98void SelectionDAG::DAGNodeDeletedListener::anchor() {}
99void SelectionDAG::DAGNodeInsertedListener::anchor() {}
101#define DEBUG_TYPE "selectiondag"
105 cl::desc(
"Gang up loads and stores generated by inlining of memcpy"));
108 cl::desc(
"Number limit for gluing ld/st of memcpy."),
113 cl::desc(
"DAG combiner limit number of steps when searching DAG "
114 "for predecessor nodes"));
152 if (
auto OptAPInt =
N->getOperand(0)->bitcastToAPInt()) {
154 N->getValueType(0).getVectorElementType().getSizeInBits();
155 SplatVal = OptAPInt->
trunc(EltSize);
165 unsigned SplatBitSize;
167 unsigned EltSize =
N->getValueType(0).getVectorElementType().getSizeInBits();
172 const bool IsBigEndian =
false;
173 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
174 EltSize, IsBigEndian) &&
175 EltSize == SplatBitSize;
184 N =
N->getOperand(0).getNode();
193 unsigned i = 0, e =
N->getNumOperands();
196 while (i != e &&
N->getOperand(i).isUndef())
200 if (i == e)
return false;
212 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
213 if (OptAPInt->countr_one() < EltSize)
221 for (++i; i != e; ++i)
222 if (
N->getOperand(i) != NotZero && !
N->getOperand(i).isUndef())
230 N =
N->getOperand(0).getNode();
239 bool IsAllUndef =
true;
252 if (
auto OptAPInt =
Op->bitcastToAPInt()) {
253 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
254 if (OptAPInt->countr_zero() < EltSize)
302 assert(
N->getValueType(0).isVector() &&
"Expected a vector!");
304 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
305 if (EltSize <= NewEltSize)
309 return (
N->getOperand(0).getValueType().getScalarSizeInBits() <=
314 return (
N->getOperand(0).getValueType().getScalarSizeInBits() <=
327 APInt C =
Op->getAsAPIntVal().trunc(EltSize);
328 if (
Signed &&
C.trunc(NewEltSize).sext(EltSize) !=
C)
330 if (!
Signed &&
C.trunc(NewEltSize).zext(EltSize) !=
C)
341 if (
N->getNumOperands() == 0)
347 return N->getOpcode() ==
ISD::FREEZE &&
N->getOperand(0).isUndef();
350template <
typename ConstNodeType>
352 std::function<
bool(ConstNodeType *)> Match,
353 bool AllowUndefs,
bool AllowTruncation) {
363 EVT SVT =
Op.getValueType().getScalarType();
364 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
365 if (AllowUndefs &&
Op.getOperand(i).isUndef()) {
372 if (!Cst || (!AllowTruncation && Cst->getValueType(0) != SVT) ||
387 bool AllowUndefs,
bool AllowTypeMismatch) {
388 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
394 return Match(LHSCst, RHSCst);
397 if (LHS.getOpcode() != RHS.getOpcode() ||
403 for (
unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
406 bool LHSUndef = AllowUndefs && LHSOp.
isUndef();
407 bool RHSUndef = AllowUndefs && RHSOp.
isUndef();
410 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
412 if (!AllowTypeMismatch && (LHSOp.
getValueType() != SVT ||
415 if (!Match(LHSCst, RHSCst))
437 switch (VecReduceOpcode) {
442 case ISD::VP_REDUCE_FADD:
443 case ISD::VP_REDUCE_SEQ_FADD:
447 case ISD::VP_REDUCE_FMUL:
448 case ISD::VP_REDUCE_SEQ_FMUL:
451 case ISD::VP_REDUCE_ADD:
454 case ISD::VP_REDUCE_MUL:
457 case ISD::VP_REDUCE_AND:
460 case ISD::VP_REDUCE_OR:
463 case ISD::VP_REDUCE_XOR:
466 case ISD::VP_REDUCE_SMAX:
469 case ISD::VP_REDUCE_SMIN:
472 case ISD::VP_REDUCE_UMAX:
475 case ISD::VP_REDUCE_UMIN:
478 case ISD::VP_REDUCE_FMAX:
481 case ISD::VP_REDUCE_FMIN:
484 case ISD::VP_REDUCE_FMAXIMUM:
487 case ISD::VP_REDUCE_FMINIMUM:
496#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
499#include "llvm/IR/VPIntrinsics.def"
507#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
508#define VP_PROPERTY_BINARYOP return true;
509#define END_REGISTER_VP_SDNODE(VPSD) break;
510#include "llvm/IR/VPIntrinsics.def"
519 case ISD::VP_REDUCE_ADD:
520 case ISD::VP_REDUCE_MUL:
521 case ISD::VP_REDUCE_AND:
522 case ISD::VP_REDUCE_OR:
523 case ISD::VP_REDUCE_XOR:
524 case ISD::VP_REDUCE_SMAX:
525 case ISD::VP_REDUCE_SMIN:
526 case ISD::VP_REDUCE_UMAX:
527 case ISD::VP_REDUCE_UMIN:
528 case ISD::VP_REDUCE_FMAX:
529 case ISD::VP_REDUCE_FMIN:
530 case ISD::VP_REDUCE_FMAXIMUM:
531 case ISD::VP_REDUCE_FMINIMUM:
532 case ISD::VP_REDUCE_FADD:
533 case ISD::VP_REDUCE_FMUL:
534 case ISD::VP_REDUCE_SEQ_FADD:
535 case ISD::VP_REDUCE_SEQ_FMUL:
545#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
548#include "llvm/IR/VPIntrinsics.def"
557#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
560#include "llvm/IR/VPIntrinsics.def"
570#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
571#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
572#define END_REGISTER_VP_SDNODE(VPOPC) break;
573#include "llvm/IR/VPIntrinsics.def"
582#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
583#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
584#define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
585#include "llvm/IR/VPIntrinsics.def"
632 bool isIntegerLike) {
657 bool IsInteger =
Type.isInteger();
662 unsigned Op = Op1 | Op2;
678 bool IsInteger =
Type.isInteger();
713 ID.AddPointer(VTList.
VTs);
719 for (
const auto &
Op :
Ops) {
720 ID.AddPointer(
Op.getNode());
721 ID.AddInteger(
Op.getResNo());
728 for (
const auto &
Op :
Ops) {
729 ID.AddPointer(
Op.getNode());
730 ID.AddInteger(
Op.getResNo());
743 switch (
N->getOpcode()) {
752 ID.AddPointer(
C->getConstantIntValue());
753 ID.AddBoolean(
C->isOpaque());
817 ID.AddInteger(LD->getMemoryVT().getRawBits());
818 ID.AddInteger(LD->getRawSubclassData());
819 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
820 ID.AddInteger(LD->getMemOperand()->getFlags());
825 ID.AddInteger(ST->getMemoryVT().getRawBits());
826 ID.AddInteger(ST->getRawSubclassData());
827 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
828 ID.AddInteger(ST->getMemOperand()->getFlags());
839 case ISD::VP_LOAD_FF: {
841 ID.AddInteger(LD->getMemoryVT().getRawBits());
842 ID.AddInteger(LD->getRawSubclassData());
843 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
844 ID.AddInteger(LD->getMemOperand()->getFlags());
847 case ISD::VP_STORE: {
855 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
862 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
869 case ISD::VP_GATHER: {
877 case ISD::VP_SCATTER: {
976 ID.AddInteger(MN->getRawSubclassData());
977 ID.AddInteger(MN->getPointerInfo().getAddrSpace());
978 ID.AddInteger(MN->getMemOperand()->getFlags());
979 ID.AddInteger(MN->getMemoryVT().getRawBits());
1002 if (
N->getValueType(0) == MVT::Glue)
1005 switch (
N->getOpcode()) {
1013 for (
unsigned i = 1, e =
N->getNumValues(); i != e; ++i)
1014 if (
N->getValueType(i) == MVT::Glue)
1031 if (
Node.use_empty())
1046 while (!DeadNodes.
empty()) {
1055 DUL->NodeDeleted(
N,
nullptr);
1058 RemoveNodeFromCSEMaps(
N);
1089 RemoveNodeFromCSEMaps(
N);
1093 DeleteNodeNotInCSEMaps(
N);
1096void SelectionDAG::DeleteNodeNotInCSEMaps(
SDNode *
N) {
1097 assert(
N->getIterator() != AllNodes.begin() &&
1098 "Cannot delete the entry node!");
1099 assert(
N->use_empty() &&
"Cannot delete a node that is not dead!");
1108 assert(!(V->isVariadic() && isParameter));
1110 ByvalParmDbgValues.push_back(V);
1112 DbgValues.push_back(V);
1115 DbgValMap[
Node].push_back(V);
1119 DbgValMapType::iterator
I = DbgValMap.find(
Node);
1120 if (
I == DbgValMap.end())
1122 for (
auto &Val:
I->second)
1123 Val->setIsInvalidated();
1127void SelectionDAG::DeallocateNode(
SDNode *
N) {
1150void SelectionDAG::verifyNode(
SDNode *
N)
const {
1151 switch (
N->getOpcode()) {
1153 if (
N->isTargetOpcode())
1157 EVT VT =
N->getValueType(0);
1158 assert(
N->getNumValues() == 1 &&
"Too many results!");
1160 "Wrong return type!");
1161 assert(
N->getNumOperands() == 2 &&
"Wrong number of operands!");
1162 assert(
N->getOperand(0).getValueType() ==
N->getOperand(1).getValueType() &&
1163 "Mismatched operand types!");
1165 "Wrong operand type!");
1167 "Wrong return type size");
1171 assert(
N->getNumValues() == 1 &&
"Too many results!");
1172 assert(
N->getValueType(0).isVector() &&
"Wrong return type!");
1173 assert(
N->getNumOperands() ==
N->getValueType(0).getVectorNumElements() &&
1174 "Wrong number of operands!");
1175 EVT EltVT =
N->getValueType(0).getVectorElementType();
1176 for (
const SDUse &
Op :
N->ops()) {
1177 assert((
Op.getValueType() == EltVT ||
1178 (EltVT.
isInteger() &&
Op.getValueType().isInteger() &&
1179 EltVT.
bitsLE(
Op.getValueType()))) &&
1180 "Wrong operand type!");
1181 assert(
Op.getValueType() ==
N->getOperand(0).getValueType() &&
1182 "Operands must all have the same type");
1194void SelectionDAG::InsertNode(SDNode *
N) {
1195 AllNodes.push_back(
N);
1197 N->PersistentId = NextPersistentId++;
1201 DUL->NodeInserted(
N);
1208bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *
N) {
1209 bool Erased =
false;
1210 switch (
N->getOpcode()) {
1214 "Cond code doesn't exist!");
1223 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1229 Erased = MCSymbols.erase(MCSN->getMCSymbol());
1235 Erased = ExtendedValueTypeNodes.erase(VT);
1246 Erased = CSEMap.RemoveNode(
N);
1253 if (!Erased &&
N->getValueType(
N->getNumValues()-1) != MVT::Glue &&
1268SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *
N) {
1272 SDNode *Existing = CSEMap.GetOrInsertNode(
N);
1273 if (Existing !=
N) {
1284 DUL->NodeDeleted(
N, Existing);
1285 DeleteNodeNotInCSEMaps(
N);
1292 DUL->NodeUpdated(
N);
1299SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *
N,
SDValue Op,
1305 FoldingSetNodeID
ID;
1308 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1310 Node->intersectFlagsWith(
N->getFlags());
1318SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *
N,
1325 FoldingSetNodeID
ID;
1328 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1330 Node->intersectFlagsWith(
N->getFlags());
1343 FoldingSetNodeID
ID;
1346 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1348 Node->intersectFlagsWith(
N->getFlags());
1361 : TM(tm), OptLevel(OL), EntryNode(
ISD::EntryToken, 0,
DebugLoc(),
1364 InsertNode(&EntryNode);
1375 SDAGISelPass = PassPtr;
1379 LibInfo = LibraryInfo;
1380 Context = &MF->getFunction().getContext();
1385 FnVarLocs = VarLocs;
1389 assert(!UpdateListeners &&
"Dangling registered DAGUpdateListeners");
1391 OperandRecycler.clear(OperandAllocator);
1399void SelectionDAG::allnodes_clear() {
1400 assert(&*AllNodes.begin() == &EntryNode);
1401 AllNodes.remove(AllNodes.begin());
1402 while (!AllNodes.empty())
1403 DeallocateNode(&AllNodes.front());
1405 NextPersistentId = 0;
1411 SDNode *
N = CSEMap.FindNodeOrInsertPos(
ID, InsertPos);
1413 switch (
N->getOpcode()) {
1418 "debug location. Use another overload.");
1425 const SDLoc &
DL,
void *&InsertPos) {
1426 SDNode *
N = CSEMap.FindNodeOrInsertPos(
ID, InsertPos);
1428 switch (
N->getOpcode()) {
1434 if (
N->getDebugLoc() !=
DL.getDebugLoc())
1441 if (
DL.getIROrder() &&
DL.getIROrder() <
N->getIROrder())
1442 N->setDebugLoc(
DL.getDebugLoc());
1451 OperandRecycler.clear(OperandAllocator);
1452 OperandAllocator.Reset();
1455 ExtendedValueTypeNodes.clear();
1456 ExternalSymbols.clear();
1457 TargetExternalSymbols.clear();
1463 EntryNode.UseList =
nullptr;
1464 InsertNode(&EntryNode);
1470 return VT.
bitsGT(
Op.getValueType())
1476std::pair<SDValue, SDValue>
1480 "Strict no-op FP extend/round not allowed.");
1487 return std::pair<SDValue, SDValue>(Res,
SDValue(Res.
getNode(), 1));
1491 return VT.
bitsGT(
Op.getValueType()) ?
1497 return VT.
bitsGT(
Op.getValueType()) ?
1503 return VT.
bitsGT(
Op.getValueType()) ?
1511 auto Type =
Op.getValueType();
1515 auto Size =
Op.getValueSizeInBits();
1526 auto Type =
Op.getValueType();
1530 auto Size =
Op.getValueSizeInBits();
1541 auto Type =
Op.getValueType();
1545 auto Size =
Op.getValueSizeInBits();
1559 return getNode(TLI->getExtendForContent(BType), SL, VT,
Op);
1563 EVT OpVT =
Op.getValueType();
1565 "Cannot getZeroExtendInReg FP types");
1567 "getZeroExtendInReg type should be vector iff the operand "
1571 "Vector element counts must match in getZeroExtendInReg");
1587 EVT OpVT =
Op.getValueType();
1589 "Cannot getVPZeroExtendInReg FP types");
1591 "getVPZeroExtendInReg type and operand type should be vector!");
1593 "Vector element counts must match in getZeroExtendInReg");
1632 return getNode(ISD::VP_XOR,
DL, VT, Val, TrueValue, Mask, EVL);
1643 return getNode(ISD::VP_ZERO_EXTEND,
DL, VT,
Op, Mask, EVL);
1645 return getNode(ISD::VP_TRUNCATE,
DL, VT,
Op, Mask, EVL);
1654 switch (TLI->getBooleanContents(OpVT)) {
1665 bool isT,
bool isO) {
1671 bool isT,
bool isO) {
1672 return getConstant(*ConstantInt::get(*Context, Val),
DL, VT, isT, isO);
1676 EVT VT,
bool isT,
bool isO) {
1693 EltVT = TLI->getTypeToTransformTo(*
getContext(), EltVT);
1699 Elt = ConstantInt::get(*
getContext(), NewVal);
1711 EVT ViaEltVT = TLI->getTypeToTransformTo(*
getContext(), EltVT);
1718 "Can only handle an even split!");
1722 for (
unsigned i = 0; i != Parts; ++i)
1724 NewVal.
extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits),
DL,
1725 ViaEltVT, isT, isO));
1730 unsigned ViaVecNumElts = VT.
getSizeInBits() / ViaEltSizeInBits;
1741 NewVal.
extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits),
DL,
1742 ViaEltVT, isT, isO));
1747 std::reverse(EltParts.
begin(), EltParts.
end());
1766 "APInt size does not match type size!");
1775 if ((
N = FindNodeOrInsertPos(
ID,
DL, IP)))
1780 N = newSDNode<ConstantSDNode>(isT, isO, Elt, VTs);
1781 CSEMap.InsertNode(
N, IP);
1793 bool isT,
bool isO) {
1801 IsTarget, IsOpaque);
1833 EVT VT,
bool isTarget) {
1854 if ((
N = FindNodeOrInsertPos(
ID,
DL, IP)))
1859 N = newSDNode<ConstantFPSDNode>(isTarget, Elt, VTs);
1860 CSEMap.InsertNode(
N, IP);
1874 if (EltVT == MVT::f32)
1876 if (EltVT == MVT::f64)
1878 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1879 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1890 EVT VT, int64_t
Offset,
bool isTargetGA,
1891 unsigned TargetFlags) {
1892 assert((TargetFlags == 0 || isTargetGA) &&
1893 "Cannot set target flags on target-independent globals");
1911 ID.AddInteger(TargetFlags);
1913 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
1916 auto *
N = newSDNode<GlobalAddressSDNode>(
1917 Opc,
DL.getIROrder(),
DL.getDebugLoc(), GV, VTs,
Offset, TargetFlags);
1918 CSEMap.InsertNode(
N, IP);
1932 auto *
N = newSDNode<DeactivationSymbolSDNode>(GV, VTs);
1933 CSEMap.InsertNode(
N, IP);
1945 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1948 auto *
N = newSDNode<FrameIndexSDNode>(FI, VTs, isTarget);
1949 CSEMap.InsertNode(
N, IP);
1955 unsigned TargetFlags) {
1956 assert((TargetFlags == 0 || isTarget) &&
1957 "Cannot set target flags on target-independent jump tables");
1963 ID.AddInteger(TargetFlags);
1965 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1968 auto *
N = newSDNode<JumpTableSDNode>(JTI, VTs, isTarget, TargetFlags);
1969 CSEMap.InsertNode(
N, IP);
1983 bool isTarget,
unsigned TargetFlags) {
1984 assert((TargetFlags == 0 || isTarget) &&
1985 "Cannot set target flags on target-independent globals");
1994 ID.AddInteger(Alignment->value());
1997 ID.AddInteger(TargetFlags);
1999 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2002 auto *
N = newSDNode<ConstantPoolSDNode>(isTarget,
C, VTs,
Offset, *Alignment,
2004 CSEMap.InsertNode(
N, IP);
2013 bool isTarget,
unsigned TargetFlags) {
2014 assert((TargetFlags == 0 || isTarget) &&
2015 "Cannot set target flags on target-independent globals");
2022 ID.AddInteger(Alignment->value());
2024 C->addSelectionDAGCSEId(
ID);
2025 ID.AddInteger(TargetFlags);
2027 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2030 auto *
N = newSDNode<ConstantPoolSDNode>(isTarget,
C, VTs,
Offset, *Alignment,
2032 CSEMap.InsertNode(
N, IP);
2042 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2045 auto *
N = newSDNode<BasicBlockSDNode>(
MBB);
2046 CSEMap.InsertNode(
N, IP);
2053 ValueTypeNodes.size())
2060 N = newSDNode<VTSDNode>(VT);
2066 SDNode *&
N = ExternalSymbols[Sym];
2068 N = newSDNode<ExternalSymbolSDNode>(
false, Sym, 0,
getVTList(VT));
2074 StringRef SymName = TLI->getLibcallImplName(Libcall);
2082 N = newSDNode<MCSymbolSDNode>(Sym,
getVTList(VT));
2088 unsigned TargetFlags) {
2090 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
2092 N = newSDNode<ExternalSymbolSDNode>(
true, Sym, TargetFlags,
getVTList(VT));
2098 EVT VT,
unsigned TargetFlags) {
2099 StringRef SymName = TLI->getLibcallImplName(Libcall);
2104 if ((
unsigned)
Cond >= CondCodeNodes.size())
2105 CondCodeNodes.resize(
Cond+1);
2107 if (!CondCodeNodes[
Cond]) {
2108 auto *
N = newSDNode<CondCodeSDNode>(
Cond);
2109 CondCodeNodes[
Cond] =
N;
2118 "APInt size does not match type size!");
2136template <
typename Ty>
2138 EVT VT, Ty Quantity) {
2139 if (Quantity.isScalable())
2143 return DAG.
