // number that are left. This handles rotl(sext(x), 1) for example.
5061 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
5062 }
5063 break;
5064 case ISD::ADD:
5065 case ISD::ADDC:
5066 // Add can have at most one carry bit. Thus we know that the output
5067 // is, at worst, one more bit than the inputs.
5068 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5069 if (Tmp == 1) return 1; // Early out.
5070
5071 // Special case decrementing a value (ADD X, -1):
5072 if (ConstantSDNode *CRHS =
5073 isConstOrConstSplat(Op.getOperand(1), DemandedElts))
5074 if (CRHS->isAllOnes()) {
5075 KnownBits Known =
5076 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
5077
5078 // If the input is known to be 0 or 1, the output is 0/-1, which is all
5079 // sign bits set.
5080 if ((Known.Zero | 1).isAllOnes())
5081 return VTBits;
5082
5083 // If we are subtracting one from a positive number, there is no carry
5084 // out of the result.
5085 if (Known.isNonNegative())
5086 return Tmp;
5087 }
5088
5089 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5090 if (Tmp2 == 1) return 1; // Early out.
5091 return std::min(Tmp, Tmp2) - 1;
5092 case ISD::SUB:
5093 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5094 if (Tmp2 == 1) return 1; // Early out.
5095
5096 // Handle NEG.
5097 if (ConstantSDNode *CLHS =
5098 isConstOrConstSplat(Op.getOperand(0), DemandedElts))
5099 if (CLHS->isZero()) {
5100 KnownBits Known =
5101 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
5102 // If the input is known to be 0 or 1, the output is 0/-1, which is all
5103 // sign bits set.
5104 if ((Known.Zero | 1).isAllOnes())
5105 return VTBits;
5106
5107 // If the input is known to be positive (the sign bit is known clear),
5108 // the output of the NEG has the same number of sign bits as the input.
5109 if (Known.isNonNegative())
5110 return Tmp2;
5111
5112 // Otherwise, we treat this like a SUB.
5113 }
5114
5115 // Sub can have at most one carry bit. Thus we know that the output
5116 // is, at worst, one more bit than the inputs.
5117 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5118 if (Tmp == 1) return 1; // Early out.
5119 return std::min(Tmp, Tmp2) - 1;
5120 case ISD::MUL: {
5121 // The output of the Mul can be at most twice the valid bits in the inputs.
5122 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5123 if (SignBitsOp0 == 1)
5124 break;
5125 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
5126 if (SignBitsOp1 == 1)
5127 break;
5128 unsigned OutValidBits =
5129 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
5130 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
5131 }
5132 case ISD::AVGCEILS:
5133 case ISD::AVGFLOORS:
5134 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5135 if (Tmp == 1)
5136 return 1; // Early out.
5137 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5138 return std::min(Tmp, Tmp2);
5139 case ISD::SREM:
5140 // The sign bit is the LHS's sign bit, except when the result of the
5141 // remainder is zero. The magnitude of the result should be less than or
5142 // equal to the magnitude of the LHS. Therefore, the result should have
5143 // at least as many sign bits as the left hand side.
5144 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5145 case ISD::TRUNCATE: {
5146 // Check if the sign bits of source go down as far as the truncated value.
5147 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
5148 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5149 if (NumSrcSignBits > (NumSrcBits - VTBits))
5150 return NumSrcSignBits - (NumSrcBits - VTBits);
5151 break;
5152 }
5153 case ISD::EXTRACT_ELEMENT: {
5154 if (VT.isScalableVector())
5155 break;
5156 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
5157 const int BitWidth = Op.getValueSizeInBits();
5158 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
5159
5160 // Get reverse index (starting from 1), Op1 value indexes elements from
5161 // little end. Sign starts at big end.
5162 const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
5163
5164 // If the sign portion ends in our element the subtraction gives correct
5165 // result. Otherwise it gives either negative or > bitwidth result
5166 return std::clamp(KnownSign - rIndex * BitWidth, 1, BitWidth);
5167 }
5169 if (VT.isScalableVector())
5170 break;
5171 // If we know the element index, split the demand between the
5172 // source vector and the inserted element, otherwise assume we need
5173 // the original demanded vector elements and the value.
5174 SDValue InVec = Op.getOperand(0);
5175 SDValue InVal = Op.getOperand(1);
5176 SDValue EltNo = Op.getOperand(2);
5177 bool DemandedVal = true;
5178 APInt DemandedVecElts = DemandedElts;
5179 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
5180 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
5181 unsigned EltIdx = CEltNo->getZExtValue();
5182 DemandedVal = !!DemandedElts[EltIdx];
5183 DemandedVecElts.clearBit(EltIdx);
5184 }
5185 Tmp = std::numeric_limits<unsigned>::max();
5186 if (DemandedVal) {
5187 // TODO - handle implicit truncation of inserted elements.
5188 if (InVal.getScalarValueSizeInBits() != VTBits)
5189 break;
5190 Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
5191 Tmp = std::min(Tmp, Tmp2);
5192 }
5193 if (!!DemandedVecElts) {
5194 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
5195 Tmp = std::min(Tmp, Tmp2);
5196 }
5197 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5198 return Tmp;
5199 }
5201 assert(!VT.isScalableVector());
5202 SDValue InVec = Op.getOperand(0);
5203 SDValue EltNo = Op.getOperand(1);
5204 EVT VecVT = InVec.getValueType();
5205 // ComputeNumSignBits not yet implemented for scalable vectors.
5206 if (VecVT.isScalableVector())
5207 break;
5208 const unsigned BitWidth = Op.getValueSizeInBits();
5209 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
5210 const unsigned NumSrcElts = VecVT.getVectorNumElements();
5211
5212 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
5213 // anything about sign bits. But if the sizes match we can derive knowledge
5214 // about sign bits from the vector operand.
5215 if (BitWidth != EltBitWidth)
5216 break;
5217
5218 // If we know the element index, just demand that vector element, else for
5219 // an unknown element index, ignore DemandedElts and demand them all.
5220 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
5221 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
5222 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
5223 DemandedSrcElts =
5224 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
5225
5226 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
5227 }
5229 // Offset the demanded elts by the subvector index.
5230 SDValue Src = Op.getOperand(0);
5231 // Bail until we can represent demanded elements for scalable vectors.
5232 if (Src.getValueType().isScalableVector())
5233 break;
5234 uint64_t Idx = Op.getConstantOperandVal(1);
5235 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5236 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
5237 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
5238 }
5239 case ISD::CONCAT_VECTORS: {
5240 if (VT.isScalableVector())
5241 break;
5242 // Determine the minimum number of sign bits across all demanded
5243 // elts of the input vectors. Early out if the result is already 1.
5244 Tmp = std::numeric_limits<unsigned>::max();
5245 EVT SubVectorVT = Op.getOperand(0).getValueType();
5246 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
5247 unsigned NumSubVectors = Op.getNumOperands();
5248 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
5249 APInt DemandedSub =
5250 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
5251 if (!DemandedSub)
5252 continue;
5253 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
5254 Tmp = std::min(Tmp, Tmp2);
5255 }
5256 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5257 return Tmp;
5258 }
5259 case ISD::INSERT_SUBVECTOR: {
5260 if (VT.isScalableVector())
5261 break;
5262 // Demand any elements from the subvector and the remainder from the src its
5263 // inserted into.
5264 SDValue Src = Op.getOperand(0);
5265 SDValue Sub = Op.getOperand(1);
5266 uint64_t Idx = Op.getConstantOperandVal(2);
5267 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
5268 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
5269 APInt DemandedSrcElts = DemandedElts;
5270 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
5271
5272 Tmp = std::numeric_limits<unsigned>::max();
5273 if (!!DemandedSubElts) {
5274 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
5275 if (Tmp == 1)
5276 return 1; // early-out
5277 }
5278 if (!!DemandedSrcElts) {
5279 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
5280 Tmp = std::min(Tmp, Tmp2);
5281 }
5282 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5283 return Tmp;
5284 }
5285 case ISD::LOAD: {
5287 if (const MDNode *Ranges = LD->getRanges()) {
5288 if (DemandedElts != 1)
5289 break;
5290
5292 if (VTBits > CR.getBitWidth()) {
5293 switch (LD->getExtensionType()) {
5294 case ISD::SEXTLOAD:
5295 CR = CR.signExtend(VTBits);
5296 break;
5297 case ISD::ZEXTLOAD:
5298 CR = CR.zeroExtend(VTBits);
5299 break;
5300 default:
5301 break;
5302 }
5303 }
5304
5305 if (VTBits != CR.getBitWidth())
5306 break;
5307 return std::min(CR.getSignedMin().getNumSignBits(),
5309 }
5310
5311 break;
5312 }
5313 case ISD::ATOMIC_CMP_SWAP:
5314 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5315 case ISD::ATOMIC_SWAP:
5316 case ISD::ATOMIC_LOAD_ADD:
5317 case ISD::ATOMIC_LOAD_SUB:
5318 case ISD::ATOMIC_LOAD_AND:
5319 case ISD::ATOMIC_LOAD_CLR:
5320 case ISD::ATOMIC_LOAD_OR:
5321 case ISD::ATOMIC_LOAD_XOR:
5322 case ISD::ATOMIC_LOAD_NAND:
5323 case ISD::ATOMIC_LOAD_MIN:
5324 case ISD::ATOMIC_LOAD_MAX:
5325 case ISD::ATOMIC_LOAD_UMIN:
5326 case ISD::ATOMIC_LOAD_UMAX:
5327 case ISD::ATOMIC_LOAD: {
5328 auto *AT = cast<AtomicSDNode>(Op);
5329 // If we are looking at the loaded value.
5330 if (Op.getResNo() == 0) {
5331 Tmp = AT->getMemoryVT().getScalarSizeInBits();
5332 if (Tmp == VTBits)
5333 return 1; // early-out
5334
5335 // For atomic_load, prefer to use the extension type.
5336 if (Op->getOpcode() == ISD::ATOMIC_LOAD) {
5337 switch (AT->getExtensionType()) {
5338 default:
5339 break;
5340 case ISD::SEXTLOAD:
5341 return VTBits - Tmp + 1;
5342 case ISD::ZEXTLOAD:
5343 return VTBits - Tmp;
5344 }
5345 }
5346
5347 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
5348 return VTBits - Tmp + 1;
5349 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
5350 return VTBits - Tmp;
5351 }
5352 break;
5353 }
5354 }
5355
5356 // If we are looking at the loaded value of the SDNode.
5357 if (Op.getResNo() == 0) {
5358 // Handle LOADX separately here. EXTLOAD case will fallthrough.
5359 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
5360 unsigned ExtType = LD->getExtensionType();
5361 switch (ExtType) {
5362 default: break;
5363 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
5364 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5365 return VTBits - Tmp + 1;
5366 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
5367 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5368 return VTBits - Tmp;
5369 case ISD::NON_EXTLOAD:
5370 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
5371 // We only need to handle vectors - computeKnownBits should handle
5372 // scalar cases.
5373 Type *CstTy = Cst->getType();
5374 if (CstTy->isVectorTy() && !VT.isScalableVector() &&
5375 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
5376 VTBits == CstTy->getScalarSizeInBits()) {
5377 Tmp = VTBits;
5378 for (unsigned i = 0; i != NumElts; ++i) {
5379 if (!DemandedElts[i])
5380 continue;
5381 if (Constant *Elt = Cst->getAggregateElement(i)) {
5382 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
5383 const APInt &Value = CInt->getValue();
5384 Tmp = std::min(Tmp, Value.getNumSignBits());
5385 continue;
5386 }
5387 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
5388 APInt Value = CFP->getValueAPF().bitcastToAPInt();
5389 Tmp = std::min(Tmp, Value.getNumSignBits());
5390 continue;
5391 }
5392 }
5393 // Unknown type. Conservatively assume no bits match sign bit.
5394 return 1;
5395 }
5396 return Tmp;
5397 }
5398 }
5399 break;
5400 }
5401 }
5402 }
5403
5404 // Allow the target to implement this method for its nodes.
5405 if (Opcode >= ISD::BUILTIN_OP_END ||
5406 Opcode == ISD::INTRINSIC_WO_CHAIN ||
5407 Opcode == ISD::INTRINSIC_W_CHAIN ||
5408 Opcode == ISD::INTRINSIC_VOID) {
5409 // TODO: This can probably be removed once target code is audited. This
5410 // is here purely to reduce patch size and review complexity.
5411 if (!VT.isScalableVector()) {
5412 unsigned NumBits =
5413 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
5414 if (NumBits > 1)
5415 FirstAnswer = std::max(FirstAnswer, NumBits);
5416 }
5417 }
5418
5419 // Finally, if we can prove that the top bits of the result are 0's or 1's,
5420 // use this information.
5421 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
5422 return std::max(FirstAnswer, Known.countMinSignBits());
5423}
5424
5426 unsigned Depth) const {
5427 unsigned SignBits = ComputeNumSignBits(Op, Depth);
5428 return Op.getScalarValueSizeInBits() - SignBits + 1;
5429}
5430
5432 const APInt &DemandedElts,
5433 unsigned Depth) const {
5434 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
5435 return Op.getScalarValueSizeInBits() - SignBits + 1;
5436}
5437
5439 unsigned Depth) const {
5440 // Early out for FREEZE.
5441 if (Op.getOpcode() == ISD::FREEZE)
5442 return true;
5443
5444 EVT VT = Op.getValueType();
5445 APInt DemandedElts = VT.isFixedLengthVector()
5447 : APInt(1, 1);
5448 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
5449}
5450
5452 const APInt &DemandedElts,
5453 bool PoisonOnly,
5454 unsigned Depth) const {
5455 unsigned Opcode = Op.getOpcode();
5456
5457 // Early out for FREEZE.
5458 if (Opcode == ISD::FREEZE)
5459 return true;
5460
5461 if (Depth >= MaxRecursionDepth)
5462 return false; // Limit search depth.
5463
5464 if (isIntOrFPConstant(Op))
5465 return true;
5466
5467 switch (Opcode) {
5468 case ISD::CONDCODE:
5469 case ISD::VALUETYPE:
5470 case ISD::FrameIndex:
5472 case ISD::CopyFromReg:
5473 return true;
5474
5475 case ISD::POISON:
5476 return false;
5477
5478 case ISD::UNDEF:
5479 return PoisonOnly;
5480
5481 case ISD::BUILD_VECTOR:
5482 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
5483 // this shouldn't affect the result.
5484 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
5485 if (!DemandedElts[i])
5486 continue;
5488 Depth + 1))
5489 return false;
5490 }
5491 return true;
5492
5494 SDValue Src = Op.getOperand(0);
5495 if (Src.getValueType().isScalableVector())
5496 break;
5497 uint64_t Idx = Op.getConstantOperandVal(1);
5498 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5499 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
5500 return isGuaranteedNotToBeUndefOrPoison(Src, DemandedSrcElts, PoisonOnly,
5501 Depth + 1);
5502 }
5503
5504 case ISD::INSERT_SUBVECTOR: {
5505 if (Op.getValueType().isScalableVector())
5506 break;
5507 SDValue Src = Op.getOperand(0);
5508 SDValue Sub = Op.getOperand(1);
5509 uint64_t Idx = Op.getConstantOperandVal(2);
5510 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
5511 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
5512 APInt DemandedSrcElts = DemandedElts;
5513 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
5514
5515 if (!!DemandedSubElts && !isGuaranteedNotToBeUndefOrPoison(
5516 Sub, DemandedSubElts, PoisonOnly, Depth + 1))
5517 return false;
5518 if (!!DemandedSrcElts && !isGuaranteedNotToBeUndefOrPoison(
5519 Src, DemandedSrcElts, PoisonOnly, Depth + 1))
5520 return false;
5521 return true;
5522 }
5523
5525 SDValue Src = Op.getOperand(0);
5526 auto *IndexC = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5527 EVT SrcVT = Src.getValueType();
5528 if (SrcVT.isFixedLengthVector() && IndexC &&
5529 IndexC->getAPIntValue().ult(SrcVT.getVectorNumElements())) {
5530 APInt DemandedSrcElts = APInt::getOneBitSet(SrcVT.getVectorNumElements(),
5531 IndexC->getZExtValue());
5532 return isGuaranteedNotToBeUndefOrPoison(Src, DemandedSrcElts, PoisonOnly,
5533 Depth + 1);
5534 }
5535 break;
5536 }
5537
5539 SDValue InVec = Op.getOperand(0);
5540 SDValue InVal = Op.getOperand(1);
5541 SDValue EltNo = Op.getOperand(2);
5542 EVT VT = InVec.getValueType();
5543 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
5544 if (IndexC && VT.isFixedLengthVector() &&
5545 IndexC->getAPIntValue().ult(VT.getVectorNumElements())) {
5546 if (DemandedElts[IndexC->getZExtValue()] &&
5548 return false;
5549 APInt InVecDemandedElts = DemandedElts;
5550 InVecDemandedElts.clearBit(IndexC->getZExtValue());
5551 if (!!InVecDemandedElts &&
5553 peekThroughInsertVectorElt(InVec, InVecDemandedElts),
5554 InVecDemandedElts, PoisonOnly, Depth + 1))
5555 return false;
5556 return true;
5557 }
5558 break;
5559 }
5560
5562 // Check upper (known undef) elements.
5563 if (DemandedElts.ugt(1) && !PoisonOnly)
5564 return false;
5565 // Check element zero.
5566 if (DemandedElts[0] && !isGuaranteedNotToBeUndefOrPoison(
5567 Op.getOperand(0), PoisonOnly, Depth + 1))
5568 return false;
5569 return true;
5570
5571 case ISD::SPLAT_VECTOR:
5572 return isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), PoisonOnly,
5573 Depth + 1);
5574
5575 case ISD::VECTOR_SHUFFLE: {
5576 APInt DemandedLHS, DemandedRHS;
5577 auto *SVN = cast<ShuffleVectorSDNode>(Op);
5578 if (!getShuffleDemandedElts(DemandedElts.getBitWidth(), SVN->getMask(),
5579 DemandedElts, DemandedLHS, DemandedRHS,
5580 /*AllowUndefElts=*/false))
5581 return false;
5582 if (!DemandedLHS.isZero() &&
5583 !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedLHS,
5584 PoisonOnly, Depth + 1))
5585 return false;
5586 if (!DemandedRHS.isZero() &&
5587 !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(1), DemandedRHS,
5588 PoisonOnly, Depth + 1))
5589 return false;
5590 return true;
5591 }
5592
5593 case ISD::SHL:
5594 case ISD::SRL:
5595 case ISD::SRA:
5596 // Shift amount operand is checked by canCreateUndefOrPoison. So it is
5597 // enough to check operand 0 if Op can't create undef/poison.
5598 return !canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly,
5599 /*ConsiderFlags*/ true, Depth) &&
5600 isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedElts,
5601 PoisonOnly, Depth + 1);
5602
5603 case ISD::BSWAP:
5604 case ISD::CTPOP:
5605 case ISD::BITREVERSE:
5606 case ISD::AND:
5607 case ISD::OR:
5608 case ISD::XOR:
5609 case ISD::ADD:
5610 case ISD::SUB:
5611 case ISD::MUL:
5612 case ISD::SADDSAT:
5613 case ISD::UADDSAT:
5614 case ISD::SSUBSAT:
5615 case ISD::USUBSAT:
5616 case ISD::SSHLSAT:
5617 case ISD::USHLSAT:
5618 case ISD::SMIN:
5619 case ISD::SMAX:
5620 case ISD::UMIN:
5621 case ISD::UMAX:
5622 case ISD::ZERO_EXTEND:
5623 case ISD::SIGN_EXTEND:
5624 case ISD::ANY_EXTEND:
5625 case ISD::TRUNCATE:
5626 case ISD::VSELECT: {
5627 // If Op can't create undef/poison and none of its operands are undef/poison
5628 // then Op is never undef/poison. A difference from the more common check
5629 // below, outside the switch, is that we handle elementwise operations for
5630 // which the DemandedElts mask is valid for all operands here.
5631 return !canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly,
5632 /*ConsiderFlags*/ true, Depth) &&
5633 all_of(Op->ops(), [&](SDValue V) {
5634 return isGuaranteedNotToBeUndefOrPoison(V, DemandedElts,
5635 PoisonOnly, Depth + 1);
5636 });
5637 }
5638
5639 // TODO: Search for noundef attributes from library functions.
5640
5641 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
5642
5643 default:
5644 // Allow the target to implement this method for its nodes.
5645 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5646 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5647 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
5648 Op, DemandedElts, *this, PoisonOnly, Depth);
5649 break;
5650 }
5651
5652 // If Op can't create undef/poison and none of its operands are undef/poison
5653 // then Op is never undef/poison.
5654 // NOTE: TargetNodes can handle this in themselves in
5655 // isGuaranteedNotToBeUndefOrPoisonForTargetNode or let
5656 // TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode handle it.
5657 return !canCreateUndefOrPoison(Op, PoisonOnly, /*ConsiderFlags*/ true,
5658 Depth) &&
5659 all_of(Op->ops(), [&](SDValue V) {
5660 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
5661 });
5662}
5663
5665 bool ConsiderFlags,
5666 unsigned Depth) const {
5667 EVT VT = Op.getValueType();
5668 APInt DemandedElts = VT.isFixedLengthVector()
5670 : APInt(1, 1);
5671 return canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly, ConsiderFlags,
5672 Depth);
5673}
5674
5676 bool PoisonOnly, bool ConsiderFlags,
5677 unsigned Depth) const {
5678 if (ConsiderFlags && Op->hasPoisonGeneratingFlags())
5679 return true;
5680
5681 unsigned Opcode = Op.getOpcode();
5682 switch (Opcode) {
5683 case ISD::AssertSext:
5684 case ISD::AssertZext:
5685 case ISD::AssertAlign:
5687 // Assertion nodes can create poison if the assertion fails.
5688 return true;
5689
5690 case ISD::FREEZE:
5694 case ISD::SADDSAT:
5695 case ISD::UADDSAT:
5696 case ISD::SSUBSAT:
5697 case ISD::USUBSAT:
5698 case ISD::MULHU:
5699 case ISD::MULHS:
5700 case ISD::AVGFLOORS:
5701 case ISD::AVGFLOORU:
5702 case ISD::AVGCEILS:
5703 case ISD::AVGCEILU:
5704 case ISD::ABDU:
5705 case ISD::ABDS:
5706 case ISD::SMIN:
5707 case ISD::SMAX:
5708 case ISD::SCMP:
5709 case ISD::UMIN:
5710 case ISD::UMAX:
5711 case ISD::UCMP:
5712 case ISD::AND:
5713 case ISD::XOR:
5714 case ISD::ROTL:
5715 case ISD::ROTR:
5716 case ISD::FSHL:
5717 case ISD::FSHR:
5718 case ISD::BSWAP:
5719 case ISD::CTTZ:
5720 case ISD::CTLZ:
5721 case ISD::CTPOP:
5722 case ISD::BITREVERSE:
5723 case ISD::PARITY:
5724 case ISD::SIGN_EXTEND:
5725 case ISD::TRUNCATE:
5729 case ISD::BITCAST:
5730 case ISD::BUILD_VECTOR:
5731 case ISD::BUILD_PAIR:
5732 case ISD::SPLAT_VECTOR:
5733 case ISD::FABS:
5734 return false;
5735
5736 case ISD::ABS:
5737 // ISD::ABS defines abs(INT_MIN) -> INT_MIN and never generates poison.
5738 // Different to Intrinsic::abs.
5739 return false;
5740
5741 case ISD::ADDC:
5742 case ISD::SUBC:
5743 case ISD::ADDE:
5744 case ISD::SUBE:
5745 case ISD::SADDO:
5746 case ISD::SSUBO:
5747 case ISD::SMULO:
5748 case ISD::SADDO_CARRY:
5749 case ISD::SSUBO_CARRY:
5750 case ISD::UADDO:
5751 case ISD::USUBO:
5752 case ISD::UMULO:
5753 case ISD::UADDO_CARRY:
5754 case ISD::USUBO_CARRY:
5755 // No poison on result or overflow flags.
5756 return false;
5757
5758 case ISD::SELECT_CC:
5759 case ISD::SETCC: {
5760 // Integer setcc cannot create undef or poison.
5761 if (Op.getOperand(0).getValueType().isInteger())
5762 return false;
5763
5764 // FP compares are more complicated. They can create poison for nan/infinity
5765 // based on options and flags. The options and flags also cause special
5766 // nonan condition codes to be used. Those condition codes may be preserved
5767 // even if the nonan flag is dropped somewhere.
5768 unsigned CCOp = Opcode == ISD::SETCC ? 2 : 4;
5769 ISD::CondCode CCCode = cast<CondCodeSDNode>(Op.getOperand(CCOp))->get();
5770 return (unsigned)CCCode & 0x10U;
5771 }
5772
5773 case ISD::OR:
5774 case ISD::ZERO_EXTEND:
5775 case ISD::SELECT:
5776 case ISD::VSELECT:
5777 case ISD::ADD:
5778 case ISD::SUB:
5779 case ISD::MUL:
5780 case ISD::FNEG:
5781 case ISD::FADD:
5782 case ISD::FSUB:
5783 case ISD::FMUL:
5784 case ISD::FDIV:
5785 case ISD::FREM:
5786 case ISD::FCOPYSIGN:
5787 case ISD::FMA:
5788 case ISD::FMAD:
5789 case ISD::FMULADD:
5790 case ISD::FP_EXTEND:
5793 // No poison except from flags (which is handled above)
5794 return false;
5795
5796 case ISD::SHL:
5797 case ISD::SRL:
5798 case ISD::SRA:
5799 // If the max shift amount isn't in range, then the shift can
5800 // create poison.
5801 return !getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1);
5802
5805 // If the amount is zero then the result will be poison.
5806 // TODO: Add isKnownNeverZero DemandedElts handling.
5807 return !isKnownNeverZero(Op.getOperand(0), Depth + 1);
5808
5810 // Check if we demand any upper (undef) elements.
5811 return !PoisonOnly && DemandedElts.ugt(1);
5812
5815 // Ensure that the element index is in bounds.
5816 EVT VecVT = Op.getOperand(0).getValueType();
5817 SDValue Idx = Op.getOperand(Opcode == ISD::INSERT_VECTOR_ELT ? 2 : 1);
5818 KnownBits KnownIdx = computeKnownBits(Idx, Depth + 1);
5819 return KnownIdx.getMaxValue().uge(VecVT.getVectorMinNumElements());
5820 }
5821
5822 case ISD::VECTOR_SHUFFLE: {
5823 // Check for any demanded shuffle element that is undef.
5824 auto *SVN = cast<ShuffleVectorSDNode>(Op);
5825 for (auto [Idx, Elt] : enumerate(SVN->getMask()))
5826 if (Elt < 0 && DemandedElts[Idx])
5827 return true;
5828 return false;
5829 }
5830
5831 default:
5832 // Allow the target to implement this method for its nodes.
5833 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5834 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5835 return TLI->canCreateUndefOrPoisonForTargetNode(
5836 Op, DemandedElts, *this, PoisonOnly, ConsiderFlags, Depth);
5837 break;
5838 }
5839
5840 // Be conservative and return true.
5841 return true;
5842}
5843
5844bool SelectionDAG::isADDLike(SDValue Op, bool NoWrap) const {
5845 unsigned Opcode = Op.getOpcode();
5846 if (Opcode == ISD::OR)
5847 return Op->getFlags().hasDisjoint() ||
5848 haveNoCommonBitsSet(Op.getOperand(0), Op.getOperand(1));
5849 if (Opcode == ISD::XOR)
5850 return !NoWrap && isMinSignedConstant(Op.getOperand(1));
5851 return false;
5852}
5853
5855 return Op.getNumOperands() == 2 && isa<ConstantSDNode>(Op.getOperand(1)) &&
5856 (Op.isAnyAdd() || isADDLike(Op));
5857}
5858
5860 unsigned Depth) const {
5861 EVT VT = Op.getValueType();
5862
5863 // Since the number of lanes in a scalable vector is unknown at compile time,
5864 // we track one bit which is implicitly broadcast to all lanes. This means
5865 // that all lanes in a scalable vector are considered demanded.
5866 APInt DemandedElts = VT.isFixedLengthVector()
5868 : APInt(1, 1);
5869
5870 return isKnownNeverNaN(Op, DemandedElts, SNaN, Depth);
5871}
5872
5874 bool SNaN, unsigned Depth) const {
5875 assert(!DemandedElts.isZero() && "No demanded elements");
5876
5877 // If we're told that NaNs won't happen, assume they won't.
5878 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
5879 return true;
5880
5881 if (Depth >= MaxRecursionDepth)
5882 return false; // Limit search depth.
5883
5884 // If the value is a constant, we can obviously see if it is a NaN or not.
5886 return !C->getValueAPF().isNaN() ||
5887 (SNaN && !C->getValueAPF().isSignaling());
5888 }
5889
5890 unsigned Opcode = Op.getOpcode();
5891 switch (Opcode) {
5892 case ISD::FADD:
5893 case ISD::FSUB:
5894 case ISD::FMUL:
5895 case ISD::FDIV:
5896 case ISD::FREM:
5897 case ISD::FSIN:
5898 case ISD::FCOS:
5899 case ISD::FTAN:
5900 case ISD::FASIN:
5901 case ISD::FACOS:
5902 case ISD::FATAN:
5903 case ISD::FATAN2:
5904 case ISD::FSINH:
5905 case ISD::FCOSH:
5906 case ISD::FTANH:
5907 case ISD::FMA:
5908 case ISD::FMULADD:
5909 case ISD::FMAD: {
5910 if (SNaN)
5911 return true;
5912 // TODO: Need isKnownNeverInfinity
5913 return false;
5914 }
5915 case ISD::FCANONICALIZE:
5916 case ISD::FEXP:
5917 case ISD::FEXP2:
5918 case ISD::FEXP10:
5919 case ISD::FTRUNC:
5920 case ISD::FFLOOR:
5921 case ISD::FCEIL:
5922 case ISD::FROUND:
5923 case ISD::FROUNDEVEN:
5924 case ISD::LROUND:
5925 case ISD::LLROUND:
5926 case ISD::FRINT:
5927 case ISD::LRINT:
5928 case ISD::LLRINT:
5929 case ISD::FNEARBYINT:
5930 case ISD::FLDEXP: {
5931 if (SNaN)
5932 return true;
5933 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5934 }
5935 case ISD::FABS:
5936 case ISD::FNEG:
5937 case ISD::FCOPYSIGN: {
5938 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5939 }
5940 case ISD::SELECT:
5941 return isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1) &&
5942 isKnownNeverNaN(Op.getOperand(2), DemandedElts, SNaN, Depth + 1);
5943 case ISD::FP_EXTEND:
5944 case ISD::FP_ROUND: {
5945 if (SNaN)
5946 return true;
5947 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5948 }
5949 case ISD::SINT_TO_FP:
5950 case ISD::UINT_TO_FP:
5951 return true;
5952 case ISD::FSQRT: // Need is known positive
5953 case ISD::FLOG:
5954 case ISD::FLOG2:
5955 case ISD::FLOG10:
5956 case ISD::FPOWI:
5957 case ISD::FPOW: {
5958 if (SNaN)
5959 return true;
5960 // TODO: Refine on operand
5961 return false;
5962 }
5963 case ISD::FMINNUM:
5964 case ISD::FMAXNUM:
5965 case ISD::FMINIMUMNUM:
5966 case ISD::FMAXIMUMNUM: {
5967 // Only one needs to be known not-nan, since it will be returned if the
5968 // other ends up being one.
5969 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1) ||
5970 isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1);
5971 }
5972 case ISD::FMINNUM_IEEE:
5973 case ISD::FMAXNUM_IEEE: {
5974 if (SNaN)
5975 return true;
5976 // This can return a NaN if either operand is an sNaN, or if both operands
5977 // are NaN.
5978 return (isKnownNeverNaN(Op.getOperand(0), DemandedElts, false, Depth + 1) &&
5979 isKnownNeverSNaN(Op.getOperand(1), DemandedElts, Depth + 1)) ||
5980 (isKnownNeverNaN(Op.getOperand(1), DemandedElts, false, Depth + 1) &&
5981 isKnownNeverSNaN(Op.getOperand(0), DemandedElts, Depth + 1));
5982 }
5983 case ISD::FMINIMUM:
5984 case ISD::FMAXIMUM: {
5985 // TODO: Does this quiet or return the origina NaN as-is?
5986 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1) &&
5987 isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1);
5988 }
5990 SDValue Src = Op.getOperand(0);
5991 auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5992 EVT SrcVT = Src.getValueType();
5993 if (SrcVT.isFixedLengthVector() && Idx &&
5994 Idx->getAPIntValue().ult(SrcVT.getVectorNumElements())) {
5995 APInt DemandedSrcElts = APInt::getOneBitSet(SrcVT.getVectorNumElements(),
5996 Idx->getZExtValue());
5997 return isKnownNeverNaN(Src, DemandedSrcElts, SNaN, Depth + 1);
5998 }
5999 return isKnownNeverNaN(Src, SNaN, Depth + 1);
6000 }
6002 SDValue Src = Op.getOperand(0);
6003 if (Src.getValueType().isFixedLengthVector()) {
6004 unsigned Idx = Op.getConstantOperandVal(1);
6005 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
6006 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
6007 return isKnownNeverNaN(Src, DemandedSrcElts, SNaN, Depth + 1);
6008 }
6009 return isKnownNeverNaN(Src, SNaN, Depth + 1);
6010 }
6011 case ISD::INSERT_SUBVECTOR: {
6012 SDValue BaseVector = Op.getOperand(0);
6013 SDValue SubVector = Op.getOperand(1);
6014 EVT BaseVectorVT = BaseVector.getValueType();
6015 if (BaseVectorVT.isFixedLengthVector()) {
6016 unsigned Idx = Op.getConstantOperandVal(2);
6017 unsigned NumBaseElts = BaseVectorVT.getVectorNumElements();
6018 unsigned NumSubElts = SubVector.getValueType().getVectorNumElements();
6019
6020 // Clear/Extract the bits at the position where the subvector will be
6021 // inserted.
6022 APInt DemandedMask =
6023 APInt::getBitsSet(NumBaseElts, Idx, Idx + NumSubElts);
6024 APInt DemandedSrcElts = DemandedElts & ~DemandedMask;
6025 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
6026
6027 bool NeverNaN = true;
6028 if (!DemandedSrcElts.isZero())
6029 NeverNaN &=
6030 isKnownNeverNaN(BaseVector, DemandedSrcElts, SNaN, Depth + 1);
6031 if (NeverNaN && !DemandedSubElts.isZero())
6032 NeverNaN &=
6033 isKnownNeverNaN(SubVector, DemandedSubElts, SNaN, Depth + 1);
6034 return NeverNaN;
6035 }
6036 return isKnownNeverNaN(BaseVector, SNaN, Depth + 1) &&
6037 isKnownNeverNaN(SubVector, SNaN, Depth + 1);
6038 }
6039 case ISD::BUILD_VECTOR: {
6040 unsigned NumElts = Op.getNumOperands();
6041 for (unsigned I = 0; I != NumElts; ++I)
6042 if (DemandedElts[I] &&
6043 !isKnownNeverNaN(Op.getOperand(I), SNaN, Depth + 1))
6044 return false;
6045 return true;
6046 }
6047 case ISD::AssertNoFPClass: {
6048 FPClassTest NoFPClass =
6049 static_cast<FPClassTest>(Op.getConstantOperandVal(1));
6050 if ((NoFPClass & fcNan) == fcNan)
6051 return true;
6052 if (SNaN && (NoFPClass & fcSNan) == fcSNan)
6053 return true;
6054 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
6055 }
6056 default:
6057 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
6058 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) {
6059 return TLI->isKnownNeverNaNForTargetNode(Op, DemandedElts, *this, SNaN,
6060 Depth);
6061 }
6062
6063 return false;
6064 }
6065}
6066
6068 assert(Op.getValueType().isFloatingPoint() &&
6069 "Floating point type expected");
6070
6071 // If the value is a constant, we can obviously see if it is a zero or not.
6073 Op, [](ConstantFPSDNode *C) { return !C->isZero(); });
6074}
6075
6077 if (Depth >= MaxRecursionDepth)
6078 return false; // Limit search depth.
6079
6080 assert(!Op.getValueType().isFloatingPoint() &&
6081 "Floating point types unsupported - use isKnownNeverZeroFloat");
6082
6083 // If the value is a constant, we can obviously see if it is a zero or not.
6085 [](ConstantSDNode *C) { return !C->isZero(); }))
6086 return true;
6087
6088 // TODO: Recognize more cases here. Most of the cases are also incomplete to
6089 // some degree.
6090 switch (Op.getOpcode()) {
6091 default:
6092 break;
6093
6094 case ISD::OR:
6095 return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6096 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6097
6098 case ISD::VSELECT:
6099 case ISD::SELECT:
6100 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6101 isKnownNeverZero(Op.getOperand(2), Depth + 1);
6102
6103 case ISD::SHL: {
6104 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
6105 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6106 KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
6107 // 1 << X is never zero.
6108 if (ValKnown.One[0])
6109 return true;
6110 // If max shift cnt of known ones is non-zero, result is non-zero.
6111 APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
6112 if (MaxCnt.ult(ValKnown.getBitWidth()) &&
6113 !ValKnown.One.shl(MaxCnt).isZero())
6114 return true;
6115 break;
6116 }
6117 case ISD::UADDSAT:
6118 case ISD::UMAX:
6119 return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6120 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6121
6122 // For smin/smax: If either operand is known negative/positive
6123 // respectively we don't need the other to be known at all.
6124 case ISD::SMAX: {
6125 KnownBits Op1 = computeKnownBits(Op.getOperand(1), Depth + 1);
6126 if (Op1.isStrictlyPositive())
6127 return true;
6128
6129 KnownBits Op0 = computeKnownBits(Op.getOperand(0), Depth + 1);
6130 if (Op0.isStrictlyPositive())
6131 return true;
6132
6133 if (Op1.isNonZero() && Op0.isNonZero())
6134 return true;
6135
6136 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6137 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6138 }
6139 case ISD::SMIN: {
6140 KnownBits Op1 = computeKnownBits(Op.getOperand(1), Depth + 1);
6141 if (Op1.isNegative())
6142 return true;
6143
6144 KnownBits Op0 = computeKnownBits(Op.getOperand(0), Depth + 1);
6145 if (Op0.isNegative())
6146 return true;
6147
6148 if (Op1.isNonZero() && Op0.isNonZero())
6149 return true;
6150
6151 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6152 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6153 }
6154 case ISD::UMIN:
6155 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6156 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6157
6158 case ISD::ROTL:
6159 case ISD::ROTR:
6160 case ISD::BITREVERSE:
6161 case ISD::BSWAP:
6162 case ISD::CTPOP:
6163 case ISD::ABS:
6164 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6165
6166 case ISD::SRA:
6167 case ISD::SRL: {
6168 if (Op->getFlags().hasExact())
6169 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6170 KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
6171 if (ValKnown.isNegative())
6172 return true;
6173 // If max shift cnt of known ones is non-zero, result is non-zero.
6174 APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
6175 if (MaxCnt.ult(ValKnown.getBitWidth()) &&
6176 !ValKnown.One.lshr(MaxCnt).isZero())
6177 return true;
6178 break;
6179 }
6180 case ISD::UDIV:
6181 case ISD::SDIV:
6182 // div exact can only produce a zero if the dividend is zero.
6183 // TODO: For udiv this is also true if Op1 u<= Op0
6184 if (Op->getFlags().hasExact())
6185 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6186 break;
6187
6188 case ISD::ADD:
6189 if (Op->getFlags().hasNoUnsignedWrap())
6190 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6191 isKnownNeverZero(Op.getOperand(0), Depth + 1))
6192 return true;
6193 // TODO: There are a lot more cases we can prove for add.
6194 break;
6195
6196 case ISD::SUB: {
6197 if (isNullConstant(Op.getOperand(0)))
6198 return isKnownNeverZero(Op.getOperand(1), Depth + 1);
6199
6200 std::optional<bool> ne =
6201 KnownBits::ne(computeKnownBits(Op.getOperand(0), Depth + 1),
6202 computeKnownBits(Op.getOperand(1), Depth + 1));
6203 return ne && *ne;
6204 }
6205
6206 case ISD::MUL:
6207 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
6208 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6209 isKnownNeverZero(Op.getOperand(0), Depth + 1))
6210 return true;
6211 break;
6212
6213 case ISD::ZERO_EXTEND:
6214 case ISD::SIGN_EXTEND:
6215 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6216 case ISD::VSCALE: {
6218 const APInt &Multiplier = Op.getConstantOperandAPInt(0);
6219 ConstantRange CR =
6220 getVScaleRange(&F, Op.getScalarValueSizeInBits()).multiply(Multiplier);
6221 if (!CR.contains(APInt(CR.getBitWidth(), 0)))
6222 return true;
6223 break;
6224 }
6225 }
6226
6228}
6229
6231 if (ConstantFPSDNode *C1 = isConstOrConstSplatFP(Op, true))
6232 return !C1->isNegative();
6233
6234 return Op.getOpcode() == ISD::FABS;
6235}
6236
6238 // Check the obvious case.
6239 if (A == B) return true;
6240
6241 // For negative and positive zero.
6244 if (CA->isZero() && CB->isZero()) return true;
6245
6246 // Otherwise they may not be equal.
6247 return false;
6248}
6249
6250// Only bits set in Mask must be negated, other bits may be arbitrary.
6252 if (isBitwiseNot(V, AllowUndefs))
6253 return V.getOperand(0);
6254
6255 // Handle any_extend (not (truncate X)) pattern, where Mask only sets
6256 // bits in the non-extended part.
6257 ConstantSDNode *MaskC = isConstOrConstSplat(Mask);
6258 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND)
6259 return SDValue();
6260 SDValue ExtArg = V.getOperand(0);
6261 if (ExtArg.getScalarValueSizeInBits() >=
6262 MaskC->getAPIntValue().getActiveBits() &&
6263 isBitwiseNot(ExtArg, AllowUndefs) &&
6264 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE &&
6265 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType())
6266 return ExtArg.getOperand(0).getOperand(0);
6267 return SDValue();
6268}
6269
6271 // Match masked merge pattern (X & ~M) op (Y & M)
6272 // Including degenerate case (X & ~M) op M
6273 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask,
6274 SDValue Other) {
6275 if (SDValue NotOperand =
6276 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) {
6277 if (NotOperand->getOpcode() == ISD::ZERO_EXTEND ||
6278 NotOperand->getOpcode() == ISD::TRUNCATE)
6279 NotOperand = NotOperand->getOperand(0);
6280
6281 if (Other == NotOperand)
6282 return true;
6283 if (Other->getOpcode() == ISD::AND)
6284 return NotOperand == Other->getOperand(0) ||
6285 NotOperand == Other->getOperand(1);
6286 }
6287 return false;
6288 };
6289
6290 if (A->getOpcode() == ISD::ZERO_EXTEND || A->getOpcode() == ISD::TRUNCATE)
6291 A = A->getOperand(0);
6292
6293 if (B->getOpcode() == ISD::ZERO_EXTEND || B->getOpcode() == ISD::TRUNCATE)
6294 B = B->getOperand(0);
6295
6296 if (A->getOpcode() == ISD::AND)
6297 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) ||
6298 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B);
6299 return false;
6300}
6301
6302// FIXME: unify with llvm::haveNoCommonBitsSet.
