31#define DEBUG_TYPE "vectorutils"
39 cl::desc(
"Maximum factor for an interleaved access group (default = 8)"),
49 case Intrinsic::bswap:
50 case Intrinsic::bitreverse:
51 case Intrinsic::ctpop:
60 case Intrinsic::sadd_sat:
61 case Intrinsic::ssub_sat:
62 case Intrinsic::uadd_sat:
63 case Intrinsic::usub_sat:
64 case Intrinsic::smul_fix:
65 case Intrinsic::smul_fix_sat:
66 case Intrinsic::umul_fix:
67 case Intrinsic::umul_fix_sat:
72 case Intrinsic::atan2:
75 case Intrinsic::sincos:
76 case Intrinsic::sincospi:
82 case Intrinsic::exp10:
84 case Intrinsic::frexp:
85 case Intrinsic::ldexp:
87 case Intrinsic::log10:
90 case Intrinsic::minnum:
91 case Intrinsic::maxnum:
92 case Intrinsic::minimum:
93 case Intrinsic::maximum:
94 case Intrinsic::minimumnum:
95 case Intrinsic::maximumnum:
97 case Intrinsic::copysign:
98 case Intrinsic::floor:
100 case Intrinsic::trunc:
101 case Intrinsic::rint:
102 case Intrinsic::nearbyint:
103 case Intrinsic::round:
104 case Intrinsic::roundeven:
107 case Intrinsic::fmuladd:
108 case Intrinsic::is_fpclass:
109 case Intrinsic::powi:
110 case Intrinsic::canonicalize:
111 case Intrinsic::fptosi_sat:
112 case Intrinsic::fptoui_sat:
113 case Intrinsic::lround:
114 case Intrinsic::llround:
115 case Intrinsic::lrint:
116 case Intrinsic::llrint:
117 case Intrinsic::ucmp:
118 case Intrinsic::scmp:
131 return TTI->isTargetIntrinsicTriviallyScalarizable(
ID);
134 case Intrinsic::uadd_with_overflow:
135 case Intrinsic::sadd_with_overflow:
136 case Intrinsic::ssub_with_overflow:
137 case Intrinsic::usub_with_overflow:
138 case Intrinsic::umul_with_overflow:
139 case Intrinsic::smul_with_overflow:
147 unsigned ScalarOpdIdx,
151 return TTI->isTargetIntrinsicWithScalarOpAtArg(
ID, ScalarOpdIdx);
159 case Intrinsic::vp_abs:
160 case Intrinsic::ctlz:
161 case Intrinsic::vp_ctlz:
162 case Intrinsic::cttz:
163 case Intrinsic::vp_cttz:
164 case Intrinsic::is_fpclass:
165 case Intrinsic::vp_is_fpclass:
166 case Intrinsic::powi:
167 case Intrinsic::vector_extract:
168 return (ScalarOpdIdx == 1);
169 case Intrinsic::smul_fix:
170 case Intrinsic::smul_fix_sat:
171 case Intrinsic::umul_fix:
172 case Intrinsic::umul_fix_sat:
173 return (ScalarOpdIdx == 2);
174 case Intrinsic::experimental_vp_splice:
175 return ScalarOpdIdx == 2 || ScalarOpdIdx == 4;
186 return TTI->isTargetIntrinsicWithOverloadTypeAtArg(
ID, OpdIdx);
189 return OpdIdx == -1 || OpdIdx == 0;
192 case Intrinsic::fptosi_sat:
193 case Intrinsic::fptoui_sat:
194 case Intrinsic::lround:
195 case Intrinsic::llround:
196 case Intrinsic::lrint:
197 case Intrinsic::llrint:
198 case Intrinsic::vp_lrint:
199 case Intrinsic::vp_llrint:
200 case Intrinsic::ucmp:
201 case Intrinsic::scmp:
202 case Intrinsic::vector_extract:
203 return OpdIdx == -1 || OpdIdx == 0;
204 case Intrinsic::modf:
205 case Intrinsic::sincos:
206 case Intrinsic::sincospi:
207 case Intrinsic::is_fpclass:
208 case Intrinsic::vp_is_fpclass:
210 case Intrinsic::powi:
211 case Intrinsic::ldexp:
212 return OpdIdx == -1 || OpdIdx == 1;
222 return TTI->isTargetIntrinsicWithStructReturnOverloadAtField(