getConstant(Quantity.getKnownMinValue(),
DL, VT);
2169 const APInt &StepVal) {
2193 "Must have the same number of vector elements as mask elements!");
2195 "Invalid VECTOR_SHUFFLE");
2203 int NElts = Mask.size();
2205 [&](
int M) {
return M < (NElts * 2) && M >= -1; }) &&
2206 "Index out of range");
2214 for (
int i = 0; i != NElts; ++i)
2215 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2222 if (TLI->hasVectorBlend()) {
2231 for (
int i = 0; i < NElts; ++i) {
2232 if (MaskVec[i] <
Offset || MaskVec[i] >= (
Offset + NElts))
2236 if (UndefElements[MaskVec[i] -
Offset]) {
2242 if (!UndefElements[i])
2247 BlendSplat(N1BV, 0);
2249 BlendSplat(N2BV, NElts);
2254 bool AllLHS =
true, AllRHS =
true;
2256 for (
int i = 0; i != NElts; ++i) {
2257 if (MaskVec[i] >= NElts) {
2262 }
else if (MaskVec[i] >= 0) {
2266 if (AllLHS && AllRHS)
2268 if (AllLHS && !N2Undef)
2281 bool Identity =
true, AllSame =
true;
2282 for (
int i = 0; i != NElts; ++i) {
2283 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity =
false;
2284 if (MaskVec[i] != MaskVec[0]) AllSame =
false;
2286 if (Identity && NElts)
2319 if (AllSame && SameNumElts) {
2320 EVT BuildVT = BV->getValueType(0);
2337 for (
int i = 0; i != NElts; ++i)
2338 ID.AddInteger(MaskVec[i]);
2341 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
2347 int *MaskAlloc = OperandAllocator.Allocate<
int>(NElts);
2350 auto *
N = newSDNode<ShuffleVectorSDNode>(VTs, dl.
getIROrder(),
2352 createOperands(
N,
Ops);
2354 CSEMap.InsertNode(
N, IP);
2375 ID.AddInteger(Reg.id());
2377 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2380 auto *
N = newSDNode<RegisterSDNode>(Reg, VTs);
2381 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(
N, FLI, UA);
2382 CSEMap.InsertNode(
N, IP);
2390 ID.AddPointer(RegMask);
2392 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2395 auto *
N = newSDNode<RegisterMaskSDNode>(RegMask);
2396 CSEMap.InsertNode(
N, IP);
2411 ID.AddPointer(Label);
2413 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2418 createOperands(
N,
Ops);
2420 CSEMap.InsertNode(
N, IP);
2426 int64_t
Offset,
bool isTarget,
2427 unsigned TargetFlags) {
2435 ID.AddInteger(TargetFlags);
2437 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2440 auto *
N = newSDNode<BlockAddressSDNode>(
Opc, VTs, BA,
Offset, TargetFlags);
2441 CSEMap.InsertNode(
N, IP);
2452 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2455 auto *
N = newSDNode<SrcValueSDNode>(V);
2456 CSEMap.InsertNode(
N, IP);
2467 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2470 auto *
N = newSDNode<MDNodeSDNode>(MD);
2471 CSEMap.InsertNode(
N, IP);
2477 if (VT == V.getValueType())
2484 unsigned SrcAS,
unsigned DestAS) {
2489 ID.AddInteger(SrcAS);
2490 ID.AddInteger(DestAS);
2493 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
2497 VTs, SrcAS, DestAS);
2498 createOperands(
N,
Ops);
2500 CSEMap.InsertNode(
N, IP);
2512 EVT OpTy =
Op.getValueType();
2514 if (OpTy == ShTy || OpTy.
isVector())
return Op;
2523 EVT VT =
Node->getValueType(0);
2532 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2570 Align RedAlign = UseABI ?
DL.getABITypeAlign(Ty) :
DL.getPrefTypeAlign(Ty);
2572 if (TLI->isTypeLegal(VT) || !VT.
isVector())
2580 if (RedAlign > StackAlign) {
2583 unsigned NumIntermediates;
2584 TLI->getVectorTypeBreakdown(*
getContext(), VT, IntermediateVT,
2585 NumIntermediates, RegisterVT);
2587 Align RedAlign2 = UseABI ?
DL.getABITypeAlign(Ty) :
DL.getPrefTypeAlign(Ty);
2588 if (RedAlign2 < RedAlign)
2589 RedAlign = RedAlign2;
2594 RedAlign = std::min(RedAlign, StackAlign);
2609 false,
nullptr, StackID);
2624 "Don't know how to choose the maximum size when creating a stack "
2633 Align Align = std::max(
DL.getPrefTypeAlign(Ty1),
DL.getPrefTypeAlign(Ty2));
2641 auto GetUndefBooleanConstant = [&]() {
2643 TLI->getBooleanContents(OpVT) ==
2680 return GetUndefBooleanConstant();
2685 return GetUndefBooleanConstant();
2694 const APInt &C2 = N2C->getAPIntValue();
2696 const APInt &C1 = N1C->getAPIntValue();
2706 if (N1CFP && N2CFP) {
2711 return GetUndefBooleanConstant();
2716 return GetUndefBooleanConstant();
2722 return GetUndefBooleanConstant();
2727 return GetUndefBooleanConstant();
2732 return GetUndefBooleanConstant();
2738 return GetUndefBooleanConstant();
2765 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.
getSimpleVT()))
2767 return getSetCC(dl, VT, N2, N1, SwappedCond);
2768 }
else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2783 return GetUndefBooleanConstant();
2794 unsigned BitWidth =
Op.getScalarValueSizeInBits();
2803 unsigned Opc =
Op.getOpcode();
2812 return (NoFPClass & TestMask) == TestMask;
2819 return Op->getFlags().hasNoNaNs();
2845 unsigned Depth)
const {
2853 const APInt &DemandedElts,
2854 unsigned Depth)
const {
2861 unsigned Depth )
const {
2867 unsigned Depth)
const {
2872 const APInt &DemandedElts,
2873 unsigned Depth)
const {
2874 EVT VT =
Op.getValueType();
2881 for (
unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2882 if (!DemandedElts[EltIdx])
2886 KnownZeroElements.
setBit(EltIdx);
2888 return KnownZeroElements;
2898 unsigned Opcode = V.getOpcode();
2899 EVT VT = V.getValueType();
2902 "scalable demanded bits are ignored");
2914 UndefElts = V.getOperand(0).isUndef()
2923 APInt UndefLHS, UndefRHS;
2932 (DemandedElts & UndefLHS) == (DemandedElts & UndefRHS)) {
2933 UndefElts = UndefLHS | UndefRHS;
2946 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *
this,
2963 for (
unsigned i = 0; i != NumElts; ++i) {
2969 if (!DemandedElts[i])
2971 if (Scl && Scl !=
Op)
2982 for (
int i = 0; i != (int)NumElts; ++i) {
2988 if (!DemandedElts[i])
2990 if (M < (
int)NumElts)
2993 DemandedRHS.
setBit(M - NumElts);
3005 auto CheckSplatSrc = [&](
SDValue Src,
const APInt &SrcElts) {
3007 return (SrcElts.popcount() == 1) ||
3009 (SrcElts & SrcUndefs).
isZero());
3011 if (!DemandedLHS.
isZero())
3012 return CheckSplatSrc(V.getOperand(0), DemandedLHS);
3013 return CheckSplatSrc(V.getOperand(1), DemandedRHS);
3019 if (Src.getValueType().isScalableVector())
3021 uint64_t Idx = V.getConstantOperandVal(1);
3022 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3024 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3026 UndefElts = UndefSrcElts.
extractBits(NumElts, Idx);
3037 if (Src.getValueType().isScalableVector())
3041 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts);
3043 UndefElts = UndefSrcElts.
trunc(NumElts);
3050 EVT SrcVT = Src.getValueType();
3060 if ((
BitWidth % SrcBitWidth) == 0) {
3062 unsigned Scale =
BitWidth / SrcBitWidth;
3064 APInt ScaledDemandedElts =
3066 for (
unsigned I = 0;
I != Scale; ++
I) {
3070 SubDemandedElts &= ScaledDemandedElts;
3074 if (!SubUndefElts.
isZero())
3088 EVT VT = V.getValueType();
3098 (AllowUndefs || !UndefElts);
3104 EVT VT = V.getValueType();
3105 unsigned Opcode = V.getOpcode();
3126 SplatIdx = (UndefElts & DemandedElts).
countr_one();
3141 if (!SVN->isSplat())
3143 int Idx = SVN->getSplatIndex();
3144 int NumElts = V.getValueType().getVectorNumElements();
3145 SplatIdx = Idx % NumElts;
3146 return V.getOperand(Idx / NumElts);
3158 if (LegalTypes && !TLI->isTypeLegal(SVT)) {
3161 LegalSVT = TLI->getTypeToTransformTo(*
getContext(), LegalSVT);
3162 if (LegalSVT.
bitsLT(SVT))
3170std::optional<ConstantRange>
3172 unsigned Depth)
const {
3175 "Unknown shift node");
3177 unsigned BitWidth = V.getScalarValueSizeInBits();
3180 const APInt &ShAmt = Cst->getAPIntValue();
3182 return std::nullopt;
3187 const APInt *MinAmt =
nullptr, *MaxAmt =
nullptr;
3188 for (
unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3189 if (!DemandedElts[i])
3193 MinAmt = MaxAmt =
nullptr;
3196 const APInt &ShAmt = SA->getAPIntValue();
3198 return std::nullopt;
3199 if (!MinAmt || MinAmt->
ugt(ShAmt))
3201 if (!MaxAmt || MaxAmt->ult(ShAmt))
3204 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
3205 "Failed to find matching min/max shift amounts");
3206 if (MinAmt && MaxAmt)
3216 return std::nullopt;
3219std::optional<unsigned>
3221 unsigned Depth)
const {
3224 "Unknown shift node");
3225 if (std::optional<ConstantRange> AmtRange =
3227 if (
const APInt *ShAmt = AmtRange->getSingleElement())
3228 return ShAmt->getZExtValue();
3229 return std::nullopt;
3232std::optional<unsigned>
3234 EVT VT = V.getValueType();
3241std::optional<unsigned>
3243 unsigned Depth)
const {
3246 "Unknown shift node");
3247 if (std::optional<ConstantRange> AmtRange =
3249 return AmtRange->getUnsignedMin().getZExtValue();
3250 return std::nullopt;
3253std::optional<unsigned>
3255 EVT VT = V.getValueType();
3262std::optional<unsigned>
3264 unsigned Depth)
const {
3267 "Unknown shift node");
3268 if (std::optional<ConstantRange> AmtRange =
3270 return AmtRange->getUnsignedMax().getZExtValue();
3271 return std::nullopt;
3274std::optional<unsigned>
3276 EVT VT = V.getValueType();
3287 EVT VT =
Op.getValueType();
3302 unsigned Depth)
const {
3303 unsigned BitWidth =
Op.getScalarValueSizeInBits();
3307 if (
auto OptAPInt =
Op->bitcastToAPInt()) {
3317 assert((!
Op.getValueType().isFixedLengthVector() ||
3318 NumElts ==
Op.getValueType().getVectorNumElements()) &&
3319 "Unexpected vector size");
3324 unsigned Opcode =
Op.getOpcode();
3332 "Expected SPLAT_VECTOR implicit truncation");
3339 unsigned ScalarSize =
Op.getOperand(0).getScalarValueSizeInBits();
3341 "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3348 const APInt &Step =
Op.getConstantOperandAPInt(0);
3357 const APInt MinNumElts =
3363 .
umul_ov(MinNumElts, Overflow);
3367 const APInt MaxValue = (MaxNumElts - 1).
umul_ov(Step, Overflow);
3375 assert(!
Op.getValueType().isScalableVector());
3378 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
3379 if (!DemandedElts[i])
3388 "Expected BUILD_VECTOR implicit truncation");
3412 assert(!
Op.getValueType().isScalableVector());
3415 APInt DemandedLHS, DemandedRHS;
3419 DemandedLHS, DemandedRHS))
3424 if (!!DemandedLHS) {
3432 if (!!DemandedRHS) {
3441 const APInt &Multiplier =
Op.getConstantOperandAPInt(0);
3446 if (
Op.getValueType().isScalableVector())
3450 EVT SubVectorVT =
Op.getOperand(0).getValueType();
3452 unsigned NumSubVectors =
Op.getNumOperands();
3453 for (
unsigned i = 0; i != NumSubVectors; ++i) {
3455 DemandedElts.
extractBits(NumSubVectorElts, i * NumSubVectorElts);
3456 if (!!DemandedSub) {
3468 if (
Op.getValueType().isScalableVector())
3475 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
3477 APInt DemandedSrcElts = DemandedElts;
3478 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
3481 if (!!DemandedSubElts) {
3486 if (!!DemandedSrcElts) {
3496 if (
Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3499 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3500 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3505 if (
Op.getValueType().isScalableVector())
3509 if (DemandedElts != 1)
3520 if (
Op.getValueType().isScalableVector())
3540 if ((
BitWidth % SubBitWidth) == 0) {
3547 unsigned SubScale =
BitWidth / SubBitWidth;
3548 APInt SubDemandedElts(NumElts * SubScale, 0);
3549 for (
unsigned i = 0; i != NumElts; ++i)
3550 if (DemandedElts[i])
3551 SubDemandedElts.
setBit(i * SubScale);
3553 for (
unsigned i = 0; i != SubScale; ++i) {
3556 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3557 Known.
insertBits(Known2, SubBitWidth * Shifts);
3562 if ((SubBitWidth %
BitWidth) == 0) {
3563 assert(
Op.getValueType().isVector() &&
"Expected bitcast to vector");
3568 unsigned SubScale = SubBitWidth /
BitWidth;
3569 APInt SubDemandedElts =
3574 for (
unsigned i = 0; i != NumElts; ++i)
3575 if (DemandedElts[i]) {
3576 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3607 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3611 Op.getOperand(0), DemandedElts,
false,
Depth + 1);
3617 if (
Op->getFlags().hasNoSignedWrap() &&
3618 Op.getOperand(0) ==
Op.getOperand(1) &&
3645 unsigned SignBits1 =
3649 unsigned SignBits0 =
3655 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3658 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3659 if (
Op.getResNo() == 0)
3666 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3669 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3670 if (
Op.getResNo() == 0)
3723 if (
Op.getResNo() != 1)
3729 if (TLI->getBooleanContents(
Op.getValueType().isVector(),
false) ==
3738 unsigned OpNo =
Op->isStrictFPOpcode() ? 1 : 0;
3740 if (TLI->getBooleanContents(
Op.getOperand(OpNo).getValueType()) ==
3750 bool NUW =
Op->getFlags().hasNoUnsignedWrap();
3751 bool NSW =
Op->getFlags().hasNoSignedWrap();
3758 if (std::optional<unsigned> ShMinAmt =
3767 Op->getFlags().hasExact());
3770 if (std::optional<unsigned> ShMinAmt =
3778 Op->getFlags().hasExact());
3784 unsigned Amt =
C->getAPIntValue().urem(
BitWidth);
3799 unsigned Amt =
C->getAPIntValue().urem(
BitWidth);
3805 DemandedElts,
Depth + 1);
3826 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3829 unsigned LoBits =
Op.getOperand(0).getScalarValueSizeInBits();
3830 unsigned HiBits =
Op.getOperand(1).getScalarValueSizeInBits();
3833 Known = Known2.
concat(Known);
3847 if (
Op.getResNo() == 0)
3904 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3909 !
Op.getValueType().isScalableVector()) {
3922 for (
unsigned i = 0; i != NumElts; ++i) {
3923 if (!DemandedElts[i])
3933 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3952 }
else if (
Op.getResNo() == 0) {
3953 unsigned ScalarMemorySize = LD->getMemoryVT().getScalarSizeInBits();
3954 KnownBits KnownScalarMemory(ScalarMemorySize);
3955 if (
const MDNode *MD = LD->getRanges())
3966 Known = KnownScalarMemory;
3973 if (
Op.getValueType().isScalableVector())
3975 EVT InVT =
Op.getOperand(0).getValueType();
3987 if (
Op.getValueType().isScalableVector())
3989 EVT InVT =
Op.getOperand(0).getValueType();
4005 if (
Op.getValueType().isScalableVector())
4007 EVT InVT =
Op.getOperand(0).getValueType();
4027 Known.
Zero |= (~InMask);
4028 Known.
One &= (~Known.Zero);
4048 if ((NoFPClass & NegativeTestMask) == NegativeTestMask) {
4054 if ((NoFPClass & PositiveTestMask) == PositiveTestMask) {
4071 Op.getOpcode() ==
ISD::ADD, Flags.hasNoSignedWrap(),
4072 Flags.hasNoUnsignedWrap(), Known, Known2);
4079 if (
Op.getResNo() == 1) {
4081 if (TLI->getBooleanContents(
Op.getOperand(0).getValueType()) ==
4090 "We only compute knownbits for the difference here.");
4097 Borrow = Borrow.
trunc(1);
4111 if (
Op.getResNo() == 1) {
4113 if (TLI->getBooleanContents(
Op.getOperand(0).getValueType()) ==
4122 assert(
Op.getResNo() == 0 &&
"We only compute knownbits for the sum here.");
4132 Carry = Carry.
trunc(1);
4168 const unsigned Index =
Op.getConstantOperandVal(1);
4169 const unsigned EltBitWidth =
Op.getValueSizeInBits();
4176 Known = Known.
trunc(EltBitWidth);
4192 Known = Known.
trunc(EltBitWidth);
4198 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4208 if (
Op.getValueType().isScalableVector())
4217 bool DemandedVal =
true;
4218 APInt DemandedVecElts = DemandedElts;
4220 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4221 unsigned EltIdx = CEltNo->getZExtValue();
4222 DemandedVal = !!DemandedElts[EltIdx];
4230 if (!!DemandedVecElts) {
4248 Known = Known2.
abs();
4281 if (CstLow && CstHigh) {
4286 const APInt &ValueHigh = CstHigh->getAPIntValue();
4287 if (ValueLow.