6304 assert(A.getValueType() == B.getValueType() &&
6305 "Values must have the same type");
6308 return true;
6311}
6312
6313static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
6314 SelectionDAG &DAG) {
6315 if (cast<ConstantSDNode>(Step)->isZero())
6316 return DAG.getConstant(0, DL, VT);
6317
6318 return SDValue();
6319}
6320
6323 SelectionDAG &DAG) {
6324 int NumOps = Ops.size();
6325 assert(NumOps != 0 && "Can't build an empty vector!");
6326 assert(!VT.isScalableVector() &&
6327 "BUILD_VECTOR cannot be used with scalable types");
6328 assert(VT.getVectorNumElements() == (unsigned)NumOps &&
6329 "Incorrect element count in BUILD_VECTOR!");
6330
6331 // BUILD_VECTOR of UNDEFs is UNDEF.
6332 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
6333 return DAG.getUNDEF(VT);
6334
6335 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
6336 SDValue IdentitySrc;
6337 bool IsIdentity = true;
6338 for (int i = 0; i != NumOps; ++i) {
6340 Ops[i].getOperand(0).getValueType() != VT ||
6341 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
6342 !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
6343 Ops[i].getConstantOperandAPInt(1) != i) {
6344 IsIdentity = false;
6345 break;
6346 }
6347 IdentitySrc = Ops[i].getOperand(0);
6348 }
6349 if (IsIdentity)
6350 return IdentitySrc;
6351
6352 return SDValue();
6353}
6354
6355/// Try to simplify vector concatenation to an input value, undef, or build
6356/// vector.
6359 SelectionDAG &DAG) {
6360 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
6362 [Ops](SDValue Op) {
6363 return Ops[0].getValueType() == Op.getValueType();
6364 }) &&
6365 "Concatenation of vectors with inconsistent value types!");
6366 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
6367 VT.getVectorElementCount() &&
6368 "Incorrect element count in vector concatenation!");
6369
6370 if (Ops.size() == 1)
6371 return Ops[0];
6372
6373 // Concat of UNDEFs is UNDEF.
6374 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
6375 return DAG.getUNDEF(VT);
6376
6377 // Scan the operands and look for extract operations from a single source
6378 // that correspond to insertion at the same location via this concatenation:
6379 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
6380 SDValue IdentitySrc;
6381 bool IsIdentity = true;
6382 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
6383 SDValue Op = Ops[i];
6384 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
6385 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
6386 Op.getOperand(0).getValueType() != VT ||
6387 (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
6388 Op.getConstantOperandVal(1) != IdentityIndex) {
6389 IsIdentity = false;
6390 break;
6391 }
6392 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
6393 "Unexpected identity source vector for concat of extracts");
6394 IdentitySrc = Op.getOperand(0);
6395 }
6396 if (IsIdentity) {
6397 assert(IdentitySrc && "Failed to set source vector of extracts");
6398 return IdentitySrc;
6399 }
6400
6401 // The code below this point is only designed to work for fixed width
6402 // vectors, so we bail out for now.
6403 if (VT.isScalableVector())
6404 return SDValue();
6405
6406 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
6407 // simplified to one big BUILD_VECTOR.
6408 // FIXME: Add support for SCALAR_TO_VECTOR as well.
6409 EVT SVT = VT.getScalarType();
6411 for (SDValue Op : Ops) {
6412 EVT OpVT = Op.getValueType();
6413 if (Op.isUndef())
6414 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
6415 else if (Op.getOpcode() == ISD::BUILD_VECTOR)
6416 Elts.append(Op->op_begin(), Op->op_end());
6417 else
6418 return SDValue();
6419 }
6420
6421 // BUILD_VECTOR requires all inputs to be of the same type, find the
6422 // maximum type and extend them all.
6423 for (SDValue Op : Elts)
6424 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
6425
6426 if (SVT.bitsGT(VT.getScalarType())) {
6427 for (SDValue &Op : Elts) {
6428 if (Op.isUndef())
6429 Op = DAG.getUNDEF(SVT);
6430 else
6431 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
6432 ? DAG.getZExtOrTrunc(Op, DL, SVT)
6433 : DAG.getSExtOrTrunc(Op, DL, SVT);
6434 }
6435 }
6436
6437 SDValue V = DAG.getBuildVector(VT, DL, Elts);
6438 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
6439 return V;
6440}
6441
6442/// Gets or creates the specified node.
6443SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
6444 SDVTList VTs = getVTList(VT);
6446 AddNodeIDNode(ID, Opcode, VTs, {});
6447 void *IP = nullptr;
6448 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6449 return SDValue(E, 0);
6450
6451 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6452 CSEMap.InsertNode(N, IP);
6453
6454 InsertNode(N);
6455 SDValue V = SDValue(N, 0);
6456 NewSDValueDbgMsg(V, "Creating new node: ", this);
6457 return V;
6458}
6459
6460SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6461 SDValue N1) {
6462 SDNodeFlags Flags;
6463 if (Inserter)
6464 Flags = Inserter->getFlags();
6465 return getNode(Opcode, DL, VT, N1, Flags);
6466}
6467
6468SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6469 SDValue N1, const SDNodeFlags Flags) {
6470 assert(N1.getOpcode() != ISD::DELETED_NODE && "Operand is DELETED_NODE!");
6471
6472 // Constant fold unary operations with a vector integer or float operand.
6473 switch (Opcode) {
6474 default:
6475 // FIXME: Entirely reasonable to perform folding of other unary
6476 // operations here as the need arises.
6477 break;
6478 case ISD::FNEG:
6479 case ISD::FABS:
6480 case ISD::FCEIL:
6481 case ISD::FTRUNC:
6482 case ISD::FFLOOR:
6483 case ISD::FP_EXTEND:
6484 case ISD::FP_TO_SINT:
6485 case ISD::FP_TO_UINT:
6486 case ISD::FP_TO_FP16:
6487 case ISD::FP_TO_BF16:
6488 case ISD::TRUNCATE:
6489 case ISD::ANY_EXTEND:
6490 case ISD::ZERO_EXTEND:
6491 case ISD::SIGN_EXTEND:
6492 case ISD::UINT_TO_FP:
6493 case ISD::SINT_TO_FP:
6494 case ISD::FP16_TO_FP:
6495 case ISD::BF16_TO_FP:
6496 case ISD::BITCAST:
6497 case ISD::ABS:
6498 case ISD::BITREVERSE:
6499 case ISD::BSWAP:
6500 case ISD::CTLZ:
6502 case ISD::CTTZ:
6504 case ISD::CTPOP:
6505 case ISD::STEP_VECTOR: {
6506 SDValue Ops = {N1};
6507 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
6508 return Fold;
6509 }
6510 }
6511
6512 unsigned OpOpcode = N1.getNode()->getOpcode();
6513 switch (Opcode) {
6514 case ISD::STEP_VECTOR:
6515 assert(VT.isScalableVector() &&
6516 "STEP_VECTOR can only be used with scalable types");
6517 assert(OpOpcode == ISD::TargetConstant &&
6518 VT.getVectorElementType() == N1.getValueType() &&
6519 "Unexpected step operand");
6520 break;
6521 case ISD::FREEZE:
6522 assert(VT == N1.getValueType() && "Unexpected VT!");
6523 if (isGuaranteedNotToBeUndefOrPoison(N1, /*PoisonOnly=*/false))
6524 return N1;
6525 break;
6526 case ISD::TokenFactor:
6527 case ISD::MERGE_VALUES:
6529 return N1; // Factor, merge or concat of one node? No need.
6530 case ISD::BUILD_VECTOR: {
6531 // Attempt to simplify BUILD_VECTOR.
6532 SDValue Ops[] = {N1};
6533 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6534 return V;
6535 break;
6536 }
6537 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
6538 case ISD::FP_EXTEND:
6540 "Invalid FP cast!");
6541 if (N1.getValueType() == VT) return N1; // noop conversion.
6542 assert((!VT.isVector() || VT.getVectorElementCount() ==
6544 "Vector element count mismatch!");
6545 assert(N1.getValueType().bitsLT(VT) && "Invalid fpext node, dst < src!");
6546 if (N1.isUndef())
6547 return getUNDEF(VT);
6548 break;
6549 case ISD::FP_TO_SINT:
6550 case ISD::FP_TO_UINT:
6551 if (N1.isUndef())
6552 return getUNDEF(VT);
6553 break;
6554 case ISD::SINT_TO_FP:
6555 case ISD::UINT_TO_FP:
6556 // [us]itofp(undef) = 0, because the result value is bounded.
6557 if (N1.isUndef())
6558 return getConstantFP(0.0, DL, VT);
6559 break;
6560 case ISD::SIGN_EXTEND:
6561 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6562 "Invalid SIGN_EXTEND!");
6563 assert(VT.isVector() == N1.getValueType().isVector() &&
6564 "SIGN_EXTEND result type type should be vector iff the operand "
6565 "type is vector!");
6566 if (N1.getValueType() == VT) return N1; // noop extension
6567 assert((!VT.isVector() || VT.getVectorElementCount() ==
6569 "Vector element count mismatch!");
6570 assert(N1.getValueType().bitsLT(VT) && "Invalid sext node, dst < src!");
6571 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) {
6572 SDNodeFlags Flags;
6573 if (OpOpcode == ISD::ZERO_EXTEND)
6574 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6575 SDValue NewVal = getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6576 transferDbgValues(N1, NewVal);
6577 return NewVal;
6578 }
6579
6580 if (OpOpcode == ISD::POISON)
6581 return getPOISON(VT);
6582
6583 if (N1.isUndef())
6584 // sext(undef) = 0, because the top bits will all be the same.
6585 return getConstant(0, DL, VT);
6586
6587 // Skip unnecessary sext_inreg pattern:
6588 // (sext (trunc x)) -> x iff the upper bits are all signbits.
6589 if (OpOpcode == ISD::TRUNCATE) {
6590 SDValue OpOp = N1.getOperand(0);
6591 if (OpOp.getValueType() == VT) {
6592 unsigned NumSignExtBits =
6594 if (ComputeNumSignBits(OpOp) > NumSignExtBits) {
6595 transferDbgValues(N1, OpOp);
6596 return OpOp;
6597 }
6598 }
6599 }
6600 break;
6601 case ISD::ZERO_EXTEND:
6602 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6603 "Invalid ZERO_EXTEND!");
6604 assert(VT.isVector() == N1.getValueType().isVector() &&
6605 "ZERO_EXTEND result type type should be vector iff the operand "
6606 "type is vector!");
6607 if (N1.getValueType() == VT) return N1; // noop extension
6608 assert((!VT.isVector() || VT.getVectorElementCount() ==
6610 "Vector element count mismatch!");
6611 assert(N1.getValueType().bitsLT(VT) && "Invalid zext node, dst < src!");
6612 if (OpOpcode == ISD::ZERO_EXTEND) { // (zext (zext x)) -> (zext x)
6613 SDNodeFlags Flags;
6614 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6615 SDValue NewVal =
6616 getNode(ISD::ZERO_EXTEND, DL, VT, N1.getOperand(0), Flags);
6617 transferDbgValues(N1, NewVal);
6618 return NewVal;
6619 }
6620
6621 if (OpOpcode == ISD::POISON)
6622 return getPOISON(VT);
6623
6624 if (N1.isUndef())
6625 // zext(undef) = 0, because the top bits will be zero.
6626 return getConstant(0, DL, VT);
6627
6628 // Skip unnecessary zext_inreg pattern:
6629 // (zext (trunc x)) -> x iff the upper bits are known zero.
6630 // TODO: Remove (zext (trunc (and x, c))) exception which some targets
6631 // use to recognise zext_inreg patterns.
6632 if (OpOpcode == ISD::TRUNCATE) {
6633 SDValue OpOp = N1.getOperand(0);
6634 if (OpOp.getValueType() == VT) {
6635 if (OpOp.getOpcode() != ISD::AND) {
6638 if (MaskedValueIsZero(OpOp, HiBits)) {
6639 transferDbgValues(N1, OpOp);
6640 return OpOp;
6641 }
6642 }
6643 }
6644 }
6645 break;
6646 case ISD::ANY_EXTEND:
6647 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6648 "Invalid ANY_EXTEND!");
6649 assert(VT.isVector() == N1.getValueType().isVector() &&
6650 "ANY_EXTEND result type type should be vector iff the operand "
6651 "type is vector!");
6652 if (N1.getValueType() == VT) return N1; // noop extension
6653 assert((!VT.isVector() || VT.getVectorElementCount() ==
6655 "Vector element count mismatch!");
6656 assert(N1.getValueType().bitsLT(VT) && "Invalid anyext node, dst < src!");
6657
6658 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
6659 OpOpcode == ISD::ANY_EXTEND) {
6660 SDNodeFlags Flags;
6661 if (OpOpcode == ISD::ZERO_EXTEND)
6662 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6663 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
6664 return getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6665 }
6666 if (N1.isUndef())
6667 return getUNDEF(VT);
6668
6669 // (ext (trunc x)) -> x
6670 if (OpOpcode == ISD::TRUNCATE) {
6671 SDValue OpOp = N1.getOperand(0);
6672 if (OpOp.getValueType() == VT) {
6673 transferDbgValues(N1, OpOp);
6674 return OpOp;
6675 }
6676 }
6677 break;
6678 case ISD::TRUNCATE:
6679 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6680 "Invalid TRUNCATE!");
6681 assert(VT.isVector() == N1.getValueType().isVector() &&
6682 "TRUNCATE result type type should be vector iff the operand "
6683 "type is vector!");
6684 if (N1.getValueType() == VT) return N1; // noop truncate
6685 assert((!VT.isVector() || VT.getVectorElementCount() ==
6687 "Vector element count mismatch!");
6688 assert(N1.getValueType().bitsGT(VT) && "Invalid truncate node, src < dst!");
6689 if (OpOpcode == ISD::TRUNCATE)
6690 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
6691 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
6692 OpOpcode == ISD::ANY_EXTEND) {
6693 // If the source is smaller than the dest, we still need an extend.
6695 VT.getScalarType())) {
6696 SDNodeFlags Flags;
6697 if (OpOpcode == ISD::ZERO_EXTEND)
6698 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6699 return getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6700 }
6701 if (N1.getOperand(0).getValueType().bitsGT(VT))
6702 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
6703 return N1.getOperand(0);
6704 }
6705 if (N1.isUndef())
6706 return getUNDEF(VT);
6707 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
6708 return getVScale(DL, VT,
6710 break;
6714 assert(VT.isVector() && "This DAG node is restricted to vector types.");
6715 assert(N1.getValueType().bitsLE(VT) &&
6716 "The input must be the same size or smaller than the result.");
6719 "The destination vector type must have fewer lanes than the input.");
6720 break;
6721 case ISD::ABS:
6722 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid ABS!");
6723 if (N1.isUndef())
6724 return getConstant(0, DL, VT);
6725 break;
6726 case ISD::BSWAP:
6727 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BSWAP!");
6728 assert((VT.getScalarSizeInBits() % 16 == 0) &&
6729 "BSWAP types must be a multiple of 16 bits!");
6730 if (N1.isUndef())
6731 return getUNDEF(VT);
6732 // bswap(bswap(X)) -> X.
6733 if (OpOpcode == ISD::BSWAP)
6734 return N1.getOperand(0);
6735 break;
6736 case ISD::BITREVERSE:
6737 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BITREVERSE!");
6738 if (N1.isUndef())
6739 return getUNDEF(VT);
6740 break;
6741 case ISD::BITCAST:
6743 "Cannot BITCAST between types of different sizes!");
6744 if (VT == N1.getValueType()) return N1; // noop conversion.
6745 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
6746 return getNode(ISD::BITCAST, DL, VT, N1.getOperand(0));
6747 if (N1.isUndef())
6748 return getUNDEF(VT);
6749 break;
6751 assert(VT.isVector() && !N1.getValueType().isVector() &&
6752 (VT.getVectorElementType() == N1.getValueType() ||
6754 N1.getValueType().isInteger() &&
6756 "Illegal SCALAR_TO_VECTOR node!");
6757 if (N1.isUndef())
6758 return getUNDEF(VT);
6759 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
6760 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
6762 N1.getConstantOperandVal(1) == 0 &&
6763 N1.getOperand(0).getValueType() == VT)
6764 return N1.getOperand(0);
6765 break;
6766 case ISD::FNEG:
6767 // Negation of an unknown bag of bits is still completely undefined.
6768 if (N1.isUndef())
6769 return getUNDEF(VT);
6770
6771 if (OpOpcode == ISD::FNEG) // --X -> X
6772 return N1.getOperand(0);
6773 break;
6774 case ISD::FABS:
6775 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
6776 return getNode(ISD::FABS, DL, VT, N1.getOperand(0));
6777 break;
6778 case ISD::VSCALE:
6779 assert(VT == N1.getValueType() && "Unexpected VT!");
6780 break;
6781 case ISD::CTPOP:
6782 if (N1.getValueType().getScalarType() == MVT::i1)
6783 return N1;
6784 break;
6785 case ISD::CTLZ:
6786 case ISD::CTTZ:
6787 if (N1.getValueType().getScalarType() == MVT::i1)
6788 return getNOT(DL, N1, N1.getValueType());
6789 break;
6790 case ISD::VECREDUCE_ADD:
6791 if (N1.getValueType().getScalarType() == MVT::i1)
6792 return getNode(ISD::VECREDUCE_XOR, DL, VT, N1);
6793 break;
6794 case ISD::VECREDUCE_SMIN:
6795 case ISD::VECREDUCE_UMAX:
6796 if (N1.getValueType().getScalarType() == MVT::i1)
6797 return getNode(ISD::VECREDUCE_OR, DL, VT, N1);
6798 break;
6799 case ISD::VECREDUCE_SMAX:
6800 case ISD::VECREDUCE_UMIN:
6801 if (N1.getValueType().getScalarType() == MVT::i1)
6802 return getNode(ISD::VECREDUCE_AND, DL, VT, N1);
6803 break;
6804 case ISD::SPLAT_VECTOR:
6805 assert(VT.isVector() && "Wrong return type!");
6806 // FIXME: Hexagon uses i32 scalar for a floating point zero vector so allow
6807 // that for now.
6809 (VT.isFloatingPoint() && N1.getValueType() == MVT::i32) ||
6811 N1.getValueType().isInteger() &&
6813 "Wrong operand type!");
6814 break;
6815 }
6816
6817 SDNode *N;
6818 SDVTList VTs = getVTList(VT);
6819 SDValue Ops[] = {N1};
6820 if (VT != MVT::Glue) { // Don't CSE glue producing nodes
6822 AddNodeIDNode(ID, Opcode, VTs, Ops);
6823 void *IP = nullptr;
6824 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6825 E->intersectFlagsWith(Flags);
6826 return SDValue(E, 0);
6827 }
6828
6829 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6830 N->setFlags(Flags);
6831 createOperands(N, Ops);
6832 CSEMap.InsertNode(N, IP);
6833 } else {
6834 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6835 createOperands(N, Ops);
6836 }
6837
6838 InsertNode(N);
6839 SDValue V = SDValue(N, 0);
6840 NewSDValueDbgMsg(V, "Creating new node: ", this);
6841 return V;
6842}
6843
6844static std::optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
6845 const APInt &C2) {
6846 switch (Opcode) {
6847 case ISD::ADD: return C1 + C2;
6848 case ISD::SUB: return C1 - C2;
6849 case ISD::MUL: return C1 * C2;
6850 case ISD::AND: return C1 & C2;
6851 case ISD::OR: return C1 | C2;
6852 case ISD::XOR: return C1 ^ C2;
6853 case ISD::SHL: return C1 << C2;
6854 case ISD::SRL: return C1.lshr(C2);
6855 case ISD::SRA: return C1.ashr(C2);
6856 case ISD::ROTL: return C1.rotl(C2);
6857 case ISD::ROTR: return C1.rotr(C2);
6858 case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
6859 case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
6860 case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
6861 case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
6862 case ISD::SADDSAT: return C1.sadd_sat(C2);
6863 case ISD::UADDSAT: return C1.uadd_sat(C2);
6864 case ISD::SSUBSAT: return C1.ssub_sat(C2);
6865 case ISD::USUBSAT: return C1.usub_sat(C2);
6866 case ISD::SSHLSAT: return C1.sshl_sat(C2);
6867 case ISD::USHLSAT: return C1.ushl_sat(C2);
6868 case ISD::UDIV:
6869 if (!C2.getBoolValue())
6870 break;
6871 return C1.udiv(C2);
6872 case ISD::UREM:
6873 if (!C2.getBoolValue())
6874 break;
6875 return C1.urem(C2);
6876 case ISD::SDIV:
6877 if (!C2.getBoolValue())
6878 break;
6879 return C1.sdiv(C2);
6880 case ISD::SREM:
6881 if (!C2.getBoolValue())
6882 break;
6883 return C1.srem(C2);
6884 case ISD::AVGFLOORS:
6885 return APIntOps::avgFloorS(C1, C2);
6886 case ISD::AVGFLOORU:
6887 return APIntOps::avgFloorU(C1, C2);
6888 case ISD::AVGCEILS:
6889 return APIntOps::avgCeilS(C1, C2);
6890 case ISD::AVGCEILU:
6891 return APIntOps::avgCeilU(C1, C2);
6892 case ISD::ABDS:
6893 return APIntOps::abds(C1, C2);
6894 case ISD::ABDU:
6895 return APIntOps::abdu(C1, C2);
6896 case ISD::MULHS:
6897 return APIntOps::mulhs(C1, C2);
6898 case ISD::MULHU:
6899 return APIntOps::mulhu(C1, C2);
6900 }
6901 return std::nullopt;
6902}
6903// Handle constant folding with UNDEF.
6904// TODO: Handle more cases.
6905static std::optional<APInt> FoldValueWithUndef(unsigned Opcode, const APInt &C1,
6906 bool IsUndef1, const APInt &C2,
6907 bool IsUndef2) {
6908 if (!(IsUndef1 || IsUndef2))
6909 return FoldValue(Opcode, C1, C2);
6910
6911 // Fold and(x, undef) -> 0
6912 // Fold mul(x, undef) -> 0
6913 if (Opcode == ISD::AND || Opcode == ISD::MUL)
6914 return APInt::getZero(C1.getBitWidth());
6915
6916 return std::nullopt;
6917}
6918
6920 const GlobalAddressSDNode *GA,
6921 const SDNode *N2) {
6922 if (GA->getOpcode() != ISD::GlobalAddress)
6923 return SDValue();
6924 if (!TLI->isOffsetFoldingLegal(GA))
6925 return SDValue();
6926 auto *C2 = dyn_cast<ConstantSDNode>(N2);
6927 if (!C2)
6928 return SDValue();
6929 int64_t Offset = C2->getSExtValue();
6930 switch (Opcode) {
6931 case ISD::ADD:
6932 case ISD::PTRADD:
6933 break;
6934 case ISD::SUB: Offset = -uint64_t(Offset); break;
6935 default: return SDValue();
6936 }
6937 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
6938 GA->getOffset() + uint64_t(Offset));
6939}
6940
6942 switch (Opcode) {
6943 case ISD::SDIV:
6944 case ISD::UDIV:
6945 case ISD::SREM:
6946 case ISD::UREM: {
6947 // If a divisor is zero/undef or any element of a divisor vector is
6948 // zero/undef, the whole op is undef.
6949 assert(Ops.size() == 2 && "Div/rem should have 2 operands");
6950 SDValue Divisor = Ops[1];
6951 if (Divisor.isUndef() || isNullConstant(Divisor))
6952 return true;
6953
6954 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
6955 llvm::any_of(Divisor->op_values(),
6956 [](SDValue V) { return V.isUndef() ||
6957 isNullConstant(V); });
6958 // TODO: Handle signed overflow.
6959 }
6960 // TODO: Handle oversized shifts.
6961 default:
6962 return false;
6963 }
6964}
6965
6968 SDNodeFlags Flags) {
6969 // If the opcode is a target-specific ISD node, there's nothing we can
6970 // do here and the operand rules may not line up with the below, so
6971 // bail early.
6972 // We can't create a scalar CONCAT_VECTORS so skip it. It will break
6973 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
6974 // foldCONCAT_VECTORS in getNode before this is called.
6975 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
6976 return SDValue();
6977
6978 unsigned NumOps = Ops.size();
6979 if (NumOps == 0)
6980 return SDValue();
6981
6982 if (isUndef(Opcode, Ops))
6983 return getUNDEF(VT);
6984
6985 // Handle unary special cases.
6986 if (NumOps == 1) {
6987 SDValue N1 = Ops[0];
6988
6989 // Constant fold unary operations with an integer constant operand. Even
6990 // opaque constant will be folded, because the folding of unary operations
6991 // doesn't create new constants with different values. Nevertheless, the
6992 // opaque flag is preserved during folding to prevent future folding with
6993 // other constants.
6994 if (auto *C = dyn_cast<ConstantSDNode>(N1)) {
6995 const APInt &Val = C->getAPIntValue();
6996 switch (Opcode) {
6997 case ISD::SIGN_EXTEND:
6998 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
6999 C->isTargetOpcode(), C->isOpaque());
7000 case ISD::TRUNCATE:
7001 if (C->isOpaque())
7002 break;
7003 [[fallthrough]];
7004 case ISD::ZERO_EXTEND:
7005 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
7006 C->isTargetOpcode(), C->isOpaque());
7007 case ISD::ANY_EXTEND:
7008 // Some targets like RISCV prefer to sign extend some types.
7009 if (TLI->isSExtCheaperThanZExt(N1.getValueType(), VT))
7010 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
7011 C->isTargetOpcode(), C->isOpaque());
7012 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
7013 C->isTargetOpcode(), C->isOpaque());
7014 case ISD::ABS:
7015 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
7016 C->isOpaque());
7017 case ISD::BITREVERSE:
7018 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
7019 C->isOpaque());
7020 case ISD::BSWAP:
7021 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
7022 C->isOpaque());
7023 case ISD::CTPOP:
7024 return getConstant(Val.popcount(), DL, VT, C->isTargetOpcode(),
7025 C->isOpaque());
7026 case ISD::CTLZ:
7028 return getConstant(Val.countl_zero(), DL, VT, C->isTargetOpcode(),
7029 C->isOpaque());
7030 case ISD::CTTZ:
7032 return getConstant(Val.countr_zero(), DL, VT, C->isTargetOpcode(),
7033 C->isOpaque());
7034 case ISD::UINT_TO_FP:
7035 case ISD::SINT_TO_FP: {
7037 (void)FPV.convertFromAPInt(Val, Opcode == ISD::SINT_TO_FP,
7039 return getConstantFP(FPV, DL, VT);
7040 }
7041 case ISD::FP16_TO_FP:
7042 case ISD::BF16_TO_FP: {
7043 bool Ignored;
7044 APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf()
7045 : APFloat::BFloat(),
7046 (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
7047
7048 // This can return overflow, underflow, or inexact; we don't care.
7049 // FIXME need to be more flexible about rounding mode.
7051 &Ignored);
7052 return getConstantFP(FPV, DL, VT);
7053 }
7054 case ISD::STEP_VECTOR:
7055 if (SDValue V = FoldSTEP_VECTOR(DL, VT, N1, *this))
7056 return V;
7057 break;
7058 case ISD::BITCAST:
7059 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
7060 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
7061 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
7062 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
7063 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
7064 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
7065 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
7066 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
7067 break;
7068 }
7069 }
7070
7071 // Constant fold unary operations with a floating point constant operand.
7072 if (auto *C = dyn_cast<ConstantFPSDNode>(N1)) {
7073 APFloat V = C->getValueAPF(); // make copy
7074 switch (Opcode) {
7075 case ISD::FNEG:
7076 V.changeSign();
7077 return getConstantFP(V, DL, VT);
7078 case ISD::FABS:
7079 V.clearSign();
7080 return getConstantFP(V, DL, VT);
7081 case ISD::FCEIL: {
7082 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
7084 return getConstantFP(V, DL, VT);
7085 return SDValue();
7086 }
7087 case ISD::FTRUNC: {
7088 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
7090 return getConstantFP(V, DL, VT);
7091 return SDValue();
7092 }
7093 case ISD::FFLOOR: {
7094 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
7096 return getConstantFP(V, DL, VT);
7097 return SDValue();
7098 }
7099 case ISD::FP_EXTEND: {
7100 bool ignored;
7101 // This can return overflow, underflow, or inexact; we don't care.
7102 // FIXME need to be more flexible about rounding mode.
7103 (void)V.convert(VT.getFltSemantics(), APFloat::rmNearestTiesToEven,
7104 &ignored);
7105 return getConstantFP(V, DL, VT);
7106 }
7107 case ISD::FP_TO_SINT:
7108 case ISD::FP_TO_UINT: {
7109 bool ignored;
7110 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
7111 // FIXME need to be more flexible about rounding mode.
7113 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
7114 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
7115 break;
7116 return getConstant(IntVal, DL, VT);
7117 }
7118 case ISD::FP_TO_FP16:
7119 case ISD::FP_TO_BF16: {
7120 bool Ignored;
7121 // This can return overflow, underflow, or inexact; we don't care.
7122 // FIXME need to be more flexible about rounding mode.
7123 (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf()
7124 : APFloat::BFloat(),
7126 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
7127 }
7128 case ISD::BITCAST:
7129 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
7130 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
7131 VT);
7132 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
7133 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
7134 VT);
7135 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
7136 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL,
7137 VT);
7138 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
7139 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
7140 break;
7141 }
7142 }
7143
7144 // Early-out if we failed to constant fold a bitcast.
7145 if (Opcode == ISD::BITCAST)
7146 return SDValue();
7147 }
7148
7149 // Handle binops special cases.
7150 if (NumOps == 2) {
7151 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops))
7152 return CFP;
7153
7154 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
7155 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
7156 if (C1->isOpaque() || C2->isOpaque())
7157 return SDValue();
7158
7159 std::optional<APInt> FoldAttempt =
7160 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
7161 if (!FoldAttempt)
7162 return SDValue();
7163
7164 SDValue Folded = getConstant(*FoldAttempt, DL, VT);
7165 assert((!Folded || !VT.isVector()) &&
7166 "Can't fold vectors ops with scalar operands");
7167 return Folded;
7168 }
7169 }
7170
7171 // fold (add Sym, c) -> Sym+c
7173 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
7174 if (TLI->isCommutativeBinOp(Opcode))
7176 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
7177
7178 // fold (sext_in_reg c1) -> c2
7179 if (Opcode == ISD::SIGN_EXTEND_INREG) {
7180 EVT EVT = cast<VTSDNode>(Ops[1])->getVT();
7181
7182 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
7183 unsigned FromBits = EVT.getScalarSizeInBits();
7184 Val <<= Val.getBitWidth() - FromBits;
7185 Val.ashrInPlace(Val.getBitWidth() - FromBits);
7186 return getConstant(Val, DL, ConstantVT);
7187 };
7188
7189 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
7190 const APInt &Val = C1->getAPIntValue();
7191 return SignExtendInReg(Val, VT);
7192 }
7193
7195 SmallVector<SDValue, 8> ScalarOps;
7196 llvm::EVT OpVT = Ops[0].getOperand(0).getValueType();
7197 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
7198 SDValue Op = Ops[0].getOperand(I);
7199 if (Op.isUndef()) {
7200 ScalarOps.push_back(getUNDEF(OpVT));
7201 continue;
7202 }
7203 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
7204 ScalarOps.push_back(SignExtendInReg(Val, OpVT));
7205 }
7206 return getBuildVector(VT, DL, ScalarOps);
7207 }
7208
7209 if (Ops[0].getOpcode() == ISD::SPLAT_VECTOR &&
7210 isa<ConstantSDNode>(Ops[0].getOperand(0)))
7211 return getNode(ISD::SPLAT_VECTOR, DL, VT,
7212 SignExtendInReg(Ops[0].getConstantOperandAPInt(0),
7213 Ops[0].getOperand(0).getValueType()));
7214 }
7215 }
7216
7217 // Handle fshl/fshr special cases.
7218 if (Opcode == ISD::FSHL || Opcode == ISD::FSHR) {
7219 auto *C1 = dyn_cast<ConstantSDNode>(Ops[0]);
7220 auto *C2 = dyn_cast<ConstantSDNode>(Ops[1]);
7221 auto *C3 = dyn_cast<ConstantSDNode>(Ops[2]);
7222
7223 if (C1 && C2 && C3) {
7224 if (C1->isOpaque() || C2->isOpaque() || C3->isOpaque())
7225 return SDValue();
7226 const APInt &V1 = C1->getAPIntValue(), &V2 = C2->getAPIntValue(),
7227 &V3 = C3->getAPIntValue();
7228
7229 APInt FoldedVal = Opcode == ISD::FSHL ? APIntOps::fshl(V1, V2, V3)
7230 : APIntOps::fshr(V1, V2, V3);
7231 return getConstant(FoldedVal, DL, VT);
7232 }
7233 }
7234
7235 // Handle fma/fmad special cases.
7236 if (Opcode == ISD::FMA || Opcode == ISD::FMAD || Opcode == ISD::FMULADD) {
7237 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7238 assert(Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
7239 Ops[2].getValueType() == VT && "FMA types must match!");
7243 if (C1 && C2 && C3) {
7244 APFloat V1 = C1->getValueAPF();
7245 const APFloat &V2 = C2->getValueAPF();
7246 const APFloat &V3 = C3->getValueAPF();
7247 if (Opcode == ISD::FMAD || Opcode == ISD::FMULADD) {
7250 } else
7252 return getConstantFP(V1, DL, VT);
7253 }
7254 }
7255
7256 // This is for vector folding only from here on.
7257 if (!VT.isVector())
7258 return SDValue();
7259
7260 ElementCount NumElts = VT.getVectorElementCount();
7261
7262 // See if we can fold through any bitcasted integer ops.
7263 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
7264 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
7265 (Ops[0].getOpcode() == ISD::BITCAST ||
7266 Ops[1].getOpcode() == ISD::BITCAST)) {
7269 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
7270 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
7271 if (BV1 && BV2 && N1.getValueType().isInteger() &&
7272 N2.getValueType().isInteger()) {
7273 bool IsLE = getDataLayout().isLittleEndian();
7274 unsigned EltBits = VT.getScalarSizeInBits();
7275 SmallVector<APInt> RawBits1, RawBits2;
7276 BitVector UndefElts1, UndefElts2;
7277 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
7278 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
7279 SmallVector<APInt> RawBits;
7280 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
7281 std::optional<APInt> Fold = FoldValueWithUndef(
7282 Opcode, RawBits1[I], UndefElts1[I], RawBits2[I], UndefElts2[I]);
7283 if (!Fold)
7284 break;
7285 RawBits.push_back(*Fold);
7286 }
7287 if (RawBits.size() == NumElts.getFixedValue()) {
7288 // We have constant folded, but we might need to cast this again back
7289 // to the original (possibly legalized) type.
7290 EVT BVVT, BVEltVT;
7291 if (N1.getValueType() == VT) {
7292 BVVT = N1.getValueType();
7293 BVEltVT = BV1->getOperand(0).getValueType();
7294 } else {
7295 BVVT = N2.getValueType();
7296 BVEltVT = BV2->getOperand(0).getValueType();
7297 }
7298 unsigned BVEltBits = BVEltVT.getSizeInBits();
7299 SmallVector<APInt> DstBits;
7300 BitVector DstUndefs;
7302 DstBits, RawBits, DstUndefs,
7303 BitVector(RawBits.size(), false));
7304 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
7305 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
7306 if (DstUndefs[I])
7307 continue;
7308 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT);
7309 }
7310 return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
7311 }
7312 }
7313 }
7314 }
7315
7316 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
7317 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
7318 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
7319 Ops[0].getOpcode() == ISD::STEP_VECTOR) {
7320 APInt RHSVal;
7321 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
7322 APInt NewStep = Opcode == ISD::MUL
7323 ? Ops[0].getConstantOperandAPInt(0) * RHSVal
7324 : Ops[0].getConstantOperandAPInt(0) << RHSVal;
7325 return getStepVector(DL, VT, NewStep);
7326 }
7327 }
7328
7329 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
7330 return !Op.getValueType().isVector() ||
7331 Op.getValueType().getVectorElementCount() == NumElts;
7332 };
7333
7334 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
7335 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
7336 Op.getOpcode() == ISD::BUILD_VECTOR ||
7337 Op.getOpcode() == ISD::SPLAT_VECTOR;
7338 };
7339
7340 // All operands must be vector types with the same number of elements as
7341 // the result type and must be either UNDEF or a build/splat vector
7342 // or UNDEF scalars.
7343 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
7344 !llvm::all_of(Ops, IsScalarOrSameVectorSize))
7345 return SDValue();
7346
7347 // If we are comparing vectors, then the result needs to be a i1 boolean that
7348 // is then extended back to the legal result type depending on how booleans
7349 // are represented.
7350 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
7351 ISD::NodeType ExtendCode =
7352 (Opcode == ISD::SETCC && SVT != VT.getScalarType())
7353 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT))
7355
7356 // Find legal integer scalar type for constant promotion and
7357 // ensure that its scalar size is at least as large as source.
7358 EVT LegalSVT = VT.getScalarType();
7359 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
7360 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
7361 if (LegalSVT.bitsLT(VT.getScalarType()))
7362 return SDValue();
7363 }
7364
7365 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
7366 // only have one operand to check. For fixed-length vector types we may have
7367 // a combination of BUILD_VECTOR and SPLAT_VECTOR.
7368 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
7369
7370 // Constant fold each scalar lane separately.
7371 SmallVector<SDValue, 4> ScalarResults;
7372 for (unsigned I = 0; I != NumVectorElts; I++) {
7373 SmallVector<SDValue, 4> ScalarOps;
7374 for (SDValue Op : Ops) {
7375 EVT InSVT = Op.getValueType().getScalarType();
7376 if (Op.getOpcode() != ISD::BUILD_VECTOR &&
7377 Op.getOpcode() != ISD::SPLAT_VECTOR) {
7378 if (Op.isUndef())
7379 ScalarOps.push_back(getUNDEF(InSVT));
7380 else
7381 ScalarOps.push_back(Op);
7382 continue;
7383 }
7384
7385 SDValue ScalarOp =
7386 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
7387 EVT ScalarVT = ScalarOp.getValueType();
7388
7389 // Build vector (integer) scalar operands may need implicit
7390 // truncation - do this before constant folding.
7391 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) {
7392 // Don't create illegally-typed nodes unless they're constants or undef
7393 // - if we fail to constant fold we can't guarantee the (dead) nodes
7394 // we're creating will be cleaned up before being visited for
7395 // legalization.
7396 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() &&
7397 !isa<ConstantSDNode>(ScalarOp) &&
7398 TLI->getTypeAction(*getContext(), InSVT) !=
7400 return SDValue();
7401 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
7402 }
7403
7404 ScalarOps.push_back(ScalarOp);
7405 }
7406
7407 // Constant fold the scalar operands.
7408 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
7409
7410 // Scalar folding only succeeded if the result is a constant or UNDEF.
7411 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
7412 ScalarResult.getOpcode() != ISD::ConstantFP)
7413 return SDValue();
7414
7415 // Legalize the (integer) scalar constant if necessary. We only do
7416 // this once we know the folding succeeded, since otherwise we would
7417 // get a node with illegal type which has a user.
7418 if (LegalSVT != SVT)
7419 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult);
7420
7421 ScalarResults.push_back(ScalarResult);
7422 }
7423
7424 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
7425 : getBuildVector(VT, DL, ScalarResults);
7426 NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
7427 return V;
7428}
7429
7432 // TODO: Add support for unary/ternary fp opcodes.
7433 if (Ops.size() != 2)
7434 return SDValue();
7435
7436 // TODO: We don't do any constant folding for strict FP opcodes here, but we
7437 // should. That will require dealing with a potentially non-default
7438 // rounding mode, checking the "opStatus" return value from the APFloat
7439 // math calculations, and possibly other variations.
7440 SDValue N1 = Ops[0];
7441 SDValue N2 = Ops[1];
7442 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
7443 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
7444 if (N1CFP && N2CFP) {
7445 APFloat C1 = N1CFP->getValueAPF(); // make copy
7446 const APFloat &C2 = N2CFP->getValueAPF();
7447 switch (Opcode) {
7448 case ISD::FADD:
7450 return getConstantFP(C1, DL, VT);
7451 case ISD::FSUB:
7453 return getConstantFP(C1, DL, VT);
7454 case ISD::FMUL:
7456 return getConstantFP(C1, DL, VT);
7457 case ISD::FDIV:
7459 return getConstantFP(C1, DL, VT);
7460 case ISD::FREM:
7461 C1.mod(C2);
7462 return getConstantFP(C1, DL, VT);
7463 case ISD::FCOPYSIGN:
7464 C1.copySign(C2);
7465 return getConstantFP(C1, DL, VT);
7466 case ISD::FMINNUM:
7467 return getConstantFP(minnum(C1, C2), DL, VT);
7468 case ISD::FMAXNUM:
7469 return getConstantFP(maxnum(C1, C2), DL, VT);
7470 case ISD::FMINIMUM:
7471 return getConstantFP(minimum(C1, C2), DL, VT);
7472 case ISD::FMAXIMUM:
7473 return getConstantFP(maximum(C1, C2), DL, VT);
7474 case ISD::FMINIMUMNUM:
7475 return getConstantFP(minimumnum(C1, C2), DL, VT);
7476 case ISD::FMAXIMUMNUM:
7477 return getConstantFP(maximumnum(C1, C2), DL, VT);
7478 default: break;
7479 }
7480 }
7481 if (N1CFP && Opcode == ISD::FP_ROUND) {
7482 APFloat C1 = N1CFP->getValueAPF(); // make copy
7483 bool Unused;
7484 // This can return overflow, underflow, or inexact; we don't care.
7485 // FIXME need to be more flexible about rounding mode.
7487 &Unused);
7488 return getConstantFP(C1, DL, VT);
7489 }
7490
7491 switch (Opcode) {
7492 case ISD::FSUB:
7493 // -0.0 - undef --> undef (consistent with "fneg undef")
7494 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
7495 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
7496 return getUNDEF(VT);
7497 [[fallthrough]];
7498
7499 case ISD::FADD:
7500 case ISD::FMUL:
7501 case ISD::FDIV:
7502 case ISD::FREM:
7503 // If both operands are undef, the result is undef. If 1 operand is undef,
7504 // the result is NaN. This should match the behavior of the IR optimizer.
7505 if (N1.isUndef() && N2.isUndef())
7506 return getUNDEF(VT);
7507 if (N1.isUndef() || N2.isUndef())
7509 }
7510 return SDValue();
7511}
7512
7514 const SDLoc &DL, EVT DstEltVT) {
7515 EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
7516
7517 // If this is already the right type, we're done.
