31#include "llvm/Config/config.h"
45#include "llvm/IR/IntrinsicsAArch64.h"
46#include "llvm/IR/IntrinsicsAMDGPU.h"
47#include "llvm/IR/IntrinsicsARM.h"
48#include "llvm/IR/IntrinsicsNVPTX.h"
49#include "llvm/IR/IntrinsicsWebAssembly.h"
50#include "llvm/IR/IntrinsicsX86.h"
68 "disable-fp-call-folding",
69 cl::desc(
"Disable constant-folding of FP intrinsics and libcalls."),
84 unsigned BitShift =
DL.getTypeSizeInBits(SrcEltTy);
85 for (
unsigned i = 0; i != NumSrcElts; ++i) {
87 if (
DL.isLittleEndian())
88 Element =
C->getAggregateElement(NumSrcElts - i - 1);
90 Element =
C->getAggregateElement(i);
102 Result |= ElementCI->getValue().zext(
Result.getBitWidth());
113 "Invalid constantexpr bitcast!");
123 Type *SrcEltTy = VTy->getElementType();
136 if (
Constant *CE = foldConstVectorToAPInt(Result, DestTy,
C,
137 SrcEltTy, NumSrcElts,
DL))
141 return ConstantInt::get(DestTy, Result);
174 if (NumDstElt == NumSrcElt)
178 Type *DstEltTy = DestVTy->getElementType();
212 "Constant folding cannot fail for plain fp->int bitcast!");
219 bool isLittleEndian =
DL.isLittleEndian();
222 if (NumDstElt < NumSrcElt) {
225 unsigned Ratio = NumSrcElt/NumDstElt;
228 for (
unsigned i = 0; i != NumDstElt; ++i) {
231 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
232 for (
unsigned j = 0;
j != Ratio; ++
j) {
233 Constant *Src =
C->getAggregateElement(SrcElt++);
245 assert(Src &&
"Constant folding cannot fail on plain integers");
249 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
251 assert(Src &&
"Constant folding cannot fail on plain integers");
253 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
257 assert(Elt &&
"Constant folding cannot fail on plain integers");
265 unsigned Ratio = NumDstElt/NumSrcElt;
266 unsigned DstBitSize =
DL.getTypeSizeInBits(DstEltTy);
269 for (
unsigned i = 0; i != NumSrcElt; ++i) {
270 auto *Element =
C->getAggregateElement(i);
285 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
286 for (
unsigned j = 0;
j != Ratio; ++
j) {
289 APInt Elt = Src->getValue().lshr(ShiftAmt);
290 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
293 Result.push_back(ConstantInt::get(DstEltTy, Elt.
trunc(DstBitSize)));
319 *DSOEquiv = FoundDSOEquiv;
320 GV = FoundDSOEquiv->getGlobalValue();
328 if (!CE)
return false;
331 if (CE->getOpcode() == Instruction::PtrToInt ||
332 CE->getOpcode() == Instruction::PtrToAddr ||
333 CE->getOpcode() == Instruction::BitCast)
342 unsigned BitWidth =
DL.getIndexTypeSizeInBits(
GEP->getType());
351 if (!
GEP->accumulateConstantOffset(
DL, TmpOffset))
361 Type *SrcTy =
C->getType();
365 TypeSize DestSize =
DL.getTypeSizeInBits(DestTy);
366 TypeSize SrcSize =
DL.getTypeSizeInBits(SrcTy);
378 if (SrcSize == DestSize &&
379 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
385 Cast = Instruction::IntToPtr;
386 else if (SrcTy->isPointerTy() && DestTy->
isIntegerTy())
387 Cast = Instruction::PtrToInt;
395 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
402 if (SrcTy->isStructTy()) {
408 ElemC =
C->getAggregateElement(Elem++);
409 }
while (ElemC &&
DL.getTypeSizeInBits(ElemC->
getType()).isZero());
415 if (!
DL.typeSizeEqualsStoreSize(VT->getElementType()))
418 C =
C->getAggregateElement(0u);
433 assert(ByteOffset <=
DL.getTypeAllocSize(
C->getType()) &&
434 "Out of range access");
437 if (ByteOffset >=
DL.getTypeStoreSize(
C->getType()))
446 if ((CI->getBitWidth() & 7) != 0)
448 const APInt &Val = CI->getValue();
449 unsigned IntBytes =
unsigned(CI->getBitWidth()/8);
451 for (
unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
452 unsigned n = ByteOffset;
453 if (!