sle(ValueHigh)) {
4290 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
4313 if (IsMax && CstLow) {
4343 if (
Op.getResNo() == 0) {
4345 unsigned ScalarMemorySize = AT->getMemoryVT().getScalarSizeInBits();
4346 KnownBits KnownScalarMemory(ScalarMemorySize);
4347 if (
const MDNode *MD = AT->getRanges())
4350 switch (AT->getExtensionType()) {
4358 switch (TLI->getExtendForAtomicOps()) {
4371 Known = KnownScalarMemory;
4379 if (
Op.getResNo() == 1) {
4384 if (TLI->getBooleanContents(
Op.getValueType().isVector(),
false) ==
4405 if (
Op.getResNo() == 0) {
4407 unsigned MemBits = AT->getMemoryVT().getScalarSizeInBits();
4429 if (
Op.getValueType().isScalableVector())
4433 TLI->computeKnownBitsForTargetNode(
Op, Known, DemandedElts, *
this,
Depth);
4575 return C->getAPIntValue().zextOrTrunc(
BitWidth).isPowerOf2();
4583 if (
C &&
C->getAPIntValue() == 1)
4593 if (
C &&
C->getAPIntValue().isSignMask())
4605 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4606 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4614 if (
C->getAPIntValue().zextOrTrunc(
BitWidth).isPowerOf2())
4652 return C1->getValueAPF().getExactLog2Abs() >= 0;
4661 EVT VT =
Op.getValueType();
4673 unsigned Depth)
const {
4674 EVT VT =
Op.getValueType();
4679 unsigned FirstAnswer = 1;
4682 const APInt &Val =
C->getAPIntValue();
4692 unsigned Opcode =
Op.getOpcode();
4697 return VTBits-Tmp+1;
4711 unsigned NumSrcBits =
Op.getOperand(0).getValueSizeInBits();
4713 if (NumSrcSignBits > (NumSrcBits - VTBits))
4714 return NumSrcSignBits - (NumSrcBits - VTBits);
4720 for (
unsigned i = 0, e =
Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4721 if (!DemandedElts[i])
4728 APInt T =
C->getAPIntValue().trunc(VTBits);
4729 Tmp2 =
T.getNumSignBits();
4733 if (
SrcOp.getValueSizeInBits() != VTBits) {
4735 "Expected BUILD_VECTOR implicit truncation");
4736 unsigned ExtraBits =
SrcOp.getValueSizeInBits() - VTBits;
4737 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4740 Tmp = std::min(Tmp, Tmp2);
4751 Tmp = std::min(Tmp, Tmp2);
4758 APInt DemandedLHS, DemandedRHS;
4762 DemandedLHS, DemandedRHS))
4765 Tmp = std::numeric_limits<unsigned>::max();
4768 if (!!DemandedRHS) {
4770 Tmp = std::min(Tmp, Tmp2);
4775 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
4791 if (VTBits == SrcBits)
4797 if ((SrcBits % VTBits) == 0) {
4800 unsigned Scale = SrcBits / VTBits;
4801 APInt SrcDemandedElts =
4811 for (
unsigned i = 0; i != NumElts; ++i)
4812 if (DemandedElts[i]) {
4813 unsigned SubOffset = i % Scale;
4814 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4815 SubOffset = SubOffset * VTBits;
4816 if (Tmp <= SubOffset)
4818 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4828 return VTBits - Tmp + 1;
4830 Tmp = VTBits -
Op.getOperand(0).getScalarValueSizeInBits();
4837 return std::max(Tmp, Tmp2);
4842 EVT SrcVT = Src.getValueType();
4850 if (std::optional<unsigned> ShAmt =
4852 Tmp = std::min(Tmp + *ShAmt, VTBits);
4855 if (std::optional<ConstantRange> ShAmtRange =
4857 unsigned MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
4858 unsigned MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
4869 unsigned SizeDifference =
4871 if (SizeDifference <= MinShAmt) {
4872 Tmp = SizeDifference +
4875 return Tmp - MaxShAmt;
4881 return Tmp - MaxShAmt;
4891 FirstAnswer = std::min(Tmp, Tmp2);
4901 if (Tmp == 1)
return 1;
4903 return std::min(Tmp, Tmp2);
4906 if (Tmp == 1)
return 1;
4908 return std::min(Tmp, Tmp2);
4920 if (CstLow && CstHigh) {
4925 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4926 return std::min(Tmp, Tmp2);
4935 return std::min(Tmp, Tmp2);
4943 return std::min(Tmp, Tmp2);
4947 if (
Op.getResNo() == 0 &&
Op.getOperand(0) ==
Op.getOperand(1))
4958 if (
Op.getResNo() != 1)
4964 if (TLI->getBooleanContents(VT.
isVector(),
false) ==
4972 unsigned OpNo =
Op->isStrictFPOpcode() ? 1 : 0;
4974 if (TLI->getBooleanContents(
Op.getOperand(OpNo).getValueType()) ==
4989 unsigned RotAmt =
C->getAPIntValue().urem(VTBits);
4993 RotAmt = (VTBits - RotAmt) % VTBits;
4997 if (Tmp > (RotAmt + 1))
return (Tmp - RotAmt);
5004 if (Tmp == 1)
return 1;
5009 if (CRHS->isAllOnes()) {
5015 if ((Known.
Zero | 1).isAllOnes())
5025 if (Tmp2 == 1)
return 1;
5029 return std::min(Tmp, Tmp2) - 1;
5032 if (Tmp2 == 1)
return 1;
5037 if (CLHS->isZero()) {
5042 if ((Known.
Zero | 1).isAllOnes())
5056 if (Tmp == 1)
return 1;
5057 return std::min(Tmp, Tmp2) - 1;
5061 if (SignBitsOp0 == 1)
5064 if (SignBitsOp1 == 1)
5066 unsigned OutValidBits =
5067 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
5068 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
5076 return std::min(Tmp, Tmp2);
5085 unsigned NumSrcBits =
Op.getOperand(0).getScalarValueSizeInBits();
5087 if (NumSrcSignBits > (NumSrcBits - VTBits))
5088 return NumSrcSignBits - (NumSrcBits - VTBits);
5095 const int BitWidth =
Op.getValueSizeInBits();
5096 const int Items =
Op.getOperand(0).getValueSizeInBits() /
BitWidth;
5100 const int rIndex = Items - 1 -
Op.getConstantOperandVal(1);
5115 bool DemandedVal =
true;
5116 APInt DemandedVecElts = DemandedElts;
5118 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
5119 unsigned EltIdx = CEltNo->getZExtValue();
5120 DemandedVal = !!DemandedElts[EltIdx];
5123 Tmp = std::numeric_limits<unsigned>::max();
5129 Tmp = std::min(Tmp, Tmp2);
5131 if (!!DemandedVecElts) {
5133 Tmp = std::min(Tmp, Tmp2);
5135 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5146 const unsigned BitWidth =
Op.getValueSizeInBits();
5147 const unsigned EltBitWidth =
Op.getOperand(0).getScalarValueSizeInBits();
5160 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
5170 if (Src.getValueType().isScalableVector())
5173 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5174 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5182 Tmp = std::numeric_limits<unsigned>::max();
5183 EVT SubVectorVT =
Op.getOperand(0).getValueType();
5185 unsigned NumSubVectors =
Op.getNumOperands();
5186 for (
unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
5188 DemandedElts.
extractBits(NumSubVectorElts, i * NumSubVectorElts);
5192 Tmp = std::min(Tmp, Tmp2);
5194 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5205 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
5207 APInt DemandedSrcElts = DemandedElts;
5208 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
5210 Tmp = std::numeric_limits<unsigned>::max();
5211 if (!!DemandedSubElts) {
5216 if (!!DemandedSrcElts) {
5218 Tmp = std::min(Tmp, Tmp2);
5220 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5225 if (
Op.getResNo() != 0)
5229 if (
const MDNode *Ranges = LD->getRanges()) {
5230 if (DemandedElts != 1)
5235 switch (LD->getExtensionType()) {
5253 unsigned ExtType = LD->getExtensionType();
5258 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5259 return VTBits - Tmp + 1;
5261 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5262 return VTBits - Tmp;
5264 if (
const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
5267 Type *CstTy = Cst->getType();
5272 for (
unsigned i = 0; i != NumElts; ++i) {
5273 if (!DemandedElts[i])
5278 Tmp = std::min(Tmp,
Value.getNumSignBits());
5282 APInt Value = CFP->getValueAPF().bitcastToAPInt();
5283 Tmp = std::min(Tmp,
Value.getNumSignBits());
5315 if (
Op.getResNo() == 0) {
5316 Tmp = AT->getMemoryVT().getScalarSizeInBits();
5322 switch (AT->getExtensionType()) {
5326 return VTBits - Tmp + 1;
5328 return VTBits - Tmp;
5333 return VTBits - Tmp + 1;
5335 return VTBits - Tmp;
5350 TLI->ComputeNumSignBitsForTargetNode(
Op, DemandedElts, *
this,
Depth);
5352 FirstAnswer = std::max(FirstAnswer, NumBits);
5363 unsigned Depth)
const {
5365 return Op.getScalarValueSizeInBits() - SignBits + 1;
5369 const APInt &DemandedElts,
5370 unsigned Depth)
const {
5372 return Op.getScalarValueSizeInBits() - SignBits + 1;
5376 unsigned Depth)
const {
5381 EVT VT =
Op.getValueType();
5389 const APInt &DemandedElts,
5391 unsigned Depth)
const {
5392 unsigned Opcode =
Op.getOpcode();
5421 for (
unsigned i = 0, e =
Op.getNumOperands(); i < e; ++i) {
5422 if (!DemandedElts[i])
5432 if (Src.getValueType().isScalableVector())
5435 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5436 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5442 if (
Op.getValueType().isScalableVector())
5447 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
5449 APInt DemandedSrcElts = DemandedElts;
5450 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
5464 EVT SrcVT = Src.getValueType();
5468 IndexC->getZExtValue());
5483 if (DemandedElts[IndexC->getZExtValue()] &&
5486 APInt InVecDemandedElts = DemandedElts;
5487 InVecDemandedElts.
clearBit(IndexC->getZExtValue());
5488 if (!!InVecDemandedElts &&
5513 APInt DemandedLHS, DemandedRHS;
5516 DemandedElts, DemandedLHS, DemandedRHS,
5519 if (!DemandedLHS.
isZero() &&
5523 if (!DemandedRHS.
isZero() &&
5571 return isGuaranteedNotToBeUndefOrPoison(V, DemandedElts,
5572 PoisonOnly, Depth + 1);
5584 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
5597 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
5603 unsigned Depth)
const {
5604 EVT VT =
Op.getValueType();
5614 unsigned Depth)
const {
5615 if (ConsiderFlags &&
Op->hasPoisonGeneratingFlags())
5618 unsigned Opcode =
Op.getOpcode();
5699 if (
Op.getOperand(0).getValueType().isInteger())
5706 unsigned CCOp = Opcode ==
ISD::SETCC ? 2 : 4;
5708 return (
unsigned)CCCode & 0x10U;
5754 EVT VecVT =
Op.getOperand(0).getValueType();
5763 for (
auto [Idx, Elt] :
enumerate(SVN->getMask()))
5764 if (Elt < 0 && DemandedElts[Idx])
5776 return TLI->canCreateUndefOrPoisonForTargetNode(
5786 unsigned Opcode =
Op.getOpcode();
5788 return Op->getFlags().hasDisjoint() ||
5801 unsigned Depth)
const {
5802 EVT VT =
Op.getValueType();
5815 bool SNaN,
unsigned Depth)
const {
5816 assert(!DemandedElts.
isZero() &&
"No demanded elements");
5827 return !
C->getValueAPF().isNaN() ||
5828 (SNaN && !
C->getValueAPF().isSignaling());
5831 unsigned Opcode =
Op.getOpcode();
5933 EVT SrcVT = Src.getValueType();
5937 Idx->getZExtValue());
5944 if (Src.getValueType().isFixedLengthVector()) {
5945 unsigned Idx =
Op.getConstantOperandVal(1);
5946 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5947 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5957 unsigned Idx =
Op.getConstantOperandVal(2);
5963 APInt DemandedMask =
5965 APInt DemandedSrcElts = DemandedElts & ~DemandedMask;
5968 bool NeverNaN =
true;
5969 if (!DemandedSrcElts.
isZero())
5972 if (NeverNaN && !DemandedSubElts.
isZero())
5981 unsigned NumElts =
Op.getNumOperands();
5982 for (
unsigned I = 0;
I != NumElts; ++
I)
5983 if (DemandedElts[
I] &&
6000 return TLI->isKnownNeverNaNForTargetNode(
Op, DemandedElts, *
this, SNaN,
6009 assert(
Op.getValueType().isFloatingPoint() &&
6010 "Floating point type expected");
6021 assert(!
Op.getValueType().isFloatingPoint() &&
6022 "Floating point types unsupported - use isKnownNeverZeroFloat");
6031 switch (
Op.getOpcode()) {
6045 if (
Op->getFlags().hasNoSignedWrap() ||
Op->getFlags().hasNoUnsignedWrap())
6049 if (ValKnown.
One[0])
6109 if (
Op->getFlags().hasExact())
6125 if (
Op->getFlags().hasExact())
6130 if (
Op->getFlags().hasNoUnsignedWrap())
6141 std::optional<bool> ne =
6148 if (
Op->getFlags().hasNoSignedWrap() ||
Op->getFlags().hasNoUnsignedWrap())
6159 const APInt &Multiplier =
Op.getConstantOperandAPInt(0);
6173 return !C1->isNegative();
6175 switch (
Op.getOpcode()) {
6189 assert(
Use.getValueType().isFloatingPoint());
6193 switch (
User->getOpcode()) {
6201 return OperandNo == 0;
6222 if (
Op->use_size() > 2)
6225 [&](
const SDUse &
Use) { return canIgnoreSignBitOfZero(Use); });
6230 if (
A ==
B)
return true;
6235 if (CA->isZero() && CB->isZero())
return true;
6270 NotOperand = NotOperand->getOperand(0);
6272 if (
Other == NotOperand)
6275 return NotOperand ==
Other->getOperand(0) ||
6276 NotOperand ==
Other->getOperand(1);
6282 A =
A->getOperand(0);
6285 B =
B->getOperand(0);
6288 return MatchNoCommonBitsPattern(
A->getOperand(0),
A->getOperand(1),
B) ||
6289 MatchNoCommonBitsPattern(
A->getOperand(1),
A->getOperand(0),
B);
6295 assert(
A.getValueType() ==
B.getValueType() &&
6296 "Values must have the same type");
6318 "BUILD_VECTOR cannot be used with scalable types");
6320 "Incorrect element count in BUILD_VECTOR!");
6328 bool IsIdentity =
true;
6329 for (
int i = 0; i !=
NumOps; ++i) {
6332 (IdentitySrc &&
Ops[i].getOperand(0) != IdentitySrc) ||
6334 Ops[i].getConstantOperandAPInt(1) != i) {
6338 IdentitySrc =
Ops[i].getOperand(0);
6351 assert(!
Ops.empty() &&
"Can't concatenate an empty list of vectors!");
6354 return Ops[0].getValueType() ==
Op.getValueType();
6356 "Concatenation of vectors with inconsistent value types!");
6359 "Incorrect element count in vector concatenation!");
6361 if (
Ops.size() == 1)
6372 bool IsIdentity =
true;
6373 for (
unsigned i = 0, e =
Ops.size(); i != e; ++i) {
6375 unsigned IdentityIndex = i *
Op.getValueType().getVectorMinNumElements();
6377 Op.getOperand(0).getValueType() != VT ||
6378 (IdentitySrc &&
Op.getOperand(0) != IdentitySrc) ||
6379 Op.getConstantOperandVal(1) != IdentityIndex) {
6383 assert((!IdentitySrc || IdentitySrc ==
Op.getOperand(0)) &&
6384 "Unexpected identity source vector for concat of extracts");
6385 IdentitySrc =
Op.getOperand(0);
6388 assert(IdentitySrc &&
"Failed to set source vector of extracts");
6404 EVT OpVT =
Op.getValueType();
6420 SVT = (SVT.
bitsLT(
Op.getValueType()) ?
Op.getValueType() : SVT);
6444 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
6447 auto *
N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6448 CSEMap.InsertNode(
N, IP);
6460 Flags = Inserter->getFlags();
6461 return getNode(Opcode,
DL, VT, N1, Flags);
6512 "STEP_VECTOR can only be used with scalable types");
6515 "Unexpected step operand");
6536 "Invalid FP cast!");
6540 "Vector element count mismatch!");
6558 "Invalid SIGN_EXTEND!");
6560 "SIGN_EXTEND result type type should be vector iff the operand "
6565 "Vector element count mismatch!");
6588 unsigned NumSignExtBits =
6599 "Invalid ZERO_EXTEND!");
6601 "ZERO_EXTEND result type type should be vector iff the operand "
6606 "Vector element count mismatch!");
6644 "Invalid ANY_EXTEND!");
6646 "ANY_EXTEND result type type should be vector iff the operand "
6651 "Vector element count mismatch!");
6676 "Invalid TRUNCATE!");
6678 "TRUNCATE result type type should be vector iff the operand "
6683 "Vector element count mismatch!");
6710 assert(VT.
isVector() &&
"This DAG node is restricted to vector types.");
6712 "The input must be the same size or smaller than the result.");
6715 "The destination vector type must have fewer lanes than the input.");
6725 "BSWAP types must be a multiple of 16 bits!");
6739 "Cannot BITCAST between types of different sizes!");
6752 "Illegal SCALAR_TO_VECTOR node!");
6809 "Wrong operand type!");
6816 if (VT != MVT::Glue) {
6820 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
6821 E->intersectFlagsWith(Flags);
6825 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6827 createOperands(
N,
Ops);
6828 CSEMap.InsertNode(
N, IP);
6830 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6831 createOperands(
N,
Ops);
6865 if (!C2.getBoolValue())
6869 if (!C2.getBoolValue())
6873 if (!C2.getBoolValue())
6877 if (!C2.getBoolValue())
6903 return std::nullopt;
6908 bool IsUndef1,
const APInt &C2,
6910 if (!(IsUndef1 || IsUndef2))
6918 return std::nullopt;
6926 if (!TLI->isOffsetFoldingLegal(GA))
6931 int64_t
Offset = C2->getSExtValue();
6951 assert(
Ops.size() == 2 &&
"Div/rem should have 2 operands");
6958 [](
SDValue V) { return V.isUndef() ||
6959 isNullConstant(V); });
6997 const APInt &Val =
C->getAPIntValue();
7001 C->isTargetOpcode(),
C->isOpaque());
7008 C->isTargetOpcode(),
C->isOpaque());
7013 C->isTargetOpcode(),
C->isOpaque());
7015 C->isTargetOpcode(),
C->isOpaque());
7061 if (VT == MVT::f16 &&
C->getValueType(0) == MVT::i16)
7063 if (VT == MVT::f32 &&
C->getValueType(0) == MVT::i32)
7065 if (VT == MVT::f64 &&
C->getValueType(0) == MVT::i64)
7067 if (VT == MVT::f128 &&
C->getValueType(0) == MVT::i128)
7128 return getConstant(V.bitcastToAPInt().getZExtValue(),
DL, VT);
7131 if (VT == MVT::i16 &&
C->getValueType(0) == MVT::f16)
7134 if (VT == MVT::i16 &&
C->getValueType(0) == MVT::bf16)
7137 if (VT == MVT::i32 &&
C->getValueType(0) == MVT::f32)
7140 if (VT == MVT::i64 &&
C->getValueType(0) == MVT::f64)
7141 return getConstant(V.bitcastToAPInt().getZExtValue(),
DL, VT);
7158 if (C1->isOpaque() || C2->isOpaque())
7161 std::optional<APInt> FoldAttempt =
7162 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
7168 "Can't fold vectors ops with scalar operands");
7176 if (TLI->isCommutativeBinOp(Opcode))
7192 const APInt &Val = C1->getAPIntValue();
7193 return SignExtendInReg(Val, VT);
7206 ScalarOps.
push_back(SignExtendInReg(Val, OpVT));
7214 SignExtendInReg(
Ops[0].getConstantOperandAPInt(0),
7225 if (C1 && C2 && C3) {
7226 if (C1->isOpaque() || C2->isOpaque() || C3->isOpaque())
7228 const APInt &V1 = C1->getAPIntValue(), &V2 = C2->getAPIntValue(),
7229 &V3 = C3->getAPIntValue();
7245 if (C1 && C2 && C3) {
7266 Ops[0].getValueType() == VT &&
Ops[1].getValueType() == VT &&
7279 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
7280 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
7284 Opcode, RawBits1[
I], UndefElts1[
I], RawBits2[
I], UndefElts2[
I]);
7295 BVEltVT = BV1->getOperand(0).getValueType();
7298 BVEltVT = BV2->getOperand(0).getValueType();
7304 DstBits, RawBits, DstUndefs,
7307 for (
unsigned I = 0, E = DstBits.
size();
I != E; ++
I) {
7325 ?