ID, RetIdx);
225 case Intrinsic::frexp:
226 return RetIdx == 0 || RetIdx == 1;
242 ID == Intrinsic::lifetime_end ||
ID == Intrinsic::assume ||
243 ID == Intrinsic::experimental_noalias_scope_decl ||
244 ID == Intrinsic::sideeffect ||
ID == Intrinsic::pseudoprobe)
251 case Intrinsic::vector_interleave2:
253 case Intrinsic::vector_interleave3:
255 case Intrinsic::vector_interleave4:
257 case Intrinsic::vector_interleave5:
259 case Intrinsic::vector_interleave6:
261 case Intrinsic::vector_interleave7:
263 case Intrinsic::vector_interleave8:
272 case Intrinsic::vector_deinterleave2:
274 case Intrinsic::vector_deinterleave3:
276 case Intrinsic::vector_deinterleave4:
278 case Intrinsic::vector_deinterleave5:
280 case Intrinsic::vector_deinterleave6:
282 case Intrinsic::vector_deinterleave7:
284 case Intrinsic::vector_deinterleave8:
292 [[maybe_unused]]
unsigned Factor =
295 assert(Factor && Factor == DISubtypes.
size() &&
296 "unexpected deinterleave factor or result type");
304 assert(V->getType()->isVectorTy() &&
"Not looking at a vector?");
308 unsigned Width = FVTy->getNumElements();
314 return C->getAggregateElement(EltNo);
325 return III->getOperand(1);
328 if (III == III->getOperand(0))
344 if (InEl < (
int)LHSWidth)
353 if (
Constant *Elt =
C->getAggregateElement(EltNo))
354 if (Elt->isNullValue())
360 if (EltNo < VTy->getElementCount().getKnownMinValue())
375 if (SplatIndex != -1 && SplatIndex != M)
381 assert((SplatIndex == -1 || SplatIndex >= 0) &&
"Negative index?");
392 return C->getSplatValue();
413 return C->getSplatValue() !=
nullptr;
428 return Shuf->getMaskValue(Index) == Index;
451 const APInt &DemandedElts,
APInt &DemandedLHS,
452 APInt &DemandedRHS,
bool AllowUndefElts) {
456 if (DemandedElts.
isZero())
460 if (
all_of(Mask, [](
int Elt) {
return Elt == 0; })) {
465 for (
unsigned I = 0, E = Mask.size();
I != E; ++
I) {
467 assert((-1 <= M) && (M < (SrcWidth * 2)) &&
468 "Invalid shuffle mask constant");
470 if (!DemandedElts[
I] || (AllowUndefElts && (M < 0)))
481 DemandedRHS.
setBit(M - SrcWidth);
488 std::array<std::pair<int, int>, 2> &SrcInfo) {
489 const int SignalValue = NumElts * 2;
490 SrcInfo[0] = {-1, SignalValue};
491 SrcInfo[1] = {-1, SignalValue};
495 int Src = M >= NumElts;
496 int Diff = (int)i - (M % NumElts);
498 for (
int j = 0; j < 2; j++) {
499 auto &[SrcE, DiffE] = SrcInfo[j];
501 assert(DiffE == SignalValue);
505 if (SrcE == Src && DiffE == Diff) {
514 return SrcInfo[0].first != -1;
519 assert(Scale > 0 &&
"Unexpected scaling factor");
523 ScaledMask.
assign(Mask.begin(), Mask.end());
528 for (
int MaskElt : Mask) {
531 "Overflowed 32-bits");
533 for (
int SliceElt = 0; SliceElt != Scale; ++SliceElt)
534 ScaledMask.
push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
540 assert(Scale > 0 &&
"Unexpected scaling factor");
544 ScaledMask.
assign(Mask.begin(), Mask.end());
549 int NumElts = Mask.size();
550 if (NumElts % Scale != 0)
554 ScaledMask.
reserve(NumElts / Scale);
559 assert((
int)MaskSlice.
size() == Scale &&
"Expected Scale-sized slice.");
562 int SliceFront = MaskSlice.