7518 if (SrcEltVT == DstEltVT)
7519 return SDValue(BV, 0);
7520
7521 unsigned SrcBitSize = SrcEltVT.getSizeInBits();
7522 unsigned DstBitSize = DstEltVT.getSizeInBits();
7523
7524 // If this is a conversion of N elements of one type to N elements of another
7525 // type, convert each element. This handles FP<->INT cases.
7526 if (SrcBitSize == DstBitSize) {
7528 for (SDValue Op : BV->op_values()) {
7529 // If the vector element type is not legal, the BUILD_VECTOR operands
7530 // are promoted and implicitly truncated. Make that explicit here.
7531 if (Op.getValueType() != SrcEltVT)
7532 Op = getNode(ISD::TRUNCATE, DL, SrcEltVT, Op);
7533 Ops.push_back(getBitcast(DstEltVT, Op));
7534 }
7535 EVT VT = EVT::getVectorVT(*getContext(), DstEltVT,
7537 return getBuildVector(VT, DL, Ops);
7538 }
7539
7540 // Otherwise, we're growing or shrinking the elements. To avoid having to
7541 // handle annoying details of growing/shrinking FP values, we convert them to
7542 // int first.
7543 if (SrcEltVT.isFloatingPoint()) {
7544 // Convert the input float vector to a int vector where the elements are the
7545 // same sizes.
7546 EVT IntEltVT = EVT::getIntegerVT(*getContext(), SrcEltVT.getSizeInBits());
7547 if (SDValue Tmp = FoldConstantBuildVector(BV, DL, IntEltVT))
7549 DstEltVT);
7550 return SDValue();
7551 }
7552
7553 // Now we know the input is an integer vector. If the output is a FP type,
7554 // convert to integer first, then to FP of the right size.
7555 if (DstEltVT.isFloatingPoint()) {
7556 EVT IntEltVT = EVT::getIntegerVT(*getContext(), DstEltVT.getSizeInBits());
7557 if (SDValue Tmp = FoldConstantBuildVector(BV, DL, IntEltVT))
7559 DstEltVT);
7560 return SDValue();
7561 }
7562
7563 // Okay, we know the src/dst types are both integers of differing types.
7564 assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
7565
7566 // Extract the constant raw bit data.
7567 BitVector UndefElements;
7568 SmallVector<APInt> RawBits;
7569 bool IsLE = getDataLayout().isLittleEndian();
7570 if (!BV->getConstantRawBits(IsLE, DstBitSize, RawBits, UndefElements))
7571 return SDValue();
7572
7574 for (unsigned I = 0, E = RawBits.size(); I != E; ++I) {
7575 if (UndefElements[I])
7576 Ops.push_back(getUNDEF(DstEltVT));
7577 else
7578 Ops.push_back(getConstant(RawBits[I], DL, DstEltVT));
7579 }
7580
7581 EVT VT = EVT::getVectorVT(*getContext(), DstEltVT, Ops.size());
7582 return getBuildVector(VT, DL, Ops);
7583}
7584
7586 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
7587
7588 // There's no need to assert on a byte-aligned pointer. All pointers are at
7589 // least byte aligned.
7590 if (A == Align(1))
7591 return Val;
7592
7593 SDVTList VTs = getVTList(Val.getValueType());
7595 AddNodeIDNode(ID, ISD::AssertAlign, VTs, {Val});
7596 ID.AddInteger(A.value());
7597
7598 void *IP = nullptr;
7599 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7600 return SDValue(E, 0);
7601
7602 auto *N =
7603 newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, A);
7604 createOperands(N, {Val});
7605
7606 CSEMap.InsertNode(N, IP);
7607 InsertNode(N);
7608
7609 SDValue V(N, 0);
7610 NewSDValueDbgMsg(V, "Creating new node: ", this);
7611 return V;
7612}
7613
7614SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7615 SDValue N1, SDValue N2) {
7616 SDNodeFlags Flags;
7617 if (Inserter)
7618 Flags = Inserter->getFlags();
7619 return getNode(Opcode, DL, VT, N1, N2, Flags);
7620}
7621
7623 SDValue &N2) const {
7624 if (!TLI->isCommutativeBinOp(Opcode))
7625 return;
7626
7627 // Canonicalize:
7628 // binop(const, nonconst) -> binop(nonconst, const)
7631 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
7632 bool N2CFP = isConstantFPBuildVectorOrConstantFP(N2);
7633 if ((N1C && !N2C) || (N1CFP && !N2CFP))
7634 std::swap(N1, N2);
7635
7636 // Canonicalize:
7637 // binop(splat(x), step_vector) -> binop(step_vector, splat(x))
7638 else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
7640 std::swap(N1, N2);
7641}
7642
7643SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7644 SDValue N1, SDValue N2, const SDNodeFlags Flags) {
7646 N2.getOpcode() != ISD::DELETED_NODE &&
7647 "Operand is DELETED_NODE!");
7648
7649 canonicalizeCommutativeBinop(Opcode, N1, N2);
7650
7651 auto *N1C = dyn_cast<ConstantSDNode>(N1);
7652 auto *N2C = dyn_cast<ConstantSDNode>(N2);
7653
7654 // Don't allow undefs in vector splats - we might be returning N2 when folding
7655 // to zero etc.
7656 ConstantSDNode *N2CV =
7657 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
7658
7659 switch (Opcode) {
7660 default: break;
7661 case ISD::TokenFactor:
7662 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
7663 N2.getValueType() == MVT::Other && "Invalid token factor!");
7664 // Fold trivial token factors.
7665 if (N1.getOpcode() == ISD::EntryToken) return N2;
7666 if (N2.getOpcode() == ISD::EntryToken) return N1;
7667 if (N1 == N2) return N1;
7668 break;
7669 case ISD::BUILD_VECTOR: {
7670 // Attempt to simplify BUILD_VECTOR.
7671 SDValue Ops[] = {N1, N2};
7672 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7673 return V;
7674 break;
7675 }
7676 case ISD::CONCAT_VECTORS: {
7677 SDValue Ops[] = {N1, N2};
7678 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7679 return V;
7680 break;
7681 }
7682 case ISD::AND:
7683 assert(VT.isInteger() && "This operator does not apply to FP types!");
7684 assert(N1.getValueType() == N2.getValueType() &&
7685 N1.getValueType() == VT && "Binary operator types must match!");
7686 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
7687 // worth handling here.
7688 if (N2CV && N2CV->isZero())
7689 return N2;
7690 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
7691 return N1;
7692 break;
7693 case ISD::OR:
7694 case ISD::XOR:
7695 case ISD::ADD:
7696 case ISD::PTRADD:
7697 case ISD::SUB:
7698 assert(VT.isInteger() && "This operator does not apply to FP types!");
7699 assert(N1.getValueType() == N2.getValueType() &&
7700 N1.getValueType() == VT && "Binary operator types must match!");
7701 // The equal operand types requirement is unnecessarily strong for PTRADD.
7702 // However, the SelectionDAGBuilder does not generate PTRADDs with different
7703 // operand types, and we'd need to re-implement GEP's non-standard wrapping
7704 // logic everywhere where PTRADDs may be folded or combined to properly
7705 // support them. If/when we introduce pointer types to the SDAG, we will
7706 // need to relax this constraint.
7707
7708 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
7709 // it's worth handling here.
7710 if (N2CV && N2CV->isZero())
7711 return N1;
7712 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) &&
7713 VT.getScalarType() == MVT::i1)
7714 return getNode(ISD::XOR, DL, VT, N1, N2);
7715 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)).
7716 if (Opcode == ISD::ADD && N1.getOpcode() == ISD::VSCALE &&
7717 N2.getOpcode() == ISD::VSCALE) {
7718 const APInt &C1 = N1->getConstantOperandAPInt(0);
7719 const APInt &C2 = N2->getConstantOperandAPInt(0);
7720 return getVScale(DL, VT, C1 + C2);
7721 }
7722 break;
7723 case ISD::MUL:
7724 assert(VT.isInteger() && "This operator does not apply to FP types!");
7725 assert(N1.getValueType() == N2.getValueType() &&
7726 N1.getValueType() == VT && "Binary operator types must match!");
7727 if (VT.getScalarType() == MVT::i1)
7728 return getNode(ISD::AND, DL, VT, N1, N2);
7729 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7730 const APInt &MulImm = N1->getConstantOperandAPInt(0);
7731 const APInt &N2CImm = N2C->getAPIntValue();
7732 return getVScale(DL, VT, MulImm * N2CImm);
7733 }
7734 break;
7735 case ISD::UDIV:
7736 case ISD::UREM:
7737 case ISD::MULHU:
7738 case ISD::MULHS:
7739 case ISD::SDIV:
7740 case ISD::SREM:
7741 case ISD::SADDSAT:
7742 case ISD::SSUBSAT:
7743 case ISD::UADDSAT:
7744 case ISD::USUBSAT:
7745 assert(VT.isInteger() && "This operator does not apply to FP types!");
7746 assert(N1.getValueType() == N2.getValueType() &&
7747 N1.getValueType() == VT && "Binary operator types must match!");
7748 if (VT.getScalarType() == MVT::i1) {
7749 // fold (add_sat x, y) -> (or x, y) for bool types.
7750 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
7751 return getNode(ISD::OR, DL, VT, N1, N2);
7752 // fold (sub_sat x, y) -> (and x, ~y) for bool types.
7753 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
7754 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
7755 }
7756 break;
7757 case ISD::SCMP:
7758 case ISD::UCMP:
7759 assert(N1.getValueType() == N2.getValueType() &&
7760 "Types of operands of UCMP/SCMP must match");
7761 assert(N1.getValueType().isVector() == VT.isVector() &&
7762 "Operands and return type of must both be scalars or vectors");
7763 if (VT.isVector())
7766 "Result and operands must have the same number of elements");
7767 break;
7768 case ISD::AVGFLOORS:
7769 case ISD::AVGFLOORU:
7770 case ISD::AVGCEILS:
7771 case ISD::AVGCEILU:
7772 assert(VT.isInteger() && "This operator does not apply to FP types!");
7773 assert(N1.getValueType() == N2.getValueType() &&
7774 N1.getValueType() == VT && "Binary operator types must match!");
7775 break;
7776 case ISD::ABDS:
7777 case ISD::ABDU:
7778 assert(VT.isInteger() && "This operator does not apply to FP types!");
7779 assert(N1.getValueType() == N2.getValueType() &&
7780 N1.getValueType() == VT && "Binary operator types must match!");
7781 if (VT.getScalarType() == MVT::i1)
7782 return getNode(ISD::XOR, DL, VT, N1, N2);
7783 break;
7784 case ISD::SMIN:
7785 case ISD::UMAX:
7786 assert(VT.isInteger() && "This operator does not apply to FP types!");
7787 assert(N1.getValueType() == N2.getValueType() &&
7788 N1.getValueType() == VT && "Binary operator types must match!");
7789 if (VT.getScalarType() == MVT::i1)
7790 return getNode(ISD::OR, DL, VT, N1, N2);
7791 break;
7792 case ISD::SMAX:
7793 case ISD::UMIN:
7794 assert(VT.isInteger() && "This operator does not apply to FP types!");
7795 assert(N1.getValueType() == N2.getValueType() &&
7796 N1.getValueType() == VT && "Binary operator types must match!");
7797 if (VT.getScalarType() == MVT::i1)
7798 return getNode(ISD::AND, DL, VT, N1, N2);
7799 break;
7800 case ISD::FADD:
7801 case ISD::FSUB:
7802 case ISD::FMUL:
7803 case ISD::FDIV:
7804 case ISD::FREM:
7805 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7806 assert(N1.getValueType() == N2.getValueType() &&
7807 N1.getValueType() == VT && "Binary operator types must match!");
7808 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
7809 return V;
7810 break;
7811 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
7812 assert(N1.getValueType() == VT &&
7815 "Invalid FCOPYSIGN!");
7816 break;
7817 case ISD::SHL:
7818 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7819 const APInt &MulImm = N1->getConstantOperandAPInt(0);
7820 const APInt &ShiftImm = N2C->getAPIntValue();
7821 return getVScale(DL, VT, MulImm << ShiftImm);
7822 }
7823 [[fallthrough]];
7824 case ISD::SRA:
7825 case ISD::SRL:
7826 if (SDValue V = simplifyShift(N1, N2))
7827 return V;
7828 [[fallthrough]];
7829 case ISD::ROTL:
7830 case ISD::ROTR:
7831 assert(VT == N1.getValueType() &&
7832 "Shift operators return type must be the same as their first arg");
7833 assert(VT.isInteger() && N2.getValueType().isInteger() &&
7834 "Shifts only work on integers");
7835 assert((!VT.isVector() || VT == N2.getValueType()) &&
7836 "Vector shift amounts must be in the same as their first arg");
7837 // Verify that the shift amount VT is big enough to hold valid shift
7838 // amounts. This catches things like trying to shift an i1024 value by an
7839 // i8, which is easy to fall into in generic code that uses
7840 // TLI.getShiftAmount().
7843 "Invalid use of small shift amount with oversized value!");
7844
7845 // Always fold shifts of i1 values so the code generator doesn't need to
7846 // handle them. Since we know the size of the shift has to be less than the
7847 // size of the value, the shift/rotate count is guaranteed to be zero.
7848 if (VT == MVT::i1)
7849 return N1;
7850 if (N2CV && N2CV->isZero())
7851 return N1;
7852 break;
7853 case ISD::FP_ROUND:
7855 VT.bitsLE(N1.getValueType()) && N2C &&
7856 (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
7857 N2.getOpcode() == ISD::TargetConstant && "Invalid FP_ROUND!");
7858 if (N1.getValueType() == VT) return N1; // noop conversion.
7859 break;
7860 case ISD::AssertNoFPClass: {
7862 "AssertNoFPClass is used for a non-floating type");
7863 assert(isa<ConstantSDNode>(N2) && "NoFPClass is not Constant");
7864 FPClassTest NoFPClass = static_cast<FPClassTest>(N2->getAsZExtVal());
7865 assert(llvm::to_underlying(NoFPClass) <=
7867 "FPClassTest value too large");
7868 (void)NoFPClass;
7869 break;
7870 }
7871 case ISD::AssertSext:
7872 case ISD::AssertZext: {
7873 EVT EVT = cast<VTSDNode>(N2)->getVT();
7874 assert(VT == N1.getValueType() && "Not an inreg extend!");
7875 assert(VT.isInteger() && EVT.isInteger() &&
7876 "Cannot *_EXTEND_INREG FP types");
7877 assert(!EVT.isVector() &&
7878 "AssertSExt/AssertZExt type should be the vector element type "
7879 "rather than the vector type!");
7880 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
7881 if (VT.getScalarType() == EVT) return N1; // noop assertion.
7882 break;
7883 }
7885 EVT EVT = cast<VTSDNode>(N2)->getVT();
7886 assert(VT == N1.getValueType() && "Not an inreg extend!");
7887 assert(VT.isInteger() && EVT.isInteger() &&
7888 "Cannot *_EXTEND_INREG FP types");
7889 assert(EVT.isVector() == VT.isVector() &&
7890 "SIGN_EXTEND_INREG type should be vector iff the operand "
7891 "type is vector!");
7892 assert((!EVT.isVector() ||
7894 "Vector element counts must match in SIGN_EXTEND_INREG");
7895 assert(EVT.bitsLE(VT) && "Not extending!");
7896 if (EVT == VT) return N1; // Not actually extending
7897 break;
7898 }
7900 case ISD::FP_TO_UINT_SAT: {
7901 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
7902 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
7903 assert(N1.getValueType().isVector() == VT.isVector() &&
7904 "FP_TO_*INT_SAT type should be vector iff the operand type is "
7905 "vector!");
7906 assert((!VT.isVector() || VT.getVectorElementCount() ==
7908 "Vector element counts must match in FP_TO_*INT_SAT");
7909 assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
7910 "Type to saturate to must be a scalar.");
7911 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
7912 "Not extending!");
7913 break;
7914 }
7917 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
7918 element type of the vector.");
7919
7920 // Extract from an undefined value or using an undefined index is undefined.
7921 if (N1.isUndef() || N2.isUndef())
7922 return getUNDEF(VT);
7923
7924 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
7925 // vectors. For scalable vectors we will provide appropriate support for
7926 // dealing with arbitrary indices.
7927 if (N2C && N1.getValueType().isFixedLengthVector() &&
7928 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
7929 return getUNDEF(VT);
7930
7931 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
7932 // expanding copies of large vectors from registers. This only works for
7933 // fixed length vectors, since we need to know the exact number of
7934 // elements.
7935 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
7937 unsigned Factor = N1.getOperand(0).getValueType().getVectorNumElements();
7938 return getExtractVectorElt(DL, VT,
7939 N1.getOperand(N2C->getZExtValue() / Factor),
7940 N2C->getZExtValue() % Factor);
7941 }
7942
7943 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
7944 // lowering is expanding large vector constants.
7945 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
7946 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
7949 "BUILD_VECTOR used for scalable vectors");
7950 unsigned Index =
7951 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
7952 SDValue Elt = N1.getOperand(Index);
7953
7954 if (VT != Elt.getValueType())
7955 // If the vector element type is not legal, the BUILD_VECTOR operands
7956 // are promoted and implicitly truncated, and the result implicitly
7957 // extended. Make that explicit here.
7958 Elt = getAnyExtOrTrunc(Elt, DL, VT);
7959
7960 return Elt;
7961 }
7962
7963 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
7964 // operations are lowered to scalars.
7965 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
7966 // If the indices are the same, return the inserted element else
7967 // if the indices are known different, extract the element from
7968 // the original vector.
7969 SDValue N1Op2 = N1.getOperand(2);
7971
7972 if (N1Op2C && N2C) {
7973 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
7974 if (VT == N1.getOperand(1).getValueType())
7975 return N1.getOperand(1);
7976 if (VT.isFloatingPoint()) {
7978 return getFPExtendOrRound(N1.getOperand(1), DL, VT);
7979 }
7980 return getSExtOrTrunc(N1.getOperand(1), DL, VT);
7981 }
7982 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
7983 }
7984 }
7985
7986 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
7987 // when vector types are scalarized and v1iX is legal.
7988 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
7989 // Here we are completely ignoring the extract element index (N2),
7990 // which is fine for fixed width vectors, since any index other than 0
7991 // is undefined anyway. However, this cannot be ignored for scalable
7992 // vectors - in theory we could support this, but we don't want to do this
7993 // without a profitability check.
7994 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
7996 N1.getValueType().getVectorNumElements() == 1) {
7997 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
7998 N1.getOperand(1));
7999 }
8000 break;
8002 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
8003 assert(!N1.getValueType().isVector() && !VT.isVector() &&
8004 (N1.getValueType().isInteger() == VT.isInteger()) &&
8005 N1.getValueType() != VT &&
8006 "Wrong types for EXTRACT_ELEMENT!");
8007
8008 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
8009 // 64-bit integers into 32-bit parts. Instead of building the extract of
8010 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
8011 if (N1.getOpcode() == ISD::BUILD_PAIR)
8012 return N1.getOperand(N2C->getZExtValue());
8013
8014 // EXTRACT_ELEMENT of a constant int is also very common.
8015 if (N1C) {
8016 unsigned ElementSize = VT.getSizeInBits();
8017 unsigned Shift = ElementSize * N2C->getZExtValue();
8018 const APInt &Val = N1C->getAPIntValue();
8019 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
8020 }
8021 break;
8023 EVT N1VT = N1.getValueType();
8024 assert(VT.isVector() && N1VT.isVector() &&
8025 "Extract subvector VTs must be vectors!");
8027 "Extract subvector VTs must have the same element type!");
8028 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
8029 "Cannot extract a scalable vector from a fixed length vector!");
8030 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
8032 "Extract subvector must be from larger vector to smaller vector!");
8033 assert(N2C && "Extract subvector index must be a constant");
8034 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
8035 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
8036 N1VT.getVectorMinNumElements()) &&
8037 "Extract subvector overflow!");
8038 assert(N2C->getAPIntValue().getBitWidth() ==
8039 TLI->getVectorIdxWidth(getDataLayout()) &&
8040 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
8041 assert(N2C->getZExtValue() % VT.getVectorMinNumElements() == 0 &&
8042 "Extract index is not a multiple of the output vector length");
8043
8044 // Trivial extraction.
8045 if (VT == N1VT)
8046 return N1;
8047
8048 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
8049 if (N1.isUndef())
8050 return getUNDEF(VT);
8051
8052 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
8053 // the concat have the same type as the extract.
8054 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
8055 VT == N1.getOperand(0).getValueType()) {
8056 unsigned Factor = VT.getVectorMinNumElements();
8057 return N1.getOperand(N2C->getZExtValue() / Factor);
8058 }
8059
8060 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
8061 // during shuffle legalization.
8062 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
8063 VT == N1.getOperand(1).getValueType())
8064 return N1.getOperand(1);
8065 break;
8066 }
8067 }
8068
8069 if (N1.getOpcode() == ISD::POISON || N2.getOpcode() == ISD::POISON) {
8070 switch (Opcode) {
8071 case ISD::XOR:
8072 case ISD::ADD:
8073 case ISD::PTRADD:
8074 case ISD::SUB:
8076 case ISD::UDIV:
8077 case ISD::SDIV:
8078 case ISD::UREM:
8079 case ISD::SREM:
8080 case ISD::MUL:
8081 case ISD::AND:
8082 case ISD::SSUBSAT:
8083 case ISD::USUBSAT:
8084 case ISD::UMIN:
8085 case ISD::OR:
8086 case ISD::SADDSAT:
8087 case ISD::UADDSAT:
8088 case ISD::UMAX:
8089 case ISD::SMAX:
8090 case ISD::SMIN:
8091 // fold op(arg1, poison) -> poison, fold op(poison, arg2) -> poison.
8092 return N2.getOpcode() == ISD::POISON ? N2 : N1;
8093 }
8094 }
8095
8096 // Canonicalize an UNDEF to the RHS, even over a constant.
8097 if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() != ISD::UNDEF) {
8098 if (TLI->isCommutativeBinOp(Opcode)) {
8099 std::swap(N1, N2);
8100 } else {
8101 switch (Opcode) {
8102 case ISD::PTRADD:
8103 case ISD::SUB:
8104 // fold op(undef, non_undef_arg2) -> undef.
8105 return N1;
8107 case ISD::UDIV:
8108 case ISD::SDIV:
8109 case ISD::UREM:
8110 case ISD::SREM:
8111 case ISD::SSUBSAT:
8112 case ISD::USUBSAT:
8113 // fold op(undef, non_undef_arg2) -> 0.
8114 return getConstant(0, DL, VT);
8115 }
8116 }
8117 }
8118
8119 // Fold a bunch of operators when the RHS is undef.
8120 if (N2.getOpcode() == ISD::UNDEF) {
8121 switch (Opcode) {
8122 case ISD::XOR:
8123 if (N1.getOpcode() == ISD::UNDEF)
8124 // Handle undef ^ undef -> 0 special case. This is a common
8125 // idiom (misuse).
8126 return getConstant(0, DL, VT);
8127 [[fallthrough]];
8128 case ISD::ADD:
8129 case ISD::PTRADD:
8130 case ISD::SUB:
8131 // fold op(arg1, undef) -> undef.
8132 return N2;
8133 case ISD::UDIV:
8134 case ISD::SDIV:
8135 case ISD::UREM:
8136 case ISD::SREM:
8137 // fold op(arg1, undef) -> poison.
8138 return getPOISON(VT);
8139 case ISD::MUL:
8140 case ISD::AND:
8141 case ISD::SSUBSAT:
8142 case ISD::USUBSAT:
8143 case ISD::UMIN:
8144 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> 0.
8145 return N1.getOpcode() == ISD::UNDEF ? N2 : getConstant(0, DL, VT);
8146 case ISD::OR:
8147 case ISD::SADDSAT:
8148 case ISD::UADDSAT:
8149 case ISD::UMAX:
8150 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> -1.
8151 return N1.getOpcode() == ISD::UNDEF ? N2 : getAllOnesConstant(DL, VT);
8152 case ISD::SMAX:
8153 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> MAX_INT.
8154 return N1.getOpcode() == ISD::UNDEF
8155 ? N2
8156 : getConstant(
8158 VT);
8159 case ISD::SMIN:
8160 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> MIN_INT.
8161 return N1.getOpcode() == ISD::UNDEF
8162 ? N2
8163 : getConstant(
8165 VT);
8166 }
8167 }
8168
8169 // Perform trivial constant folding.
8170 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}, Flags))
8171 return SV;
8172
8173 // Memoize this node if possible.
8174 SDNode *N;
8175 SDVTList VTs = getVTList(VT);
8176 SDValue Ops[] = {N1, N2};
8177 if (VT != MVT::Glue) {
8179 AddNodeIDNode(ID, Opcode, VTs, Ops);
8180 void *IP = nullptr;
8181 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8182 E->intersectFlagsWith(Flags);
8183 return SDValue(E, 0);
8184 }
8185
8186 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8187 N->setFlags(Flags);
8188 createOperands(N, Ops);
8189 CSEMap.InsertNode(N, IP);
8190 } else {
8191 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8192 createOperands(N, Ops);
8193 }
8194
8195 InsertNode(N);
8196 SDValue V = SDValue(N, 0);
8197 NewSDValueDbgMsg(V, "Creating new node: ", this);
8198 return V;
8199}
8200
8201SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8202 SDValue N1, SDValue N2, SDValue N3) {
8203 SDNodeFlags Flags;
8204 if (Inserter)
8205 Flags = Inserter->getFlags();
8206 return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
8207}
8208
8209SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8210 SDValue N1, SDValue N2, SDValue N3,
8211 const SDNodeFlags Flags) {
8213 N2.getOpcode() != ISD::DELETED_NODE &&
8214 N3.getOpcode() != ISD::DELETED_NODE &&
8215 "Operand is DELETED_NODE!");
8216 // Perform various simplifications.
8217 switch (Opcode) {
8218 case ISD::BUILD_VECTOR: {
8219 // Attempt to simplify BUILD_VECTOR.
8220 SDValue Ops[] = {N1, N2, N3};
8221 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8222 return V;
8223 break;
8224 }
8225 case ISD::CONCAT_VECTORS: {
8226 SDValue Ops[] = {N1, N2, N3};
8227 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8228 return V;
8229 break;
8230 }
8231 case ISD::SETCC: {
8232 assert(VT.isInteger() && "SETCC result type must be an integer!");
8233 assert(N1.getValueType() == N2.getValueType() &&
8234 "SETCC operands must have the same type!");
8235 assert(VT.isVector() == N1.getValueType().isVector() &&
8236 "SETCC type should be vector iff the operand type is vector!");
8237 assert((!VT.isVector() || VT.getVectorElementCount() ==
8239 "SETCC vector element counts must match!");
8240 // Use FoldSetCC to simplify SETCC's.
8241 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
8242 return V;
8243 break;
8244 }
8245 case ISD::SELECT:
8246 case ISD::VSELECT:
8247 if (SDValue V = simplifySelect(N1, N2, N3))
8248 return V;
8249 break;
8251 llvm_unreachable("should use getVectorShuffle constructor!");
8252 case ISD::VECTOR_SPLICE: {
8253 if (cast<ConstantSDNode>(N3)->isZero())
8254 return N1;
8255 break;
8256 }
8258 assert(VT.isVector() && VT == N1.getValueType() &&
8259 "INSERT_VECTOR_ELT vector type mismatch");
8261 "INSERT_VECTOR_ELT scalar fp/int mismatch");
8262 assert((!VT.isFloatingPoint() ||
8263 VT.getVectorElementType() == N2.getValueType()) &&
8264 "INSERT_VECTOR_ELT fp scalar type mismatch");
8265 assert((!VT.isInteger() ||
8267 "INSERT_VECTOR_ELT int scalar size mismatch");
8268
8269 auto *N3C = dyn_cast<ConstantSDNode>(N3);
8270 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
8271 // for scalable vectors where we will generate appropriate code to
8272 // deal with out-of-bounds cases correctly.
8273 if (N3C && VT.isFixedLengthVector() &&
8274 N3C->getZExtValue() >= VT.getVectorNumElements())
8275 return getUNDEF(VT);
8276
8277 // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
8278 if (N3.isUndef())
8279 return getUNDEF(VT);
8280
8281 // If inserting poison, just use the input vector.
8282 if (N2.getOpcode() == ISD::POISON)
8283 return N1;
8284
8285 // Inserting undef into undef/poison is still undef.
8286 if (N2.getOpcode() == ISD::UNDEF && N1.isUndef())
8287 return getUNDEF(VT);
8288
8289 // If the inserted element is an UNDEF, just use the input vector.
8290 // But not if skipping the insert could make the result more poisonous.
8291 if (N2.isUndef()) {
8292 if (N3C && VT.isFixedLengthVector()) {
8293 APInt EltMask =
8294 APInt::getOneBitSet(VT.getVectorNumElements(), N3C->getZExtValue());
8295 if (isGuaranteedNotToBePoison(N1, EltMask))
8296 return N1;
8297 } else if (isGuaranteedNotToBePoison(N1))
8298 return N1;
8299 }
8300 break;
8301 }
8302 case ISD::INSERT_SUBVECTOR: {
8303 // If inserting poison, just use the input vector,
8304 if (N2.getOpcode() == ISD::POISON)
8305 return N1;
8306
8307 // Inserting undef into undef/poison is still undef.
8308 if (N2.getOpcode() == ISD::UNDEF && N1.isUndef())
8309 return getUNDEF(VT);
8310
8311 EVT N2VT = N2.getValueType();
8312 assert(VT == N1.getValueType() &&
8313 "Dest and insert subvector source types must match!");
8314 assert(VT.isVector() && N2VT.isVector() &&
8315 "Insert subvector VTs must be vectors!");
8317 "Insert subvector VTs must have the same element type!");
8318 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
8319 "Cannot insert a scalable vector into a fixed length vector!");
8320 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
8322 "Insert subvector must be from smaller vector to larger vector!");
8324 "Insert subvector index must be constant");
8325 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
8326 (N2VT.getVectorMinNumElements() + N3->getAsZExtVal()) <=
8328 "Insert subvector overflow!");
8330 TLI->getVectorIdxWidth(getDataLayout()) &&
8331 "Constant index for INSERT_SUBVECTOR has an invalid size");
8332
8333 // Trivial insertion.
8334 if (VT == N2VT)
8335 return N2;
8336
8337 // If this is an insert of an extracted vector into an undef/poison vector,
8338 // we can just use the input to the extract. But not if skipping the
8339 // extract+insert could make the result more poisonous.
8340 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
8341 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) {
8342 if (N1.getOpcode() == ISD::POISON)
8343 return N2.getOperand(0);
8344 if (VT.isFixedLengthVector() && N2VT.isFixedLengthVector()) {
8345 unsigned LoBit = N3->getAsZExtVal();
8346 unsigned HiBit = LoBit + N2VT.getVectorNumElements();
8347 APInt EltMask =
8348 APInt::getBitsSet(VT.getVectorNumElements(), LoBit, HiBit);
8349 if (isGuaranteedNotToBePoison(N2.getOperand(0), ~EltMask))
8350 return N2.getOperand(0);
8351 } else if (isGuaranteedNotToBePoison(N2.getOperand(0)))
8352 return N2.getOperand(0);
8353 }
8354
8355 // If the inserted subvector is UNDEF, just use the input vector.
8356 // But not if skipping the insert could make the result more poisonous.
8357 if (N2.isUndef()) {
8358 if (VT.isFixedLengthVector()) {
8359 unsigned LoBit = N3->getAsZExtVal();
8360 unsigned HiBit = LoBit + N2VT.getVectorNumElements();
8361 APInt EltMask =
8362 APInt::getBitsSet(VT.getVectorNumElements(), LoBit, HiBit);
8363 if (isGuaranteedNotToBePoison(N1, EltMask))
8364 return N1;
8365 } else if (isGuaranteedNotToBePoison(N1))
8366 return N1;
8367 }
8368 break;
8369 }
8370 case ISD::BITCAST:
8371 // Fold bit_convert nodes from a type to themselves.
8372 if (N1.getValueType() == VT)
8373 return N1;
8374 break;
8375 case ISD::VP_TRUNCATE:
8376 case ISD::VP_SIGN_EXTEND:
8377 case ISD::VP_ZERO_EXTEND:
8378 // Don't create noop casts.
8379 if (N1.getValueType() == VT)
8380 return N1;
8381 break;
8382 case ISD::VECTOR_COMPRESS: {
8383 [[maybe_unused]] EVT VecVT = N1.getValueType();
8384 [[maybe_unused]] EVT MaskVT = N2.getValueType();
8385 [[maybe_unused]] EVT PassthruVT = N3.getValueType();
8386 assert(VT == VecVT && "Vector and result type don't match.");
8387 assert(VecVT.isVector() && MaskVT.isVector() && PassthruVT.isVector() &&
8388 "All inputs must be vectors.");
8389 assert(VecVT == PassthruVT && "Vector and passthru types don't match.");
8391 "Vector and mask must have same number of elements.");
8392
8393 if (N1.isUndef() || N2.isUndef())
8394 return N3;
8395
8396 break;
8397 }
8398 case ISD::PARTIAL_REDUCE_UMLA:
8399 case ISD::PARTIAL_REDUCE_SMLA:
8400 case ISD::PARTIAL_REDUCE_SUMLA: {
8401 [[maybe_unused]] EVT AccVT = N1.getValueType();
8402 [[maybe_unused]] EVT Input1VT = N2.getValueType();
8403 [[maybe_unused]] EVT Input2VT = N3.getValueType();
8404 assert(Input1VT.isVector() && Input1VT == Input2VT &&
8405 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8406 "node to have the same type!");
8407 assert(VT.isVector() && VT == AccVT &&
8408 "Expected the first operand of the PARTIAL_REDUCE_MLA node to have "
8409 "the same type as its result!");
8411 AccVT.getVectorElementCount()) &&
8412 "Expected the element count of the second and third operands of the "
8413 "PARTIAL_REDUCE_MLA node to be a positive integer multiple of the "
8414 "element count of the first operand and the result!");
8416 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8417 "node to have an element type which is the same as or smaller than "
8418 "the element type of the first operand and result!");
8419 break;
8420 }
8421 }
8422
8423 // Perform trivial constant folding for arithmetic operators.
8424 switch (Opcode) {
8425 case ISD::FMA:
8426 case ISD::FMAD:
8427 case ISD::SETCC:
8428 case ISD::FSHL:
8429 case ISD::FSHR:
8430 if (SDValue SV =
8431 FoldConstantArithmetic(Opcode, DL, VT, {N1, N2, N3}, Flags))
8432 return SV;
8433 break;
8434 }
8435
8436 // Memoize node if it doesn't produce a glue result.
8437 SDNode *N;
8438 SDVTList VTs = getVTList(VT);
8439 SDValue Ops[] = {N1, N2, N3};
8440 if (VT != MVT::Glue) {
8442 AddNodeIDNode(ID, Opcode, VTs, Ops);
8443 void *IP = nullptr;
8444 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8445 E->intersectFlagsWith(Flags);
8446 return SDValue(E, 0);
8447 }
8448
8449 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8450 N->setFlags(Flags);
8451 createOperands(N, Ops);
8452 CSEMap.InsertNode(N, IP);
8453 } else {
8454 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8455 createOperands(N, Ops);
8456 }
8457
8458 InsertNode(N);
8459 SDValue V = SDValue(N, 0);
8460 NewSDValueDbgMsg(V, "Creating new node: ", this);
8461 return V;
8462}
8463
8464SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8465 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8466 const SDNodeFlags Flags) {
8467 SDValue Ops[] = { N1, N2, N3, N4 };
8468 return getNode(Opcode, DL, VT, Ops, Flags);
8469}
8470
8471SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8472 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8473 SDNodeFlags Flags;
8474 if (Inserter)
8475 Flags = Inserter->getFlags();
8476 return getNode(Opcode, DL, VT, N1, N2, N3, N4, Flags);
8477}
8478
8479SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8480 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8481 SDValue N5, const SDNodeFlags Flags) {
8482 SDValue Ops[] = { N1, N2, N3, N4, N5 };
8483 return getNode(Opcode, DL, VT, Ops, Flags);
8484}
8485
8486SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8487 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8488 SDValue N5) {
8489 SDNodeFlags Flags;
8490 if (Inserter)
8491 Flags = Inserter->getFlags();
8492 return getNode(Opcode, DL, VT, N1, N2, N3, N4, N5, Flags);
8493}
8494
8495/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
8496/// the incoming stack arguments to be loaded from the stack.
8498 SmallVector<SDValue, 8> ArgChains;
8499
8500 // Include the original chain at the beginning of the list. When this is
8501 // used by target LowerCall hooks, this helps legalize find the
8502 // CALLSEQ_BEGIN node.
8503 ArgChains.push_back(Chain);
8504
8505 // Add a chain value for each stack argument.
8506 for (SDNode *U : getEntryNode().getNode()->users())
8507 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
8508 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
8509 if (FI->getIndex() < 0)
8510 ArgChains.push_back(SDValue(L, 1));
8511
8512 // Build a tokenfactor for all the chains.
8513 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
8514}
8515
8516/// getMemsetValue - Vectorized representation of the memset value
8517/// operand.
8519 const SDLoc &dl) {
8520 assert(!Value.isUndef());
8521
8522 unsigned NumBits = VT.getScalarSizeInBits();
8524 assert(C->getAPIntValue().getBitWidth() == 8);
8525 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
8526 if (VT.isInteger()) {
8527 bool IsOpaque = VT.getSizeInBits() > 64 ||
8528 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
8529 return DAG.getConstant(Val, dl, VT, false, IsOpaque);
8530 }
8531 return DAG.getConstantFP(APFloat(VT.getFltSemantics(), Val), dl, VT);
8532 }
8533
8534 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
8535 EVT IntVT = VT.getScalarType();
8536 if (!IntVT.isInteger())
8537 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
8538
8539 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
8540 if (NumBits > 8) {
8541 // Use a multiplication with 0x010101... to extend the input to the
8542 // required length.
8543 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
8544 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
8545 DAG.getConstant(Magic, dl, IntVT));
8546 }
8547
8548 if (VT != Value.getValueType() && !VT.isInteger())
8549 Value = DAG.getBitcast(VT.getScalarType(), Value);
8550 if (VT != Value.getValueType())
8551 Value = DAG.getSplatBuildVector(VT, dl, Value);
8552
8553 return Value;
8554}
8555
8556/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
8557/// used when a memcpy is turned into a memset when the source is a constant
8558/// string ptr.
8560 const TargetLowering &TLI,
8561 const ConstantDataArraySlice &Slice) {
8562 // Handle vector with all elements zero.
8563 if (Slice.Array == nullptr) {
8564 if (VT.isInteger())
8565 return DAG.getConstant(0, dl, VT);
8566 return DAG.getNode(ISD::BITCAST, dl, VT,
8567 DAG.getConstant(0, dl, VT.changeTypeToInteger()));
8568 }
8569
8570 assert(!VT.isVector() && "Can't handle vector type here!");
8571 unsigned NumVTBits = VT.getSizeInBits();
8572 unsigned NumVTBytes = NumVTBits / 8;
8573 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
8574
8575 APInt Val(NumVTBits, 0);
8576 if (DAG.getDataLayout().isLittleEndian()) {
8577 for (unsigned i = 0; i != NumBytes; ++i)
8578 Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
8579 } else {
8580 for (unsigned i = 0; i != NumBytes; ++i)
8581 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
8582 }
8583
8584 // If the "cost" of materializing the integer immediate is less than the cost
8585 // of a load, then it is cost effective to turn the load into the immediate.
8586 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
8587 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
8588 return DAG.getConstant(Val, dl, VT);
8589 return SDValue();
8590}
8591
8593 const SDLoc &DL,
8594 const SDNodeFlags Flags) {
8595 EVT VT = Base.getValueType();
8596 SDValue Index;
8597
8598 if (Offset.isScalable())
8599 Index = getVScale(DL, Base.getValueType(),
8600 APInt(Base.getValueSizeInBits().getFixedValue(),
8601 Offset.getKnownMinValue()));
8602 else
8603 Index = getConstant(Offset.getFixedValue(), DL, VT);
8604
8605 return getMemBasePlusOffset(Base, Index, DL, Flags);
8606}
8607
8609 const SDLoc &DL,
8610 const SDNodeFlags Flags) {
8611 assert(Offset.getValueType().isInteger());
8612 EVT BasePtrVT = Ptr.getValueType();
8613 if (TLI->shouldPreservePtrArith(this->getMachineFunction().getFunction(),
8614 BasePtrVT))
8615 return getNode(ISD::PTRADD, DL, BasePtrVT, Ptr, Offset, Flags);
8616 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
8617}
8618
8619/// Returns true if memcpy source is constant data.
8621 uint64_t SrcDelta = 0;
8622 GlobalAddressSDNode *G = nullptr;
8623 if (Src.getOpcode() == ISD::GlobalAddress)
8625 else if (Src->isAnyAdd() &&
8626 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
8627 Src.getOperand(1).getOpcode() == ISD::Constant) {
8628 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
8629 SrcDelta = Src.getConstantOperandVal(1);
8630 }
8631 if (!G)
8632 return false;
8633
8634 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
8635 SrcDelta + G->getOffset());
8636}
8637
8639 SelectionDAG &DAG) {
8640 // On Darwin, -Os means optimize for size without hurting performance, so
8641 // only really optimize for size when -Oz (MinSize) is used.
8643 return MF.getFunction().hasMinSize();
8644 return DAG.shouldOptForSize();
8645}
8646
8648 SmallVector<SDValue, 32> &OutChains, unsigned From,
8649 unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
8650 SmallVector<SDValue, 16> &OutStoreChains) {
8651 assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
8652 assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
8653 SmallVector<SDValue, 16> GluedLoadChains;
8654 for (unsigned i = From; i < To; ++i) {
8655 OutChains.push_back(OutLoadChains[i]);
8656 GluedLoadChains.push_back(OutLoadChains[i]);
8657 }
8658
8659 // Chain for all loads.
8660 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8661 GluedLoadChains);
8662
8663 for (unsigned i = From; i < To; ++i) {
8664 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
8665 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
8666 ST->getBasePtr(), ST->getMemoryVT(),
8667 ST->getMemOperand());
8668 OutChains.push_back(NewStore);
8669 }
8670}
8671
8673 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
8674 uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline,
8675 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo,
8676 const AAMDNodes &AAInfo, BatchAAResults *BatchAA) {
8677 // Turn a memcpy of undef to nop.
8678 // FIXME: We need to honor volatile even is Src is undef.
8679 if (Src.isUndef())
8680 return Chain;
8681
8682 // Expand memcpy to a series of load and store ops if the size operand falls
8683 // below a certain threshold.
8684 // TODO: In the AlwaysInline case, if the size is big then generate a loop
8685 // rather than maybe a humongous number of loads and stores.
