31#include "llvm/Config/config.h"
45#include "llvm/IR/IntrinsicsAArch64.h"
46#include "llvm/IR/IntrinsicsAMDGPU.h"
47#include "llvm/IR/IntrinsicsARM.h"
48#include "llvm/IR/IntrinsicsNVPTX.h"
49#include "llvm/IR/IntrinsicsWebAssembly.h"
50#include "llvm/IR/IntrinsicsX86.h"
68 "disable-fp-call-folding",
69 cl::desc(
"Disable constant-folding of FP intrinsics and libcalls."),
84 unsigned BitShift =
DL.getTypeSizeInBits(SrcEltTy);
85 for (
unsigned i = 0; i != NumSrcElts; ++i) {
87 if (
DL.isLittleEndian())
88 Element =
C->getAggregateElement(NumSrcElts - i - 1);
90 Element =
C->getAggregateElement(i);
102 Result |= ElementCI->getValue().zext(
Result.getBitWidth());
113 "Invalid constantexpr bitcast!");
123 Type *SrcEltTy = VTy->getElementType();
136 if (
Constant *CE = foldConstVectorToAPInt(Result, DestTy,
C,
137 SrcEltTy, NumSrcElts,
DL))
141 return ConstantInt::get(DestTy, Result);
174 if (NumDstElt == NumSrcElt)
178 Type *DstEltTy = DestVTy->getElementType();
212 "Constant folding cannot fail for plain fp->int bitcast!");
219 bool isLittleEndian =
DL.isLittleEndian();
222 if (NumDstElt < NumSrcElt) {
225 unsigned Ratio = NumSrcElt/NumDstElt;
228 for (
unsigned i = 0; i != NumDstElt; ++i) {
231 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
232 for (
unsigned j = 0;
j != Ratio; ++
j) {
233 Constant *Src =
C->getAggregateElement(SrcElt++);
245 assert(Src &&
"Constant folding cannot fail on plain integers");
249 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
251 assert(Src &&
"Constant folding cannot fail on plain integers");
253 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
257 assert(Elt &&
"Constant folding cannot fail on plain integers");
265 unsigned Ratio = NumDstElt/NumSrcElt;
266 unsigned DstBitSize =
DL.getTypeSizeInBits(DstEltTy);
269 for (
unsigned i = 0; i != NumSrcElt; ++i) {
270 auto *Element =
C->getAggregateElement(i);
285 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
286 for (
unsigned j = 0;
j != Ratio; ++
j) {
289 APInt Elt = Src->getValue().lshr(ShiftAmt);
290 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
293 Result.push_back(ConstantInt::get(DstEltTy, Elt.
trunc(DstBitSize)));
319 *DSOEquiv = FoundDSOEquiv;
320 GV = FoundDSOEquiv->getGlobalValue();
328 if (!CE)
return false;
331 if (CE->getOpcode() == Instruction::PtrToInt ||
332 CE->getOpcode() == Instruction::PtrToAddr ||
333 CE->getOpcode() == Instruction::BitCast)
342 unsigned BitWidth =
DL.getIndexTypeSizeInBits(
GEP->getType());
351 if (!
GEP->accumulateConstantOffset(
DL, TmpOffset))
361 Type *SrcTy =
C->getType();
365 TypeSize DestSize =
DL.getTypeSizeInBits(DestTy);
366 TypeSize SrcSize =
DL.getTypeSizeInBits(SrcTy);
378 if (SrcSize == DestSize &&
379 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
385 Cast = Instruction::IntToPtr;
386 else if (SrcTy->isPointerTy() && DestTy->
isIntegerTy())
387 Cast = Instruction::PtrToInt;
395 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
402 if (SrcTy->isStructTy()) {
408 ElemC =
C->getAggregateElement(Elem++);
409 }
while (ElemC &&
DL.getTypeSizeInBits(ElemC->
getType()).isZero());
415 if (!
DL.typeSizeEqualsStoreSize(VT->getElementType()))
418 C =
C->getAggregateElement(0u);
433 assert(ByteOffset <=
DL.getTypeAllocSize(
C->getType()) &&
434 "Out of range access");
437 if (ByteOffset >=
DL.getTypeStoreSize(
C->getType()))
446 if ((CI->getBitWidth() & 7) != 0)
448 const APInt &Val = CI->getValue();
449 unsigned IntBytes =
unsigned(CI->getBitWidth()/8);
451 for (
unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
452 unsigned n = ByteOffset;
453 if (!
DL.isLittleEndian())
454 n = IntBytes - n - 1;
462 if (CFP->getType()->isDoubleTy()) {
464 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
466 if (CFP->getType()->isFloatTy()){
468 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
470 if (CFP->getType()->isHalfTy()){
472 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
481 ByteOffset -= CurEltOffset;
486 uint64_t EltSize =
DL.getTypeAllocSize(CS->getOperand(Index)->getType());
488 if (ByteOffset < EltSize &&
489 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
496 if (Index == CS->getType()->getNumElements())
502 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
506 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
507 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
509 CurEltOffset = NextEltOffset;
519 NumElts = AT->getNumElements();
520 EltTy = AT->getElementType();
521 EltSize =
DL.getTypeAllocSize(EltTy);
527 if (!
DL.typeSizeEqualsStoreSize(EltTy))
530 EltSize =
DL.getTypeStoreSize(EltTy);
532 uint64_t Index = ByteOffset / EltSize;
535 for (; Index != NumElts; ++Index) {
536 if (!ReadDataFromGlobal(
C->getAggregateElement(Index),
Offset, CurPtr,
541 assert(BytesWritten <= EltSize &&
"Not indexing into this element?");
542 if (BytesWritten >= BytesLeft)
546 BytesLeft -= BytesWritten;
547 CurPtr += BytesWritten;
553 if (
CE->getOpcode() == Instruction::IntToPtr &&
554 CE->getOperand(0)->getType() ==
DL.getIntPtrType(
CE->getType())) {
555 return ReadDataFromGlobal(
CE->getOperand(0), ByteOffset, CurPtr,
583 DL.getTypeSizeInBits(LoadTy).getFixedValue());
604 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
605 if (BytesLoaded > 32 || BytesLoaded == 0)
609 if (
Offset <= -1 *
static_cast<int64_t
>(BytesLoaded))
613 TypeSize InitializerSize =
DL.getTypeAllocSize(
C->getType());
621 unsigned char RawBytes[32] = {0};
622 unsigned char *CurPtr = RawBytes;
623 unsigned BytesLeft = BytesLoaded;
632 if (!ReadDataFromGlobal(
C,
Offset, CurPtr, BytesLeft,
DL))
635 APInt ResultVal =
APInt(IntType->getBitWidth(), 0);
636 if (
DL.isLittleEndian()) {
637 ResultVal = RawBytes[BytesLoaded - 1];
638 for (
unsigned i = 1; i != BytesLoaded; ++i) {
640 ResultVal |= RawBytes[BytesLoaded - 1 - i];
643 ResultVal = RawBytes[0];
644 for (
unsigned i = 1; i != BytesLoaded; ++i) {
646 ResultVal |= RawBytes[i];
650 return ConstantInt::get(IntType->getContext(), ResultVal);
670 if (NBytes > UINT16_MAX)
678 unsigned char *CurPtr = RawBytes.
data();
680 if (!ReadDataFromGlobal(
Init,
Offset, CurPtr, NBytes,
DL))
698 if (!
Offset.isZero() || !Indices[0].isZero())
703 if (Index.isNegative() || Index.getActiveBits() >= 32)
706 C =
C->getAggregateElement(Index.getZExtValue());
732 if (
Offset.getSignificantBits() <= 64)
734 FoldReinterpretLoadFromConst(
C, Ty,
Offset.getSExtValue(),
DL))
751 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
781 if (!
DL.typeSizeEqualsStoreSize(
C->getType()))
783 if (
C->isNullValue() && !Ty->isX86_AMXTy())
785 if (
C->isAllOnesValue() &&
786 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
805 if (
Opc == Instruction::And) {
808 if ((Known1.
One | Known0.
Zero).isAllOnes()) {
812 if ((Known0.
One | Known1.
Zero).isAllOnes()) {
824 if (
Opc == Instruction::Sub) {
830 unsigned OpSize =
DL.getTypeSizeInBits(Op0->
getType());
847 std::optional<ConstantRange>
InRange,
849 Type *IntIdxTy =
DL.getIndexType(ResultTy);
854 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i) {
857 SrcElemTy,
Ops.slice(1, i - 1)))) &&
858 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
861 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
885 Type *SrcElemTy =
GEP->getSourceElementType();
890 if (
Constant *
C = CastGEPIndices(SrcElemTy,
Ops, ResTy,
GEP->getNoWrapFlags(),
891 GEP->getInRange(),
DL, TLI))
895 if (!
Ptr->getType()->isPointerTy())
898 Type *IntIdxTy =
DL.getIndexType(
Ptr->getType());
900 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i)
904 unsigned BitWidth =
DL.getTypeSizeInBits(IntIdxTy);
907 DL.getIndexedOffsetInType(
911 std::optional<ConstantRange>
InRange =
GEP->getInRange();
917 bool Overflow =
false;
919 NW &=
GEP->getNoWrapFlags();
924 bool AllConstantInt =
true;
925 for (
Value *NestedOp : NestedOps)
927 AllConstantInt =
false;
934 if (
auto GEPRange =
GEP->getInRange()) {
935 auto AdjustedGEPRange = GEPRange->sextOrTrunc(
BitWidth).subtract(
Offset);
937 InRange ?
InRange->intersectWith(AdjustedGEPRange) : AdjustedGEPRange;
941 SrcElemTy =
GEP->getSourceElementType();
955 APInt BaseIntVal(
DL.getPointerTypeSizeInBits(
Ptr->getType()), 0);
957 if (
CE->getOpcode() == Instruction::IntToPtr) {
959 BaseIntVal =
Base->getValue().zextOrTrunc(BaseIntVal.getBitWidth());
963 if ((
Ptr->isNullValue() || BaseIntVal != 0) &&
964 !