front();
563 if (SliceFront < 0) {
571 if (SliceFront % Scale != 0)
574 for (
int i = 1; i < Scale; ++i)
575 if (MaskSlice[i] != SliceFront + i)
577 ScaledMask.
push_back(SliceFront / Scale);
579 Mask = Mask.drop_front(Scale);
580 }
while (!Mask.empty());
582 assert((
int)ScaledMask.
size() * Scale == NumElts &&
"Unexpected scaled mask");
591 unsigned NumElts = M.size();
592 if (NumElts % 2 != 0)
596 for (
unsigned i = 0; i < NumElts; i += 2) {
601 if (
M0 == -1 &&
M1 == -1) {
606 if (
M0 == -1 &&
M1 != -1 && (
M1 % 2) == 1) {
611 if (
M0 != -1 && (
M0 % 2) == 0 && ((
M0 + 1) ==
M1 ||
M1 == -1)) {
620 assert(NewMask.
size() == NumElts / 2 &&
"Incorrect size for mask!");
626 unsigned NumSrcElts = Mask.size();
627 assert(NumSrcElts > 0 && NumDstElts > 0 &&
"Unexpected scaling factor");
630 if (NumSrcElts == NumDstElts) {
631 ScaledMask.
assign(Mask.begin(), Mask.end());
636 assert(((NumSrcElts % NumDstElts) == 0 || (NumDstElts % NumSrcElts) == 0) &&
637 "Unexpected scaling factor");
639 if (NumSrcElts > NumDstElts) {
640 int Scale = NumSrcElts / NumDstElts;
644 int Scale = NumDstElts / NumSrcElts;
651 std::array<SmallVector<int, 16>, 2> TmpMasks;
654 for (
unsigned Scale = 2; Scale <= InputMask.
size(); ++Scale) {
664 ArrayRef<int> Mask,
unsigned NumOfSrcRegs,
unsigned NumOfDestRegs,
665 unsigned NumOfUsedRegs,
function_ref<
void()> NoInputAction,
674 int Sz = Mask.size();
675 unsigned SzDest = Sz / NumOfDestRegs;
676 unsigned SzSrc = Sz / NumOfSrcRegs;
677 for (
unsigned I = 0;
I < NumOfDestRegs; ++
I) {
678 auto &RegMasks = Res[
I];
679 RegMasks.
assign(2 * NumOfSrcRegs, {});
682 for (
unsigned K = 0; K < SzDest; ++K) {
683 int Idx =
I * SzDest + K;
688 int MaskIdx = Mask[Idx] % Sz;
689 int SrcRegIdx = MaskIdx / SzSrc + (Mask[Idx] >= Sz ? NumOfSrcRegs : 0);
692 if (RegMasks[SrcRegIdx].empty())
694 RegMasks[SrcRegIdx][K] = MaskIdx % SzSrc;
702 switch (NumSrcRegs) {
711 unsigned SrcReg = std::distance(Dest.begin(), It);
712 SingleInputAction(*It, SrcReg,
I);
724 for (
int Idx = 0, VF = FirstMask.
size(); Idx < VF; ++Idx) {
727 "Expected undefined mask element.");
728 FirstMask[Idx] = SecondMask[Idx] + VF;
733 for (
int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
749 if (FirstIdx == SecondIdx) {
755 SecondMask = RegMask;
756 CombineMasks(FirstMask, SecondMask);
757 ManyInputsAction(FirstMask, FirstIdx, SecondIdx, NewReg);
759 NormalizeMask(FirstMask);
761 SecondMask = FirstMask;
762 SecondIdx = FirstIdx;
764 if (FirstIdx != SecondIdx && SecondIdx >= 0) {
765 CombineMasks(SecondMask, FirstMask);
766 ManyInputsAction(SecondMask, SecondIdx, FirstIdx, NewReg);
768 Dest[FirstIdx].clear();
769 NormalizeMask(SecondMask);
771 }
while (SecondIdx >= 0);
779 const APInt &DemandedElts,
781 APInt &DemandedRHS) {
782 assert(VectorBitWidth >= 128 &&
"Vectors smaller than 128 bit not supported");
783 int NumLanes = VectorBitWidth / 128;
785 int NumEltsPerLane = NumElts / NumLanes;
786 int HalfEltsPerLane = NumEltsPerLane / 2;
792 for (
int Idx = 0; Idx != NumElts; ++Idx) {
793 if (!DemandedElts[Idx])
795 int LaneIdx = (Idx / NumEltsPerLane) * NumEltsPerLane;
796 int LocalIdx = Idx % NumEltsPerLane;