8686 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8687 const DataLayout &DL = DAG.getDataLayout();
8688 LLVMContext &C = *DAG.getContext();
8689 std::vector<EVT> MemOps;
8690 bool DstAlignCanChange = false;
8692 MachineFrameInfo &MFI = MF.getFrameInfo();
8693 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8695 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8696 DstAlignCanChange = true;
8697 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
8698 if (!SrcAlign || Alignment > *SrcAlign)
8699 SrcAlign = Alignment;
8700 assert(SrcAlign && "SrcAlign must be set");
8702 // If marked as volatile, perform a copy even when marked as constant.
8703 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
8704 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
8705 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
8706 const MemOp Op = isZeroConstant
8707 ? MemOp::Set(Size, DstAlignCanChange, Alignment,
8708 /*IsZeroMemset*/ true, isVol)
8709 : MemOp::Copy(Size, DstAlignCanChange, Alignment,
8710 *SrcAlign, isVol, CopyFromConstant);
8711 if (!TLI.findOptimalMemOpLowering(
8712 C, MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
8713 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
8714 return SDValue();
8715
8716 if (DstAlignCanChange) {
8717 Type *Ty = MemOps[0].getTypeForEVT(C);
8718 Align NewAlign = DL.getABITypeAlign(Ty);
8719
8720 // Don't promote to an alignment that would require dynamic stack
8721 // realignment which may conflict with optimizations such as tail call
8722 // optimization.
8724 if (!TRI->hasStackRealignment(MF))
8725 if (MaybeAlign StackAlign = DL.getStackAlignment())
8726 NewAlign = std::min(NewAlign, *StackAlign);
8727
8728 if (NewAlign > Alignment) {
8729 // Give the stack frame object a larger alignment if needed.
8730 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8731 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8732 Alignment = NewAlign;
8733 }
8734 }
8735
8736 // Prepare AAInfo for loads/stores after lowering this memcpy.
8737 AAMDNodes NewAAInfo = AAInfo;
8738 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8739
8740 const Value *SrcVal = dyn_cast_if_present<const Value *>(SrcPtrInfo.V);
8741 bool isConstant =
8742 BatchAA && SrcVal &&
8743 BatchAA->pointsToConstantMemory(MemoryLocation(SrcVal, Size, AAInfo));
8744
8745 MachineMemOperand::Flags MMOFlags =
8747 SmallVector<SDValue, 16> OutLoadChains;
8748 SmallVector<SDValue, 16> OutStoreChains;
8749 SmallVector<SDValue, 32> OutChains;
8750 unsigned NumMemOps = MemOps.size();
8751 uint64_t SrcOff = 0, DstOff = 0;
8752 for (unsigned i = 0; i != NumMemOps; ++i) {
8753 EVT VT = MemOps[i];
8754 unsigned VTSize = VT.getSizeInBits() / 8;
8755 SDValue Value, Store;
8756
8757 if (VTSize > Size) {
8758 // Issuing an unaligned load / store pair that overlaps with the previous
8759 // pair. Adjust the offset accordingly.
8760 assert(i == NumMemOps-1 && i != 0);
8761 SrcOff -= VTSize - Size;
8762 DstOff -= VTSize - Size;
8763 }
8764
8765 if (CopyFromConstant &&
8766 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
8767 // It's unlikely a store of a vector immediate can be done in a single
8768 // instruction. It would require a load from a constantpool first.
8769 // We only handle zero vectors here.
8770 // FIXME: Handle other cases where store of vector immediate is done in
8771 // a single instruction.
8772 ConstantDataArraySlice SubSlice;
8773 if (SrcOff < Slice.Length) {
8774 SubSlice = Slice;
8775 SubSlice.move(SrcOff);
8776 } else {
8777 // This is an out-of-bounds access and hence UB. Pretend we read zero.
8778 SubSlice.Array = nullptr;
8779 SubSlice.Offset = 0;
8780 SubSlice.Length = VTSize;
8781 }
8782 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
8783 if (Value.getNode()) {
8784 Store = DAG.getStore(
8785 Chain, dl, Value,
8786 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8787 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8788 OutChains.push_back(Store);
8789 }
8790 }
8791
8792 if (!Store.getNode()) {
8793 // The type might not be legal for the target. This should only happen
8794 // if the type is smaller than a legal type, as on PPC, so the right
8795 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
8796 // to Load/Store if NVT==VT.
8797 // FIXME does the case above also need this?
8798 EVT NVT = TLI.getTypeToTransformTo(C, VT);
8799 assert(NVT.bitsGE(VT));
8800
8801 bool isDereferenceable =
8802 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
8803 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
8804 if (isDereferenceable)
8806 if (isConstant)
8807 SrcMMOFlags |= MachineMemOperand::MOInvariant;
8808
8809 Value = DAG.getExtLoad(
8810 ISD::EXTLOAD, dl, NVT, Chain,
8811 DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl),
8812 SrcPtrInfo.getWithOffset(SrcOff), VT,
8813 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
8814 OutLoadChains.push_back(Value.getValue(1));
8815
8816 Store = DAG.getTruncStore(
8817 Chain, dl, Value,
8818 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8819 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
8820 OutStoreChains.push_back(Store);
8821 }
8822 SrcOff += VTSize;
8823 DstOff += VTSize;
8824 Size -= VTSize;
8825 }
8826
8827 unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
8829 unsigned NumLdStInMemcpy = OutStoreChains.size();
8830
8831 if (NumLdStInMemcpy) {
8832 // It may be that memcpy might be converted to memset if it's memcpy
8833 // of constants. In such a case, we won't have loads and stores, but
8834 // just stores. In the absence of loads, there is nothing to gang up.
8835 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
8836 // If target does not care, just leave as it.
8837 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
8838 OutChains.push_back(OutLoadChains[i]);
8839 OutChains.push_back(OutStoreChains[i]);
8840 }
8841 } else {
8842 // Ld/St less than/equal limit set by target.
8843 if (NumLdStInMemcpy <= GluedLdStLimit) {
8844 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
8845 NumLdStInMemcpy, OutLoadChains,
8846 OutStoreChains);
8847 } else {
8848 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
8849 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
8850 unsigned GlueIter = 0;
8851
8852 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
8853 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
8854 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
8855
8856 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
8857 OutLoadChains, OutStoreChains);
8858 GlueIter += GluedLdStLimit;
8859 }
8860
8861 // Residual ld/st.
8862 if (RemainingLdStInMemcpy) {
8863 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
8864 RemainingLdStInMemcpy, OutLoadChains,
8865 OutStoreChains);
8866 }
8867 }
8868 }
8869 }
8870 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8871}
8872
8874 SDValue Chain, SDValue Dst, SDValue Src,
8875 uint64_t Size, Align Alignment,
8876 bool isVol, bool AlwaysInline,
8877 MachinePointerInfo DstPtrInfo,
8878 MachinePointerInfo SrcPtrInfo,
8879 const AAMDNodes &AAInfo) {
8880 // Turn a memmove of undef to nop.
8881 // FIXME: We need to honor volatile even is Src is undef.
8882 if (Src.isUndef())
8883 return Chain;
8884
8885 // Expand memmove to a series of load and store ops if the size operand falls
8886 // below a certain threshold.
8887 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8888 const DataLayout &DL = DAG.getDataLayout();
8889 LLVMContext &C = *DAG.getContext();
8890 std::vector<EVT> MemOps;
8891 bool DstAlignCanChange = false;
8893 MachineFrameInfo &MFI = MF.getFrameInfo();
8894 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8896 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8897 DstAlignCanChange = true;
8898 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
8899 if (!SrcAlign || Alignment > *SrcAlign)
8900 SrcAlign = Alignment;
8901 assert(SrcAlign && "SrcAlign must be set");
8902 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
8903 if (!TLI.findOptimalMemOpLowering(
8904 C, MemOps, Limit,
8905 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
8906 /*IsVolatile*/ true),
8907 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
8908 MF.getFunction().getAttributes()))
8909 return SDValue();
8910
8911 if (DstAlignCanChange) {
8912 Type *Ty = MemOps[0].getTypeForEVT(C);
8913 Align NewAlign = DL.getABITypeAlign(Ty);
8914
8915 // Don't promote to an alignment that would require dynamic stack
8916 // realignment which may conflict with optimizations such as tail call
8917 // optimization.
8919 if (!TRI->hasStackRealignment(MF))
8920 if (MaybeAlign StackAlign = DL.getStackAlignment())
8921 NewAlign = std::min(NewAlign, *StackAlign);
8922
8923 if (NewAlign > Alignment) {
8924 // Give the stack frame object a larger alignment if needed.
8925 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8926 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8927 Alignment = NewAlign;
8928 }
8929 }
8930
8931 // Prepare AAInfo for loads/stores after lowering this memmove.
8932 AAMDNodes NewAAInfo = AAInfo;
8933 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8934
8935 MachineMemOperand::Flags MMOFlags =
8937 uint64_t SrcOff = 0, DstOff = 0;
8938 SmallVector<SDValue, 8> LoadValues;
8939 SmallVector<SDValue, 8> LoadChains;
8940 SmallVector<SDValue, 8> OutChains;
8941 unsigned NumMemOps = MemOps.size();
8942 for (unsigned i = 0; i < NumMemOps; i++) {
8943 EVT VT = MemOps[i];
8944 unsigned VTSize = VT.getSizeInBits() / 8;
8945 SDValue Value;
8946
8947 bool isDereferenceable =
8948 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
8949 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
8950 if (isDereferenceable)
8952
8953 Value = DAG.getLoad(
8954 VT, dl, Chain,
8955 DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl),
8956 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
8957 LoadValues.push_back(Value);
8958 LoadChains.push_back(Value.getValue(1));
8959 SrcOff += VTSize;
8960 }
8961 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8962 OutChains.clear();
8963 for (unsigned i = 0; i < NumMemOps; i++) {
8964 EVT VT = MemOps[i];
8965 unsigned VTSize = VT.getSizeInBits() / 8;
8966 SDValue Store;
8967
8968 Store = DAG.getStore(
8969 Chain, dl, LoadValues[i],
8970 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8971 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8972 OutChains.push_back(Store);
8973 DstOff += VTSize;
8974 }
8975
8976 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8977}
8978
8979/// Lower the call to 'memset' intrinsic function into a series of store
8980/// operations.
8981///
8982/// \param DAG Selection DAG where lowered code is placed.
8983/// \param dl Link to corresponding IR location.
8984/// \param Chain Control flow dependency.
8985/// \param Dst Pointer to destination memory location.
8986/// \param Src Value of byte to write into the memory.
8987/// \param Size Number of bytes to write.
8988/// \param Alignment Alignment of the destination in bytes.
8989/// \param isVol True if destination is volatile.
8990/// \param AlwaysInline Makes sure no function call is generated.
8991/// \param DstPtrInfo IR information on the memory pointer.
8992/// \returns New head in the control flow, if lowering was successful, empty
8993/// SDValue otherwise.
8994///
8995/// The function tries to replace 'llvm.memset' intrinsic with several store
8996/// operations and value calculation code. This is usually profitable for small
8997/// memory size or when the semantic requires inlining.
8999 SDValue Chain, SDValue Dst, SDValue Src,
9000 uint64_t Size, Align Alignment, bool isVol,
9001 bool AlwaysInline, MachinePointerInfo DstPtrInfo,
9002 const AAMDNodes &AAInfo) {
9003 // Turn a memset of undef to nop.
9004 // FIXME: We need to honor volatile even is Src is undef.
9005 if (Src.isUndef())
9006 return Chain;
9007
9008 // Expand memset to a series of load/store ops if the size operand
9009 // falls below a certain threshold.
9010 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9011 std::vector<EVT> MemOps;
9012 bool DstAlignCanChange = false;
9013 LLVMContext &C = *DAG.getContext();
9015 MachineFrameInfo &MFI = MF.getFrameInfo();
9016 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
9018 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
9019 DstAlignCanChange = true;
9020 bool IsZeroVal = isNullConstant(Src);
9021 unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize);
9022
9023 if (!TLI.findOptimalMemOpLowering(
9024 C, MemOps, Limit,
9025 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
9026 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
9027 return SDValue();
9028
9029 if (DstAlignCanChange) {
9030 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
9031 const DataLayout &DL = DAG.getDataLayout();
9032 Align NewAlign = DL.getABITypeAlign(Ty);
9033
9034 // Don't promote to an alignment that would require dynamic stack
9035 // realignment which may conflict with optimizations such as tail call
9036 // optimization.
9038 if (!TRI->hasStackRealignment(MF))
9039 if (MaybeAlign StackAlign = DL.getStackAlignment())
9040 NewAlign = std::min(NewAlign, *StackAlign);
9041
9042 if (NewAlign > Alignment) {
9043 // Give the stack frame object a larger alignment if needed.
9044 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
9045 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
9046 Alignment = NewAlign;
9047 }
9048 }
9049
9050 SmallVector<SDValue, 8> OutChains;
9051 uint64_t DstOff = 0;
9052 unsigned NumMemOps = MemOps.size();
9053
9054 // Find the largest store and generate the bit pattern for it.
9055 EVT LargestVT = MemOps[0];
9056 for (unsigned i = 1; i < NumMemOps; i++)
9057 if (MemOps[i].bitsGT(LargestVT))
9058 LargestVT = MemOps[i];
9059 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
9060
9061 // Prepare AAInfo for loads/stores after lowering this memset.
9062 AAMDNodes NewAAInfo = AAInfo;
9063 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
9064
9065 for (unsigned i = 0; i < NumMemOps; i++) {
9066 EVT VT = MemOps[i];
9067 unsigned VTSize = VT.getSizeInBits() / 8;
9068 if (VTSize > Size) {
9069 // Issuing an unaligned load / store pair that overlaps with the previous
9070 // pair. Adjust the offset accordingly.
9071 assert(i == NumMemOps-1 && i != 0);
9072 DstOff -= VTSize - Size;
9073 }
9074
9075 // If this store is smaller than the largest store see whether we can get
9076 // the smaller value for free with a truncate or extract vector element and
9077 // then store.
9078 SDValue Value = MemSetValue;
9079 if (VT.bitsLT(LargestVT)) {
9080 unsigned Index;
9081 unsigned NElts = LargestVT.getSizeInBits() / VT.getSizeInBits();
9082 EVT SVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), NElts);
9083 if (!LargestVT.isVector() && !VT.isVector() &&
9084 TLI.isTruncateFree(LargestVT, VT))
9085 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
9086 else if (LargestVT.isVector() && !VT.isVector() &&
9088 LargestVT.getTypeForEVT(*DAG.getContext()),
9089 VT.getSizeInBits(), Index) &&
9090 TLI.isTypeLegal(SVT) &&
9091 LargestVT.getSizeInBits() == SVT.getSizeInBits()) {
9092 // Target which can combine store(extractelement VectorTy, Idx) can get
9093 // the smaller value for free.
9094 SDValue TailValue = DAG.getNode(ISD::BITCAST, dl, SVT, MemSetValue);
9095 Value = DAG.getExtractVectorElt(dl, VT, TailValue, Index);
9096 } else
9097 Value = getMemsetValue(Src, VT, DAG, dl);
9098 }
9099 assert(Value.getValueType() == VT && "Value with wrong type.");
9100 SDValue Store = DAG.getStore(
9101 Chain, dl, Value,
9102 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
9103 DstPtrInfo.getWithOffset(DstOff), Alignment,
9105 NewAAInfo);
9106 OutChains.push_back(Store);
9107 DstOff += VT.getSizeInBits() / 8;
9108 Size -= VTSize;
9109 }
9110
9111 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
9112}
9113
9115 unsigned AS) {
9116 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
9117 // pointer operands can be losslessly bitcasted to pointers of address space 0
9118 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
9119 report_fatal_error("cannot lower memory intrinsic in address space " +
9120 Twine(AS));
9121 }
9122}
9123
9125 const SelectionDAG *SelDAG,
9126 bool AllowReturnsFirstArg) {
9127 if (!CI || !CI->isTailCall())
9128 return false;
9129 // TODO: Fix "returns-first-arg" determination so it doesn't depend on which
9130 // helper symbol we lower to.
9131 return isInTailCallPosition(*CI, SelDAG->getTarget(),
9132 AllowReturnsFirstArg &&
9134}
9135
9136std::pair<SDValue, SDValue>
9138 SDValue Mem1, SDValue Size, const CallInst *CI) {
9139 const char *LibCallName = TLI->getLibcallName(RTLIB::MEMCMP);
9140 if (!LibCallName)
9141 return {};
9142
9145 {Mem0, PT},
9146 {Mem1, PT},
9148
9150 bool IsTailCall =
9151 isInTailCallPositionWrapper(CI, this, /*AllowReturnsFirstArg*/ true);
9152
9153 CLI.setDebugLoc(dl)
9154 .setChain(Chain)
9155 .setLibCallee(
9156 TLI->getLibcallCallingConv(RTLIB::MEMCMP),
9158 getExternalSymbol(LibCallName, TLI->getPointerTy(getDataLayout())),
9159 std::move(Args))
9160 .setTailCall(IsTailCall);
9161
9162 return TLI->LowerCallTo(CLI);
9163}
9164
9165std::pair<SDValue, SDValue> SelectionDAG::getStrlen(SDValue Chain,
9166 const SDLoc &dl,
9167 SDValue Src,
9168 const CallInst *CI) {
9169 const char *LibCallName = TLI->getLibcallName(RTLIB::STRLEN);
9170 if (!LibCallName)
9171 return {};
9172
9173 // Emit a library call.
9176
9178 bool IsTailCall =
9179 isInTailCallPositionWrapper(CI, this, /*AllowReturnsFirstArg*/ true);
9180
9181 CLI.setDebugLoc(dl)
9182 .setChain(Chain)
9183 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::STRLEN), CI->getType(),
9185 LibCallName, TLI->getProgramPointerTy(getDataLayout())),
9186 std::move(Args))
9187 .setTailCall(IsTailCall);
9188
9189 return TLI->LowerCallTo(CLI);
9190}
9191
9193 SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size,
9194 Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI,
9195 std::optional<bool> OverrideTailCall, MachinePointerInfo DstPtrInfo,
9196 MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo,
9197 BatchAAResults *BatchAA) {
9198 // Check to see if we should lower the memcpy to loads and stores first.
9199 // For cases within the target-specified limits, this is the best choice.
9201 if (ConstantSize) {
9202 // Memcpy with size zero? Just return the original chain.
9203 if (ConstantSize->isZero())
9204 return Chain;
9205
9207 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9208 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9209 if (Result.getNode())
9210 return Result;
9211 }
9212
9213 // Then check to see if we should lower the memcpy with target-specific
9214 // code. If the target chooses to do this, this is the next best.
9215 if (TSI) {
9216 SDValue Result = TSI->EmitTargetCodeForMemcpy(
9217 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
9218 DstPtrInfo, SrcPtrInfo);
9219 if (Result.getNode())
9220 return Result;
9221 }
9222
9223 // If we really need inline code and the target declined to provide it,
9224 // use a (potentially long) sequence of loads and stores.
9225 if (AlwaysInline) {
9226 assert(ConstantSize && "AlwaysInline requires a constant size!");
9228 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9229 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9230 }
9231
9234
9235 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
9236 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
9237 // respect volatile, so they may do things like read or write memory
9238 // beyond the given memory regions. But fixing this isn't easy, and most
9239 // people don't care.
9240
9241 // Emit a library call.
9244 Args.emplace_back(Dst, PtrTy);
9245 Args.emplace_back(Src, PtrTy);
9246 Args.emplace_back(Size, getDataLayout().getIntPtrType(*getContext()));
9247 // FIXME: pass in SDLoc
9249 bool IsTailCall = false;
9250 const char *MemCpyName = TLI->getMemcpyName();
9251
9252 if (OverrideTailCall.has_value()) {
9253 IsTailCall = *OverrideTailCall;
9254 } else {
9255 bool LowersToMemcpy = StringRef(MemCpyName) == StringRef("memcpy");
9256 IsTailCall = isInTailCallPositionWrapper(CI, this, LowersToMemcpy);
9257 }
9258
9259 CLI.setDebugLoc(dl)
9260 .setChain(Chain)
9261 .setLibCallee(
9262 TLI->getLibcallCallingConv(RTLIB::MEMCPY),
9263 Dst.getValueType().getTypeForEVT(*getContext()),
9264 getExternalSymbol(MemCpyName, TLI->getPointerTy(getDataLayout())),
9265 std::move(Args))
9267 .setTailCall(IsTailCall);
9268
9269 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9270 return CallResult.second;
9271}
9272
9274 SDValue Dst, SDValue Src, SDValue Size,
9275 Type *SizeTy, unsigned ElemSz,
9276 bool isTailCall,
9277 MachinePointerInfo DstPtrInfo,
9278 MachinePointerInfo SrcPtrInfo) {
9279 // Emit a library call.
9282 Args.emplace_back(Dst, ArgTy);
9283 Args.emplace_back(Src, ArgTy);
9284 Args.emplace_back(Size, SizeTy);
9285
9286 RTLIB::Libcall LibraryCall =
9288 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9289 report_fatal_error("Unsupported element size");
9290
9292 CLI.setDebugLoc(dl)
9293 .setChain(Chain)
9294 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9296 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9297 TLI->getPointerTy(getDataLayout())),
9298 std::move(Args))
9300 .setTailCall(isTailCall);
9301
9302 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9303 return CallResult.second;
9304}
9305
9307 SDValue Src, SDValue Size, Align Alignment,
9308 bool isVol, const CallInst *CI,
9309 std::optional<bool> OverrideTailCall,
9310 MachinePointerInfo DstPtrInfo,
9311 MachinePointerInfo SrcPtrInfo,
9312 const AAMDNodes &AAInfo,
9313 BatchAAResults *BatchAA) {
9314 // Check to see if we should lower the memmove to loads and stores first.
9315 // For cases within the target-specified limits, this is the best choice.
9317 if (ConstantSize) {
9318 // Memmove with size zero? Just return the original chain.
9319 if (ConstantSize->isZero())
9320 return Chain;
9321
9323 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9324 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
9325 if (Result.getNode())
9326 return Result;
9327 }
9328
9329 // Then check to see if we should lower the memmove with target-specific
9330 // code. If the target chooses to do this, this is the next best.
9331 if (TSI) {
9332 SDValue Result =
9333 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
9334 Alignment, isVol, DstPtrInfo, SrcPtrInfo);
9335 if (Result.getNode())
9336 return Result;
9337 }
9338
9341
9342 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
9343 // not be safe. See memcpy above for more details.
9344
9345 // Emit a library call.
9348 Args.emplace_back(Dst, PtrTy);
9349 Args.emplace_back(Src, PtrTy);
9350 Args.emplace_back(Size, getDataLayout().getIntPtrType(*getContext()));
9351 // FIXME: pass in SDLoc
9353
9354 bool IsTailCall = false;
9355 if (OverrideTailCall.has_value()) {
9356 IsTailCall = *OverrideTailCall;
9357 } else {
9358 bool LowersToMemmove =
9359 TLI->getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove");
9360 IsTailCall = isInTailCallPositionWrapper(CI, this, LowersToMemmove);
9361 }
9362
9363 CLI.setDebugLoc(dl)
9364 .setChain(Chain)
9365 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
9366 Dst.getValueType().getTypeForEVT(*getContext()),
9367 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
9368 TLI->getPointerTy(getDataLayout())),
9369 std::move(Args))
9371 .setTailCall(IsTailCall);
9372
9373 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9374 return CallResult.second;
9375}
9376
9378 SDValue Dst, SDValue Src, SDValue Size,
9379 Type *SizeTy, unsigned ElemSz,
9380 bool isTailCall,
9381 MachinePointerInfo DstPtrInfo,
9382 MachinePointerInfo SrcPtrInfo) {
9383 // Emit a library call.
9385 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
9386 Args.emplace_back(Dst, IntPtrTy);
9387 Args.emplace_back(Src, IntPtrTy);
9388 Args.emplace_back(Size, SizeTy);
9389
9390 RTLIB::Libcall LibraryCall =
9392 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9393 report_fatal_error("Unsupported element size");
9394
9396 CLI.setDebugLoc(dl)
9397 .setChain(Chain)
9398 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9400 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9401 TLI->getPointerTy(getDataLayout())),
9402 std::move(Args))
9404 .setTailCall(isTailCall);
9405
9406 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9407 return CallResult.second;
9408}
9409
9411 SDValue Src, SDValue Size, Align Alignment,
9412 bool isVol, bool AlwaysInline,
9413 const CallInst *CI,
9414 MachinePointerInfo DstPtrInfo,
9415 const AAMDNodes &AAInfo) {
9416 // Check to see if we should lower the memset to stores first.
9417 // For cases within the target-specified limits, this is the best choice.
9419 if (ConstantSize) {
9420 // Memset with size zero? Just return the original chain.
9421 if (ConstantSize->isZero())
9422 return Chain;
9423
9424 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
9425 ConstantSize->getZExtValue(), Alignment,
9426 isVol, false, DstPtrInfo, AAInfo);
9427
9428 if (Result.getNode())
9429 return Result;
9430 }
9431
9432 // Then check to see if we should lower the memset with target-specific
9433 // code. If the target chooses to do this, this is the next best.
9434 if (TSI) {
9435 SDValue Result = TSI->EmitTargetCodeForMemset(
9436 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
9437 if (Result.getNode())
9438 return Result;
9439 }
9440
9441 // If we really need inline code and the target declined to provide it,
9442 // use a (potentially long) sequence of loads and stores.
9443 if (AlwaysInline) {
9444 assert(ConstantSize && "AlwaysInline requires a constant size!");
9445 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
9446 ConstantSize->getZExtValue(), Alignment,
9447 isVol, true, DstPtrInfo, AAInfo);
9448 assert(Result &&
9449 "getMemsetStores must return a valid sequence when AlwaysInline");
9450 return Result;
9451 }
9452
9454
9455 // Emit a library call.
9456 auto &Ctx = *getContext();
9457 const auto& DL = getDataLayout();
9458
9460 // FIXME: pass in SDLoc
9461 CLI.setDebugLoc(dl).setChain(Chain);
9462
9463 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO);
9464
9465 bool UseBZero = isNullConstant(Src) && BzeroName;
9466 // If zeroing out and bzero is present, use it.
9467 if (UseBZero) {
9469 Args.emplace_back(Dst, PointerType::getUnqual(Ctx));
9470 Args.emplace_back(Size, DL.getIntPtrType(Ctx));
9471 CLI.setLibCallee(
9472 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx),
9473 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args));
9474 } else {
9476 Args.emplace_back(Dst, PointerType::getUnqual(Ctx));
9477 Args.emplace_back(Src, Src.getValueType().getTypeForEVT(Ctx));
9478 Args.emplace_back(Size, DL.getIntPtrType(Ctx));
9479 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
9480 Dst.getValueType().getTypeForEVT(Ctx),
9481 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
9482 TLI->getPointerTy(DL)),
9483 std::move(Args));
9484 }
9485 bool LowersToMemset =
9486 TLI->getLibcallName(RTLIB::MEMSET) == StringRef("memset");
9487 // If we're going to use bzero, make sure not to tail call unless the
9488 // subsequent return doesn't need a value, as bzero doesn't return the first
9489 // arg unlike memset.
9490 bool ReturnsFirstArg = CI && funcReturnsFirstArgOfCall(*CI) && !UseBZero;
9491 bool IsTailCall =
9492 CI && CI->isTailCall() &&
9493 isInTailCallPosition(*CI, getTarget(), ReturnsFirstArg && LowersToMemset);
9494 CLI.setDiscardResult().setTailCall(IsTailCall);
9495
9496 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9497 return CallResult.second;
9498}
9499
9502 Type *SizeTy, unsigned ElemSz,
9503 bool isTailCall,
9504 MachinePointerInfo DstPtrInfo) {
9505 // Emit a library call.
9507 Args.emplace_back(Dst, getDataLayout().getIntPtrType(*getContext()));
9508 Args.emplace_back(Value, Type::getInt8Ty(*getContext()));
9509 Args.emplace_back(Size, SizeTy);
9510
9511 RTLIB::Libcall LibraryCall =
9513 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9514 report_fatal_error("Unsupported element size");
9515
9517 CLI.setDebugLoc(dl)
9518 .setChain(Chain)
9519 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9521 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9522 TLI->getPointerTy(getDataLayout())),
9523 std::move(Args))
9525 .setTailCall(isTailCall);
9526
9527 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9528 return CallResult.second;
9529}
9530
9531SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
9533 MachineMemOperand *MMO,
9534 ISD::LoadExtType ExtType) {
9536 AddNodeIDNode(ID, Opcode, VTList, Ops);
9537 ID.AddInteger(MemVT.getRawBits());
9538 ID.AddInteger(getSyntheticNodeSubclassData<AtomicSDNode>(
9539 dl.getIROrder(), Opcode, VTList, MemVT, MMO, ExtType));
9540 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9541 ID.AddInteger(MMO->getFlags());
9542 void* IP = nullptr;
9543 if (auto *E = cast_or_null<AtomicSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
9544 E->refineAlignment(MMO);
9545 E->refineRanges(MMO);
9546 return SDValue(E, 0);
9547 }
9548
9549 auto *N = newSDNode<AtomicSDNode>(dl.getIROrder(), dl.getDebugLoc(), Opcode,
9550 VTList, MemVT, MMO, ExtType);
9551 createOperands(N, Ops);
9552
9553 CSEMap.InsertNode(N, IP);
9554 InsertNode(N);
9555 SDValue V(N, 0);
9556 NewSDValueDbgMsg(V, "Creating new node: ", this);
9557 return V;
9558}
9559
9561 EVT MemVT, SDVTList VTs, SDValue Chain,
9562 SDValue Ptr, SDValue Cmp, SDValue Swp,
9563 MachineMemOperand *MMO) {
9564 assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
9565 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
9566 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
9567
9568 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
9569 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
9570}
9571
9572SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
9573 SDValue Chain, SDValue Ptr, SDValue Val,
9574 MachineMemOperand *MMO) {
9575 assert((Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB ||
9576 Opcode == ISD::ATOMIC_LOAD_AND || Opcode == ISD::ATOMIC_LOAD_CLR ||
9577 Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR ||
9578 Opcode == ISD::ATOMIC_LOAD_NAND || Opcode == ISD::ATOMIC_LOAD_MIN ||
9579 Opcode == ISD::ATOMIC_LOAD_MAX || Opcode == ISD::ATOMIC_LOAD_UMIN ||
9580 Opcode == ISD::ATOMIC_LOAD_UMAX || Opcode == ISD::ATOMIC_LOAD_FADD ||
9581 Opcode == ISD::ATOMIC_LOAD_FSUB || Opcode == ISD::ATOMIC_LOAD_FMAX ||
9582 Opcode == ISD::ATOMIC_LOAD_FMIN ||
9583 Opcode == ISD::ATOMIC_LOAD_FMINIMUM ||
9584 Opcode == ISD::ATOMIC_LOAD_FMAXIMUM ||
9585 Opcode == ISD::ATOMIC_LOAD_UINC_WRAP ||
9586 Opcode == ISD::ATOMIC_LOAD_UDEC_WRAP ||
9587 Opcode == ISD::ATOMIC_LOAD_USUB_COND ||
9588 Opcode == ISD::ATOMIC_LOAD_USUB_SAT || Opcode == ISD::ATOMIC_SWAP ||
9589 Opcode == ISD::ATOMIC_STORE) &&
9590 "Invalid Atomic Op");
9591
9592 EVT VT = Val.getValueType();
9593
9594 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
9595 getVTList(VT, MVT::Other);
9596 SDValue Ops[] = {Chain, Ptr, Val};
9597 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
9598}
9599
9601 EVT MemVT, EVT VT, SDValue Chain,
9603 SDVTList VTs = getVTList(VT, MVT::Other);
9604 SDValue Ops[] = {Chain, Ptr};
9605 return getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, VTs, Ops, MMO, ExtType);
9606}
9607
9608/// getMergeValues - Create a MERGE_VALUES node from the given operands.
9610 if (Ops.size() == 1)
9611 return Ops[0];
9612
9614 VTs.reserve(Ops.size());
9615 for (const SDValue &Op : Ops)
9616 VTs.push_back(Op.getValueType());
9617 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
9618}
9619
9621 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
9622 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
9624 const AAMDNodes &AAInfo) {
9625 if (Size.hasValue() && !Size.getValue())
9627
9629 MachineMemOperand *MMO =
9630 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
9631
9632 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
9633}
9634
9636 SDVTList VTList,
9637 ArrayRef<SDValue> Ops, EVT MemVT,
9638 MachineMemOperand *MMO) {
9639 assert(
9640 (Opcode == ISD::INTRINSIC_VOID || Opcode == ISD::INTRINSIC_W_CHAIN ||
9641 Opcode == ISD::PREFETCH ||
9642 (Opcode <= (unsigned)std::numeric_limits<int>::max() &&
9643 Opcode >= ISD::BUILTIN_OP_END && TSI->isTargetMemoryOpcode(Opcode))) &&
9644 "Opcode is not a memory-accessing opcode!");
9645
9646 // Memoize the node unless it returns a glue result.
9648 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
9650 AddNodeIDNode(ID, Opcode, VTList, Ops);
9651 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
9652 Opcode, dl.getIROrder(), VTList, MemVT, MMO));
9653 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9654 ID.AddInteger(MMO->getFlags());
9655 ID.AddInteger(MemVT.getRawBits());
9656 void *IP = nullptr;
9657 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9658 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
9659 return SDValue(E, 0);
9660 }
9661
9662 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
9663 VTList, MemVT, MMO);
9664 createOperands(N, Ops);
9665
9666 CSEMap.InsertNode(N, IP);
9667 } else {
9668 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
9669 VTList, MemVT, MMO);
9670 createOperands(N, Ops);
9671 }
9672 InsertNode(N);
9673 SDValue V(N, 0);
9674 NewSDValueDbgMsg(V, "Creating new node: ", this);
9675 return V;
9676}
9677
9679 SDValue Chain, int FrameIndex) {
9680 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
9681 const auto VTs = getVTList(MVT::Other);
9682 SDValue Ops[2] = {
9683 Chain,
9684 getFrameIndex(FrameIndex,
9685 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
9686 true)};
9687
9689 AddNodeIDNode(ID, Opcode, VTs, Ops);
9690 ID.AddInteger(FrameIndex);
9691 void *IP = nullptr;
9692 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
9693 return SDValue(E, 0);
9694
9695 LifetimeSDNode *N =
9696 newSDNode<LifetimeSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs);
9697 createOperands(N, Ops);
9698 CSEMap.InsertNode(N, IP);
9699 InsertNode(N);
9700 SDValue V(N, 0);
9701 NewSDValueDbgMsg(V, "Creating new node: ", this);
9702 return V;
9703}
9704
9706 uint64_t Guid, uint64_t Index,
9707 uint32_t Attr) {
9708 const unsigned Opcode = ISD::PSEUDO_PROBE;
9709 const auto VTs = getVTList(MVT::Other);
9710 SDValue Ops[] = {Chain};
9712 AddNodeIDNode(ID, Opcode, VTs, Ops);
9713 ID.AddInteger(Guid);
9714 ID.AddInteger(Index);
9715 void *IP = nullptr;
9716 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
9717 return SDValue(E, 0);
9718
9719 auto *N = newSDNode<PseudoProbeSDNode>(
9720 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
9721 createOperands(N, Ops);
9722 CSEMap.InsertNode(N, IP);
9723 InsertNode(N);
9724 SDValue V(N, 0);
9725 NewSDValueDbgMsg(V, "Creating new node: ", this);
9726 return V;
9727}
9728
9729/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
9730/// MachinePointerInfo record from it. This is particularly useful because the
9731/// code generator has many cases where it doesn't bother passing in a
9732/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
9734 SelectionDAG &DAG, SDValue Ptr,
9735 int64_t Offset = 0) {
9736 // If this is FI+Offset, we can model it.
9739 FI->getIndex(), Offset);
9740
9741 // If this is (FI+Offset1)+Offset2, we can model it.
9742 if (Ptr.getOpcode() != ISD::ADD ||
9743 !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
9744 !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
9745 return Info;
9746
9747 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9749 DAG.getMachineFunction(), FI,
9750 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
9751}
9752
9753/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
9754/// MachinePointerInfo record from it. This is particularly useful because the
9755/// code generator has many cases where it doesn't bother passing in a
9756/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
9758 SelectionDAG &DAG, SDValue Ptr,
9759 SDValue OffsetOp) {
9760 // If the 'Offset' value isn't a constant, we can't handle this.
9762 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
9763 if (OffsetOp.isUndef())
9764 return InferPointerInfo(Info, DAG, Ptr);
9765 return Info;
9766}
9767
9769 EVT VT, const SDLoc &dl, SDValue Chain,
9771 MachinePointerInfo PtrInfo, EVT MemVT,
9772 Align Alignment,
9773 MachineMemOperand::Flags MMOFlags,
9774 const AAMDNodes &AAInfo, const MDNode *Ranges) {
9775 assert(Chain.getValueType() == MVT::Other &&
9776 "Invalid chain type");
9777
9778 MMOFlags |= MachineMemOperand::MOLoad;
9779 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
9780 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
9781 // clients.
9782 if (PtrInfo.V.isNull())
9783 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
9784
9785 TypeSize Size = MemVT.getStoreSize();
9787 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
9788 Alignment, AAInfo, Ranges);
9789 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
9790}
9791
9793 EVT VT, const SDLoc &dl, SDValue Chain,
9794 SDValue Ptr, SDValue Offset, EVT MemVT,
9795 MachineMemOperand *MMO) {
9796 if (VT == MemVT) {
9797 ExtType = ISD::NON_EXTLOAD;
9798 } else if (ExtType == ISD::NON_EXTLOAD) {
9799 assert(VT == MemVT && "Non-extending load from different memory type!");
9800 } else {
9801 // Extending load.
9802 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
9803 "Should only be an extending load, not truncating!");
9804 assert(VT.isInteger() == MemVT.isInteger() &&
9805 "Cannot convert from FP to Int or Int -> FP!");
9806 assert(VT.isVector() == MemVT.isVector() &&
9807 "Cannot use an ext load to convert to or from a vector!");
9808 assert((!VT.isVector() ||
9810 "Cannot use an ext load to change the number of vector elements!");
9811 }
9812
9813 assert((!MMO->getRanges() ||
9815 ->getBitWidth() == MemVT.getScalarSizeInBits() &&
9816 MemVT.isInteger())) &&
9817 "Range metadata and load type must match!");
9818
9819 bool Indexed = AM != ISD::UNINDEXED;
9820 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
9821
9822 SDVTList VTs = Indexed ?
9823 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
9824 SDValue Ops[] = { Chain, Ptr, Offset };
9826 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
9827 ID.AddInteger(MemVT.getRawBits());
9828 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
9829 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
9830 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9831 ID.AddInteger(MMO->getFlags());
9832 void *IP = nullptr;
9833 if (auto *E = cast_or_null<LoadSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
9834 E->refineAlignment(MMO);
9835 E->refineRanges(MMO);
9836 return SDValue(E, 0);
9837 }
9838 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9839 ExtType, MemVT, MMO);
9840 createOperands(N, Ops);
9841
9842 CSEMap.InsertNode(N, IP);
9843 InsertNode(N);
9844 SDValue V(N, 0);
9845 NewSDValueDbgMsg(V, "Creating new node: ", this);
9846 return V;
9847}
9848
9851 MaybeAlign Alignment,
9852 MachineMemOperand::Flags MMOFlags,
9853 const AAMDNodes &AAInfo, const MDNode *Ranges) {
9854 SDValue Undef = getUNDEF(Ptr.getValueType());
9855 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9856 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
9857}
9858
9861 SDValue Undef = getUNDEF(Ptr.getValueType());
9862 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9863 VT, MMO);
9864}
9865
9867 EVT VT, SDValue Chain, SDValue Ptr,
9868 MachinePointerInfo PtrInfo, EVT MemVT,
9869 MaybeAlign Alignment,
9870 MachineMemOperand::Flags MMOFlags,
9871 const AAMDNodes &AAInfo) {
9872 SDValue Undef = getUNDEF(Ptr.getValueType());
9873 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
9874 MemVT, Alignment, MMOFlags, AAInfo);
9875}
9876
9878 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
9879 MachineMemOperand *MMO) {
9880 SDValue Undef = getUNDEF(Ptr.getValueType());
9881 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
9882 MemVT, MMO);
9883}
9884
9888 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
9889 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
9890 // Don't propagate the invariant or dereferenceable flags.
9891 auto MMOFlags =
9892 LD->getMemOperand()->getFlags() &
9894 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
9895 LD->getChain(), Base, Offset, LD->getPointerInfo(),
9896 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
9897}
9898
9901 Align Alignment,
9902 MachineMemOperand::Flags MMOFlags,
9903 const AAMDNodes &AAInfo) {
9904 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9905
9906 MMOFlags |= MachineMemOperand::MOStore;
9907 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9908
9909 if (PtrInfo.V.isNull())
9910 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9911
9914 MachineMemOperand *MMO =
9915 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
9916 return getStore(Chain, dl, Val, Ptr, MMO);
9917}
9918
9921 SDValue Undef = getUNDEF(Ptr.getValueType());
9922 return getStore(Chain, dl, Val, Ptr, Undef, Val.getValueType(), MMO,
9924}
9925
9929 bool IsTruncating) {
9930 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9931 EVT VT = Val.getValueType();
9932 if (VT == SVT) {
9933 IsTruncating = false;
9934 } else if (!IsTruncating) {
9935 assert(VT == SVT && "No-truncating store from different memory type!");
9936 } else {
9938 "Should only be a truncating store, not extending!");
9939 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
9940 assert(VT.isVector() == SVT.isVector() &&
9941 "Cannot use trunc store to convert to or from a vector!");
9942 assert((!VT.isVector() ||
9944 "Cannot use trunc store to change the number of vector elements!");
9945 }
9946
9947 bool Indexed = AM != ISD::UNINDEXED;
9948 assert((Indexed || Offset.isUndef()) && "Unindexed store with an offset!");
9949 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
9950 : getVTList(MVT::Other);
9951 SDValue Ops[] = {Chain, Val, Ptr, Offset};
9953 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
9954 ID.AddInteger(SVT.getRawBits());
9955 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9956 dl.getIROrder(), VTs, AM, IsTruncating, SVT, MMO));
9957 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9958 ID.AddInteger(MMO->getFlags());
9959 void *IP = nullptr;
9960 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9961 cast<StoreSDNode>(E)->refineAlignment(MMO);
9962 return SDValue(E, 0);
9963 }
9964 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9965 IsTruncating, SVT, MMO);
9966 createOperands(N, Ops);
9967
9968 CSEMap.InsertNode(N, IP);
9969 InsertNode(N);
9970 SDValue V(N, 0);
9971 NewSDValueDbgMsg(V, "Creating new node: ", this);
9972 return V;
9973}
9974
9977 EVT SVT, Align Alignment,
9978 MachineMemOperand::Flags MMOFlags,
9979 const AAMDNodes &AAInfo) {
9980 assert(Chain.getValueType() == MVT::Other &&
9981 "Invalid chain type");
9982
9983 MMOFlags |= MachineMemOperand::MOStore;
9984 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9985
9986 if (PtrInfo.V.isNull())
9987 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9988
9990 MachineMemOperand *MMO = MF.getMachineMemOperand(
9991 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
9992 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
9993}
9994
9996 SDValue Ptr, EVT SVT,
9997 MachineMemOperand *MMO) {
9998 SDValue Undef = getUNDEF(Ptr.getValueType());
9999 return getStore(Chain, dl, Val, Ptr, Undef, SVT, MMO, ISD::UNINDEXED, true);
10000}
10001
10005 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
10006 assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
10007 return getStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
10008 ST->getMemoryVT(), ST->getMemOperand(), AM,
10009 ST->isTruncatingStore());
10010}
10011
10013 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
10014 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
10015 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
10016 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
10017 const MDNode *Ranges, bool IsExpanding) {
10018 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10019
10020 MMOFlags |= MachineMemOperand::MOLoad;
10021 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
10022 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
10023 // clients.