DL.isLittleEndian())
454 n = IntBytes - n - 1;
462 if (CFP->getType()->isDoubleTy()) {
464 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
466 if (CFP->getType()->isFloatTy()){
468 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
470 if (CFP->getType()->isHalfTy()){
472 return ReadDataFromGlobal(
C, ByteOffset, CurPtr, BytesLeft,
DL);
481 ByteOffset -= CurEltOffset;
486 uint64_t EltSize =
DL.getTypeAllocSize(CS->getOperand(Index)->getType());
488 if (ByteOffset < EltSize &&
489 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
496 if (Index == CS->getType()->getNumElements())
502 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
506 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
507 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
509 CurEltOffset = NextEltOffset;
519 NumElts = AT->getNumElements();
520 EltTy = AT->getElementType();
521 EltSize =
DL.getTypeAllocSize(EltTy);
527 if (!
DL.typeSizeEqualsStoreSize(EltTy))
530 EltSize =
DL.getTypeStoreSize(EltTy);
532 uint64_t Index = ByteOffset / EltSize;
535 for (; Index != NumElts; ++Index) {
536 if (!ReadDataFromGlobal(
C->getAggregateElement(Index),
Offset, CurPtr,
541 assert(BytesWritten <= EltSize &&
"Not indexing into this element?");
542 if (BytesWritten >= BytesLeft)
546 BytesLeft -= BytesWritten;
547 CurPtr += BytesWritten;
553 if (
CE->getOpcode() == Instruction::IntToPtr &&
554 CE->getOperand(0)->getType() ==
DL.getIntPtrType(
CE->getType())) {
555 return ReadDataFromGlobal(
CE->getOperand(0), ByteOffset, CurPtr,
583 DL.getTypeSizeInBits(LoadTy).getFixedValue());
604 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
605 if (BytesLoaded > 32 || BytesLoaded == 0)
609 if (
Offset <= -1 *
static_cast<int64_t
>(BytesLoaded))
613 TypeSize InitializerSize =
DL.getTypeAllocSize(
C->getType());
621 unsigned char RawBytes[32] = {0};
622 unsigned char *CurPtr = RawBytes;
623 unsigned BytesLeft = BytesLoaded;
632 if (!ReadDataFromGlobal(
C,
Offset, CurPtr, BytesLeft,
DL))
635 APInt ResultVal =
APInt(IntType->getBitWidth(), 0);
636 if (
DL.isLittleEndian()) {
637 ResultVal = RawBytes[BytesLoaded - 1];
638 for (
unsigned i = 1; i != BytesLoaded; ++i) {
640 ResultVal |= RawBytes[BytesLoaded - 1 - i];
643 ResultVal = RawBytes[0];
644 for (
unsigned i = 1; i != BytesLoaded; ++i) {
646 ResultVal |= RawBytes[i];
650 return ConstantInt::get(IntType->getContext(), ResultVal);
670 if (NBytes > UINT16_MAX)
678 unsigned char *CurPtr = RawBytes.
data();
680 if (!ReadDataFromGlobal(
Init,
Offset, CurPtr, NBytes,
DL))
698 if (!
Offset.isZero() || !Indices[0].isZero())
703 if (Index.isNegative() || Index.getActiveBits() >= 32)
706 C =
C->getAggregateElement(Index.getZExtValue());
732 if (
Offset.getSignificantBits() <= 64)
734 FoldReinterpretLoadFromConst(
C, Ty,
Offset.getSExtValue(),
DL))
751 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
781 if (!
DL.typeSizeEqualsStoreSize(
C->getType()))
783 if (
C->isNullValue() && !Ty->isX86_AMXTy())
785 if (
C->isAllOnesValue() &&
786 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
805 if (
Opc == Instruction::And) {
808 if ((Known1.
One | Known0.
Zero).isAllOnes()) {
812 if ((Known0.
One | Known1.
Zero).isAllOnes()) {
824 if (
Opc == Instruction::Sub) {
830 unsigned OpSize =
DL.getTypeSizeInBits(Op0->
getType());
847 std::optional<ConstantRange>
InRange,
849 Type *IntIdxTy =
DL.getIndexType(ResultTy);
854 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i) {
857 SrcElemTy,
Ops.slice(1, i - 1)))) &&
858 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
861 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
885 Type *SrcElemTy =
GEP->getSourceElementType();
890 if (
Constant *
C = CastGEPIndices(SrcElemTy,
Ops, ResTy,
GEP->getNoWrapFlags(),
891 GEP->getInRange(),
DL, TLI))
895 if (!