797 if (LocalIdx < HalfEltsPerLane) {
798 DemandedLHS.
setBit(LaneIdx + 2 * LocalIdx);
800 LocalIdx -= HalfEltsPerLane;
801 DemandedRHS.
setBit(LaneIdx + 2 * LocalIdx);
822 bool SeenExtFromIllegalType =
false;
823 for (
auto *BB : Blocks)
824 for (
auto &
I : *BB) {
825 InstructionSet.insert(&
I);
828 !
TTI->isTypeLegal(
I.getOperand(0)->getType()))
829 SeenExtFromIllegalType =
true;
833 !
I.getType()->isVectorTy() &&
834 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
845 if (Worklist.
empty() || (
TTI && !SeenExtFromIllegalType))
849 while (!Worklist.
empty()) {
858 if (DB.getDemandedBits(
I).getBitWidth() > 64)
861 uint64_t V = DB.getDemandedBits(
I).getZExtValue();
868 !InstructionSet.count(
I))
875 !
I->getType()->isIntegerTy()) {
876 DBits[Leader] |= ~0ULL;
891 if (DBits[Leader] == ~0ULL)
895 for (
Value *O :
I->operands()) {
905 for (
auto &
I : DBits)
906 for (
auto *U :
I.first->users())
907 if (U->getType()->isIntegerTy() && DBits.
count(U) == 0)
910 for (
const auto &E : ECs) {
915 LeaderDemandedBits |= DBits[M];
938 Type *Ty = M->getType();
940 Ty =
MI->getOperand(0)->getType();
942 if (MinBW >= Ty->getScalarSizeInBits())
955 U.getOperandNo() == 1)
956 return CI->uge(MinBW);
970template <
typename ListT>
975 List.insert(AccGroups);
979 for (
const auto &AccGroupListOp : AccGroups->
operands()) {
991 if (AccGroups1 == AccGroups2)
998 if (Union.size() == 0)
1000 if (Union.size() == 1)
1012 if (!MayAccessMem1 && !MayAccessMem2)
1015 return Inst2->
getMetadata(LLVMContext::MD_access_group);
1017 return Inst1->
getMetadata(LLVMContext::MD_access_group);
1033 if (AccGroupSet2.
count(MD1))
1039 if (AccGroupSet2.
count(Item))
1044 if (Intersection.
size() == 0)
1046 if (Intersection.
size() == 1)
1059 static const unsigned SupportedIDs[] = {
1060 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
1061 LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
1062 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
1063 LLVMContext::MD_access_group, LLVMContext::MD_mmra};
1066 for (
unsigned Idx = 0; Idx !=
Metadata.size();) {
1084 for (
auto &[Kind, MD] :
Metadata) {
1089 for (
int J = 1, E = VL.
size(); MD && J != E; ++J) {
1094 case LLVMContext::MD_mmra: {
1098 case LLVMContext::MD_tbaa:
1101 case LLVMContext::MD_alias_scope:
1104 case LLVMContext::MD_fpmath:
1107 case LLVMContext::MD_noalias:
1108 case LLVMContext::MD_nontemporal:
1109 case LLVMContext::MD_invariant_load:
1112 case LLVMContext::MD_access_group:
1137 for (
unsigned i = 0; i < VF; i++)
1138 for (
unsigned j = 0; j < Group.
getFactor(); ++j) {
1139 unsigned HasMember = Group.