10024 if (PtrInfo.V.isNull())
10025 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
10026
10027 TypeSize Size = MemVT.getStoreSize();
10029 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
10030 Alignment, AAInfo, Ranges);
10031 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
10032 MMO, IsExpanding);
10033}
10034
10036 ISD::LoadExtType ExtType, EVT VT,
10037 const SDLoc &dl, SDValue Chain, SDValue Ptr,
10038 SDValue Offset, SDValue Mask, SDValue EVL,
10039 EVT MemVT, MachineMemOperand *MMO,
10040 bool IsExpanding) {
10041 bool Indexed = AM != ISD::UNINDEXED;
10042 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
10043
10044 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
10045 : getVTList(VT, MVT::Other);
10046 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
10048 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
10049 ID.AddInteger(MemVT.getRawBits());
10050 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
10051 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10052 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10053 ID.AddInteger(MMO->getFlags());
10054 void *IP = nullptr;
10055 if (auto *E = cast_or_null<VPLoadSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
10056 E->refineAlignment(MMO);
10057 E->refineRanges(MMO);
10058 return SDValue(E, 0);
10059 }
10060 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10061 ExtType, IsExpanding, MemVT, MMO);
10062 createOperands(N, Ops);
10063
10064 CSEMap.InsertNode(N, IP);
10065 InsertNode(N);
10066 SDValue V(N, 0);
10067 NewSDValueDbgMsg(V, "Creating new node: ", this);
10068 return V;
10069}
10070
10072 SDValue Ptr, SDValue Mask, SDValue EVL,
10073 MachinePointerInfo PtrInfo,
10074 MaybeAlign Alignment,
10075 MachineMemOperand::Flags MMOFlags,
10076 const AAMDNodes &AAInfo, const MDNode *Ranges,
10077 bool IsExpanding) {
10078 SDValue Undef = getUNDEF(Ptr.getValueType());
10079 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
10080 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
10081 IsExpanding);
10082}
10083
10085 SDValue Ptr, SDValue Mask, SDValue EVL,
10086 MachineMemOperand *MMO, bool IsExpanding) {
10087 SDValue Undef = getUNDEF(Ptr.getValueType());
10088 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
10089 Mask, EVL, VT, MMO, IsExpanding);
10090}
10091
10093 EVT VT, SDValue Chain, SDValue Ptr,
10094 SDValue Mask, SDValue EVL,
10095 MachinePointerInfo PtrInfo, EVT MemVT,
10096 MaybeAlign Alignment,
10097 MachineMemOperand::Flags MMOFlags,
10098 const AAMDNodes &AAInfo, bool IsExpanding) {
10099 SDValue Undef = getUNDEF(Ptr.getValueType());
10100 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
10101 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
10102 IsExpanding);
10103}
10104
10106 EVT VT, SDValue Chain, SDValue Ptr,
10107 SDValue Mask, SDValue EVL, EVT MemVT,
10108 MachineMemOperand *MMO, bool IsExpanding) {
10109 SDValue Undef = getUNDEF(Ptr.getValueType());
10110 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
10111 EVL, MemVT, MMO, IsExpanding);
10112}
10113
10117 auto *LD = cast<VPLoadSDNode>(OrigLoad);
10118 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
10119 // Don't propagate the invariant or dereferenceable flags.
10120 auto MMOFlags =
10121 LD->getMemOperand()->getFlags() &
10123 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
10124 LD->getChain(), Base, Offset, LD->getMask(),
10125 LD->getVectorLength(), LD->getPointerInfo(),
10126 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
10127 nullptr, LD->isExpandingLoad());
10128}
10129
10132 SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
10133 ISD::MemIndexedMode AM, bool IsTruncating,
10134 bool IsCompressing) {
10135 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10136 bool Indexed = AM != ISD::UNINDEXED;
10137 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
10138 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
10139 : getVTList(MVT::Other);
10140 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
10142 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10143 ID.AddInteger(MemVT.getRawBits());
10144 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10145 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10146 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10147 ID.AddInteger(MMO->getFlags());
10148 void *IP = nullptr;
10149 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10150 cast<VPStoreSDNode>(E)->refineAlignment(MMO);
10151 return SDValue(E, 0);
10152 }
10153 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10154 IsTruncating, IsCompressing, MemVT, MMO);
10155 createOperands(N, Ops);
10156
10157 CSEMap.InsertNode(N, IP);
10158 InsertNode(N);
10159 SDValue V(N, 0);
10160 NewSDValueDbgMsg(V, "Creating new node: ", this);
10161 return V;
10162}
10163
10165 SDValue Val, SDValue Ptr, SDValue Mask,
10166 SDValue EVL, MachinePointerInfo PtrInfo,
10167 EVT SVT, Align Alignment,
10168 MachineMemOperand::Flags MMOFlags,
10169 const AAMDNodes &AAInfo,
10170 bool IsCompressing) {
10171 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10172
10173 MMOFlags |= MachineMemOperand::MOStore;
10174 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
10175
10176 if (PtrInfo.V.isNull())
10177 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
10178
10180 MachineMemOperand *MMO = MF.getMachineMemOperand(
10181 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
10182 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
10183 IsCompressing);
10184}
10185
10187 SDValue Val, SDValue Ptr, SDValue Mask,
10188 SDValue EVL, EVT SVT,
10189 MachineMemOperand *MMO,
10190 bool IsCompressing) {
10191 EVT VT = Val.getValueType();
10192
10193 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10194 if (VT == SVT)
10195 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
10196 EVL, VT, MMO, ISD::UNINDEXED,
10197 /*IsTruncating*/ false, IsCompressing);
10198
10200 "Should only be a truncating store, not extending!");
10201 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
10202 assert(VT.isVector() == SVT.isVector() &&
10203 "Cannot use trunc store to convert to or from a vector!");
10204 assert((!VT.isVector() ||
10206 "Cannot use trunc store to change the number of vector elements!");
10207
10208 SDVTList VTs = getVTList(MVT::Other);
10209 SDValue Undef = getUNDEF(Ptr.getValueType());
10210 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
10212 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10213 ID.AddInteger(SVT.getRawBits());
10214 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10215 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
10216 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10217 ID.AddInteger(MMO->getFlags());
10218 void *IP = nullptr;
10219 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10220 cast<VPStoreSDNode>(E)->refineAlignment(MMO);
10221 return SDValue(E, 0);
10222 }
10223 auto *N =
10224 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10225 ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
10226 createOperands(N, Ops);
10227
10228 CSEMap.InsertNode(N, IP);
10229 InsertNode(N);
10230 SDValue V(N, 0);
10231 NewSDValueDbgMsg(V, "Creating new node: ", this);
10232 return V;
10233}
10234
10238 auto *ST = cast<VPStoreSDNode>(OrigStore);
10239 assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
10240 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
10241 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
10242 Offset, ST->getMask(), ST->getVectorLength()};
10244 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10245 ID.AddInteger(ST->getMemoryVT().getRawBits());
10246 ID.AddInteger(ST->getRawSubclassData());
10247 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
10248 ID.AddInteger(ST->getMemOperand()->getFlags());
10249 void *IP = nullptr;
10250 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10251 return SDValue(E, 0);
10252
10253 auto *N = newSDNode<VPStoreSDNode>(
10254 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
10255 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
10256 createOperands(N, Ops);
10257
10258 CSEMap.InsertNode(N, IP);
10259 InsertNode(N);
10260 SDValue V(N, 0);
10261 NewSDValueDbgMsg(V, "Creating new node: ", this);
10262 return V;
10263}
10264
10266 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
10267 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
10268 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
10269 bool Indexed = AM != ISD::UNINDEXED;
10270 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
10271
10272 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
10273 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
10274 : getVTList(VT, MVT::Other);
10276 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
10277 ID.AddInteger(VT.getRawBits());
10278 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
10279 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10280 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10281
10282 void *IP = nullptr;
10283 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10284 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
10285 return SDValue(E, 0);
10286 }
10287
10288 auto *N =
10289 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
10290 ExtType, IsExpanding, MemVT, MMO);
10291 createOperands(N, Ops);
10292 CSEMap.InsertNode(N, IP);
10293 InsertNode(N);
10294 SDValue V(N, 0);
10295 NewSDValueDbgMsg(V, "Creating new node: ", this);
10296 return V;
10297}
10298
10300 SDValue Ptr, SDValue Stride,
10301 SDValue Mask, SDValue EVL,
10302 MachineMemOperand *MMO,
10303 bool IsExpanding) {
10304 SDValue Undef = getUNDEF(Ptr.getValueType());
10306 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
10307}
10308
10310 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
10311 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
10312 MachineMemOperand *MMO, bool IsExpanding) {
10313 SDValue Undef = getUNDEF(Ptr.getValueType());
10314 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
10315 Stride, Mask, EVL, MemVT, MMO, IsExpanding);
10316}
10317
10319 SDValue Val, SDValue Ptr,
10320 SDValue Offset, SDValue Stride,
10321 SDValue Mask, SDValue EVL, EVT MemVT,
10322 MachineMemOperand *MMO,
10324 bool IsTruncating, bool IsCompressing) {
10325 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10326 bool Indexed = AM != ISD::UNINDEXED;
10327 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
10328 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
10329 : getVTList(MVT::Other);
10330 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
10332 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
10333 ID.AddInteger(MemVT.getRawBits());
10334 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10335 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10336 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10337 void *IP = nullptr;
10338 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10339 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
10340 return SDValue(E, 0);
10341 }
10342 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
10343 VTs, AM, IsTruncating,
10344 IsCompressing, MemVT, MMO);
10345 createOperands(N, Ops);
10346
10347 CSEMap.InsertNode(N, IP);
10348 InsertNode(N);
10349 SDValue V(N, 0);
10350 NewSDValueDbgMsg(V, "Creating new node: ", this);
10351 return V;
10352}
10353
10355 SDValue Val, SDValue Ptr,
10356 SDValue Stride, SDValue Mask,
10357 SDValue EVL, EVT SVT,
10358 MachineMemOperand *MMO,
10359 bool IsCompressing) {
10360 EVT VT = Val.getValueType();
10361
10362 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10363 if (VT == SVT)
10364 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
10365 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
10366 /*IsTruncating*/ false, IsCompressing);
10367
10369 "Should only be a truncating store, not extending!");
10370 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
10371 assert(VT.isVector() == SVT.isVector() &&
10372 "Cannot use trunc store to convert to or from a vector!");
10373 assert((!VT.isVector() ||
10375 "Cannot use trunc store to change the number of vector elements!");
10376
10377 SDVTList VTs = getVTList(MVT::Other);
10378 SDValue Undef = getUNDEF(Ptr.getValueType());
10379 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
10381 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
10382 ID.AddInteger(SVT.getRawBits());
10383 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10384 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
10385 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10386 void *IP = nullptr;
10387 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10388 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
10389 return SDValue(E, 0);
10390 }
10391 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
10392 VTs, ISD::UNINDEXED, true,
10393 IsCompressing, SVT, MMO);
10394 createOperands(N, Ops);
10395
10396 CSEMap.InsertNode(N, IP);
10397 InsertNode(N);
10398 SDValue V(N, 0);
10399 NewSDValueDbgMsg(V, "Creating new node: ", this);
10400 return V;
10401}
10402
10405 ISD::MemIndexType IndexType) {
10406 assert(Ops.size() == 6 && "Incompatible number of operands");
10407
10409 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
10410 ID.AddInteger(VT.getRawBits());
10411 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
10412 dl.getIROrder(), VTs, VT, MMO, IndexType));
10413 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10414 ID.AddInteger(MMO->getFlags());
10415 void *IP = nullptr;
10416 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10417 cast<VPGatherSDNode>(E)->refineAlignment(MMO);
10418 return SDValue(E, 0);
10419 }
10420
10421 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10422 VT, MMO, IndexType);
10423 createOperands(N, Ops);
10424
10425 assert(N->getMask().getValueType().getVectorElementCount() ==
10426 N->getValueType(0).getVectorElementCount() &&
10427 "Vector width mismatch between mask and data");
10428 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10429 N->getValueType(0).getVectorElementCount().isScalable() &&
10430 "Scalable flags of index and data do not match");
10432 N->getIndex().getValueType().getVectorElementCount(),
10433 N->getValueType(0).getVectorElementCount()) &&
10434 "Vector width mismatch between index and data");
10435 assert(isa<ConstantSDNode>(N->getScale()) &&
10436 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10437 "Scale should be a constant power of 2");
10438
10439 CSEMap.InsertNode(N, IP);
10440 InsertNode(N);
10441 SDValue V(N, 0);
10442 NewSDValueDbgMsg(V, "Creating new node: ", this);
10443 return V;
10444}
10445
10448 MachineMemOperand *MMO,
10449 ISD::MemIndexType IndexType) {
10450 assert(Ops.size() == 7 && "Incompatible number of operands");
10451
10453 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
10454 ID.AddInteger(VT.getRawBits());
10455 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
10456 dl.getIROrder(), VTs, VT, MMO, IndexType));
10457 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10458 ID.AddInteger(MMO->getFlags());
10459 void *IP = nullptr;
10460 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10461 cast<VPScatterSDNode>(E)->refineAlignment(MMO);
10462 return SDValue(E, 0);
10463 }
10464 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10465 VT, MMO, IndexType);
10466 createOperands(N, Ops);
10467
10468 assert(N->getMask().getValueType().getVectorElementCount() ==
10469 N->getValue().getValueType().getVectorElementCount() &&
10470 "Vector width mismatch between mask and data");
10471 assert(
10472 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10473 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10474 "Scalable flags of index and data do not match");
10476 N->getIndex().getValueType().getVectorElementCount(),
10477 N->getValue().getValueType().getVectorElementCount()) &&
10478 "Vector width mismatch between index and data");
10479 assert(isa<ConstantSDNode>(N->getScale()) &&
10480 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10481 "Scale should be a constant power of 2");
10482
10483 CSEMap.InsertNode(N, IP);
10484 InsertNode(N);
10485 SDValue V(N, 0);
10486 NewSDValueDbgMsg(V, "Creating new node: ", this);
10487 return V;
10488}
10489
10492 SDValue PassThru, EVT MemVT,
10493 MachineMemOperand *MMO,
10495 ISD::LoadExtType ExtTy, bool isExpanding) {
10496 bool Indexed = AM != ISD::UNINDEXED;
10497 assert((Indexed || Offset.isUndef()) &&
10498 "Unindexed masked load with an offset!");
10499 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
10500 : getVTList(VT, MVT::Other);
10501 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
10503 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
10504 ID.AddInteger(MemVT.getRawBits());
10505 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
10506 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
10507 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10508 ID.AddInteger(MMO->getFlags());
10509 void *IP = nullptr;
10510 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10511 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
10512 return SDValue(E, 0);
10513 }
10514 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10515 AM, ExtTy, isExpanding, MemVT, MMO);
10516 createOperands(N, Ops);
10517
10518 CSEMap.InsertNode(N, IP);
10519 InsertNode(N);
10520 SDValue V(N, 0);
10521 NewSDValueDbgMsg(V, "Creating new node: ", this);
10522 return V;
10523}
10524
10529 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
10530 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
10531 Offset, LD->getMask(), LD->getPassThru(),
10532 LD->getMemoryVT(), LD->getMemOperand(), AM,
10533 LD->getExtensionType(), LD->isExpandingLoad());
10534}
10535
10538 SDValue Mask, EVT MemVT,
10539 MachineMemOperand *MMO,
10540 ISD::MemIndexedMode AM, bool IsTruncating,
10541 bool IsCompressing) {
10542 assert(Chain.getValueType() == MVT::Other &&
10543 "Invalid chain type");
10544 bool Indexed = AM != ISD::UNINDEXED;
10545 assert((Indexed || Offset.isUndef()) &&
10546 "Unindexed masked store with an offset!");
10547 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
10548 : getVTList(MVT::Other);
10549 SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
10551 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
10552 ID.AddInteger(MemVT.getRawBits());
10553 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
10554 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10555 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10556 ID.AddInteger(MMO->getFlags());
10557 void *IP = nullptr;
10558 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10559 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
10560 return SDValue(E, 0);
10561 }
10562 auto *N =
10563 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10564 IsTruncating, IsCompressing, MemVT, MMO);
10565 createOperands(N, Ops);
10566
10567 CSEMap.InsertNode(N, IP);
10568 InsertNode(N);
10569 SDValue V(N, 0);
10570 NewSDValueDbgMsg(V, "Creating new node: ", this);
10571 return V;
10572}
10573
10578 assert(ST->getOffset().isUndef() &&
10579 "Masked store is already a indexed store!");
10580 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
10581 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
10582 AM, ST->isTruncatingStore(), ST->isCompressingStore());
10583}
10584
10587 MachineMemOperand *MMO,
10588 ISD::MemIndexType IndexType,
10589 ISD::LoadExtType ExtTy) {
10590 assert(Ops.size() == 6 && "Incompatible number of operands");
10591
10593 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
10594 ID.AddInteger(MemVT.getRawBits());
10595 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
10596 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
10597 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10598 ID.AddInteger(MMO->getFlags());
10599 void *IP = nullptr;
10600 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10601 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
10602 return SDValue(E, 0);
10603 }
10604
10605 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10606 VTs, MemVT, MMO, IndexType, ExtTy);
10607 createOperands(N, Ops);
10608
10609 assert(N->getPassThru().getValueType() == N->getValueType(0) &&
10610 "Incompatible type of the PassThru value in MaskedGatherSDNode");
10611 assert(N->getMask().getValueType().getVectorElementCount() ==
10612 N->getValueType(0).getVectorElementCount() &&
10613 "Vector width mismatch between mask and data");
10614 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10615 N->getValueType(0).getVectorElementCount().isScalable() &&
10616 "Scalable flags of index and data do not match");
10618 N->getIndex().getValueType().getVectorElementCount(),
10619 N->getValueType(0).getVectorElementCount()) &&
10620 "Vector width mismatch between index and data");
10621 assert(isa<ConstantSDNode>(N->getScale()) &&
10622 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10623 "Scale should be a constant power of 2");
10624
10625 CSEMap.InsertNode(N, IP);
10626 InsertNode(N);
10627 SDValue V(N, 0);
10628 NewSDValueDbgMsg(V, "Creating new node: ", this);
10629 return V;
10630}
10631
10634 MachineMemOperand *MMO,
10635 ISD::MemIndexType IndexType,
10636 bool IsTrunc) {
10637 assert(Ops.size() == 6 && "Incompatible number of operands");
10638
10640 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
10641 ID.AddInteger(MemVT.getRawBits());
10642 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
10643 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
10644 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10645 ID.AddInteger(MMO->getFlags());
10646 void *IP = nullptr;
10647 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10648 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
10649 return SDValue(E, 0);
10650 }
10651
10652 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10653 VTs, MemVT, MMO, IndexType, IsTrunc);
10654 createOperands(N, Ops);
10655
10656 assert(N->getMask().getValueType().getVectorElementCount() ==
10657 N->getValue().getValueType().getVectorElementCount() &&
10658 "Vector width mismatch between mask and data");
10659 assert(
10660 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10661 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10662 "Scalable flags of index and data do not match");
10664 N->getIndex().getValueType().getVectorElementCount(),
10665 N->getValue().getValueType().getVectorElementCount()) &&
10666 "Vector width mismatch between index and data");
10667 assert(isa<ConstantSDNode>(N->getScale()) &&
10668 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10669 "Scale should be a constant power of 2");
10670
10671 CSEMap.InsertNode(N, IP);
10672 InsertNode(N);
10673 SDValue V(N, 0);
10674 NewSDValueDbgMsg(V, "Creating new node: ", this);
10675 return V;
10676}
10677
10679 const SDLoc &dl, ArrayRef<SDValue> Ops,
10680 MachineMemOperand *MMO,
10681 ISD::MemIndexType IndexType) {
10682 assert(Ops.size() == 7 && "Incompatible number of operands");
10683
10685 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VECTOR_HISTOGRAM, VTs, Ops);
10686 ID.AddInteger(MemVT.getRawBits());
10687 ID.AddInteger(getSyntheticNodeSubclassData<MaskedHistogramSDNode>(
10688 dl.getIROrder(), VTs, MemVT, MMO, IndexType));
10689 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10690 ID.AddInteger(MMO->getFlags());
10691 void *IP = nullptr;
10692 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10693 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
10694 return SDValue(E, 0);
10695 }
10696
10697 auto *N = newSDNode<MaskedHistogramSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10698 VTs, MemVT, MMO, IndexType);
10699 createOperands(N, Ops);
10700
10701 assert(N->getMask().getValueType().getVectorElementCount() ==
10702 N->getIndex().getValueType().getVectorElementCount() &&
10703 "Vector width mismatch between mask and data");
10704 assert(isa<ConstantSDNode>(N->getScale()) &&
10705 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10706 "Scale should be a constant power of 2");
10707 assert(N->getInc().getValueType().isInteger() && "Non integer update value");
10708
10709 CSEMap.InsertNode(N, IP);
10710 InsertNode(N);
10711 SDValue V(N, 0);
10712 NewSDValueDbgMsg(V, "Creating new node: ", this);
10713 return V;
10714}
10715
10717 SDValue Ptr, SDValue Mask, SDValue EVL,
10718 MachineMemOperand *MMO) {
10719 SDVTList VTs = getVTList(VT, EVL.getValueType(), MVT::Other);
10720 SDValue Ops[] = {Chain, Ptr, Mask, EVL};
10722 AddNodeIDNode(ID, ISD::VP_LOAD_FF, VTs, Ops);
10723 ID.AddInteger(VT.getRawBits());
10724 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadFFSDNode>(DL.getIROrder(),
10725 VTs, VT, MMO));
10726 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10727 ID.AddInteger(MMO->getFlags());
10728 void *IP = nullptr;
10729 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10730 cast<VPLoadFFSDNode>(E)->refineAlignment(MMO);
10731 return SDValue(E, 0);
10732 }
10733 auto *N = newSDNode<VPLoadFFSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs,
10734 VT, MMO);
10735 createOperands(N, Ops);
10736
10737 CSEMap.InsertNode(N, IP);
10738 InsertNode(N);
10739 SDValue V(N, 0);
10740 NewSDValueDbgMsg(V, "Creating new node: ", this);
10741 return V;
10742}
10743
10745 EVT MemVT, MachineMemOperand *MMO) {
10746 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10747 SDVTList VTs = getVTList(MVT::Other);
10748 SDValue Ops[] = {Chain, Ptr};
10750 AddNodeIDNode(ID, ISD::GET_FPENV_MEM, VTs, Ops);
10751 ID.AddInteger(MemVT.getRawBits());
10752 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10753 ISD::GET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
10754 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10755 ID.AddInteger(MMO->getFlags());
10756 void *IP = nullptr;
10757 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10758 return SDValue(E, 0);
10759
10760 auto *N = newSDNode<FPStateAccessSDNode>(ISD::GET_FPENV_MEM, dl.getIROrder(),
10761 dl.getDebugLoc(), VTs, MemVT, MMO);
10762 createOperands(N, Ops);
10763
10764 CSEMap.InsertNode(N, IP);
10765 InsertNode(N);
10766 SDValue V(N, 0);
10767 NewSDValueDbgMsg(V, "Creating new node: ", this);
10768 return V;
10769}
10770
10772 EVT MemVT, MachineMemOperand *MMO) {
10773 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10774 SDVTList VTs = getVTList(MVT::Other);
10775 SDValue Ops[] = {Chain, Ptr};
10777 AddNodeIDNode(ID, ISD::SET_FPENV_MEM, VTs, Ops);
10778 ID.AddInteger(MemVT.getRawBits());
10779 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10780 ISD::SET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
10781 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10782 ID.AddInteger(MMO->getFlags());
10783 void *IP = nullptr;
10784 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10785 return SDValue(E, 0);
10786
10787 auto *N = newSDNode<FPStateAccessSDNode>(ISD::SET_FPENV_MEM, dl.getIROrder(),
10788 dl.getDebugLoc(), VTs, MemVT, MMO);
10789 createOperands(N, Ops);
10790
10791 CSEMap.InsertNode(N, IP);
10792 InsertNode(N);
10793 SDValue V(N, 0);
10794 NewSDValueDbgMsg(V, "Creating new node: ", this);
10795 return V;
10796}
10797
10799 // select undef, T, F --> T (if T is a constant), otherwise F
10800 // select, ?, undef, F --> F
10801 // select, ?, T, undef --> T
10802 if (Cond.isUndef())
10803 return isConstantValueOfAnyType(T) ? T : F;
10804 if (T.isUndef())
10805 return F;
10806 if (F.isUndef())
10807 return T;
10808
10809 // select true, T, F --> T
10810 // select false, T, F --> F
10811 if (auto C = isBoolConstant(Cond))
10812 return *C ? T : F;
10813
10814 // select ?, T, T --> T
10815 if (T == F)
10816 return T;
10817
10818 return SDValue();
10819}
10820
10822 // shift undef, Y --> 0 (can always assume that the undef value is 0)
10823 if (X.isUndef())
10824 return getConstant(0, SDLoc(X.getNode()), X.getValueType());
10825 // shift X, undef --> undef (because it may shift by the bitwidth)
10826 if (Y.isUndef())
10827 return getUNDEF(X.getValueType());
10828
10829 // shift 0, Y --> 0
10830 // shift X, 0 --> X
10832 return X;
10833
10834 // shift X, C >= bitwidth(X) --> undef
10835 // All vector elements must be too big (or undef) to avoid partial undefs.
10836 auto isShiftTooBig = [X](ConstantSDNode *Val) {
10837 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
10838 };
10839 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
10840 return getUNDEF(X.getValueType());
10841
10842 // shift i1/vXi1 X, Y --> X (any non-zero shift amount is undefined).
10843 if (X.getValueType().getScalarType() == MVT::i1)
10844 return X;
10845
10846 return SDValue();
10847}
10848
10850 SDNodeFlags Flags) {
10851 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
10852 // (an undef operand can be chosen to be Nan/Inf), then the result of this
10853 // operation is poison. That result can be relaxed to undef.
10854 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
10855 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
10856 bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
10857 (YC && YC->getValueAPF().isNaN());
10858 bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
10859 (YC && YC->getValueAPF().isInfinity());
10860
10861 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
10862 return getUNDEF(X.getValueType());
10863
10864 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
10865 return getUNDEF(X.getValueType());
10866
10867 if (!YC)
10868 return SDValue();
10869
10870 // X + -0.0 --> X
10871 if (Opcode == ISD::FADD)
10872 if (YC->getValueAPF().isNegZero())
10873 return X;
10874
10875 // X - +0.0 --> X
10876 if (Opcode == ISD::FSUB)
10877 if (YC->getValueAPF().isPosZero())
10878 return X;
10879
10880 // X * 1.0 --> X
10881 // X / 1.0 --> X
10882 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
10883 if (YC->getValueAPF().isExactlyValue(1.0))
10884 return X;
10885
10886 // X * 0.0 --> 0.0
10887 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
10888 if (YC->getValueAPF().isZero())
10889 return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
10890
10891 return SDValue();
10892}
10893
10895 SDValue Ptr, SDValue SV, unsigned Align) {
10896 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
10897 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
10898}
10899
10900SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10902 switch (Ops.size()) {
10903 case 0: return getNode(Opcode, DL, VT);
10904 case 1: return getNode(Opcode, DL, VT, Ops[0].get());
10905 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
10906 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
10907 default: break;
10908 }
10909
10910 // Copy from an SDUse array into an SDValue array for use with
10911 // the regular getNode logic.
10913 return getNode(Opcode, DL, VT, NewOps);
10914}
10915
10916SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10918 SDNodeFlags Flags;
10919 if (Inserter)
10920 Flags = Inserter->getFlags();
10921 return getNode(Opcode, DL, VT, Ops, Flags);
10922}
10923
10924SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10925 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
10926 unsigned NumOps = Ops.size();
10927 switch (NumOps) {
10928 case 0: return getNode(Opcode, DL, VT);
10929 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
10930 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
10931 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
10932 default: break;
10933 }
10934
10935#ifndef NDEBUG
10936 for (const auto &Op : Ops)
10937 assert(Op.getOpcode() != ISD::DELETED_NODE &&
10938 "Operand is DELETED_NODE!");
10939#endif
10940
10941 switch (Opcode) {
10942 default: break;
10943 case ISD::BUILD_VECTOR:
10944 // Attempt to simplify BUILD_VECTOR.
10945 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
10946 return V;
10947 break;
10949 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
10950 return V;
10951 break;
10952 case ISD::SELECT_CC:
10953 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
10954 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
10955 "LHS and RHS of condition must have same type!");
10956 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
10957 "True and False arms of SelectCC must have same type!");
10958 assert(Ops[2].getValueType() == VT &&
10959 "select_cc node must be of same type as true and false value!");
10960 assert((!Ops[0].getValueType().isVector() ||
10961 Ops[0].getValueType().getVectorElementCount() ==
10962 VT.getVectorElementCount()) &&
10963 "Expected select_cc with vector result to have the same sized "
10964 "comparison type!");
10965 break;
10966 case ISD::BR_CC:
10967 assert(NumOps == 5 && "BR_CC takes 5 operands!");
10968 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
10969 "LHS/RHS of comparison should match types!");
10970 break;
10971 case ISD::VP_ADD:
10972 case ISD::VP_SUB:
10973 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR
10974 if (VT.getScalarType() == MVT::i1)
10975 Opcode = ISD::VP_XOR;
10976 break;
10977 case ISD::VP_MUL:
10978 // If it is VP_MUL mask operation then turn it to VP_AND
10979 if (VT.getScalarType() == MVT::i1)
10980 Opcode = ISD::VP_AND;
10981 break;
10982 case ISD::VP_REDUCE_MUL:
10983 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND
10984 if (VT == MVT::i1)
10985 Opcode = ISD::VP_REDUCE_AND;
10986 break;
10987 case ISD::VP_REDUCE_ADD:
10988 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR
10989 if (VT == MVT::i1)
10990 Opcode = ISD::VP_REDUCE_XOR;
10991 break;
10992 case ISD::VP_REDUCE_SMAX:
10993 case ISD::VP_REDUCE_UMIN:
10994 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to
10995 // VP_REDUCE_AND.
10996 if (VT == MVT::i1)
10997 Opcode = ISD::VP_REDUCE_AND;
10998 break;
10999 case ISD::VP_REDUCE_SMIN:
11000 case ISD::VP_REDUCE_UMAX:
11001 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to
11002 // VP_REDUCE_OR.
11003 if (VT == MVT::i1)
11004 Opcode = ISD::VP_REDUCE_OR;
11005 break;
11006 }
11007
11008 // Memoize nodes.
11009 SDNode *N;
11010 SDVTList VTs = getVTList(VT);
11011
11012 if (VT != MVT::Glue) {
11014 AddNodeIDNode(ID, Opcode, VTs, Ops);
11015 void *IP = nullptr;
11016
11017 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11018 E->intersectFlagsWith(Flags);
11019 return SDValue(E, 0);
11020 }
11021
11022 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
11023 createOperands(N, Ops);
11024
11025 CSEMap.InsertNode(N, IP);
11026 } else {
11027 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
11028 createOperands(N, Ops);
11029 }
11030
11031 N->setFlags(Flags);
11032 InsertNode(N);
11033 SDValue V(N, 0);
11034 NewSDValueDbgMsg(V, "Creating new node: ", this);
11035 return V;
11036}
11037
11038SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
11039 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
11040 SDNodeFlags Flags;
11041 if (Inserter)
11042 Flags = Inserter->getFlags();
11043 return getNode(Opcode, DL, getVTList(ResultTys), Ops, Flags);
11044}
11045
11046SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
11048 const SDNodeFlags Flags) {
11049 return getNode(Opcode, DL, getVTList(ResultTys), Ops, Flags);
11050}
11051
11052SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11054 SDNodeFlags Flags;
11055 if (Inserter)
11056 Flags = Inserter->getFlags();
11057 return getNode(Opcode, DL, VTList, Ops, Flags);
11058}
11059
11060SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11061 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
11062 if (VTList.NumVTs == 1)
11063 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags);
11064
11065#ifndef NDEBUG
11066 for (const auto &Op : Ops)
11067 assert(Op.getOpcode() != ISD::DELETED_NODE &&
11068 "Operand is DELETED_NODE!");
11069#endif
11070
11071 switch (Opcode) {
11072 case ISD::SADDO:
11073 case ISD::UADDO:
11074 case ISD::SSUBO:
11075 case ISD::USUBO: {
11076 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
11077 "Invalid add/sub overflow op!");
11078 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
11079 Ops[0].getValueType() == Ops[1].getValueType() &&
11080 Ops[0].getValueType() == VTList.VTs[0] &&
11081 "Binary operator types must match!");
11082 SDValue N1 = Ops[0], N2 = Ops[1];
11083 canonicalizeCommutativeBinop(Opcode, N1, N2);
11084
11085 // (X +- 0) -> X with zero-overflow.
11086 ConstantSDNode *N2CV = isConstOrConstSplat(N2, /*AllowUndefs*/ false,
11087 /*AllowTruncation*/ true);
11088 if (N2CV && N2CV->isZero()) {
11089 SDValue ZeroOverFlow = getConstant(0, DL, VTList.VTs[1]);
11090 return getNode(ISD::MERGE_VALUES, DL, VTList, {N1, ZeroOverFlow}, Flags);
11091 }
11092
11093 if (VTList.VTs[0].getScalarType() == MVT::i1 &&
11094 VTList.VTs[1].getScalarType() == MVT::i1) {
11095 SDValue F1 = getFreeze(N1);
11096 SDValue F2 = getFreeze(N2);
11097 // {vXi1,vXi1} (u/s)addo(vXi1 x, vXi1y) -> {xor(x,y),and(x,y)}
11098 if (Opcode == ISD::UADDO || Opcode == ISD::SADDO)
11099 return getNode(ISD::MERGE_VALUES, DL, VTList,
11100 {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
11101 getNode(ISD::AND, DL, VTList.VTs[1], F1, F2)},
11102 Flags);
11103 // {vXi1,vXi1} (u/s)subo(vXi1 x, vXi1y) -> {xor(x,y),and(~x,y)}
11104 if (Opcode == ISD::USUBO || Opcode == ISD::SSUBO) {
11105 SDValue NotF1 = getNOT(DL, F1, VTList.VTs[0]);
11106 return getNode(ISD::MERGE_VALUES, DL, VTList,
11107 {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
11108 getNode(ISD::AND, DL, VTList.VTs[1], NotF1, F2)},
11109 Flags);
11110 }
11111 }
11112 break;
11113 }
11114 case ISD::SADDO_CARRY:
11115 case ISD::UADDO_CARRY:
11116 case ISD::SSUBO_CARRY:
11117 case ISD::USUBO_CARRY:
11118 assert(VTList.NumVTs == 2 && Ops.size() == 3 &&
11119 "Invalid add/sub overflow op!");
11120 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
11121 Ops[0].getValueType() == Ops[1].getValueType() &&
11122 Ops[0].getValueType() == VTList.VTs[0] &&
11123 Ops[2].getValueType() == VTList.VTs[1] &&
11124 "Binary operator types must match!");
11125 break;
11126 case ISD::SMUL_LOHI:
11127 case ISD::UMUL_LOHI: {
11128 assert(VTList.NumVTs == 2 && Ops.size() == 2 && "Invalid mul lo/hi op!");
11129 assert(VTList.VTs[0].isInteger() && VTList.VTs[0] == VTList.VTs[1] &&
11130 VTList.VTs[0] == Ops[0].getValueType() &&
11131 VTList.VTs[0] == Ops[1].getValueType() &&
11132 "Binary operator types must match!");
11133 // Constant fold.
11136 if (LHS && RHS) {
11137 unsigned Width = VTList.VTs[0].getScalarSizeInBits();
11138 unsigned OutWidth = Width * 2;
11139 APInt Val = LHS->getAPIntValue();
11140 APInt Mul = RHS->getAPIntValue();
11141 if (Opcode == ISD::SMUL_LOHI) {
11142 Val = Val.sext(OutWidth);
11143 Mul = Mul.sext(OutWidth);
11144 } else {
11145 Val = Val.zext(OutWidth);
11146 Mul = Mul.zext(OutWidth);
11147 }
11148 Val *= Mul;
11149
11150 SDValue Hi =
11151 getConstant(Val.extractBits(Width, Width), DL, VTList.VTs[0]);
11152 SDValue Lo = getConstant(Val.trunc(Width), DL, VTList.VTs[0]);
11153 return getNode(ISD::MERGE_VALUES, DL, VTList, {Lo, Hi}, Flags);
11154 }
11155 break;
11156 }
11157 case ISD::FFREXP: {
11158 assert(VTList.NumVTs == 2 && Ops.size() == 1 && "Invalid ffrexp op!");
11159 assert(VTList.VTs[0].isFloatingPoint() && VTList.VTs[1].isInteger() &&
11160 VTList.VTs[0] == Ops[0].getValueType() && "frexp type mismatch");
11161
11163 int FrexpExp;
11164 APFloat FrexpMant =
11165 frexp(C->getValueAPF(), FrexpExp, APFloat::rmNearestTiesToEven);
11166 SDValue Result0 = getConstantFP(FrexpMant, DL, VTList.VTs[0]);
11167 SDValue Result1 = getSignedConstant(FrexpMant.isFinite() ? FrexpExp : 0,
11168 DL, VTList.VTs[1]);
11169 return getNode(ISD::MERGE_VALUES, DL, VTList, {Result0, Result1}, Flags);
11170 }
11171
11172 break;
11173 }
11175 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
11176 "Invalid STRICT_FP_EXTEND!");
11177 assert(VTList.VTs[0].isFloatingPoint() &&
11178 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
11179 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
11180 "STRICT_FP_EXTEND result type should be vector iff the operand "
11181 "type is vector!");
11182 assert((!VTList.VTs[0].isVector() ||
11183 VTList.VTs[0].getVectorElementCount() ==
11184 Ops[1].getValueType().getVectorElementCount()) &&
11185 "Vector element count mismatch!");
11186 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
11187 "Invalid fpext node, dst <= src!");
11188 break;
11190 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
11191 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
11192 "STRICT_FP_ROUND result type should be vector iff the operand "
11193 "type is vector!");
11194 assert((!VTList.VTs[0].isVector() ||
11195 VTList.VTs[0].getVectorElementCount() ==
11196 Ops[1].getValueType().getVectorElementCount()) &&
11197 "Vector element count mismatch!");
11198 assert(VTList.VTs[0].isFloatingPoint() &&
11199 Ops[1].getValueType().isFloatingPoint() &&
11200 VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
11201 Ops[2].getOpcode() == ISD::TargetConstant &&
11202 (Ops[2]->getAsZExtVal() == 0 || Ops[2]->getAsZExtVal() == 1) &&
11203 "Invalid STRICT_FP_ROUND!");
11204 break;
11205 }
11206
11207 // Memoize the node unless it returns a glue result.
11208 SDNode *N;
11209 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
11211 AddNodeIDNode(ID, Opcode, VTList, Ops);
11212 void *IP = nullptr;
11213 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11214 E->intersectFlagsWith(Flags);
11215 return SDValue(E, 0);
11216 }
11217
11218 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
11219 createOperands(N, Ops);
11220 CSEMap.InsertNode(N, IP);
11221 } else {
11222 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
11223 createOperands(N, Ops);
11224 }
11225
11226 N->setFlags(Flags);
11227 InsertNode(N);
11228 SDValue V(N, 0);
11229 NewSDValueDbgMsg(V, "Creating new node: ", this);
11230 return V;
11231}
11232
11233SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
11234 SDVTList VTList) {
11235 return getNode(Opcode, DL, VTList, ArrayRef<SDValue>());
11236}
11237
11238SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11239 SDValue N1) {
11240 SDValue Ops[] = { N1 };
11241 return getNode(Opcode, DL, VTList, Ops);
11242}
11243
11244SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11245 SDValue N1, SDValue N2) {
11246 SDValue Ops[] = { N1, N2 };
11247 return getNode(Opcode, DL, VTList, Ops);
11248}
11249
11250SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11251 SDValue N1, SDValue N2, SDValue N3) {
11252 SDValue Ops[] = { N1, N2, N3 };
11253 return getNode(Opcode, DL, VTList, Ops);
11254}
11255
11256SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11257 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
11258 SDValue Ops[] = { N1, N2, N3, N4 };
11259 return getNode(Opcode, DL, VTList, Ops);
11260}
11261
11262SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11263 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
11264 SDValue N5) {
11265 SDValue Ops[] = { N1, N2, N3, N4, N5 };
11266 return getNode(Opcode, DL, VTList, Ops);
11267}
11268
11270 if (!VT.isExtended())
11271 return makeVTList(SDNode::getValueTypeList(VT.getSimpleVT()), 1);
11272
11273 return makeVTList(&(*EVTs.insert(VT).first), 1);
11274}
11275
11278 ID.AddInteger(2U);
11279 ID.AddInteger(VT1.getRawBits());
11280 ID.AddInteger(VT2.getRawBits());
11281
11282 void *IP = nullptr;
11283 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11284 if (!Result) {
11285 EVT *Array = Allocator.Allocate<EVT>(2);
11286 Array[0] = VT1;
11287 Array[1] = VT2;
11288 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
11289 VTListMap.InsertNode(Result, IP);
11290 }
11291 return Result->getSDVTList();
11292}
11293
11296 ID.AddInteger(3U);
11297 ID.AddInteger(VT1.getRawBits());
11298 ID.AddInteger(VT2.getRawBits());
11299 ID.AddInteger(VT3.getRawBits());
11300
11301 void *IP = nullptr;
11302 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11303 if (!Result) {
11304 EVT *Array = Allocator.Allocate<EVT>(3);
11305 Array[0] = VT1;
11306 Array[1] = VT2;
11307 Array[2] = VT3;
11308 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
11309 VTListMap.InsertNode(Result, IP);
11310 }
11311 return Result->getSDVTList();
11312}
11313
11316 ID.AddInteger(4U);
11317 ID.AddInteger(VT1.getRawBits());
11318 ID.AddInteger(VT2.getRawBits());
11319 ID.AddInteger(VT3.getRawBits());
11320 ID.AddInteger(VT4.getRawBits());
11321
11322 void *IP = nullptr;
11323 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11324 if (!Result) {
11325 EVT *Array = Allocator.Allocate<EVT>(4);
11326 Array[0] = VT1;
11327 Array[1] = VT2;
11328 Array[2] = VT3;
11329 Array[3] = VT4;
11330 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
11331 VTListMap.InsertNode(Result, IP);
11332 }
11333 return Result->getSDVTList();
11334}
11335
11337 unsigned NumVTs = VTs.size();
11339 ID.AddInteger(NumVTs);
11340 for (unsigned index = 0; index < NumVTs; index++) {
11341 ID.AddInteger(VTs[index].getRawBits());
11342 }
11343
11344 void *IP = nullptr;
11345 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11346 if (!Result) {
11347 EVT *Array = Allocator.Allocate<EVT>(NumVTs);
11348 llvm::copy(VTs, Array);
11349 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
11350 VTListMap.InsertNode(Result, IP);
11351 }
11352 return Result->getSDVTList();
11353}
11354
11355
11356/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
11357/// specified operands. If the resultant node already exists in the DAG,
11358/// this does not modify the specified node, instead it returns the node that
11359/// already exists. If the resultant node does not exist in the DAG, the
11360/// input node is returned. As a degenerate case, if you specify the same
11361/// input operands as the node already has, the input node is returned.
