59#include "llvm/IR/IntrinsicsAArch64.h"
60#include "llvm/IR/IntrinsicsAMDGPU.h"
61#include "llvm/IR/IntrinsicsRISCV.h"
62#include "llvm/IR/IntrinsicsX86.h"
100 if (
unsigned BitWidth = Ty->getScalarSizeInBits())
103 return DL.getPointerTypeSizeInBits(Ty);
123 const APInt &DemandedElts,
127 DemandedLHS = DemandedRHS = DemandedElts;
134 DemandedElts, DemandedLHS, DemandedRHS);
155 bool UseInstrInfo,
unsigned Depth) {
230 R->uge(
LHS->getType()->getScalarSizeInBits()))
243 assert(LHS->getType() == RHS->getType() &&
244 "LHS and RHS should have the same type");
245 assert(LHS->getType()->isIntOrIntVectorTy() &&
246 "LHS and RHS should be integers");
257 return !
I->user_empty() &&
262 return !
I->user_empty() &&
all_of(
I->users(), [](
const User *U) {
264 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
273 return ::isKnownToBeAPowerOfTwo(
289 return CI->getValue().isStrictlyPositive();
315 return ::isKnownNonEqual(V1, V2, DemandedElts, Q,
Depth);
322 return Mask.isSubsetOf(Known.
Zero);
329 unsigned Depth = 0) {
340 return ::ComputeNumSignBits(
350 return V->getType()->getScalarSizeInBits() - SignBits + 1;
373 const APInt &DemandedElts,
379 const unsigned BitWidth = Ty->getScalarSizeInBits();
382 if (Ty->isVectorTy())
387 const Value *
A =
nullptr, *
B =
nullptr, *
C =
nullptr, *
D =
nullptr;
390 const auto MatchSubBC = [&]() {
407 const auto MatchASubBC = [&]() {
415 const auto MatchCD = [&]() {
432 if (!Match(Op0, Op1) && !Match(Op1, Op0))
435 const auto ComputeKnownBitsOrOne = [&](
const Value *V) {
443 const KnownBits KnownA = ComputeKnownBitsOrOne(
A);
447 const KnownBits KnownD = ComputeKnownBitsOrOne(
D);
464 if (SubBC->
getOpcode() == Instruction::Xor &&
482 const unsigned MinimumNumberOfLeadingZeros = UpperBound.
countl_zero();
488 const APInt &DemandedElts,
495 if (KnownOut.
isUnknown() && !NSW && !NUW)
512 bool NUW,
const APInt &DemandedElts,
529 bool isKnownNegativeOp0 = Known2.
isNegative();
532 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
544 (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
546 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.
isNonZero());
550 bool SelfMultiply = Op0 == Op1;
559 unsigned OutValidBits = 2 * (TyBits - SignBits + 1);
561 if (OutValidBits < TyBits) {
562 APInt KnownZeroMask =
564 Known.
Zero |= KnownZeroMask;
582 unsigned NumRanges = Ranges.getNumOperands() / 2;
587 for (
unsigned i = 0; i < NumRanges; ++i) {
596 "Known bit width must match range bit width!");
599 unsigned CommonPrefixBits =
600 (
Range.getUnsignedMax() ^
Range.getUnsignedMin()).countl_zero();
603 Known.
One &= UnsignedMax & Mask;
604 Known.
Zero &= ~UnsignedMax & Mask;
619 while (!WorkSet.
empty()) {
621 if (!Visited.
insert(V).second)
626 return EphValues.count(cast<Instruction>(U));
631 if (V ==
I || (!V->mayHaveSideEffects() && !V->isTerminator())) {
635 for (
const Use &U : U->operands()) {
650 return CI->isAssumeLikeIntrinsic();
658 bool AllowEphemerals) {
676 if (!AllowEphemerals && Inv == CxtI)
708 auto hasNoFreeCalls = [](
auto Range) {
713 if (!CB->hasFnAttr(Attribute::NoFree))
726 const BasicBlock *AssumeBB = Assume->getParent();
728 if (CtxBB != AssumeBB) {
735 CtxIter = AssumeBB->
end();
738 if (!Assume->comesBefore(CtxI))
744 return hasNoFreeCalls(
make_range(Assume->getIterator(), CtxIter));
773 for (
unsigned ElemIdx = 0, NElem = VC->getNumElements(); ElemIdx < NElem;
776 Pred, VC->getElementAsAPInt(ElemIdx));
785 const PHINode **PhiOut =
nullptr) {
789 CtxIOut =
PHI->getIncomingBlock(*U)->getTerminator();
805 IncPhi && IncPhi->getNumIncomingValues() == 2) {
806 for (
int Idx = 0; Idx < 2; ++Idx) {
807 if (IncPhi->getIncomingValue(Idx) ==
PHI) {
808 ValOut = IncPhi->getIncomingValue(1 - Idx);
811 CtxIOut = IncPhi->getIncomingBlock(1 - Idx)->getTerminator();
830 "Got assumption for the wrong function!");
833 if (!V->getType()->isPointerTy())
836 *
I,
I->bundle_op_info_begin()[Elem.Index])) {
839 bool AssumeImpliesNonNull = [&]() {
840 if (RK.AttrKind == Attribute::NonNull)
843 if (RK.AttrKind == Attribute::Dereferenceable) {
848 "Dereferenceable attribute without IR argument?");
851 return CI && !CI->isZero();
882 if (
RHS->getType()->isPointerTy()) {
924 Known.
Zero |= ~*
C & *Mask;
930 Known.
One |= *
C & ~*Mask;
989 Invert ? Cmp->getInversePredicate() : Cmp->getPredicate();
995 KnownBits DstKnown(
LHS->getType()->getScalarSizeInBits());
1009 bool Invert,
unsigned Depth) {
1091 "Got assumption for the wrong function!");
1094 if (!V->getType()->isPointerTy())
1097 *
I,
I->bundle_op_info_begin()[Elem.Index])) {
1101 if (RK.WasOn == V && RK.AttrKind == Attribute::Alignment &&
1113 Value *Arg =
I->getArgOperand(0);
1129 if (Trunc && Trunc->getOperand(0) == V &&
1131 if (Trunc->hasNoUnsignedWrap()) {
1179 Known = KF(Known2, Known, ShAmtNonZero);
1190 Value *
X =
nullptr, *
Y =
nullptr;
1192 switch (
I->getOpcode()) {
1193 case Instruction::And:
1194 KnownOut = KnownLHS & KnownRHS;
1204 KnownOut = KnownLHS.
blsi();
1206 KnownOut = KnownRHS.
blsi();
1209 case Instruction::Or:
1210 KnownOut = KnownLHS | KnownRHS;
1212 case Instruction::Xor:
1213 KnownOut = KnownLHS ^ KnownRHS;
1223 const KnownBits &XBits =
I->getOperand(0) ==
X ? KnownLHS : KnownRHS;
1224 KnownOut = XBits.
blsmsk();
1237 if (!KnownOut.
Zero[0] && !KnownOut.
One[0] &&
1258 APInt DemandedEltsLHS, DemandedEltsRHS;
1260 DemandedElts, DemandedEltsLHS,
1263 const auto ComputeForSingleOpFunc =
1265 return KnownBitsFunc(
1270 if (DemandedEltsRHS.
isZero())
1271 return ComputeForSingleOpFunc(
I->getOperand(0), DemandedEltsLHS);
1272 if (DemandedEltsLHS.
isZero())
1273 return ComputeForSingleOpFunc(
I->getOperand(1), DemandedEltsRHS);
1275 return ComputeForSingleOpFunc(
I->getOperand(0), DemandedEltsLHS)
1276 .intersectWith(ComputeForSingleOpFunc(
I->getOperand(1), DemandedEltsRHS));
1286 APInt DemandedElts =
1294 Attribute Attr =
F->getFnAttribute(Attribute::VScaleRange);
1302 return ConstantRange::getEmpty(
BitWidth);
1313 Value *Arm,
bool Invert,
1352 "Input should be a Select!");
1362 const Value *LHS2 =
nullptr, *RHS2 =
nullptr;
1374 return CLow->
sle(*CHigh);
1379 const APInt *&CHigh) {
1380 assert((
II->getIntrinsicID() == Intrinsic::smin ||
1381 II->getIntrinsicID() == Intrinsic::smax) &&
1382 "Must be smin/smax");
1386 if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
1391 if (
II->getIntrinsicID() == Intrinsic::smin)
1393 return CLow->
sle(*CHigh);
1398 const APInt *CLow, *CHigh;
1405 const APInt &DemandedElts,
1412 switch (
I->getOpcode()) {
1414 case Instruction::Load:
1419 case Instruction::And:
1425 case Instruction::Or:
1431 case Instruction::Xor:
1437 case Instruction::Mul: {
1441 DemandedElts, Known, Known2, Q,
Depth);
1444 case Instruction::UDiv: {
1451 case Instruction::SDiv: {
1458 case Instruction::Select: {
1459 auto ComputeForArm = [&](
Value *Arm,
bool Invert) {
1467 ComputeForArm(
I->getOperand(1),
false)
1471 case Instruction::FPTrunc:
1472 case Instruction::FPExt:
1473 case Instruction::FPToUI:
1474 case Instruction::FPToSI:
1475 case Instruction::SIToFP:
1476 case Instruction::UIToFP:
1478 case Instruction::PtrToInt:
1479 case Instruction::PtrToAddr:
1480 case Instruction::IntToPtr:
1483 case Instruction::ZExt:
1484 case Instruction::Trunc: {
1485 Type *SrcTy =
I->getOperand(0)->getType();
1487 unsigned SrcBitWidth;
1495 assert(SrcBitWidth &&
"SrcBitWidth can't be zero");
1499 Inst && Inst->hasNonNeg() && !Known.
isNegative())
1504 case Instruction::BitCast: {
1505 Type *SrcTy =
I->getOperand(0)->getType();
1506 if (SrcTy->isIntOrPtrTy() &&
1509 !
I->getType()->isVectorTy()) {
1517 V->getType()->isFPOrFPVectorTy()) {
1518 Type *FPType = V->getType()->getScalarType();
1530 if (FPClasses &
fcInf)
1542 if (Result.SignBit) {
1543 if (*Result.SignBit)
1554 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1555 !
I->getType()->isIntOrIntVectorTy() ||
1563 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1579 unsigned SubScale =
BitWidth / SubBitWidth;
1581 for (
unsigned i = 0; i != NumElts; ++i) {
1582 if (DemandedElts[i])
1583 SubDemandedElts.
setBit(i * SubScale);
1587 for (
unsigned i = 0; i != SubScale; ++i) {
1590 unsigned ShiftElt = IsLE ? i : SubScale - 1 - i;
1591 Known.
insertBits(KnownSrc, ShiftElt * SubBitWidth);
1597 unsigned SubScale = SubBitWidth /
BitWidth;
1599 APInt SubDemandedElts =
1605 for (
unsigned i = 0; i != NumElts; ++i) {
1606 if (DemandedElts[i]) {
1607 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
1617 case Instruction::SExt: {
1619 unsigned SrcBitWidth =
I->getOperand(0)->getType()->getScalarSizeInBits();
1621 Known = Known.
trunc(SrcBitWidth);
1628 case Instruction::Shl: {
1632 bool ShAmtNonZero) {
1633 return KnownBits::shl(KnownVal, KnownAmt, NUW, NSW, ShAmtNonZero);
1643 case Instruction::LShr: {
1646 bool ShAmtNonZero) {
1657 case Instruction::AShr: {
1660 bool ShAmtNonZero) {
1667 case Instruction::Sub: {
1671 DemandedElts, Known, Known2, Q,
Depth);
1674 case Instruction::Add: {
1678 DemandedElts, Known, Known2, Q,
Depth);
1681 case Instruction::SRem:
1687 case Instruction::URem:
1692 case Instruction::Alloca:
1695 case Instruction::GetElementPtr: {
1702 APInt AccConstIndices(IndexWidth, 0);
1704 auto AddIndexToKnown = [&](
KnownBits IndexBits) {
1713 "Index width can't be larger than pointer width");
1719 for (
unsigned i = 1, e =
I->getNumOperands(); i != e; ++i, ++GTI) {
1724 Value *Index =
I->getOperand(i);
1735 "Access to structure field must be known at compile time");
1743 AccConstIndices +=
Offset;
1760 CI->getValue().
sextOrTrunc(IndexWidth) * StrideInBytes;
1784 case Instruction::PHI: {
1787 Value *R =
nullptr, *L =
nullptr;
1800 case Instruction::LShr:
1801 case Instruction::AShr:
1802 case Instruction::Shl:
1803 case Instruction::UDiv:
1810 case Instruction::URem: {
1823 case Instruction::Shl:
1827 case Instruction::LShr:
1828 case Instruction::UDiv:
1829 case Instruction::URem:
1834 case Instruction::AShr:
1846 case Instruction::Add:
1847 case Instruction::Sub:
1848 case Instruction::And:
1849 case Instruction::Or:
1850 case Instruction::Mul: {
1857 unsigned OpNum =
P->getOperand(0) == R ? 0 : 1;
1858 Instruction *RInst =
P->getIncomingBlock(OpNum)->getTerminator();
1859 Instruction *LInst =
P->getIncomingBlock(1 - OpNum)->getTerminator();
1888 case Instruction::Add: {
1898 case Instruction::Sub: {
1909 case Instruction::Mul:
1926 if (
P->getNumIncomingValues() == 0)
1937 for (
const Use &U :
P->operands()) {
1972 if ((TrueSucc == CxtPhi->
getParent()) !=
1989 Known2 = KnownUnion;
2003 case Instruction::Call:
2004 case Instruction::Invoke: {
2014 if (std::optional<ConstantRange>
Range = CB->getRange())
2017 if (
const Value *RV = CB->getReturnedArgOperand()) {
2018 if (RV->getType() ==
I->getType()) {
2030 switch (
II->getIntrinsicID()) {
2033 case Intrinsic::abs: {
2035 bool IntMinIsPoison =
match(
II->getArgOperand(1),
m_One());
2039 case Intrinsic::bitreverse:
2043 case Intrinsic::bswap:
2047 case Intrinsic::ctlz: {
2053 PossibleLZ = std::min(PossibleLZ,
BitWidth - 1);
2058 case Intrinsic::cttz: {
2064 PossibleTZ = std::min(PossibleTZ,
BitWidth - 1);
2069 case Intrinsic::ctpop: {
2080 case Intrinsic::fshr:
2081 case Intrinsic::fshl: {
2088 if (
II->getIntrinsicID() == Intrinsic::fshr)
2095 Known2 <<= ShiftAmt;
2100 case Intrinsic::uadd_sat:
2105 case Intrinsic::usub_sat:
2110 case Intrinsic::sadd_sat:
2115 case Intrinsic::ssub_sat:
2121 case Intrinsic::vector_reverse:
2127 case Intrinsic::vector_reduce_and:
2128 case Intrinsic::vector_reduce_or:
2129 case Intrinsic::vector_reduce_umax:
2130 case Intrinsic::vector_reduce_umin:
2131 case Intrinsic::vector_reduce_smax:
2132 case Intrinsic::vector_reduce_smin:
2135 case Intrinsic::vector_reduce_xor: {
2142 bool EvenCnt = VecTy->getElementCount().isKnownEven();
2146 if (VecTy->isScalableTy() || EvenCnt)
2150 case Intrinsic::vector_reduce_add: {
2155 Known = Known.
reduceAdd(VecTy->getNumElements());
2158 case Intrinsic::umin:
2163 case Intrinsic::umax:
2168 case Intrinsic::smin:
2174 case Intrinsic::smax:
2180 case Intrinsic::ptrmask: {
2183 const Value *Mask =
I->getOperand(1);
2184 Known2 =
KnownBits(Mask->getType()->getScalarSizeInBits());
2190 case Intrinsic::x86_sse2_pmulh_w:
2191 case Intrinsic::x86_avx2_pmulh_w:
2192 case Intrinsic::x86_avx512_pmulh_w_512:
2197 case Intrinsic::x86_sse2_pmulhu_w:
2198 case Intrinsic::x86_avx2_pmulhu_w:
2199 case Intrinsic::x86_avx512_pmulhu_w_512:
2204 case Intrinsic::x86_sse42_crc32_64_64:
2207 case Intrinsic::x86_ssse3_phadd_d_128:
2208 case Intrinsic::x86_ssse3_phadd_w_128:
2209 case Intrinsic::x86_avx2_phadd_d:
2210 case Intrinsic::x86_avx2_phadd_w: {
2212 I, DemandedElts, Q,
Depth,
2218 case Intrinsic::x86_ssse3_phadd_sw_128:
2219 case Intrinsic::x86_avx2_phadd_sw: {
2224 case Intrinsic::x86_ssse3_phsub_d_128:
2225 case Intrinsic::x86_ssse3_phsub_w_128:
2226 case Intrinsic::x86_avx2_phsub_d:
2227 case Intrinsic::x86_avx2_phsub_w: {
2229 I, DemandedElts, Q,
Depth,
2235 case Intrinsic::x86_ssse3_phsub_sw_128:
2236 case Intrinsic::x86_avx2_phsub_sw: {
2241 case Intrinsic::riscv_vsetvli:
2242 case Intrinsic::riscv_vsetvlimax: {
2243 bool HasAVL =
II->getIntrinsicID() == Intrinsic::riscv_vsetvli;
2256 MaxVL = std::min(MaxVL, CI->getZExtValue());
2258 unsigned KnownZeroFirstBit =
Log2_32(MaxVL) + 1;
2263 case Intrinsic::vscale: {
2264 if (!