Ops[0].getConstantOperandAPInt(0) * RHSVal
7326 :
Ops[0].getConstantOperandAPInt(0) << RHSVal;
7331 auto IsScalarOrSameVectorSize = [NumElts](
const SDValue &
Op) {
7332 return !
Op.getValueType().isVector() ||
7333 Op.getValueType().getVectorElementCount() == NumElts;
7336 auto IsBuildVectorSplatVectorOrUndef = [](
const SDValue &
Op) {
7362 LegalSVT = TLI->getTypeToTransformTo(*
getContext(), LegalSVT);
7374 for (
unsigned I = 0;
I != NumVectorElts;
I++) {
7377 EVT InSVT =
Op.getValueType().getScalarType();
7420 if (LegalSVT != SVT)
7421 ScalarResult =
getNode(ExtendCode,
DL, LegalSVT, ScalarResult);
7435 if (
Ops.size() != 2)
7446 if (N1CFP && N2CFP) {
7501 if (N1C && N1C->getValueAPF().isNegZero() && N2.
isUndef())
7524 if (SrcEltVT == DstEltVT)
7532 if (SrcBitSize == DstBitSize) {
7537 if (
Op.getValueType() != SrcEltVT)
7580 for (
unsigned I = 0, E = RawBits.
size();
I != E; ++
I) {
7581 if (UndefElements[
I])
7602 ID.AddInteger(
A.value());
7605 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
7609 newSDNode<AssertAlignSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs,
A);
7610 createOperands(
N, {Val});
7612 CSEMap.InsertNode(
N, IP);
7624 Flags = Inserter->getFlags();
7625 return getNode(Opcode,
DL, VT, N1, N2, Flags);
7630 if (!TLI->isCommutativeBinOp(Opcode))
7639 if ((N1C && !N2C) || (N1CFP && !N2CFP))
7653 "Operand is DELETED_NODE!");
7669 N2.
getValueType() == MVT::Other &&
"Invalid token factor!");
7673 if (N1 == N2)
return N1;
7689 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7691 N1.
getValueType() == VT &&
"Binary operator types must match!");
7694 if (N2CV && N2CV->
isZero())
7704 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7706 N1.
getValueType() == VT &&
"Binary operator types must match!");
7716 if (N2CV && N2CV->
isZero())
7730 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7732 N1.
getValueType() == VT &&
"Binary operator types must match!");
7735 if (N2CV && N2CV->
isZero())
7739 const APInt &N2CImm = N2C->getAPIntValue();
7753 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7755 N1.
getValueType() == VT &&
"Binary operator types must match!");
7768 "Types of operands of UCMP/SCMP must match");
7770 "Operands and return type of must both be scalars or vectors");
7774 "Result and operands must have the same number of elements");
7780 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7782 N1.
getValueType() == VT &&
"Binary operator types must match!");
7786 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7788 N1.
getValueType() == VT &&
"Binary operator types must match!");
7794 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7796 N1.
getValueType() == VT &&
"Binary operator types must match!");
7802 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7804 N1.
getValueType() == VT &&
"Binary operator types must match!");
7815 N1.
getValueType() == VT &&
"Binary operator types must match!");
7823 "Invalid FCOPYSIGN!");
7828 const APInt &ShiftImm = N2C->getAPIntValue();
7842 "Shift operators return type must be the same as their first arg");
7844 "Shifts only work on integers");
7846 "Vector shift amounts must be in the same as their first arg");
7853 "Invalid use of small shift amount with oversized value!");
7860 if (N2CV && N2CV->
isZero())
7866 (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
7872 "AssertNoFPClass is used for a non-floating type");
7877 "FPClassTest value too large");
7886 "Cannot *_EXTEND_INREG FP types");
7888 "AssertSExt/AssertZExt type should be the vector element type "
7889 "rather than the vector type!");
7898 "Cannot *_EXTEND_INREG FP types");
7900 "SIGN_EXTEND_INREG type should be vector iff the operand "
7904 "Vector element counts must match in SIGN_EXTEND_INREG");
7906 if (
EVT == VT)
return N1;
7914 "FP_TO_*INT_SAT type should be vector iff the operand type is "
7918 "Vector element counts must match in FP_TO_*INT_SAT");
7920 "Type to saturate to must be a scalar.");
7927 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
7928 element type of the vector.");
7950 N2C->getZExtValue() % Factor);
7959 "BUILD_VECTOR used for scalable vectors");
7982 if (N1Op2C && N2C) {
8012 assert(N2C && (
unsigned)N2C->getZExtValue() < 2 &&
"Bad EXTRACT_ELEMENT!");
8016 "Wrong types for EXTRACT_ELEMENT!");
8027 unsigned Shift = ElementSize * N2C->getZExtValue();
8028 const APInt &Val = N1C->getAPIntValue();
8035 "Extract subvector VTs must be vectors!");
8037 "Extract subvector VTs must have the same element type!");
8039 "Cannot extract a scalable vector from a fixed length vector!");
8042 "Extract subvector must be from larger vector to smaller vector!");
8043 assert(N2C &&
"Extract subvector index must be a constant");
8047 "Extract subvector overflow!");
8048 assert(N2C->getAPIntValue().getBitWidth() ==
8050 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
8052 "Extract index is not a multiple of the output vector length");
8067 return N1.
getOperand(N2C->getZExtValue() / Factor);
8108 if (TLI->isCommutativeBinOp(Opcode)) {
8187 if (VT != MVT::Glue) {
8191 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
8192 E->intersectFlagsWith(Flags);
8196 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8198 createOperands(
N,
Ops);
8199 CSEMap.InsertNode(
N, IP);
8201 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8202 createOperands(
N,
Ops);
8215 Flags = Inserter->getFlags();
8216 return getNode(Opcode,
DL, VT, N1, N2, N3, Flags);
8225 "Operand is DELETED_NODE!");
8244 "SETCC operands must have the same type!");
8246 "SETCC type should be vector iff the operand type is vector!");
8249 "SETCC vector element counts must match!");
8272 "INSERT_VECTOR_ELT vector type mismatch");
8274 "INSERT_VECTOR_ELT scalar fp/int mismatch");
8277 "INSERT_VECTOR_ELT fp scalar type mismatch");
8280 "INSERT_VECTOR_ELT int scalar size mismatch");
8326 "Dest and insert subvector source types must match!");
8328 "Insert subvector VTs must be vectors!");
8330 "Insert subvector VTs must have the same element type!");
8332 "Cannot insert a scalable vector into a fixed length vector!");
8335 "Insert subvector must be from smaller vector to larger vector!");
8337 "Insert subvector index must be constant");
8341 "Insert subvector overflow!");
8344 "Constant index for INSERT_SUBVECTOR has an invalid size");
8388 case ISD::VP_TRUNCATE:
8389 case ISD::VP_SIGN_EXTEND:
8390 case ISD::VP_ZERO_EXTEND:
8399 assert(VT == VecVT &&
"Vector and result type don't match.");
8401 "All inputs must be vectors.");
8402 assert(VecVT == PassthruVT &&
"Vector and passthru types don't match.");
8404 "Vector and mask must have same number of elements.");
8419 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8420 "node to have the same type!");
8422 "Expected the first operand of the PARTIAL_REDUCE_MLA node to have "
8423 "the same type as its result!");
8426 "Expected the element count of the second and third operands of the "
8427 "PARTIAL_REDUCE_MLA node to be a positive integer multiple of the "
8428 "element count of the first operand and the result!");
8430 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8431 "node to have an element type which is the same as or smaller than "
8432 "the element type of the first operand and result!");
8454 if (VT != MVT::Glue) {
8458 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
8459 E->intersectFlagsWith(Flags);
8463 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8465 createOperands(
N,
Ops);
8466 CSEMap.InsertNode(
N, IP);
8468 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8469 createOperands(
N,
Ops);
8489 Flags = Inserter->getFlags();
8490 return getNode(Opcode,
DL, VT, N1, N2, N3, N4, Flags);
8505 Flags = Inserter->getFlags();
8506 return getNode(Opcode,
DL, VT, N1, N2, N3, N4, N5, Flags);
8523 if (FI->getIndex() < 0)
8538 assert(
C->getAPIntValue().getBitWidth() == 8);
8543 return DAG.
getConstant(Val, dl, VT,
false, IsOpaque);
8548 assert(
Value.getValueType() == MVT::i8 &&
"memset with non-byte fill value?");
8564 if (VT !=
Value.getValueType())
8577 if (Slice.Array ==
nullptr) {
8586 unsigned NumVTBytes = NumVTBits / 8;
8587 unsigned NumBytes = std::min(NumVTBytes,
unsigned(Slice.Length));
8589 APInt Val(NumVTBits, 0);
8591 for (
unsigned i = 0; i != NumBytes; ++i)
8594 for (
unsigned i = 0; i != NumBytes; ++i)
8595 Val |= (
uint64_t)(
unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
8618 if (TLI->shouldPreservePtrArith(this->getMachineFunction().getFunction(),
8633 else if (Src->isAnyAdd() &&
8637 SrcDelta = Src.getConstantOperandVal(1);
8643 SrcDelta +
G->getOffset());
8659 assert(OutLoadChains.
size() &&
"Missing loads in memcpy inlining");
8660 assert(OutStoreChains.
size() &&
"Missing stores in memcpy inlining");
8662 for (
unsigned i = From; i < To; ++i) {
8664 GluedLoadChains.
push_back(OutLoadChains[i]);
8671 for (
unsigned i = From; i < To; ++i) {
8674 ST->getBasePtr(), ST->getMemoryVT(),
8675 ST->getMemOperand());
8697 std::vector<EVT> MemOps;
8698 bool DstAlignCanChange =
false;
8704 DstAlignCanChange =
true;
8706 if (!SrcAlign || Alignment > *SrcAlign)
8707 SrcAlign = Alignment;
8708 assert(SrcAlign &&
"SrcAlign must be set");
8712 bool isZeroConstant = CopyFromConstant && Slice.Array ==
nullptr;
8714 const MemOp Op = isZeroConstant
8718 *SrcAlign, isVol, CopyFromConstant);
8724 if (DstAlignCanChange) {
8725 Type *Ty = MemOps[0].getTypeForEVT(
C);
8726 Align NewAlign =
DL.getABITypeAlign(Ty);
8732 if (!
TRI->hasStackRealignment(MF))
8734 NewAlign = std::min(NewAlign, *StackAlign);
8736 if (NewAlign > Alignment) {
8740 Alignment = NewAlign;
8750 BatchAA && SrcVal &&
8758 unsigned NumMemOps = MemOps.size();
8760 for (
unsigned i = 0; i != NumMemOps; ++i) {
8765 if (VTSize >
Size) {
8768 assert(i == NumMemOps-1 && i != 0);
8769 SrcOff -= VTSize -
Size;
8770 DstOff -= VTSize -
Size;
8773 if (CopyFromConstant &&
8781 if (SrcOff < Slice.Length) {
8783 SubSlice.
move(SrcOff);
8786 SubSlice.
Array =
nullptr;
8788 SubSlice.
Length = VTSize;
8791 if (
Value.getNode()) {
8795 DstPtrInfo.
getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8800 if (!Store.getNode()) {
8809 bool isDereferenceable =
8812 if (isDereferenceable)
8827 DstPtrInfo.
getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
8837 unsigned NumLdStInMemcpy = OutStoreChains.
size();
8839 if (NumLdStInMemcpy) {
8845 for (
unsigned i = 0; i < NumLdStInMemcpy; ++i) {
8851 if (NumLdStInMemcpy <= GluedLdStLimit) {
8853 NumLdStInMemcpy, OutLoadChains,
8856 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
8857 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
8858 unsigned GlueIter = 0;
8860 for (
unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
8861 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
8862 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
8865 OutLoadChains, OutStoreChains);
8866 GlueIter += GluedLdStLimit;
8870 if (RemainingLdStInMemcpy) {
8872 RemainingLdStInMemcpy, OutLoadChains,
8884 bool isVol,
bool AlwaysInline,
8898 std::vector<EVT> MemOps;
8899 bool DstAlignCanChange =
false;
8905 DstAlignCanChange =
true;
8907 if (!SrcAlign || Alignment > *SrcAlign)
8908 SrcAlign = Alignment;
8909 assert(SrcAlign &&
"SrcAlign must be set");
8919 if (DstAlignCanChange) {
8920 Type *Ty = MemOps[0].getTypeForEVT(
C);
8921 Align NewAlign =
DL.getABITypeAlign(Ty);
8927 if (!
TRI->hasStackRealignment(MF))
8929 NewAlign = std::min(NewAlign, *StackAlign);
8931 if (NewAlign > Alignment) {
8935 Alignment = NewAlign;
8949 unsigned NumMemOps = MemOps.size();
8950 for (
unsigned i = 0; i < NumMemOps; i++) {
8955 bool isDereferenceable =
8958 if (isDereferenceable)
8964 SrcPtrInfo.
getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
8971 for (
unsigned i = 0; i < NumMemOps; i++) {
8977 Chain, dl, LoadValues[i],
8979 DstPtrInfo.
getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
9019 std::vector<EVT> MemOps;
9020 bool DstAlignCanChange =
false;
9027 DstAlignCanChange =
true;
9033 MemOp::Set(
Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
9037 if (DstAlignCanChange) {
9040 Align NewAlign =
DL.getABITypeAlign(Ty);
9046 if (!
TRI->hasStackRealignment(MF))
9048 NewAlign = std::min(NewAlign, *StackAlign);
9050 if (NewAlign > Alignment) {
9054 Alignment = NewAlign;
9060 unsigned NumMemOps = MemOps.size();
9063 EVT LargestVT = MemOps[0];
9064 for (
unsigned i = 1; i < NumMemOps; i++)
9065 if (MemOps[i].bitsGT(LargestVT))
9066 LargestVT = MemOps[i];
9073 for (
unsigned i = 0; i < NumMemOps; i++) {
9076 if (VTSize >
Size) {
9079 assert(i == NumMemOps-1 && i != 0);
9080 DstOff -= VTSize -
Size;
9087 if (VT.
bitsLT(LargestVT)) {
9107 assert(
Value.getValueType() == VT &&
"Value with wrong type.");
9134 bool AllowReturnsFirstArg) {
9140 AllowReturnsFirstArg &&
9144std::pair<SDValue, SDValue>
9147 RTLIB::LibcallImpl MemcmpImpl = TLI->getLibcallImpl(RTLIB::MEMCMP);
9148 if (MemcmpImpl == RTLIB::Unsupported)
9164 TLI->getLibcallImplCallingConv(MemcmpImpl),
9170 return TLI->LowerCallTo(CLI);
9177 RTLIB::LibcallImpl LCImpl = TLI->getLibcallImpl(RTLIB::STRCPY);
9178 if (LCImpl == RTLIB::Unsupported)
9191 TLI->getLibcallImplCallingConv(LCImpl), CI->
getType(),
9196 return TLI->LowerCallTo(CLI);
9203 RTLIB::LibcallImpl StrlenImpl = TLI->getLibcallImpl(RTLIB::STRLEN);
9204 if (StrlenImpl == RTLIB::Unsupported)
9223 return TLI->LowerCallTo(CLI);
9228 Align Alignment,
bool isVol,
bool AlwaysInline,
const CallInst *CI,
9237 if (ConstantSize->
isZero())
9241 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9242 isVol,
false, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9243 if (Result.getNode())
9250 SDValue Result = TSI->EmitTargetCodeForMemcpy(
9251 *
this, dl, Chain, Dst, Src,
Size, Alignment, isVol, AlwaysInline,
9252 DstPtrInfo, SrcPtrInfo);
9253 if (Result.getNode())
9260 assert(ConstantSize &&
"AlwaysInline requires a constant size!");
9262 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9263 isVol,
true, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9278 Args.emplace_back(Dst, PtrTy);
9279 Args.emplace_back(Src, PtrTy);
9283 bool IsTailCall =
false;
9284 RTLIB::LibcallImpl MemCpyImpl = TLI->getMemcpyImpl();
9286 if (OverrideTailCall.has_value()) {
9287 IsTailCall = *OverrideTailCall;
9289 bool LowersToMemcpy = MemCpyImpl == RTLIB::impl_memcpy;
9296 TLI->getLibcallImplCallingConv(MemCpyImpl),
9297 Dst.getValueType().getTypeForEVT(*
getContext()),
9303 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9304 return CallResult.second;
9309 Type *SizeTy,
unsigned ElemSz,
9316 Args.emplace_back(Dst, ArgTy);
9317 Args.emplace_back(Src, ArgTy);
9318 Args.emplace_back(
Size, SizeTy);
9320 RTLIB::Libcall LibraryCall =
9322 RTLIB::LibcallImpl LibcallImpl = TLI->getLibcallImpl(LibraryCall);
9323 if (LibcallImpl == RTLIB::Unsupported)
9330 TLI->getLibcallImplCallingConv(LibcallImpl),
9337 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9338 return CallResult.second;
9344 std::optional<bool> OverrideTailCall,
9354 if (ConstantSize->
isZero())
9358 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9359 isVol,
false, DstPtrInfo, SrcPtrInfo, AAInfo);
9360 if (Result.getNode())
9368 TSI->EmitTargetCodeForMemmove(*
this, dl, Chain, Dst, Src,
Size,
9369 Alignment, isVol, DstPtrInfo, SrcPtrInfo);
9370 if (Result.getNode())
9383 Args.emplace_back(Dst, PtrTy);
9384 Args.emplace_back(Src, PtrTy);
9389 RTLIB::LibcallImpl MemmoveImpl = TLI->getLibcallImpl(RTLIB::MEMMOVE);
9391 bool IsTailCall =
false;
9392 if (OverrideTailCall.has_value()) {
9393 IsTailCall = *OverrideTailCall;
9395 bool LowersToMemmove = MemmoveImpl == RTLIB::impl_memmove;
9402 TLI->getLibcallImplCallingConv(MemmoveImpl),
9403 Dst.getValueType().getTypeForEVT(*
getContext()),
9409 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9410 return CallResult.second;
9415 Type *SizeTy,
unsigned ElemSz,
9422 Args.emplace_back(Dst, IntPtrTy);
9423 Args.emplace_back(Src, IntPtrTy);
9424 Args.emplace_back(
Size, SizeTy);
9426 RTLIB::Libcall LibraryCall =
9428 RTLIB::LibcallImpl LibcallImpl = TLI->getLibcallImpl(LibraryCall);
9429 if (LibcallImpl == RTLIB::Unsupported)
9436 TLI->getLibcallImplCallingConv(LibcallImpl),
9443 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9444 return CallResult.second;
9449 bool isVol,
bool AlwaysInline,
9458 if (ConstantSize->
isZero())
9463 isVol,
false, DstPtrInfo, AAInfo);
9465 if (Result.getNode())
9472 SDValue Result = TSI->EmitTargetCodeForMemset(
9473 *
this, dl, Chain, Dst, Src,
Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
9474 if (Result.getNode())
9481 assert(ConstantSize &&
"AlwaysInline requires a constant size!");
9484 isVol,
true, DstPtrInfo, AAInfo);
9486 "getMemsetStores must return a valid sequence when AlwaysInline");
9500 RTLIB::LibcallImpl BzeroImpl = TLI->getLibcallImpl(RTLIB::BZERO);
9501 bool UseBZero = BzeroImpl != RTLIB::Unsupported &&
isNullConstant(Src);
9507 Args.emplace_back(
Size,
DL.getIntPtrType(Ctx));
9512 RTLIB::LibcallImpl MemsetImpl = TLI->getLibcallImpl(RTLIB::MEMSET);
9516 Args.emplace_back(Src, Src.getValueType().getTypeForEVT(Ctx));
9517 Args.emplace_back(
Size,
DL.getIntPtrType(Ctx));
9518 CLI.
setLibCallee(TLI->getLibcallImplCallingConv(MemsetImpl),
9519 Dst.getValueType().getTypeForEVT(Ctx),
9524 RTLIB::LibcallImpl MemsetImpl = TLI->getLibcallImpl(RTLIB::MEMSET);
9525 bool LowersToMemset = MemsetImpl == RTLIB::impl_memset;
9536 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9537 return CallResult.second;
9542 Type *SizeTy,
unsigned ElemSz,
9549 Args.emplace_back(
Size, SizeTy);
9551 RTLIB::Libcall LibraryCall =
9553 RTLIB::LibcallImpl LibcallImpl = TLI->getLibcallImpl(LibraryCall);
9554 if (LibcallImpl == RTLIB::Unsupported)
9561 TLI->getLibcallImplCallingConv(LibcallImpl),
9568 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9569 return CallResult.second;
9579 ID.AddInteger(getSyntheticNodeSubclassData<AtomicSDNode>(
9580 dl.
getIROrder(), Opcode, VTList, MemVT, MMO, ExtType));
9585 E->refineAlignment(MMO);
9586 E->refineRanges(MMO);
9591 VTList, MemVT, MMO, ExtType);
9592 createOperands(
N,
Ops);
9594 CSEMap.InsertNode(
N, IP);
9631 "Invalid Atomic Op");
9651 if (
Ops.size() == 1)
9666 if (
Size.hasValue() && !