DL.mustNotIntroduceIntToPtr(
Ptr->getType())) {
969 Constant *
C = ConstantInt::get(
Ptr->getContext(), BaseIntVal);
975 bool CanBeNull, CanBeFreed;
977 Ptr->getPointerDereferenceableBytes(
DL, CanBeNull, CanBeFreed);
978 if (DerefBytes != 0 && !CanBeNull &&
Offset.sle(DerefBytes))
989 ConstantInt::get(Ctx,
Offset), NW,
998Constant *ConstantFoldInstOperandsImpl(
const Value *InstOrCE,
unsigned Opcode,
1002 bool AllowNonDeterministic) {
1012 case Instruction::FAdd:
1013 case Instruction::FSub:
1014 case Instruction::FMul:
1015 case Instruction::FDiv:
1016 case Instruction::FRem:
1022 AllowNonDeterministic);
1032 Type *SrcElemTy =
GEP->getSourceElementType();
1040 GEP->getNoWrapFlags(),
1045 return CE->getWithOperands(
Ops);
1048 default:
return nullptr;
1049 case Instruction::ICmp:
1050 case Instruction::FCmp: {
1055 case Instruction::Freeze:
1057 case Instruction::Call:
1062 AllowNonDeterministic);
1065 case Instruction::Select:
1067 case Instruction::ExtractElement:
1069 case Instruction::ExtractValue:
1072 case Instruction::InsertElement:
1074 case Instruction::InsertValue:
1077 case Instruction::ShuffleVector:
1080 case Instruction::Load: {
1082 if (LI->isVolatile())
1105 for (
const Use &OldU :
C->operands()) {
1111 auto It = FoldedOps.
find(OldC);
1112 if (It == FoldedOps.
end()) {
1113 NewC = ConstantFoldConstantImpl(OldC,
DL, TLI, FoldedOps);
1114 FoldedOps.
insert({OldC, NewC});
1119 Ops.push_back(NewC);
1123 if (
Constant *Res = ConstantFoldInstOperandsImpl(
1124 CE,
CE->getOpcode(),
Ops,
DL, TLI,
true))
1155 C = ConstantFoldConstantImpl(
C,
DL, TLI, FoldedOps);
1158 if (CommonValue &&
C != CommonValue)
1169 if (!
all_of(
I->operands(), [](
const Use &U) { return isa<Constant>(U); }))
1174 for (
const Use &OpU :
I->operands()) {
1177 Op = ConstantFoldConstantImpl(
Op,
DL, TLI, FoldedOps);
1187 return ConstantFoldConstantImpl(
C,
DL, TLI, FoldedOps);
1194 bool AllowNonDeterministic) {
1195 return ConstantFoldInstOperandsImpl(
I,
I->getOpcode(),
Ops,
DL, TLI,
1196 AllowNonDeterministic);
1215 if (CE0->getOpcode() == Instruction::IntToPtr) {
1216 Type *IntPtrTy =
DL.getIntPtrType(CE0->getType());
1228 if (CE0->getOpcode() == Instruction::PtrToInt) {
1229 Type *IntPtrTy =
DL.getIntPtrType(CE0->getOperand(0)->getType());
1230 if (CE0->getType() == IntPtrTy) {
1239 if (CE0->getOpcode() == CE1->getOpcode()) {
1240 if (CE0->getOpcode() == Instruction::IntToPtr) {
1241 Type *IntPtrTy =
DL.getIntPtrType(CE0->getType());
1255 if (CE0->getOpcode() == Instruction::PtrToInt) {
1256 Type *IntPtrTy =
DL.getIntPtrType(CE0->getOperand(0)->getType());
1257 if (CE0->getType() == IntPtrTy &&
1258 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1260 Predicate, CE0->getOperand(0), CE1->getOperand(0),
DL, TLI);
1272 unsigned IndexWidth =
DL.getIndexTypeSizeInBits(Ops0->
getType());
1273 APInt Offset0(IndexWidth, 0);
1276 DL, Offset0, IsEqPred,
1279 APInt Offset1(IndexWidth, 0);
1281 DL, Offset1, IsEqPred,
1284 if (Stripped0 == Stripped1)
1323 if (
Constant *
C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS,
DL))
1337 return ConstantFP::get(Ty->getContext(), APF);
1339 return ConstantFP::get(
1343 return ConstantFP::get(Ty->getContext(),
1369 IsOutput ?
Mode.Output :
Mode.Input);
1398 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1420 for (
unsigned I = 0, E = CDV->getNumElements();
I < E; ++
I) {
1421 const APFloat &Elt = CDV->getElementAsAPFloat(
I);
1423 NewElts.
push_back(ConstantFP::get(Ty, Elt));
1443 bool AllowNonDeterministic) {
1456 if (!AllowNonDeterministic)
1458 if (
FP->hasNoSignedZeros() ||
FP->hasAllowReassoc() ||
1459 FP->hasAllowContract() ||
FP->hasAllowReciprocal())
1473 if (!AllowNonDeterministic &&
C->isNaN())
1492 C->getType(), DestTy, &
DL))
1498 case Instruction::PtrToAddr:
1499 case Instruction::PtrToInt:
1504 if (CE->getOpcode() == Instruction::IntToPtr) {
1506 Type *MidTy = Opcode == Instruction::PtrToInt
1507 ?
DL.getAddressType(CE->getType())
1508 :
DL.getIntPtrType(CE->getType());
1515 unsigned BitWidth =
DL.getIndexTypeSizeInBits(
GEP->getType());
1518 DL, BaseOffset,
true));
1519 if (
Base->isNullValue()) {
1520 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1524 if (
GEP->getNumIndices() == 1 &&
1525 GEP->getSourceElementType()->isIntegerTy(8)) {
1528 Type *IntIdxTy =
DL.getIndexType(
Ptr->getType());
1529 if (
Sub &&
Sub->getType() == IntIdxTy &&
1530 Sub->getOpcode() == Instruction::Sub &&
1531 Sub->getOperand(0)->isNullValue())
1534 Sub->getOperand(1));
1545 case Instruction::IntToPtr:
1551 if (CE->getOpcode() == Instruction::PtrToInt) {
1552 Constant *SrcPtr = CE->getOperand(0);
1553 unsigned SrcPtrSize =
DL.getPointerTypeSizeInBits(SrcPtr->
getType());
1554 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1556 if (MidIntSize >= SrcPtrSize) {
1564 case Instruction::Trunc:
1565 case Instruction::ZExt:
1566 case Instruction::SExt:
1567 case Instruction::FPTrunc:
1568 case Instruction::FPExt:
1569 case Instruction::UIToFP:
1570 case Instruction::SIToFP:
1571 case Instruction::FPToUI:
1572 case Instruction::FPToSI:
1573 case Instruction::AddrSpaceCast:
1575 case Instruction::BitCast:
1586 Type *SrcTy =
C->getType();
1587 if (SrcTy == DestTy)
1601 if (
Call->isNoBuiltin())
1603 if (
Call->getFunctionType() !=
F->getFunctionType())
1612 return Arg.getType()->isFloatingPointTy();
1616 switch (
F->getIntrinsicID()) {
1619 case Intrinsic::bswap:
1620 case Intrinsic::ctpop:
1621 case Intrinsic::ctlz:
1622 case Intrinsic::cttz:
1623 case Intrinsic::fshl:
1624 case Intrinsic::fshr:
1625 case Intrinsic::launder_invariant_group:
1626 case Intrinsic::strip_invariant_group:
1627 case Intrinsic::masked_load:
1628 case Intrinsic::get_active_lane_mask:
1629 case Intrinsic::abs:
1630 case Intrinsic::smax:
1631 case Intrinsic::smin:
1632 case Intrinsic::umax:
1633 case Intrinsic::umin:
1634 case Intrinsic::scmp:
1635 case Intrinsic::ucmp:
1636 case Intrinsic::sadd_with_overflow:
1637 case Intrinsic::uadd_with_overflow:
1638 case Intrinsic::ssub_with_overflow:
1639 case Intrinsic::usub_with_overflow:
1640 case Intrinsic::smul_with_overflow:
1641 case Intrinsic::umul_with_overflow:
1642 case Intrinsic::sadd_sat:
1643 case Intrinsic::uadd_sat:
1644 case Intrinsic::ssub_sat:
1645 case Intrinsic::usub_sat:
1646 case Intrinsic::smul_fix:
1647 case Intrinsic::smul_fix_sat:
1648 case Intrinsic::bitreverse:
1649 case Intrinsic::is_constant:
1650 case Intrinsic::vector_reduce_add:
1651 case Intrinsic::vector_reduce_mul:
1652 case Intrinsic::vector_reduce_and:
1653 case Intrinsic::vector_reduce_or:
1654 case Intrinsic::vector_reduce_xor:
1655 case Intrinsic::vector_reduce_smin:
1656 case Intrinsic::vector_reduce_smax:
1657 case Intrinsic::vector_reduce_umin:
1658 case Intrinsic::vector_reduce_umax:
1659 case Intrinsic::vector_extract:
1660 case Intrinsic::vector_insert:
1661 case Intrinsic::vector_interleave2:
1662 case Intrinsic::vector_deinterleave2:
1664 case Intrinsic::amdgcn_perm:
1665 case Intrinsic::amdgcn_wave_reduce_umin:
1666 case Intrinsic::amdgcn_wave_reduce_umax:
1667 case Intrinsic::amdgcn_wave_reduce_max:
1668 case Intrinsic::amdgcn_wave_reduce_min:
1669 case Intrinsic::amdgcn_wave_reduce_add:
1670 case Intrinsic::amdgcn_wave_reduce_sub:
1671 case Intrinsic::amdgcn_wave_reduce_and:
1672 case Intrinsic::amdgcn_wave_reduce_or:
1673 case Intrinsic::amdgcn_wave_reduce_xor:
1674 case Intrinsic::amdgcn_s_wqm:
1675 case Intrinsic::amdgcn_s_quadmask:
1676 case Intrinsic::amdgcn_s_bitreplicate:
1677 case Intrinsic::arm_mve_vctp8:
1678 case Intrinsic::arm_mve_vctp16:
1679 case Intrinsic::arm_mve_vctp32:
1680 case Intrinsic::arm_mve_vctp64:
1681 case Intrinsic::aarch64_sve_convert_from_svbool:
1682 case Intrinsic::wasm_alltrue:
1683 case Intrinsic::wasm_anytrue:
1684 case Intrinsic::wasm_dot:
1686 case Intrinsic::wasm_trunc_signed:
1687 case Intrinsic::wasm_trunc_unsigned:
1692 case Intrinsic::minnum:
1693 case Intrinsic::maxnum:
1694 case Intrinsic::minimum:
1695 case Intrinsic::maximum:
1696 case Intrinsic::minimumnum:
1697 case Intrinsic::maximumnum:
1698 case Intrinsic::log:
1699 case Intrinsic::log2:
1700 case Intrinsic::log10:
1701 case Intrinsic::exp:
1702 case Intrinsic::exp2:
1703 case Intrinsic::exp10:
1704 case Intrinsic::sqrt:
1705 case Intrinsic::sin:
1706 case Intrinsic::cos:
1707 case Intrinsic::sincos:
1708 case Intrinsic::sinh:
1709 case Intrinsic::cosh:
1710 case Intrinsic::atan:
1711 case Intrinsic::pow:
1712 case Intrinsic::powi:
1713 case Intrinsic::ldexp:
1714 case Intrinsic::fma:
1715 case Intrinsic::fmuladd:
1716 case Intrinsic::frexp:
1717 case Intrinsic::fptoui_sat:
1718 case Intrinsic::fptosi_sat:
1719 case Intrinsic::convert_from_fp16:
1720 case Intrinsic::convert_to_fp16:
1721 case Intrinsic::amdgcn_cos:
1722 case Intrinsic::amdgcn_cubeid:
1723 case Intrinsic::amdgcn_cubema:
1724 case Intrinsic::amdgcn_cubesc:
1725 case Intrinsic::amdgcn_cubetc:
1726 case Intrinsic::amdgcn_fmul_legacy:
1727 case Intrinsic::amdgcn_fma_legacy:
1728 case Intrinsic::amdgcn_fract:
1729 case Intrinsic::amdgcn_sin:
1731 case Intrinsic::x86_sse_cvtss2si:
1732 case Intrinsic::x86_sse_cvtss2si64:
1733 case Intrinsic::x86_sse_cvttss2si:
1734 case Intrinsic::x86_sse_cvttss2si64:
1735 case Intrinsic::x86_sse2_cvtsd2si:
1736 case Intrinsic::x86_sse2_cvtsd2si64:
1737 case Intrinsic::x86_sse2_cvttsd2si:
1738 case Intrinsic::x86_sse2_cvttsd2si64:
1739 case Intrinsic::x86_avx512_vcvtss2si32:
1740 case Intrinsic::x86_avx512_vcvtss2si64:
1741 case Intrinsic::x86_avx512_cvttss2si:
1742 case Intrinsic::x86_avx512_cvttss2si64:
1743 case Intrinsic::x86_avx512_vcvtsd2si32:
1744 case Intrinsic::x86_avx512_vcvtsd2si64:
1745 case Intrinsic::x86_avx512_cvttsd2si:
1746 case Intrinsic::x86_avx512_cvttsd2si64:
1747 case Intrinsic::x86_avx512_vcvtss2usi32:
1748 case Intrinsic::x86_avx512_vcvtss2usi64:
1749 case Intrinsic::x86_avx512_cvttss2usi:
1750 case Intrinsic::x86_avx512_cvttss2usi64:
1751 case Intrinsic::x86_avx512_vcvtsd2usi32:
1752 case Intrinsic::x86_avx512_vcvtsd2usi64:
1753 case Intrinsic::x86_avx512_cvttsd2usi:
1754 case Intrinsic::x86_avx512_cvttsd2usi64:
1757 case Intrinsic::nvvm_fmax_d:
1758 case Intrinsic::nvvm_fmax_f:
1759 case Intrinsic::nvvm_fmax_ftz_f:
1760 case Intrinsic::nvvm_fmax_ftz_nan_f:
1761 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
1762 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
1763 case Intrinsic::nvvm_fmax_nan_f:
1764 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
1765 case Intrinsic::nvvm_fmax_xorsign_abs_f:
1768 case Intrinsic::nvvm_fmin_d:
1769 case Intrinsic::nvvm_fmin_f:
1770 case Intrinsic::nvvm_fmin_ftz_f:
1771 case Intrinsic::nvvm_fmin_ftz_nan_f:
1772 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
1773 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
1774 case Intrinsic::nvvm_fmin_nan_f:
1775 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
1776 case Intrinsic::nvvm_fmin_xorsign_abs_f:
1779 case Intrinsic::nvvm_f2i_rm:
1780 case Intrinsic::nvvm_f2i_rn:
1781 case Intrinsic::nvvm_f2i_rp:
1782 case Intrinsic::nvvm_f2i_rz:
1783 case Intrinsic::nvvm_f2i_rm_ftz:
1784 case Intrinsic::nvvm_f2i_rn_ftz:
1785 case Intrinsic::nvvm_f2i_rp_ftz:
1786 case Intrinsic::nvvm_f2i_rz_ftz:
1787 case Intrinsic::nvvm_f2ui_rm:
1788 case Intrinsic::nvvm_f2ui_rn:
1789 case Intrinsic::nvvm_f2ui_rp:
1790 case Intrinsic::nvvm_f2ui_rz:
1791 case Intrinsic::nvvm_f2ui_rm_ftz:
1792 case Intrinsic::nvvm_f2ui_rn_ftz:
1793 case Intrinsic::nvvm_f2ui_rp_ftz:
1794 case Intrinsic::nvvm_f2ui_rz_ftz:
1795 case Intrinsic::nvvm_d2i_rm:
1796 case Intrinsic::nvvm_d2i_rn:
1797 case Intrinsic::nvvm_d2i_rp:
1798 case Intrinsic::nvvm_d2i_rz:
1799 case Intrinsic::nvvm_d2ui_rm:
1800 case Intrinsic::nvvm_d2ui_rn:
1801 case Intrinsic::nvvm_d2ui_rp:
1802 case Intrinsic::nvvm_d2ui_rz:
1805 case Intrinsic::nvvm_f2ll_rm:
1806 case Intrinsic::nvvm_f2ll_rn:
1807 case Intrinsic::nvvm_f2ll_rp:
1808 case Intrinsic::nvvm_f2ll_rz:
1809 case Intrinsic::nvvm_f2ll_rm_ftz:
1810 case Intrinsic::nvvm_f2ll_rn_ftz:
1811 case Intrinsic::nvvm_f2ll_rp_ftz:
1812 case Intrinsic::nvvm_f2ll_rz_ftz:
1813 case Intrinsic::nvvm_f2ull_rm:
1814 case Intrinsic::nvvm_f2ull_rn:
1815 case Intrinsic::nvvm_f2ull_rp:
1816 case Intrinsic::nvvm_f2ull_rz:
1817 case Intrinsic::nvvm_f2ull_rm_ftz:
1818 case Intrinsic::nvvm_f2ull_rn_ftz:
1819 case Intrinsic::nvvm_f2ull_rp_ftz:
1820 case Intrinsic::nvvm_f2ull_rz_ftz:
1821 case Intrinsic::nvvm_d2ll_rm:
1822 case Intrinsic::nvvm_d2ll_rn:
1823 case Intrinsic::nvvm_d2ll_rp:
1824 case Intrinsic::nvvm_d2ll_rz:
1825 case Intrinsic::nvvm_d2ull_rm:
1826 case Intrinsic::nvvm_d2ull_rn:
1827 case Intrinsic::nvvm_d2ull_rp:
1828 case Intrinsic::nvvm_d2ull_rz:
1831 case Intrinsic::nvvm_ceil_d:
1832 case Intrinsic::nvvm_ceil_f:
1833 case Intrinsic::nvvm_ceil_ftz_f:
1835 case Intrinsic::nvvm_fabs:
1836 case Intrinsic::nvvm_fabs_ftz:
1838 case Intrinsic::nvvm_floor_d:
1839 case Intrinsic::nvvm_floor_f:
1840 case Intrinsic::nvvm_floor_ftz_f:
1842 case Intrinsic::nvvm_rcp_rm_d:
1843 case Intrinsic::nvvm_rcp_rm_f:
1844 case Intrinsic::nvvm_rcp_rm_ftz_f:
1845 case Intrinsic::nvvm_rcp_rn_d:
1846 case Intrinsic::nvvm_rcp_rn_f:
1847 case Intrinsic::nvvm_rcp_rn_ftz_f:
1848 case Intrinsic::nvvm_rcp_rp_d:
1849 case Intrinsic::nvvm_rcp_rp_f:
1850 case Intrinsic::nvvm_rcp_rp_ftz_f:
1851 case Intrinsic::nvvm_rcp_rz_d:
1852 case Intrinsic::nvvm_rcp_rz_f:
1853 case Intrinsic::nvvm_rcp_rz_ftz_f:
1855 case Intrinsic::nvvm_round_d:
1856 case Intrinsic::nvvm_round_f:
1857 case Intrinsic::nvvm_round_ftz_f:
1859 case Intrinsic::nvvm_saturate_d:
1860 case Intrinsic::nvvm_saturate_f:
1861 case Intrinsic::nvvm_saturate_ftz_f:
1863 case Intrinsic::nvvm_sqrt_f:
1864 case Intrinsic::nvvm_sqrt_rn_d:
1865 case Intrinsic::nvvm_sqrt_rn_f:
1866 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1867 return !
Call->isStrictFP();
1870 case Intrinsic::nvvm_add_rm_d:
1871 case Intrinsic::nvvm_add_rn_d:
1872 case Intrinsic::nvvm_add_rp_d:
1873 case Intrinsic::nvvm_add_rz_d:
1874 case Intrinsic::nvvm_add_rm_f:
1875 case Intrinsic::nvvm_add_rn_f:
1876 case Intrinsic::nvvm_add_rp_f:
1877 case Intrinsic::nvvm_add_rz_f:
1878 case Intrinsic::nvvm_add_rm_ftz_f:
1879 case Intrinsic::nvvm_add_rn_ftz_f:
1880 case Intrinsic::nvvm_add_rp_ftz_f:
1881 case Intrinsic::nvvm_add_rz_ftz_f:
1884 case Intrinsic::nvvm_div_rm_d:
1885 case Intrinsic::nvvm_div_rn_d:
1886 case Intrinsic::nvvm_div_rp_d:
1887 case Intrinsic::nvvm_div_rz_d:
1888 case Intrinsic::nvvm_div_rm_f:
1889 case Intrinsic::nvvm_div_rn_f:
1890 case Intrinsic::nvvm_div_rp_f:
1891 case Intrinsic::nvvm_div_rz_f:
1892 case Intrinsic::nvvm_div_rm_ftz_f:
1893 case Intrinsic::nvvm_div_rn_ftz_f:
1894 case Intrinsic::nvvm_div_rp_ftz_f:
1895 case Intrinsic::nvvm_div_rz_ftz_f:
1898 case Intrinsic::nvvm_mul_rm_d:
1899 case Intrinsic::nvvm_mul_rn_d:
1900 case Intrinsic::nvvm_mul_rp_d:
1901 case Intrinsic::nvvm_mul_rz_d:
1902 case Intrinsic::nvvm_mul_rm_f:
1903 case Intrinsic::nvvm_mul_rn_f:
1904 case Intrinsic::nvvm_mul_rp_f:
1905 case Intrinsic::nvvm_mul_rz_f:
1906 case Intrinsic::nvvm_mul_rm_ftz_f:
1907 case Intrinsic::nvvm_mul_rn_ftz_f:
1908 case Intrinsic::nvvm_mul_rp_ftz_f:
1909 case Intrinsic::nvvm_mul_rz_ftz_f:
1912 case Intrinsic::nvvm_fma_rm_d:
1913 case Intrinsic::nvvm_fma_rn_d:
1914 case Intrinsic::nvvm_fma_rp_d:
1915 case Intrinsic::nvvm_fma_rz_d:
1916 case Intrinsic::nvvm_fma_rm_f:
1917 case Intrinsic::nvvm_fma_rn_f:
1918 case Intrinsic::nvvm_fma_rp_f:
1919 case Intrinsic::nvvm_fma_rz_f:
1920 case Intrinsic::nvvm_fma_rm_ftz_f:
1921 case Intrinsic::nvvm_fma_rn_ftz_f:
1922 case Intrinsic::nvvm_fma_rp_ftz_f:
1923 case Intrinsic::nvvm_fma_rz_ftz_f:
1927 case Intrinsic::fabs:
1928 case Intrinsic::copysign:
1929 case Intrinsic::is_fpclass:
1932 case Intrinsic::ceil:
1933 case Intrinsic::floor:
1934 case Intrinsic::round:
1935 case Intrinsic::roundeven:
1936 case Intrinsic::trunc:
1937 case Intrinsic::nearbyint:
1938 case Intrinsic::rint:
1939 case Intrinsic::canonicalize:
1943 case Intrinsic::experimental_constrained_fma:
1944 case Intrinsic::experimental_constrained_fmuladd:
1945 case Intrinsic::experimental_constrained_fadd:
1946 case Intrinsic::experimental_constrained_fsub:
1947 case Intrinsic::experimental_constrained_fmul:
1948 case Intrinsic::experimental_constrained_fdiv:
1949 case Intrinsic::experimental_constrained_frem:
1950 case Intrinsic::experimental_constrained_ceil:
1951 case Intrinsic::experimental_constrained_floor:
1952 case Intrinsic::experimental_constrained_round:
1953 case Intrinsic::experimental_constrained_roundeven:
1954 case Intrinsic::experimental_constrained_trunc:
1955 case Intrinsic::experimental_constrained_nearbyint:
1956 case Intrinsic::experimental_constrained_rint:
1957 case Intrinsic::experimental_constrained_fcmp:
1958 case Intrinsic::experimental_constrained_fcmps:
1965 if (!