II->getParent() || !
II->getFunction())
2274 case Instruction::ShuffleVector: {
2288 APInt DemandedLHS, DemandedRHS;
2294 if (!!DemandedLHS) {
2295 const Value *
LHS = Shuf->getOperand(0);
2301 if (!!DemandedRHS) {
2302 const Value *
RHS = Shuf->getOperand(1);
2308 case Instruction::InsertElement: {
2313 const Value *Vec =
I->getOperand(0);
2314 const Value *Elt =
I->getOperand(1);
2317 APInt DemandedVecElts = DemandedElts;
2318 bool NeedsElt =
true;
2320 if (CIdx && CIdx->getValue().ult(NumElts)) {
2321 DemandedVecElts.
clearBit(CIdx->getZExtValue());
2322 NeedsElt = DemandedElts[CIdx->getZExtValue()];
2333 if (!DemandedVecElts.
isZero()) {
2339 case Instruction::ExtractElement: {
2342 const Value *Vec =
I->getOperand(0);
2343 const Value *Idx =
I->getOperand(1);
2352 if (CIdx && CIdx->getValue().ult(NumElts))
2357 case Instruction::ExtractValue:
2362 switch (
II->getIntrinsicID()) {
2364 case Intrinsic::uadd_with_overflow:
2365 case Intrinsic::sadd_with_overflow:
2367 true,
II->getArgOperand(0),
II->getArgOperand(1),
false,
2368 false, DemandedElts, Known, Known2, Q,
Depth);
2370 case Intrinsic::usub_with_overflow:
2371 case Intrinsic::ssub_with_overflow:
2373 false,
II->getArgOperand(0),
II->getArgOperand(1),
false,
2374 false, DemandedElts, Known, Known2, Q,
Depth);
2376 case Intrinsic::umul_with_overflow:
2377 case Intrinsic::smul_with_overflow:
2379 false, DemandedElts, Known, Known2, Q,
Depth);
2385 case Instruction::Freeze:
2429 if (!DemandedElts) {
2435 assert(V &&
"No Value?");
2439 Type *Ty = V->getType();
2442 assert((Ty->isIntOrIntVectorTy(
BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
2443 "Not integer or pointer type!");
2447 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
2448 "DemandedElt width should equal the fixed vector number of elements");
2451 "DemandedElt width should be 1 for scalars or scalable vectors");
2457 "V and Known should have same BitWidth");
2460 "V and Known should have same BitWidth");
2482 for (
unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
2483 if (!DemandedElts[i])
2485 APInt Elt = CDV->getElementAsAPInt(i);
2499 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
2500 if (!DemandedElts[i])
2510 const APInt &Elt = ElementCI->getValue();
2531 if (std::optional<ConstantRange>
Range =
A->getRange())
2532 Known =
Range->toKnownBits();
2541 if (!GA->isInterposable())
2549 if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange())
2550 Known = CR->toKnownBits();
2555 Align Alignment = V->getPointerAlignment(Q.
DL);
2571 Value *Start =
nullptr, *Step =
nullptr;
2577 if (U.get() == Start) {
2593 case Instruction::Mul:
2598 case Instruction::SDiv:
2604 case Instruction::UDiv:
2610 case Instruction::Shl:
2612 case Instruction::AShr:
2616 case Instruction::LShr:
2654 if (OrZero && V->getType()->getScalarSizeInBits() == 1)
2696 return F->hasFnAttribute(Attribute::VScaleRange);
2713 switch (
I->getOpcode()) {
2714 case Instruction::ZExt:
2716 case Instruction::Trunc:
2718 case Instruction::Shl:
2722 case Instruction::LShr:
2726 case Instruction::UDiv:
2730 case Instruction::Mul:
2734 case Instruction::And:
2745 case Instruction::Add: {
2751 if (
match(
I->getOperand(0),
2755 if (
match(
I->getOperand(1),
2760 unsigned BitWidth = V->getType()->getScalarSizeInBits();
2769 if ((~(LHSBits.
Zero & RHSBits.
Zero)).isPowerOf2())
2782 case Instruction::Select:
2785 case Instruction::PHI: {
2806 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2807 return isKnownToBeAPowerOfTwo(U.get(), OrZero, RecQ, NewDepth);
2810 case Instruction::Invoke:
2811 case Instruction::Call: {
2813 switch (
II->getIntrinsicID()) {
2814 case Intrinsic::umax:
2815 case Intrinsic::smax:
2816 case Intrinsic::umin:
2817 case Intrinsic::smin:
2822 case Intrinsic::bitreverse:
2823 case Intrinsic::bswap:
2825 case Intrinsic::fshr:
2826 case Intrinsic::fshl:
2828 if (
II->getArgOperand(0) ==
II->getArgOperand(1))
2852 F =
I->getFunction();
2856 if (!
GEP->hasNoUnsignedWrap() &&
2857 !(
GEP->isInBounds() &&
2862 assert(
GEP->getType()->isPointerTy() &&
"We only support plain pointer GEP");
2873 GTI != GTE; ++GTI) {
2875 if (
StructType *STy = GTI.getStructTypeOrNull()) {
2880 if (ElementOffset > 0)
2886 if (GTI.getSequentialElementStride(Q.
DL).isZero())
2920 unsigned NumUsesExplored = 0;
2921 for (
auto &U : V->uses()) {
2930 if (V->getType()->isPointerTy()) {
2932 if (CB->isArgOperand(&U) &&
2933 CB->paramHasNonNullAttr(CB->getArgOperandNo(&U),
2961 NonNullIfTrue =
true;
2963 NonNullIfTrue =
false;
2969 for (
const auto *CmpU : UI->
users()) {
2971 if (Visited.
insert(CmpU).second)
2974 while (!WorkList.
empty()) {
2983 for (
const auto *CurrU : Curr->users())
2984 if (Visited.
insert(CurrU).second)
2990 assert(BI->isConditional() &&
"uses a comparison!");
2993 BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2997 }
else if (NonNullIfTrue &&
isGuard(Curr) &&
3012 const unsigned NumRanges = Ranges->getNumOperands() / 2;
3014 for (
unsigned i = 0; i < NumRanges; ++i) {
3030 Value *Start =
nullptr, *Step =
nullptr;
3031 const APInt *StartC, *StepC;
3037 case Instruction::Add:
3043 case Instruction::Mul:
3046 case Instruction::Shl:
3048 case Instruction::AShr:
3049 case Instruction::LShr:
3065 bool NUW,
unsigned Depth) {
3122 return ::isKnownNonEqual(
X,
Y, DemandedElts, Q,
Depth);
3127 bool NUW,
unsigned Depth) {
3156 auto ShiftOp = [&](
const APInt &Lhs,
const APInt &Rhs) {
3157 switch (
I->getOpcode()) {
3158 case Instruction::Shl:
3159 return Lhs.
shl(Rhs);
3160 case Instruction::LShr:
3161 return Lhs.
lshr(Rhs);
3162 case Instruction::AShr:
3163 return Lhs.
ashr(Rhs);
3169 auto InvShiftOp = [&](
const APInt &Lhs,
const APInt &Rhs) {
3170 switch (
I->getOpcode()) {
3171 case Instruction::Shl:
3172 return Lhs.
lshr(Rhs);
3173 case Instruction::LShr:
3174 case Instruction::AShr:
3175 return Lhs.
shl(Rhs);
3188 if (MaxShift.
uge(NumBits))
3191 if (!ShiftOp(KnownVal.
One, MaxShift).isZero())
3196 if (InvShiftOp(KnownVal.
Zero, NumBits - MaxShift)
3205 const APInt &DemandedElts,
3208 switch (
I->getOpcode()) {
3209 case Instruction::Alloca:
3211 return I->getType()->getPointerAddressSpace() == 0;
3212 case Instruction::GetElementPtr:
3213 if (
I->getType()->isPointerTy())
3216 case Instruction::BitCast: {
3244 Type *FromTy =
I->getOperand(0)->getType();
3249 case Instruction::IntToPtr:
3258 case Instruction::PtrToAddr:
3262 case Instruction::PtrToInt:
3266 I->getType()->getScalarSizeInBits())
3269 case Instruction::Trunc:
3272 if (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap())
3278 case Instruction::Xor:
3279 case Instruction::Sub:
3281 I->getOperand(1),
Depth);
3282 case Instruction::Or:
3293 case Instruction::SExt:
3294 case Instruction::ZExt:
3298 case Instruction::Shl: {
3313 case Instruction::LShr:
3314 case Instruction::AShr: {
3329 case Instruction::UDiv:
3330 case Instruction::SDiv: {
3345 if (
I->getOpcode() == Instruction::SDiv) {
3347 XKnown = XKnown.
abs(
false);
3348 YKnown = YKnown.
abs(
false);
3354 return XUgeY && *XUgeY;
3356 case Instruction::Add: {
3366 case Instruction::Mul: {
3372 case Instruction::Select: {
3379 auto SelectArmIsNonZero = [&](
bool IsTrueArm) {
3381 Op = IsTrueArm ?
I->getOperand(1) :
I->getOperand(2);
3399 if (SelectArmIsNonZero(
true) &&
3400 SelectArmIsNonZero(
false))
3404 case Instruction::PHI: {
3415 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
3419 BasicBlock *TrueSucc, *FalseSucc;
3420 if (match(RecQ.CxtI,
3421 m_Br(m_c_ICmp(Pred, m_Specific(U.get()), m_Value(X)),
3422 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
3424 if ((TrueSucc == PN->getParent()) != (FalseSucc == PN->getParent())) {
3426 if (FalseSucc == PN->getParent())
3427 Pred = CmpInst::getInversePredicate(Pred);
3428 if (cmpExcludesZero(Pred, X))
3436 case Instruction::InsertElement: {
3440 const Value *Vec =
I->getOperand(0);
3441 const Value *Elt =
I->getOperand(1);
3445 APInt DemandedVecElts = DemandedElts;
3446 bool SkipElt =
false;
3448 if (CIdx && CIdx->getValue().ult(NumElts)) {
3449 DemandedVecElts.
clearBit(CIdx->getZExtValue());
3450 SkipElt = !DemandedElts[CIdx->getZExtValue()];
3456 (DemandedVecElts.
isZero() ||
3459 case Instruction::ExtractElement:
3461 const Value *Vec = EEI->getVectorOperand();
3462 const Value *Idx = EEI->getIndexOperand();
3465 unsigned NumElts = VecTy->getNumElements();
3467 if (CIdx && CIdx->getValue().ult(NumElts))
3473 case Instruction::ShuffleVector: {
3477 APInt DemandedLHS, DemandedRHS;
3483 return (DemandedRHS.
isZero() ||
3488 case Instruction::Freeze:
3492 case Instruction::Load: {
3509 case Instruction::ExtractValue: {
3515 case Instruction::Add:
3520 case Instruction::Sub:
3523 case Instruction::Mul:
3526 false,
false,
Depth);
3532 case Instruction::Call:
3533 case Instruction::Invoke: {
3535 if (
I->getType()->isPointerTy()) {
3536 if (
Call->isReturnNonNull())
3543 if (std::optional<ConstantRange>
Range =
Call->getRange()) {
3544 const APInt ZeroValue(
Range->getBitWidth(), 0);
3545 if (!
Range->contains(ZeroValue))
3548 if (
const Value *RV =
Call->getReturnedArgOperand())
3554 switch (
II->getIntrinsicID()) {
3555 case Intrinsic::sshl_sat:
3556 case Intrinsic::ushl_sat:
3557 case Intrinsic::abs:
3558 case Intrinsic::bitreverse:
3559 case Intrinsic::bswap:
3560 case Intrinsic::ctpop:
3564 case Intrinsic::ssub_sat:
3572 case Intrinsic::sadd_sat:
3574 II->getArgOperand(1),
3575 true,
false,
Depth);
3577 case Intrinsic::vector_reverse:
3581 case Intrinsic::vector_reduce_or:
3582 case Intrinsic::vector_reduce_umax:
3583 case Intrinsic::vector_reduce_umin:
3584 case Intrinsic::vector_reduce_smax:
3585 case Intrinsic::vector_reduce_smin:
3587 case Intrinsic::umax:
3588 case Intrinsic::uadd_sat:
3596 case Intrinsic::smax: {
3599 auto IsNonZero = [&](
Value *
Op, std::optional<bool> &OpNonZero,
3601 if (!OpNonZero.has_value())
3602 OpNonZero = OpKnown.isNonZero() ||
3607 std::optional<bool> Op0NonZero, Op1NonZero;
3611 IsNonZero(
II->getArgOperand(1), Op1NonZero, Op1Known))
3616 IsNonZero(
II->getArgOperand(0), Op0NonZero, Op0Known))
3618 return IsNonZero(
II->getArgOperand(1), Op1NonZero, Op1Known) &&
3619 IsNonZero(
II->getArgOperand(0), Op0NonZero, Op0Known);
3621 case Intrinsic::smin: {
3637 case Intrinsic::umin:
3640 case Intrinsic::cttz:
3643 case Intrinsic::ctlz:
3646 case Intrinsic::fshr:
3647 case Intrinsic::fshl:
3649 if (
II->getArgOperand(0) ==
II->getArgOperand(1))
3652 case Intrinsic::vscale:
3654 case Intrinsic::experimental_get_vector_length:
3668 return Known.
One != 0;
3679 Type *Ty = V->getType();
3686 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
3687 "DemandedElt width should equal the fixed vector number of elements");
3690 "DemandedElt width should be 1 for scalars");
3695 if (
C->isNullValue())
3704 for (
unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
3705 if (!DemandedElts[i])
3707 Constant *Elt =
C->getAggregateElement(i);
3724 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
3725 GV->getType()->getAddressSpace() == 0)
3735 if (std::optional<ConstantRange>
Range =
A->getRange()) {
3736 const APInt ZeroValue(
Range->getBitWidth(), 0);
3737 if (!