Size.getValue())
9671 MF.getMachineMemOperand(PtrInfo, Flags,
Size, Alignment, AAInfo);
9683 (Opcode <= (
unsigned)std::numeric_limits<int>::max() &&
9685 "Opcode is not a memory-accessing opcode!");
9689 if (VTList.
VTs[VTList.
NumVTs-1] != MVT::Glue) {
9692 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
9693 Opcode, dl.
getIROrder(), VTList, MemVT, MMO));
9698 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
9704 VTList, MemVT, MMO);
9705 createOperands(
N,
Ops);
9707 CSEMap.InsertNode(
N, IP);
9710 VTList, MemVT, MMO);
9711 createOperands(
N,
Ops);
9720 SDValue Chain,
int FrameIndex) {
9731 ID.AddInteger(FrameIndex);
9733 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
9738 createOperands(
N,
Ops);
9739 CSEMap.InsertNode(
N, IP);
9755 ID.AddInteger(Index);
9757 if (
SDNode *E = FindNodeOrInsertPos(
ID, Dl, IP))
9760 auto *
N = newSDNode<PseudoProbeSDNode>(
9762 createOperands(
N,
Ops);
9763 CSEMap.InsertNode(
N, IP);
9817 "Invalid chain type");
9829 Alignment, AAInfo, Ranges);
9830 return getLoad(AM, ExtType, VT, dl, Chain, Ptr,
Offset, MemVT, MMO);
9840 assert(VT == MemVT &&
"Non-extending load from different memory type!");
9844 "Should only be an extending load, not truncating!");
9846 "Cannot convert from FP to Int or Int -> FP!");
9848 "Cannot use an ext load to convert to or from a vector!");
9851 "Cannot use an ext load to change the number of vector elements!");
9858 "Range metadata and load type must match!");
9869 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
9870 dl.
getIROrder(), VTs, AM, ExtType, MemVT, MMO));
9875 E->refineAlignment(MMO);
9876 E->refineRanges(MMO);
9880 ExtType, MemVT, MMO);
9881 createOperands(
N,
Ops);
9883 CSEMap.InsertNode(
N, IP);
9897 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
9915 MemVT, Alignment, MMOFlags, AAInfo);
9930 assert(LD->getOffset().isUndef() &&
"Load is already a indexed load!");
9933 LD->getMemOperand()->getFlags() &
9936 LD->getChain(),
Base,
Offset, LD->getPointerInfo(),
9937 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
9956 MF.getMachineMemOperand(PtrInfo, MMOFlags,
Size, Alignment, AAInfo);
9957 return getStore(Chain, dl, Val, Ptr, MMO);
9970 bool IsTruncating) {
9974 IsTruncating =
false;
9975 }
else if (!IsTruncating) {
9976 assert(VT == SVT &&
"No-truncating store from different memory type!");
9979 "Should only be a truncating store, not extending!");
9982 "Cannot use trunc store to convert to or from a vector!");
9985 "Cannot use trunc store to change the number of vector elements!");
9996 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9997 dl.
getIROrder(), VTs, AM, IsTruncating, SVT, MMO));
10000 void *IP =
nullptr;
10001 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10006 IsTruncating, SVT, MMO);
10007 createOperands(
N,
Ops);
10009 CSEMap.InsertNode(
N, IP);
10022 "Invalid chain type");
10032 PtrInfo, MMOFlags, SVT.
getStoreSize(), Alignment, AAInfo);
10047 assert(ST->getOffset().isUndef() &&
"Store is already a indexed store!");
10049 ST->getMemoryVT(), ST->getMemOperand(), AM,
10050 ST->isTruncatingStore());
10058 const MDNode *Ranges,
bool IsExpanding) {
10069 Alignment, AAInfo, Ranges);
10070 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr,
Offset, Mask, EVL, MemVT,
10079 bool IsExpanding) {
10081 assert(Mask.getValueType().getVectorElementCount() ==
10083 "Vector width mismatch between mask and data");
10094 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
10095 dl.
getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10098 void *IP =
nullptr;
10100 E->refineAlignment(MMO);
10101 E->refineRanges(MMO);
10105 ExtType, IsExpanding, MemVT, MMO);
10106 createOperands(
N,
Ops);
10108 CSEMap.InsertNode(
N, IP);
10121 bool IsExpanding) {
10124 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
10133 Mask, EVL, VT, MMO, IsExpanding);
10142 const AAMDNodes &AAInfo,
bool IsExpanding) {
10145 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo,
nullptr,
10155 EVL, MemVT, MMO, IsExpanding);
10162 assert(LD->getOffset().isUndef() &&
"Load is already a indexed load!");
10165 LD->getMemOperand()->getFlags() &
10168 LD->getChain(),
Base,
Offset, LD->getMask(),
10169 LD->getVectorLength(), LD->getPointerInfo(),
10170 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
10171 nullptr, LD->isExpandingLoad());
10178 bool IsCompressing) {
10180 assert(Mask.getValueType().getVectorElementCount() ==
10182 "Vector width mismatch between mask and data");
10192 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10193 dl.
getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10196 void *IP =
nullptr;
10197 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10202 IsTruncating, IsCompressing, MemVT, MMO);
10203 createOperands(
N,
Ops);
10205 CSEMap.InsertNode(
N, IP);
10218 bool IsCompressing) {
10229 PtrInfo, MMOFlags, SVT.
getStoreSize(), Alignment, AAInfo);
10238 bool IsCompressing) {
10245 false, IsCompressing);
10248 "Should only be a truncating store, not extending!");
10251 "Cannot use trunc store to convert to or from a vector!");
10254 "Cannot use trunc store to change the number of vector elements!");
10258 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
10262 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10266 void *IP =
nullptr;
10267 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10274 createOperands(
N,
Ops);
10276 CSEMap.InsertNode(
N, IP);
10287 assert(ST->getOffset().isUndef() &&
"Store is already an indexed store!");
10290 Offset, ST->getMask(), ST->getVectorLength()};
10293 ID.AddInteger(ST->getMemoryVT().getRawBits());
10294 ID.AddInteger(ST->getRawSubclassData());
10295 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
10296 ID.AddInteger(ST->getMemOperand()->getFlags());
10297 void *IP =
nullptr;
10298 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10301 auto *
N = newSDNode<VPStoreSDNode>(
10303 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
10304 createOperands(
N,
Ops);
10306 CSEMap.InsertNode(
N, IP);
10326 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
10327 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10330 void *IP =
nullptr;
10331 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10337 newSDNode<VPStridedLoadSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs, AM,
10338 ExtType, IsExpanding, MemVT, MMO);
10339 createOperands(
N,
Ops);
10340 CSEMap.InsertNode(
N, IP);
10351 bool IsExpanding) {
10354 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
10363 Stride, Mask, EVL, MemVT, MMO, IsExpanding);
10372 bool IsTruncating,
bool IsCompressing) {
10382 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10383 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10385 void *IP =
nullptr;
10386 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10390 auto *
N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(),
DL.getDebugLoc(),
10391 VTs, AM, IsTruncating,
10392 IsCompressing, MemVT, MMO);
10393 createOperands(
N,
Ops);
10395 CSEMap.InsertNode(
N, IP);
10407 bool IsCompressing) {
10414 false, IsCompressing);
10417 "Should only be a truncating store, not extending!");
10420 "Cannot use trunc store to convert to or from a vector!");
10423 "Cannot use trunc store to change the number of vector elements!");
10427 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
10431 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10434 void *IP =
nullptr;
10435 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10439 auto *
N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(),
DL.getDebugLoc(),
10441 IsCompressing, SVT, MMO);
10442 createOperands(
N,
Ops);
10444 CSEMap.InsertNode(
N, IP);
10454 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10459 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
10463 void *IP =
nullptr;
10464 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10470 VT, MMO, IndexType);
10471 createOperands(
N,
Ops);
10473 assert(
N->getMask().getValueType().getVectorElementCount() ==
10474 N->getValueType(0).getVectorElementCount() &&
10475 "Vector width mismatch between mask and data");
10476 assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10477 N->getValueType(0).getVectorElementCount().isScalable() &&
10478 "Scalable flags of index and data do not match");
10480 N->getIndex().getValueType().getVectorElementCount(),
10481 N->getValueType(0).getVectorElementCount()) &&
10482 "Vector width mismatch between index and data");
10484 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10485 "Scale should be a constant power of 2");
10487 CSEMap.InsertNode(
N, IP);
10498 assert(
Ops.size() == 7 &&
"Incompatible number of operands");
10503 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
10507 void *IP =
nullptr;
10508 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10513 VT, MMO, IndexType);
10514 createOperands(
N,
Ops);
10516 assert(
N->getMask().getValueType().getVectorElementCount() ==
10517 N->getValue().getValueType().getVectorElementCount() &&
10518 "Vector width mismatch between mask and data");
10520 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10521 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10522 "Scalable flags of index and data do not match");
10524 N->getIndex().getValueType().getVectorElementCount(),
10525 N->getValue().getValueType().getVectorElementCount()) &&
10526 "Vector width mismatch between index and data");
10528 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10529 "Scale should be a constant power of 2");
10531 CSEMap.InsertNode(
N, IP);
10546 "Unindexed masked load with an offset!");
10553 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
10554 dl.
getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
10557 void *IP =
nullptr;
10558 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10563 AM, ExtTy, isExpanding, MemVT, MMO);
10564 createOperands(
N,
Ops);
10566 CSEMap.InsertNode(
N, IP);
10577 assert(LD->getOffset().isUndef() &&
"Masked load is already a indexed load!");
10579 Offset, LD->getMask(), LD->getPassThru(),
10580 LD->getMemoryVT(), LD->getMemOperand(), AM,
10581 LD->getExtensionType(), LD->isExpandingLoad());
10589 bool IsCompressing) {
10591 "Invalid chain type");
10594 "Unindexed masked store with an offset!");
10601 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
10602 dl.
getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10605 void *IP =
nullptr;
10606 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10612 IsTruncating, IsCompressing, MemVT, MMO);
10613 createOperands(
N,
Ops);
10615 CSEMap.InsertNode(
N, IP);
10626 assert(ST->getOffset().isUndef() &&
10627 "Masked store is already a indexed store!");
10629 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
10630 AM, ST->isTruncatingStore(), ST->isCompressingStore());
10638 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10643 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
10644 dl.
getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
10647 void *IP =
nullptr;
10648 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10654 VTs, MemVT, MMO, IndexType, ExtTy);
10655 createOperands(
N,
Ops);
10657 assert(
N->getPassThru().getValueType() ==
N->getValueType(0) &&
10658 "Incompatible type of the PassThru value in MaskedGatherSDNode");
10659 assert(
N->getMask().getValueType().getVectorElementCount() ==
10660 N->getValueType(0).getVectorElementCount() &&
10661 "Vector width mismatch between mask and data");
10662 assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10663 N->getValueType(0).getVectorElementCount().isScalable() &&
10664 "Scalable flags of index and data do not match");
10666 N->getIndex().getValueType().getVectorElementCount(),
10667 N->getValueType(0).getVectorElementCount()) &&
10668 "Vector width mismatch between index and data");
10670 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10671 "Scale should be a constant power of 2");
10673 CSEMap.InsertNode(
N, IP);
10685 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10690 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
10691 dl.
getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
10694 void *IP =
nullptr;
10695 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10701 VTs, MemVT, MMO, IndexType, IsTrunc);
10702 createOperands(
N,
Ops);
10704 assert(
N->getMask().getValueType().getVectorElementCount() ==
10705 N->getValue().getValueType().getVectorElementCount() &&
10706 "Vector width mismatch between mask and data");
10708 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10709 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10710 "Scalable flags of index and data do not match");
10712 N->getIndex().getValueType().getVectorElementCount(),
10713 N->getValue().getValueType().getVectorElementCount()) &&
10714 "Vector width mismatch between index and data");
10716 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10717 "Scale should be a constant power of 2");
10719 CSEMap.InsertNode(
N, IP);
10730 assert(
Ops.size() == 7 &&
"Incompatible number of operands");
10735 ID.AddInteger(getSyntheticNodeSubclassData<MaskedHistogramSDNode>(
10736 dl.
getIROrder(), VTs, MemVT, MMO, IndexType));
10739 void *IP =
nullptr;
10740 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10746 VTs, MemVT, MMO, IndexType);
10747 createOperands(
N,
Ops);
10749 assert(
N->getMask().getValueType().getVectorElementCount() ==
10750 N->getIndex().getValueType().getVectorElementCount() &&
10751 "Vector width mismatch between mask and data");
10753 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10754 "Scale should be a constant power of 2");
10755 assert(
N->getInc().getValueType().isInteger() &&
"Non integer update value");
10757 CSEMap.InsertNode(
N, IP);
10772 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadFFSDNode>(
DL.getIROrder(),
10776 void *IP =
nullptr;
10777 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10781 auto *
N = newSDNode<VPLoadFFSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs,
10783 createOperands(
N,
Ops);
10785 CSEMap.InsertNode(
N, IP);
10800 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10804 void *IP =
nullptr;
10805 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10810 createOperands(
N,
Ops);
10812 CSEMap.InsertNode(
N, IP);
10827 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10831 void *IP =
nullptr;
10832 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10837 createOperands(
N,
Ops);
10839 CSEMap.InsertNode(
N, IP);
10850 if (
Cond.isUndef())
10885 return !Val || Val->getAPIntValue().uge(
X.getScalarValueSizeInBits());
10891 if (
X.getValueType().getScalarType() == MVT::i1)
10904 bool HasNan = (XC && XC->
getValueAPF().isNaN()) ||
10906 bool HasInf = (XC && XC->
getValueAPF().isInfinity()) ||
10909 if (Flags.hasNoNaNs() && (HasNan ||
X.isUndef() ||
Y.isUndef()))
10912 if (Flags.hasNoInfs() && (HasInf ||
X.isUndef() ||
Y.isUndef()))
10935 if (Opcode ==
ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
10950 switch (
Ops.size()) {
10951 case 0:
return getNode(Opcode,
DL, VT);
10961 return getNode(Opcode,
DL, VT, NewOps);
10968 Flags = Inserter->getFlags();
10976 case 0:
return getNode(Opcode,
DL, VT);
10977 case 1:
return getNode(Opcode,
DL, VT,
Ops[0], Flags);
10984 for (
const auto &
Op :
Ops)
10986 "Operand is DELETED_NODE!");
11003 "LHS and RHS of condition must have same type!");
11005 "True and False arms of SelectCC must have same type!");
11007 "select_cc node must be of same type as true and false value!");
11011 "Expected select_cc with vector result to have the same sized "
11012 "comparison type!");
11017 "LHS/RHS of comparison should match types!");
11023 Opcode = ISD::VP_XOR;
11028 Opcode = ISD::VP_AND;
11030 case ISD::VP_REDUCE_MUL:
11033 Opcode = ISD::VP_REDUCE_AND;
11035 case ISD::VP_REDUCE_ADD:
11038 Opcode = ISD::VP_REDUCE_XOR;
11040 case ISD::VP_REDUCE_SMAX:
11041 case ISD::VP_REDUCE_UMIN:
11045 Opcode = ISD::VP_REDUCE_AND;
11047 case ISD::VP_REDUCE_SMIN:
11048 case ISD::VP_REDUCE_UMAX:
11052 Opcode = ISD::VP_REDUCE_OR;
11060 if (VT != MVT::Glue) {
11063 void *IP =
nullptr;
11065 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11066 E->intersectFlagsWith(Flags);
11070 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11071 createOperands(
N,
Ops);
11073 CSEMap.InsertNode(
N, IP);
11075 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11076 createOperands(
N,
Ops);
11079 N->setFlags(Flags);
11090 Flags = Inserter->getFlags();
11104 Flags = Inserter->getFlags();
11114 for (
const auto &
Op :
Ops)
11116 "Operand is DELETED_NODE!");
11125 "Invalid add/sub overflow op!");
11127 Ops[0].getValueType() ==
Ops[1].getValueType() &&
11128 Ops[0].getValueType() == VTList.
VTs[0] &&
11129 "Binary operator types must match!");
11136 if (N2CV && N2CV->
isZero()) {
11167 "Invalid add/sub overflow op!");
11169 Ops[0].getValueType() ==
Ops[1].getValueType() &&
11170 Ops[0].getValueType() == VTList.
VTs[0] &&
11171 Ops[2].getValueType() == VTList.
VTs[1] &&
11172 "Binary operator types must match!");
11176 assert(VTList.
NumVTs == 2 &&
Ops.size() == 2 &&
"Invalid mul lo/hi op!");
11178 VTList.
VTs[0] ==
Ops[0].getValueType() &&
11179 VTList.
VTs[0] ==
Ops[1].getValueType() &&
11180 "Binary operator types must match!");
11186 unsigned OutWidth = Width * 2;
11187 APInt Val = LHS->getAPIntValue();
11190 Val = Val.
sext(OutWidth);
11191 Mul =
Mul.sext(OutWidth);
11193 Val = Val.
zext(OutWidth);
11194 Mul =
Mul.zext(OutWidth);
11206 assert(VTList.
NumVTs == 2 &&
Ops.size() == 1 &&
"Invalid ffrexp op!");
11208 VTList.
VTs[0] ==
Ops[0].getValueType() &&
"frexp type mismatch");
11216 DL, VTList.
VTs[1]);
11224 "Invalid STRICT_FP_EXTEND!");
11226 Ops[1].getValueType().isFloatingPoint() &&
"Invalid FP cast!");
11228 "STRICT_FP_EXTEND result type should be vector iff the operand "
11229 "type is vector!");
11232 Ops[1].getValueType().getVectorElementCount()) &&
11233 "Vector element count mismatch!");
11235 "Invalid fpext node, dst <= src!");
11238 assert(VTList.
NumVTs == 2 &&
Ops.size() == 3 &&
"Invalid STRICT_FP_ROUND!");
11240 "STRICT_FP_ROUND result type should be vector iff the operand "
11241 "type is vector!");
11244 Ops[1].getValueType().getVectorElementCount()) &&
11245 "Vector element count mismatch!");
11247 Ops[1].getValueType().isFloatingPoint() &&
11250 (
Ops[2]->getAsZExtVal() == 0 ||
Ops[2]->getAsZExtVal() == 1) &&
11251 "Invalid STRICT_FP_ROUND!");
11257 if (VTList.
VTs[VTList.