F->hasName() ||
Call->isStrictFP())
1976 return Name ==
"acos" || Name ==
"acosf" ||
1977 Name ==
"asin" || Name ==
"asinf" ||
1978 Name ==
"atan" || Name ==
"atanf" ||
1979 Name ==
"atan2" || Name ==
"atan2f";
1981 return Name ==
"ceil" || Name ==
"ceilf" ||
1982 Name ==
"cos" || Name ==
"cosf" ||
1983 Name ==
"cosh" || Name ==
"coshf";
1985 return Name ==
"exp" || Name ==
"expf" || Name ==
"exp2" ||
1986 Name ==
"exp2f" || Name ==
"erf" || Name ==
"erff";
1988 return Name ==
"fabs" || Name ==
"fabsf" ||
1989 Name ==
"floor" || Name ==
"floorf" ||
1990 Name ==
"fmod" || Name ==
"fmodf";
1992 return Name ==
"ilogb" || Name ==
"ilogbf";
1994 return Name ==
"log" || Name ==
"logf" || Name ==
"logl" ||
1995 Name ==
"log2" || Name ==
"log2f" || Name ==
"log10" ||
1996 Name ==
"log10f" || Name ==
"logb" || Name ==
"logbf" ||
1997 Name ==
"log1p" || Name ==
"log1pf";
1999 return Name ==
"nearbyint" || Name ==
"nearbyintf";
2001 return Name ==
"pow" || Name ==
"powf";
2003 return Name ==
"remainder" || Name ==
"remainderf" ||
2004 Name ==
"rint" || Name ==
"rintf" ||
2005 Name ==
"round" || Name ==
"roundf";
2007 return Name ==
"sin" || Name ==
"sinf" ||
2008 Name ==
"sinh" || Name ==
"sinhf" ||
2009 Name ==
"sqrt" || Name ==
"sqrtf";
2011 return Name ==
"tan" || Name ==
"tanf" ||
2012 Name ==
"tanh" || Name ==
"tanhf" ||
2013 Name ==
"trunc" || Name ==
"truncf";
2021 if (Name.size() < 12 || Name[1] !=
'_')
2027 return Name ==
"__acos_finite" || Name ==
"__acosf_finite" ||
2028 Name ==
"__asin_finite" || Name ==
"__asinf_finite" ||
2029 Name ==
"__atan2_finite" || Name ==
"__atan2f_finite";
2031 return Name ==
"__cosh_finite" || Name ==
"__coshf_finite";
2033 return Name ==
"__exp_finite" || Name ==
"__expf_finite" ||
2034 Name ==
"__exp2_finite" || Name ==
"__exp2f_finite";
2036 return Name ==
"__log_finite" || Name ==
"__logf_finite" ||
2037 Name ==
"__log10_finite" || Name ==
"__log10f_finite";
2039 return Name ==
"__pow_finite" || Name ==
"__powf_finite";
2041 return Name ==
"__sinh_finite" || Name ==
"__sinhf_finite";
2049 if (Ty->isHalfTy() || Ty->isFloatTy()) {
2053 return ConstantFP::get(Ty->getContext(), APF);
2055 if (Ty->isDoubleTy())
2056 return ConstantFP::get(Ty->getContext(),
APFloat(V));
2060#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2061Constant *GetConstantFoldFPValue128(float128 V,
Type *Ty) {
2062 if (Ty->isFP128Ty())
2063 return ConstantFP::get(Ty, V);
2069inline void llvm_fenv_clearexcept() {
2070#if HAVE_DECL_FE_ALL_EXCEPT
2071 feclearexcept(FE_ALL_EXCEPT);
2077inline bool llvm_fenv_testexcept() {
2078 int errno_val = errno;
2079 if (errno_val == ERANGE || errno_val == EDOM)
2081#if HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
2082 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
2104 switch (DenormKind) {
2108 return FTZPreserveSign(V);
2110 return FlushToPositiveZero(V);
2118 if (!DenormMode.isValid() ||
2123 llvm_fenv_clearexcept();
2124 auto Input = FlushWithDenormKind(V, DenormMode.Input);
2125 double Result = NativeFP(
Input.convertToDouble());
2126 if (llvm_fenv_testexcept()) {
2127 llvm_fenv_clearexcept();
2131 Constant *Output = GetConstantFoldFPValue(Result, Ty);
2134 const auto *CFP =
static_cast<ConstantFP *
>(Output);
2135 const auto Res = FlushWithDenormKind(CFP->getValueAPF(), DenormMode.Output);
2136 return ConstantFP::get(Ty->getContext(), Res);
2139#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2140Constant *ConstantFoldFP128(float128 (*NativeFP)(float128),
const APFloat &V,
2142 llvm_fenv_clearexcept();
2143 float128
Result = NativeFP(V.convertToQuad());
2144 if (llvm_fenv_testexcept()) {
2145 llvm_fenv_clearexcept();
2149 return GetConstantFoldFPValue128(Result, Ty);
2153Constant *ConstantFoldBinaryFP(
double (*NativeFP)(
double,
double),
2155 llvm_fenv_clearexcept();
2156 double Result = NativeFP(V.convertToDouble(),
W.convertToDouble());
2157 if (llvm_fenv_testexcept()) {
2158 llvm_fenv_clearexcept();
2162 return GetConstantFoldFPValue(Result, Ty);
2184 APInt Acc = EltC->getValue();
2188 const APInt &
X = EltC->getValue();
2190 case Intrinsic::vector_reduce_add:
2193 case Intrinsic::vector_reduce_mul:
2196 case Intrinsic::vector_reduce_and:
2199 case Intrinsic::vector_reduce_or:
2202 case Intrinsic::vector_reduce_xor:
2205 case Intrinsic::vector_reduce_smin:
2208 case Intrinsic::vector_reduce_smax:
2211 case Intrinsic::vector_reduce_umin:
2214 case Intrinsic::vector_reduce_umax:
2220 return ConstantInt::get(
Op->getContext(), Acc);
2230Constant *ConstantFoldSSEConvertToInt(
const APFloat &Val,
bool roundTowardZero,
2231 Type *Ty,
bool IsSigned) {
2233 unsigned ResultWidth = Ty->getIntegerBitWidth();
2234 assert(ResultWidth <= 64 &&
2235 "Can only constant fold conversions to 64 and 32 bit ints");
2238 bool isExact =
false;
2243 IsSigned,
mode, &isExact);
2247 return ConstantInt::get(Ty, UIntVal, IsSigned);
2251 Type *Ty =
Op->getType();
2253 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2254 return Op->getValueAPF().convertToDouble();
2264 C = &CI->getValue();
2323 return ConstantFP::get(
2328 if (!Ty->isIEEELikeFPTy())
2335 if (Src.isNormal() || Src.isInfinity())
2336 return ConstantFP::get(CI->
getContext(), Src);
2343 return ConstantFP::get(CI->
getContext(), Src);
2373 assert(Operands.
size() == 1 &&
"Wrong number of operands.");
2375 if (IntrinsicID == Intrinsic::is_constant) {
2379 if (Operands[0]->isManifestConstant())
2388 if (IntrinsicID == Intrinsic::cos ||
2389 IntrinsicID == Intrinsic::ctpop ||
2390 IntrinsicID == Intrinsic::fptoui_sat ||
2391 IntrinsicID == Intrinsic::fptosi_sat ||
2392 IntrinsicID == Intrinsic::canonicalize)
2394 if (IntrinsicID == Intrinsic::bswap ||
2395 IntrinsicID == Intrinsic::bitreverse ||
2396 IntrinsicID == Intrinsic::launder_invariant_group ||
2397 IntrinsicID == Intrinsic::strip_invariant_group)
2403 if (IntrinsicID == Intrinsic::launder_invariant_group ||
2404 IntrinsicID == Intrinsic::strip_invariant_group) {
2409 Call->getParent() ?
Call->getCaller() :
nullptr;
2420 if (IntrinsicID == Intrinsic::convert_to_fp16) {
2431 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2432 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2433 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2438 unsigned Width = Ty->getIntegerBitWidth();
2440 bool IsExact =
false;
2445 return ConstantInt::get(Ty,
Int);
2450 if (IntrinsicID == Intrinsic::fptoui_sat ||
2451 IntrinsicID == Intrinsic::fptosi_sat) {
2454 IntrinsicID == Intrinsic::fptoui_sat);
2457 return ConstantInt::get(Ty,
Int);
2460 if (IntrinsicID == Intrinsic::canonicalize)
2461 return constantFoldCanonicalize(Ty,
Call, U);
2463#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2464 if (Ty->isFP128Ty()) {
2465 if (IntrinsicID == Intrinsic::log) {
2466 float128
Result = logf128(
Op->getValueAPF().convertToQuad());
2467 return GetConstantFoldFPValue128(Result, Ty);
2471 if (TLI && TLI->
getLibFunc(Name, Fp128Func) && TLI->
has(Fp128Func) &&
2472 Fp128Func == LibFunc_logl)
2473 return ConstantFoldFP128(logf128,
Op->getValueAPF(), Ty);
2477 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy() &&
2483 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2485 return ConstantFP::get(Ty->getContext(), U);
2488 if (IntrinsicID == Intrinsic::round) {
2490 return ConstantFP::get(Ty->getContext(), U);
2493 if (IntrinsicID == Intrinsic::roundeven) {
2495 return ConstantFP::get(Ty->getContext(), U);
2498 if (IntrinsicID == Intrinsic::ceil) {
2500 return ConstantFP::get(Ty->getContext(), U);
2503 if (IntrinsicID == Intrinsic::floor) {
2505 return ConstantFP::get(Ty->getContext(), U);
2508 if (IntrinsicID == Intrinsic::trunc) {
2510 return ConstantFP::get(Ty->getContext(), U);
2513 if (IntrinsicID == Intrinsic::fabs) {
2515 return ConstantFP::get(Ty->getContext(), U);
2518 if (IntrinsicID == Intrinsic::amdgcn_fract) {
2526 APFloat AlmostOne(U.getSemantics(), 1);
2527 AlmostOne.next(
true);
2528 return ConstantFP::get(Ty->getContext(),
minimum(FractU, AlmostOne));
2534 std::optional<APFloat::roundingMode>
RM;
2535 switch (IntrinsicID) {
2538 case Intrinsic::experimental_constrained_nearbyint:
2539 case Intrinsic::experimental_constrained_rint: {
2541 RM = CI->getRoundingMode();
2546 case Intrinsic::experimental_constrained_round:
2549 case Intrinsic::experimental_constrained_ceil:
2552 case Intrinsic::experimental_constrained_floor:
2555 case Intrinsic::experimental_constrained_trunc:
2563 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2565 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2569 }
else if (U.isSignaling()) {
2570 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2575 return ConstantFP::get(Ty->getContext(), U);
2579 switch (IntrinsicID) {
2581 case Intrinsic::nvvm_f2i_rm:
2582 case Intrinsic::nvvm_f2i_rn:
2583 case Intrinsic::nvvm_f2i_rp:
2584 case Intrinsic::nvvm_f2i_rz:
2585 case Intrinsic::nvvm_f2i_rm_ftz:
2586 case Intrinsic::nvvm_f2i_rn_ftz:
2587 case Intrinsic::nvvm_f2i_rp_ftz:
2588 case Intrinsic::nvvm_f2i_rz_ftz:
2590 case Intrinsic::nvvm_f2ui_rm:
2591 case Intrinsic::nvvm_f2ui_rn:
2592 case Intrinsic::nvvm_f2ui_rp:
2593 case Intrinsic::nvvm_f2ui_rz:
2594 case Intrinsic::nvvm_f2ui_rm_ftz:
2595 case Intrinsic::nvvm_f2ui_rn_ftz:
2596 case Intrinsic::nvvm_f2ui_rp_ftz:
2597 case Intrinsic::nvvm_f2ui_rz_ftz:
2599 case Intrinsic::nvvm_d2i_rm:
2600 case Intrinsic::nvvm_d2i_rn:
2601 case Intrinsic::nvvm_d2i_rp:
2602 case Intrinsic::nvvm_d2i_rz:
2604 case Intrinsic::nvvm_d2ui_rm:
2605 case Intrinsic::nvvm_d2ui_rn:
2606 case Intrinsic::nvvm_d2ui_rp:
2607 case Intrinsic::nvvm_d2ui_rz:
2609 case Intrinsic::nvvm_f2ll_rm:
2610 case Intrinsic::nvvm_f2ll_rn:
2611 case Intrinsic::nvvm_f2ll_rp:
2612 case Intrinsic::nvvm_f2ll_rz:
2613 case Intrinsic::nvvm_f2ll_rm_ftz:
2614 case Intrinsic::nvvm_f2ll_rn_ftz:
2615 case Intrinsic::nvvm_f2ll_rp_ftz:
2616 case Intrinsic::nvvm_f2ll_rz_ftz:
2618 case Intrinsic::nvvm_f2ull_rm:
2619 case Intrinsic::nvvm_f2ull_rn:
2620 case Intrinsic::nvvm_f2ull_rp:
2621 case Intrinsic::nvvm_f2ull_rz:
2622 case Intrinsic::nvvm_f2ull_rm_ftz:
2623 case Intrinsic::nvvm_f2ull_rn_ftz:
2624 case Intrinsic::nvvm_f2ull_rp_ftz:
2625 case Intrinsic::nvvm_f2ull_rz_ftz:
2627 case Intrinsic::nvvm_d2ll_rm:
2628 case Intrinsic::nvvm_d2ll_rn:
2629 case Intrinsic::nvvm_d2ll_rp:
2630 case Intrinsic::nvvm_d2ll_rz:
2632 case Intrinsic::nvvm_d2ull_rm:
2633 case Intrinsic::nvvm_d2ull_rn:
2634 case Intrinsic::nvvm_d2ull_rp:
2635 case Intrinsic::nvvm_d2ull_rz: {
2641 return ConstantInt::get(Ty, 0);
2644 unsigned BitWidth = Ty->getIntegerBitWidth();
2654 APSInt ResInt(Ty->getIntegerBitWidth(), !IsSigned);
2655 auto FloatToRound = IsFTZ ? FTZPreserveSign(U) : U;
2659 bool IsExact =
false;
2660 FloatToRound.convertToInteger(ResInt, RMode, &IsExact);
2661 return ConstantInt::get(Ty, ResInt);
2677 switch (IntrinsicID) {
2679 case Intrinsic::log:
2680 return ConstantFoldFP(log, APF, Ty);
2681 case Intrinsic::log2:
2683 return ConstantFoldFP(
log2, APF, Ty);
2684 case Intrinsic::log10:
2686 return ConstantFoldFP(log10, APF, Ty);
2687 case Intrinsic::exp:
2688 return ConstantFoldFP(exp, APF, Ty);
2689 case Intrinsic::exp2:
2691 return ConstantFoldBinaryFP(pow,
APFloat(2.0), APF, Ty);
2692 case Intrinsic::exp10:
2694 return ConstantFoldBinaryFP(pow,
APFloat(10.0), APF, Ty);
2695 case Intrinsic::sin:
2696 return ConstantFoldFP(sin, APF, Ty);
2697 case Intrinsic::cos:
2698 return ConstantFoldFP(cos, APF, Ty);
2699 case Intrinsic::sinh:
2700 return ConstantFoldFP(sinh, APF, Ty);
2701 case Intrinsic::cosh:
2702 return ConstantFoldFP(cosh, APF, Ty);
2703 case Intrinsic::atan:
2706 return ConstantFP::get(Ty->getContext(), U);
2707 return ConstantFoldFP(atan, APF, Ty);
2708 case Intrinsic::sqrt:
2709 return ConstantFoldFP(sqrt, APF, Ty);
2712 case Intrinsic::nvvm_ceil_ftz_f:
2713 case Intrinsic::nvvm_ceil_f:
2714 case Intrinsic::nvvm_ceil_d:
2715 return ConstantFoldFP(
2720 case Intrinsic::nvvm_fabs_ftz:
2721 case Intrinsic::nvvm_fabs:
2722 return ConstantFoldFP(
2727 case Intrinsic::nvvm_floor_ftz_f:
2728 case Intrinsic::nvvm_floor_f:
2729 case Intrinsic::nvvm_floor_d:
2730 return ConstantFoldFP(
2735 case Intrinsic::nvvm_rcp_rm_ftz_f:
2736 case Intrinsic::nvvm_rcp_rn_ftz_f:
2737 case Intrinsic::nvvm_rcp_rp_ftz_f:
2738 case Intrinsic::nvvm_rcp_rz_ftz_f:
2739 case Intrinsic::nvvm_rcp_rm_d:
2740 case Intrinsic::nvvm_rcp_rm_f:
2741 case Intrinsic::nvvm_rcp_rn_d:
2742 case Intrinsic::nvvm_rcp_rn_f:
2743 case Intrinsic::nvvm_rcp_rp_d:
2744 case Intrinsic::nvvm_rcp_rp_f:
2745 case Intrinsic::nvvm_rcp_rz_d:
2746 case Intrinsic::nvvm_rcp_rz_f: {
2750 auto Denominator = IsFTZ ? FTZPreserveSign(APF) : APF;
2756 Res = FTZPreserveSign(Res);
2757 return ConstantFP::get(Ty->getContext(), Res);
2762 case Intrinsic::nvvm_round_ftz_f:
2763 case Intrinsic::nvvm_round_f:
2764 case Intrinsic::nvvm_round_d: {
2769 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2771 return ConstantFP::get(Ty->getContext(), V);
2774 case Intrinsic::nvvm_saturate_ftz_f:
2775 case Intrinsic::nvvm_saturate_d:
2776 case Intrinsic::nvvm_saturate_f: {
2778 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2779 if (V.isNegative() || V.isZero() || V.isNaN())
2783 return ConstantFP::get(Ty->getContext(), One);
2784 return ConstantFP::get(Ty->getContext(), APF);
2787 case Intrinsic::nvvm_sqrt_rn_ftz_f:
2788 case Intrinsic::nvvm_sqrt_f:
2789 case Intrinsic::nvvm_sqrt_rn_d:
2790 case Intrinsic::nvvm_sqrt_rn_f:
2793 return ConstantFoldFP(
2799 case Intrinsic::amdgcn_cos:
2800 case Intrinsic::amdgcn_sin: {
2801 double V = getValueAsDouble(
Op);
2802 if (V < -256.0 || V > 256.0)
2807 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2808 double V4 = V * 4.0;
2809 if (V4 == floor(V4)) {
2811 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2812 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2819 return GetConstantFoldFPValue(V, Ty);
2835 case LibFunc_acos_finite:
2836 case LibFunc_acosf_finite:
2838 return ConstantFoldFP(acos, APF, Ty);
2842 case LibFunc_asin_finite:
2843 case LibFunc_asinf_finite:
2845 return ConstantFoldFP(asin, APF, Ty);
2851 return ConstantFP::get(Ty->getContext(), U);
2853 return ConstantFoldFP(atan, APF, Ty);
2857 if (TLI->
has(Func)) {
2859 return ConstantFP::get(Ty->getContext(), U);
2865 return ConstantFoldFP(cos, APF, Ty);
2869 case LibFunc_cosh_finite:
2870 case LibFunc_coshf_finite:
2872 return ConstantFoldFP(cosh, APF, Ty);
2876 case LibFunc_exp_finite:
2877 case LibFunc_expf_finite:
2879 return ConstantFoldFP(exp, APF, Ty);
2883 case LibFunc_exp2_finite:
2884 case LibFunc_exp2f_finite:
2887 return ConstantFoldBinaryFP(pow,
APFloat(2.0), APF, Ty);
2891 if (TLI->
has(Func)) {
2893 return ConstantFP::get(Ty->getContext(), U);
2897 case LibFunc_floorf:
2898 if (TLI->
has(Func)) {
2900 return ConstantFP::get(Ty->getContext(), U);
2905 case LibFunc_log_finite:
2906 case LibFunc_logf_finite:
2908 return ConstantFoldFP(log, APF, Ty);
2912 case LibFunc_log2_finite:
2913 case LibFunc_log2f_finite:
2916 return ConstantFoldFP(
log2, APF, Ty);
2919 case LibFunc_log10f:
2920 case LibFunc_log10_finite:
2921 case LibFunc_log10f_finite:
2924 return ConstantFoldFP(log10, APF, Ty);
2927 case LibFunc_ilogbf:
2929 return ConstantInt::get(Ty,
ilogb(APF),
true);
2934 return ConstantFoldFP(logb, APF, Ty);
2937 case LibFunc_log1pf:
2940 return ConstantFP::get(Ty->getContext(), U);
2942 return ConstantFoldFP(log1p, APF, Ty);
2949 return ConstantFoldFP(erf, APF, Ty);
2951 case LibFunc_nearbyint:
2952 case LibFunc_nearbyintf:
2955 if (TLI->
has(Func)) {
2957 return ConstantFP::get(Ty->getContext(), U);
2961 case LibFunc_roundf:
2962 if (TLI->
has(Func)) {
2964 return ConstantFP::get(Ty->getContext(), U);
2970 return ConstantFoldFP(sin, APF, Ty);
2974 case LibFunc_sinh_finite:
2975 case LibFunc_sinhf_finite:
2977 return ConstantFoldFP(sinh, APF, Ty);
2982 return ConstantFoldFP(sqrt, APF, Ty);
2987 return ConstantFoldFP(tan, APF, Ty);
2992 return ConstantFoldFP(tanh, APF, Ty);
2995 case LibFunc_truncf:
2996 if (TLI->
has(Func)) {
2998 return ConstantFP::get(Ty->getContext(), U);
3006 switch (IntrinsicID) {
3007 case Intrinsic::bswap:
3008 return ConstantInt::get(Ty->getContext(),
Op->getValue().byteSwap());
3009 case Intrinsic::ctpop:
3010 return ConstantInt::get(Ty,
Op->getValue().popcount());
3011 case Intrinsic::bitreverse:
3012 return ConstantInt::get(Ty->getContext(),
Op->getValue().reverseBits());
3013 case Intrinsic::convert_from_fp16: {
3023 "Precision lost during fp16 constfolding");
3025 return ConstantFP::get(Ty->getContext(), Val);
3028 case Intrinsic::amdgcn_s_wqm: {
3030 Val |= (Val & 0x5555555555555555ULL) << 1 |
3031 ((Val >> 1) & 0x5555555555555555ULL);
3032 Val |= (Val & 0x3333333333333333ULL) << 2 |
3033 ((Val >> 2) & 0x3333333333333333ULL);
3034 return ConstantInt::get(Ty, Val);
3037 case Intrinsic::amdgcn_s_quadmask: {
3040 for (
unsigned I = 0;
I <
Op->getBitWidth() / 4; ++
I, Val >>= 4) {
3044 QuadMask |= (1ULL <<
I);
3046 return ConstantInt::get(Ty, QuadMask);
3049 case Intrinsic::amdgcn_s_bitreplicate: {
3051 Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
3052 Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
3053 Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
3054 Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
3055 Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
3056 Val = Val | Val << 1;
3057 return ConstantInt::get(Ty, Val);
3062 if (Operands[0]->
getType()->isVectorTy()) {
3064 switch (IntrinsicID) {
3066 case Intrinsic::vector_reduce_add:
3067 case Intrinsic::vector_reduce_mul:
3068 case Intrinsic::vector_reduce_and:
3069 case Intrinsic::vector_reduce_or:
3070 case Intrinsic::vector_reduce_xor:
3071 case Intrinsic::vector_reduce_smin:
3072 case Intrinsic::vector_reduce_smax:
3073 case Intrinsic::vector_reduce_umin:
3074 case Intrinsic::vector_reduce_umax:
3075 if (
Constant *
C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
3078 case Intrinsic::x86_sse_cvtss2si:
3079 case Intrinsic::x86_sse_cvtss2si64:
3080 case Intrinsic::x86_sse2_cvtsd2si:
3081 case Intrinsic::x86_sse2_cvtsd2si64:
3084 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3088 case Intrinsic::x86_sse_cvttss2si:
3089 case Intrinsic::x86_sse_cvttss2si64:
3090 case Intrinsic::x86_sse2_cvttsd2si:
3091 case Intrinsic::x86_sse2_cvttsd2si64:
3094 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3099 case Intrinsic::wasm_anytrue:
3100 return Op->isZeroValue() ? ConstantInt::get(Ty, 0)
3103 case Intrinsic::wasm_alltrue:
3106 for (
unsigned I = 0;
I !=
E; ++
I) {
3110 return ConstantInt::get(Ty, 0);
3116 return ConstantInt::get(Ty, 1);
3128 if (FCmp->isSignaling()) {
3137 return ConstantInt::get(
Call->getType()->getScalarType(), Result);
3159 const APFloat &Op1V = Op1->getValueAPF();
3160 const APFloat &Op2V = Op2->getValueAPF();
3167 case LibFunc_pow_finite:
3168 case LibFunc_powf_finite:
3170 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3174 if (TLI->
has(Func)) {
3175 APFloat V = Op1->getValueAPF();
3177 return ConstantFP::get(Ty->getContext(), V);
3180 case LibFunc_remainder:
3181 case LibFunc_remainderf:
3182 if (TLI->
has(Func)) {
3183 APFloat V = Op1->getValueAPF();
3185 return ConstantFP::get(Ty->getContext(), V);
3189 case LibFunc_atan2f:
3195 case LibFunc_atan2_finite:
3196 case LibFunc_atan2f_finite:
3198 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
3208 assert(Operands.