getMember(j) ? 1 : 0;
1140 Mask.push_back(Builder.getInt1(HasMember));
1149 for (
unsigned i = 0; i < VF; i++)
1150 for (
unsigned j = 0; j < ReplicationFactor; j++)
1159 for (
unsigned i = 0; i < VF; i++)
1160 for (
unsigned j = 0; j < NumVecs; j++)
1161 Mask.push_back(j * VF + i);
1169 for (
unsigned i = 0; i < VF; i++)
1170 Mask.push_back(Start + i * Stride);
1177 unsigned NumUndefs) {
1179 for (
unsigned i = 0; i < NumInts; i++)
1180 Mask.push_back(Start + i);
1182 for (
unsigned i = 0; i < NumUndefs; i++)
1191 int NumEltsSigned = NumElts;
1192 assert(NumEltsSigned > 0 &&
"Expected smaller or non-zero element count");
1197 for (
int MaskElt : Mask) {
1198 assert((MaskElt < NumEltsSigned * 2) &&
"Expected valid shuffle mask");
1199 int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt;
1212 assert(VecTy1 && VecTy2 &&
1213 VecTy1->getScalarType() == VecTy2->getScalarType() &&
1214 "Expect two vectors with the same element type");
1218 assert(NumElts1 >= NumElts2 &&
"Unexpect the first vector has less elements");
1220 if (NumElts1 > NumElts2) {
1222 V2 = Builder.CreateShuffleVector(
1226 return Builder.CreateShuffleVector(
1232 unsigned NumVecs = Vecs.
size();
1233 assert(NumVecs > 1 &&
"Should be at least two vectors");
1239 for (
unsigned i = 0; i < NumVecs - 1; i += 2) {
1240 Value *V0 = ResList[i], *V1 = ResList[i + 1];
1241 assert((V0->
getType() == V1->getType() || i == NumVecs - 2) &&
1242 "Only the last vector may have a different type");
1248 if (NumVecs % 2 != 0)
1249 TmpList.
push_back(ResList[NumVecs - 1]);
1252 NumVecs = ResList.
size();
1253 }
while (NumVecs > 1);
1263 "Mask must be a vector of i1");
1276 if (
auto *MaskElt = ConstMask->getAggregateElement(
I))
1289 "Mask must be a vector of i1");
1302 if (
auto *MaskElt = ConstMask->getAggregateElement(
I))
1315 "Mask must be a vector of i1");
1328 if (
auto *MaskElt = ConstMask->getAggregateElement(
I))
1342 "Mask must be a fixed width vector of i1");
1344 const unsigned VWidth =
1348 for (
unsigned i = 0; i < VWidth; i++)
1349 if (CV->getAggregateElement(i)->isNullValue())
1351 return DemandedElts;
1354bool InterleavedAccessInfo::isStrided(
int Stride) {
1355 unsigned Factor = std::abs(Stride);
1359void InterleavedAccessInfo::collectConstStrideAccesses(
1362 auto &
DL = TheLoop->getHeader()->getDataLayout();
1370 LoopBlocksDFS DFS(TheLoop);
1372 for (BasicBlock *BB :
make_range(DFS.beginRPO(), DFS.endRPO()))
1373 for (
auto &
I : *BB) {
1381 uint64_t
Size =
DL.getTypeAllocSize(ElementTy);
1382 if (
Size * 8 !=
DL.getTypeSizeInBits(ElementTy))
1392 int64_t Stride =
getPtrStride(PSE, ElementTy, Ptr, TheLoop, *DT, Strides,
1397 AccessStrideInfo[&
I] = StrideDescriptor(Stride, Scev,
Size,
1439 bool EnablePredicatedInterleavedMemAccesses) {
1441 const auto &Strides = LAI->getSymbolicStrides();
1445 collectConstStrideAccesses(AccessStrideInfo, Strides);
1447 if (AccessStrideInfo.
empty())
1451 collectDependences();
1472 for (
auto BI = AccessStrideInfo.
rbegin(), E = AccessStrideInfo.
rend();
1475 StrideDescriptor DesB = BI->second;
1481 if (isStrided(DesB.Stride) &&
1482 (!isPredicated(
B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
1487 GroupB = createInterleaveGroup(
B, DesB.Stride, DesB.Alignment);
1488 if (
B->mayWriteToMemory())
1489 StoreGroups.
insert(GroupB);
1491 LoadGroups.
insert(GroupB);
1495 for (
auto AI = std::next(BI); AI != E; ++AI) {
1497 StrideDescriptor DesA = AI->second;
1522 if (MemberOfGroupB && !canReorderMemAccessesForInterleavedGroups(
1523 A, &*AccessStrideInfo.
find(MemberOfGroupB)))
1524 return MemberOfGroupB;
1534 if (
A->mayWriteToMemory() && GroupA != GroupB) {
1542 if (GroupB && LoadGroups.