11363 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
11364
11365 // Check to see if there is no change.
11366 if (Op == N->getOperand(0)) return N;
11367
11368 // See if the modified node already exists.
11369 void *InsertPos = nullptr;
11370 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
11371 return Existing;
11372
11373 // Nope it doesn't. Remove the node from its current place in the maps.
11374 if (InsertPos)
11375 if (!RemoveNodeFromCSEMaps(N))
11376 InsertPos = nullptr;
11377
11378 // Now we update the operands.
11379 N->OperandList[0].set(Op);
11380
11382 // If this gets put into a CSE map, add it.
11383 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11384 return N;
11385}
11386
11388 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
11389
11390 // Check to see if there is no change.
11391 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
11392 return N; // No operands changed, just return the input node.
11393
11394 // See if the modified node already exists.
11395 void *InsertPos = nullptr;
11396 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
11397 return Existing;
11398
11399 // Nope it doesn't. Remove the node from its current place in the maps.
11400 if (InsertPos)
11401 if (!RemoveNodeFromCSEMaps(N))
11402 InsertPos = nullptr;
11403
11404 // Now we update the operands.
11405 if (N->OperandList[0] != Op1)
11406 N->OperandList[0].set(Op1);
11407 if (N->OperandList[1] != Op2)
11408 N->OperandList[1].set(Op2);
11409
11411 // If this gets put into a CSE map, add it.
11412 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11413 return N;
11414}
11415
11418 SDValue Ops[] = { Op1, Op2, Op3 };
11419 return UpdateNodeOperands(N, Ops);
11420}
11421
11424 SDValue Op3, SDValue Op4) {
11425 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
11426 return UpdateNodeOperands(N, Ops);
11427}
11428
11431 SDValue Op3, SDValue Op4, SDValue Op5) {
11432 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
11433 return UpdateNodeOperands(N, Ops);
11434}
11435
11438 unsigned NumOps = Ops.size();
11439 assert(N->getNumOperands() == NumOps &&
11440 "Update with wrong number of operands");
11441
11442 // If no operands changed just return the input node.
11443 if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
11444 return N;
11445
11446 // See if the modified node already exists.
11447 void *InsertPos = nullptr;
11448 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
11449 return Existing;
11450
11451 // Nope it doesn't. Remove the node from its current place in the maps.
11452 if (InsertPos)
11453 if (!RemoveNodeFromCSEMaps(N))
11454 InsertPos = nullptr;
11455
11456 // Now we update the operands.
11457 for (unsigned i = 0; i != NumOps; ++i)
11458 if (N->OperandList[i] != Ops[i])
11459 N->OperandList[i].set(Ops[i]);
11460
11462 // If this gets put into a CSE map, add it.
11463 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11464 return N;
11465}
11466
11467/// DropOperands - Release the operands and set this node to have
11468/// zero operands.
11470 // Unlike the code in MorphNodeTo that does this, we don't need to
11471 // watch for dead nodes here.
11472 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
11473 SDUse &Use = *I++;
11474 Use.set(SDValue());
11475 }
11476}
11477
11479 ArrayRef<MachineMemOperand *> NewMemRefs) {
11480 if (NewMemRefs.empty()) {
11481 N->clearMemRefs();
11482 return;
11483 }
11484
11485 // Check if we can avoid allocating by storing a single reference directly.
11486 if (NewMemRefs.size() == 1) {
11487 N->MemRefs = NewMemRefs[0];
11488 N->NumMemRefs = 1;
11489 return;
11490 }
11491
11492 MachineMemOperand **MemRefsBuffer =
11493 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
11494 llvm::copy(NewMemRefs, MemRefsBuffer);
11495 N->MemRefs = MemRefsBuffer;
11496 N->NumMemRefs = static_cast<int>(NewMemRefs.size());
11497}
11498
11499/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
11500/// machine opcode.
11501///
11503 EVT VT) {
11504 SDVTList VTs = getVTList(VT);
11505 return SelectNodeTo(N, MachineOpc, VTs, {});
11506}
11507
11509 EVT VT, SDValue Op1) {
11510 SDVTList VTs = getVTList(VT);
11511 SDValue Ops[] = { Op1 };
11512 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11513}
11514
11516 EVT VT, SDValue Op1,
11517 SDValue Op2) {
11518 SDVTList VTs = getVTList(VT);
11519 SDValue Ops[] = { Op1, Op2 };
11520 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11521}
11522
11524 EVT VT, SDValue Op1,
11525 SDValue Op2, SDValue Op3) {
11526 SDVTList VTs = getVTList(VT);
11527 SDValue Ops[] = { Op1, Op2, Op3 };
11528 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11529}
11530
11533 SDVTList VTs = getVTList(VT);
11534 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11535}
11536
11538 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
11539 SDVTList VTs = getVTList(VT1, VT2);
11540 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11541}
11542
11544 EVT VT1, EVT VT2) {
11545 SDVTList VTs = getVTList(VT1, VT2);
11546 return SelectNodeTo(N, MachineOpc, VTs, {});
11547}
11548
11550 EVT VT1, EVT VT2, EVT VT3,
11552 SDVTList VTs = getVTList(VT1, VT2, VT3);
11553 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11554}
11555
11557 EVT VT1, EVT VT2,
11558 SDValue Op1, SDValue Op2) {
11559 SDVTList VTs = getVTList(VT1, VT2);
11560 SDValue Ops[] = { Op1, Op2 };
11561 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11562}
11563
11566 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
11567 // Reset the NodeID to -1.
11568 New->setNodeId(-1);
11569 if (New != N) {
11570 ReplaceAllUsesWith(N, New);
11572 }
11573 return New;
11574}
11575
11576/// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
11577/// the line number information on the merged node since it is not possible to
11578/// preserve the information that operation is associated with multiple lines.
11579/// This will make the debugger working better at -O0, were there is a higher
11580/// probability having other instructions associated with that line.
11581///
11582/// For IROrder, we keep the smaller of the two
11583SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
11584 DebugLoc NLoc = N->getDebugLoc();
11585 if (NLoc && OptLevel == CodeGenOptLevel::None && OLoc.getDebugLoc() != NLoc) {
11586 N->setDebugLoc(DebugLoc());
11587 }
11588 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
11589 N->setIROrder(Order);
11590 return N;
11591}
11592
11593/// MorphNodeTo - This *mutates* the specified node to have the specified
11594/// return type, opcode, and operands.
11595///
11596/// Note that MorphNodeTo returns the resultant node. If there is already a
11597/// node of the specified opcode and operands, it returns that node instead of
11598/// the current one. Note that the SDLoc need not be the same.
11599///
11600/// Using MorphNodeTo is faster than creating a new node and swapping it in
11601/// with ReplaceAllUsesWith both because it often avoids allocating a new
11602/// node, and because it doesn't require CSE recalculation for any of
11603/// the node's users.
11604///
11605/// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
11606/// As a consequence it isn't appropriate to use from within the DAG combiner or
11607/// the legalizer which maintain worklists that would need to be updated when
11608/// deleting things.
11611 // If an identical node already exists, use it.
11612 void *IP = nullptr;
11613 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
11615 AddNodeIDNode(ID, Opc, VTs, Ops);
11616 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
11617 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
11618 }
11619
11620 if (!RemoveNodeFromCSEMaps(N))
11621 IP = nullptr;
11622
11623 // Start the morphing.
11624 N->NodeType = Opc;
11625 N->ValueList = VTs.VTs;
11626 N->NumValues = VTs.NumVTs;
11627
11628 // Clear the operands list, updating used nodes to remove this from their
11629 // use list. Keep track of any operands that become dead as a result.
11630 SmallPtrSet<SDNode*, 16> DeadNodeSet;
11631 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
11632 SDUse &Use = *I++;
11633 SDNode *Used = Use.getNode();
11634 Use.set(SDValue());
11635 if (Used->use_empty())
11636 DeadNodeSet.insert(Used);
11637 }
11638
11639 // For MachineNode, initialize the memory references information.
11641 MN->clearMemRefs();
11642
11643 // Swap for an appropriately sized array from the recycler.
11644 removeOperands(N);
11645 createOperands(N, Ops);
11646
11647 // Delete any nodes that are still dead after adding the uses for the
11648 // new operands.
11649 if (!DeadNodeSet.empty()) {
11650 SmallVector<SDNode *, 16> DeadNodes;
11651 for (SDNode *N : DeadNodeSet)
11652 if (N->use_empty())
11653 DeadNodes.push_back(N);
11654 RemoveDeadNodes(DeadNodes);
11655 }
11656
11657 if (IP)
11658 CSEMap.InsertNode(N, IP); // Memoize the new node.
11659 return N;
11660}
11661
11663 unsigned OrigOpc = Node->getOpcode();
11664 unsigned NewOpc;
11665 switch (OrigOpc) {
11666 default:
11667 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
11668#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11669 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
11670#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11671 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
11672#include "llvm/IR/ConstrainedOps.def"
11673 }
11674
11675 assert(Node->getNumValues() == 2 && "Unexpected number of results!");
11676
11677 // We're taking this node out of the chain, so we need to re-link things.
11678 SDValue InputChain = Node->getOperand(0);
11679 SDValue OutputChain = SDValue(Node, 1);
11680 ReplaceAllUsesOfValueWith(OutputChain, InputChain);
11681
11683 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
11684 Ops.push_back(Node->getOperand(i));
11685
11686 SDVTList VTs = getVTList(Node->getValueType(0));
11687 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
11688
11689 // MorphNodeTo can operate in two ways: if an existing node with the
11690 // specified operands exists, it can just return it. Otherwise, it
11691 // updates the node in place to have the requested operands.
11692 if (Res == Node) {
11693 // If we updated the node in place, reset the node ID. To the isel,
11694 // this should be just like a newly allocated machine node.
11695 Res->setNodeId(-1);
11696 } else {
11699 }
11700
11701 return Res;
11702}
11703
11704/// getMachineNode - These are used for target selectors to create a new node
11705/// with specified return type(s), MachineInstr opcode, and operands.
11706///
11707/// Note that getMachineNode returns the resultant node. If there is already a
11708/// node of the specified opcode and operands, it returns that node instead of
11709/// the current one.
11711 EVT VT) {
11712 SDVTList VTs = getVTList(VT);
11713 return getMachineNode(Opcode, dl, VTs, {});
11714}
11715
11717 EVT VT, SDValue Op1) {
11718 SDVTList VTs = getVTList(VT);
11719 SDValue Ops[] = { Op1 };
11720 return getMachineNode(Opcode, dl, VTs, Ops);
11721}
11722
11724 EVT VT, SDValue Op1, SDValue Op2) {
11725 SDVTList VTs = getVTList(VT);
11726 SDValue Ops[] = { Op1, Op2 };
11727 return getMachineNode(Opcode, dl, VTs, Ops);
11728}
11729
11731 EVT VT, SDValue Op1, SDValue Op2,
11732 SDValue Op3) {
11733 SDVTList VTs = getVTList(VT);
11734 SDValue Ops[] = { Op1, Op2, Op3 };
11735 return getMachineNode(Opcode, dl, VTs, Ops);
11736}
11737
11740 SDVTList VTs = getVTList(VT);
11741 return getMachineNode(Opcode, dl, VTs, Ops);
11742}
11743
11745 EVT VT1, EVT VT2, SDValue Op1,
11746 SDValue Op2) {
11747 SDVTList VTs = getVTList(VT1, VT2);
11748 SDValue Ops[] = { Op1, Op2 };
11749 return getMachineNode(Opcode, dl, VTs, Ops);
11750}
11751
11753 EVT VT1, EVT VT2, SDValue Op1,
11754 SDValue Op2, SDValue Op3) {
11755 SDVTList VTs = getVTList(VT1, VT2);
11756 SDValue Ops[] = { Op1, Op2, Op3 };
11757 return getMachineNode(Opcode, dl, VTs, Ops);
11758}
11759
11761 EVT VT1, EVT VT2,
11763 SDVTList VTs = getVTList(VT1, VT2);
11764 return getMachineNode(Opcode, dl, VTs, Ops);
11765}
11766
11768 EVT VT1, EVT VT2, EVT VT3,
11769 SDValue Op1, SDValue Op2) {
11770 SDVTList VTs = getVTList(VT1, VT2, VT3);
11771 SDValue Ops[] = { Op1, Op2 };
11772 return getMachineNode(Opcode, dl, VTs, Ops);
11773}
11774
11776 EVT VT1, EVT VT2, EVT VT3,
11777 SDValue Op1, SDValue Op2,
11778 SDValue Op3) {
11779 SDVTList VTs = getVTList(VT1, VT2, VT3);
11780 SDValue Ops[] = { Op1, Op2, Op3 };
11781 return getMachineNode(Opcode, dl, VTs, Ops);
11782}
11783
11785 EVT VT1, EVT VT2, EVT VT3,
11787 SDVTList VTs = getVTList(VT1, VT2, VT3);
11788 return getMachineNode(Opcode, dl, VTs, Ops);
11789}
11790
11792 ArrayRef<EVT> ResultTys,
11794 SDVTList VTs = getVTList(ResultTys);
11795 return getMachineNode(Opcode, dl, VTs, Ops);
11796}
11797
11799 SDVTList VTs,
11801 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
11803 void *IP = nullptr;
11804
11805 if (DoCSE) {
11807 AddNodeIDNode(ID, ~Opcode, VTs, Ops);
11808 IP = nullptr;
11809 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11810 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
11811 }
11812 }
11813
11814 // Allocate a new MachineSDNode.
11815 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
11816 createOperands(N, Ops);
11817
11818 if (DoCSE)
11819 CSEMap.InsertNode(N, IP);
11820
11821 InsertNode(N);
11822 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
11823 return N;
11824}
11825
11826/// getTargetExtractSubreg - A convenience function for creating
11827/// TargetOpcode::EXTRACT_SUBREG nodes.
11829 SDValue Operand) {
11830 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
11831 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
11832 VT, Operand, SRIdxVal);
11833 return SDValue(Subreg, 0);
11834}
11835
11836/// getTargetInsertSubreg - A convenience function for creating
11837/// TargetOpcode::INSERT_SUBREG nodes.
11839 SDValue Operand, SDValue Subreg) {
11840 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
11841 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
11842 VT, Operand, Subreg, SRIdxVal);
11843 return SDValue(Result, 0);
11844}
11845
11846/// getNodeIfExists - Get the specified node if it's already available, or
11847/// else return NULL.
11850 SDNodeFlags Flags;
11851 if (Inserter)
11852 Flags = Inserter->getFlags();
11853 return getNodeIfExists(Opcode, VTList, Ops, Flags);
11854}
11855
11858 const SDNodeFlags Flags) {
11859 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
11861 AddNodeIDNode(ID, Opcode, VTList, Ops);
11862 void *IP = nullptr;
11863 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
11864 E->intersectFlagsWith(Flags);
11865 return E;
11866 }
11867 }
11868 return nullptr;
11869}
11870
11871/// doesNodeExist - Check if a node exists without modifying its flags.
11872bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
11874 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
11876 AddNodeIDNode(ID, Opcode, VTList, Ops);
11877 void *IP = nullptr;
11878 if (FindNodeOrInsertPos(ID, SDLoc(), IP))
11879 return true;
11880 }
11881 return false;
11882}
11883
11884/// getDbgValue - Creates a SDDbgValue node.
11885///
11886/// SDNode
11888 SDNode *N, unsigned R, bool IsIndirect,
11889 const DebugLoc &DL, unsigned O) {
11890 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11891 "Expected inlined-at fields to agree");
11892 return new (DbgInfo->getAlloc())
11893 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
11894 {}, IsIndirect, DL, O,
11895 /*IsVariadic=*/false);
11896}
11897
11898/// Constant
11900 DIExpression *Expr,
11901 const Value *C,
11902 const DebugLoc &DL, unsigned O) {
11903 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11904 "Expected inlined-at fields to agree");
11905 return new (DbgInfo->getAlloc())
11906 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
11907 /*IsIndirect=*/false, DL, O,
11908 /*IsVariadic=*/false);
11909}
11910
11911/// FrameIndex
11913 DIExpression *Expr, unsigned FI,
11914 bool IsIndirect,
11915 const DebugLoc &DL,
11916 unsigned O) {
11917 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11918 "Expected inlined-at fields to agree");
11919 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
11920}
11921
11922/// FrameIndex with dependencies
11924 DIExpression *Expr, unsigned FI,
11925 ArrayRef<SDNode *> Dependencies,
11926 bool IsIndirect,
11927 const DebugLoc &DL,
11928 unsigned O) {
11929 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11930 "Expected inlined-at fields to agree");
11931 return new (DbgInfo->getAlloc())
11932 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
11933 Dependencies, IsIndirect, DL, O,
11934 /*IsVariadic=*/false);
11935}
11936
11937/// VReg
11939 Register VReg, bool IsIndirect,
11940 const DebugLoc &DL, unsigned O) {
11941 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11942 "Expected inlined-at fields to agree");
11943 return new (DbgInfo->getAlloc())
11944 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
11945 {}, IsIndirect, DL, O,
11946 /*IsVariadic=*/false);
11947}
11948
11951 ArrayRef<SDNode *> Dependencies,
11952 bool IsIndirect, const DebugLoc &DL,
11953 unsigned O, bool IsVariadic) {
11954 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11955 "Expected inlined-at fields to agree");
11956 return new (DbgInfo->getAlloc())
11957 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
11958 DL, O, IsVariadic);
11959}
11960
11962 unsigned OffsetInBits, unsigned SizeInBits,
11963 bool InvalidateDbg) {
11964 SDNode *FromNode = From.getNode();
11965 SDNode *ToNode = To.getNode();
11966 assert(FromNode && ToNode && "Can't modify dbg values");
11967
11968 // PR35338
11969 // TODO: assert(From != To && "Redundant dbg value transfer");
11970 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
11971 if (From == To || FromNode == ToNode)
11972 return;
11973
11974 if (!FromNode->getHasDebugValue())
11975 return;
11976
11977 SDDbgOperand FromLocOp =
11978 SDDbgOperand::fromNode(From.getNode(), From.getResNo());
11980
11982 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
11983 if (Dbg->isInvalidated())
11984 continue;
11985
11986 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
11987
11988 // Create a new location ops vector that is equal to the old vector, but
11989 // with each instance of FromLocOp replaced with ToLocOp.
11990 bool Changed = false;
11991 auto NewLocOps = Dbg->copyLocationOps();
11992 std::replace_if(
11993 NewLocOps.begin(), NewLocOps.end(),
11994 [&Changed, FromLocOp](const SDDbgOperand &Op) {
11995 bool Match = Op == FromLocOp;
11996 Changed |= Match;
11997 return Match;
11998 },
11999 ToLocOp);
12000 // Ignore this SDDbgValue if we didn't find a matching location.
12001 if (!Changed)
12002 continue;
12003
12004 DIVariable *Var = Dbg->getVariable();
12005 auto *Expr = Dbg->getExpression();
12006 // If a fragment is requested, update the expression.
12007 if (SizeInBits) {
12008 // When splitting a larger (e.g., sign-extended) value whose
12009 // lower bits are described with an SDDbgValue, do not attempt
12010 // to transfer the SDDbgValue to the upper bits.
12011 if (auto FI = Expr->getFragmentInfo())
12012 if (OffsetInBits + SizeInBits > FI->SizeInBits)
12013 continue;
12014 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
12015 SizeInBits);
12016 if (!Fragment)
12017 continue;
12018 Expr = *Fragment;
12019 }
12020
12021 auto AdditionalDependencies = Dbg->getAdditionalDependencies();
12022 // Clone the SDDbgValue and move it to To.
12023 SDDbgValue *Clone = getDbgValueList(
12024 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
12025 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
12026 Dbg->isVariadic());
12027 ClonedDVs.push_back(Clone);
12028
12029 if (InvalidateDbg) {
12030 // Invalidate value and indicate the SDDbgValue should not be emitted.
12031 Dbg->setIsInvalidated();
12032 Dbg->setIsEmitted();
12033 }
12034 }
12035
12036 for (SDDbgValue *Dbg : ClonedDVs) {
12037 assert(is_contained(Dbg->getSDNodes(), ToNode) &&
12038 "Transferred DbgValues should depend on the new SDNode");
12039 AddDbgValue(Dbg, false);
12040 }
12041}
12042
12044 if (!N.getHasDebugValue())
12045 return;
12046
12047 auto GetLocationOperand = [](SDNode *Node, unsigned ResNo) {
12048 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(Node))
12049 return SDDbgOperand::fromFrameIdx(FISDN->getIndex());
12050 return SDDbgOperand::fromNode(Node, ResNo);
12051 };
12052
12054 for (auto *DV : GetDbgValues(&N)) {
12055 if (DV->isInvalidated())
12056 continue;
12057 switch (N.getOpcode()) {
12058 default:
12059 break;
12060 case ISD::ADD: {
12061 SDValue N0 = N.getOperand(0);
12062 SDValue N1 = N.getOperand(1);
12063 if (!isa<ConstantSDNode>(N0)) {
12064 bool RHSConstant = isa<ConstantSDNode>(N1);
12066 if (RHSConstant)
12067 Offset = N.getConstantOperandVal(1);
12068 // We are not allowed to turn indirect debug values variadic, so
12069 // don't salvage those.
12070 if (!RHSConstant && DV->isIndirect())
12071 continue;
12072
12073 // Rewrite an ADD constant node into a DIExpression. Since we are
12074 // performing arithmetic to compute the variable's *value* in the
12075 // DIExpression, we need to mark the expression with a
12076 // DW_OP_stack_value.
12077 auto *DIExpr = DV->getExpression();
12078 auto NewLocOps = DV->copyLocationOps();
12079 bool Changed = false;
12080 size_t OrigLocOpsSize = NewLocOps.size();
12081 for (size_t i = 0; i < OrigLocOpsSize; ++i) {
12082 // We're not given a ResNo to compare against because the whole
12083 // node is going away. We know that any ISD::ADD only has one
12084 // result, so we can assume any node match is using the result.
12085 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
12086 NewLocOps[i].getSDNode() != &N)
12087 continue;
12088 NewLocOps[i] = GetLocationOperand(N0.getNode(), N0.getResNo());
12089 if (RHSConstant) {
12092 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
12093 } else {
12094 // Convert to a variadic expression (if not already).
12095 // convertToVariadicExpression() returns a const pointer, so we use
12096 // a temporary const variable here.
12097 const auto *TmpDIExpr =
12101 ExprOps.push_back(NewLocOps.size());
12102 ExprOps.push_back(dwarf::DW_OP_plus);
12103 SDDbgOperand RHS =
12105 NewLocOps.push_back(RHS);
12106 DIExpr = DIExpression::appendOpsToArg(TmpDIExpr, ExprOps, i, true);
12107 }
12108 Changed = true;
12109 }
12110 (void)Changed;
12111 assert(Changed && "Salvage target doesn't use N");
12112
12113 bool IsVariadic =
12114 DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
12115
12116 auto AdditionalDependencies = DV->getAdditionalDependencies();
12117 SDDbgValue *Clone = getDbgValueList(
12118 DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
12119 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
12120 ClonedDVs.push_back(Clone);
12121 DV->setIsInvalidated();
12122 DV->setIsEmitted();
12123 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
12124 N0.getNode()->dumprFull(this);
12125 dbgs() << " into " << *DIExpr << '\n');
12126 }
12127 break;
12128 }
12129 case ISD::TRUNCATE: {
12130 SDValue N0 = N.getOperand(0);
12131 TypeSize FromSize = N0.getValueSizeInBits();
12132 TypeSize ToSize = N.getValueSizeInBits(0);
12133
12134 DIExpression *DbgExpression = DV->getExpression();
12135 auto ExtOps = DIExpression::getExtOps(FromSize, ToSize, false);
12136 auto NewLocOps = DV->copyLocationOps();
12137 bool Changed = false;
12138 for (size_t i = 0; i < NewLocOps.size(); ++i) {
12139 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
12140 NewLocOps[i].getSDNode() != &N)
12141 continue;
12142
12143 NewLocOps[i] = GetLocationOperand(N0.getNode(), N0.getResNo());
12144 DbgExpression = DIExpression::appendOpsToArg(DbgExpression, ExtOps, i);
12145 Changed = true;
12146 }
12147 assert(Changed && "Salvage target doesn't use N");
12148 (void)Changed;
12149
12150 SDDbgValue *Clone =
12151 getDbgValueList(DV->getVariable(), DbgExpression, NewLocOps,
12152 DV->getAdditionalDependencies(), DV->isIndirect(),
12153 DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
12154
12155 ClonedDVs.push_back(Clone);
12156 DV->setIsInvalidated();
12157 DV->setIsEmitted();
12158 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; N0.getNode()->dumprFull(this);
12159 dbgs() << " into " << *DbgExpression << '\n');
12160 break;
12161 }
12162 }
12163 }
12164
12165 for (SDDbgValue *Dbg : ClonedDVs) {
12166 assert((!Dbg->getSDNodes().empty() ||
12167 llvm::any_of(Dbg->getLocationOps(),
12168 [&](const SDDbgOperand &Op) {
12169 return Op.getKind() == SDDbgOperand::FRAMEIX;
12170 })) &&
12171 "Salvaged DbgValue should depend on a new SDNode");
12172 AddDbgValue(Dbg, false);
12173 }
12174}
12175
12176/// Creates a SDDbgLabel node.
12178 const DebugLoc &DL, unsigned O) {
12179 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
12180 "Expected inlined-at fields to agree");
12181 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
12182}
12183
12184namespace {
12185
12186/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
12187/// pointed to by a use iterator is deleted, increment the use iterator
12188/// so that it doesn't dangle.
12189///
12190class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
12193
12194 void NodeDeleted(SDNode *N, SDNode *E) override {
12195 // Increment the iterator as needed.
12196 while (UI != UE && N == UI->getUser())
12197 ++UI;
12198 }
12199
12200public:
12201 RAUWUpdateListener(SelectionDAG &d,
12204 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
12205};
12206
12207} // end anonymous namespace
12208
12209/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12210/// This can cause recursive merging of nodes in the DAG.
12211///
12212/// This version assumes From has a single result value.
12213///
12215 SDNode *From = FromN.getNode();
12216 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
12217 "Cannot replace with this method!");
12218 assert(From != To.getNode() && "Cannot replace uses of with self");
12219
12220 // Preserve Debug Values
12221 transferDbgValues(FromN, To);
12222 // Preserve extra info.
12223 copyExtraInfo(From, To.getNode());
12224
12225 // Iterate over all the existing uses of From. New uses will be added
12226 // to the beginning of the use list, which we avoid visiting.
12227 // This specifically avoids visiting uses of From that arise while the
12228 // replacement is happening, because any such uses would be the result
12229 // of CSE: If an existing node looks like From after one of its operands
12230 // is replaced by To, we don't want to replace of all its users with To
12231 // too. See PR3018 for more info.
12232 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12233 RAUWUpdateListener Listener(*this, UI, UE);
12234 while (UI != UE) {
12235 SDNode *User = UI->getUser();
12236
12237 // This node is about to morph, remove its old self from the CSE maps.
12238 RemoveNodeFromCSEMaps(User);
12239
12240 // A user can appear in a use list multiple times, and when this
12241 // happens the uses are usually next to each other in the list.
12242 // To help reduce the number of CSE recomputations, process all
12243 // the uses of this user that we can find this way.
12244 do {
12245 SDUse &Use = *UI;
12246 ++UI;
12247 Use.set(To);
12248 if (To->isDivergent() != From->isDivergent())
12250 } while (UI != UE && UI->getUser() == User);
12251 // Now that we have modified User, add it back to the CSE maps. If it
12252 // already exists there, recursively merge the results together.
12253 AddModifiedNodeToCSEMaps(User);
12254 }
12255
12256 // If we just RAUW'd the root, take note.
12257 if (FromN == getRoot())
12258 setRoot(To);
12259}
12260
12261/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12262/// This can cause recursive merging of nodes in the DAG.
12263///
12264/// This version assumes that for each value of From, there is a
12265/// corresponding value in To in the same position with the same type.
12266///
12268#ifndef NDEBUG
12269 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
12270 assert((!From->hasAnyUseOfValue(i) ||
12271 From->getValueType(i) == To->getValueType(i)) &&
12272 "Cannot use this version of ReplaceAllUsesWith!");
12273#endif
12274
12275 // Handle the trivial case.
12276 if (From == To)
12277 return;
12278
12279 // Preserve Debug Info. Only do this if there's a use.
12280 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
12281 if (From->hasAnyUseOfValue(i)) {
12282 assert((i < To->getNumValues()) && "Invalid To location");
12283 transferDbgValues(SDValue(From, i), SDValue(To, i));
12284 }
12285 // Preserve extra info.
12286 copyExtraInfo(From, To);
12287
12288 // Iterate over just the existing users of From. See the comments in
12289 // the ReplaceAllUsesWith above.
12290 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12291 RAUWUpdateListener Listener(*this, UI, UE);
12292 while (UI != UE) {
12293 SDNode *User = UI->getUser();
12294
12295 // This node is about to morph, remove its old self from the CSE maps.
12296 RemoveNodeFromCSEMaps(User);
12297
12298 // A user can appear in a use list multiple times, and when this
12299 // happens the uses are usually next to each other in the list.
12300 // To help reduce the number of CSE recomputations, process all
12301 // the uses of this user that we can find this way.
12302 do {
12303 SDUse &Use = *UI;
12304 ++UI;
12305 Use.setNode(To);
12306 if (To->isDivergent() != From->isDivergent())
12308 } while (UI != UE && UI->getUser() == User);
12309
12310 // Now that we have modified User, add it back to the CSE maps. If it
12311 // already exists there, recursively merge the results together.
12312 AddModifiedNodeToCSEMaps(User);
12313 }
12314
12315 // If we just RAUW'd the root, take note.
12316 if (From == getRoot().getNode())
12317 setRoot(SDValue(To, getRoot().getResNo()));
12318}
12319
12320/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12321/// This can cause recursive merging of nodes in the DAG.
12322///
12323/// This version can replace From with any result values. To must match the
12324/// number and types of values returned by From.
12326 if (From->getNumValues() == 1) // Handle the simple case efficiently.
12327 return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
12328
12329 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
12330 // Preserve Debug Info.
12331 transferDbgValues(SDValue(From, i), To[i]);
12332 // Preserve extra info.
12333 copyExtraInfo(From, To[i].getNode());
12334 }
12335
12336 // Iterate over just the existing users of From. See the comments in
12337 // the ReplaceAllUsesWith above.
12338 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12339 RAUWUpdateListener Listener(*this, UI, UE);
12340 while (UI != UE) {
12341 SDNode *User = UI->getUser();
12342
12343 // This node is about to morph, remove its old self from the CSE maps.
12344 RemoveNodeFromCSEMaps(User);
12345
12346 // A user can appear in a use list multiple times, and when this happens the
12347 // uses are usually next to each other in the list. To help reduce the
12348 // number of CSE and divergence recomputations, process all the uses of this
12349 // user that we can find this way.
12350 bool To_IsDivergent = false;
12351 do {
12352 SDUse &Use = *UI;
12353 const SDValue &ToOp = To[Use.getResNo()];
12354 ++UI;
12355 Use.set(ToOp);
12356 To_IsDivergent |= ToOp->isDivergent();
12357 } while (UI != UE && UI->getUser() == User);
12358
12359 if (To_IsDivergent != From->isDivergent())
12361
12362 // Now that we have modified User, add it back to the CSE maps. If it
12363 // already exists there, recursively merge the results together.
12364 AddModifiedNodeToCSEMaps(User);
12365 }
12366
12367 // If we just RAUW'd the root, take note.
12368 if (From == getRoot().getNode())
12369 setRoot(SDValue(To[getRoot().getResNo()]));
12370}
12371
12372/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
12373/// uses of other values produced by From.getNode() alone. The Deleted
12374/// vector is handled the same way as for ReplaceAllUsesWith.
12376 // Handle the really simple, really trivial case efficiently.
12377 if (From == To) return;
12378
12379 // Handle the simple, trivial, case efficiently.
12380 if (From.getNode()->getNumValues() == 1) {
12381 ReplaceAllUsesWith(From, To);
12382 return;
12383 }
12384
12385 // Preserve Debug Info.
12386 transferDbgValues(From, To);
12387 copyExtraInfo(From.getNode(), To.getNode());
12388
12389 // Iterate over just the existing users of From. See the comments in
12390 // the ReplaceAllUsesWith above.
12391 SDNode::use_iterator UI = From.getNode()->use_begin(),
12392 UE = From.getNode()->use_end();
12393 RAUWUpdateListener Listener(*this, UI, UE);
12394 while (UI != UE) {
12395 SDNode *User = UI->getUser();
12396 bool UserRemovedFromCSEMaps = false;
12397
12398 // A user can appear in a use list multiple times, and when this
12399 // happens the uses are usually next to each other in the list.
12400 // To help reduce the number of CSE recomputations, process all
12401 // the uses of this user that we can find this way.
12402 do {
12403 SDUse &Use = *UI;
12404
12405 // Skip uses of different values from the same node.
12406 if (Use.getResNo() != From.getResNo()) {
12407 ++UI;
12408 continue;
12409 }
12410
12411 // If this node hasn't been modified yet, it's still in the CSE maps,
12412 // so remove its old self from the CSE maps.
12413 if (!UserRemovedFromCSEMaps) {
12414 RemoveNodeFromCSEMaps(User);
12415 UserRemovedFromCSEMaps = true;
12416 }
12417
12418 ++UI;
12419 Use.set(To);
12420 if (To->isDivergent() != From->isDivergent())
12422 } while (UI != UE && UI->getUser() == User);
12423 // We are iterating over all uses of the From node, so if a use
12424 // doesn't use the specific value, no changes are made.
12425 if (!UserRemovedFromCSEMaps)
12426 continue;
12427
12428 // Now that we have modified User, add it back to the CSE maps. If it
12429 // already exists there, recursively merge the results together.
12430 AddModifiedNodeToCSEMaps(User);
12431 }
12432
12433 // If we just RAUW'd the root, take note.
12434 if (From == getRoot())
12435 setRoot(To);
12436}
12437
12438namespace {
12439
12440/// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
12441/// to record information about a use.
12442struct UseMemo {
12443 SDNode *User;
12444 unsigned Index;
12445 SDUse *Use;
12446};
12447
12448/// operator< - Sort Memos by User.
12449bool operator<(const UseMemo &L, const UseMemo &R) {
12450 return (intptr_t)L.User < (intptr_t)R.User;
12451}
12452
12453/// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node
12454/// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that
12455/// the node already has been taken care of recursively.
12456class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
12457 SmallVectorImpl<UseMemo> &Uses;
12458
12459 void NodeDeleted(SDNode *N, SDNode *E) override {
12460 for (UseMemo &Memo : Uses)
12461 if (Memo.User == N)
12462 Memo.User = nullptr;
12463 }
12464
12465public:
12466 RAUOVWUpdateListener(SelectionDAG &d, SmallVectorImpl<UseMemo> &uses)
12467 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
12468};
12469
12470} // end anonymous namespace
12471
12472/// Return true if a glue output should propagate divergence information.
12474 switch (Node->getOpcode()) {
12475 case ISD::CopyFromReg:
12476 case ISD::CopyToReg:
12477 return false;
12478 default:
12479 return true;
12480 }
12481
12482 llvm_unreachable("covered opcode switch");
12483}
12484
12486 if (TLI->isSDNodeAlwaysUniform(N)) {
12487 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, UA) &&
12488 "Conflicting divergence information!");
12489 return false;
12490 }
12491 if (TLI->isSDNodeSourceOfDivergence(N, FLI, UA))
12492 return true;
12493 for (const auto &Op : N->ops()) {
12494 EVT VT = Op.getValueType();
12495
12496 // Skip Chain. It does not carry divergence.
12497 if (VT != MVT::Other && Op.getNode()->isDivergent() &&
12498 (VT != MVT::Glue || gluePropagatesDivergence(Op.getNode())))
12499 return true;
12500 }
12501 return false;
12502}
12503
12505 SmallVector<SDNode *, 16> Worklist(1, N);
12506 do {
12507 N = Worklist.pop_back_val();
12508 bool IsDivergent = calculateDivergence(N);
12509 if (N->SDNodeBits.IsDivergent != IsDivergent) {
12510 N->SDNodeBits.IsDivergent = IsDivergent;
12511 llvm::append_range(Worklist, N->users());
12512 }
12513 } while (!Worklist.empty());
12514}
12515
12516void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
12518 Order.reserve(AllNodes.size());
12519 for (auto &N : allnodes()) {
12520 unsigned NOps = N.getNumOperands();
12521 Degree[&N] = NOps;
12522 if (0 == NOps)
12523 Order.push_back(&N);
12524 }
12525 for (size_t I = 0; I != Order.size(); ++I) {
12526 SDNode *N = Order[I];
12527 for (auto *U : N->users()) {
12528 unsigned &UnsortedOps = Degree[U];
12529 if (0 == --UnsortedOps)
12530 Order.push_back(U);
12531 }
12532 }
12533}
12534
12535#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
12536void SelectionDAG::VerifyDAGDivergence() {
12537 std::vector<SDNode *> TopoOrder;
12538 CreateTopologicalOrder(TopoOrder);
12539 for (auto *N : TopoOrder) {
12540 assert(calculateDivergence(N) == N->isDivergent() &&
12541 "Divergence bit inconsistency detected");
12542 }
12543}
12544#endif
12545
12546/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
12547/// uses of other values produced by From.getNode() alone. The same value
12548/// may appear in both the From and To list. The Deleted vector is
12549/// handled the same way as for ReplaceAllUsesWith.
12551 const SDValue *To,
12552 unsigned Num){
12553 // Handle the simple, trivial case efficiently.
12554 if (Num == 1)
12555 return ReplaceAllUsesOfValueWith(*From, *To);
12556
12557 transferDbgValues(*From, *To);
12558 copyExtraInfo(From->getNode(), To->getNode());
12559
12560 // Read up all the uses and make records of them. This helps
12561 // processing new uses that are introduced during the
12562 // replacement process.
12564 for (unsigned i = 0; i != Num; ++i) {
12565 unsigned FromResNo = From[i].getResNo();
12566 SDNode *FromNode = From[i].getNode();
12567 for (SDUse &Use : FromNode->uses()) {
12568 if (Use.getResNo() == FromResNo) {
12569 UseMemo Memo = {Use.getUser(), i, &Use};
12570 Uses.push_back(Memo);
12571 }
12572 }
12573 }
12574
12575 // Sort the uses, so that all the uses from a given User are together.
12577 RAUOVWUpdateListener Listener(*this, Uses);
12578
12579 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
12580 UseIndex != UseIndexEnd; ) {
12581 // We know that this user uses some value of From. If it is the right
12582 // value, update it.
12583 SDNode *User = Uses[UseIndex].User;
12584 // If the node has been deleted by recursive CSE updates when updating
12585 // another node, then just skip this entry.
12586 if (User == nullptr) {
12587 ++UseIndex;
12588 continue;
12589 }
12590
12591 // This node is about to morph, remove its old self from the CSE maps.
12592 RemoveNodeFromCSEMaps(User);
12593
12594 // The Uses array is sorted, so all the uses for a given User
12595 // are next to each other in the list.
12596 // To help reduce the number of CSE recomputations, process all
12597 // the uses of this user that we can find this way.
12598 do {
12599 unsigned i = Uses[UseIndex].Index;
12600 SDUse &Use = *Uses[UseIndex].Use;
12601 ++UseIndex;
12602
12603 Use.set(To[i]);
12604 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
12605
12606 // Now that we have modified User, add it back to the CSE maps. If it
12607 // already exists there, recursively merge the results together.
12608 AddModifiedNodeToCSEMaps(User);
12609 }
12610}
12611
12612/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
12613/// based on their topological order. It returns the maximum id and a vector
12614/// of the SDNodes* in assigned order by reference.
12616 unsigned DAGSize = 0;
12617
12618 // SortedPos tracks the progress of the algorithm. Nodes before it are
12619 // sorted, nodes after it are unsorted. When the algorithm completes
12620 // it is at the end of the list.
12621 allnodes_iterator SortedPos = allnodes_begin();
12622
12623 // Visit all the nodes. Move nodes with no operands to the front of
12624 // the list immediately. Annotate nodes that do have operands with their
12625 // operand count. Before we do this, the Node Id fields of the nodes
12626 // may contain arbitrary values. After, the Node Id fields for nodes
12627 // before SortedPos will contain the topological sort index, and the
12628 // Node Id fields for nodes At SortedPos and after will contain the
12629 // count of outstanding operands.
12631 checkForCycles(&N, this);
12632 unsigned Degree = N.getNumOperands();
12633 if (Degree == 0) {
12634 // A node with no uses, add it to the result array immediately.
12635 N.setNodeId(DAGSize++);
12636 allnodes_iterator Q(&N);
12637 if (Q != SortedPos)
12638 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
12639 assert(SortedPos != AllNodes.end() && "Overran node list");
12640 ++SortedPos;
12641 } else {
12642 // Temporarily use the Node Id as scratch space for the degree count.
12643 N.setNodeId(Degree);
12644 }
12645 }
12646
12647 // Visit all the nodes. As we iterate, move nodes into sorted order,
12648 // such that by the time the end is reached all nodes will be sorted.
12649 for (SDNode &Node : allnodes()) {
12650 SDNode *N = &Node;
12651 checkForCycles(N, this);
12652 // N is in sorted position, so all its uses have one less operand
12653 // that needs to be sorted.
12654 for (SDNode *P : N->users()) {
12655 unsigned Degree = P->getNodeId();
12656 assert(Degree != 0 && "Invalid node degree");
12657 --Degree;
12658 if (Degree == 0) {
12659 // All of P's operands are sorted, so P may sorted now.