size() == 2 &&
"Wrong number of operands.");
3210 if (Ty->isFloatingPointTy()) {
3215 switch (IntrinsicID) {
3216 case Intrinsic::maxnum:
3217 case Intrinsic::minnum:
3218 case Intrinsic::maximum:
3219 case Intrinsic::minimum:
3220 case Intrinsic::maximumnum:
3221 case Intrinsic::minimumnum:
3222 case Intrinsic::nvvm_fmax_d:
3223 case Intrinsic::nvvm_fmin_d:
3231 case Intrinsic::nvvm_fmax_f:
3232 case Intrinsic::nvvm_fmax_ftz_f:
3233 case Intrinsic::nvvm_fmax_ftz_nan_f:
3234 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3235 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3236 case Intrinsic::nvvm_fmax_nan_f:
3237 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3238 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3240 case Intrinsic::nvvm_fmin_f:
3241 case Intrinsic::nvvm_fmin_ftz_f:
3242 case Intrinsic::nvvm_fmin_ftz_nan_f:
3243 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3244 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3245 case Intrinsic::nvvm_fmin_nan_f:
3246 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3247 case Intrinsic::nvvm_fmin_xorsign_abs_f:
3251 if (!IsOp0Undef && !IsOp1Undef)
3255 APInt NVCanonicalNaN(32, 0x7fffffff);
3256 return ConstantFP::get(
3257 Ty,
APFloat(Ty->getFltSemantics(), NVCanonicalNaN));
3260 return ConstantFP::get(Ty, FTZPreserveSign(
Op->getValueAPF()));
3269 const APFloat &Op1V = Op1->getValueAPF();
3272 if (Op2->getType() != Op1->getType())
3274 const APFloat &Op2V = Op2->getValueAPF();
3276 if (
const auto *ConstrIntr =
3281 switch (IntrinsicID) {
3284 case Intrinsic::experimental_constrained_fadd:
3285 St = Res.
add(Op2V, RM);
3287 case Intrinsic::experimental_constrained_fsub:
3290 case Intrinsic::experimental_constrained_fmul:
3293 case Intrinsic::experimental_constrained_fdiv:
3294 St = Res.
divide(Op2V, RM);
3296 case Intrinsic::experimental_constrained_frem:
3299 case Intrinsic::experimental_constrained_fcmp:
3300 case Intrinsic::experimental_constrained_fcmps:
3301 return evaluateCompare(Op1V, Op2V, ConstrIntr);
3305 return ConstantFP::get(Ty->getContext(), Res);
3309 switch (IntrinsicID) {
3312 case Intrinsic::copysign:
3314 case Intrinsic::minnum:
3315 return ConstantFP::get(Ty->getContext(),
minnum(Op1V, Op2V));
3316 case Intrinsic::maxnum:
3317 return ConstantFP::get(Ty->getContext(),
maxnum(Op1V, Op2V));
3318 case Intrinsic::minimum:
3319 return ConstantFP::get(Ty->getContext(),
minimum(Op1V, Op2V));
3320 case Intrinsic::maximum:
3321 return ConstantFP::get(Ty->getContext(),
maximum(Op1V, Op2V));
3322 case Intrinsic::minimumnum:
3323 return ConstantFP::get(Ty->getContext(),
minimumnum(Op1V, Op2V));
3324 case Intrinsic::maximumnum:
3325 return ConstantFP::get(Ty->getContext(),
maximumnum(Op1V, Op2V));
3327 case Intrinsic::nvvm_fmax_d:
3328 case Intrinsic::nvvm_fmax_f:
3329 case Intrinsic::nvvm_fmax_ftz_f:
3330 case Intrinsic::nvvm_fmax_ftz_nan_f:
3331 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3332 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3333 case Intrinsic::nvvm_fmax_nan_f:
3334 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3335 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3337 case Intrinsic::nvvm_fmin_d:
3338 case Intrinsic::nvvm_fmin_f:
3339 case Intrinsic::nvvm_fmin_ftz_f:
3340 case Intrinsic::nvvm_fmin_ftz_nan_f:
3341 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3342 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3343 case Intrinsic::nvvm_fmin_nan_f:
3344 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3345 case Intrinsic::nvvm_fmin_xorsign_abs_f: {
3347 bool ShouldCanonicalizeNaNs = !(IntrinsicID == Intrinsic::nvvm_fmax_d ||
3348 IntrinsicID == Intrinsic::nvvm_fmin_d);
3353 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3354 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3356 bool XorSign =
false;
3358 XorSign =
A.isNegative() ^
B.isNegative();
3363 bool IsFMax =
false;
3364 switch (IntrinsicID) {
3365 case Intrinsic::nvvm_fmax_d:
3366 case Intrinsic::nvvm_fmax_f:
3367 case Intrinsic::nvvm_fmax_ftz_f:
3368 case Intrinsic::nvvm_fmax_ftz_nan_f:
3369 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3370 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3371 case Intrinsic::nvvm_fmax_nan_f:
3372 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3373 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3379 if (ShouldCanonicalizeNaNs) {
3381 if (
A.isNaN() &&
B.isNaN())
3382 return ConstantFP::get(Ty, NVCanonicalNaN);
3383 else if (IsNaNPropagating && (
A.isNaN() ||
B.isNaN()))
3384 return ConstantFP::get(Ty, NVCanonicalNaN);
3387 if (
A.isNaN() &&
B.isNaN())
3397 return ConstantFP::get(Ty->getContext(), Res);
3400 case Intrinsic::nvvm_add_rm_f:
3401 case Intrinsic::nvvm_add_rn_f:
3402 case Intrinsic::nvvm_add_rp_f:
3403 case Intrinsic::nvvm_add_rz_f:
3404 case Intrinsic::nvvm_add_rm_d:
3405 case Intrinsic::nvvm_add_rn_d:
3406 case Intrinsic::nvvm_add_rp_d:
3407 case Intrinsic::nvvm_add_rz_d:
3408 case Intrinsic::nvvm_add_rm_ftz_f:
3409 case Intrinsic::nvvm_add_rn_ftz_f:
3410 case Intrinsic::nvvm_add_rp_ftz_f:
3411 case Intrinsic::nvvm_add_rz_ftz_f: {
3414 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3415 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3425 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3426 return ConstantFP::get(Ty->getContext(), Res);
3431 case Intrinsic::nvvm_mul_rm_f:
3432 case Intrinsic::nvvm_mul_rn_f:
3433 case Intrinsic::nvvm_mul_rp_f:
3434 case Intrinsic::nvvm_mul_rz_f:
3435 case Intrinsic::nvvm_mul_rm_d:
3436 case Intrinsic::nvvm_mul_rn_d:
3437 case Intrinsic::nvvm_mul_rp_d:
3438 case Intrinsic::nvvm_mul_rz_d:
3439 case Intrinsic::nvvm_mul_rm_ftz_f:
3440 case Intrinsic::nvvm_mul_rn_ftz_f:
3441 case Intrinsic::nvvm_mul_rp_ftz_f:
3442 case Intrinsic::nvvm_mul_rz_ftz_f: {
3445 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3446 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3456 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3457 return ConstantFP::get(Ty->getContext(), Res);
3462 case Intrinsic::nvvm_div_rm_f:
3463 case Intrinsic::nvvm_div_rn_f:
3464 case Intrinsic::nvvm_div_rp_f:
3465 case Intrinsic::nvvm_div_rz_f:
3466 case Intrinsic::nvvm_div_rm_d:
3467 case Intrinsic::nvvm_div_rn_d:
3468 case Intrinsic::nvvm_div_rp_d:
3469 case Intrinsic::nvvm_div_rz_d:
3470 case Intrinsic::nvvm_div_rm_ftz_f:
3471 case Intrinsic::nvvm_div_rn_ftz_f:
3472 case Intrinsic::nvvm_div_rp_ftz_f:
3473 case Intrinsic::nvvm_div_rz_ftz_f: {
3475 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3476 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3484 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3485 return ConstantFP::get(Ty->getContext(), Res);
3491 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
3494 switch (IntrinsicID) {
3497 case Intrinsic::pow:
3498 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3499 case Intrinsic::amdgcn_fmul_legacy:
3504 return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
3508 switch (IntrinsicID) {
3509 case Intrinsic::ldexp: {
3510 return ConstantFP::get(
3514 case Intrinsic::is_fpclass: {
3527 return ConstantInt::get(Ty, Result);
3529 case Intrinsic::powi: {
3530 int Exp =
static_cast<int>(Op2C->getSExtValue());
3531 switch (Ty->getTypeID()) {
3535 if (Ty->isHalfTy()) {
3540 return ConstantFP::get(Ty->getContext(), Res);
3555 if (Operands[0]->
getType()->isIntegerTy() &&
3556 Operands[1]->
getType()->isIntegerTy()) {
3557 const APInt *C0, *C1;
3558 if (!getConstIntOrUndef(Operands[0], C0) ||
3559 !getConstIntOrUndef(Operands[1], C1))
3562 switch (IntrinsicID) {
3564 case Intrinsic::smax:
3565 case Intrinsic::smin:
3566 case Intrinsic::umax:
3567 case Intrinsic::umin:
3572 return ConstantInt::get(
3578 case Intrinsic::scmp:
3579 case Intrinsic::ucmp:
3581 return ConstantInt::get(Ty, 0);
3584 if (IntrinsicID == Intrinsic::scmp)
3585 Res = C0->
sgt(*C1) ? 1 : C0->
slt(*C1) ? -1 : 0;
3587 Res = C0->
ugt(*C1) ? 1 : C0->
ult(*C1) ? -1 : 0;
3588 return ConstantInt::get(Ty, Res,
true);
3590 case Intrinsic::usub_with_overflow:
3591 case Intrinsic::ssub_with_overflow:
3597 case Intrinsic::uadd_with_overflow:
3598 case Intrinsic::sadd_with_overflow:
3608 case Intrinsic::smul_with_overflow:
3609 case Intrinsic::umul_with_overflow: {
3617 switch (IntrinsicID) {
3619 case Intrinsic::sadd_with_overflow:
3620 Res = C0->
sadd_ov(*C1, Overflow);
3622 case Intrinsic::uadd_with_overflow:
3623 Res = C0->
uadd_ov(*C1, Overflow);
3625 case Intrinsic::ssub_with_overflow:
3626 Res = C0->