contains(GroupB))
1543 DependentInst = DependentMember(GroupB, &*AI);
1544 else if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI))
1547 if (DependentInst) {
1552 if (GroupA && StoreGroups.
contains(GroupA)) {
1554 "dependence between "
1555 << *
A <<
" and " << *DependentInst <<
'\n');
1556 StoreGroups.
remove(GroupA);
1557 releaseGroup(GroupA);
1563 if (GroupB && LoadGroups.
contains(GroupB)) {
1565 <<
" as complete.\n");
1566 CompletedLoadGroups.
insert(GroupB);
1570 if (CompletedLoadGroups.
contains(GroupB)) {
1578 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1588 (
A->mayReadFromMemory() !=
B->mayReadFromMemory()) ||
1589 (
A->mayWriteToMemory() !=
B->mayWriteToMemory()))
1594 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1604 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1611 if (DistanceToB %
static_cast<int64_t
>(DesB.Size))
1618 if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1619 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1625 GroupB->
getIndex(
B) + DistanceToB /
static_cast<int64_t
>(DesB.Size);
1630 <<
" into the interleave group with" << *
B
1632 InterleaveGroupMap[
A] = GroupB;
1635 if (
A->mayReadFromMemory())
1643 const char *FirstOrLast) ->
bool {
1645 assert(Member &&
"Group member does not exist");
1648 if (
getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, *DT, Strides,
1652 LLVM_DEBUG(
dbgs() <<
"LV: Invalidate candidate interleaved group due to "
1654 <<
" group member potentially pointer-wrapping.\n");
1655 releaseGroup(Group);
1673 for (
auto *Group : LoadGroups) {
1685 if (InvalidateGroupIfMemberMayWrap(Group, 0,
"first"))
1688 InvalidateGroupIfMemberMayWrap(Group, Group->
getFactor() - 1,
"last");
1697 dbgs() <<
"LV: Invalidate candidate interleaved group due to "
1698 "a reverse access with gaps.\n");
1699 releaseGroup(Group);
1703 dbgs() <<
"LV: Interleaved group requires epilogue iteration.\n");
1704 RequiresScalarEpilogue =
true;
1708 for (
auto *Group : StoreGroups) {
1718 if (!EnablePredicatedInterleavedMemAccesses) {
1720 dbgs() <<
"LV: Invalidate candidate interleaved store group due "
1722 releaseGroup(Group);
1732 if (InvalidateGroupIfMemberMayWrap(Group, 0,
"first"))
1734 for (
int Index = Group->
getFactor() - 1; Index > 0; Index--)
1736 InvalidateGroupIfMemberMayWrap(Group, Index,
"last");
1750 bool ReleasedGroup = InterleaveGroups.
remove_if([&](
auto *Group) {
1751 if (!Group->requiresScalarEpilogue())
1755 <<
"LV: Invalidate candidate interleaved group due to gaps that "
1756 "require a scalar epilogue (not allowed under optsize) and cannot "
1757 "be masked (not enabled). \n");
1758 releaseGroupWithoutRemovingFromSet(Group);
1761 assert(ReleasedGroup &&
"At least one group must be invalidated, as a "
1762 "scalar epilogue was required");
1763 (void)ReleasedGroup;
1764 RequiresScalarEpilogue =
false;
1767template <
typename InstT>
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Generic implementation of equivalence classes through the use Tarjan's efficient union-find algorithm...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides utility for Memory Model Relaxation Annotations (MMRAs).
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static Value * concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, Value *V2)
A helper function for concatenating vectors.
static cl::opt< unsigned > MaxInterleaveGroupFactor("max-interleave-group-factor", cl::Hidden, cl::desc("Maximum factor for an interleaved access group (default = 8)"), cl::init(8))
Maximum factor for an interleaved memory access.
static void addToAccessGroupList(ListT &List, MDNode *AccGroups)
Add all access groups in AccGroups to List.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
int64_t getSExtValue() const
Get sign extended value.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const T & front() const
front - Get the first element.