12660 P->setNodeId(DAGSize++);
12661 if (P->getIterator() != SortedPos)
12662 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
12663 assert(SortedPos != AllNodes.end() && "Overran node list");
12664 ++SortedPos;
12665 } else {
12666 // Update P's outstanding operand count.
12667 P->setNodeId(Degree);
12668 }
12669 }
12670 if (Node.getIterator() == SortedPos) {
12671#ifndef NDEBUG
12673 SDNode *S = &*++I;
12674 dbgs() << "Overran sorted position:\n";
12675 S->dumprFull(this); dbgs() << "\n";
12676 dbgs() << "Checking if this is due to cycles\n";
12677 checkForCycles(this, true);
12678#endif
12679 llvm_unreachable(nullptr);
12680 }
12681 }
12682
12683 assert(SortedPos == AllNodes.end() &&
12684 "Topological sort incomplete!");
12685 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
12686 "First node in topological sort is not the entry token!");
12687 assert(AllNodes.front().getNodeId() == 0 &&
12688 "First node in topological sort has non-zero id!");
12689 assert(AllNodes.front().getNumOperands() == 0 &&
12690 "First node in topological sort has operands!");
12691 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
12692 "Last node in topologic sort has unexpected id!");
12693 assert(AllNodes.back().use_empty() &&
12694 "Last node in topologic sort has users!");
12695 assert(DAGSize == allnodes_size() && "Node count mismatch!");
12696 return DAGSize;
12697}
12698
12700 SmallVectorImpl<const SDNode *> &SortedNodes) const {
12701 SortedNodes.clear();
12702 // Node -> remaining number of outstanding operands.
12703 DenseMap<const SDNode *, unsigned> RemainingOperands;
12704
12705 // Put nodes without any operands into SortedNodes first.
12706 for (const SDNode &N : allnodes()) {
12707 checkForCycles(&N, this);
12708 unsigned NumOperands = N.getNumOperands();
12709 if (NumOperands == 0)
12710 SortedNodes.push_back(&N);
12711 else
12712 // Record their total number of outstanding operands.
12713 RemainingOperands[&N] = NumOperands;
12714 }
12715
12716 // A node is pushed into SortedNodes when all of its operands (predecessors in
12717 // the graph) are also in SortedNodes.
12718 for (unsigned i = 0U; i < SortedNodes.size(); ++i) {
12719 const SDNode *N = SortedNodes[i];
12720 for (const SDNode *U : N->users()) {
12721 unsigned &NumRemOperands = RemainingOperands[U];
12722 assert(NumRemOperands && "Invalid number of remaining operands");
12723 --NumRemOperands;
12724 if (!NumRemOperands)
12725 SortedNodes.push_back(U);
12726 }
12727 }
12728
12729 assert(SortedNodes.size() == AllNodes.size() && "Node count mismatch");
12730 assert(SortedNodes.front()->getOpcode() == ISD::EntryToken &&
12731 "First node in topological sort is not the entry token");
12732 assert(SortedNodes.front()->getNumOperands() == 0 &&
12733 "First node in topological sort has operands");
12734 assert(SortedNodes.back()->use_empty() &&
12735 "Last node in topologic sort has users");
12736}
12737
12738/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
12739/// value is produced by SD.
12740void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
12741 for (SDNode *SD : DB->getSDNodes()) {
12742 if (!SD)
12743 continue;
12744 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
12745 SD->setHasDebugValue(true);
12746 }
12747 DbgInfo->add(DB, isParameter);
12748}
12749
12750void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
12751
12753 SDValue NewMemOpChain) {
12754 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
12755 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
12756 // The new memory operation must have the same position as the old load in
12757 // terms of memory dependency. Create a TokenFactor for the old load and new
12758 // memory operation and update uses of the old load's output chain to use that
12759 // TokenFactor.
12760 if (OldChain == NewMemOpChain || OldChain.use_empty())
12761 return NewMemOpChain;
12762
12763 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
12764 OldChain, NewMemOpChain);
12765 ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
12766 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
12767 return TokenFactor;
12768}
12769
12771 SDValue NewMemOp) {
12772 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
12773 SDValue OldChain = SDValue(OldLoad, 1);
12774 SDValue NewMemOpChain = NewMemOp.getValue(1);
12775 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
12776}
12777
12779 Function **OutFunction) {
12780 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
12781
12782 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
12783 auto *Module = MF->getFunction().getParent();
12784 auto *Function = Module->getFunction(Symbol);
12785
12786 if (OutFunction != nullptr)
12787 *OutFunction = Function;
12788
12789 if (Function != nullptr) {
12790 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
12791 return getGlobalAddress(Function, SDLoc(Op), PtrTy);
12792 }
12793
12794 std::string ErrorStr;
12795 raw_string_ostream ErrorFormatter(ErrorStr);
12796 ErrorFormatter << "Undefined external symbol ";
12797 ErrorFormatter << '"' << Symbol << '"';
12798 report_fatal_error(Twine(ErrorStr));
12799}
12800
12801//===----------------------------------------------------------------------===//
12802// SDNode Class
12803//===----------------------------------------------------------------------===//
12804
12807 return Const != nullptr && Const->isZero();
12808}
12809
12811 return V.isUndef() || isNullConstant(V);
12812}
12813
12816 return Const != nullptr && Const->isZero() && !Const->isNegative();
12817}
12818
12821 return Const != nullptr && Const->isAllOnes();
12822}
12823
12826 return Const != nullptr && Const->isOne();
12827}
12828
12831 return Const != nullptr && Const->isMinSignedValue();
12832}
12833
12834bool llvm::isNeutralConstant(unsigned Opcode, SDNodeFlags Flags, SDValue V,
12835 unsigned OperandNo) {
12836 // NOTE: The cases should match with IR's ConstantExpr::getBinOpIdentity().
12837 // TODO: Target-specific opcodes could be added.
12838 if (auto *ConstV = isConstOrConstSplat(V, /*AllowUndefs*/ false,
12839 /*AllowTruncation*/ true)) {
12840 APInt Const = ConstV->getAPIntValue().trunc(V.getScalarValueSizeInBits());
12841 switch (Opcode) {
12842 case ISD::ADD:
12843 case ISD::OR:
12844 case ISD::XOR:
12845 case ISD::UMAX:
12846 return Const.isZero();
12847 case ISD::MUL:
12848 return Const.isOne();
12849 case ISD::AND:
12850 case ISD::UMIN:
12851 return Const.isAllOnes();
12852 case ISD::SMAX:
12853 return Const.isMinSignedValue();
12854 case ISD::SMIN:
12855 return Const.isMaxSignedValue();
12856 case ISD::SUB:
12857 case ISD::SHL:
12858 case ISD::SRA:
12859 case ISD::SRL:
12860 return OperandNo == 1 && Const.isZero();
12861 case ISD::UDIV:
12862 case ISD::SDIV:
12863 return OperandNo == 1 && Const.isOne();
12864 }
12865 } else if (auto *ConstFP = isConstOrConstSplatFP(V)) {
12866 switch (Opcode) {
12867 case ISD::FADD:
12868 return ConstFP->isZero() &&
12869 (Flags.hasNoSignedZeros() || ConstFP->isNegative());
12870 case ISD::FSUB:
12871 return OperandNo == 1 && ConstFP->isZero() &&
12872 (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
12873 case ISD::FMUL:
12874 return ConstFP->isExactlyValue(1.0);
12875 case ISD::FDIV:
12876 return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
12877 case ISD::FMINNUM:
12878 case ISD::FMAXNUM: {
12879 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
12880 EVT VT = V.getValueType();
12881 const fltSemantics &Semantics = VT.getFltSemantics();
12882 APFloat NeutralAF = !Flags.hasNoNaNs()
12883 ? APFloat::getQNaN(Semantics)
12884 : !Flags.hasNoInfs()
12885 ? APFloat::getInf(Semantics)
12886 : APFloat::getLargest(Semantics);
12887 if (Opcode == ISD::FMAXNUM)
12888 NeutralAF.changeSign();
12889
12890 return ConstFP->isExactlyValue(NeutralAF);
12891 }
12892 }
12893 }
12894 return false;
12895}
12896
12898 while (V.getOpcode() == ISD::BITCAST)
12899 V = V.getOperand(0);
12900 return V;
12901}
12902
12904 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
12905 V = V.getOperand(0);
12906 return V;
12907}
12908
12910 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
12911 V = V.getOperand(0);
12912 return V;
12913}
12914
12916 while (V.getOpcode() == ISD::INSERT_VECTOR_ELT) {
12917 SDValue InVec = V.getOperand(0);
12918 SDValue EltNo = V.getOperand(2);
12919 EVT VT = InVec.getValueType();
12920 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
12921 if (IndexC && VT.isFixedLengthVector() &&
12922 IndexC->getAPIntValue().ult(VT.getVectorNumElements()) &&
12923 !DemandedElts[IndexC->getZExtValue()]) {
12924 V = InVec;
12925 continue;
12926 }
12927 break;
12928 }
12929 return V;
12930}
12931
12933 while (V.getOpcode() == ISD::TRUNCATE)
12934 V = V.getOperand(0);
12935 return V;
12936}
12937
12938bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
12939 if (V.getOpcode() != ISD::XOR)
12940 return false;
12941 V = peekThroughBitcasts(V.getOperand(1));
12942 unsigned NumBits = V.getScalarValueSizeInBits();
12943 ConstantSDNode *C =
12944 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
12945 return C && (C->getAPIntValue().countr_one() >= NumBits);
12946}
12947
12949 bool AllowTruncation) {
12950 EVT VT = N.getValueType();
12951 APInt DemandedElts = VT.isFixedLengthVector()
12953 : APInt(1, 1);
12954 return isConstOrConstSplat(N, DemandedElts, AllowUndefs, AllowTruncation);
12955}
12956
12958 bool AllowUndefs,
12959 bool AllowTruncation) {
12961 return CN;
12962
12963 // SplatVectors can truncate their operands. Ignore that case here unless
12964 // AllowTruncation is set.
12965 if (N->getOpcode() == ISD::SPLAT_VECTOR) {
12966 EVT VecEltVT = N->getValueType(0).getVectorElementType();
12967 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12968 EVT CVT = CN->getValueType(0);
12969 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
12970 if (AllowTruncation || CVT == VecEltVT)
12971 return CN;
12972 }
12973 }
12974
12976 BitVector UndefElements;
12977 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
12978
12979 // BuildVectors can truncate their operands. Ignore that case here unless
12980 // AllowTruncation is set.
12981 // TODO: Look into whether we should allow UndefElements in non-DemandedElts
12982 if (CN && (UndefElements.none() || AllowUndefs)) {
12983 EVT CVT = CN->getValueType(0);
12984 EVT NSVT = N.getValueType().getScalarType();
12985 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
12986 if (AllowTruncation || (CVT == NSVT))
12987 return CN;
12988 }
12989 }
12990
12991 return nullptr;
12992}
12993
12995 EVT VT = N.getValueType();
12996 APInt DemandedElts = VT.isFixedLengthVector()
12998 : APInt(1, 1);
12999 return isConstOrConstSplatFP(N, DemandedElts, AllowUndefs);
13000}
13001
13003 const APInt &DemandedElts,
13004 bool AllowUndefs) {
13006 return CN;
13007
13009 BitVector UndefElements;
13010 ConstantFPSDNode *CN =
13011 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
13012 // TODO: Look into whether we should allow UndefElements in non-DemandedElts
13013 if (CN && (UndefElements.none() || AllowUndefs))
13014 return CN;
13015 }
13016
13017 if (N.getOpcode() == ISD::SPLAT_VECTOR)
13018 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
13019 return CN;
13020
13021 return nullptr;
13022}
13023
13024bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
13025 // TODO: may want to use peekThroughBitcast() here.
13026 ConstantSDNode *C =
13027 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
13028 return C && C->isZero();
13029}
13030
13031bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
13032 ConstantSDNode *C =
13033 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true);
13034 return C && C->isOne();
13035}
13036
13037bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
13039 unsigned BitWidth = N.getScalarValueSizeInBits();
13040 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
13041 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
13042}
13043
13044bool llvm::isOnesOrOnesSplat(SDValue N, bool AllowUndefs) {
13045 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
13046 return C && APInt::isSameValue(C->getAPIntValue(),
13047 APInt(C->getAPIntValue().getBitWidth(), 1));
13048}
13049
13050bool llvm::isZeroOrZeroSplat(SDValue N, bool AllowUndefs) {
13052 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs, true);
13053 return C && C->isZero();
13054}
13055
13059
13060MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
13061 SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
13062 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
13063 MemSDNodeBits.IsVolatile = MMO->isVolatile();
13064 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
13065 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
13066 MemSDNodeBits.IsInvariant = MMO->isInvariant();
13067
13068 // We check here that the size of the memory operand fits within the size of
13069 // the MMO. This is because the MMO might indicate only a possible address
13070 // range instead of specifying the affected memory addresses precisely.
13071 assert(
13072 (!MMO->getType().isValid() ||
13073 TypeSize::isKnownLE(memvt.getStoreSize(), MMO->getSize().getValue())) &&
13074 "Size mismatch!");
13075}
13076
13077/// Profile - Gather unique data for the node.
13078///
13080 AddNodeIDNode(ID, this);
13081}
13082
13083namespace {
13084
13085 struct EVTArray {
13086 std::vector<EVT> VTs;
13087
13088 EVTArray() {
13089 VTs.reserve(MVT::VALUETYPE_SIZE);
13090 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
13091 VTs.push_back(MVT((MVT::SimpleValueType)i));
13092 }
13093 };
13094
13095} // end anonymous namespace
13096
13097/// getValueTypeList - Return a pointer to the specified value type.
13098///
13099const EVT *SDNode::getValueTypeList(MVT VT) {
13100 static EVTArray SimpleVTArray;
13101
13102 assert(VT < MVT::VALUETYPE_SIZE && "Value type out of range!");
13103 return &SimpleVTArray.VTs[VT.SimpleTy];
13104}
13105
13106/// hasAnyUseOfValue - Return true if there are any use of the indicated
13107/// value. This method ignores uses of other values defined by this operation.
13108bool SDNode::hasAnyUseOfValue(unsigned Value) const {
13109 assert(Value < getNumValues() && "Bad value!");
13110
13111 for (SDUse &U : uses())
13112 if (U.getResNo() == Value)
13113 return true;
13114
13115 return false;
13116}
13117
13118/// isOnlyUserOf - Return true if this node is the only use of N.
13119bool SDNode::isOnlyUserOf(const SDNode *N) const {
13120 bool Seen = false;
13121 for (const SDNode *User : N->users()) {
13122 if (User == this)
13123 Seen = true;
13124 else
13125 return false;
13126 }
13127
13128 return Seen;
13129}
13130
13131/// Return true if the only users of N are contained in Nodes.
13133 bool Seen = false;
13134 for (const SDNode *User : N->users()) {
13135 if (llvm::is_contained(Nodes, User))
13136 Seen = true;
13137 else
13138 return false;
13139 }
13140
13141 return Seen;
13142}
13143
13144/// Return true if the referenced return value is an operand of N.
13145bool SDValue::isOperandOf(const SDNode *N) const {
13146 return is_contained(N->op_values(), *this);
13147}
13148
13149bool SDNode::isOperandOf(const SDNode *N) const {
13150 return any_of(N->op_values(),
13151 [this](SDValue Op) { return this == Op.getNode(); });
13152}
13153
13154/// reachesChainWithoutSideEffects - Return true if this operand (which must
13155/// be a chain) reaches the specified operand without crossing any
13156/// side-effecting instructions on any chain path. In practice, this looks
13157/// through token factors and non-volatile loads. In order to remain efficient,
13158/// this only looks a couple of nodes in, it does not do an exhaustive search.
13159///
13160/// Note that we only need to examine chains when we're searching for
13161/// side-effects; SelectionDAG requires that all side-effects are represented
13162/// by chains, even if another operand would force a specific ordering. This
13163/// constraint is necessary to allow transformations like splitting loads.
13165 unsigned Depth) const {
13166 if (*this == Dest) return true;
13167
13168 // Don't search too deeply, we just want to be able to see through
13169 // TokenFactor's etc.
13170 if (Depth == 0) return false;
13171
13172 // If this is a token factor, all inputs to the TF happen in parallel.
13173 if (getOpcode() == ISD::TokenFactor) {
13174 // First, try a shallow search.
13175 if (is_contained((*this)->ops(), Dest)) {
13176 // We found the chain we want as an operand of this TokenFactor.
13177 // Essentially, we reach the chain without side-effects if we could
13178 // serialize the TokenFactor into a simple chain of operations with
13179 // Dest as the last operation. This is automatically true if the
13180 // chain has one use: there are no other ordering constraints.
13181 // If the chain has more than one use, we give up: some other
13182 // use of Dest might force a side-effect between Dest and the current
13183 // node.
13184 if (Dest.hasOneUse())
13185 return true;
13186 }
13187 // Next, try a deep search: check whether every operand of the TokenFactor
13188 // reaches Dest.
13189 return llvm::all_of((*this)->ops(), [=](SDValue Op) {
13190 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
13191 });
13192 }
13193
13194 // Loads don't have side effects, look through them.
13195 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
13196 if (Ld->isUnordered())
13197 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
13198 }
13199 return false;
13200}
13201
13202bool SDNode::hasPredecessor(const SDNode *N) const {
13205 Worklist.push_back(this);
13206 return hasPredecessorHelper(N, Visited, Worklist);
13207}
13208
13210 this->Flags &= Flags;
13211}
13212
13213SDValue
13215 ArrayRef<ISD::NodeType> CandidateBinOps,
13216 bool AllowPartials) {
13217 // The pattern must end in an extract from index 0.
13218 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13219 !isNullConstant(Extract->getOperand(1)))
13220 return SDValue();
13221
13222 // Match against one of the candidate binary ops.
13223 SDValue Op = Extract->getOperand(0);
13224 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
13225 return Op.getOpcode() == unsigned(BinOp);
13226 }))
13227 return SDValue();
13228
13229 // Floating-point reductions may require relaxed constraints on the final step
13230 // of the reduction because they may reorder intermediate operations.
13231 unsigned CandidateBinOp = Op.getOpcode();
13232 if (Op.getValueType().isFloatingPoint()) {
13233 SDNodeFlags Flags = Op->getFlags();
13234 switch (CandidateBinOp) {
13235 case ISD::FADD:
13236 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
13237 return SDValue();
13238 break;
13239 default:
13240 llvm_unreachable("Unhandled FP opcode for binop reduction");
13241 }
13242 }
13243
13244 // Matching failed - attempt to see if we did enough stages that a partial
13245 // reduction from a subvector is possible.
13246 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
13247 if (!AllowPartials || !Op)
13248 return SDValue();
13249 EVT OpVT = Op.getValueType();
13250 EVT OpSVT = OpVT.getScalarType();
13251 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
13252 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
13253 return SDValue();
13254 BinOp = (ISD::NodeType)CandidateBinOp;
13255 return getExtractSubvector(SDLoc(Op), SubVT, Op, 0);
13256 };
13257
13258 // At each stage, we're looking for something that looks like:
13259 // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
13260 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
13261 // i32 undef, i32 undef, i32 undef, i32 undef>
13262 // %a = binop <8 x i32> %op, %s
13263 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
13264 // we expect something like:
13265 // <4,5,6,7,u,u,u,u>
13266 // <2,3,u,u,u,u,u,u>
13267 // <1,u,u,u,u,u,u,u>
13268 // While a partial reduction match would be:
13269 // <2,3,u,u,u,u,u,u>
13270 // <1,u,u,u,u,u,u,u>
13271 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
13272 SDValue PrevOp;
13273 for (unsigned i = 0; i < Stages; ++i) {
13274 unsigned MaskEnd = (1 << i);
13275
13276 if (Op.getOpcode() != CandidateBinOp)
13277 return PartialReduction(PrevOp, MaskEnd);
13278
13279 SDValue Op0 = Op.getOperand(0);
13280 SDValue Op1 = Op.getOperand(1);
13281
13283 if (Shuffle) {
13284 Op = Op1;
13285 } else {
13286 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
13287 Op = Op0;
13288 }
13289
13290 // The first operand of the shuffle should be the same as the other operand
13291 // of the binop.
13292 if (!Shuffle || Shuffle->getOperand(0) != Op)
13293 return PartialReduction(PrevOp, MaskEnd);
13294
13295 // Verify the shuffle has the expected (at this stage of the pyramid) mask.
13296 for (int Index = 0; Index < (int)MaskEnd; ++Index)
13297 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
13298 return PartialReduction(PrevOp, MaskEnd);
13299
13300 PrevOp = Op;
13301 }
13302
13303 // Handle subvector reductions, which tend to appear after the shuffle
13304 // reduction stages.
13305 while (Op.getOpcode() == CandidateBinOp) {
13306 unsigned NumElts = Op.getValueType().getVectorNumElements();
13307 SDValue Op0 = Op.getOperand(0);
13308 SDValue Op1 = Op.getOperand(1);
13309 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
13311 Op0.getOperand(0) != Op1.getOperand(0))
13312 break;
13313 SDValue Src = Op0.getOperand(0);
13314 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
13315 if (NumSrcElts != (2 * NumElts))
13316 break;
13317 if (!(Op0.getConstantOperandAPInt(1) == 0 &&
13318 Op1.getConstantOperandAPInt(1) == NumElts) &&
13319 !(Op1.getConstantOperandAPInt(1) == 0 &&
13320 Op0.getConstantOperandAPInt(1) == NumElts))
13321 break;
13322 Op = Src;
13323 }
13324
13325 BinOp = (ISD::NodeType)CandidateBinOp;
13326 return Op;
13327}
13328
13330 EVT VT = N->getValueType(0);
13331 EVT EltVT = VT.getVectorElementType();
13332 unsigned NE = VT.getVectorNumElements();
13333
13334 SDLoc dl(N);
13335
13336 // If ResNE is 0, fully unroll the vector op.
13337 if (ResNE == 0)
13338 ResNE = NE;
13339 else if (NE > ResNE)
13340 NE = ResNE;
13341
13342 if (N->getNumValues() == 2) {
13343 SmallVector<SDValue, 8> Scalars0, Scalars1;
13344 SmallVector<SDValue, 4> Operands(N->getNumOperands());
13345 EVT VT1 = N->getValueType(1);
13346 EVT EltVT1 = VT1.getVectorElementType();
13347
13348 unsigned i;
13349 for (i = 0; i != NE; ++i) {
13350 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
13351 SDValue Operand = N->getOperand(j);
13352 EVT OperandVT = Operand.getValueType();
13353
13354 // A vector operand; extract a single element.
13355 EVT OperandEltVT = OperandVT.getVectorElementType();
13356 Operands[j] = getExtractVectorElt(dl, OperandEltVT, Operand, i);
13357 }
13358
13359 SDValue EltOp = getNode(N->getOpcode(), dl, {EltVT, EltVT1}, Operands);
13360 Scalars0.push_back(EltOp);
13361 Scalars1.push_back(EltOp.getValue(1));
13362 }
13363
13364 for (; i < ResNE; ++i) {
13365 Scalars0.push_back(getUNDEF(EltVT));
13366 Scalars1.push_back(getUNDEF(EltVT1));
13367 }
13368
13369 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
13370 EVT VecVT1 = EVT::getVectorVT(*getContext(), EltVT1, ResNE);
13371 SDValue Vec0 = getBuildVector(VecVT, dl, Scalars0);
13372 SDValue Vec1 = getBuildVector(VecVT1, dl, Scalars1);
13373 return getMergeValues({Vec0, Vec1}, dl);
13374 }
13375
13376 assert(N->getNumValues() == 1 &&
13377 "Can't unroll a vector with multiple results!");
13378
13380 SmallVector<SDValue, 4> Operands(N->getNumOperands());
13381
13382 unsigned i;
13383 for (i= 0; i != NE; ++i) {
13384 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
13385 SDValue Operand = N->getOperand(j);
13386 EVT OperandVT = Operand.getValueType();
13387 if (OperandVT.isVector()) {
13388 // A vector operand; extract a single element.
13389 EVT OperandEltVT = OperandVT.getVectorElementType();
13390 Operands[j] = getExtractVectorElt(dl, OperandEltVT, Operand, i);
13391 } else {
13392 // A scalar operand; just use it as is.
13393 Operands[j] = Operand;
13394 }
13395 }
13396
13397 switch (N->getOpcode()) {
13398 default: {
13399 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
13400 N->getFlags()));
13401 break;
13402 }
13403 case ISD::VSELECT:
13404 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
13405 break;
13406 case ISD::SHL:
13407 case ISD::SRA:
13408 case ISD::SRL:
13409 case ISD::ROTL:
13410 case ISD::ROTR:
13411 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
13413 Operands[1])));
13414 break;
13416 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
13417 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
13418 Operands[0],
13419 getValueType(ExtVT)));
13420 break;
13421 }
13422 case ISD::ADDRSPACECAST: {
13423 const auto *ASC = cast<AddrSpaceCastSDNode>(N);
13424 Scalars.push_back(getAddrSpaceCast(dl, EltVT, Operands[0],
13425 ASC->getSrcAddressSpace(),
13426 ASC->getDestAddressSpace()));
13427 break;
13428 }
13429 }
13430 }
13431
13432 for (; i < ResNE; ++i)
13433 Scalars.push_back(getUNDEF(EltVT));
13434
13435 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
13436 return getBuildVector(VecVT, dl, Scalars);
13437}
13438
13439std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
13440 SDNode *N, unsigned ResNE) {
13441 unsigned Opcode = N->getOpcode();
13442 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
13443 Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
13444 Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
13445 "Expected an overflow opcode");
13446
13447 EVT ResVT = N->getValueType(0);
13448 EVT OvVT = N->getValueType(1);
13449 EVT ResEltVT = ResVT.getVectorElementType();
13450 EVT OvEltVT = OvVT.getVectorElementType();
13451 SDLoc dl(N);
13452
13453 // If ResNE is 0, fully unroll the vector op.
13454 unsigned NE = ResVT.getVectorNumElements();
13455 if (ResNE == 0)
13456 ResNE = NE;
13457 else if (NE > ResNE)
13458 NE = ResNE;
13459
13460 SmallVector<SDValue, 8> LHSScalars;
13461 SmallVector<SDValue, 8> RHSScalars;
13462 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
13463 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
13464
13465 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
13466 SDVTList VTs = getVTList(ResEltVT, SVT);
13467 SmallVector<SDValue, 8> ResScalars;
13468 SmallVector<SDValue, 8> OvScalars;
13469 for (unsigned i = 0; i < NE; ++i) {
13470 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
13471 SDValue Ov =
13472 getSelect(dl, OvEltVT, Res.getValue(1),
13473 getBoolConstant(true, dl, OvEltVT, ResVT),
13474 getConstant(0, dl, OvEltVT));
13475
13476 ResScalars.push_back(Res);
13477 OvScalars.push_back(Ov);
13478 }
13479
13480 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
13481 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
13482
13483 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
13484 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
13485 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
13486 getBuildVector(NewOvVT, dl, OvScalars));
13487}
13488
13491 unsigned Bytes,
13492 int Dist) const {
13493 if (LD->isVolatile() || Base->isVolatile())
13494 return false;
13495 // TODO: probably too restrictive for atomics, revisit
13496 if (!LD->isSimple())
13497 return false;
13498 if (LD->isIndexed() || Base->isIndexed())
13499 return false;
13500 if (LD->getChain() != Base->getChain())
13501 return false;
13502 EVT VT = LD->getMemoryVT();
13503 if (VT.getSizeInBits() / 8 != Bytes)
13504 return false;
13505
13506 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
13507 auto LocDecomp = BaseIndexOffset::match(LD, *this);
13508
13509 int64_t Offset = 0;
13510 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
13511 return (Dist * (int64_t)Bytes == Offset);
13512 return false;
13513}
13514
13515/// InferPtrAlignment - Infer alignment of a load / store address. Return
13516/// std::nullopt if it cannot be inferred.
13518 // If this is a GlobalAddress + cst, return the alignment.
13519 const GlobalValue *GV = nullptr;
13520 int64_t GVOffset = 0;
13521 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
13522 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
13523 KnownBits Known(PtrWidth);
13525 unsigned AlignBits = Known.countMinTrailingZeros();
13526 if (AlignBits)
13527 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
13528 }
13529
13530 // If this is a direct reference to a stack slot, use information about the
13531 // stack slot's alignment.
13532 int FrameIdx = INT_MIN;
13533 int64_t FrameOffset = 0;
13535 FrameIdx = FI->getIndex();
13536 } else if (isBaseWithConstantOffset(Ptr) &&
13537 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
13538 // Handle FI+Cst
13539 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
13540 FrameOffset = Ptr.getConstantOperandVal(1);
13541 }
13542
13543 if (FrameIdx != INT_MIN) {
13545 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
13546 }
13547
13548 return std::nullopt;
13549}
13550
13551/// Split the scalar node with EXTRACT_ELEMENT using the provided
13552/// VTs and return the low/high part.
13553std::pair<SDValue, SDValue> SelectionDAG::SplitScalar(const SDValue &N,
13554 const SDLoc &DL,
13555 const EVT &LoVT,
13556 const EVT &HiVT) {
13557 assert(!LoVT.isVector() && !HiVT.isVector() && !N.getValueType().isVector() &&
13558 "Split node must be a scalar type");
13559 SDValue Lo =
13561 SDValue Hi =
13563 return std::make_pair(Lo, Hi);
13564}
13565
13566/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
13567/// which is split (or expanded) into two not necessarily identical pieces.
13568std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
13569 // Currently all types are split in half.
13570 EVT LoVT, HiVT;
13571 if (!VT.isVector())
13572 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
13573 else
13574 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
13575
13576 return std::make_pair(LoVT, HiVT);
13577}
13578
13579/// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
13580/// type, dependent on an enveloping VT that has been split into two identical
13581/// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
13582std::pair<EVT, EVT>
13584 bool *HiIsEmpty) const {
13585 EVT EltTp = VT.getVectorElementType();
13586 // Examples:
13587 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty)
13588 // custom VL=9 with enveloping VL=8/8 yields 8/1
13589 // custom VL=10 with enveloping VL=8/8 yields 8/2
13590 // etc.
13591 ElementCount VTNumElts = VT.getVectorElementCount();
13592 ElementCount EnvNumElts = EnvVT.getVectorElementCount();
13593 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
13594 "Mixing fixed width and scalable vectors when enveloping a type");
13595 EVT LoVT, HiVT;
13596 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
13597 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
13598 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
13599 *HiIsEmpty = false;
13600 } else {
13601 // Flag that hi type has zero storage size, but return split envelop type
13602 // (this would be easier if vector types with zero elements were allowed).
13603 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
13604 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
13605 *HiIsEmpty = true;
13606 }
13607 return std::make_pair(LoVT, HiVT);
13608}
13609
13610/// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
13611/// low/high part.
13612std::pair<SDValue, SDValue>
13613SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
13614 const EVT &HiVT) {
13615 assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
13616 LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
13617 "Splitting vector with an invalid mixture of fixed and scalable "
13618 "vector types");
13620 N.getValueType().getVectorMinNumElements() &&
13621 "More vector elements requested than available!");
13622 SDValue Lo, Hi;
13623 Lo = getExtractSubvector(DL, LoVT, N, 0);
13624 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
13625 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
13626 // IDX with the runtime scaling factor of the result vector type. For
13627 // fixed-width result vectors, that runtime scaling factor is 1.
13630 return std::make_pair(Lo, Hi);
13631}
13632
13633std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
13634 const SDLoc &DL) {
13635 // Split the vector length parameter.
13636 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
13637 EVT VT = N.getValueType();
13639 "Expecting the mask to be an evenly-sized vector");
13640 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
13641 SDValue HalfNumElts =
13642 VecVT.isFixedLengthVector()
13643 ? getConstant(HalfMinNumElts, DL, VT)
13644 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
13645 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
13646 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
13647 return std::make_pair(Lo, Hi);
13648}
13649
13650/// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
13652 EVT VT = N.getValueType();
13655 return getInsertSubvector(DL, getUNDEF(WideVT), N, 0);
13656}
13657
13660 unsigned Start, unsigned Count,
13661 EVT EltVT) {
13662 EVT VT = Op.getValueType();
13663 if (Count == 0)
13665 if (EltVT == EVT())
13666 EltVT = VT.getVectorElementType();
13667 SDLoc SL(Op);
13668 for (unsigned i = Start, e = Start + Count; i != e; ++i) {
13669 Args.push_back(getExtractVectorElt(SL, EltVT, Op, i));
13670 }
13671}
13672
13673// getAddressSpace - Return the address space this GlobalAddress belongs to.
13675 return getGlobal()->getType()->getAddressSpace();
13676}
13677
13680 return Val.MachineCPVal->getType();
13681 return Val.ConstVal->getType();
13682}
13683
13684bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
13685 unsigned &SplatBitSize,
13686 bool &HasAnyUndefs,
13687 unsigned MinSplatBits,
13688 bool IsBigEndian) const {
13689 EVT VT = getValueType(0);
13690 assert(VT.isVector() && "Expected a vector type");
13691 unsigned VecWidth = VT.getSizeInBits();
13692 if (MinSplatBits > VecWidth)
13693 return false;
13694
13695 // FIXME: The widths are based on this node's type, but build vectors can
13696 // truncate their operands.
13697 SplatValue = APInt(VecWidth, 0);
13698 SplatUndef = APInt(VecWidth, 0);
13699
13700 // Get the bits. Bits with undefined values (when the corresponding element
13701 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
13702 // in SplatValue. If any of the values are not constant, give up and return
13703 // false.
13704 unsigned int NumOps = getNumOperands();
13705 assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
13706 unsigned EltWidth = VT.getScalarSizeInBits();
13707
13708 for (unsigned j = 0; j < NumOps; ++j) {
13709 unsigned i = IsBigEndian ? NumOps - 1 - j : j;
13710 SDValue OpVal = getOperand(i);
13711 unsigned BitPos = j * EltWidth;
13712
13713 if (OpVal.isUndef())
13714 SplatUndef.setBits(BitPos, BitPos + EltWidth);
13715 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
13716 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
13717 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
13718 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
13719 else
13720 return false;
13721 }
13722
13723 // The build_vector is all constants or undefs. Find the smallest element
13724 // size that splats the vector.
13725 HasAnyUndefs = (SplatUndef != 0);
13726
13727 // FIXME: This does not work for vectors with elements less than 8 bits.
13728 while (VecWidth > 8) {
13729 // If we can't split in half, stop here.
13730 if (VecWidth & 1)
13731 break;
13732
13733 unsigned HalfSize = VecWidth / 2;
13734 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
13735 APInt LowValue = SplatValue.extractBits(HalfSize, 0);
13736 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
13737 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
13738
13739 // If the two halves do not match (ignoring undef bits), stop here.
13740 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
13741 MinSplatBits > HalfSize)
13742 break;
13743
13744 SplatValue = HighValue | LowValue;
13745 SplatUndef = HighUndef & LowUndef;
13746
13747 VecWidth = HalfSize;
13748 }
13749
13750 // FIXME: The loop above only tries to split in halves. But if the input
13751 // vector for example is <3 x i16> it wouldn't be able to detect a
13752 // SplatBitSize of 16. No idea if that is a design flaw currently limiting
13753 // optimizations. I guess that back in the days when this helper was created
13754 // vectors normally was power-of-2 sized.
13755
13756 SplatBitSize = VecWidth;
13757 return true;
13758}
13759
13761 BitVector *UndefElements) const {
13762 unsigned NumOps = getNumOperands();
13763 if (UndefElements) {
13764 UndefElements->clear();
13765 UndefElements->resize(NumOps);
13766 }
13767 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
13768 if (!DemandedElts)
13769 return SDValue();
13770 SDValue Splatted;
13771 for (unsigned i = 0; i != NumOps; ++i) {
13772 if (!DemandedElts[i])
13773 continue;
13774 SDValue Op = getOperand(i);
13775 if (Op.isUndef()) {
13776 if (UndefElements)
13777 (*UndefElements)[i] = true;
13778 } else if (!Splatted) {
13779 Splatted = Op;
13780 } else if (Splatted != Op) {
13781 return SDValue();
13782 }
13783 }
13784
13785 if (!Splatted) {
13786 unsigned FirstDemandedIdx = DemandedElts.countr_zero();
13787 assert(getOperand(FirstDemandedIdx).isUndef() &&
13788 "Can only have a splat without a constant for all undefs.");
13789 return getOperand(FirstDemandedIdx);
13790 }
13791
13792 return Splatted;
13793}
13794
13796 APInt DemandedElts = APInt::getAllOnes(getNumOperands());
13797 return getSplatValue(DemandedElts, UndefElements);
13798}
13799
13801 SmallVectorImpl<SDValue> &Sequence,
13802 BitVector *UndefElements) const {
13803 unsigned NumOps = getNumOperands();
13804 Sequence.clear();
13805 if (UndefElements) {
13806 UndefElements->clear();
13807 UndefElements->resize(NumOps);
13808 }
13809 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
13810 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
13811 return false;
13812
13813 // Set the undefs even if we don't find a sequence (like getSplatValue).
13814 if (UndefElements)
13815 for (unsigned I = 0; I != NumOps; ++I)
13816 if (DemandedElts[I] && getOperand(I).isUndef())
13817 (*UndefElements)[I] = true;
13818
13819 // Iteratively widen the sequence length looking for repetitions.
13820 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
13821 Sequence.append(SeqLen, SDValue());
13822 for (unsigned I = 0; I != NumOps; ++I) {
13823 if (!DemandedElts[I])
13824 continue;
13825 SDValue &SeqOp = Sequence[I % SeqLen];
13827 if (Op.isUndef()) {
13828 if (!SeqOp)
13829 SeqOp = Op;
13830 continue;
13831 }
13832 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
13833 Sequence.clear();
13834 break;
13835 }
13836 SeqOp = Op;
13837 }
13838 if (!Sequence.empty())
13839 return true;
13840 }
13841
13842 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
13843 return false;
13844}
13845
13847 BitVector *UndefElements) const {
13848 APInt DemandedElts = APInt::getAllOnes(getNumOperands());
13849 return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
13850}
13851
13854 BitVector *UndefElements) const {
13856 getSplatValue(DemandedElts, UndefElements));
13857}
13858
13861 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
13862}
13863
13866 BitVector *UndefElements) const {
13868 getSplatValue(DemandedElts, UndefElements));
13869}
13870
13875
13876int32_t
13878 uint32_t BitWidth) const {
13879 if (ConstantFPSDNode *CN =
13881 bool IsExact;
13882 APSInt IntVal(BitWidth);
13883 const APFloat &APF = CN->getValueAPF();
13884 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
13885 APFloat::opOK ||
13886 !IsExact)
13887 return -1;
13888
13889 return IntVal.exactLogBase2();
13890 }
13891 return -1;
13892}
13893
13895 bool IsLittleEndian, unsigned DstEltSizeInBits,
13896 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
13897 // Early-out if this contains anything but Undef/Constant/ConstantFP.
13898 if (!isConstant())
13899 return false;
13900
13901 unsigned NumSrcOps = getNumOperands();
13902 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
13903 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13904 "Invalid bitcast scale");
13905
13906 // Extract raw src bits.
13907 SmallVector<APInt> SrcBitElements(NumSrcOps,
13908 APInt::getZero(SrcEltSizeInBits));
13909 BitVector SrcUndeElements(NumSrcOps, false);
13910
13911 for (unsigned I = 0; I != NumSrcOps; ++I) {
13913 if (Op.isUndef()) {
13914 SrcUndeElements.set(I);
13915 continue;
13916 }
13917 auto *CInt = dyn_cast<ConstantSDNode>(Op);
13918 auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
13919 assert((CInt || CFP) && "Unknown constant");
13920 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
13921 : CFP->getValueAPF().bitcastToAPInt();
13922 }
13923
13924 // Recast to dst width.
13925 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
13926 SrcBitElements, UndefElements, SrcUndeElements);
13927 return true;
13928}
13929
13930void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
13931 unsigned DstEltSizeInBits,
13932 SmallVectorImpl<APInt> &DstBitElements,
13933 ArrayRef<APInt> SrcBitElements,
13934 BitVector &DstUndefElements,
13935 const BitVector &SrcUndefElements) {
13936 unsigned NumSrcOps = SrcBitElements.size();
13937 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
13938 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13939 "Invalid bitcast scale");
13940 assert(NumSrcOps == SrcUndefElements.size() &&
13941 "Vector size mismatch");
13942
13943 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
13944 DstUndefElements.clear();
13945 DstUndefElements.resize(NumDstOps, false);
13946 DstBitElements.assign(NumDstOps, APInt::getZero(DstEltSizeInBits));
13947
13948 // Concatenate src elements constant bits together into dst element.
13949 if (SrcEltSizeInBits <= DstEltSizeInBits) {
13950 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
13951 for (unsigned I = 0; I != NumDstOps; ++I) {
13952 DstUndefElements.set(I);
13953 APInt &DstBits = DstBitElements[I];
13954 for (unsigned J = 0; J != Scale; ++J) {
13955 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13956 if (SrcUndefElements[Idx])
13957 continue;
13958 DstUndefElements.reset(I);
13959 const APInt &SrcBits = SrcBitElements[Idx];
13960 assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
13961 "Illegal constant bitwidths");
13962 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
13963 }
13964 }
13965 return;
13966 }
13967
13968 // Split src element constant bits into dst elements.
13969 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
13970 for (unsigned I = 0; I != NumSrcOps; ++I) {
13971 if (SrcUndefElements[I]) {
13972 DstUndefElements.set(I * Scale, (I + 1) * Scale);
13973 continue;
13974 }
13975 const APInt &SrcBits = SrcBitElements[I];
13976 for (unsigned J = 0; J != Scale; ++J) {
13977 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13978 APInt &DstBits = DstBitElements[Idx];
13979 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
13980 }
13981 }
13982}
13983
13985 for (const SDValue &Op : op_values()) {
13986 unsigned Opc = Op.getOpcode();
13987 if (!Op.isUndef() && Opc != ISD::Constant && Opc != ISD::ConstantFP)
13988 return false;
13989 }
13990 return true;
13991}
13992
13993std::optional<std::pair<APInt, APInt>>
13995 unsigned NumOps = getNumOperands();
13996 if (NumOps < 2)
13997 return std::nullopt;
13998
14001 return std::nullopt;
14002
14003 unsigned EltSize = getValueType(0).getScalarSizeInBits();
14004 APInt Start = getConstantOperandAPInt(0).trunc(EltSize);
14005 APInt Stride = getConstantOperandAPInt(1).trunc(EltSize) - Start;
14006
14007 if (Stride.isZero())
14008 return std::nullopt;
14009
14010 for (unsigned i = 2; i < NumOps; ++i) {
14012 return std::nullopt;
14013
14014 APInt Val = getConstantOperandAPInt(i).trunc(EltSize);
14015 if (Val != (Start + (Stride * i)))
14016 return std::nullopt;
14017 }
14018
14019 return std::make_pair(Start, Stride);
14020}
14021
14023 // Find the first non-undef value in the shuffle mask.