Range->contains(ZeroValue))
3754 if (((
A->hasPassPointeeByValueCopyAttr() &&
3756 A->hasNonNullAttr()))
3778 APInt DemandedElts =
3780 return ::isKnownNonZero(V, DemandedElts, Q,
Depth);
3789static std::optional<std::pair<Value*, Value*>>
3793 return std::nullopt;
3802 case Instruction::Or:
3807 case Instruction::Xor:
3808 case Instruction::Add: {
3816 case Instruction::Sub:
3822 case Instruction::Mul: {
3828 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3829 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3839 case Instruction::Shl: {
3844 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3845 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3852 case Instruction::AShr:
3853 case Instruction::LShr: {
3856 if (!PEO1->isExact() || !PEO2->isExact())
3863 case Instruction::SExt:
3864 case Instruction::ZExt:
3868 case Instruction::PHI: {
3876 Value *Start1 =
nullptr, *Step1 =
nullptr;
3878 Value *Start2 =
nullptr, *Step2 =
nullptr;
3894 if (Values->first != PN1 || Values->second != PN2)
3897 return std::make_pair(Start1, Start2);
3900 return std::nullopt;
3907 const APInt &DemandedElts,
3915 case Instruction::Or:
3919 case Instruction::Xor:
3920 case Instruction::Add:
3941 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3942 !
C->isZero() && !
C->isOne() &&
3956 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3970 bool UsedFullRecursion =
false;
3972 if (!VisitedBBs.
insert(IncomBB).second)
3976 const APInt *C1, *C2;
3981 if (UsedFullRecursion)
3985 RecQ.
CxtI = IncomBB->getTerminator();
3988 UsedFullRecursion =
true;
4002 const Value *Cond2 = SI2->getCondition();
4005 DemandedElts, Q,
Depth + 1) &&
4007 DemandedElts, Q,
Depth + 1);
4020 if (!
A->getType()->isPointerTy() || !
B->getType()->isPointerTy())
4024 if (!GEPA || GEPA->getNumIndices() != 1 || !
isa<Constant>(GEPA->idx_begin()))
4029 if (!PN || PN->getNumIncomingValues() != 2)
4034 Value *Start =
nullptr;
4036 if (PN->getIncomingValue(0) == Step)
4037 Start = PN->getIncomingValue(1);
4038 else if (PN->getIncomingValue(1) == Step)
4039 Start = PN->getIncomingValue(0);
4050 APInt StartOffset(IndexWidth, 0);
4051 Start = Start->stripAndAccumulateInBoundsConstantOffsets(Q.
DL, StartOffset);
4052 APInt StepOffset(IndexWidth, 0);
4058 APInt OffsetB(IndexWidth, 0);
4059 B =
B->stripAndAccumulateInBoundsConstantOffsets(Q.
DL, OffsetB);
4060 return Start ==
B &&
4072 auto IsKnownNonEqualFromDominatingCondition = [&](
const Value *V) {
4093 if (IsKnownNonEqualFromDominatingCondition(V1) ||
4094 IsKnownNonEqualFromDominatingCondition(V2))
4108 "Got assumption for the wrong function!");
4109 assert(
I->getIntrinsicID() == Intrinsic::assume &&
4110 "must be an assume intrinsic");
4140 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
4142 return isKnownNonEqual(Values->first, Values->second, DemandedElts, Q,
4204 const APInt &DemandedElts,
4210 unsigned MinSignBits = TyBits;
4212 for (
unsigned i = 0; i != NumElts; ++i) {
4213 if (!DemandedElts[i])
4220 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
4227 const APInt &DemandedElts,
4233 assert(Result > 0 &&
"At least one sign bit needs to be present!");
4245 const APInt &DemandedElts,
4247 Type *Ty = V->getType();
4253 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
4254 "DemandedElt width should equal the fixed vector number of elements");
4257 "DemandedElt width should be 1 for scalars");
4271 unsigned FirstAnswer = 1;
4282 case Instruction::BitCast: {
4283 Value *Src = U->getOperand(0);
4284 Type *SrcTy = Src->getType();
4288 if (!SrcTy->isIntOrIntVectorTy())
4294 if ((SrcBits % TyBits) != 0)
4307 case Instruction::SExt:
4308 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
4312 case Instruction::SDiv: {
4313 const APInt *Denominator;
4326 return std::min(TyBits, NumBits + Denominator->
logBase2());
4331 case Instruction::SRem: {
4334 const APInt *Denominator;
4355 unsigned ResBits = TyBits - Denominator->
ceilLogBase2();
4356 Tmp = std::max(Tmp, ResBits);
4362 case Instruction::AShr: {
4367 if (ShAmt->
uge(TyBits))
4370 Tmp += ShAmtLimited;
4371 if (Tmp > TyBits) Tmp = TyBits;
4375 case Instruction::Shl: {
4380 if (ShAmt->
uge(TyBits))
4385 ShAmt->
uge(TyBits -
X->getType()->getScalarSizeInBits())) {
4387 Tmp += TyBits -
X->getType()->getScalarSizeInBits();
4391 if (ShAmt->
uge(Tmp))
4398 case Instruction::And:
4399 case Instruction::Or:
4400 case Instruction::Xor:
4405 FirstAnswer = std::min(Tmp, Tmp2);
4412 case Instruction::Select: {
4416 const APInt *CLow, *CHigh;
4424 return std::min(Tmp, Tmp2);
4427 case Instruction::Add:
4431 if (Tmp == 1)
break;
4435 if (CRHS->isAllOnesValue()) {
4441 if ((Known.
Zero | 1).isAllOnes())
4453 return std::min(Tmp, Tmp2) - 1;
4455 case Instruction::Sub:
4462 if (CLHS->isNullValue()) {
4467 if ((Known.
Zero | 1).isAllOnes())
4484 return std::min(Tmp, Tmp2) - 1;
4486 case Instruction::Mul: {
4489 unsigned SignBitsOp0 =
4491 if (SignBitsOp0 == 1)
4493 unsigned SignBitsOp1 =
4495 if (SignBitsOp1 == 1)
4497 unsigned OutValidBits =
4498 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
4499 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
4502 case Instruction::PHI: {
4506 if (NumIncomingValues > 4)
break;
4508 if (NumIncomingValues == 0)
break;
4514 for (
unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
4515 if (Tmp == 1)
return Tmp;
4518 DemandedElts, RecQ,
Depth + 1));
4523 case Instruction::Trunc: {
4528 unsigned OperandTyBits = U->getOperand(0)->getType()->getScalarSizeInBits();
4529 if (Tmp > (OperandTyBits - TyBits))
4530 return Tmp - (OperandTyBits - TyBits);
4535 case Instruction::ExtractElement:
4542 case Instruction::ShuffleVector: {
4550 APInt DemandedLHS, DemandedRHS;
4555 Tmp = std::numeric_limits<unsigned>::max();
4556 if (!!DemandedLHS) {
4557 const Value *
LHS = Shuf->getOperand(0);
4564 if (!!DemandedRHS) {
4565 const Value *
RHS = Shuf->getOperand(1);
4567 Tmp = std::min(Tmp, Tmp2);
4573 assert(Tmp <= TyBits &&
"Failed to determine minimum sign bits");
4576 case Instruction::Call: {
4578 switch (
II->getIntrinsicID()) {
4581 case Intrinsic::abs:
4589 case Intrinsic::smin:
4590 case Intrinsic::smax: {
4591 const APInt *CLow, *CHigh;
4606 if (
unsigned VecSignBits =
4624 if (
F->isIntrinsic())
4625 return F->getIntrinsicID();
4631 if (
F->hasLocalLinkage() || !TLI || !TLI->
getLibFunc(CB, Func) ||
4641 return Intrinsic::sin;
4645 return Intrinsic::cos;
4649 return Intrinsic::tan;
4653 return Intrinsic::asin;
4657 return Intrinsic::acos;
4661 return Intrinsic::atan;
4663 case LibFunc_atan2f:
4664 case LibFunc_atan2l:
4665 return Intrinsic::atan2;
4669 return Intrinsic::sinh;
4673 return Intrinsic::cosh;
4677 return Intrinsic::tanh;
4681 return Intrinsic::exp;
4685 return Intrinsic::exp2;
4687 case LibFunc_exp10f:
4688 case LibFunc_exp10l:
4689 return Intrinsic::exp10;
4693 return Intrinsic::log;
4695 case LibFunc_log10f:
4696 case LibFunc_log10l:
4697 return Intrinsic::log10;
4701 return Intrinsic::log2;
4705 return Intrinsic::fabs;
4709 return Intrinsic::minnum;
4713 return Intrinsic::maxnum;
4714 case LibFunc_copysign:
4715 case LibFunc_copysignf:
4716 case LibFunc_copysignl:
4717 return Intrinsic::copysign;
4719 case LibFunc_floorf:
4720 case LibFunc_floorl:
4721 return Intrinsic::floor;
4725 return Intrinsic::ceil;
4727 case LibFunc_truncf:
4728 case LibFunc_truncl:
4729 return Intrinsic::trunc;
4733 return Intrinsic::rint;
4734 case LibFunc_nearbyint:
4735 case LibFunc_nearbyintf:
4736 case LibFunc_nearbyintl:
4737 return Intrinsic::nearbyint;
4739 case LibFunc_roundf:
4740 case LibFunc_roundl:
4741 return Intrinsic::round;
4742 case LibFunc_roundeven:
4743 case LibFunc_roundevenf:
4744 case LibFunc_roundevenl:
4745 return Intrinsic::roundeven;
4749 return Intrinsic::pow;
4753 return Intrinsic::sqrt;
4763 bool &TrueIfSigned) {
4766 TrueIfSigned =
true;
4767 return RHS.isZero();
4769 TrueIfSigned =
true;
4770 return RHS.isAllOnes();
4772 TrueIfSigned =
false;
4773 return RHS.isAllOnes();
4775 TrueIfSigned =
false;
4776 return RHS.isZero();
4779 TrueIfSigned =
true;
4780 return RHS.isMaxSignedValue();
4783 TrueIfSigned =
true;
4784 return RHS.isMinSignedValue();
4787 TrueIfSigned =
false;
4788 return RHS.isMinSignedValue();
4791 TrueIfSigned =
false;
4792 return RHS.isMaxSignedValue();
4802 unsigned Depth = 0) {
4828 KnownFromContext.
knownNot(~(CondIsTrue ? MaskIfTrue : MaskIfFalse));
4832 KnownFromContext.
knownNot(CondIsTrue ? ~Mask : Mask);
4838 if (TrueIfSigned == CondIsTrue)
4854 return KnownFromContext;
4874 return KnownFromContext;
4884 "Got assumption for the wrong function!");
4885 assert(
I->getIntrinsicID() == Intrinsic::assume &&
4886 "must be an assume intrinsic");
4892 true, Q.
CxtI, KnownFromContext);
4895 return KnownFromContext;
4899 Value *Arm,
bool Invert,
4905 !Invert, SQ.
CxtI, KnownSrc,
4923 APInt DemandedElts =
4929 const APInt &DemandedElts,
4934 if ((InterestedClasses &
4940 KnownSrc, Q,
Depth + 1);
4954 case Intrinsic::minimum:
4956 case Intrinsic::maximum:
4958 case Intrinsic::minimumnum:
4960 case Intrinsic::maximumnum:
4962 case Intrinsic::minnum:
4964 case Intrinsic::maxnum:
4974 assert(Known.
isUnknown() &&
"should not be called with known information");
4976 if (!DemandedElts) {
5006 bool SignBitAllZero =
true;
5007 bool SignBitAllOne =
true;
5010 unsigned NumElts = VFVTy->getNumElements();
5011 for (
unsigned i = 0; i != NumElts; ++i) {
5012 if (!DemandedElts[i])
5028 const APFloat &
C = CElt->getValueAPF();
5031 SignBitAllZero =
false;
5033 SignBitAllOne =
false;
5035 if (SignBitAllOne != SignBitAllZero)
5036 Known.
SignBit = SignBitAllOne;
5042 KnownNotFromFlags |= CB->getRetNoFPClass();
5044 KnownNotFromFlags |= Arg->getNoFPClass();
5048 if (FPOp->hasNoNaNs())
5049 KnownNotFromFlags |=
fcNan;
5050 if (FPOp->hasNoInfs())
5051 KnownNotFromFlags |=
fcInf;
5055 KnownNotFromFlags |= ~AssumedClasses.KnownFPClasses;
5059 InterestedClasses &= ~KnownNotFromFlags;
5078 const unsigned Opc =
Op->getOpcode();
5080 case Instruction::FNeg: {
5082 Known, Q,
Depth + 1);
5086 case Instruction::Select: {
5087 auto ComputeForArm = [&](
Value *Arm,
bool Invert) {
5097 ComputeForArm(
Op->getOperand(1),
false)
5101 case Instruction::Call: {
5105 case Intrinsic::fabs: {
5110 InterestedClasses, Known, Q,
Depth + 1);
5116 case Intrinsic::copysign: {
5120 Known, Q,
Depth + 1);
5122 KnownSign, Q,
Depth + 1);
5126 case Intrinsic::fma:
5127 case Intrinsic::fmuladd: {
5131 if (
II->getArgOperand(0) !=
II->getArgOperand(1) ||
5142 KnownAddend, Q,
Depth + 1);
5148 case Intrinsic::sqrt:
5149 case Intrinsic::experimental_constrained_sqrt: {
5152 if (InterestedClasses &
fcNan)
5156 KnownSrc, Q,
Depth + 1);
5164 II->getType()->getScalarType()->getFltSemantics();
5174 case Intrinsic::sin:
5175 case Intrinsic::cos: {
5179 KnownSrc, Q,
Depth + 1);
5185 case Intrinsic::maxnum:
5186 case Intrinsic::minnum:
5187 case Intrinsic::minimum:
5188 case Intrinsic::maximum:
5189 case Intrinsic::minimumnum:
5190 case Intrinsic::maximumnum: {
5193 KnownLHS, Q,
Depth + 1);
5195 KnownRHS, Q,
Depth + 1);
5200 F ?
F->getDenormalMode(
5201 II->getType()->getScalarType()->getFltSemantics())
5208 case Intrinsic::canonicalize: {
5211 KnownSrc, Q,
Depth + 1);
5215 F ?
F->getDenormalMode(
5216 II->getType()->getScalarType()->getFltSemantics())
5221 case Intrinsic::vector_reduce_fmax:
5222 case Intrinsic::vector_reduce_fmin:
5223 case Intrinsic::vector_reduce_fmaximum:
5224 case Intrinsic::vector_reduce_fminimum: {
5228 InterestedClasses, Q,
Depth + 1);
5235 case Intrinsic::vector_reverse:
5238 II->getFastMathFlags(), InterestedClasses, Q,
Depth + 1);
5240 case Intrinsic::trunc:
5241 case Intrinsic::floor:
5242 case Intrinsic::ceil:
5243 case Intrinsic::rint:
5244 case Intrinsic::nearbyint:
5245 case Intrinsic::round:
5246 case Intrinsic::roundeven: {
5254 KnownSrc, Q,
Depth + 1);
5257 KnownSrc, IID == Intrinsic::trunc,
5258 V->getType()->getScalarType()->isMultiUnitFPType());
5261 case Intrinsic::exp:
5262 case Intrinsic::exp2:
5263 case Intrinsic::exp10:
5264 case Intrinsic::amdgcn_exp2: {
5267 KnownSrc, Q,
Depth + 1);
5271 Type *EltTy =
II->getType()->getScalarType();
5272 if (IID == Intrinsic::amdgcn_exp2 && EltTy->
isFloatTy())
5277 case Intrinsic::fptrunc_round: {
5282 case Intrinsic::log:
5283 case Intrinsic::log10:
5284 case Intrinsic::log2:
5285 case Intrinsic::experimental_constrained_log:
5286 case Intrinsic::experimental_constrained_log10:
5287 case Intrinsic::experimental_constrained_log2:
5288 case Intrinsic::amdgcn_log: {
5289 Type *EltTy =
II->getType()->getScalarType();
5304 KnownSrc, Q,
Depth + 1);
5312 if (IID == Intrinsic::amdgcn_log && EltTy->
isFloatTy())
5316 case Intrinsic::powi: {
5320 const Value *Exp =
II->getArgOperand(1);
5321 Type *ExpTy = Exp->getType();
5325 ExponentKnownBits, Q,
Depth + 1);
5327 if (ExponentKnownBits.