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
LLVM Basic Block Representation.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
EquivalenceClasses - This represents a collection of equivalence classes and supports three efficient...
iterator_range< member_iterator > members(const ECValue &ECV) const
const ElemTy & getOrInsertLeaderValue(const ElemTy &V)
getOrInsertLeaderValue - Return the leader for the specified value that is in the set.
member_iterator unionSets(const ElemTy &V1, const ElemTy &V2)
union - Merge the two equivalence sets for the specified values, inserting them if they do not alread...
Common base class shared among various IRBuilders.
This instruction inserts a single (scalar) element into a VectorType value.
bool mayReadOrWriteMemory() const
Return true if this instruction may read or write memory.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
void getAllMetadataOtherThanDebugLoc(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
This does the same thing as getAllMetadata, except that it filters out the debug location.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
bool isFull() const
Return true if this group is full, i.e. it has no gaps.
uint32_t getIndex(const InstTy *Instr) const
Get the index for the given member.
void setInsertPos(InstTy *Inst)
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
bool insertMember(InstTy *Instr, int32_t Index, Align NewAlign)
Try to insert a new member Instr with index Index and alignment NewAlign.
InterleaveGroup< Instruction > * getInterleaveGroup(const Instruction *Instr) const
Get the interleave group that Instr belongs to.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
bool isInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleave group.
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
LLVM_ABI void invalidateGroupsRequiringScalarEpilogue()
Invalidate groups that require a scalar epilogue (due to gaps).
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
static LLVM_ABI MDNode * getMostGenericAliasScope(MDNode *A, MDNode *B)
static LLVM_ABI MDNode * getMostGenericTBAA(MDNode *A, MDNode *B)
ArrayRef< MDOperand > operands() const
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
static LLVM_ABI MDNode * getMostGenericFPMath(MDNode *A, MDNode *B)
unsigned getNumOperands() const
Return number of MDNode operands.
static LLVM_ABI MDNode * intersect(MDNode *A, MDNode *B)
LLVMContext & getContext() const
Tracking metadata reference owned by Metadata.
This class implements a map that also provides access to all stored values in a deterministic order.
iterator find(const KeyT &Key)
reverse_iterator rbegin()
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class represents a constant integer value.
const APInt & getAPInt() const
bool remove(const value_type &X)
Remove an item from the set vector.
bool contains(const_arg_type key) const
Check if the SetVector contains the given key.
bool insert(const value_type &X)
Insert a new element into the SetVector.
This instruction constructs a fixed permutation of two input vectors.
int getMaskValue(unsigned Elt) const
Return the shuffle mask value of this instruction for the given element index.
VectorType * getType() const
Overload to return most specific vector type.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
bool remove_if(UnaryPredicate P)
Remove elements that match the given predicate.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
ArrayRef< Type * > subtypes() const
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
static LLVM_ABI bool isVPCast(Intrinsic::ID ID)
static LLVM_ABI std::optional< unsigned > getVectorLengthParamPos(Intrinsic::ID IntrinsicID)
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Base class of all SIMD vector types.
Type * getElementType() const
An efficient, type-erasing, non-owning reference to a callable.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI bool isTargetIntrinsic(ID IID)
isTargetIntrinsic - Returns true if IID is an intrinsic specific to a certain target.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
bool match(Val *V, const Pattern &P)
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool isTriviallyScalarizable(Intrinsic::ID ID, const TargetTransformInfo *TTI)
Identify if the intrinsic is trivially scalarizable.
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
LLVM_ABI bool canInstructionHaveMMRAs(const Instruction &I)
LLVM_ABI APInt possiblyDemandedEltsInMask(Value *Mask)
Given a mask vector of the form <Y x i1>, return an APInt (of bitwidth Y) for each lane which may be ...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
LLVM_ABI llvm::SmallVector< int, 16 > createUnaryMask(ArrayRef< int > Mask, unsigned NumElts)
Given a shuffle mask for a binary shuffle, create the equivalent shuffle mask assuming both operands ...
LLVM_ABI void getMetadataToPropagate(Instruction *Inst, SmallVectorImpl< std::pair< unsigned, MDNode * > > &Metadata)
Add metadata from Inst to Metadata, if it can be preserved after vectorization.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
LLVM_ABI bool widenShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Try to transform a shuffle mask by replacing elements with the scaled index for an equivalent mask of...