14024 unsigned i, e;
14025 for (i = 0, e = Mask.size(); i != e && Mask[i] < 0; ++i)
14026 /* search */;
14027
14028 // If all elements are undefined, this shuffle can be considered a splat
14029 // (although it should eventually get simplified away completely).
14030 if (i == e)
14031 return true;
14032
14033 // Make sure all remaining elements are either undef or the same as the first
14034 // non-undef value.
14035 for (int Idx = Mask[i]; i != e; ++i)
14036 if (Mask[i] >= 0 && Mask[i] != Idx)
14037 return false;
14038 return true;
14039}
14040
14041// Returns true if it is a constant integer BuildVector or constant integer,
14042// possibly hidden by a bitcast.
14044 SDValue N, bool AllowOpaques) const {
14046
14047 if (auto *C = dyn_cast<ConstantSDNode>(N))
14048 return AllowOpaques || !C->isOpaque();
14049
14051 return true;
14052
14053 // Treat a GlobalAddress supporting constant offset folding as a
14054 // constant integer.
14055 if (auto *GA = dyn_cast<GlobalAddressSDNode>(N))
14056 if (GA->getOpcode() == ISD::GlobalAddress &&
14057 TLI->isOffsetFoldingLegal(GA))
14058 return true;
14059
14060 if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
14061 isa<ConstantSDNode>(N.getOperand(0)))
14062 return true;
14063 return false;
14064}
14065
14066// Returns true if it is a constant float BuildVector or constant float.
14069 return true;
14070
14072 return true;
14073
14074 if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
14075 isa<ConstantFPSDNode>(N.getOperand(0)))
14076 return true;
14077
14078 return false;
14079}
14080
14081std::optional<bool> SelectionDAG::isBoolConstant(SDValue N) const {
14082 ConstantSDNode *Const =
14083 isConstOrConstSplat(N, false, /*AllowTruncation=*/true);
14084 if (!Const)
14085 return std::nullopt;
14086
14087 EVT VT = N->getValueType(0);
14088 const APInt CVal = Const->getAPIntValue().trunc(VT.getScalarSizeInBits());
14089 switch (TLI->getBooleanContents(N.getValueType())) {
14091 if (CVal.isOne())
14092 return true;
14093 if (CVal.isZero())
14094 return false;
14095 return std::nullopt;
14097 if (CVal.isAllOnes())
14098 return true;
14099 if (CVal.isZero())
14100 return false;
14101 return std::nullopt;
14103 return CVal[0];
14104 }
14105 llvm_unreachable("Unknown BooleanContent enum");
14106}
14107
14108void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
14109 assert(!Node->OperandList && "Node already has operands");
14111 "too many operands to fit into SDNode");
14112 SDUse *Ops = OperandRecycler.allocate(
14113 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
14114
14115 bool IsDivergent = false;
14116 for (unsigned I = 0; I != Vals.size(); ++I) {
14117 Ops[I].setUser(Node);
14118 Ops[I].setInitial(Vals[I]);
14119 EVT VT = Ops[I].getValueType();
14120
14121 // Skip Chain. It does not carry divergence.
14122 if (VT != MVT::Other &&
14123 (VT != MVT::Glue || gluePropagatesDivergence(Ops[I].getNode())) &&
14124 Ops[I].getNode()->isDivergent()) {
14125 IsDivergent = true;
14126 }
14127 }
14128 Node->NumOperands = Vals.size();
14129 Node->OperandList = Ops;
14130 if (!TLI->isSDNodeAlwaysUniform(Node)) {
14131 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
14132 Node->SDNodeBits.IsDivergent = IsDivergent;
14133 }
14134 checkForCycles(Node);
14135}
14136
14139 size_t Limit = SDNode::getMaxNumOperands();
14140 while (Vals.size() > Limit) {
14141 unsigned SliceIdx = Vals.size() - Limit;
14142 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
14143 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
14144 Vals.erase(Vals.begin() + SliceIdx, Vals.end());
14145 Vals.emplace_back(NewTF);
14146 }
14147 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
14148}
14149
14151 EVT VT, SDNodeFlags Flags) {
14152 switch (Opcode) {
14153 default:
14154 return SDValue();
14155 case ISD::ADD:
14156 case ISD::OR:
14157 case ISD::XOR:
14158 case ISD::UMAX:
14159 return getConstant(0, DL, VT);
14160 case ISD::MUL:
14161 return getConstant(1, DL, VT);
14162 case ISD::AND:
14163 case ISD::UMIN:
14164 return getAllOnesConstant(DL, VT);
14165 case ISD::SMAX:
14167 case ISD::SMIN:
14169 case ISD::FADD:
14170 // If flags allow, prefer positive zero since it's generally cheaper
14171 // to materialize on most targets.
14172 return getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, VT);
14173 case ISD::FMUL:
14174 return getConstantFP(1.0, DL, VT);
14175 case ISD::FMINNUM:
14176 case ISD::FMAXNUM: {
14177 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
14178 const fltSemantics &Semantics = VT.getFltSemantics();
14179 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
14180 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
14181 APFloat::getLargest(Semantics);
14182 if (Opcode == ISD::FMAXNUM)
14183 NeutralAF.changeSign();
14184
14185 return getConstantFP(NeutralAF, DL, VT);
14186 }
14187 case ISD::FMINIMUM:
14188 case ISD::FMAXIMUM: {
14189 // Neutral element for fminimum is Inf or FLT_MAX, depending on FMF.
14190 const fltSemantics &Semantics = VT.getFltSemantics();
14191 APFloat NeutralAF = !Flags.hasNoInfs() ? APFloat::getInf(Semantics)
14192 : APFloat::getLargest(Semantics);
14193 if (Opcode == ISD::FMAXIMUM)
14194 NeutralAF.changeSign();
14195
14196 return getConstantFP(NeutralAF, DL, VT);
14197 }
14198
14199 }
14200}
14201
14202/// Helper used to make a call to a library function that has one argument of
14203/// pointer type.
14204///
14205/// Such functions include 'fegetmode', 'fesetenv' and some others, which are
14206/// used to get or set floating-point state. They have one argument of pointer
14207/// type, which points to the memory region containing bits of the
14208/// floating-point state. The value returned by such function is ignored in the
14209/// created call.
14210///
14211/// \param LibFunc Reference to library function (value of RTLIB::Libcall).
14212/// \param Ptr Pointer used to save/load state.
14213/// \param InChain Ingoing token chain.
14214/// \returns Outgoing chain token.
14216 SDValue InChain,
14217 const SDLoc &DLoc) {
14218 assert(InChain.getValueType() == MVT::Other && "Expected token chain");
14220 Args.emplace_back(Ptr, Ptr.getValueType().getTypeForEVT(*getContext()));
14221 RTLIB::Libcall LC = static_cast<RTLIB::Libcall>(LibFunc);
14222 SDValue Callee = getExternalSymbol(TLI->getLibcallName(LC),
14223 TLI->getPointerTy(getDataLayout()));
14225 CLI.setDebugLoc(DLoc).setChain(InChain).setLibCallee(
14226 TLI->getLibcallCallingConv(LC), Type::getVoidTy(*getContext()), Callee,
14227 std::move(Args));
14228 return TLI->LowerCallTo(CLI).second;
14229}
14230
14232 assert(From && To && "Invalid SDNode; empty source SDValue?");
14233 auto I = SDEI.find(From);
14234 if (I == SDEI.end())
14235 return;
14236
14237 // Use of operator[] on the DenseMap may cause an insertion, which invalidates
14238 // the iterator, hence the need to make a copy to prevent a use-after-free.
14239 NodeExtraInfo NEI = I->second;
14240 if (LLVM_LIKELY(!NEI.PCSections)) {
14241 // No deep copy required for the types of extra info set.
14242 //
14243 // FIXME: Investigate if other types of extra info also need deep copy. This
14244 // depends on the types of nodes they can be attached to: if some extra info
14245 // is only ever attached to nodes where a replacement To node is always the
14246 // node where later use and propagation of the extra info has the intended
14247 // semantics, no deep copy is required.
14248 SDEI[To] = std::move(NEI);
14249 return;
14250 }
14251
14252 const SDNode *EntrySDN = getEntryNode().getNode();
14253
14254 // We need to copy NodeExtraInfo to all _new_ nodes that are being introduced
14255 // through the replacement of From with To. Otherwise, replacements of a node
14256 // (From) with more complex nodes (To and its operands) may result in lost
14257 // extra info where the root node (To) is insignificant in further propagating
14258 // and using extra info when further lowering to MIR.
14259 //
14260 // In the first step pre-populate the visited set with the nodes reachable
14261 // from the old From node. This avoids copying NodeExtraInfo to parts of the
14262 // DAG that is not new and should be left untouched.
14263 SmallVector<const SDNode *> Leafs{From}; // Leafs reachable with VisitFrom.
14264 DenseSet<const SDNode *> FromReach; // The set of nodes reachable from From.
14265 auto VisitFrom = [&](auto &&Self, const SDNode *N, int MaxDepth) {
14266 if (MaxDepth == 0) {
14267 // Remember this node in case we need to increase MaxDepth and continue
14268 // populating FromReach from this node.
14269 Leafs.emplace_back(N);
14270 return;
14271 }
14272 if (!FromReach.insert(N).second)
14273 return;
14274 for (const SDValue &Op : N->op_values())
14275 Self(Self, Op.getNode(), MaxDepth - 1);
14276 };
14277
14278 // Copy extra info to To and all its transitive operands (that are new).
14280 auto DeepCopyTo = [&](auto &&Self, const SDNode *N) {
14281 if (FromReach.contains(N))
14282 return true;
14283 if (!Visited.insert(N).second)
14284 return true;
14285 if (EntrySDN == N)
14286 return false;
14287 for (const SDValue &Op : N->op_values()) {
14288 if (N == To && Op.getNode() == EntrySDN) {
14289 // Special case: New node's operand is the entry node; just need to
14290 // copy extra info to new node.
14291 break;
14292 }
14293 if (!Self(Self, Op.getNode()))
14294 return false;
14295 }
14296 // Copy only if entry node was not reached.
14297 SDEI[N] = NEI;
14298 return true;
14299 };
14300
14301 // We first try with a lower MaxDepth, assuming that the path to common
14302 // operands between From and To is relatively short. This significantly
14303 // improves performance in the common case. The initial MaxDepth is big
14304 // enough to avoid retry in the common case; the last MaxDepth is large
14305 // enough to avoid having to use the fallback below (and protects from
14306 // potential stack exhaustion from recursion).
14307 for (int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
14308 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.clear()) {
14309 // StartFrom is the previous (or initial) set of leafs reachable at the
14310 // previous maximum depth.
14312 std::swap(StartFrom, Leafs);
14313 for (const SDNode *N : StartFrom)
14314 VisitFrom(VisitFrom, N, MaxDepth - PrevDepth);
14315 if (LLVM_LIKELY(DeepCopyTo(DeepCopyTo, To)))
14316 return;
14317 // This should happen very rarely (reached the entry node).
14318 LLVM_DEBUG(dbgs() << __func__ << ": MaxDepth=" << MaxDepth << " too low\n");
14319 assert(!Leafs.empty());
14320 }
14321
14322 // This should not happen - but if it did, that means the subgraph reachable
14323 // from From has depth greater or equal to maximum MaxDepth, and VisitFrom()
14324 // could not visit all reachable common operands. Consequently, we were able
14325 // to reach the entry node.
14326 errs() << "warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
14327 assert(false && "From subgraph too complex - increase max. MaxDepth?");
14328 // Best-effort fallback if assertions disabled.
14329 SDEI[To] = std::move(NEI);
14330}
14331
14332#ifndef NDEBUG
14333static void checkForCyclesHelper(const SDNode *N,
14336 const llvm::SelectionDAG *DAG) {
14337 // If this node has already been checked, don't check it again.
14338 if (Checked.count(N))
14339 return;
14340
14341 // If a node has already been visited on this depth-first walk, reject it as
14342 // a cycle.
14343 if (!Visited.insert(N).second) {
14344 errs() << "Detected cycle in SelectionDAG\n";
14345 dbgs() << "Offending node:\n";
14346 N->dumprFull(DAG); dbgs() << "\n";
14347 abort();
14348 }
14349
14350 for (const SDValue &Op : N->op_values())
14351 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
14352
14353 Checked.insert(N);
14354 Visited.erase(N);
14355}
14356#endif
14357
14359 const llvm::SelectionDAG *DAG,
14360 bool force) {
14361#ifndef NDEBUG
14362 bool check = force;
14363#ifdef EXPENSIVE_CHECKS
14364 check = true;
14365#endif // EXPENSIVE_CHECKS
14366 if (check) {
14367 assert(N && "Checking nonexistent SDNode");
14370 checkForCyclesHelper(N, visited, checked, DAG);
14371 }
14372#endif // !NDEBUG
14373}
14374
14375void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
14376 checkForCycles(DAG->getRoot().getNode(), DAG, force);
14377}
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define __asan_unpoison_memory_region(p, size)
Definition Compiler.h:569
#define LLVM_LIKELY(EXPR)
Definition Compiler.h:335
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
This file contains constants used for implementing Dwarf debug support.
This file defines a hash set that can be used to remove duplication of nodes in a graph.
#define _
iv users
Definition IVUsers.cpp:48
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static LVOptions Options
Definition LVOptions.cpp:25
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB)
static bool shouldLowerMemFuncForSize(const MachineFunction &MF)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition Lint.cpp:539
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define G(x, y, z)
Definition MD5.cpp:56
mir Rename Register Operands
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
This file contains the declarations for metadata subclasses.
#define T
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
#define P(N)
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
Contains matchers for matching SelectionDAG nodes and values.
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file contains some templates that are useful if you are working with the STL at all.
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo, BatchAAResults *BatchAA)
static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo)
Lower the call to 'memset' intrinsic function into a series of store operations.
static std::optional< APInt > FoldValueWithUndef(unsigned Opcode, const APInt &C1, bool IsUndef1, const APInt &C2, bool IsUndef2)
static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, SelectionDAG &DAG)
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC, SDVTList VTList, ArrayRef< SDValue > OpList)
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, const TargetLowering &TLI, const ConstantDataArraySlice &Slice)
getMemsetStringVal - Similar to getMemsetValue.
static cl::opt< bool > EnableMemCpyDAGOpt("enable-memcpy-dag-opt", cl::Hidden, cl::init(true), cl::desc("Gang up loads and stores generated by inlining of memcpy"))
static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B)
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList)
AddNodeIDValueTypes - Value type lists are intern'd so we can represent them solely with their pointe...
static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef< int > M)
Swaps the values of N1 and N2.
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice)
Returns true if memcpy source is constant data.
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo)
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)
AddNodeIDOpcode - Add the node opcode to the NodeID data.
static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike)
static bool doNotCSE(SDNode *N)
doNotCSE - Return true if CSE should not be performed for this node.
static cl::opt< int > MaxLdStGlue("ldstmemcpy-glue-max", cl::desc("Number limit for gluing ld/st of memcpy."), cl::Hidden, cl::init(0))
static void AddNodeIDOperands(FoldingSetNodeID &ID, ArrayRef< SDValue > Ops)
AddNodeIDOperands - Various routines for adding operands to the NodeID data.
static bool canFoldStoreIntoLibCallOutputPointers(StoreSDNode *StoreNode, SDNode *FPNode)
Given a store node StoreNode, return true if it is safe to fold that node into FPNode,...
static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
Try to simplify vector concatenation to an input value, undef, or build vector.
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, SelectionDAG &DAG, SDValue Ptr, int64_t Offset=0)
InferPointerInfo - If the specified ptr/offset is a frame index, infer a MachinePointerInfo record fr...
static bool isInTailCallPositionWrapper(const CallInst *CI, const SelectionDAG *SelDAG, bool AllowReturnsFirstArg)
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N)
If this is an SDNode with special info, add this info to the NodeID data.
static bool gluePropagatesDivergence(const SDNode *Node)
Return true if a glue output should propagate divergence information.
static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G)
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs)
makeVTList - Return an instance of the SDVTList struct initialized with the specified members.
static void checkForCyclesHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallPtrSetImpl< const SDNode * > &Checked, const llvm::SelectionDAG *DAG)
static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, SmallVector< SDValue, 32 > &OutChains, unsigned From, unsigned To, SmallVector< SDValue, 16 > &OutLoadChains, SmallVector< SDValue, 16 > &OutStoreChains)
static int isSignedOp(ISD::CondCode Opcode)
For an integer comparison, return 1 if the comparison is a signed operation and 2 if the result is an...
static std::optional< APInt > FoldValue(unsigned Opcode, const APInt &C1, const APInt &C2)
static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, unsigned AS)
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static void removeOperands(MachineInstr &MI, unsigned i)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
Definition APFloat.h:1120
opStatus divide(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1208
void copySign(const APFloat &RHS)
Definition APFloat.h:1302
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition APFloat.cpp:6057
opStatus subtract(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1190
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
Definition APFloat.h:1432
opStatus add(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1181
bool isFinite() const
Definition APFloat.h:1454
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
Definition APFloat.h:1347
opStatus multiply(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1199
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
Definition APFloat.h:1235
bool isZero() const
Definition APFloat.h:1445
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Definition APFloat.h:1138
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
Definition APFloat.h:1332
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Definition APFloat.h:1098
opStatus mod(const APFloat &RHS)
Definition APFloat.h:1226
bool isPosZero() const
Definition APFloat.h:1460
bool isNegZero() const
Definition APFloat.h:1461
void changeSign()
Definition APFloat.h:1297
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Definition APFloat.h:1109
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1971
LLVM_ABI APInt usub_sat(const APInt &RHS) const
Definition APInt.cpp:2055
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition APInt.cpp:1573
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
void clearBit(unsigned BitPosition)
Set a given bit to 0.
Definition APInt.h:1406
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1012
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition APInt.h:229
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition APInt.h:1391
unsigned popcount() const
Count the number of bits set.
Definition APInt.h:1670
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
Definition APInt.h:1385
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
Definition APInt.cpp:639
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1512
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition APInt.h:1330
APInt abs() const
Get the absolute value.
Definition APInt.h:1795
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
Definition APInt.cpp:2026
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition APInt.h:371
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1182
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition APInt.h:258
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:380
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1111
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:209
bool isNegative() const
Determine sign of this APInt.
Definition APInt.h:329
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
Definition APInt.cpp:1644
void clearAllBits()
Set every bit to 0.
Definition APInt.h:1396
LLVM_ABI APInt rotr(unsigned rotateAmt) const
Rotate right by rotateAmt.
Definition APInt.cpp:1154
LLVM_ABI APInt reverseBits() const
Definition APInt.cpp:768
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
Definition APInt.h:834
bool sle(const APInt &RHS) const
Signed less or equal comparison.
Definition APInt.h:1166
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1639
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
Definition APInt.h:1628
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1598
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition APInt.cpp:651
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:219
LLVM_ABI APInt sshl_sat(const APInt &RHS) const
Definition APInt.cpp:2086
LLVM_ABI APInt ushl_sat(const APInt &RHS) const
Definition APInt.cpp:2100
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1041
LLVM_ABI APInt rotl(unsigned rotateAmt) const
Rotate left by rotateAmt.
Definition APInt.cpp:1141
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
Definition APInt.cpp:397
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
Definition APInt.h:1435
unsigned logBase2() const
Definition APInt.h:1761
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
Definition APInt.cpp:2036
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:827
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
Definition APInt.cpp:1736
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:334
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition APInt.h:1150
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition APInt.h:1367
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:873
LLVM_ABI APInt byteSwap() const
Definition APInt.cpp:746
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition APInt.h:1257
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:440
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
Definition APInt.h:553
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:306
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
Definition APInt.h:1417
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:200
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
Definition APInt.h:1388
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition APInt.h:1237
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:389
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition APInt.h:286
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition APInt.h:239
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:851
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition APInt.h:1221
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
Definition APInt.cpp:2045
An arbitrary precision integer that knows its signedness.
Definition APSInt.h:24
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
static Capacity get(size_t N)
Get the capacity of an array that can hold at least N elements.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:142
This is an SDNode representing atomic operations.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal=false)
BitVector & reset()
Definition BitVector.h:411
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
Definition BitVector.h:360
void clear()
clear - Removes all bits from the bitvector.
Definition BitVector.h:354
BitVector & set()
Definition BitVector.h:370
bool none() const
none - Returns true if none of the bits are set.
Definition BitVector.h:207
size_type size() const
size - Returns the number of bits in this bitvector.
Definition BitVector.h:178
const BlockAddress * getBlockAddress() const
The address of a basic block.
Definition Constants.h:899
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &RawBitElements, BitVector &UndefElements) const
Extract the raw bit data from a build vector of Undef, Constant or ConstantFP node elements.
static LLVM_ABI void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &DstBitElements, ArrayRef< APInt > SrcBitElements, BitVector &DstUndefElements, const BitVector &SrcUndefElements)
Recast bit data SrcBitElements to DstEltSizeInBits wide elements.
LLVM_ABI bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl< SDValue > &Sequence, BitVector *UndefElements=nullptr) const
Find the shortest repeating sequence of values in the build vector.
LLVM_ABI ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant FP or null if this is not a constant FP splat.
LLVM_ABI std::optional< std::pair< APInt, APInt > > isConstantSequence() const
If this BuildVector is constant and represents the numerical series "<a, a+n, a+2n,...
LLVM_ABI SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted value or a null value if this is not a splat.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
LLVM_ABI bool isConstant() const
This class represents a function call, abstracting a target machine's calling convention.
bool isTailCall() const
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:277
const APFloat & getValue() const
Definition Constants.h:321
This is the shared class of boolean and integer constants.
Definition Constants.h:87
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
Definition Constants.h:157
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:154
LLVM_ABI Type * getType() const
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
DWARF expression.
static LLVM_ABI ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
Base class for variables.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
bool isLittleEndian() const
Layout endianness...
Definition DataLayout.h:207
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
A debug info location.
Definition DebugLoc.h:124
Implements a dense probed hash-table based set.
Definition DenseSet.h:279
const char * getSymbol() const
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition FoldingSet.h:330
Data structure describing the variable locations in a function.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition Function.h:703
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
LLVM_ABI unsigned getAddressSpace() const
const GlobalValue * getGlobal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
This class is used to form a handle around another node that is persistent and is updated across invo...
const SDValue & getValue() const
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
This SDNode is used for LIFETIME_START/LIFETIME_END values.
This class is used to represent ISD::LOAD nodes.
static LocationSize precise(uint64_t Value)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition MCSymbol.h:42
Metadata node.
Definition Metadata.h:1078
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1442
Machine Value Type.
SimpleValueType SimpleTy
static MVT getIntegerVT(unsigned BitWidth)
Abstract base class for all machine specific constantpool value subclasses.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
A description of a memory reference used in the backend.
const MDNode * getRanges() const
Return the range tag for the memory reference.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
This class contains meta information specific to a module.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This class is used to represent an MGATHER node.
This class is used to represent an MLOAD node.
This class is used to represent an MSCATTER node.
This class is used to represent an MSTORE node.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
LLVM_ABI MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *MMO)
MachineMemOperand * MMO
Memory reference information.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
unsigned getRawSubclassData() const
Return the SubclassData value, without HasDebugValue.
EVT getMemoryVT() const
Return the type of the in-memory value.
Representation for a specific memory location.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition Module.cpp:230
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:303
The optimization diagnostic interface.
Pass interface - Implemented by all 'passes'.
Definition Pass.h:99
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Analysis providing profile information.
void Deallocate(SubClass *E)
Deallocate - Release storage for the pointed-to object.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
Keeps track of dbg_value information through SDISel.
LLVM_ABI void add(SDDbgValue *V, bool isParameter)
LLVM_ABI void erase(const SDNode *Node)
Invalidate all DbgValues attached to the node and remove it from the Node-to-DbgValues map.
Holds the information from a dbg_label node through SDISel.
Holds the information for a single machine location through SDISel; either an SDNode,...
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
@ SDNODE
Value is the result of an expression.
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
unsigned getIROrder() const
This class provides iterator support for SDUse operands that use a specific SDNode.
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
LLVM_ABI void dumprFull(const SelectionDAG *G=nullptr) const
printrFull to dbgs().
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool isDivergent() const
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
static constexpr size_t getMaxNumOperands()
Return the maximum number of operands that a SDNode can hold.
iterator_range< use_iterator > uses()
MemSDNodeBitfields MemSDNodeBits
LLVM_ABI void Profile(FoldingSetNodeID &ID) const
Gather unique data for the node.
bool getHasDebugValue() const
SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
LLVM_ABI void intersectFlagsWith(const SDNodeFlags Flags)
Clear any flags in this node that aren't also set in Flags.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
static LLVM_ABI bool areOnlyUsersOf(ArrayRef< const SDNode * > Nodes, const SDNode *N)
Return true if all the users of N are contained in Nodes.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
std::optional< APInt > bitcastToAPInt() const
LLVM_ABI bool hasPredecessor(const SDNode *N) const
Return true if N is a predecessor of this node.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
op_iterator op_end() const
op_iterator op_begin() const
static use_iterator use_end()
LLVM_ABI void DropOperands()
Release the operands and set this node to have zero operands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
Create an SDNode.
Represents a use of a SDNode.
SDNode * getUser()
This returns the SDNode that contains this Use.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
bool isUndef() const
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if the referenced return value is an operand of N.
SDValue()=default
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
virtual void verifyTargetNode(const SelectionDAG &DAG, const SDNode *N) const
Checks that the given target-specific node is valid. Aborts if it is not.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsExpanding=false)
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const
Determine if the result of the unsigned sub of 2 nodes can overflow.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI std::pair< SDValue, SDValue > getStrlen(SDValue Chain, const SDLoc &dl, SDValue Src, const CallInst *CI)
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI void updateDivergence(SDNode *N)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, SDNodeFlags Flags)
Get the (commutative) neutral element for the given opcode, if it exists.
LLVM_ABI SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo)
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, bool ConstantFold=true)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, uint64_t Index, uint32_t Attr)
Creates a PseudoProbeSDNode with function GUID Guid and the index of the block Index it is probing,...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDNode * SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT)
These are used for target selectors to mutate the specified node to have the specified return type,...
LLVM_ABI SelectionDAG(const TargetMachine &TM, CodeGenOptLevel)
LLVM_ABI SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num)
Like ReplaceAllUsesOfValueWith, but for multiple values at once.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI bool calculateDivergence(SDNode *N)
LLVM_ABI SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC, bool ConstantFold=true)
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDNode * mutateStrictFPToFP(SDNode *Node)
Mutate the specified strict FP node to its non-strict equivalent, unlinking the node from its chain a...
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
LLVM_ABI SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be an integer vector, to the vector-type VT,...
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI bool isEqualTo(SDValue A, SDValue B) const
Test whether two SDValues are known to compare equal.
static constexpr unsigned MaxRecursionDepth
LLVM_ABI SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth=0) const
Return true if this function can prove that Op is never poison.
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI void dump(bool Sorted=false) const
Dump the textual format of this DAG.
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
bool NewNodesMustHaveLegalTypes
When true, additional steps are taken to ensure that getConstant() and similar functions return DAG n...
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
LLVM_ABI void salvageDebugInfo(SDNode &N)
To be invoked on an SDNode that is slated to be erased.
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
LLVM_ABI std::pair< SDValue, SDValue > UnrollVectorOverflowOp(SDNode *N, unsigned ResNE=0)
Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDDbgLabel * getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O)
Creates a SDDbgLabel node.
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const
Determine if the result of the unsigned mul of 2 nodes can overflow.
LLVM_ABI void copyExtraInfo(SDNode *From, SDNode *To)
Copy extra info associated with one node to another.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getLoadFFVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachineMemOperand *MMO)
LLVM_ABI SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
LLVM_ABI void clear()
Clear state and free memory necessary to make this SelectionDAG ready to process a new block.
std::pair< SDValue, SDValue > getMemcmp(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, const CallInst *CI)
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
LLVM_ABI SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getSrcValue(const Value *v)
Construct a node to track a Value* through the backend.
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const
Determine if the result of the signed mul of 2 nodes can overflow.
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
LLVM_ABI bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if '(Op & Mask) == Mask'.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI void AddDbgLabel(SDDbgLabel *DB)
Add a dbg_label SDNode.
bool isConstantValueOfAnyType(SDValue N) const
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDDbgValue * getVRegDbgValue(DIVariable *Var, DIExpression *Expr, Register VReg, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a VReg SDDbgValue node.
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI std::optional< unsigned > getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
LLVM_ABI std::pair< SDValue, SDValue > SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL)
Split the explicit vector length parameter of a VP operation.
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
LLVM_ABI SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDDbgValue * getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O)
Creates a constant SDDbgValue node.
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, int FrameIndex)
Creates a LifetimeSDNode that starts (IsStart==true) or ends (IsStart==false) the lifetime of the Fra...
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the signed addition of 2 nodes can overflow.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
ilist< SDNode >::size_type allnodes_size() const
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
LLVM_ABI SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsCompressing=false)
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
const TargetLibraryInfo & getLibInfo() const
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDDbgValue * getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a FrameIndex SDDbgValue node.
LLVM_ABI SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getJumpTable(int JTI, EVT VT, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be of integer type, to the vector-type integer type VT,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void getTopologicallyOrderedNodes(SmallVectorImpl< const SDNode * > &SortedNodes) const
Get all the nodes in their topological order without modifying any states.
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to extend the Op as a pointer value assuming it was the smaller SrcTy ...
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT SVT, MachineMemOperand *MMO, bool IsCompressing=false)
LLVM_ABI void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, SDValue &N2) const
Swap N1 and N2 if Opcode is a commutative binary opcode and the canonical form expects the opposite o...
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVM_ABI OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const
Determine if the result of the signed sub of 2 nodes can overflow.
LLVM_ABI bool expandMultipleResultFPLibCall(RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl< SDValue > &Results, std::optional< unsigned > CallRetResNo={})
Expands a node with multiple results to an FP or vector libcall.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI std::pair< EVT, EVT > GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, bool *HiIsEmpty) const
Compute the VTs needed for the low/hi parts of a type, dependent on an enveloping VT that has been sp...
LLVM_ABI SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops)
Fold floating-point operations when all operands are constants and/or undefined.
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags)
Get the specified node if it's already available, or else return NULL.
LLVM_ABI void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs)
Prepare this SelectionDAG to process code in the given MachineFunction.
LLVM_ABI std::optional< ConstantRange > getValidShiftAmountRange(SDValue V, const APInt &DemandedElts, unsigned Depth) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2)
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg)
A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDDbgValue * getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a SDDbgValue node.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef< ISD::NodeType > CandidateBinOps, bool AllowPartials=false)
Match a binop + shuffle pyramid that represents a horizontal reduction over the elements of a vector ...
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
ilist< SDNode >::iterator allnodes_iterator
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
static LLVM_ABI bool isSplatMask(ArrayRef< int > Mask)
size_type size() const
Definition SmallPtrSet.h:99
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:140
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
Completely target-dependent object reference.
unsigned getTargetFlags() const
Provides information about what library functions are available for the current target.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
const TargetMachine & getTargetMachine() const
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
BooleanContent
Enum that describes how the target represents true/false values.
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
std::vector< ArgListEntry > ArgListTy
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
Primary interface to the complete machine description for the target machine.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const SelectionDAGTargetInfo * getSelectionDAGInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
Definition Triple.h:612
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:344
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:281
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:295
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM_ABI void set(Value *Val)
Definition Value.h:905
User * getUser() const
Returns the User that contains this Use.
Definition Use.h:61
This class is used to represent an VP_GATHER node.
This class is used to represent a VP_LOAD node.
This class is used to represent an VP_SCATTER node.
This class is used to represent a VP_STORE node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
Provides info so a possible vectorization of a function can be computed.
bool isMasked() const
StringRef getVectorFnName() const
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
Definition TypeSize.h:270
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:201
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:231
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr bool isKnownEven() const
A return value of true indicates we know at compile time that the number of elements (vscale * Min) i...
Definition TypeSize.h:177
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:238
A raw_ostream that writes to an std::string.
CallInst * Call
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt mulhu(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on zero-extended operands.
Definition APInt.cpp:3131
LLVM_ABI APInt avgCeilU(const APInt &C1, const APInt &C2)
Compute the ceil of the unsigned average of C1 and C2.
Definition APInt.cpp:3118
LLVM_ABI APInt avgFloorU(const APInt &C1, const APInt &C2)
Compute the floor of the unsigned average of C1 and C2.
Definition APInt.cpp:3108
LLVM_ABI APInt fshr(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift right.
Definition APInt.cpp:3182
LLVM_ABI APInt mulhs(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on sign-extended operands.
Definition APInt.cpp:3123
APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
Definition APInt.h:2268
LLVM_ABI APInt fshl(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift left.
Definition APInt.cpp:3173
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
Definition APInt.cpp:3009
APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
Definition APInt.h:2273
LLVM_ABI APInt avgFloorS(const APInt &C1, const APInt &C2)
Compute the floor of the signed average of C1 and C2.
Definition APInt.cpp:3103
LLVM_ABI APInt avgCeilS(const APInt &C1, const APInt &C2)
Compute the ceil of the signed average of C1 and C2.
Definition APInt.cpp:3113
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
Definition ISDOpcodes.h:24
LLVM_ABI CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X...
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:807
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:780
@ TargetConstantPool
Definition ISDOpcodes.h:184
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
Definition ISDOpcodes.h:504
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ POISON
POISON - A poison node.
Definition ISDOpcodes.h:231
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
Definition ISDOpcodes.h:531
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition ISDOpcodes.h:270
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:593
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:771
@ TargetBlockAddress
Definition ISDOpcodes.h:186
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:515
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:841
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:511
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:215
@ GlobalAddress
Definition ISDOpcodes.h:88
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:868
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:577
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:744
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:898
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
Definition ISDOpcodes.h:521
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:249
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ GlobalTLSAddress
Definition ISDOpcodes.h:89
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:832
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:712
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
Definition ISDOpcodes.h:662
@ TargetExternalSymbol
Definition ISDOpcodes.h:185
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:779
@ TargetJumpTable
Definition ISDOpcodes.h:183
@ TargetIndex
TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.
Definition ISDOpcodes.h:193
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
Definition ISDOpcodes.h:815
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
Definition ISDOpcodes.h:688
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:534
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:784
@ UNDEF
UNDEF - An undefined node.
Definition ISDOpcodes.h:228
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:242
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:669
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
Definition ISDOpcodes.h:69
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
Definition ISDOpcodes.h:180
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition ISDOpcodes.h:701
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:762
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
Definition ISDOpcodes.h:78
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:642
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:607
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
Definition ISDOpcodes.h:48
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:569
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
Definition ISDOpcodes.h:219
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:838
@ TargetConstantFP
Definition ISDOpcodes.h:175
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition ISDOpcodes.h:799
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ TargetFrameIndex
Definition ISDOpcodes.h:182
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:887
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:876
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:724
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:793
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
Definition ISDOpcodes.h:493
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:914
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
Definition ISDOpcodes.h:174
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:498
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:736
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:200
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:732
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:707
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
Definition ISDOpcodes.h:678
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:558
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
Definition ISDOpcodes.h:654
@ ExternalSymbol
Definition ISDOpcodes.h:93
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:947
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:696
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:909
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:933
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:844
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
Definition ISDOpcodes.h:821
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:527
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:719
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:333
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:208
@ TargetGlobalTLSAddress
Definition ISDOpcodes.h:181
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:549
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
bool isExtOpcode(unsigned Opcode)
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed)
Returns true if the specified node is a vector where all elements can be truncated to the specified e...
LLVM_ABI bool isVPBinaryOp(unsigned Opcode)
Whether this is a vector-predicated binary operation opcode.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI std::optional< unsigned > getBaseOpcodeForVP(unsigned Opcode, bool hasFPExcept)
Translate this VP Opcode to its corresponding non-VP Opcode.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI std::optional< unsigned > getVPForBaseOpcode(unsigned Opcode)
Translate this non-VP Opcode to its corresponding VP Opcode.
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool matchUnaryPredicateImpl(SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUI...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI NodeType getInverseMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns ISD::(U|S)MAX and ISD::(U|S)MIN,...
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
LLVM_ABI bool isVPReduction(unsigned Opcode)
Whether this is a vector-predicated reduction opcode.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X ...
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
Definition Dwarf.h:149
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:667
NodeAddr< NodeBase * > Node
Definition RDFGraph.h:381
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:355
@ Offset
Definition DWP.cpp:477
bool operator<(int64_t V1, const APSInt &V2)
Definition APSInt.h:362
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
Definition Analysis.cpp:241
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1745
LLVM_ABI SDValue peekThroughExtractSubvectors(SDValue V)
Return the non-extracted vector source operand of V if it exists.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
Definition Utils.cpp:1607
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2472
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:644
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition bit.h:279
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:733
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
Definition bit.h:289
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Definition APFloat.h:1643
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2136
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition MathExtras.h:252
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
auto cast_or_null(const Y &Val)
Definition Casting.h:715
void * PointerTy
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
Definition Utils.cpp:1589
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
Definition APFloat.h:1555
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:754
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
Definition APFloat.h:1598
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:342
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
LLVM_ABI SDValue peekThroughInsertVectorElt(SDValue V, const APInt &DemandedElts)
Recursively peek through INSERT_VECTOR_ELT nodes, returning the source vector operand of V,...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force=false)
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1622
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
Definition APFloat.h:1629
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1739
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
constexpr std::underlying_type_t< Enum > to_underlying(Enum E)
Returns underlying integer value of an enum.
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
CodeGenOptLevel
Code generation optimization level.
Definition CodeGen.h:82
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Other
Any other memory.
Definition ModRef.h:68
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
Definition APFloat.h:1579
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
LLVM_ABI bool isNullConstantOrUndef(SDValue V)
Returns true if V is a constant integer zero or an UNDEF node.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
Definition Analysis.cpp:543
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
OutputIt copy(R &&Range, OutputIt Out)
Definition STLExtras.h:1835
constexpr unsigned BitWidth
bool funcReturnsFirstArgOfCall(const CallInst &CI)
Returns true if the parent of CI returns CI's first argument after calling CI.
Definition Analysis.cpp:723
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:560
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1897
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition MathExtras.h:583
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition Alignment.h:197
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
Definition APFloat.h:1616
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
Definition APFloat.h:1656
LLVM_ABI bool isOnesOrOnesSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition MathExtras.h:384
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
#define N
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition Metadata.h:761
MDNode * TBAAStruct
The tag for type-based alias analysis (tbaa struct).
Definition Metadata.h:781
MDNode * TBAA
The tag for type-based alias analysis.
Definition Metadata.h:778
static LLVM_ABI const fltSemantics & IEEEsingle() LLVM_READNONE
Definition APFloat.cpp:266
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
Definition APFloat.h:294
static constexpr roundingMode rmTowardNegative
Definition APFloat.h:307
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:304
static constexpr roundingMode rmTowardZero
Definition APFloat.h:308
static LLVM_ABI const fltSemantics & IEEEquad() LLVM_READNONE
Definition APFloat.cpp:268
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
Definition APFloat.cpp:267
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
Definition APFloat.cpp:264
static constexpr roundingMode rmTowardPositive
Definition APFloat.h:306
static LLVM_ABI const fltSemantics & BFloat() LLVM_READNONE
Definition APFloat.cpp:265
opStatus
IEEE-754R 7: Default exception handling.
Definition APFloat.h:320
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
void move(uint64_t Delta)
Moves the Offset and adjusts Length accordingly.
const ConstantDataArray * Array
ConstantDataArray pointer.
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
intptr_t getRawBits() const
Definition ValueTypes.h:512
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
Definition ValueTypes.h:121
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
Definition ValueTypes.h:359
uint64_t getScalarSizeInBits() const
Definition ValueTypes.h:385
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isFixedLengthVector() const
Definition ValueTypes.h:181
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
Definition ValueTypes.h:292
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
Definition ValueTypes.h:256
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
Definition ValueTypes.h:142
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
Definition ValueTypes.h:308
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
Definition ValueTypes.h:453
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
Definition KnownBits.h:301
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
Definition KnownBits.h:255
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition KnownBits.h:108
bool isZero() const
Returns true if value is all zero.
Definition KnownBits.h:80
void makeNonNegative()
Make this value non-negative.
Definition KnownBits.h:124
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition KnownBits.h:242
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
Definition KnownBits.h:66
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
Definition KnownBits.h:274
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
void makeNegative()
Make this value negative.
Definition KnownBits.h:119
void setAllConflict()
Make all bits known to be both zero and one.
Definition KnownBits.h:99
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
Definition KnownBits.h:161
KnownBits byteSwap() const
Definition KnownBits.h:514
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
Definition KnownBits.h:289
void setAllZero()
Make all bits known to be zero and discard any previous information.
Definition KnownBits.h:86
KnownBits reverseBits() const
Definition KnownBits.h:518
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
Definition KnownBits.h:233
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
Definition KnownBits.h:172
void resetAll()
Resets the known state of all bits.
Definition KnownBits.h:74
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
Definition KnownBits.h:321
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
Definition KnownBits.h:111
static LLVM_ABI KnownBits abdu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for abdu(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
Definition KnownBits.h:225
static LLVM_ABI KnownBits avgFloorU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorU.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
Definition KnownBits.h:311
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
Definition KnownBits.h:180
static LLVM_ABI KnownBits computeForSubBorrow(const KnownBits &LHS, KnownBits RHS, const KnownBits &Borrow)
Compute known bits results from subtracting RHS from LHS with 1-bit Borrow.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
Definition KnownBits.h:196
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
Definition KnownBits.h:145
static LLVM_ABI KnownBits abds(KnownBits LHS, KnownBits RHS)
Compute known bits for abds(LHS, RHS).
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
Definition KnownBits.cpp:60
bool isStrictlyPositive() const
Returns true if this value is known to be positive.
Definition KnownBits.h:114
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static LLVM_ABI KnownBits avgFloorS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorS.
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
Definition KnownBits.h:326
bool isNegative() const
Returns true if this value is known to be negative.
Definition KnownBits.h:105
static LLVM_ABI KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry)
Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
Definition KnownBits.cpp:53
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
Definition KnownBits.h:280
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
Definition KnownBits.h:219
static LLVM_ABI KnownBits avgCeilU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilU.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
Definition KnownBits.h:167
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
static LLVM_ABI KnownBits avgCeilS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilS.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI bool isDereferenceable(unsigned Size, LLVMContext &C, const DataLayout &DL) const
Return true if memory region [V, V+Offset+Size) is known to be dereferenceable.
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:106
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
These are IR-level optimization flags that may be propagated to SDNodes.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
unsigned int NumVTs
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
virtual void NodeDeleted(SDNode *N, SDNode *E)
The node N that was deleted and, if E is not null, an equivalent node E that replaced it.
virtual void NodeInserted(SDNode *N)
The node N that was inserted.
virtual void NodeUpdated(SDNode *N)
The node N that was updated.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)