Zero[0]) {
5342 KnownSrc, Q,
Depth + 1);
5347 case Intrinsic::ldexp: {
5350 KnownSrc, Q,
Depth + 1);
5366 if ((InterestedClasses & ExpInfoMask) ==
fcNone)
5372 II->getType()->getScalarType()->getFltSemantics();
5374 const Value *ExpArg =
II->getArgOperand(1);
5378 const int MantissaBits = Precision - 1;
5385 II->getType()->getScalarType()->getFltSemantics();
5386 if (ConstVal && ConstVal->
isZero()) {
5411 case Intrinsic::arithmetic_fence: {
5413 Known, Q,
Depth + 1);
5416 case Intrinsic::experimental_constrained_sitofp:
5417 case Intrinsic::experimental_constrained_uitofp:
5427 if (IID == Intrinsic::experimental_constrained_uitofp)
5432 case Intrinsic::amdgcn_rcp: {
5435 KnownSrc, Q,
Depth + 1);
5439 Type *EltTy =
II->getType()->getScalarType();
5462 case Intrinsic::amdgcn_rsq: {
5468 KnownSrc, Q,
Depth + 1);
5480 Type *EltTy =
II->getType()->getScalarType();
5506 case Instruction::FAdd:
5507 case Instruction::FSub: {
5510 Op->getOpcode() == Instruction::FAdd &&
5512 bool WantNaN = (InterestedClasses &
fcNan) !=
fcNone;
5515 if (!WantNaN && !WantNegative && !WantNegZero)
5521 if (InterestedClasses &
fcNan)
5522 InterestedSrcs |=
fcInf;
5524 KnownRHS, Q,
Depth + 1);
5527 bool SelfAdd =
Op->getOperand(0) ==
Op->getOperand(1) &&
5531 KnownLHS = KnownRHS;
5535 WantNegZero ||
Opc == Instruction::FSub) {
5541 KnownLHS, Q,
Depth + 1);
5553 if (
Op->getOpcode() == Instruction::FAdd) {
5565 Op->getType()->getScalarType()->getFltSemantics();
5589 Op->getType()->getScalarType()->getFltSemantics();
5604 case Instruction::FMul: {
5607 F ?
F->getDenormalMode(
5608 Op->getType()->getScalarType()->getFltSemantics())
5612 if (
Op->getOperand(0) ==
Op->getOperand(1) &&
5623 bool CannotBeSubnormal =
false;
5632 Op->getType()->getScalarType()->getFltSemantics();
5634 const int MantissaBits = Precision - 1;
5636 int MinKnownExponent =
ilogb(*CRHS);
5637 if (MinKnownExponent >= MantissaBits)
5638 CannotBeSubnormal =
true;
5650 if (CannotBeSubnormal)
5654 case Instruction::FDiv:
5655 case Instruction::FRem: {
5656 const bool WantNan = (InterestedClasses &
fcNan) !=
fcNone;
5658 if (
Op->getOperand(0) ==
Op->getOperand(1) &&
5660 if (
Op->getOpcode() == Instruction::FDiv) {
5677 Op->getType()->getScalarType()->getFltSemantics();
5690 const bool WantPositive =
5692 if (!WantNan && !WantNegative && !WantPositive)
5705 if (KnowSomethingUseful || WantPositive) {
5712 Op->getType()->getScalarType()->getFltSemantics();
5714 if (
Op->getOpcode() == Instruction::FDiv) {
5771 case Instruction::FPExt: {
5774 KnownSrc, Q,
Depth + 1);
5777 Op->getType()->getScalarType()->getFltSemantics();
5779 Op->getOperand(0)->getType()->getScalarType()->getFltSemantics();
5784 case Instruction::FPTrunc: {
5789 case Instruction::SIToFP:
5790 case Instruction::UIToFP: {
5799 if (
Op->getOpcode() == Instruction::UIToFP)
5802 if (InterestedClasses &
fcInf) {
5806 int IntSize =
Op->getOperand(0)->getType()->getScalarSizeInBits();
5807 if (
Op->getOpcode() == Instruction::SIToFP)
5812 Type *FPTy =
Op->getType()->getScalarType();
5819 case Instruction::ExtractElement: {
5822 const Value *Vec =
Op->getOperand(0);
5824 APInt DemandedVecElts;
5826 unsigned NumElts = VecTy->getNumElements();
5829 if (CIdx && CIdx->getValue().ult(NumElts))
5832 DemandedVecElts =
APInt(1, 1);
5838 case Instruction::InsertElement: {
5842 const Value *Vec =
Op->getOperand(0);
5843 const Value *Elt =
Op->getOperand(1);
5846 APInt DemandedVecElts = DemandedElts;
5847 bool NeedsElt =
true;
5849 if (CIdx && CIdx->getValue().ult(NumElts)) {
5850 DemandedVecElts.
clearBit(CIdx->getZExtValue());
5851 NeedsElt = DemandedElts[CIdx->getZExtValue()];
5865 if (!DemandedVecElts.
isZero()) {
5874 case Instruction::ShuffleVector: {
5883 APInt DemandedLHS, DemandedRHS;
5888 if (!!DemandedLHS) {
5889 const Value *
LHS = Shuf->getOperand(0);
5900 if (!!DemandedRHS) {
5902 const Value *
RHS = Shuf->getOperand(1);
5910 case Instruction::ExtractValue: {
5917 switch (
II->getIntrinsicID()) {
5918 case Intrinsic::frexp: {
5923 InterestedClasses, KnownSrc, Q,
Depth + 1);
5927 Op->getType()->getScalarType()->getFltSemantics();
5962 case Instruction::PHI: {
5965 if (
P->getNumIncomingValues() == 0)
5972 if (
Depth < PhiRecursionLimit) {
5979 for (
const Use &U :
P->operands()) {
6009 case Instruction::BitCast: {
6012 !Src->getType()->isIntOrIntVectorTy())
6015 const Type *Ty =
Op->getType()->getScalarType();
6016 KnownBits Bits(Ty->getScalarSizeInBits());
6020 if (Bits.isNonNegative())
6022 else if (Bits.isNegative())
6025 if (Ty->isIEEELikeFPTy()) {
6035 else if (!
APFloat(Ty->getFltSemantics(), ~Bits.Zero).
isNaN())
6042 InfKB.Zero.clearSignBit();
6044 assert(!InfResult.value());
6046 }
else if (Bits == InfKB) {
6054 ZeroKB.Zero.clearSignBit();
6056 assert(!ZeroResult.value());
6058 }
else if (Bits == ZeroKB) {
6071 const APInt &DemandedElts,
6078 return KnownClasses;
6104 InterestedClasses &=
~fcNan;
6106 InterestedClasses &=
~fcInf;
6112 Result.KnownFPClasses &=
~fcNan;
6114 Result.KnownFPClasses &=
~fcInf;
6123 APInt DemandedElts =
6177 if (FPOp->hasNoSignedZeros())
6181 switch (
User->getOpcode()) {
6182 case Instruction::FPToSI:
6183 case Instruction::FPToUI:
6185 case Instruction::FCmp:
6188 case Instruction::Call:
6190 switch (
II->getIntrinsicID()) {
6191 case Intrinsic::fabs:
6193 case Intrinsic::copysign:
6194 return U.getOperandNo() == 0;
6195 case Intrinsic::is_fpclass:
6196 case Intrinsic::vp_is_fpclass: {
6216 if (FPOp->hasNoNaNs())
6220 switch (
User->getOpcode()) {
6221 case Instruction::FPToSI:
6222 case Instruction::FPToUI:
6225 case Instruction::FAdd:
6226 case Instruction::FSub:
6227 case Instruction::FMul:
6228 case Instruction::FDiv:
6229 case Instruction::FRem:
6230 case Instruction::FPTrunc:
6231 case Instruction::FPExt:
6232 case Instruction::FCmp:
6235 case Instruction::FNeg:
6236 case Instruction::Select:
6237 case Instruction::PHI:
6239 case Instruction::Ret:
6240 return User->getFunction()->getAttributes().getRetNoFPClass() &
6242 case Instruction::Call:
6243 case Instruction::Invoke: {
6245 switch (
II->getIntrinsicID()) {
6246 case Intrinsic::fabs:
6248 case Intrinsic::copysign:
6249 return U.getOperandNo() == 0;
6251 case Intrinsic::maxnum:
6252 case Intrinsic::minnum:
6253 case Intrinsic::maximum:
6254 case Intrinsic::minimum:
6255 case Intrinsic::maximumnum:
6256 case Intrinsic::minimumnum:
6257 case Intrinsic::canonicalize:
6258 case Intrinsic::fma:
6259 case Intrinsic::fmuladd:
6260 case Intrinsic::sqrt:
6261 case Intrinsic::pow:
6262 case Intrinsic::powi:
6263 case Intrinsic::fptoui_sat:
6264 case Intrinsic::fptosi_sat:
6265 case Intrinsic::is_fpclass:
6266 case Intrinsic::vp_is_fpclass:
6285 if (V->getType()->isIntegerTy(8))
6296 if (
DL.getTypeStoreSize(V->getType()).isZero())
6311 if (
C->isNullValue())
6318 if (CFP->getType()->isHalfTy())
6320 else if (CFP->getType()->isFloatTy())
6322 else if (CFP->getType()->isDoubleTy())
6331 if (CI->getBitWidth() % 8 == 0) {
6332 assert(CI->getBitWidth() > 8 &&
"8 bits should be handled above!");
6333 if (!CI->getValue().isSplat(8))
6335 return ConstantInt::get(Ctx, CI->getValue().trunc(8));
6340 if (CE->getOpcode() == Instruction::IntToPtr) {
6342 unsigned BitWidth =
DL.getPointerSizeInBits(PtrTy->getAddressSpace());
6355 if (LHS == UndefInt8)
6357 if (RHS == UndefInt8)
6363 Value *Val = UndefInt8;
6364 for (
uint64_t I = 0, E = CA->getNumElements();
I != E; ++
I)
6371 Value *Val = UndefInt8;
6406 while (PrevTo != OrigTo) {
6453 unsigned IdxSkip = Idxs.
size();
6466 std::optional<BasicBlock::iterator> InsertBefore) {
6469 if (idx_range.
empty())
6472 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
6473 "Not looking at a struct or array?");
6475 "Invalid indices for type?");
6478 C =
C->getAggregateElement(idx_range[0]);
6479 if (!
C)
return nullptr;
6486 const unsigned *req_idx = idx_range.
begin();
6487 for (
const unsigned *i =
I->idx_begin(), *e =
I->idx_end();
6488 i != e; ++i, ++req_idx) {
6489 if (req_idx == idx_range.
end()) {
6519 ArrayRef(req_idx, idx_range.
end()), InsertBefore);
6528 unsigned size =
I->getNumIndices() + idx_range.
size();
6533 Idxs.
append(
I->idx_begin(),
I->idx_end());
6539 &&
"Number of indices added not correct?");
6556 assert(V &&
"V should not be null.");
6557 assert((ElementSize % 8) == 0 &&
6558 "ElementSize expected to be a multiple of the size of a byte.");
6559 unsigned ElementSizeInBytes = ElementSize / 8;
6571 APInt Off(
DL.getIndexTypeSizeInBits(V->getType()), 0);
6578 uint64_t StartIdx = Off.getLimitedValue();
6585 if ((StartIdx % ElementSizeInBytes) != 0)
6588 Offset += StartIdx / ElementSizeInBytes;
6594 uint64_t SizeInBytes =
DL.getTypeStoreSize(GVTy).getFixedValue();
6597 Slice.Array =
nullptr;
6609 Type *InitElTy = ArrayInit->getElementType();
6614 ArrayTy = ArrayInit->getType();
6619 if (ElementSize != 8)
6638 Slice.Array = Array;
6640 Slice.Length = NumElts -
Offset;
6654 if (Slice.Array ==
nullptr) {
6665 if (Slice.Length == 1) {
6677 Str = Str.
substr(Slice.Offset);
6683 Str = Str.substr(0, Str.find(
'\0'));
6696 unsigned CharSize) {
6698 V = V->stripPointerCasts();
6703 if (!PHIs.
insert(PN).second)
6708 for (
Value *IncValue : PN->incoming_values()) {
6710 if (Len == 0)
return 0;
6712 if (Len == ~0ULL)
continue;
6714 if (Len != LenSoFar && LenSoFar != ~0ULL)
6726 if (Len1 == 0)
return 0;
6728 if (Len2 == 0)
return 0;
6729 if (Len1 == ~0ULL)
return Len2;
6730 if (Len2 == ~0ULL)
return Len1;
6731 if (Len1 != Len2)
return 0;
6740 if (Slice.Array ==
nullptr)
6748 unsigned NullIndex = 0;
6749 for (
unsigned E = Slice.Length; NullIndex <
E; ++NullIndex) {
6750 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
6754 return NullIndex + 1;
6760 if (!V->getType()->isPointerTy())
6767 return Len == ~0ULL ? 1 : Len;
6772 bool MustPreserveNullness) {
6774 "getArgumentAliasingToReturnedPointer only works on nonnull calls");
6775 if (
const Value *RV =
Call->getReturnedArgOperand())
6779 Call, MustPreserveNullness))
6780 return Call->getArgOperand(0);
6786 switch (
Call->getIntrinsicID()) {
6787 case Intrinsic::launder_invariant_group:
6788 case Intrinsic::strip_invariant_group:
6789 case Intrinsic::aarch64_irg:
6790 case Intrinsic::aarch64_tagp:
6800 case Intrinsic::amdgcn_make_buffer_rsrc:
6802 case Intrinsic::ptrmask:
6803 return !MustPreserveNullness;
6804 case Intrinsic::threadlocal_address:
6807 return !
Call->getParent()->getParent()->isPresplitCoroutine();
6824 if (!PrevValue || LI->
getLoopFor(PrevValue->getParent()) != L)
6826 if (!PrevValue || LI->
getLoopFor(PrevValue->getParent()) != L)
6835 if (!L->isLoopInvariant(Load->getPointerOperand()))
6841 for (
unsigned Count = 0; MaxLookup == 0 ||
Count < MaxLookup; ++
Count) {
6843 const Value *PtrOp =
GEP->getPointerOperand();
6854 if (GA->isInterposable())
6856 V = GA->getAliasee();
6860 if (
PHI->getNumIncomingValues() == 1) {
6861 V =
PHI->getIncomingValue(0);
6882 assert(V->getType()->isPointerTy() &&
"Unexpected operand type!");
6889 const LoopInfo *LI,
unsigned MaxLookup) {
6897 if (!Visited.
insert(
P).second)
6926 }
while (!Worklist.
empty());
6930 const unsigned MaxVisited = 8;
6935 const Value *Object =
nullptr;
6945 if (!Visited.
insert(
P).second)
6948 if (Visited.
size() == MaxVisited)
6964 else if (Object !=
P)
6966 }
while (!Worklist.
empty());
6968 return Object ? Object : FirstObject;
6978 if (U->getOpcode() == Instruction::PtrToInt)
6979 return U->getOperand(0);
6986 if (U->getOpcode() != Instruction::Add ||
6991 V = U->getOperand(0);
6995 assert(V->getType()->isIntegerTy() &&
"Unexpected operand type!");
7012 for (
const Value *V : Objs) {
7013 if (!Visited.
insert(V).second)
7018 if (O->getType()->isPointerTy()) {
7031 }
while (!Working.
empty());
7040 auto AddWork = [&](
Value *V) {
7041 if (Visited.
insert(V).second)
7051 if (Result && Result != AI)
7055 AddWork(CI->getOperand(0));
7057 for (
Value *IncValue : PN->incoming_values())
7060 AddWork(
SI->getTrueValue());
7061 AddWork(
SI->getFalseValue());
7063 if (OffsetZero && !