LLVM_ABI Instruction * propagateMetadata(Instruction *I, ArrayRef< Value * > VL)
Specifically, let Kinds = [MD_tbaa, MD_alias_scope, MD_noalias, MD_fpmath, MD_nontemporal,...
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
LLVM_ABI MDNode * intersectAccessGroups(const Instruction *Inst1, const Instruction *Inst2)
Compute the access-group list of access groups that Inst1 and Inst2 are both in.
unsigned M1(unsigned Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
constexpr unsigned MaxAnalysisRecursionDepth
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
LLVM_ABI void getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS)
Compute the demanded elements mask of horizontal binary operations.
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI unsigned getDeinterleaveIntrinsicFactor(Intrinsic::ID ID)
Returns the corresponding factor of llvm.vector.deinterleaveN intrinsics.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI unsigned getInterleaveIntrinsicFactor(Intrinsic::ID ID)
Returns the corresponding factor of llvm.vector.interleaveN intrinsics.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool maskIsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
constexpr int PoisonMaskElem
LLVM_ABI bool isValidAsAccessGroup(MDNode *AccGroup)
Return whether an MDNode might represent an access group.
LLVM_ABI Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB, const TargetLibraryInfo *TLI)
Map a call instruction to an intrinsic ID.
LLVM_ABI bool isVectorIntrinsicWithStructReturnOverloadAtField(Intrinsic::ID ID, int RetIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic that returns a struct is overloaded at the struct elem...
LLVM_ABI void narrowShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Replace each shuffle mask index with the scaled sequential indices for an equivalent mask of narrowed...
LLVM_ABI bool isMaskedSlidePair(ArrayRef< int > Mask, int NumElts, std::array< std::pair< int, int >, 2 > &SrcInfo)
Does this shuffle mask represent either one slide shuffle or a pair of two slide shuffles,...
LLVM_ABI VectorType * getDeinterleavedVectorType(IntrinsicInst *DI)
Given a deinterleaveN intrinsic, return the (narrow) vector type of each factor.
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI const SCEV * replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &PtrToStride, Value *Ptr)
Return the SCEV corresponding to a pointer with the symbolic stride replaced with constant one,...
LLVM_ABI Value * findScalarElement(Value *V, unsigned EltNo)
Given a vector and an element number, see if the scalar value is already around as a register,...
LLVM_ABI MDNode * uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2)
Compute the union of two access-group lists.
unsigned M0(unsigned Val)
auto make_second_range(ContainerTy &&c)
Given a container of pairs, return a range over the second elements.
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
LLVM_ABI bool maskIsAllZeroOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void getShuffleMaskWithWidestElts(ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Repetitively apply widenShuffleMaskElts() for as long as it succeeds, to get the shuffle mask with wi...
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI void processShuffleMasks(ArrayRef< int > Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs, unsigned NumOfUsedRegs, function_ref< void()> NoInputAction, function_ref< void(ArrayRef< int >, unsigned, unsigned)> SingleInputAction, function_ref< void(ArrayRef< int >, unsigned, unsigned, bool)> ManyInputsAction)
Splits and processes shuffle mask depending on the number of input and output registers.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
LLVM_ABI bool maskContainsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if any of the elements of this predicate mask are known to be ...
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI llvm::SmallVector< int, 16 > createSequentialMask(unsigned Start, unsigned NumInts, unsigned NumUndefs)
Create a sequential shuffle mask.
LLVM_ABI std::optional< int64_t > getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, const Loop *Lp, const DominatorTree &DT, const DenseMap< Value *, const SCEV * > &StridesMap=DenseMap< Value *, const SCEV * >(), bool Assume=false, bool ShouldCheckWrap=true)
If the pointer has a constant stride return it in units of the access type size.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
LLVM_ABI bool scaleShuffleMaskElts(unsigned NumDstElts, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Attempt to narrow/widen the Mask shuffle mask to the NumDstElts target width.
LLVM_ABI int getSplatIndex(ArrayRef< int > Mask)
If all non-negative Mask elements are the same value, return that value.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.