NumVTs-1] != MVT::Glue) {
11260 void *IP =
nullptr;
11261 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11262 E->intersectFlagsWith(Flags);
11266 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTList);
11267 createOperands(
N,
Ops);
11268 CSEMap.InsertNode(
N, IP);
11270 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTList);
11271 createOperands(
N,
Ops);
11274 N->setFlags(Flags);
11321 return makeVTList(&(*EVTs.insert(VT).first), 1);
11330 void *IP =
nullptr;
11333 EVT *Array = Allocator.Allocate<
EVT>(2);
11336 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 2);
11337 VTListMap.InsertNode(Result, IP);
11339 return Result->getSDVTList();
11349 void *IP =
nullptr;
11352 EVT *Array = Allocator.Allocate<
EVT>(3);
11356 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 3);
11357 VTListMap.InsertNode(Result, IP);
11359 return Result->getSDVTList();
11370 void *IP =
nullptr;
11373 EVT *Array = Allocator.Allocate<
EVT>(4);
11378 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 4);
11379 VTListMap.InsertNode(Result, IP);
11381 return Result->getSDVTList();
11385 unsigned NumVTs = VTs.
size();
11387 ID.AddInteger(NumVTs);
11388 for (
unsigned index = 0; index < NumVTs; index++) {
11389 ID.AddInteger(VTs[index].getRawBits());
11392 void *IP =
nullptr;
11395 EVT *Array = Allocator.Allocate<
EVT>(NumVTs);
11397 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, NumVTs);
11398 VTListMap.InsertNode(Result, IP);
11400 return Result->getSDVTList();
11411 assert(
N->getNumOperands() == 1 &&
"Update with wrong number of operands");
11414 if (
Op ==
N->getOperand(0))
return N;
11417 void *InsertPos =
nullptr;
11418 if (
SDNode *Existing = FindModifiedNodeSlot(
N,
Op, InsertPos))
11423 if (!RemoveNodeFromCSEMaps(
N))
11424 InsertPos =
nullptr;
11427 N->OperandList[0].set(
Op);
11431 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11436 assert(
N->getNumOperands() == 2 &&
"Update with wrong number of operands");
11439 if (Op1 ==
N->getOperand(0) && Op2 ==
N->getOperand(1))
11443 void *InsertPos =
nullptr;
11444 if (
SDNode *Existing = FindModifiedNodeSlot(
N, Op1, Op2, InsertPos))
11449 if (!RemoveNodeFromCSEMaps(
N))
11450 InsertPos =
nullptr;
11453 if (
N->OperandList[0] != Op1)
11454 N->OperandList[0].set(Op1);
11455 if (
N->OperandList[1] != Op2)
11456 N->OperandList[1].set(Op2);
11460 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11480 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
11488 "Update with wrong number of operands");
11491 if (std::equal(
Ops.begin(),
Ops.end(),
N->op_begin()))
11495 void *InsertPos =
nullptr;
11496 if (
SDNode *Existing = FindModifiedNodeSlot(
N,
Ops, InsertPos))
11501 if (!RemoveNodeFromCSEMaps(
N))
11502 InsertPos =
nullptr;
11505 for (
unsigned i = 0; i !=
NumOps; ++i)
11506 if (
N->OperandList[i] !=
Ops[i])
11507 N->OperandList[i].set(
Ops[i]);
11511 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11528 if (NewMemRefs.
empty()) {
11534 if (NewMemRefs.
size() == 1) {
11535 N->MemRefs = NewMemRefs[0];
11541 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.
size());
11543 N->MemRefs = MemRefsBuffer;
11544 N->NumMemRefs =
static_cast<int>(NewMemRefs.
size());
11616 New->setNodeId(-1);
11636 unsigned Order = std::min(
N->getIROrder(), OLoc.
getIROrder());
11637 N->setIROrder(Order);
11660 void *IP =
nullptr;
11661 if (VTs.
VTs[VTs.
NumVTs-1] != MVT::Glue) {
11665 return UpdateSDLocOnMergeSDNode(ON,
SDLoc(
N));
11668 if (!RemoveNodeFromCSEMaps(
N))
11673 N->ValueList = VTs.
VTs;
11683 if (Used->use_empty())
11684 DeadNodeSet.
insert(Used);
11689 MN->clearMemRefs();
11693 createOperands(
N,
Ops);
11697 if (!DeadNodeSet.
empty()) {
11699 for (
SDNode *
N : DeadNodeSet)
11700 if (
N->use_empty())
11706 CSEMap.InsertNode(
N, IP);
11711 unsigned OrigOpc =
Node->getOpcode();
11716#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11717 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
11718#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11719 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
11720#include "llvm/IR/ConstrainedOps.def"
11723 assert(
Node->getNumValues() == 2 &&
"Unexpected number of results!");
11731 for (
unsigned i = 1, e =
Node->getNumOperands(); i != e; ++i)
11732 Ops.push_back(
Node->getOperand(i));
11849 bool DoCSE = VTs.
VTs[VTs.
NumVTs-1] != MVT::Glue;
11851 void *IP =
nullptr;
11857 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11863 N = newSDNode<MachineSDNode>(~Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11864 createOperands(
N,
Ops);
11867 CSEMap.InsertNode(
N, IP);
11880 VT, Operand, SRIdxVal);
11890 VT, Operand, Subreg, SRIdxVal);
11898 bool AllowCommute) {
11901 Flags = Inserter->getFlags();
11908 bool AllowCommute) {
11909 if (VTList.
VTs[VTList.
NumVTs - 1] == MVT::Glue)
11915 void *IP =
nullptr;
11916 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP)) {
11917 E->intersectFlagsWith(Flags);
11926 if (AllowCommute && TLI->isCommutativeBinOp(Opcode))
11935 if (VTList.
VTs[VTList.
NumVTs - 1] != MVT::Glue) {
11938 void *IP =
nullptr;
11939 if (FindNodeOrInsertPos(
ID,
SDLoc(), IP))
11949 SDNode *
N,
unsigned R,
bool IsIndirect,
11952 "Expected inlined-at fields to agree");
11953 return new (DbgInfo->getAlloc())
11955 {}, IsIndirect,
DL, O,
11965 "Expected inlined-at fields to agree");
11966 return new (DbgInfo->getAlloc())
11979 "Expected inlined-at fields to agree");
11991 "Expected inlined-at fields to agree");
11992 return new (DbgInfo->getAlloc())
11994 Dependencies, IsIndirect,
DL, O,
12003 "Expected inlined-at fields to agree");
12004 return new (DbgInfo->getAlloc())
12006 {}, IsIndirect,
DL, O,
12014 unsigned O,
bool IsVariadic) {
12016 "Expected inlined-at fields to agree");
12017 return new (DbgInfo->getAlloc())
12018 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
12019 DL, O, IsVariadic);
12023 unsigned OffsetInBits,
unsigned SizeInBits,
12024 bool InvalidateDbg) {
12027 assert(FromNode && ToNode &&
"Can't modify dbg values");
12032 if (From == To || FromNode == ToNode)
12044 if (Dbg->isInvalidated())
12052 auto NewLocOps = Dbg->copyLocationOps();
12054 NewLocOps.begin(), NewLocOps.end(),
12056 bool Match = Op == FromLocOp;
12066 auto *Expr = Dbg->getExpression();
12072 if (
auto FI = Expr->getFragmentInfo())
12073 if (OffsetInBits + SizeInBits > FI->SizeInBits)
12082 auto AdditionalDependencies = Dbg->getAdditionalDependencies();
12085 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
12086 Dbg->getDebugLoc(), std::max(ToNode->
getIROrder(), Dbg->getOrder()),
12087 Dbg->isVariadic());
12090 if (InvalidateDbg) {
12092 Dbg->setIsInvalidated();
12093 Dbg->setIsEmitted();
12099 "Transferred DbgValues should depend on the new SDNode");
12105 if (!
N.getHasDebugValue())
12108 auto GetLocationOperand = [](
SDNode *
Node,
unsigned ResNo) {
12116 if (DV->isInvalidated())
12118 switch (
N.getOpcode()) {
12128 Offset =
N.getConstantOperandVal(1);
12131 if (!RHSConstant && DV->isIndirect())
12138 auto *DIExpr = DV->getExpression();
12139 auto NewLocOps = DV->copyLocationOps();
12141 size_t OrigLocOpsSize = NewLocOps.size();
12142 for (
size_t i = 0; i < OrigLocOpsSize; ++i) {
12147 NewLocOps[i].getSDNode() != &
N)
12158 const auto *TmpDIExpr =
12166 NewLocOps.push_back(RHS);
12175 DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
12177 auto AdditionalDependencies = DV->getAdditionalDependencies();
12179 DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
12180 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
12182 DV->setIsInvalidated();
12183 DV->setIsEmitted();
12185 N0.
getNode()->dumprFull(
this);
12186 dbgs() <<
" into " << *DIExpr <<
'\n');
12193 TypeSize ToSize =
N.getValueSizeInBits(0);
12197 auto NewLocOps = DV->copyLocationOps();
12199 for (
size_t i = 0; i < NewLocOps.size(); ++i) {
12201 NewLocOps[i].getSDNode() != &
N)
12213 DV->getAdditionalDependencies(), DV->isIndirect(),
12214 DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
12217 DV->setIsInvalidated();
12218 DV->setIsEmitted();
12220 dbgs() <<
" into " << *DbgExpression <<
'\n');
12227 assert((!Dbg->getSDNodes().empty() ||
12230 return Op.getKind() == SDDbgOperand::FRAMEIX;
12232 "Salvaged DbgValue should depend on a new SDNode");
12241 "Expected inlined-at fields to agree");
12242 return new (DbgInfo->getAlloc())
SDDbgLabel(Label,
DL, O);
12257 while (UI != UE &&
N == UI->
getUser())
12265 :
SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
12278 "Cannot replace with this method!");
12279 assert(From != To.
getNode() &&
"Cannot replace uses of with self");
12294 RAUWUpdateListener Listener(*
this, UI, UE);
12299 RemoveNodeFromCSEMaps(
User);
12314 AddModifiedNodeToCSEMaps(
User);
12330 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i)
12333 "Cannot use this version of ReplaceAllUsesWith!");
12341 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i)
12343 assert((i < To->getNumValues()) &&
"Invalid To location");
12352 RAUWUpdateListener Listener(*
this, UI, UE);
12357 RemoveNodeFromCSEMaps(
User);
12373 AddModifiedNodeToCSEMaps(
User);
12390 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i) {
12400 RAUWUpdateListener Listener(*
this, UI, UE);
12405 RemoveNodeFromCSEMaps(
User);
12411 bool To_IsDivergent =
false;
12426 AddModifiedNodeToCSEMaps(
User);
12439 if (From == To)
return;
12455 RAUWUpdateListener Listener(*
this, UI, UE);
12458 bool UserRemovedFromCSEMaps =
false;
12475 if (!UserRemovedFromCSEMaps) {
12476 RemoveNodeFromCSEMaps(
User);
12477 UserRemovedFromCSEMaps =
true;
12487 if (!UserRemovedFromCSEMaps)
12492 AddModifiedNodeToCSEMaps(
User);
12511bool operator<(
const UseMemo &L,
const UseMemo &R) {
12512 return (intptr_t)L.User < (intptr_t)R.User;
12519 SmallVectorImpl<UseMemo> &
Uses;
12521 void NodeDeleted(SDNode *
N, SDNode *
E)
override {
12522 for (UseMemo &Memo :
Uses)
12523 if (Memo.User ==
N)
12524 Memo.User =
nullptr;
12528 RAUOVWUpdateListener(SelectionDAG &d, SmallVectorImpl<UseMemo> &uses)
12529 : SelectionDAG::DAGUpdateListener(d),
Uses(uses) {}
12536 switch (
Node->getOpcode()) {
12548 if (TLI->isSDNodeAlwaysUniform(
N)) {
12549 assert(!TLI->isSDNodeSourceOfDivergence(
N, FLI, UA) &&
12550 "Conflicting divergence information!");
12553 if (TLI->isSDNodeSourceOfDivergence(
N, FLI, UA))
12555 for (
const auto &
Op :
N->ops()) {
12556 EVT VT =
Op.getValueType();
12559 if (VT != MVT::Other &&
Op.getNode()->isDivergent() &&
12571 if (
N->SDNodeBits.IsDivergent != IsDivergent) {
12572 N->SDNodeBits.IsDivergent = IsDivergent;
12575 }
while (!Worklist.
empty());
12578void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
12580 Order.reserve(AllNodes.size());
12582 unsigned NOps =
N.getNumOperands();
12585 Order.push_back(&
N);
12587 for (
size_t I = 0;
I != Order.size(); ++
I) {
12589 for (
auto *U :
N->users()) {
12590 unsigned &UnsortedOps = Degree[U];
12591 if (0 == --UnsortedOps)
12592 Order.push_back(U);
12597#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
12598void SelectionDAG::VerifyDAGDivergence() {
12599 std::vector<SDNode *> TopoOrder;
12600 CreateTopologicalOrder(TopoOrder);
12601 for (
auto *
N : TopoOrder) {
12603 "Divergence bit inconsistency detected");
12626 for (
unsigned i = 0; i != Num; ++i) {
12627 unsigned FromResNo = From[i].
getResNo();
12630 if (
Use.getResNo() == FromResNo) {
12632 Uses.push_back(Memo);
12639 RAUOVWUpdateListener Listener(*
this,
Uses);
12641 for (
unsigned UseIndex = 0, UseIndexEnd =
Uses.size();
12642 UseIndex != UseIndexEnd; ) {
12648 if (
User ==
nullptr) {
12654 RemoveNodeFromCSEMaps(
User);
12661 unsigned i =
Uses[UseIndex].Index;
12666 }
while (UseIndex != UseIndexEnd &&
Uses[UseIndex].
User ==
User);
12670 AddModifiedNodeToCSEMaps(
User);
12678 unsigned DAGSize = 0;
12694 unsigned Degree =
N.getNumOperands();
12697 N.setNodeId(DAGSize++);
12699 if (Q != SortedPos)
12700 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
12701 assert(SortedPos != AllNodes.end() &&
"Overran node list");
12705 N.setNodeId(Degree);
12717 unsigned Degree =
P->getNodeId();
12718 assert(Degree != 0 &&
"Invalid node degree");
12722 P->setNodeId(DAGSize++);
12723 if (
P->getIterator() != SortedPos)
12724 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(
P));
12725 assert(SortedPos != AllNodes.end() &&
"Overran node list");
12729 P->setNodeId(Degree);
12732 if (
Node.getIterator() == SortedPos) {
12736 dbgs() <<
"Overran sorted position:\n";
12738 dbgs() <<
"Checking if this is due to cycles\n";
12745 assert(SortedPos == AllNodes.end() &&
12746 "Topological sort incomplete!");
12748 "First node in topological sort is not the entry token!");
12749 assert(AllNodes.front().getNodeId() == 0 &&
12750 "First node in topological sort has non-zero id!");
12751 assert(AllNodes.front().getNumOperands() == 0 &&
12752 "First node in topological sort has operands!");
12753 assert(AllNodes.back().getNodeId() == (
int)DAGSize-1 &&
12754 "Last node in topologic sort has unexpected id!");
12755 assert(AllNodes.back().use_empty() &&
12756 "Last node in topologic sort has users!");
12763 SortedNodes.
clear();
12770 unsigned NumOperands =
N.getNumOperands();
12771 if (NumOperands == 0)
12775 RemainingOperands[&
N] = NumOperands;
12780 for (
unsigned i = 0U; i < SortedNodes.
size(); ++i) {
12781 const SDNode *
N = SortedNodes[i];
12782 for (
const SDNode *U :
N->users()) {
12787 unsigned &NumRemOperands = RemainingOperands[U];
12788 assert(NumRemOperands &&
"Invalid number of remaining operands");
12790 if (!NumRemOperands)
12795 assert(SortedNodes.
size() == AllNodes.size() &&
"Node count mismatch");
12797 "First node in topological sort is not the entry token");
12798 assert(SortedNodes.
front()->getNumOperands() == 0 &&
12799 "First node in topological sort has operands");
12805 for (
SDNode *SD : DB->getSDNodes()) {
12808 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
12809 SD->setHasDebugValue(
true);
12811 DbgInfo->add(DB, isParameter);
12824 if (OldChain == NewMemOpChain || OldChain.
use_empty())
12825 return NewMemOpChain;
12828 OldChain, NewMemOpChain);
12831 return TokenFactor;
12850 if (OutFunction !=
nullptr)
12858 std::string ErrorStr;
12860 ErrorFormatter <<
"Undefined external symbol ";
12861 ErrorFormatter <<
'"' << Symbol <<
'"';
12871 return Const !=
nullptr && Const->isZero();
12880 return Const !=
nullptr && Const->isZero() && !Const->isNegative();
12885 return Const !=
nullptr && Const->isAllOnes();
12890 return Const !=
nullptr && Const->isOne();
12895 return Const !=
nullptr && Const->isMinSignedValue();
12899 unsigned OperandNo) {
12904 APInt Const = ConstV->getAPIntValue().trunc(V.getScalarValueSizeInBits());
12910 return Const.isZero();
12912 return Const.isOne();
12915 return Const.isAllOnes();
12917 return Const.isMinSignedValue();
12919 return Const.isMaxSignedValue();
12924 return OperandNo == 1 && Const.isZero();
12927 return OperandNo == 1 && Const.isOne();
12932 return ConstFP->isZero() &&
12933 (Flags.hasNoSignedZeros() || ConstFP->isNegative());
12935 return OperandNo == 1 && ConstFP->isZero() &&
12936 (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
12938 return ConstFP->isExactlyValue(1.0);
12940 return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
12944 EVT VT = V.getValueType();
12946 APFloat NeutralAF = !Flags.hasNoNaNs()
12948 : !Flags.hasNoInfs()
12954 return ConstFP->isExactlyValue(NeutralAF);
12968 while (V.getOpcode() ==
ISD::BITCAST && V.getOperand(0).hasOneUse())
12987 !DemandedElts[IndexC->getZExtValue()]) {
13006 unsigned NumBits = V.getScalarValueSizeInBits();
13009 return C && (
C->getAPIntValue().
countr_one() >= NumBits);
13013 bool AllowTruncation) {
13014 EVT VT =
N.getValueType();
13023 bool AllowTruncation) {
13030 EVT VecEltVT =
N->getValueType(0).getVectorElementType();
13032 EVT CVT = CN->getValueType(0);
13033 assert(CVT.
bitsGE(VecEltVT) &&
"Illegal splat_vector element extension");
13034 if (AllowTruncation || CVT == VecEltVT)
13041 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
13046 if (CN && (UndefElements.
none() || AllowUndefs)) {
13048 EVT NSVT =
N.getValueType().getScalarType();
13049 assert(CVT.
bitsGE(NSVT) &&
"Illegal build vector element extension");
13050 if (AllowTruncation || (CVT == NSVT))
13059 EVT VT =
N.getValueType();
13067 const APInt &DemandedElts,
13068 bool AllowUndefs) {
13075 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
13077 if (CN && (UndefElements.
none() || AllowUndefs))
13092 return C &&
C->isZero();
13098 return C &&
C->isOne();
13103 return C &&
C->isExactlyValue(1.0);
13108 unsigned BitWidth =
N.getScalarValueSizeInBits();
13110 return C &&
C->isAllOnes() &&
C->getValueSizeInBits(0) ==
BitWidth;
13116 APInt(
C->getAPIntValue().getBitWidth(), 1));
13122 return C &&
C->isZero();
13127 return C &&
C->isZero();
13136 :
SDNode(
Opc, Order, dl, VTs), MemoryVT(memvt),
MMO(mmo) {
13146 (!
MMO->getType().isValid() ||
13160 std::vector<EVT> VTs;
13173const EVT *SDNode::getValueTypeList(
MVT VT) {
13174 static EVTArray SimpleVTArray;
13177 return &SimpleVTArray.VTs[VT.