GEP->hasAllZeroIndices())
7065 AddWork(
GEP->getPointerOperand());
7067 Value *Returned = CB->getReturnedArgOperand();
7075 }
while (!Worklist.
empty());
7081 const Value *V,
bool AllowLifetime,
bool AllowDroppable) {
7087 if (AllowLifetime &&
II->isLifetimeStartOrEnd())
7090 if (AllowDroppable &&
II->isDroppable())
7111 return (!Shuffle || Shuffle->isSelect()) &&
7118 bool IgnoreUBImplyingAttrs) {
7120 AC, DT, TLI, UseVariableInfo,
7121 IgnoreUBImplyingAttrs);
7127 bool UseVariableInfo,
bool IgnoreUBImplyingAttrs) {
7131 auto hasEqualReturnAndLeadingOperandTypes =
7132 [](
const Instruction *Inst,
unsigned NumLeadingOperands) {
7136 for (
unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
7142 hasEqualReturnAndLeadingOperandTypes(Inst, 2));
7144 hasEqualReturnAndLeadingOperandTypes(Inst, 1));
7151 case Instruction::UDiv:
7152 case Instruction::URem: {
7159 case Instruction::SDiv:
7160 case Instruction::SRem: {
7162 const APInt *Numerator, *Denominator;
7166 if (*Denominator == 0)
7178 case Instruction::Load: {
7179 if (!UseVariableInfo)
7192 case Instruction::Call: {
7196 const Function *Callee = CI->getCalledFunction();
7200 if (!Callee || !Callee->isSpeculatable())
7204 return IgnoreUBImplyingAttrs || !CI->hasUBImplyingAttrs();
7206 case Instruction::VAArg:
7207 case Instruction::Alloca:
7208 case Instruction::Invoke:
7209 case Instruction::CallBr:
7210 case Instruction::PHI:
7211 case Instruction::Store:
7212 case Instruction::Ret:
7213 case Instruction::Br:
7214 case Instruction::IndirectBr:
7215 case Instruction::Switch:
7216 case Instruction::Unreachable:
7217 case Instruction::Fence:
7218 case Instruction::AtomicRMW:
7219 case Instruction::AtomicCmpXchg:
7220 case Instruction::LandingPad:
7221 case Instruction::Resume:
7222 case Instruction::CatchSwitch:
7223 case Instruction::CatchPad:
7224 case Instruction::CatchRet:
7225 case Instruction::CleanupPad:
7226 case Instruction::CleanupRet:
7232 if (
I.mayReadOrWriteMemory())
7300 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
7345 if (
Add &&
Add->hasNoSignedWrap()) {
7384 bool LHSOrRHSKnownNonNegative =
7386 bool LHSOrRHSKnownNegative =
7388 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
7391 if ((AddKnown.
isNonNegative() && LHSOrRHSKnownNonNegative) ||
7392 (AddKnown.
isNegative() && LHSOrRHSKnownNegative))
7467 assert(EVI->getNumIndices() == 1 &&
"Obvious from CI's type");
7469 if (EVI->getIndices()[0] == 0)
7472 assert(EVI->getIndices()[0] == 1 &&
"Obvious from CI's type");
7474 for (
const auto *U : EVI->users())
7476 assert(
B->isConditional() &&
"How else is it using an i1?");
7487 auto AllUsesGuardedByBranch = [&](
const BranchInst *BI) {
7493 for (
const auto *Result :
Results) {
7496 if (DT.
dominates(NoWrapEdge, Result->getParent()))
7499 for (
const auto &RU : Result->uses())
7507 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
7519 unsigned NumElts = FVTy->getNumElements();
7520 for (
unsigned i = 0; i < NumElts; ++i)
7521 ShiftAmounts.
push_back(
C->getAggregateElement(i));
7529 return CI && CI->getValue().ult(
C->getType()->getIntegerBitWidth());
7550 bool ConsiderFlagsAndMetadata) {
7553 Op->hasPoisonGeneratingAnnotations())
7556 unsigned Opcode =
Op->getOpcode();
7560 case Instruction::Shl:
7561 case Instruction::AShr:
7562 case Instruction::LShr:
7564 case Instruction::FPToSI:
7565 case Instruction::FPToUI:
7569 case Instruction::Call:
7571 switch (
II->getIntrinsicID()) {
7573 case Intrinsic::ctlz:
7574 case Intrinsic::cttz:
7575 case Intrinsic::abs:
7578 case Intrinsic::sshl_sat:
7579 case Intrinsic::ushl_sat:
7587 case Instruction::CallBr:
7588 case Instruction::Invoke: {
7590 return !CB->hasRetAttr(Attribute::NoUndef) &&
7591 !CB->hasFnAttr(Attribute::NoCreateUndefOrPoison);
7593 case Instruction::InsertElement:
7594 case Instruction::ExtractElement: {
7597 unsigned IdxOp =
Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
7601 Idx->getValue().uge(VTy->getElementCount().getKnownMinValue());
7604 case Instruction::ShuffleVector: {
7610 case Instruction::FNeg:
7611 case Instruction::PHI:
7612 case Instruction::Select:
7613 case Instruction::ExtractValue:
7614 case Instruction::InsertValue:
7615 case Instruction::Freeze:
7616 case Instruction::ICmp:
7617 case Instruction::FCmp:
7618 case Instruction::GetElementPtr:
7620 case Instruction::AddrSpaceCast:
7635 bool ConsiderFlagsAndMetadata) {
7637 ConsiderFlagsAndMetadata);
7642 ConsiderFlagsAndMetadata);
7647 if (ValAssumedPoison == V)
7650 const unsigned MaxDepth = 2;
7651 if (
Depth >= MaxDepth)
7656 return propagatesPoison(Op) &&
7657 directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
7681 const unsigned MaxDepth = 2;
7682 if (
Depth >= MaxDepth)
7688 return impliesPoison(Op, V, Depth + 1);
7695 return ::impliesPoison(ValAssumedPoison, V, 0);
7710 if (
A->hasAttribute(Attribute::NoUndef) ||
7711 A->hasAttribute(Attribute::Dereferenceable) ||
7712 A->hasAttribute(Attribute::DereferenceableOrNull))
7727 if (
C->getType()->isVectorTy()) {
7730 if (
Constant *SplatC =
C->getSplatValue())
7738 return !
C->containsConstantExpression();
7751 auto *StrippedV = V->stripPointerCastsSameRepresentation();
7756 auto OpCheck = [&](
const Value *V) {
7767 if (CB->hasRetAttr(Attribute::NoUndef) ||
7768 CB->hasRetAttr(Attribute::Dereferenceable) ||
7769 CB->hasRetAttr(Attribute::DereferenceableOrNull))
7776 unsigned Num = PN->getNumIncomingValues();
7777 bool IsWellDefined =
true;
7778 for (
unsigned i = 0; i < Num; ++i) {
7779 if (PN == PN->getIncomingValue(i))
7781 auto *TI = PN->getIncomingBlock(i)->getTerminator();
7783 DT,
Depth + 1, Kind)) {
7784 IsWellDefined =
false;
7795 }
else if (
all_of(Opr->operands(), OpCheck))
7801 if (
I->hasMetadata(LLVMContext::MD_noundef) ||
7802 I->hasMetadata(LLVMContext::MD_dereferenceable) ||
7803 I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
7823 auto *Dominator = DNode->
getIDom();
7828 auto *TI = Dominator->getBlock()->getTerminator();
7832 if (BI->isConditional())
7833 Cond = BI->getCondition();
7835 Cond =
SI->getCondition();
7844 if (
any_of(Opr->operands(), [V](
const Use &U) {
7845 return V == U && propagatesPoison(U);
7851 Dominator = Dominator->getIDom();
7864 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7871 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7878 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7902 while (!Worklist.
empty()) {
7911 if (
I != Root && !
any_of(
I->operands(), [&KnownPoison](
const Use &U) {
7912 return KnownPoison.contains(U) && propagatesPoison(U);
7916 if (KnownPoison.
insert(
I).second)
7928 return ::computeOverflowForSignedAdd(
Add->getOperand(0),
Add->getOperand(1),
7936 return ::computeOverflowForSignedAdd(LHS, RHS,
nullptr, SQ);
7968 return !
I->mayThrow() &&
I->willReturn();
7982 unsigned ScanLimit) {
7989 assert(ScanLimit &&
"scan limit must be non-zero");
7991 if (--ScanLimit == 0)
8005 if (
I->getParent() != L->getHeader())
return false;
8008 if (&LI ==
I)
return true;
8011 llvm_unreachable(
"Instruction not contained in its own parent basic block.");
8017 case Intrinsic::sadd_with_overflow:
8018 case Intrinsic::ssub_with_overflow:
8019 case Intrinsic::smul_with_overflow:
8020 case Intrinsic::uadd_with_overflow:
8021 case Intrinsic::usub_with_overflow:
8022 case Intrinsic::umul_with_overflow:
8027 case Intrinsic::ctpop:
8028 case Intrinsic::ctlz:
8029 case Intrinsic::cttz:
8030 case Intrinsic::abs:
8031 case Intrinsic::smax:
8032 case Intrinsic::smin:
8033 case Intrinsic::umax:
8034 case Intrinsic::umin:
8035 case Intrinsic::scmp:
8036 case Intrinsic::is_fpclass:
8037 case Intrinsic::ptrmask:
8038 case Intrinsic::ucmp:
8039 case Intrinsic::bitreverse:
8040 case Intrinsic::bswap:
8041 case Intrinsic::sadd_sat:
8042 case Intrinsic::ssub_sat:
8043 case Intrinsic::sshl_sat:
8044 case Intrinsic::uadd_sat:
8045 case Intrinsic::usub_sat:
8046 case Intrinsic::ushl_sat:
8047 case Intrinsic::smul_fix:
8048 case Intrinsic::smul_fix_sat:
8049 case Intrinsic::umul_fix:
8050 case Intrinsic::umul_fix_sat:
8051 case Intrinsic::pow:
8052 case Intrinsic::powi:
8053 case Intrinsic::sin:
8054 case Intrinsic::sinh:
8055 case Intrinsic::cos:
8056 case Intrinsic::cosh:
8057 case Intrinsic::sincos:
8058 case Intrinsic::sincospi:
8059 case Intrinsic::tan:
8060 case Intrinsic::tanh:
8061 case Intrinsic::asin:
8062 case Intrinsic::acos:
8063 case Intrinsic::atan:
8064 case Intrinsic::atan2:
8065 case Intrinsic::canonicalize:
8066 case Intrinsic::sqrt:
8067 case Intrinsic::exp:
8068 case Intrinsic::exp2:
8069 case Intrinsic::exp10:
8070 case Intrinsic::log:
8071 case Intrinsic::log2:
8072 case Intrinsic::log10:
8073 case Intrinsic::modf:
8074 case Intrinsic::floor:
8075 case Intrinsic::ceil:
8076 case Intrinsic::trunc:
8077 case Intrinsic::rint:
8078 case Intrinsic::nearbyint:
8079 case Intrinsic::round:
8080 case Intrinsic::roundeven:
8081 case Intrinsic::lrint:
8082 case Intrinsic::llrint:
8083 case Intrinsic::fshl:
8084 case Intrinsic::fshr:
8093 switch (
I->getOpcode()) {
8094 case Instruction::Freeze:
8095 case Instruction::PHI:
8096 case Instruction::Invoke:
8098 case Instruction::Select:
8100 case Instruction::Call:
8104 case Instruction::ICmp:
8105 case Instruction::FCmp:
8106 case Instruction::GetElementPtr:
8120template <
typename CallableT>
8122 const CallableT &Handle) {
8123 switch (
I->getOpcode()) {
8124 case Instruction::Store:
8129 case Instruction::Load:
8136 case Instruction::AtomicCmpXchg:
8141 case Instruction::AtomicRMW:
8146 case Instruction::Call:
8147 case Instruction::Invoke: {
8151 for (
unsigned i = 0; i < CB->
arg_size(); ++i)
8154 CB->
paramHasAttr(i, Attribute::DereferenceableOrNull)) &&
8159 case Instruction::Ret:
8160 if (
I->getFunction()->hasRetAttribute(Attribute::NoUndef) &&
8161 Handle(
I->getOperand(0)))
8164 case Instruction::Switch:
8168 case Instruction::Br: {
8170 if (BR->isConditional() && Handle(BR->getCondition()))
8182template <
typename CallableT>
8184 const CallableT &Handle) {
8187 switch (
I->getOpcode()) {
8189 case Instruction::UDiv:
8190 case Instruction::SDiv:
8191 case Instruction::URem:
8192 case Instruction::SRem:
8193 return Handle(
I->getOperand(1));
8202 I, [&](
const Value *V) {
return KnownPoison.
count(V); });
8221 if (Arg->getParent()->isDeclaration())
8224 Begin = BB->
begin();
8231 unsigned ScanLimit = 32;
8240 if (--ScanLimit == 0)
8244 return WellDefinedOp == V;
8264 if (--ScanLimit == 0)
8272 for (
const Use &
Op :
I.operands()) {
8282 if (
I.getOpcode() == Instruction::Select &&
8283 YieldsPoison.
count(
I.getOperand(1)) &&
8284 YieldsPoison.
count(
I.getOperand(2))) {
8290 if (!BB || !Visited.
insert(BB).second)
8300 return ::programUndefinedIfUndefOrPoison(Inst,
false);
8304 return ::programUndefinedIfUndefOrPoison(Inst,
true);
8315 if (!
C->getElementType()->isFloatingPointTy())
8317 for (
unsigned I = 0,
E =
C->getNumElements();
I <
E; ++
I) {
8318 if (
C->getElementAsAPFloat(
I).isNaN())
8332 return !
C->isZero();
8335 if (!
C->getElementType()->isFloatingPointTy())
8337 for (
unsigned I = 0,
E =
C->getNumElements();
I <
E; ++
I) {
8338 if (
C->getElementAsAPFloat(
I).isZero())
8361 if (CmpRHS == FalseVal) {
8405 if (CmpRHS != TrueVal) {
8444 Value *
A =
nullptr, *
B =
nullptr;
8449 Value *
C =
nullptr, *
D =
nullptr;
8451 if (L.Flavor != R.Flavor)
8503 return {L.Flavor,
SPNB_NA,
false};
8510 return {L.Flavor,
SPNB_NA,
false};
8517 return {L.Flavor,
SPNB_NA,
false};
8524 return {L.Flavor,
SPNB_NA,
false};
8540 return ConstantInt::get(V->getType(), ~(*
C));
8597 if ((CmpLHS == TrueVal &&
match(FalseVal,
m_APInt(C2))) ||
8617 assert(
X &&
Y &&
"Invalid operand");
8619 auto IsNegationOf = [&](
const Value *
X,
const Value *
Y) {
8624 if (NeedNSW && !BO->hasNoSignedWrap())
8628 if (!AllowPoison && !Zero->isNullValue())
8635 if (IsNegationOf(
X,
Y) || IsNegationOf(
Y,
X))
8662 const APInt *RHSC1, *RHSC2;
8673 return CR1.inverse() == CR2;
8707std::optional<std::pair<CmpPredicate, Constant *>>
8710 "Only for relational integer predicates.");
8712 return std::nullopt;
8718 bool WillIncrement =
8723 auto ConstantIsOk = [WillIncrement, IsSigned](
ConstantInt *
C) {
8724 return WillIncrement ? !
C->isMaxValue(IsSigned) : !