ssub_ov(*C1, Overflow);
3628 case Intrinsic::usub_with_overflow:
3629 Res = C0->
usub_ov(*C1, Overflow);
3631 case Intrinsic::smul_with_overflow:
3632 Res = C0->
smul_ov(*C1, Overflow);
3634 case Intrinsic::umul_with_overflow:
3635 Res = C0->
umul_ov(*C1, Overflow);
3639 ConstantInt::get(Ty->getContext(), Res),
3644 case Intrinsic::uadd_sat:
3645 case Intrinsic::sadd_sat:
3650 if (IntrinsicID == Intrinsic::uadd_sat)
3651 return ConstantInt::get(Ty, C0->
uadd_sat(*C1));
3653 return ConstantInt::get(Ty, C0->
sadd_sat(*C1));
3654 case Intrinsic::usub_sat:
3655 case Intrinsic::ssub_sat:
3660 if (IntrinsicID == Intrinsic::usub_sat)
3661 return ConstantInt::get(Ty, C0->
usub_sat(*C1));
3663 return ConstantInt::get(Ty, C0->
ssub_sat(*C1));
3664 case Intrinsic::cttz:
3665 case Intrinsic::ctlz:
3666 assert(C1 &&
"Must be constant int");
3673 if (IntrinsicID == Intrinsic::cttz)
3678 case Intrinsic::abs:
3679 assert(C1 &&
"Must be constant int");
3690 return ConstantInt::get(Ty, C0->
abs());
3691 case Intrinsic::amdgcn_wave_reduce_umin:
3692 case Intrinsic::amdgcn_wave_reduce_umax:
3693 case Intrinsic::amdgcn_wave_reduce_max:
3694 case Intrinsic::amdgcn_wave_reduce_min:
3695 case Intrinsic::amdgcn_wave_reduce_add:
3696 case Intrinsic::amdgcn_wave_reduce_sub:
3697 case Intrinsic::amdgcn_wave_reduce_and:
3698 case Intrinsic::amdgcn_wave_reduce_or:
3699 case Intrinsic::amdgcn_wave_reduce_xor:
3714 switch (IntrinsicID) {
3716 case Intrinsic::x86_avx512_vcvtss2si32:
3717 case Intrinsic::x86_avx512_vcvtss2si64:
3718 case Intrinsic::x86_avx512_vcvtsd2si32:
3719 case Intrinsic::x86_avx512_vcvtsd2si64:
3722 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3726 case Intrinsic::x86_avx512_vcvtss2usi32:
3727 case Intrinsic::x86_avx512_vcvtss2usi64:
3728 case Intrinsic::x86_avx512_vcvtsd2usi32:
3729 case Intrinsic::x86_avx512_vcvtsd2usi64:
3732 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3736 case Intrinsic::x86_avx512_cvttss2si:
3737 case Intrinsic::x86_avx512_cvttss2si64:
3738 case Intrinsic::x86_avx512_cvttsd2si:
3739 case Intrinsic::x86_avx512_cvttsd2si64:
3742 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3746 case Intrinsic::x86_avx512_cvttss2usi:
3747 case Intrinsic::x86_avx512_cvttss2usi64:
3748 case Intrinsic::x86_avx512_cvttsd2usi:
3749 case Intrinsic::x86_avx512_cvttsd2usi64:
3752 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3767 APFloat MA(Sem), SC(Sem), TC(Sem);
3780 if (
S1.isNegative() &&
S1.isNonZero() && !
S1.isNaN()) {
3802 switch (IntrinsicID) {
3805 case Intrinsic::amdgcn_cubeid:
3807 case Intrinsic::amdgcn_cubema:
3809 case Intrinsic::amdgcn_cubesc:
3811 case Intrinsic::amdgcn_cubetc:
3818 const APInt *C0, *C1, *C2;
3819 if (!getConstIntOrUndef(Operands[0], C0) ||
3820 !getConstIntOrUndef(Operands[1], C1) ||
3821 !getConstIntOrUndef(Operands[2], C2))
3828 unsigned NumUndefBytes = 0;
3829 for (
unsigned I = 0;
I < 32;
I += 8) {
3838 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3842 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3844 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3847 Val.insertBits(
B,
I, 8);
3850 if (NumUndefBytes == 4)
3853 return ConstantInt::get(Ty, Val);
3862 assert(Operands.
size() == 3 &&
"Wrong number of operands.");
3867 const APFloat &C1 = Op1->getValueAPF();
3868 const APFloat &C2 = Op2->getValueAPF();
3869 const APFloat &C3 = Op3->getValueAPF();
3875 switch (IntrinsicID) {
3878 case Intrinsic::experimental_constrained_fma:
3879 case Intrinsic::experimental_constrained_fmuladd:
3883 if (mayFoldConstrained(
3885 return ConstantFP::get(Ty->getContext(), Res);
3889 switch (IntrinsicID) {
3891 case Intrinsic::amdgcn_fma_legacy: {
3897 return ConstantFP::get(Ty->getContext(),
APFloat(0.0f) + C3);
3901 case Intrinsic::fma:
3902 case Intrinsic::fmuladd: {
3905 return ConstantFP::get(Ty->getContext(), V);
3908 case Intrinsic::nvvm_fma_rm_f:
3909 case Intrinsic::nvvm_fma_rn_f:
3910 case Intrinsic::nvvm_fma_rp_f:
3911 case Intrinsic::nvvm_fma_rz_f:
3912 case Intrinsic::nvvm_fma_rm_d:
3913 case Intrinsic::nvvm_fma_rn_d:
3914 case Intrinsic::nvvm_fma_rp_d:
3915 case Intrinsic::nvvm_fma_rz_d:
3916 case Intrinsic::nvvm_fma_rm_ftz_f:
3917 case Intrinsic::nvvm_fma_rn_ftz_f:
3918 case Intrinsic::nvvm_fma_rp_ftz_f:
3919 case Intrinsic::nvvm_fma_rz_ftz_f: {
3921 APFloat A = IsFTZ ? FTZPreserveSign(C1) : C1;
3922 APFloat B = IsFTZ ? FTZPreserveSign(C2) : C2;
3923 APFloat C = IsFTZ ? FTZPreserveSign(C3) : C3;
3933 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3934 return ConstantFP::get(Ty->getContext(), Res);
3939 case Intrinsic::amdgcn_cubeid:
3940 case Intrinsic::amdgcn_cubema:
3941 case Intrinsic::amdgcn_cubesc:
3942 case Intrinsic::amdgcn_cubetc: {
3943 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3944 return ConstantFP::get(Ty->getContext(), V);
3951 if (IntrinsicID == Intrinsic::smul_fix ||
3952 IntrinsicID == Intrinsic::smul_fix_sat) {
3953 const APInt *C0, *C1;
3954 if (!getConstIntOrUndef(Operands[0], C0) ||
3955 !getConstIntOrUndef(Operands[1], C1))
3971 assert(Scale < Width &&
"Illegal scale.");
3972 unsigned ExtendedWidth = Width * 2;
3974 (C0->
sext(ExtendedWidth) * C1->
sext(ExtendedWidth)).
ashr(Scale);
3975 if (IntrinsicID == Intrinsic::smul_fix_sat) {
3981 return ConstantInt::get(Ty->getContext(), Product.
sextOrTrunc(Width));
3984 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
3985 const APInt *C0, *C1, *C2;
3986 if (!getConstIntOrUndef(Operands[0], C0) ||
3987 !getConstIntOrUndef(Operands[1], C1) ||
3988 !getConstIntOrUndef(Operands[2], C2))
3991 bool IsRight = IntrinsicID == Intrinsic::fshr;
3993 return Operands[IsRight ? 1 : 0];
4002 return Operands[IsRight ? 1 : 0];
4005 unsigned LshrAmt = IsRight ? ShAmt :
BitWidth - ShAmt;
4006 unsigned ShlAmt = !IsRight ? ShAmt :
BitWidth - ShAmt;
4008 return ConstantInt::get(Ty, C1->
lshr(LshrAmt));
4010 return ConstantInt::get(Ty, C0->
shl(ShlAmt));
4011 return ConstantInt::get(Ty, C0->
shl(ShlAmt) | C1->
lshr(LshrAmt));
4014 if (IntrinsicID == Intrinsic::amdgcn_perm)
4015 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
4031 if (Operands.
size() == 1)
4032 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI,
Call);
4034 if (Operands.
size() == 2) {
4036 ConstantFoldLibCall2(Name, Ty, Operands, TLI)) {
4037 return FoldedLibCall;
4039 return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands,
Call);
4042 if (Operands.
size() == 3)
4043 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI,
Call);
4048static Constant *ConstantFoldFixedVectorCall(
4056 switch (IntrinsicID) {
4057 case Intrinsic::masked_load: {
4058 auto *SrcPtr = Operands[0];
4059 auto *
Mask = Operands[1];
4060 auto *Passthru = Operands[2];
4066 auto *MaskElt =
Mask->getAggregateElement(
I);
4069 auto *PassthruElt = Passthru->getAggregateElement(
I);
4079 if (MaskElt->isNullValue()) {
4083 }
else if (MaskElt->isOneValue()) {
4095 case Intrinsic::arm_mve_vctp8:
4096 case Intrinsic::arm_mve_vctp16:
4097 case Intrinsic::arm_mve_vctp32:
4098 case Intrinsic::arm_mve_vctp64: {
4104 for (
unsigned i = 0; i < Lanes; i++) {
4114 case Intrinsic::get_active_lane_mask: {
4120 uint64_t Limit = Op1->getZExtValue();
4123 for (
unsigned i = 0; i < Lanes; i++) {
4124 if (
Base + i < Limit)
4133 case Intrinsic::vector_extract: {
4140 unsigned VecNumElements =
4142 unsigned StartingIndex = Idx->getZExtValue();
4145 if (NumElements == VecNumElements && StartingIndex == 0)
4148 for (
unsigned I = StartingIndex,
E = StartingIndex + NumElements;
I <
E;
4153 Result[
I - StartingIndex] = Elt;
4158 case Intrinsic::vector_insert: {
4165 unsigned SubVecNumElements =
4167 unsigned VecNumElements =
4169 unsigned IdxN = Idx->getZExtValue();
4171 if (SubVecNumElements == VecNumElements && IdxN == 0)
4174 for (
unsigned I = 0;
I < VecNumElements; ++
I) {
4176 if (
I < IdxN + SubVecNumElements)
4186 case Intrinsic::vector_interleave2: {
4187 unsigned NumElements =
4189 for (
unsigned I = 0;
I < NumElements; ++
I) {
4190 Constant *Elt0 = Operands[0]->getAggregateElement(
I);
4191 Constant *Elt1 = Operands[1]->getAggregateElement(
I);
4199 case Intrinsic::wasm_dot: {
4200 unsigned NumElements =
4204 "wasm dot takes i16x8 and produces i32x4");
4205 assert(Ty->isIntegerTy());
4206 int32_t MulVector[8];
4208 for (
unsigned I = 0;
I < NumElements; ++
I) {
4216 for (
unsigned I = 0;
I <
Result.size();
I++) {
4217 int64_t IAdd = (int64_t)MulVector[
I * 2] + (int64_t)MulVector[
I * 2 + 1];
4218 Result[
I] = ConstantInt::get(Ty, IAdd);
4229 for (
unsigned J = 0, JE = Operands.