SimpleTy];
13186 if (U.getResNo() ==
Value)
13224 return any_of(
N->op_values(),
13225 [
this](
SDValue Op) { return this == Op.getNode(); });
13239 unsigned Depth)
const {
13240 if (*
this == Dest)
return true;
13244 if (
Depth == 0)
return false;
13264 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
13270 if (Ld->isUnordered())
13271 return Ld->getChain().reachesChainWithoutSideEffects(Dest,
Depth-1);
13284 this->Flags &= Flags;
13290 bool AllowPartials) {
13305 unsigned CandidateBinOp =
Op.getOpcode();
13306 if (
Op.getValueType().isFloatingPoint()) {
13308 switch (CandidateBinOp) {
13310 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
13320 auto PartialReduction = [&](
SDValue Op,
unsigned NumSubElts) {
13321 if (!AllowPartials || !
Op)
13323 EVT OpVT =
Op.getValueType();
13326 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
13345 unsigned Stages =
Log2_32(
Op.getValueType().getVectorNumElements());
13347 for (
unsigned i = 0; i < Stages; ++i) {
13348 unsigned MaskEnd = (1 << i);
13350 if (
Op.getOpcode() != CandidateBinOp)
13351 return PartialReduction(PrevOp, MaskEnd);
13367 return PartialReduction(PrevOp, MaskEnd);
13370 for (
int Index = 0; Index < (int)MaskEnd; ++Index)
13371 if (Shuffle->
getMaskElt(Index) != (
int)(MaskEnd + Index))
13372 return PartialReduction(PrevOp, MaskEnd);
13379 while (
Op.getOpcode() == CandidateBinOp) {
13380 unsigned NumElts =
Op.getValueType().getVectorNumElements();
13389 if (NumSrcElts != (2 * NumElts))
13404 EVT VT =
N->getValueType(0);
13413 else if (NE > ResNE)
13416 if (
N->getNumValues() == 2) {
13419 EVT VT1 =
N->getValueType(1);
13423 for (i = 0; i != NE; ++i) {
13424 for (
unsigned j = 0, e =
N->getNumOperands(); j != e; ++j) {
13425 SDValue Operand =
N->getOperand(j);
13433 SDValue EltOp =
getNode(
N->getOpcode(), dl, {EltVT, EltVT1}, Operands);
13438 for (; i < ResNE; ++i) {
13450 assert(
N->getNumValues() == 1 &&
13451 "Can't unroll a vector with multiple results!");
13457 for (i= 0; i != NE; ++i) {
13458 for (
unsigned j = 0, e =
N->getNumOperands(); j != e; ++j) {
13459 SDValue Operand =
N->getOperand(j);
13467 Operands[j] = Operand;
13471 switch (
N->getOpcode()) {
13499 ASC->getSrcAddressSpace(),
13500 ASC->getDestAddressSpace()));
13506 for (; i < ResNE; ++i)
13515 unsigned Opcode =
N->getOpcode();
13519 "Expected an overflow opcode");
13521 EVT ResVT =
N->getValueType(0);
13522 EVT OvVT =
N->getValueType(1);
13531 else if (NE > ResNE)
13543 for (
unsigned i = 0; i < NE; ++i) {
13544 SDValue Res =
getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
13567 if (LD->isVolatile() ||
Base->isVolatile())
13570 if (!LD->isSimple())
13572 if (LD->isIndexed() ||
Base->isIndexed())
13574 if (LD->getChain() !=
Base->getChain())
13576 EVT VT = LD->getMemoryVT();
13584 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *
this,
Offset))
13585 return (Dist * (int64_t)Bytes ==
Offset);
13594 int64_t GVOffset = 0;
13595 if (TLI->isGAPlusOffset(Ptr.
getNode(), GV, GVOffset)) {
13606 int FrameIdx = INT_MIN;
13607 int64_t FrameOffset = 0;
13609 FrameIdx = FI->getIndex();
13617 if (FrameIdx != INT_MIN) {
13622 return std::nullopt;
13632 "Split node must be a scalar type");
13637 return std::make_pair(
Lo,
Hi);
13646 LoVT = HiVT = TLI->getTypeToTransformTo(*
getContext(), VT);
13650 return std::make_pair(LoVT, HiVT);
13658 bool *HiIsEmpty)
const {
13668 "Mixing fixed width and scalable vectors when enveloping a type");
13673 *HiIsEmpty =
false;
13681 return std::make_pair(LoVT, HiVT);
13686std::pair<SDValue, SDValue>
13691 "Splitting vector with an invalid mixture of fixed and scalable "
13694 N.getValueType().getVectorMinNumElements() &&
13695 "More vector elements requested than available!");
13704 return std::make_pair(
Lo,
Hi);
13711 EVT VT =
N.getValueType();
13713 "Expecting the mask to be an evenly-sized vector");
13718 return std::make_pair(
Lo,
Hi);
13723 EVT VT =
N.getValueType();
13731 unsigned Start,
unsigned Count,
13733 EVT VT =
Op.getValueType();
13736 if (EltVT ==
EVT())
13739 for (
unsigned i = Start, e = Start +
Count; i != e; ++i) {
13751 return Val.MachineCPVal->getType();
13752 return Val.ConstVal->getType();
13756 unsigned &SplatBitSize,
13757 bool &HasAnyUndefs,
13758 unsigned MinSplatBits,
13759 bool IsBigEndian)
const {
13763 if (MinSplatBits > VecWidth)
13768 SplatValue =
APInt(VecWidth, 0);
13769 SplatUndef =
APInt(VecWidth, 0);
13776 assert(
NumOps > 0 &&
"isConstantSplat has 0-size build vector");
13779 for (
unsigned j = 0; j <
NumOps; ++j) {
13780 unsigned i = IsBigEndian ?
NumOps - 1 - j : j;
13782 unsigned BitPos = j * EltWidth;
13785 SplatUndef.
setBits(BitPos, BitPos + EltWidth);
13787 SplatValue.
insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
13789 SplatValue.
insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
13796 HasAnyUndefs = (SplatUndef != 0);
13799 while (VecWidth > 8) {
13804 unsigned HalfSize = VecWidth / 2;
13811 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
13812 MinSplatBits > HalfSize)
13815 SplatValue = HighValue | LowValue;
13816 SplatUndef = HighUndef & LowUndef;
13818 VecWidth = HalfSize;
13827 SplatBitSize = VecWidth;
13834 if (UndefElements) {
13835 UndefElements->
clear();
13842 for (
unsigned i = 0; i !=
NumOps; ++i) {
13843 if (!DemandedElts[i])
13846 if (
Op.isUndef()) {
13848 (*UndefElements)[i] =
true;
13849 }
else if (!Splatted) {
13851 }
else if (Splatted !=
Op) {
13857 unsigned FirstDemandedIdx = DemandedElts.
countr_zero();
13859 "Can only have a splat without a constant for all undefs.");
13876 if (UndefElements) {
13877 UndefElements->
clear();
13888 (*UndefElements)[
I] =
true;
13891 for (
unsigned SeqLen = 1; SeqLen <
NumOps; SeqLen *= 2) {
13892 Sequence.append(SeqLen,
SDValue());
13893 for (
unsigned I = 0;
I !=
NumOps; ++
I) {
13894 if (!DemandedElts[
I])
13896 SDValue &SeqOp = Sequence[
I % SeqLen];
13898 if (
Op.isUndef()) {
13903 if (SeqOp && !SeqOp.
isUndef() && SeqOp !=
Op) {
13909 if (!Sequence.empty())
13913 assert(Sequence.empty() &&
"Failed to empty non-repeating sequence pattern");
13954 const APFloat &APF = CN->getValueAPF();
13960 return IntVal.exactLogBase2();
13966 bool IsLittleEndian,
unsigned DstEltSizeInBits,
13974 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13975 "Invalid bitcast scale");
13980 BitVector SrcUndeElements(NumSrcOps,
false);
13982 for (
unsigned I = 0;
I != NumSrcOps; ++
I) {
13984 if (
Op.isUndef()) {
13985 SrcUndeElements.
set(
I);
13990 assert((CInt || CFP) &&
"Unknown constant");
13991 SrcBitElements[
I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
13992 : CFP->getValueAPF().bitcastToAPInt();
13996 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
13997 SrcBitElements, UndefElements, SrcUndeElements);
14002 unsigned DstEltSizeInBits,
14007 unsigned NumSrcOps = SrcBitElements.
size();
14008 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
14009 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
14010 "Invalid bitcast scale");
14011 assert(NumSrcOps == SrcUndefElements.
size() &&
14012 "Vector size mismatch");
14014 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
14015 DstUndefElements.
clear();
14016 DstUndefElements.
resize(NumDstOps,
false);
14020 if (SrcEltSizeInBits <= DstEltSizeInBits) {
14021 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
14022 for (
unsigned I = 0;
I != NumDstOps; ++
I) {
14023 DstUndefElements.
set(
I);
14024 APInt &DstBits = DstBitElements[
I];
14025 for (
unsigned J = 0; J != Scale; ++J) {
14026 unsigned Idx = (
I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
14027 if (SrcUndefElements[Idx])
14029 DstUndefElements.
reset(
I);
14030 const APInt &SrcBits = SrcBitElements[Idx];
14032 "Illegal constant bitwidths");
14033 DstBits.
insertBits(SrcBits, J * SrcEltSizeInBits);
14040 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
14041 for (
unsigned I = 0;
I != NumSrcOps; ++
I) {
14042 if (SrcUndefElements[
I]) {
14043 DstUndefElements.
set(
I * Scale, (
I + 1) * Scale);
14046 const APInt &SrcBits = SrcBitElements[
I];
14047 for (
unsigned J = 0; J != Scale; ++J) {
14048 unsigned Idx = (
I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
14049 APInt &DstBits = DstBitElements[Idx];
14050 DstBits = SrcBits.
extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
14057 unsigned Opc =
Op.getOpcode();
14064std::optional<std::pair<APInt, APInt>>
14068 return std::nullopt;
14072 return std::nullopt;
14079 return std::nullopt;
14081 for (
unsigned i = 2; i <
NumOps; ++i) {
14083 return std::nullopt;
14086 if (Val != (Start + (Stride * i)))
14087 return std::nullopt;
14090 return std::make_pair(Start, Stride);
14096 for (i = 0, e = Mask.size(); i != e && Mask[i] < 0; ++i)
14106 for (
int Idx = Mask[i]; i != e; ++i)
14107 if (Mask[i] >= 0 && Mask[i] != Idx)
14115 SDValue N,
bool AllowOpaques)
const {
14119 return AllowOpaques || !
C->isOpaque();
14128 TLI->isOffsetFoldingLegal(GA))
14156 return std::nullopt;
14158 EVT VT =
N->getValueType(0);
14160 switch (TLI->getBooleanContents(
N.getValueType())) {
14166 return std::nullopt;
14172 return std::nullopt;
14180 assert(!
Node->OperandList &&
"Node already has operands");
14182 "too many operands to fit into SDNode");
14183 SDUse *
Ops = OperandRecycler.allocate(
14186 bool IsDivergent =
false;
14187 for (
unsigned I = 0;
I != Vals.
size(); ++
I) {
14189 Ops[
I].setInitial(Vals[
I]);
14190 EVT VT =
Ops[
I].getValueType();
14193 if (VT != MVT::Other &&
14196 IsDivergent =
true;
14201 if (!TLI->isSDNodeAlwaysUniform(Node)) {
14202 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
14203 Node->SDNodeBits.IsDivergent = IsDivergent;
14211 while (Vals.
size() > Limit) {
14212 unsigned SliceIdx = Vals.
size() - Limit;
14288 const SDLoc &DLoc) {
14292 RTLIB::LibcallImpl LibcallImpl =
14293 TLI->getLibcallImpl(
static_cast<RTLIB::Libcall
>(LibFunc));
14294 if (LibcallImpl == RTLIB::Unsupported)
14301 TLI->getLibcallImplCallingConv(LibcallImpl),
14303 return TLI->LowerCallTo(CLI).second;
14307 assert(From && To &&
"Invalid SDNode; empty source SDValue?");
14308 auto I = SDEI.find(From);
14309 if (
I == SDEI.end())
14314 NodeExtraInfo NEI =
I->second;
14323 SDEI[To] = std::move(NEI);
14340 auto VisitFrom = [&](
auto &&Self,
const SDNode *
N,
int MaxDepth) {
14341 if (MaxDepth == 0) {
14347 if (!FromReach.
insert(
N).second)
14350 Self(Self,
Op.getNode(), MaxDepth - 1);
14355 auto DeepCopyTo = [&](
auto &&Self,
const SDNode *
N) {
14358 if (!Visited.
insert(
N).second)
14363 if (
N == To &&
Op.getNode() == EntrySDN) {
14368 if (!Self(Self,
Op.getNode()))
14382 for (
int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
14383 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.
clear()) {
14388 for (
const SDNode *
N : StartFrom)
14389 VisitFrom(VisitFrom,
N, MaxDepth - PrevDepth);
14393 LLVM_DEBUG(
dbgs() << __func__ <<
": MaxDepth=" << MaxDepth <<
" too low\n");
14401 errs() <<
"warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
14402 assert(
false &&
"From subgraph too complex - increase max. MaxDepth?");
14404 SDEI[To] = std::move(NEI);
14418 if (!Visited.
insert(
N).second) {
14419 errs() <<
"Detected cycle in SelectionDAG\n";
14420 dbgs() <<
"Offending node:\n";
14421 N->dumprFull(DAG);
dbgs() <<
"\n";
14437 bool check = force;
14438#ifdef EXPENSIVE_CHECKS
14442 assert(
N &&
"Checking nonexistent SDNode");
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define __asan_unpoison_memory_region(p, size)
#define LLVM_LIKELY(EXPR)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
This file contains constants used for implementing Dwarf debug support.
This file defines a hash set that can be used to remove duplication of nodes in a graph.
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB)
static bool shouldLowerMemFuncForSize(const MachineFunction &MF)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
static MCRegister getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
Contains matchers for matching SelectionDAG nodes and values.
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo, BatchAAResults *BatchAA)
static SDValue getFixedOrScalableQuantity(SelectionDAG &DAG, const SDLoc &DL, EVT VT, Ty Quantity)
static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo)
Lower the call to 'memset' intrinsic function into a series of store operations.
static std::optional< APInt > FoldValueWithUndef(unsigned Opcode, const APInt &C1, bool IsUndef1, const APInt &C2, bool IsUndef2)
static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, SelectionDAG &DAG)
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC, SDVTList VTList, ArrayRef< SDValue > OpList)
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, const TargetLowering &TLI, const ConstantDataArraySlice &Slice)
getMemsetStringVal - Similar to getMemsetValue.
static cl::opt< bool > EnableMemCpyDAGOpt("enable-memcpy-dag-opt", cl::Hidden, cl::init(true), cl::desc("Gang up loads and stores generated by inlining of memcpy"))
static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B)
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList)
AddNodeIDValueTypes - Value type lists are intern'd so we can represent them solely with their pointe...
static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef< int > M)
Swaps the values of N1 and N2.
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice)
Returns true if memcpy source is constant data.
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo)
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)
AddNodeIDOpcode - Add the node opcode to the NodeID data.
static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike)
static bool doNotCSE(SDNode *N)
doNotCSE - Return true if CSE should not be performed for this node.
static cl::opt< int > MaxLdStGlue("ldstmemcpy-glue-max", cl::desc("Number limit for gluing ld/st of memcpy."), cl::Hidden, cl::init(0))
static void AddNodeIDOperands(FoldingSetNodeID &ID, ArrayRef< SDValue > Ops)
AddNodeIDOperands - Various routines for adding operands to the NodeID data.
static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
Try to simplify vector concatenation to an input value, undef, or build vector.
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, SelectionDAG &DAG, SDValue Ptr, int64_t Offset=0)
InferPointerInfo - If the specified ptr/offset is a frame index, infer a MachinePointerInfo record fr...
static bool isInTailCallPositionWrapper(const CallInst *CI, const SelectionDAG *SelDAG, bool AllowReturnsFirstArg)
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N)
If this is an SDNode with special info, add this info to the NodeID data.
static bool gluePropagatesDivergence(const SDNode *Node)
Return true if a glue output should propagate divergence information.
static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G)
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs)
makeVTList - Return an instance of the SDVTList struct initialized with the specified members.
static void checkForCyclesHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallPtrSetImpl< const SDNode * > &Checked, const llvm::SelectionDAG *DAG)
static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, SmallVector< SDValue, 32 > &OutChains, unsigned From, unsigned To, SmallVector< SDValue, 16 > &OutLoadChains, SmallVector< SDValue, 16 > &OutStoreChains)
static int isSignedOp(ISD::CondCode Opcode)
For an integer comparison, return 1 if the comparison is a signed operation and 2 if the result is an...
static std::optional< APInt > FoldValue(unsigned Opcode, const APInt &C1, const APInt &C2)
static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, unsigned AS)
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static void removeOperands(MachineInstr &MI, unsigned i)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
static const fltSemantics & IEEEsingle()
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
static constexpr roundingMode rmTowardZero
static const fltSemantics & BFloat()
static const fltSemantics & IEEEquad()
static const fltSemantics & IEEEdouble()
static constexpr roundingMode rmTowardNegative
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardPositive
static const fltSemantics & IEEEhalf()
opStatus
IEEE-754R 7: Default exception handling.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
opStatus divide(const APFloat &RHS, roundingMode RM)
void copySign(const APFloat &RHS)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
opStatus add(const APFloat &RHS, roundingMode RM)
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
opStatus multiply(const APFloat &RHS, roundingMode RM)
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
opStatus mod(const APFloat &RHS)
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt usub_sat(const APInt &RHS) const
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
void clearAllBits()
Set every bit to 0.
LLVM_ABI APInt rotr(unsigned rotateAmt) const
Rotate right by rotateAmt.
LLVM_ABI APInt reverseBits() const
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
bool sle(const APInt &RHS) const
Signed less or equal comparison.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sshl_sat(const APInt &RHS) const
LLVM_ABI APInt ushl_sat(const APInt &RHS) const
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
LLVM_ABI APInt rotl(unsigned rotateAmt) const
Rotate left by rotateAmt.
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
unsigned logBase2() const
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
APInt shl(unsigned shiftAmt) const
Left-shift function.
LLVM_ABI APInt byteSwap() const
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
bool isOne() const
Determine if this is a value of 1.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
An arbitrary precision integer that knows its signedness.
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
static Capacity get(size_t N)
Get the capacity of an array that can hold at least N elements.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
This is an SDNode representing atomic operations.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal=false)
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
void clear()
clear - Removes all bits from the bitvector.
bool none() const
none - Returns true if none of the bits are set.
size_type size() const
size - Returns the number of bits in this bitvector.
int64_t getOffset() const
unsigned getTargetFlags() const
const BlockAddress * getBlockAddress() const
The address of a basic block.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &RawBitElements, BitVector &UndefElements) const
Extract the raw bit data from a build vector of Undef, Constant or ConstantFP node elements.
static LLVM_ABI void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &DstBitElements, ArrayRef< APInt > SrcBitElements, BitVector &DstUndefElements, const BitVector &SrcUndefElements)
Recast bit data SrcBitElements to DstEltSizeInBits wide elements.
LLVM_ABI bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl< SDValue > &Sequence, BitVector *UndefElements=nullptr) const
Find the shortest repeating sequence of values in the build vector.
LLVM_ABI ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant FP or null if this is not a constant FP splat.
LLVM_ABI std::optional< std::pair< APInt, APInt > > isConstantSequence() const
If this BuildVector is constant and represents the numerical series "<a, a+n, a+2n,...
LLVM_ABI SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted value or a null value if this is not a splat.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
LLVM_ABI bool isConstant() const
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
ConstantFP - Floating Point Values [float, double].
const APFloat & getValue() const
This is the shared class of boolean and integer constants.
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
const APInt & getValue() const
Return the constant as an APInt value reference.