C->isMinValue(IsSigned);
8727 Constant *SafeReplacementConstant =
nullptr;
8730 if (!ConstantIsOk(CI))
8731 return std::nullopt;
8733 unsigned NumElts = FVTy->getNumElements();
8734 for (
unsigned i = 0; i != NumElts; ++i) {
8735 Constant *Elt =
C->getAggregateElement(i);
8737 return std::nullopt;
8745 if (!CI || !ConstantIsOk(CI))
8746 return std::nullopt;
8748 if (!SafeReplacementConstant)
8749 SafeReplacementConstant = CI;
8753 Value *SplatC =
C->getSplatValue();
8756 if (!CI || !ConstantIsOk(CI))
8757 return std::nullopt;
8760 return std::nullopt;
8767 if (
C->containsUndefOrPoisonElement()) {
8768 assert(SafeReplacementConstant &&
"Replacement constant not set");
8775 Constant *OneOrNegOne = ConstantInt::get(
Type, WillIncrement ? 1 : -1,
true);
8778 return std::make_pair(NewPred, NewC);
8787 bool HasMismatchedZeros =
false;
8793 Value *OutputZeroVal =
nullptr;
8796 OutputZeroVal = TrueVal;
8799 OutputZeroVal = FalseVal;
8801 if (OutputZeroVal) {
8803 HasMismatchedZeros =
true;
8804 CmpLHS = OutputZeroVal;
8807 HasMismatchedZeros =
true;
8808 CmpRHS = OutputZeroVal;
8825 if (!HasMismatchedZeros)
8836 bool Ordered =
false;
8847 if (LHSSafe && RHSSafe) {
8878 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
8889 if (TrueVal == CmpLHS && FalseVal == CmpRHS)
8895 auto MaybeSExtCmpLHS =
8899 if (
match(TrueVal, MaybeSExtCmpLHS)) {
8921 else if (
match(FalseVal, MaybeSExtCmpLHS)) {
8961 case Instruction::ZExt:
8965 case Instruction::SExt:
8969 case Instruction::Trunc:
8972 CmpConst->
getType() == SrcTy) {
8994 CastedTo = CmpConst;
8996 unsigned ExtOp = CmpI->
isSigned() ? Instruction::SExt : Instruction::ZExt;
9000 case Instruction::FPTrunc:
9003 case Instruction::FPExt:
9006 case Instruction::FPToUI:
9009 case Instruction::FPToSI:
9012 case Instruction::UIToFP:
9015 case Instruction::SIToFP:
9028 if (CastedBack && CastedBack !=
C)
9056 *CastOp = Cast1->getOpcode();
9057 Type *SrcTy = Cast1->getSrcTy();
9060 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
9061 return Cast2->getOperand(0);
9069 Value *CastedTo =
nullptr;
9070 if (*CastOp == Instruction::Trunc) {
9084 "V2 and Cast1 should be the same type.");
9103 Value *TrueVal =
SI->getTrueValue();
9104 Value *FalseVal =
SI->getFalseValue();
9107 CmpI, TrueVal, FalseVal, LHS, RHS,
9126 if (CastOp && CmpLHS->
getType() != TrueVal->getType()) {
9130 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
9132 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
9139 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
9141 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
9146 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
9165 return Intrinsic::umin;
9167 return Intrinsic::umax;
9169 return Intrinsic::smin;
9171 return Intrinsic::smax;
9187 case Intrinsic::smax:
return Intrinsic::smin;
9188 case Intrinsic::smin:
return Intrinsic::smax;
9189 case Intrinsic::umax:
return Intrinsic::umin;
9190 case Intrinsic::umin:
return Intrinsic::umax;
9193 case Intrinsic::maximum:
return Intrinsic::minimum;
9194 case Intrinsic::minimum:
return Intrinsic::maximum;
9195 case Intrinsic::maxnum:
return Intrinsic::minnum;
9196 case Intrinsic::minnum:
return Intrinsic::maxnum;
9197 case Intrinsic::maximumnum:
9198 return Intrinsic::minimumnum;
9199 case Intrinsic::minimumnum:
9200 return Intrinsic::maximumnum;
9215std::pair<Intrinsic::ID, bool>
9220 bool AllCmpSingleUse =
true;
9223 if (
all_of(VL, [&SelectPattern, &AllCmpSingleUse](
Value *
I) {
9229 SelectPattern.
Flavor != CurrentPattern.Flavor)
9231 SelectPattern = CurrentPattern;
9236 switch (SelectPattern.
Flavor) {
9238 return {Intrinsic::smin, AllCmpSingleUse};
9240 return {Intrinsic::umin, AllCmpSingleUse};
9242 return {Intrinsic::smax, AllCmpSingleUse};
9244 return {Intrinsic::umax, AllCmpSingleUse};
9246 return {Intrinsic::maxnum, AllCmpSingleUse};
9248 return {Intrinsic::minnum, AllCmpSingleUse};
9256template <
typename InstTy>
9266 for (
unsigned I = 0;
I != 2; ++
I) {
9271 if (
LHS != PN &&
RHS != PN)
9307 if (
I->arg_size() != 2 ||
I->getType() !=
I->getArgOperand(0)->getType() ||
9308 I->getType() !=
I->getArgOperand(1)->getType())
9336 return !
C->isNegative();
9348 const APInt *CLHS, *CRHS;
9351 return CLHS->
sle(*CRHS);
9389 const APInt *CLHS, *CRHS;
9392 return CLHS->
ule(*CRHS);
9401static std::optional<bool>
9406 return std::nullopt;
9413 return std::nullopt;
9420 return std::nullopt;
9427 return std::nullopt;
9434 return std::nullopt;
9441static std::optional<bool>
9447 if (CR.
icmp(Pred, RCR))
9454 return std::nullopt;
9467 return std::nullopt;
9473static std::optional<bool>
9504 const APInt *Unused;
9523 return std::nullopt;
9527 if (L0 == R0 && L1 == R1)
9560 ((
A == R0 &&
B == R1) || (
A == R1 &&
B == R0) ||
9578 return std::nullopt;
9584static std::optional<bool>
9614 if (L0 == R0 && L1 == R1) {
9615 if ((LPred & RPred) == LPred)
9617 if ((LPred & ~RPred) == LPred)
9625 if (std::optional<ConstantFPRange> DomCR =
9627 if (std::optional<ConstantFPRange> ImpliedCR =
9629 if (ImpliedCR->contains(*DomCR))
9632 if (std::optional<ConstantFPRange> ImpliedCR =
9635 if (ImpliedCR->contains(*DomCR))
9641 return std::nullopt;
9648static std::optional<bool>
9653 assert((
LHS->getOpcode() == Instruction::And ||
9654 LHS->getOpcode() == Instruction::Or ||
9655 LHS->getOpcode() == Instruction::Select) &&
9656 "Expected LHS to be 'and', 'or', or 'select'.");
9663 const Value *ALHS, *ARHS;
9668 ALHS, RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue,
Depth + 1))
9671 ARHS, RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue,
Depth + 1))
9673 return std::nullopt;
9675 return std::nullopt;
9684 return std::nullopt;
9689 return std::nullopt;
9691 assert(LHS->getType()->isIntOrIntVectorTy(1) &&
9692 "Expected integer type only!");
9696 LHSIsTrue = !LHSIsTrue;
9702 LHSCmp->getOperand(0), LHSCmp->getOperand(1),
9703 RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue);
9707 ConstantInt::get(V->getType(), 0), RHSPred,
9708 RHSOp0, RHSOp1,
DL, LHSIsTrue);
9711 "Expected floating point type only!");
9714 LHSCmp->getOperand(1), RHSPred, RHSOp0, RHSOp1,
9722 if ((LHSI->getOpcode() == Instruction::And ||
9723 LHSI->getOpcode() == Instruction::Or ||
9724 LHSI->getOpcode() == Instruction::Select))
9728 return std::nullopt;
9733 bool LHSIsTrue,
unsigned Depth) {
9739 bool InvertRHS =
false;
9748 LHS, RHSCmp->getCmpPredicate(), RHSCmp->getOperand(0),
9749 RHSCmp->getOperand(1),
DL, LHSIsTrue,
Depth))
9750 return InvertRHS ? !*Implied : *Implied;
9751 return std::nullopt;
9755 LHS, RHSCmp->getPredicate(), RHSCmp->getOperand(0),
9756 RHSCmp->getOperand(1),
DL, LHSIsTrue,
Depth))
9757 return InvertRHS ? !*Implied : *Implied;
9758 return std::nullopt;
9764 ConstantInt::get(V->getType(), 0),
DL,
9766 return InvertRHS ? !*Implied : *Implied;
9767 return std::nullopt;
9771 return std::nullopt;
9775 const Value *RHS1, *RHS2;
9777 if (std::optional<bool> Imp =
9781 if (std::optional<bool> Imp =
9787 if (std::optional<bool> Imp =
9791 if (std::optional<bool> Imp =
9797 return std::nullopt;
9802static std::pair<Value *, bool>
9804 if (!ContextI || !ContextI->
getParent())
9805 return {
nullptr,
false};
9812 return {
nullptr,
false};
9818 return {
nullptr,
false};
9821 if (TrueBB == FalseBB)
9822 return {
nullptr,
false};
9824 assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
9825 "Predecessor block does not point to successor?");
9828 return {PredCond, TrueBB == ContextBB};
9834 assert(
Cond->getType()->isIntOrIntVectorTy(1) &&
"Condition must be bool");
9838 return std::nullopt;
9850 return std::nullopt;
9855 bool PreferSignedRange) {
9856 unsigned Width =
Lower.getBitWidth();
9859 case Instruction::Sub:
9869 if (PreferSignedRange && HasNSW && HasNUW)
9875 }
else if (HasNSW) {
9876 if (
C->isNegative()) {
9889 case Instruction::Add:
9898 if (PreferSignedRange && HasNSW && HasNUW)
9904 }
else if (HasNSW) {
9905 if (
C->isNegative()) {
9918 case Instruction::And:
9929 case Instruction::Or:
9935 case Instruction::AShr:
9941 unsigned ShiftAmount = Width - 1;
9942 if (!
C->isZero() && IIQ.
isExact(&BO))
9943 ShiftAmount =
C->countr_zero();
9944 if (
C->isNegative()) {
9947 Upper =
C->ashr(ShiftAmount) + 1;
9950 Lower =
C->ashr(ShiftAmount);
9956 case Instruction::LShr:
9962 unsigned ShiftAmount = Width - 1;
9963 if (!
C->isZero() && IIQ.
isExact(&BO))
9964 ShiftAmount =
C->countr_zero();
9965 Lower =
C->lshr(ShiftAmount);
9970 case Instruction::Shl:
9977 if (
C->isNegative()) {
9979 unsigned ShiftAmount =
C->countl_one() - 1;
9980 Lower =
C->shl(ShiftAmount);
9984 unsigned ShiftAmount =
C->countl_zero() - 1;
9986 Upper =
C->shl(ShiftAmount) + 1;
10005 case Instruction::SDiv:
10009 if (
C->isAllOnes()) {
10012 Lower = IntMin + 1;
10013 Upper = IntMax + 1;
10014 }
else if (
C->countl_zero() < Width - 1) {
10025 if (
C->isMinSignedValue()) {
10037 case Instruction::UDiv:
10047 case Instruction::SRem:
10053 if (
C->isNegative()) {
10064 case Instruction::URem:
10079 bool UseInstrInfo) {
10080 unsigned Width =
II.getType()->getScalarSizeInBits();
10082 switch (
II.getIntrinsicID()) {
10083 case Intrinsic::ctlz:
10084 case Intrinsic::cttz: {
10086 if (!UseInstrInfo || !
match(
II.getArgOperand(1),
m_One()))
10091 case Intrinsic::ctpop:
10094 APInt(Width, Width) + 1);
10095 case Intrinsic::uadd_sat:
10101 case Intrinsic::sadd_sat:
10104 if (
C->isNegative())
10115 case Intrinsic::usub_sat:
10125 case Intrinsic::ssub_sat:
10127 if (
C->isNegative())
10137 if (
C->isNegative())
10148 case Intrinsic::umin:
10149 case Intrinsic::umax:
10150 case Intrinsic::smin:
10151 case Intrinsic::smax:
10156 switch (
II.getIntrinsicID()) {
10157 case Intrinsic::umin:
10159 case Intrinsic::umax:
10161 case Intrinsic::smin:
10164 case Intrinsic::smax:
10171 case Intrinsic::abs:
10180 case Intrinsic::vscale:
10181 if (!
II.getParent() || !
II.getFunction())
10188 return ConstantRange::getFull(Width);
10193 unsigned BitWidth =
SI.getType()->getScalarSizeInBits();
10197 return ConstantRange::getFull(
BitWidth);
10220 return ConstantRange::getFull(
BitWidth);
10222 switch (R.Flavor) {
10234 return ConstantRange::getFull(
BitWidth);
10241 unsigned BitWidth =
I->getType()->getScalarSizeInBits();
10242 if (!
I->getOperand(0)->getType()->getScalarType()->isHalfTy())
10260 assert(V->getType()->isIntOrIntVectorTy() &&
"Expected integer instruction");
10263 return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
10266 return C->toConstantRange();
10268 unsigned BitWidth = V->getType()->getScalarSizeInBits();
10281 SI->getTrueValue(), ForSigned, UseInstrInfo, AC, CtxI, DT,
Depth + 1);
10283 SI->getFalseValue(), ForSigned, UseInstrInfo, AC, CtxI, DT,
Depth + 1);
10293 if (std::optional<ConstantRange>
Range =
A->getRange())
10301 if (std::optional<ConstantRange>
Range = CB->getRange())
10312 "Got assumption for the wrong function!");
10313 assert(
I->getIntrinsicID() == Intrinsic::assume &&
10314 "must be an assume intrinsic");
10318 Value *Arg =
I->getArgOperand(0);
10321 if (!Cmp || Cmp->getOperand(0) != V)
10326 UseInstrInfo, AC,
I, DT,
Depth + 1);
10349 InsertAffected(
Op);
10356 auto AddAffected = [&InsertAffected](
Value *V) {
10360 auto AddCmpOperands = [&AddAffected, IsAssume](
Value *LHS,
Value *RHS) {
10371 while (!Worklist.
empty()) {
10373 if (!Visited.
insert(V).second)
10419 AddCmpOperands(
A,
B);
10456 AddCmpOperands(
A,
B);
10484 if (BO->getOpcode() == Instruction::Add ||
10485 BO->getOpcode() == Instruction::Or) {
10487 const APInt *C1, *C2;
10506 unsigned MaxCount,
bool AllowUndefOrPoison) {
10509 auto Push = [&](
const Value *V) ->
bool {
10515 if (Constants.contains(
C))
10517 if (Constants.size() == MaxCount)
10519 Constants.insert(
C);
10524 if (Visited.
insert(Inst).second)
10532 while (!Worklist.
empty()) {
10535 case Instruction::Select:
10541 case Instruction::PHI:
10544 if (IncomingValue == CurInst)
10546 if (!Push(IncomingValue))
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Utilities for dealing with flags related to floating point properties and mode controls.
static Value * getCondition(Instruction *I)
Module.h This file contains the declarations for the Module class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
std::pair< BasicBlock *, BasicBlock * > Edge
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static SmallVector< VPValue *, 4 > getOperands(ArrayRef< VPValue * > Values, unsigned OperandIndex)
static void computeKnownFPClassFromCond(const Value *V, Value *Cond, bool CondIsTrue, const Instruction *CxtI, KnownFPClass &KnownFromContext, unsigned Depth=0)
static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero, SimplifyQuery &Q, unsigned Depth)
Try to detect a recurrence that the value of the induction variable is always a power of two (or zero...
static cl::opt< unsigned > DomConditionsMaxUses("dom-conditions-max-uses", cl::Hidden, cl::init(20))
static unsigned computeNumSignBitsVectorConstant(const Value *V, const APInt &DemandedElts, unsigned TyBits)
For vector constants, loop over the elements and find the constant with the minimum number of sign bi...
static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, const Value *RHS)
Return true if "icmp Pred LHS RHS" is always true.
static bool isModifyingBinopOfNonZero(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V1 == (binop V2, X), where X is known non-zero.
static bool isGEPKnownNonNull(const GEPOperator *GEP, const SimplifyQuery &Q, unsigned Depth)
Test whether a GEP's result is known to be non-null.
static bool isNonEqualShl(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and the shift is nuw or nsw.
static bool isKnownNonNullFromDominatingCondition(const Value *V, const Instruction *CtxI, const DominatorTree *DT)
static const Value * getUnderlyingObjectFromInt(const Value *V)
This is the function that does the work of looking through basic ptrtoint+arithmetic+inttoptr sequenc...