Ptr->getType()->isPointerTy())
898 Type *IntIdxTy =
DL.getIndexType(
Ptr->getType());
900 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i)
904 unsigned BitWidth =
DL.getTypeSizeInBits(IntIdxTy);
907 DL.getIndexedOffsetInType(
911 std::optional<ConstantRange>
InRange =
GEP->getInRange();
917 bool Overflow =
false;
919 NW &=
GEP->getNoWrapFlags();
924 bool AllConstantInt =
true;
925 for (
Value *NestedOp : NestedOps)
927 AllConstantInt =
false;
934 if (
auto GEPRange =
GEP->getInRange()) {
935 auto AdjustedGEPRange = GEPRange->sextOrTrunc(
BitWidth).subtract(
Offset);
937 InRange ?
InRange->intersectWith(AdjustedGEPRange) : AdjustedGEPRange;
941 SrcElemTy =
GEP->getSourceElementType();
955 APInt BaseIntVal(
DL.getPointerTypeSizeInBits(
Ptr->getType()), 0);
957 if (
CE->getOpcode() == Instruction::IntToPtr) {
959 BaseIntVal =
Base->getValue().zextOrTrunc(BaseIntVal.getBitWidth());
963 if ((
Ptr->isNullValue() || BaseIntVal != 0) &&
964 !
DL.mustNotIntroduceIntToPtr(
Ptr->getType())) {
969 Constant *
C = ConstantInt::get(
Ptr->getContext(), BaseIntVal);
975 bool CanBeNull, CanBeFreed;
977 Ptr->getPointerDereferenceableBytes(
DL, CanBeNull, CanBeFreed);
978 if (DerefBytes != 0 && !CanBeNull &&
Offset.sle(DerefBytes))
989 ConstantInt::get(Ctx,
Offset), NW,
998Constant *ConstantFoldInstOperandsImpl(
const Value *InstOrCE,
unsigned Opcode,
1002 bool AllowNonDeterministic) {
1012 case Instruction::FAdd:
1013 case Instruction::FSub:
1014 case Instruction::FMul:
1015 case Instruction::FDiv:
1016 case Instruction::FRem:
1022 AllowNonDeterministic);
1032 Type *SrcElemTy =
GEP->getSourceElementType();
1040 GEP->getNoWrapFlags(),
1045 return CE->getWithOperands(
Ops);
1048 default:
return nullptr;
1049 case Instruction::ICmp:
1050 case Instruction::FCmp: {
1055 case Instruction::Freeze:
1057 case Instruction::Call:
1062 AllowNonDeterministic);
1065 case Instruction::Select:
1067 case Instruction::ExtractElement:
1069 case Instruction::ExtractValue:
1072 case Instruction::InsertElement:
1074 case Instruction::InsertValue:
1077 case Instruction::ShuffleVector:
1080 case Instruction::Load: {
1082 if (LI->isVolatile())
1105 for (
const Use &OldU :
C->operands()) {
1111 auto It = FoldedOps.
find(OldC);
1112 if (It == FoldedOps.
end()) {
1113 NewC = ConstantFoldConstantImpl(OldC,
DL, TLI, FoldedOps);
1114 FoldedOps.
insert({OldC, NewC});
1119 Ops.push_back(NewC);
1123 if (
Constant *Res = ConstantFoldInstOperandsImpl(
1124 CE,
CE->getOpcode(),
Ops,
DL, TLI,
true))
1155 C = ConstantFoldConstantImpl(
C,
DL, TLI, FoldedOps);
1158 if (CommonValue &&
C != CommonValue)
1169 if (!