size(); J != JE; ++J) {
4232 Lane[J] = Operands[J];
4236 Constant *Agg = Operands[J]->getAggregateElement(
I);
4245 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI,
Call);
4254static Constant *ConstantFoldScalableVectorCall(
4258 switch (IntrinsicID) {
4259 case Intrinsic::aarch64_sve_convert_from_svbool: {
4261 if (!Src || !Src->isNullValue())
4266 case Intrinsic::get_active_lane_mask: {
4269 if (Op0 && Op1 && Op0->getValue().uge(Op1->getValue()))
4295 Constant *Folded = ConstantFoldScalarCall(
4302static std::pair<Constant *, Constant *>
4311 const APFloat &U = ConstFP->getValueAPF();
4314 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
4321 return {Result0, Result1};
4331 switch (IntrinsicID) {
4332 case Intrinsic::frexp: {
4340 for (
unsigned I = 0,
E = FVTy0->getNumElements();
I !=
E; ++
I) {
4341 Constant *Lane = Operands[0]->getAggregateElement(
I);
4342 std::tie(Results0[
I], Results1[
I]) =
4343 ConstantFoldScalarFrexpCall(Lane, Ty1);
4352 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1);
4357 case Intrinsic::sincos: {
4361 auto ConstantFoldScalarSincosCall =
4362 [&](
Constant *
Op) -> std::pair<Constant *, Constant *> {
4364 ConstantFoldScalarCall(Name, Intrinsic::sin, TyScalar,
Op, TLI,
Call);
4366 ConstantFoldScalarCall(Name, Intrinsic::cos, TyScalar,
Op, TLI,
Call);
4367 return std::make_pair(SinResult, CosResult);
4375 Constant *Lane = Operands[0]->getAggregateElement(
I);
4376 std::tie(SinResults[
I], CosResults[
I]) =
4377 ConstantFoldScalarSincosCall(Lane);
4378 if (!SinResults[
I] || !CosResults[
I])
4386 auto [SinResult, CosResult] = ConstantFoldScalarSincosCall(Operands[0]);
4387 if (!SinResult || !CosResult)
4391 case Intrinsic::vector_deinterleave2: {
4392 auto *Vec = Operands[0];
4404 unsigned NumElements = VecTy->getElementCount().getFixedValue() / 2;
4406 for (
unsigned I = 0;
I < NumElements; ++
I) {
4420 return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI,
Call);
4436 return ConstantFoldIntrinsicCall2(
ID, Ty, {LHS, RHS},
Call);
4442 bool AllowNonDeterministic) {
4443 if (
Call->isNoBuiltin())
4460 Type *Ty =
F->getReturnType();
4461 if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy())
4466 return ConstantFoldFixedVectorCall(
4467 Name, IID, FVTy, Operands,
F->getDataLayout(), TLI,
Call);
4470 return ConstantFoldScalableVectorCall(
4471 Name, IID, SVTy, Operands,
F->getDataLayout(), TLI,
Call);
4474 return ConstantFoldStructCall(Name, IID, StTy, Operands,
4475 F->getDataLayout(), TLI,
Call);
4480 return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI,
Call);
4487 if (
Call->isNoBuiltin() ||
Call->isStrictFP())
4497 if (
Call->arg_size() == 1) {
4507 case LibFunc_log10l:
4509 case LibFunc_log10f:
4510 return Op.isNaN() || (!
Op.isZero() && !
Op.isNegative());
4513 return !
Op.isNaN() && !
Op.isZero() && !
Op.isInfinity();
4519 if (OpC->getType()->isDoubleTy())
4521 if (OpC->getType()->isFloatTy())
4529 if (OpC->getType()->isDoubleTy())
4531 if (OpC->getType()->isFloatTy())
4541 return !
Op.isInfinity();
4545 case LibFunc_tanf: {
4548 Type *Ty = OpC->getType();
4549 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
4550 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) !=
nullptr;
4576 if (OpC->getType()->isDoubleTy())
4578 if (OpC->getType()->isFloatTy())
4585 return Op.isNaN() ||
Op.isZero() || !
Op.isNegative();
4595 if (
Call->arg_size() == 2) {
4605 case LibFunc_powf: {
4609 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
4611 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) !=
nullptr;
4619 case LibFunc_remainderl:
4620 case LibFunc_remainder:
4621 case LibFunc_remainderf:
4626 case LibFunc_atan2f:
4627 case LibFunc_atan2l:
4647 case Instruction::BitCast:
4650 case Instruction::Trunc: {
4658 Flags->NSW = ZExtC == SExtC;
4662 case Instruction::SExt:
4663 case Instruction::ZExt: {
4667 if (!CastInvC || CastInvC !=
C)
4669 if (Flags && CastOp == Instruction::ZExt) {
4673 Flags->NNeg = CastInvC == SExtInvC;
4694void TargetFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Constant * FoldBitCast(Constant *V, Type *DestTy)
static ConstantFP * flushDenormalConstant(Type *Ty, const APFloat &APF, DenormalMode::DenormalModeKind Mode)
Constant * getConstantAtOffset(Constant *Base, APInt Offset, const DataLayout &DL)
If this Offset points exactly to the start of an aggregate element, return that element,...
static cl::opt< bool > DisableFPCallFolding("disable-fp-call-folding", cl::desc("Disable constant-folding of FP intrinsics and libcalls."), cl::init(false), cl::Hidden)
static ConstantFP * flushDenormalConstantFP(ConstantFP *CFP, const Instruction *Inst, bool IsOutput)
static DenormalMode getInstrDenormalMode(const Instruction *CtxI, Type *Ty)
Return the denormal mode that can be assumed when executing a floating point operation at CtxI.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
amode Optimize addressing mode
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
This file contains the definitions of the enumerations and flags associated with NVVM Intrinsics,...
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static constexpr roundingMode rmNearestTiesToAway
static constexpr roundingMode rmTowardNegative
llvm::RoundingMode roundingMode
IEEE-754R 4.3: Rounding-direction attributes.
static constexpr roundingMode rmNearestTiesToEven
static const fltSemantics & IEEEdouble()
static constexpr roundingMode rmTowardZero
static constexpr roundingMode rmTowardPositive
static const fltSemantics & IEEEhalf()
opStatus
IEEE-754R 7: Default exception handling.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
opStatus divide(const APFloat &RHS, roundingMode RM)
void copySign(const APFloat &RHS)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
bool isPosInfinity() const
opStatus add(const APFloat &RHS, roundingMode RM)
const fltSemantics & getSemantics() const
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
opStatus multiply(const APFloat &RHS, roundingMode RM)
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
APInt bitcastToAPInt() const
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
opStatus mod(const APFloat &RHS)
bool isNegInfinity() const
opStatus roundToIntegral(roundingMode RM)
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt usub_sat(const APInt &RHS) const
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
LLVM_ABI uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
bool sgt(const APInt &RHS) const
Signed greater than comparison.
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool slt(const APInt &RHS) const
Signed less than comparison.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
bool isOne() const
Determine if this is a value of 1.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
An arbitrary precision integer that knows its signedness.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, const DataLayout *DL)
Determine how a pair of casts can be eliminated, if they can be at all.
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
static bool isFPPredicate(Predicate P)
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
static LLVM_ABI Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
static LLVM_ABI Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static LLVM_ABI bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
const APFloat & getValueAPF() const
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Constrained floating point compare intrinsics.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI std::optional< RoundingMode > getRoundingMode() const
Wrapper for a function that represents a value that functionally represents the original function.
A parsed version of the target data layout string in and methods for querying it.
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This provides a helper for copying FMF from an instruction or setting specified flags.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutNoUnsignedSignedWrap() const
static GEPNoWrapFlags noUnsignedWrap()
bool hasNoUnsignedSignedWrap() const
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
This is an important class for using LLVM in a threaded context.
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Class to represent scalable SIMD vectors.
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
LLVM_ABI unsigned getElementContainingOffset(uint64_t FixedOffset) const
Given a valid byte offset into the structure, returns the structure index that contains it.
TypeSize getElementOffset(unsigned Idx) const
Class to represent struct types.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ HalfTyID
16-bit floating point type
@ FloatTyID
32-bit floating point type
@ DoubleTyID
64-bit floating point type
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isX86_AMXTy() const
Return true if this is X86 AMX.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
const ParentTy * getParent() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ CE
Windows NT (Windows on ARM)
initializer< Ty > init(const Ty &Val)
@ ebStrict
This corresponds to "fpexcept.strict".
@ ebIgnore
This corresponds to "fpexcept.ignore".
APFloat::roundingMode GetFMARoundingMode(Intrinsic::ID IntrinsicID)
DenormalMode GetNVVMDenormMode(bool ShouldFTZ)
bool FPToIntegerIntrinsicNaNZero(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFDivRoundingMode(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicResultIsSigned(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFPToIntegerRoundingMode(Intrinsic::ID IntrinsicID)
bool RCPShouldFTZ(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FDivShouldFTZ(Intrinsic::ID IntrinsicID)
bool FAddShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxIsXorSignAbs(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFMulRoundingMode(Intrinsic::ID IntrinsicID)
bool UnaryMathIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFAddRoundingMode(Intrinsic::ID IntrinsicID)
bool FMAShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMulShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetRCPRoundingMode(Intrinsic::ID IntrinsicID)
bool FMinFMaxPropagatesNaNs(Intrinsic::ID IntrinsicID)
NodeAddr< FuncNode * > Func
LLVM_ABI std::error_code status(const Twine &path, file_status &result, bool follow=true)
Get file status as if by POSIX stat().
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, const DataLayout &DL)
ConstantFoldLoadThroughBitcast - try to cast constant to destination type returning null if unsuccess...
static double log2(double V)
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
LLVM_ABI Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
unsigned getPointerAddressSpace(const Type *T)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
LLVM_ABI Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
LLVM_ABI Constant * ConstantFoldUnaryInstruction(unsigned Opcode, Constant *V)
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
LLVM_ABI bool isMathLibCallNoop(const CallBase *Call, const TargetLibraryInfo *TLI)
Check whether the given call has no side-effects.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
LLVM_ABI Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Constant * FlushFPConstant(Constant *Operand, const Instruction *I, bool IsOutput)
Attempt to flush float point constant according to denormal mode set in the instruction's parent func...
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Constant * ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL)
Extract value of C at the given Offset reinterpreted as Ty.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
@ Sub
Subtraction of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
DWARFExpression::Operation Op
RoundingMode
Rounding mode.
@ NearestTiesToEven
roundTiesToEven.
@ Dynamic
Denotes mode unknown at compile time.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
ConstantFoldInsertValueInstruction - Attempt to constant fold an insertvalue instruction with the spe...
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
DenormalModeKind
Represent handled modes for denormal (aka subnormal) modes in the floating point environment.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ Dynamic
Denormals have unknown treatment.
@ IEEE
IEEE-754 denormal numbers preserved.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getDynamic()
static constexpr DenormalMode getIEEE()
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
const APInt & getConstant() const
Returns the value when all bits have a known value.