static bool isNonZeroMul(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, bool NSW, bool NUW, unsigned Depth)
static bool rangeMetadataExcludesValue(const MDNode *Ranges, const APInt &Value)
Does the 'Range' metadata (which must be a valid MD_range operand list) ensure that the value it's at...
static KnownBits getKnownBitsFromAndXorOr(const Operator *I, const APInt &DemandedElts, const KnownBits &KnownLHS, const KnownBits &KnownRHS, const SimplifyQuery &Q, unsigned Depth)
static void breakSelfRecursivePHI(const Use *U, const PHINode *PHI, Value *&ValOut, Instruction *&CtxIOut, const PHINode **PhiOut=nullptr)
static bool isNonZeroSub(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, unsigned Depth)
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static void addValueAffectedByCondition(Value *V, function_ref< void(Value *)> InsertAffected)
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
static bool haveNoCommonBitsSetSpecialCases(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, APInt &Upper, const InstrInfoQuery &IIQ, bool PreferSignedRange)
static Value * lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, Instruction::CastOps *CastOp)
Helps to match a select pattern in case of a type mismatch.
static std::pair< Value *, bool > getDomPredecessorCondition(const Instruction *ContextI)
static constexpr unsigned MaxInstrsToCheckForFree
Maximum number of instructions to check between assume and context instruction.
static bool isNonZeroShift(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, const KnownBits &KnownVal, unsigned Depth)
static std::optional< bool > isImpliedCondFCmps(FCmpInst::Predicate LPred, const Value *L0, const Value *L1, FCmpInst::Predicate RPred, const Value *R0, const Value *R1, const DataLayout &DL, bool LHSIsTrue)
Return true if LHS implies RHS (expanded to its components as "R0 RPred R1") is true.
static bool isKnownNonEqualFromContext(const Value *V1, const Value *V2, const SimplifyQuery &Q, unsigned Depth)
static bool includesPoison(UndefPoisonKind Kind)
static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS)
Match clamp pattern for float types without care about NaNs or signed zeros.
static std::optional< bool > isImpliedCondICmps(CmpPredicate LPred, const Value *L0, const Value *L1, CmpPredicate RPred, const Value *R0, const Value *R1, const DataLayout &DL, bool LHSIsTrue)
Return true if LHS implies RHS (expanded to its components as "R0 RPred R1") is true.
static bool includesUndef(UndefPoisonKind Kind)
static std::optional< bool > isImpliedCondCommonOperandWithCR(CmpPredicate LPred, const ConstantRange &LCR, CmpPredicate RPred, const ConstantRange &RCR)
Return true if "icmp LPred X, LCR" implies "icmp RPred X, RCR" is true.
static ConstantRange getRangeForSelectPattern(const SelectInst &SI, const InstrInfoQuery &IIQ)
static void computeKnownBitsFromOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth)
static uint64_t GetStringLengthH(const Value *V, SmallPtrSetImpl< const PHINode * > &PHIs, unsigned CharSize)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
static void computeKnownBitsFromShiftOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth, function_ref< KnownBits(const KnownBits &, const KnownBits &, bool)> KF)
Compute known bits from a shift operator, including those with a non-constant shift amount.
static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(const Value *V, bool AllowLifetime, bool AllowDroppable)
static std::optional< bool > isImpliedCondAndOr(const Instruction *LHS, CmpPredicate RHSPred, const Value *RHSOp0, const Value *RHSOp1, const DataLayout &DL, bool LHSIsTrue, unsigned Depth)
Return true if LHS implies RHS is true.
static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, const APInt *&CLow, const APInt *&CHigh)
static bool isNonZeroAdd(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, bool NSW, bool NUW, unsigned Depth)
static bool directlyImpliesPoison(const Value *ValAssumedPoison, const Value *V, unsigned Depth)
static bool isNonEqualSelect(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static bool matchTwoInputRecurrence(const PHINode *PN, InstTy *&Inst, Value *&Init, Value *&OtherOp)
static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static void computeKnownBitsFromCmp(const Value *V, CmpInst::Predicate Pred, Value *LHS, Value *RHS, KnownBits &Known, const SimplifyQuery &Q)
static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TVal, Value *FVal, unsigned Depth)
Recognize variations of: a < c ?
static void unionWithMinMaxIntrinsicClamp(const IntrinsicInst *II, KnownBits &Known)
static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper)
static bool isSameUnderlyingObjectInLoop(const PHINode *PN, const LoopInfo *LI)
PN defines a loop-variant pointer to an object.
static bool isNonEqualPointersWithRecursiveGEP(const Value *A, const Value *B, const SimplifyQuery &Q)
static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, const APInt *&CLow, const APInt *&CHigh)
static Value * lookThroughCastConst(CmpInst *CmpI, Type *SrcTy, Constant *C, Instruction::CastOps *CastOp)
static bool handleGuaranteedWellDefinedOps(const Instruction *I, const CallableT &Handle)
Enumerates all operands of I that are guaranteed to not be undef or poison.
static void computeKnownBitsFromLerpPattern(const Value *Op0, const Value *Op1, const APInt &DemandedElts, KnownBits &KnownOut, const SimplifyQuery &Q, unsigned Depth)
Try to detect the lerp pattern: a * (b - c) + c * d where a >= 0, b >= 0, c >= 0, d >= 0,...
static KnownFPClass computeKnownFPClassFromContext(const Value *V, const SimplifyQuery &Q)
static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, bool NSW, bool NUW, const APInt &DemandedElts, KnownBits &KnownOut, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth)
static Value * getNotValue(Value *V)
If the input value is the result of a 'not' op, constant integer, or vector splat of a constant integ...
static constexpr KnownFPClass::MinMaxKind getMinMaxKind(Intrinsic::ID IID)
static unsigned ComputeNumSignBitsImpl(const Value *V, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return the number of times the sign bit of the register is replicated into the other bits.
static void computeKnownBitsFromICmpCond(const Value *V, ICmpInst *Cmp, KnownBits &Known, const SimplifyQuery &SQ, bool Invert)
static bool isKnownNonZeroFromOperator(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static bool matchOpWithOpEqZero(Value *Op0, Value *Op1)
static bool isNonZeroRecurrence(const PHINode *PN)
Try to detect a recurrence that monotonically increases/decreases from a non-zero starting value.
static SelectPatternResult matchClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal)
Recognize variations of: CLAMP(v,l,h) ==> ((v) < (l) ?
static bool shiftAmountKnownInRange(const Value *ShiftAmount)
Shifts return poison if shiftwidth is larger than the bitwidth.
static bool isEphemeralValueOf(const Instruction *I, const Value *E)
static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, unsigned Depth)
Match non-obvious integer minimum and maximum sequences.
static KnownBits computeKnownBitsForHorizontalOperation(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth, const function_ref< KnownBits(const KnownBits &, const KnownBits &)> KnownBitsFunc)
static bool handleGuaranteedNonPoisonOps(const Instruction *I, const CallableT &Handle)
Enumerates all operands of I that are guaranteed to not be poison.
static std::optional< std::pair< Value *, Value * > > getInvertibleOperands(const Operator *Op1, const Operator *Op2)
If the pair of operators are the same invertible function, return the the operands of the function co...
static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS)
static void computeKnownBitsFromCond(const Value *V, Value *Cond, KnownBits &Known, const SimplifyQuery &SQ, bool Invert, unsigned Depth)
static bool isKnownNonZeroFromAssume(const Value *V, const SimplifyQuery &Q)
static std::optional< bool > isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, const Value *ARHS, const Value *BLHS, const Value *BRHS)
Return true if "icmp Pred BLHS BRHS" is true whenever "icmp PredALHS ARHS" is true.
static const Instruction * safeCxtI(const Value *V, const Instruction *CxtI)
static bool isNonEqualMul(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and the multiplication is nuw o...
static bool isImpliedToBeAPowerOfTwoFromCond(const Value *V, bool OrZero, const Value *Cond, bool CondIsTrue)
Return true if we can infer that V is known to be a power of 2 from dominating condition Cond (e....
static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, bool NUW, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth)
static bool isKnownNonNaN(const Value *V, FastMathFlags FMF)
static ConstantRange getRangeForIntrinsic(const IntrinsicInst &II, bool UseInstrInfo)
static void computeKnownFPClassForFPTrunc(const Operator *Op, const APInt &DemandedElts, FPClassTest InterestedClasses, KnownFPClass &Known, const SimplifyQuery &Q, unsigned Depth)
static Value * BuildSubAggregate(Value *From, Value *To, Type *IndexedType, SmallVectorImpl< unsigned > &Idxs, unsigned IdxSkip, BasicBlock::iterator InsertBefore)
static LLVM_ABI unsigned int semanticsPrecision(const fltSemantics &)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
unsigned ceilLogBase2() const
bool sgt(const APInt &RHS) const
Signed greater than comparison.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
void clearAllBits()
Set every bit to 0.
LLVM_ABI APInt reverseBits() const
bool sle(const APInt &RHS) const
Signed less or equal comparison.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
unsigned logBase2() const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
bool getBoolValue() const
Convert APInt to a boolean value.
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool slt(const APInt &RHS) const
Signed less than comparison.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
void clearSignBit()
Set the sign bit to 0.
an instruction to allocate memory on the stack
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Class to represent array types.
This represents the llvm.assume intrinsic.
A cache of @llvm.assume calls within a function.
MutableArrayRef< ResultElem > assumptionsFor(const Value *V)
Access the list of assumptions which affect this value.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI std::optional< unsigned > getVScaleRangeMax() const
Returns the maximum value for the vscale_range attribute or std::nullopt when unknown.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM_ABI bool isSingleEdge() const
Check if this is the only edge between Start and End.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
BinaryOps getOpcode() const
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
bool onlyReadsMemory(unsigned OpNo) const
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
This is the base class for all instructions that perform data casts.
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
static LLVM_ABI bool isEquality(Predicate pred)
Determine if this is an equals/not equals predicate.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static bool isFPPredicate(Predicate P)
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
static bool isIntPredicate(Predicate P)
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
LLVM_ABI CmpInst::Predicate getPreferredSignedPredicate() const
Attempts to return a signed CmpInst::Predicate from the CmpPredicate.
CmpInst::Predicate dropSameSign() const
Drops samesign information.
bool hasSameSign() const
Query samesign information, for optimizations.
An array constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
StringRef getAsString() const
If this array is isString(), then this method returns the array as a StringRef.
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI std::optional< ConstantFPRange > makeExactFCmpRegion(FCmpInst::Predicate Pred, const APFloat &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
ConstantFP - Floating Point Values [float, double].
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This class represents a range of values.
PreferredRangeType
If represented precisely, the result of some range operations may consist of multiple disjoint ranges...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI bool isAllNegative() const
Return true if all values in this range are negative.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI bool isAllNonNegative() const
Return true if all values in this range are non-negative.
static LLVM_ABI ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other)
Produce the smallest range such that all values that may satisfy the given predicate with any value c...
LLVM_ABI ConstantRange unionWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the union of this range with another range.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI OverflowResult signedAddMayOverflow(const ConstantRange &Other) const
Return whether signed add of the two ranges always/never overflows.
LLVM_ABI ConstantRange intersectWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the intersection of this range with another range.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
static ConstantRange getNonEmpty(APInt Lower, APInt Upper)
Create non-empty constant range with the given bounds.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
LLVM_ABI ConstantRange sub(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a subtraction of a value in this r...
This is an important base class in LLVM.
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
unsigned getAddressSizeInBits(unsigned AS) const
The size in bits of an address in for the given AS.
LLVM_ABI const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
LLVM_ABI unsigned getIndexTypeSizeInBits(Type *Ty) const
The size in bits of the index used in GEP calculation for this type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
ArrayRef< BranchInst * > conditionsFor(const Value *V) const
Access the list of branches which affect this value.
DomTreeNodeBase * getIDom() const
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction compares its operands according to the predicate given to the constructor.
Utility class for floating point operations which can have information about relaxed accuracy require...
Convenience struct for specifying and reasoning about fast-math flags.
bool noSignedZeros() const
void setNoSignedZeros(bool B=true)
void setNoNaNs(bool B=true)
const BasicBlock & getEntryBlock() const
bool hasNoSync() const
Determine if the call can synchroize with other threads.
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getSwappedCmpPredicate() const
CmpPredicate getInverseCmpPredicate() const
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
static LLVM_ABI std::optional< bool > isImpliedByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
Determine if Pred1 implies Pred2 is true, false, or if nothing can be inferred about the implication,...
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
This instruction inserts a struct field of array element value into an aggregate value.
Value * getAggregateOperand()
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI bool comesBefore(const Instruction *Other) const
Given an instruction Other in the same basic block as this instruction, return true if this instructi...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Value * getPointerOperand()
Align getAlign() const
Return the alignment of the access that is being performed.
bool isLoopHeader(const BlockT *BB) const
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
This is a utility class that provides an abstraction for the common functionality between Instruction...
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
iterator_range< const_block_iterator > blocks() const
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A udiv, sdiv, lshr, or ashr instruction, which can be marked as "exact", indicating that no bits are ...
bool isExact() const
Test whether this division is known to be exact, with zero remainder.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getCondition() const
const Value * getTrueValue() const
This instruction constructs a fixed permutation of two input vectors.
VectorType * getType() const
Overload to return most specific vector type.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
TypeSize getElementOffset(unsigned Idx) const
Class to represent struct types.
unsigned getNumElements() const
Random access to the elements.
Type * getElementType(unsigned N) const
Provides information about what library functions are available for the current target.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
LLVM_ABI uint64_t getArrayNumElements() const
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
User * getUser() const
Returns the User that contains this Use.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
const KnownBits & getKnownBits(const SimplifyQuery &Q) const
PointerType getValue() const
Represents an op.with.overflow intrinsic.
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
StructType * getStructTypeOrNull() const
TypeSize getSequentialElementStride(const DataLayout &DL) const
Type * getIndexedType() const
const ParentTy * getParent() const
self_iterator getIterator()
A range adaptor for a pair of iterators.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
@ C
The default llvm calling convention, compatible with C.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrToIntSameSize_match< OpTy > m_PtrToIntSameSize(const DataLayout &DL, const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
auto m_PtrToIntOrAddr(const OpTy &Op)
Matches PtrToInt or PtrToAddr.
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
auto m_LogicalOp()
Matches either L && R or L || R where L and R are arbitrary values.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
cst_pred_ty< is_power2_or_zero > m_Power2OrZero()
Match an integer or vector of 0 or power-of-2 values.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
auto match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, true > m_c_NUWAdd(const LHS &L, const RHS &R)
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > > m_OrdOrUnordFMin(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point minimum function.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > m_c_SMin(const LHS &L, const RHS &R)
Matches an SMin with LHS and RHS in either order.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true > m_c_UMax(const LHS &L, const RHS &R)
Matches a UMax with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
NoWrapTrunc_match< OpTy, TruncInst::NoUnsignedWrap > m_NUWTrunc(const OpTy &Op)
Matches trunc nuw.
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > m_c_UMin(const LHS &L, const RHS &R)
Matches a UMin with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > > m_OrdOrUnordFMax(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point maximum function.
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true > m_c_SMax(const LHS &L, const RHS &R)
Matches an SMax with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
cst_pred_ty< is_nonpositive > m_NonPositive()
Match an integer or vector of non-positive values.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
static unsigned decodeVSEW(unsigned VSEW)
LLVM_ABI unsigned getSEWLMULRatio(unsigned SEW, VLMUL VLMul)
static constexpr unsigned RVVBitsPerBlock
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool haveNoCommonBitsSet(const WithCache< const Value * > &LHSCache, const WithCache< const Value * > &RHSCache, const SimplifyQuery &SQ)
Return true if LHS and RHS have no common bits set.
LLVM_ABI bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, Instruction *OnPathTo, DominatorTree *DT)
Return true if undefined behavior would provable be executed on the path to OnPathTo if Root produced...