MachineConstantPoolValue * getMachineCPVal() const
bool isMachineConstantPoolEntry() const
const Constant * getConstVal() const
LLVM_ABI Type * getType() const
unsigned getTargetFlags() const
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
static LLVM_ABI ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
Base class for variables.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Implements a dense probed hash-table based set.
const char * getSymbol() const
unsigned getTargetFlags() const
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Data structure describing the variable locations in a function.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
AttributeList getAttributes() const
Return the attribute list for this Function.
int64_t getOffset() const
LLVM_ABI unsigned getAddressSpace() const
unsigned getTargetFlags() const
const GlobalValue * getGlobal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
This class is used to form a handle around another node that is persistent and is updated across invo...
const SDValue & getValue() const
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This is an important class for using LLVM in a threaded context.
This SDNode is used for LIFETIME_START/LIFETIME_END values.
This class is used to represent ISD::LOAD nodes.
static LocationSize precise(uint64_t Value)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
const MDOperand & getOperand(unsigned I) const
static MVT getIntegerVT(unsigned BitWidth)
Abstract base class for all machine specific constantpool value subclasses.
virtual void addSelectionDAGCSEId(FoldingSetNodeID &ID)=0
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
A description of a memory reference used in the backend.
const MDNode * getRanges() const
Return the range tag for the memory reference.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
This class contains meta information specific to a module.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This class is used to represent an MGATHER node.
This class is used to represent an MLOAD node.
This class is used to represent an MSCATTER node.
This class is used to represent an MSTORE node.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
LLVM_ABI MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *MMO)
MachineMemOperand * MMO
Memory reference information.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
unsigned getRawSubclassData() const
Return the SubclassData value, without HasDebugValue.
EVT getMemoryVT() const
Return the type of the in-memory value.
Representation for a specific memory location.
A Module instance is used to store all the information related to an LLVM module.
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Pass interface - Implemented by all 'passes'.
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Analysis providing profile information.
void Deallocate(SubClass *E)
Deallocate - Release storage for the pointed-to object.
Wrapper class representing virtual and physical registers.
Keeps track of dbg_value information through SDISel.
LLVM_ABI void add(SDDbgValue *V, bool isParameter)
LLVM_ABI void erase(const SDNode *Node)
Invalidate all DbgValues attached to the node and remove it from the Node-to-DbgValues map.
Holds the information from a dbg_label node through SDISel.
Holds the information for a single machine location through SDISel; either an SDNode,...
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
@ SDNODE
Value is the result of an expression.
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
unsigned getIROrder() const
This class provides iterator support for SDUse operands that use a specific SDNode.
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
LLVM_ABI void dumprFull(const SelectionDAG *G=nullptr) const
printrFull to dbgs().
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
static constexpr size_t getMaxNumOperands()
Return the maximum number of operands that a SDNode can hold.
iterator_range< use_iterator > uses()
MemSDNodeBitfields MemSDNodeBits
LLVM_ABI void Profile(FoldingSetNodeID &ID) const
Gather unique data for the node.
bool getHasDebugValue() const
SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
LLVM_ABI void intersectFlagsWith(const SDNodeFlags Flags)
Clear any flags in this node that aren't also set in Flags.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
static LLVM_ABI bool areOnlyUsersOf(ArrayRef< const SDNode * > Nodes, const SDNode *N)
Return true if all the users of N are contained in Nodes.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
std::optional< APInt > bitcastToAPInt() const
LLVM_ABI bool hasPredecessor(const SDNode *N) const
Return true if N is a predecessor of this node.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
op_iterator op_end() const
op_iterator op_begin() const
static use_iterator use_end()
LLVM_ABI void DropOperands()
Release the operands and set this node to have zero operands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
Create an SDNode.
Represents a use of a SDNode.
SDNode * getUser()
This returns the SDNode that contains this Use.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if the referenced return value is an operand of N.
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
virtual void verifyTargetNode(const SelectionDAG &DAG, const SDNode *N) const
Checks that the given target-specific node is valid. Aborts if it is not.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC)
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsExpanding=false)
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const
Determine if the result of the unsigned sub of 2 nodes can overflow.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI std::pair< SDValue, SDValue > getStrlen(SDValue Chain, const SDLoc &dl, SDValue Src, const CallInst *CI)
Lower a strlen operation into a target library call and return the resulting chain and call result as...
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI void updateDivergence(SDNode *N)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, SDNodeFlags Flags)
Get the (commutative) neutral element for the given opcode, if it exists.
LLVM_ABI SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo)
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags, bool AllowCommute=false)
Get the specified node if it's already available, or else return NULL.
LLVM_ABI SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, uint64_t Index, uint32_t Attr)
Creates a PseudoProbeSDNode with function GUID Guid and the index of the block Index it is probing,...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDNode * SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT)
These are used for target selectors to mutate the specified node to have the specified return type,...
LLVM_ABI SelectionDAG(const TargetMachine &TM, CodeGenOptLevel)
LLVM_ABI SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num)
Like ReplaceAllUsesOfValueWith, but for multiple values at once.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI bool calculateDivergence(SDNode *N)
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDNode * mutateStrictFPToFP(SDNode *Node)
Mutate the specified strict FP node to its non-strict equivalent, unlinking the node from its chain a...
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI bool canIgnoreSignBitOfZero(const SDUse &Use) const
Check if a use of a float value is insensitive to signed zeros.
LLVM_ABI bool SignBitIsZeroFP(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero, for a floating-point value.
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
LLVM_ABI SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be an integer vector, to the vector-type VT,...
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI bool isEqualTo(SDValue A, SDValue B) const
Test whether two SDValues are known to compare equal.
static constexpr unsigned MaxRecursionDepth
LLVM_ABI SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth=0) const
Return true if this function can prove that Op is never poison.
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI void dump(bool Sorted=false) const
Dump the textual format of this DAG.
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
bool NewNodesMustHaveLegalTypes
When true, additional steps are taken to ensure that getConstant() and similar functions return DAG n...
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
LLVM_ABI void salvageDebugInfo(SDNode &N)
To be invoked on an SDNode that is slated to be erased.
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
LLVM_ABI std::pair< SDValue, SDValue > UnrollVectorOverflowOp(SDNode *N, unsigned ResNE=0)
Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
LLVM_ABI std::pair< SDValue, SDValue > getStrcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, const CallInst *CI)
Lower a strcpy operation into a target library call and return the resulting chain and call result as...
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDDbgLabel * getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O)
Creates a SDDbgLabel node.
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const
Determine if the result of the unsigned mul of 2 nodes can overflow.
LLVM_ABI void copyExtraInfo(SDNode *From, SDNode *To)
Copy extra info associated with one node to another.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getLoadFFVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachineMemOperand *MMO)
LLVM_ABI SDValue getTypeSize(const SDLoc &DL, EVT VT, TypeSize TS)
LLVM_ABI SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
LLVM_ABI void clear()
Clear state and free memory necessary to make this SelectionDAG ready to process a new block.
LLVM_ABI std::pair< SDValue, SDValue > getMemcmp(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, const CallInst *CI)
Lower a memcmp operation into a target library call and return the resulting chain and call result as...
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
LLVM_ABI SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getSrcValue(const Value *v)
Construct a node to track a Value* through the backend.
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const
Determine if the result of the signed mul of 2 nodes can overflow.
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
LLVM_ABI bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if '(Op & Mask) == Mask'.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI void AddDbgLabel(SDDbgLabel *DB)
Add a dbg_label SDNode.
bool isConstantValueOfAnyType(SDValue N) const
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDDbgValue * getVRegDbgValue(DIVariable *Var, DIExpression *Expr, Register VReg, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a VReg SDDbgValue node.
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI std::optional< unsigned > getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
LLVM_ABI std::pair< SDValue, SDValue > SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL)
Split the explicit vector length parameter of a VP operation.
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getMaskFromElementCount(const SDLoc &DL, EVT VT, ElementCount Len)
Return a vector with the first 'Len' lanes set to true and remaining lanes set to false.
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
LLVM_ABI SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDDbgValue * getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O)
Creates a constant SDDbgValue node.
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, int FrameIndex)
Creates a LifetimeSDNode that starts (IsStart==true) or ends (IsStart==false) the lifetime of the Fra...
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the signed addition of 2 nodes can overflow.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
ilist< SDNode >::size_type allnodes_size() const
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
LLVM_ABI SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsCompressing=false)
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDDbgValue * getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a FrameIndex SDDbgValue node.
LLVM_ABI SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getJumpTable(int JTI, EVT VT, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be of integer type, to the vector-type integer type VT,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void getTopologicallyOrderedNodes(SmallVectorImpl< const SDNode * > &SortedNodes) const
Get all the nodes in their topological order without modifying any states.
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to extend the Op as a pointer value assuming it was the smaller SrcTy ...
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT SVT, MachineMemOperand *MMO, bool IsCompressing=false)
LLVM_ABI void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, SDValue &N2) const
Swap N1 and N2 if Opcode is a commutative binary opcode and the canonical form expects the opposite o...
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVM_ABI OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const
Determine if the result of the signed sub of 2 nodes can overflow.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getDeactivationSymbol(const GlobalValue *GV)
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI std::pair< EVT, EVT > GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, bool *HiIsEmpty) const
Compute the VTs needed for the low/hi parts of a type, dependent on an enveloping VT that has been sp...
LLVM_ABI SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops)
Fold floating-point operations when all operands are constants and/or undefined.
LLVM_ABI void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs)
Prepare this SelectionDAG to process code in the given MachineFunction.
LLVM_ABI std::optional< ConstantRange > getValidShiftAmountRange(SDValue V, const APInt &DemandedElts, unsigned Depth) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2)
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg)
A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDDbgValue * getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a SDDbgValue node.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef< ISD::NodeType > CandidateBinOps, bool AllowPartials=false)
Match a binop + shuffle pyramid that represents a horizontal reduction over the elements of a vector ...
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
ilist< SDNode >::iterator allnodes_iterator
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
static LLVM_ABI bool isSplatMask(ArrayRef< int > Mask)
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
Completely target-dependent object reference.
int64_t getOffset() const
unsigned getTargetFlags() const
Provides information about what library functions are available for the current target.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
const TargetMachine & getTargetMachine() const
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
BooleanContent
Enum that describes how the target represents true/false values.
@ ZeroOrOneBooleanContent
@ UndefinedBooleanContent
@ ZeroOrNegativeOneBooleanContent
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
std::vector< ArgListEntry > ArgListTy
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
Primary interface to the complete machine description for the target machine.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const SelectionDAGTargetInfo * getSelectionDAGInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
A Use represents the edge between a Value definition and its users.
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
LLVM_ABI void set(Value *Val)
User * getUser() const
Returns the User that contains this Use.
Value * getOperand(unsigned i) const
This class is used to represent an VP_GATHER node.
This class is used to represent a VP_LOAD node.
This class is used to represent an VP_SCATTER node.
This class is used to represent a VP_STORE node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr bool isKnownEven() const
A return value of true indicates we know at compile time that the number of elements (vscale * Min) i...
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt clmulr(const APInt &LHS, const APInt &RHS)
Perform a reversed carry-less multiply.
LLVM_ABI APInt mulhu(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on zero-extended operands.
LLVM_ABI APInt avgCeilU(const APInt &C1, const APInt &C2)
Compute the ceil of the unsigned average of C1 and C2.
LLVM_ABI APInt avgFloorU(const APInt &C1, const APInt &C2)
Compute the floor of the unsigned average of C1 and C2.
LLVM_ABI APInt fshr(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift right.
LLVM_ABI APInt mulhs(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on sign-extended operands.
LLVM_ABI APInt clmul(const APInt &LHS, const APInt &RHS)
Perform a carry-less multiply, also known as XOR multiplication, and return low-bits.
APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
LLVM_ABI APInt fshl(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift left.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
LLVM_ABI APInt clmulh(const APInt &LHS, const APInt &RHS)
Perform a carry-less multiply, and return high-bits.
APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
LLVM_ABI APInt avgFloorS(const APInt &C1, const APInt &C2)
Compute the floor of the signed average of C1 and C2.
LLVM_ABI APInt avgCeilS(const APInt &C1, const APInt &C2)
Compute the ceil of the signed average of C1 and C2.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
LLVM_ABI CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X...
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ MDNODE_SDNODE
MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to reference metadata in the IR.
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ PTRADD
PTRADD represents pointer arithmetic semantics, for targets that opt in using shouldPreservePtrArith(...
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ POISON
POISON - A poison node.
@ PARTIAL_REDUCE_SMLA
PARTIAL_REDUCE_[U|S]MLA(Accumulator, Input1, Input2) The partial reduction nodes sign or zero extend ...
@ VECREDUCE_SEQ_FADD
Generic reduction nodes.
@ MLOAD
Masked load and store - consecutive vector load and store operations with additional mask operand tha...
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ JUMP_TABLE_DEBUG_INFO
JUMP_TABLE_DEBUG_INFO - Jumptable debug info.
@ BSWAP
Byte Swap and Counting operators.
@ DEACTIVATION_SYMBOL
Untyped node storing deactivation symbol reference (DeactivationSymbolSDNode).
@ ATOMIC_STORE
OUTCHAIN = ATOMIC_STORE(INCHAIN, val, ptr) This corresponds to "store atomic" instruction.
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ FATAN2
FATAN2 - atan2, inspired by libm.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ ATOMIC_CMP_SWAP_WITH_SUCCESS
Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
@ VECREDUCE_FMAXIMUM
FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm....
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ FP16_TO_FP
FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions and truncation for half-preci...
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ CLMUL
Carry-less multiplication operations.
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SRCVALUE
SRCVALUE - This is a node type that holds a Value* that is used to make reference to a value in the L...
@ EH_LABEL
EH_LABEL - Represents a label in mid basic block used to track locations needed for debug and excepti...
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ VECREDUCE_FADD
These reductions have relaxed evaluation order semantics, and have a single vector operand.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ TargetIndex
TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ BR_CC
BR_CC - Conditional branch.
@ SSUBO
Same for subtraction.
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ ATOMIC_LOAD
Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr) This corresponds to "load atomic" instruction.
@ UNDEF
UNDEF - An undefined node.
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
@ GET_ACTIVE_LANE_MASK
GET_ACTIVE_LANE_MASK - this corrosponds to the llvm.get.active.lane.mask intrinsic.
@ BasicBlock
Various leaf nodes.
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
@ ARITH_FENCE
ARITH_FENCE - This corresponds to a arithmetic fence intrinsic.
@ CTLS
Count leading redundant sign bits.
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ VSCALE
VSCALE(IMM) - Returns the runtime scaling factor used to calculate the number of elements within a sc...
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ VECTOR_SPLICE_LEFT
VECTOR_SPLICE_LEFT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) left by IMM elements and retu...
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ LIFETIME_START
This corresponds to the llvm.lifetime.
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ MGATHER
Masked gather and scatter - load and store operations for a vector of random addresses with additiona...
@ HANDLENODE
HANDLENODE node - Used as a handle for various purposes.
@ BF16_TO_FP
BF16_TO_FP, FP_TO_BF16 - These operators are used to perform promotions and truncation for bfloat16.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ GET_FPENV_MEM
Gets the current floating-point environment.
@ PSEUDO_PROBE
Pseudo probe for AutoFDO, as a place holder in a basic block to improve the sample counts quality.
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ VECTOR_SPLICE_RIGHT
VECTOR_SPLICE_RIGHT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) right by IMM elements and re...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FFREXP
FFREXP - frexp, extract fractional and exponent component of a floating-point value.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ ADDRSPACECAST
ADDRSPACECAST - This operator converts between pointers of different address spaces.
@ EXPERIMENTAL_VECTOR_HISTOGRAM
Experimental vector histogram intrinsic Operands: Input Chain, Inc, Mask, Base, Index,...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ SET_FPENV_MEM
Sets the current floating point environment.
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
bool isExtOpcode(unsigned Opcode)
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed)
Returns true if the specified node is a vector where all elements can be truncated to the specified e...
LLVM_ABI bool isVPBinaryOp(unsigned Opcode)
Whether this is a vector-predicated binary operation opcode.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI std::optional< unsigned > getBaseOpcodeForVP(unsigned Opcode, bool hasFPExcept)
Translate this VP Opcode to its corresponding non-VP Opcode.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI std::optional< unsigned > getVPForBaseOpcode(unsigned Opcode)
Translate this non-VP Opcode to its corresponding VP Opcode.
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool matchUnaryPredicateImpl(SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUI...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI NodeType getInverseMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns ISD::(U|S)MAX and ISD::(U|S)MIN,...
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
LLVM_ABI bool isVPReduction(unsigned Opcode)
Whether this is a vector-predicated reduction opcode.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X ...
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
bool operator<(int64_t V1, const APSInt &V2)
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI SDValue peekThroughExtractSubvectors(SDValue V)
Return the non-extracted vector source operand of V if it exists.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
LLVM_ABI bool isOneOrOneSplatFP(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant floating-point value, or a splatted vector of a constant float...
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
auto cast_or_null(const Y &Val)
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
LLVM_ABI SDValue peekThroughInsertVectorElt(SDValue V, const APInt &DemandedElts)
Recursively peek through INSERT_VECTOR_ELT nodes, returning the source vector operand of V,...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force=false)
void sort(IteratorTy Start, IteratorTy End)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
constexpr std::underlying_type_t< Enum > to_underlying(Enum E)
Returns underlying integer value of an enum.
FunctionAddr VTableAddr Count
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
CodeGenOptLevel
Code generation optimization level.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
LLVM_ABI bool isNullConstantOrUndef(SDValue V)
Returns true if V is a constant integer zero or an UNDEF node.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
OutputIt copy(R &&Range, OutputIt Out)
constexpr unsigned BitWidth
bool funcReturnsFirstArgOfCall(const CallInst &CI)
Returns true if the parent of CI returns CI's first argument after calling CI.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool isZeroOrZeroSplatFP(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant (+/-)0.0 floating-point value or a splatted vector thereof (wi...
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
LLVM_ABI bool isOnesOrOnesSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
MDNode * TBAAStruct
The tag for type-based alias analysis (tbaa struct).
MDNode * TBAA
The tag for type-based alias analysis.
This struct is a compact representation of a valid (non-zero power of two) alignment.
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
void move(uint64_t Delta)
Moves the Offset and adjusts Length accordingly.
const ConstantDataArray * Array
ConstantDataArray pointer.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
intptr_t getRawBits() const
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
void makeNonNegative()
Make this value non-negative.
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
void makeNegative()
Make this value negative.
void setAllConflict()
Make all bits known to be both zero and one.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
void setAllZero()
Make all bits known to be zero and discard any previous information.
KnownBits reverseBits() const
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
static LLVM_ABI KnownBits abdu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for abdu(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
static LLVM_ABI KnownBits avgFloorU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorU.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
static LLVM_ABI KnownBits computeForSubBorrow(const KnownBits &LHS, KnownBits RHS, const KnownBits &Borrow)
Compute known bits results from subtracting RHS from LHS with 1-bit Borrow.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits abds(KnownBits LHS, KnownBits RHS)
Compute known bits for abds(LHS, RHS).
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
bool isStrictlyPositive() const
Returns true if this value is known to be positive.
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static LLVM_ABI KnownBits avgFloorS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorS.
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
bool isNegative() const
Returns true if this value is known to be negative.
static LLVM_ABI KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry)
Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits avgCeilU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilU.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
static LLVM_ABI KnownBits avgCeilS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilS.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI bool isDereferenceable(unsigned Size, LLVMContext &C, const DataLayout &DL) const
Return true if memory region [V, V+Offset+Size) is known to be dereferenceable.
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
These are IR-level optimization flags that may be propagated to SDNodes.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
DAGUpdateListener *const Next
virtual void NodeDeleted(SDNode *N, SDNode *E)
The node N that was deleted and, if E is not null, an equivalent node E that replaced it.
virtual void NodeInserted(SDNode *N)
The node N that was inserted.
virtual void NodeUpdated(SDNode *N)
The node N that was updated.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)