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
LLVM_ABI bool willNotFreeBetween(const Instruction *Assume, const Instruction *CtxI)
Returns true, if no instruction between Assume and CtxI may free memory and the function is marked as...
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
LLVM_ABI KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, const SimplifyQuery &SQ, unsigned Depth=0)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
LLVM_ABI bool mustTriggerUB(const Instruction *I, const SmallPtrSetImpl< const Value * > &KnownPoison)
Return true if the given instruction must trigger undefined behavior when I is executed with any oper...
LLVM_ABI bool isKnownNeverInfinity(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not an infinity or if the floating-point vector val...
LLVM_ABI void computeKnownBitsFromContext(const Value *V, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth=0)
Merge bits known from context-dependent facts into Known.
LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
LLVM_ABI const Value * getArgumentAliasingToReturnedPointer(const CallBase *Call, bool MustPreserveNullness)
This function returns call pointer argument that is considered the same by aliasing rules.
LLVM_ABI bool isAssumeLikeIntrinsic(const Instruction *I)
Return true if it is an intrinsic that cannot be speculated but also cannot trap.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
LLVM_ABI AllocaInst * findAllocaForValue(Value *V, bool OffsetZero=false)
Returns unique alloca where the value comes from, or nullptr.
LLVM_ABI APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth)
Return the minimum or maximum constant value for the specified integer min/max flavor and type.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isOnlyUsedInZeroComparison(const Instruction *CxtI)
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
LLVM_ABI bool getConstantStringInfo(const Value *V, StringRef &Str, bool TrimAtNul=true)
This function computes the length of a null-terminated C string pointed to by V.
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
LLVM_ABI bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V)
Return true if the only users of this pointer are lifetime markers or droppable instructions.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
LLVM_ABI Value * stripNullTest(Value *V)
Returns the inner value X if the expression has the form f(X) where f(X) == 0 if and only if X == 0,...
LLVM_ABI bool getUnderlyingObjectsForCodeGen(const Value *V, SmallVectorImpl< Value * > &Objects)
This is a wrapper around getUnderlyingObjects and adds support for basic ptrtoint+arithmetic+inttoptr...
LLVM_ABI std::pair< Intrinsic::ID, bool > canConvertToMinOrMaxIntrinsic(ArrayRef< Value * > VL)
Check if the values in VL are select instructions that can be converted to a min or max (vector) intr...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_ABI bool isGuaranteedToExecuteForEveryIteration(const Instruction *I, const Loop *L)
Return true if this function can prove that the instruction I is executed for every iteration of the ...
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool mustSuppressSpeculation(const LoadInst &LI)
Return true if speculation of the given load must be suppressed to avoid ordering or interfering with...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
gep_type_iterator gep_type_end(const User *GEP)
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
bool isa_and_nonnull(const Y &Val)
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool canIgnoreSignBitOfZero(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is zero.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
std::tuple< Value *, FPClassTest, FPClassTest > fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS, FPClassTest RHSClass, bool LookThroughSrc=true)
LLVM_ABI ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
LLVM_ABI bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
LLVM_ABI bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, const DominatorTree &DT)
Returns true if the arithmetic part of the WO 's result is used only along the paths control dependen...
LLVM_ABI RetainedKnowledge getKnowledgeFromBundle(AssumeInst &Assume, const CallBase::BundleOpInfo &BOI)
This extracts the Knowledge from an element of an operand bundle.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ, bool IsNSW=false)
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
bool isGuard(const User *U)
Returns true iff U has semantics of a guard expressed in a form of call of llvm.experimental....
LLVM_ABI SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF)
Return the inverse minimum/maximum flavor of the specified flavor.
constexpr unsigned MaxAnalysisRecursionDepth
LLVM_ABI void adjustKnownBitsForSelectArm(KnownBits &Known, Value *Cond, Value *Arm, bool Invert, const SimplifyQuery &Q, unsigned Depth=0)
Adjust Known for the given select Arm to include information from the select Cond.
LLVM_ABI bool isKnownNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be negative (i.e.
LLVM_ABI OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_FMINNUM
Unsigned maximum.
LLVM_ABI bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(const CallBase *Call, bool MustPreserveNullness)
{launder,strip}.invariant.group returns pointer that aliases its argument, and it only captures point...
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI void getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS)
Compute the demanded elements mask of horizontal binary operations.
LLVM_ABI SelectPatternResult getSelectPattern(CmpInst::Predicate Pred, SelectPatternNaNBehavior NaNBehavior=SPNB_NA, bool Ordered=false)
Determine the pattern for predicate X Pred Y ? X : Y.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool programUndefinedIfPoison(const Instruction *Inst)
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool matchSimpleBinaryIntrinsicRecurrence(const IntrinsicInst *I, PHINode *&P, Value *&Init, Value *&OtherOp)
Attempt to match a simple value-accumulating recurrence of the form: llvm.intrinsic....
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
LLVM_ABI bool programUndefinedIfUndefOrPoison(const Instruction *Inst)
Return true if this function can prove that if Inst is executed and yields a poison value or undef bi...
LLVM_ABI void adjustKnownFPClassForSelectArm(KnownFPClass &Known, Value *Cond, Value *Arm, bool Invert, const SimplifyQuery &Q, unsigned Depth=0)
Adjust Known for the given select Arm to include information from the select Cond.
generic_gep_type_iterator<> gep_type_iterator
LLVM_ABI bool collectPossibleValues(const Value *V, SmallPtrSetImpl< const Constant * > &Constants, unsigned MaxCount, bool AllowUndefOrPoison=true)
Enumerates all possible immediate values of V and inserts them into the set Constants.
FunctionAddr VTableAddr Count
LLVM_ABI uint64_t GetStringLength(const Value *V, unsigned CharSize=8)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
LLVM_ABI OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI RetainedKnowledge getKnowledgeValidInContext(const Value *V, ArrayRef< Attribute::AttrKind > AttrKinds, AssumptionCache &AC, const Instruction *CtxI, const DominatorTree *DT=nullptr)
Return a valid Knowledge associated to the Value V if its Attribute kind is in AttrKinds and the know...
LLVM_ABI bool isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, const Instruction *Inst, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
This returns the same result as isSafeToSpeculativelyExecute if Opcode is the actual opcode of Inst.
LLVM_ABI bool onlyUsedByLifetimeMarkers(const Value *V)
Return true if the only users of this pointer are lifetime markers.
LLVM_ABI Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB, const TargetLibraryInfo *TLI)
Map a call instruction to an intrinsic ID.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI const Value * getUnderlyingObjectAggressive(const Value *V)
Like getUnderlyingObject(), but will try harder to find a single underlying object.
LLVM_ABI Intrinsic::ID getMinMaxIntrinsic(SelectPatternFlavor SPF)
Convert given SPF to equivalent min/max intrinsic.
LLVM_ABI SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, FastMathFlags FMF=FastMathFlags(), Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
LLVM_ABI OverflowResult computeOverflowForSignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
LLVM_ABI bool propagatesPoison(const Use &PoisonOp)
Return true if PoisonOp's user yields poison or raises UB if its operand PoisonOp is poison.
LLVM_ABI ConstantRange computeConstantRangeIncludingKnownBits(const WithCache< const Value * > &V, bool ForSigned, const SimplifyQuery &SQ)
Combine constant ranges from computeConstantRange() and computeKnownBits().
SelectPatternNaNBehavior
Behavior when a floating point min/max is given one NaN and one non-NaN as input.
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
LLVM_ABI bool isKnownNonEqual(const Value *V1, const Value *V2, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the given values are known to be non-equal when defined.
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return the number of times the sign bit of the register is replicated into the other bits.
constexpr unsigned BitWidth
LLVM_ABI KnownBits analyzeKnownBitsFromAndXorOr(const Operator *I, const KnownBits &KnownLHS, const KnownBits &KnownRHS, const SimplifyQuery &SQ, unsigned Depth=0)
Using KnownBits LHS/RHS produce the known bits for logic op (and/xor/or).
LLVM_ABI OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
LLVM_ABI bool isKnownNeverInfOrNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point value can never contain a NaN or infinity.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
gep_type_iterator gep_type_begin(const User *GEP)
LLVM_ABI Value * isBytewiseValue(Value *V, const DataLayout &DL)
If the specified value can be set by repeating the same byte in memory, return the i8 value that it i...
LLVM_ABI std::optional< std::pair< CmpPredicate, Constant * > > getFlippedStrictnessPredicateAndConstant(CmpPredicate Pred, Constant *C)
Convert an integer comparison with a constant RHS into an equivalent form with the strictness flipped...
LLVM_ABI unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Get the upper bound on bit size for this Value Op as a signed integer.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
LLVM_ABI OverflowResult computeOverflowForUnsignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return true if the given value is known to have exactly one bit set when defined.
LLVM_ABI std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_ABI Value * FindInsertedValue(Value *V, ArrayRef< unsigned > idx_range, std::optional< BasicBlock::iterator > InsertBefore=std::nullopt)
Given an aggregate and an sequence of indices, see if the scalar value indexed is already around as a...
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI bool isKnownPositive(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be positive (i.e.
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
LLVM_ABI bool cannotBeOrderedLessThanZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is either NaN or never less than -0....
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
LLVM_ABI bool mayHaveNonDefUseDependency(const Instruction &I)
Returns true if the result or effects of the given instructions I depend values not reachable through...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI bool isIdentifiedObject(const Value *V)
Return true if this pointer refers to a distinct and identifiable object.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI std::optional< bool > computeKnownFPSignBit(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return false if we can prove that the specified FP value's sign bit is 0.
LLVM_ABI bool canIgnoreSignBitOfNaN(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is NaN.
LLVM_ABI void findValuesAffectedByCondition(Value *Cond, bool IsAssume, function_ref< void(Value *)> InsertAffected)
Call InsertAffected on all Values whose known bits / value may be affected by the condition Cond.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
SmallPtrSet< Value *, 4 > AffectedValues
Represents offset+length into a ConstantDataArray.
const ConstantDataArray * Array
ConstantDataArray pointer.
Represent subnormal handling kind for floating point instruction inputs and outputs.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
static constexpr DenormalMode getDynamic()
InstrInfoQuery provides an interface to query additional information for instructions like metadata o...
bool isExact(const BinaryOperator *Op) const
MDNode * getMetadata(const Instruction *I, unsigned KindID) const
bool hasNoSignedZeros(const InstT *Op) const
bool hasNoSignedWrap(const InstT *Op) const
bool hasNoUnsignedWrap(const InstT *Op) const
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
static LLVM_ABI KnownBits sadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.sadd.sat(LHS, RHS)
static LLVM_ABI std::optional< bool > eq(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_EQ result.
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
LLVM_ABI KnownBits blsi() const
Compute known bits for X & -X, which has only the lowest bit set of X set.
void makeNonNegative()
Make this value non-negative.
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
LLVM_ABI KnownBits reduceAdd(unsigned NumElts) const
Compute known bits for horizontal add for a vector with NumElts elements, where each element has the ...
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits ssub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.ssub.sat(LHS, RHS)
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
LLVM_ABI KnownBits blsmsk() const
Compute known bits for X ^ (X - 1), which has all bits up to and including the lowest set bit of X se...
void makeNegative()
Make this value negative.
void setAllConflict()
Make all bits known to be both zero and one.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
bool hasConflict() const
Returns true if there is conflicting information.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
void setAllZero()
Make all bits known to be zero and discard any previous information.
KnownBits reverseBits() const
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
bool isConstant() const
Returns true if we know the value of all bits.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
unsigned countMinTrailingOnes() const
Returns the minimum number of trailing one bits.
static KnownBits add(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from addition of LHS and RHS.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
APInt getMinValue() const
Return the minimal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
bool isNegative() const
Returns true if this value is known to be negative.
static KnownBits sub(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from subtraction of LHS and RHS.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void setAllOnes()
Make all bits known to be one and discard any previous information.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits uadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.uadd.sat(LHS, RHS)
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
KnownBits sextOrTrunc(unsigned BitWidth) const
Return known bits for a sign extension or truncation of the value we're tracking.
bool isKnownNeverInfOrNaN() const
Return true if it's known this can never be an infinity or nan.
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
bool cannotBeOrderedGreaterThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never greater tha...
static constexpr FPClassTest OrderedGreaterThanZeroMask
static constexpr FPClassTest OrderedLessThanZeroMask
void knownNot(FPClassTest RuleOut)
static LLVM_ABI KnownFPClass fmul(const KnownFPClass &LHS, const KnownFPClass &RHS, DenormalMode Mode=DenormalMode::getDynamic())
Report known values for fmul.
void copysign(const KnownFPClass &Sign)
static KnownFPClass square(const KnownFPClass &Src, DenormalMode Mode=DenormalMode::getDynamic())
bool isKnownNeverSubnormal() const
Return true if it's known this can never be a subnormal.
bool isKnownAlways(FPClassTest Mask) const
KnownFPClass unionWith(const KnownFPClass &RHS) const
static LLVM_ABI KnownFPClass canonicalize(const KnownFPClass &Src, DenormalMode DenormMode=DenormalMode::getDynamic())
Apply the canonicalize intrinsic to this value.
LLVM_ABI bool isKnownNeverLogicalZero(DenormalMode Mode) const
Return true if it's known this can never be interpreted as a zero.
static LLVM_ABI KnownFPClass log(const KnownFPClass &Src, DenormalMode Mode=DenormalMode::getDynamic())
Propagate known class for log/log2/log10.
static LLVM_ABI KnownFPClass roundToIntegral(const KnownFPClass &Src, bool IsTrunc, bool IsMultiUnitFPType)
Propagate known class for rounding intrinsics (trunc, floor, ceil, rint, nearbyint,...
static LLVM_ABI KnownFPClass minMaxLike(const KnownFPClass &LHS, const KnownFPClass &RHS, MinMaxKind Kind, DenormalMode DenormMode=DenormalMode::getDynamic())
KnownFPClass intersectWith(const KnownFPClass &RHS) const
bool isKnownNeverNegInfinity() const
Return true if it's known this can never be -infinity.
bool isKnownNeverNegSubnormal() const
Return true if it's known this can never be a negative subnormal.
static LLVM_ABI KnownFPClass exp(const KnownFPClass &Src)
Report known values for exp, exp2 and exp10.
std::optional< bool > SignBit
std::nullopt if the sign bit is unknown, true if the sign bit is definitely set or false if the sign ...
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool isKnownNever(FPClassTest Mask) const
Return true if it's known this can never be one of the mask entries.
static LLVM_ABI KnownFPClass fpext(const KnownFPClass &KnownSrc, const fltSemantics &DstTy, const fltSemantics &SrcTy)
Propagate known class for fpext.
bool isKnownNeverNegZero() const
Return true if it's known this can never be a negative zero.
void propagateNaN(const KnownFPClass &Src, bool PreserveSign=false)
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
void signBitMustBeOne()
Assume the sign bit is one.
LLVM_ABI void propagateCanonicalizingSrc(const KnownFPClass &Src, DenormalMode Mode)
Report known classes if Src is evaluated through a potentially canonicalizing operation.
void signBitMustBeZero()
Assume the sign bit is zero.
static LLVM_ABI KnownFPClass sqrt(const KnownFPClass &Src, DenormalMode Mode=DenormalMode::getDynamic())
Propagate known class for sqrt.
LLVM_ABI bool isKnownNeverLogicalPosZero(DenormalMode Mode) const
Return true if it's known this can never be interpreted as a positive zero.
bool isKnownNeverPosInfinity() const
Return true if it's known this can never be +infinity.
LLVM_ABI bool isKnownNeverLogicalNegZero(DenormalMode Mode) const
Return true if it's known this can never be interpreted as a negative zero.
bool isKnownNeverPosSubnormal() const
Return true if it's known this can never be a positive subnormal.
Represent one information held inside an operand bundle of an llvm.assume.
SelectPatternFlavor Flavor
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
SimplifyQuery getWithoutCondContext() const
SimplifyQuery getWithInstruction(const Instruction *I) const
const DomConditionCache * DC