all_of(
I->operands(), [](
const Use &U) { return isa<Constant>(U); }))
1174 for (
const Use &OpU :
I->operands()) {
1177 Op = ConstantFoldConstantImpl(
Op,
DL, TLI, FoldedOps);
1187 return ConstantFoldConstantImpl(
C,
DL, TLI, FoldedOps);
1194 bool AllowNonDeterministic) {
1195 return ConstantFoldInstOperandsImpl(
I,
I->getOpcode(),
Ops,
DL, TLI,
1196 AllowNonDeterministic);
1215 if (CE0->getOpcode() == Instruction::IntToPtr) {
1216 Type *IntPtrTy =
DL.getIntPtrType(CE0->getType());
1228 if (CE0->getOpcode() == Instruction::PtrToInt) {
1229 Type *IntPtrTy =
DL.getIntPtrType(CE0->getOperand(0)->getType());
1230 if (CE0->getType() == IntPtrTy) {
1239 if (CE0->getOpcode() == CE1->getOpcode()) {
1240 if (CE0->getOpcode() == Instruction::IntToPtr) {
1241 Type *IntPtrTy =
DL.getIntPtrType(CE0->getType());
1255 if (CE0->getOpcode() == Instruction::PtrToInt) {
1256 Type *IntPtrTy =
DL.getIntPtrType(CE0->getOperand(0)->getType());
1257 if (CE0->getType() == IntPtrTy &&
1258 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1260 Predicate, CE0->getOperand(0), CE1->getOperand(0),
DL, TLI);
1272 unsigned IndexWidth =
DL.getIndexTypeSizeInBits(Ops0->
getType());
1273 APInt Offset0(IndexWidth, 0);
1276 DL, Offset0, IsEqPred,
1279 APInt Offset1(IndexWidth, 0);
1281 DL, Offset1, IsEqPred,
1284 if (Stripped0 == Stripped1)
1323 if (
Constant *
C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS,
DL))
1337 return ConstantFP::get(Ty->getContext(), APF);
1339 return ConstantFP::get(
1343 return ConstantFP::get(Ty->getContext(),
1369 IsOutput ?
Mode.Output :
Mode.Input);
1398 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1420 for (
unsigned I = 0, E = CDV->getNumElements();
I < E; ++
I) {
1421 const APFloat &Elt = CDV->getElementAsAPFloat(
I);
1423 NewElts.
push_back(ConstantFP::get(Ty, Elt));
1443 bool AllowNonDeterministic) {
1456 if (!AllowNonDeterministic)
1458 if (
FP->hasNoSignedZeros() ||
FP->hasAllowReassoc() ||
1459 FP->hasAllowContract() ||
FP->hasAllowReciprocal())
1473 if (!AllowNonDeterministic &&
C->isNaN())
1492 C->getType(), DestTy, &
DL))
1498 case Instruction::PtrToAddr:
1499 case Instruction::PtrToInt:
1504 if (CE->getOpcode() == Instruction::IntToPtr) {
1506 Type *MidTy = Opcode == Instruction::PtrToInt
1507 ?
DL.getAddressType(CE->getType())
1508 :
DL.getIntPtrType(CE->getType());
1515 unsigned BitWidth =
DL.getIndexTypeSizeInBits(
GEP->getType());
1518 DL, BaseOffset,
true));
1519 if (
Base->isNullValue()) {
1520 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1524 if (
GEP->getNumIndices() == 1 &&
1525 GEP->getSourceElementType()->isIntegerTy(8)) {
1528 Type *IntIdxTy =
DL.getIndexType(
Ptr->getType());
1529 if (
Sub &&
Sub->getType() == IntIdxTy &&
1530 Sub->getOpcode() == Instruction::Sub &&
1531 Sub->getOperand(0)->isNullValue())
1534 Sub->getOperand(1));
1545 case Instruction::IntToPtr:
1551 if (CE->getOpcode() == Instruction::PtrToInt) {
1552 Constant *SrcPtr = CE->getOperand(0);
1553 unsigned SrcPtrSize =
DL.getPointerTypeSizeInBits(SrcPtr->
getType());
1554 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1556 if (MidIntSize >= SrcPtrSize) {
1564 case Instruction::Trunc:
1565 case Instruction::ZExt:
1566 case Instruction::SExt:
1567 case Instruction::FPTrunc:
1568 case Instruction::FPExt:
1569 case Instruction::UIToFP:
1570 case Instruction::SIToFP:
1571 case Instruction::FPToUI:
1572 case Instruction::FPToSI:
1573 case Instruction::AddrSpaceCast:
1575 case Instruction::BitCast:
1586 Type *SrcTy =
C->getType();
1587 if (SrcTy == DestTy)
1601 if (
Call->isNoBuiltin())
1603 if (
Call->getFunctionType() !=
F->getFunctionType())
1612 return Arg.getType()->isFloatingPointTy();
1616 switch (
F->getIntrinsicID()) {
1619 case Intrinsic::bswap:
1620 case Intrinsic::ctpop:
1621 case Intrinsic::ctlz:
1622 case Intrinsic::cttz:
1623 case Intrinsic::fshl:
1624 case Intrinsic::fshr:
1625 case Intrinsic::launder_invariant_group:
1626 case Intrinsic::strip_invariant_group:
1627 case Intrinsic::masked_load:
1628 case Intrinsic::get_active_lane_mask:
1629 case Intrinsic::abs:
1630 case Intrinsic::smax:
1631 case Intrinsic::smin:
1632 case Intrinsic::umax:
1633 case Intrinsic::umin:
1634 case Intrinsic::scmp:
1635 case Intrinsic::ucmp:
1636 case Intrinsic::sadd_with_overflow:
1637 case Intrinsic::uadd_with_overflow:
1638 case Intrinsic::ssub_with_overflow:
1639 case Intrinsic::usub_with_overflow:
1640 case Intrinsic::smul_with_overflow:
1641 case Intrinsic::umul_with_overflow:
1642 case Intrinsic::sadd_sat:
1643 case Intrinsic::uadd_sat:
1644 case Intrinsic::ssub_sat:
1645 case Intrinsic::usub_sat:
1646 case Intrinsic::smul_fix:
1647 case Intrinsic::smul_fix_sat:
1648 case Intrinsic::bitreverse:
1649 case Intrinsic::is_constant:
1650 case Intrinsic::vector_reduce_add:
1651 case Intrinsic::vector_reduce_mul:
1652 case Intrinsic::vector_reduce_and:
1653 case Intrinsic::vector_reduce_or:
1654 case Intrinsic::vector_reduce_xor:
1655 case Intrinsic::vector_reduce_smin:
1656 case Intrinsic::vector_reduce_smax:
1657 case Intrinsic::vector_reduce_umin:
1658 case Intrinsic::vector_reduce_umax:
1659 case Intrinsic::vector_extract:
1660 case Intrinsic::vector_insert:
1661 case Intrinsic::vector_interleave2:
1662 case Intrinsic::vector_interleave3:
1663 case Intrinsic::vector_interleave4:
1664 case Intrinsic::vector_interleave5:
1665 case Intrinsic::vector_interleave6:
1666 case Intrinsic::vector_interleave7:
1667 case Intrinsic::vector_interleave8:
1668 case Intrinsic::vector_deinterleave2:
1670 case Intrinsic::amdgcn_perm:
1671 case Intrinsic::amdgcn_wave_reduce_umin:
1672 case Intrinsic::amdgcn_wave_reduce_umax:
1673 case Intrinsic::amdgcn_wave_reduce_max:
1674 case Intrinsic::amdgcn_wave_reduce_min:
1675 case Intrinsic::amdgcn_wave_reduce_add:
1676 case Intrinsic::amdgcn_wave_reduce_sub:
1677 case Intrinsic::amdgcn_wave_reduce_and:
1678 case Intrinsic::amdgcn_wave_reduce_or:
1679 case Intrinsic::amdgcn_wave_reduce_xor:
1680 case Intrinsic::amdgcn_s_wqm:
1681 case Intrinsic::amdgcn_s_quadmask:
1682 case Intrinsic::amdgcn_s_bitreplicate:
1683 case Intrinsic::arm_mve_vctp8:
1684 case Intrinsic::arm_mve_vctp16:
1685 case Intrinsic::arm_mve_vctp32:
1686 case Intrinsic::arm_mve_vctp64:
1687 case Intrinsic::aarch64_sve_convert_from_svbool:
1688 case Intrinsic::wasm_alltrue:
1689 case Intrinsic::wasm_anytrue:
1690 case Intrinsic::wasm_dot:
1692 case Intrinsic::wasm_trunc_signed:
1693 case Intrinsic::wasm_trunc_unsigned:
1698 case Intrinsic::minnum:
1699 case Intrinsic::maxnum:
1700 case Intrinsic::minimum:
1701 case Intrinsic::maximum:
1702 case Intrinsic::minimumnum:
1703 case Intrinsic::maximumnum:
1704 case Intrinsic::log:
1705 case Intrinsic::log2:
1706 case Intrinsic::log10:
1707 case Intrinsic::exp:
1708 case Intrinsic::exp2:
1709 case Intrinsic::exp10:
1710 case Intrinsic::sqrt:
1711 case Intrinsic::sin:
1712 case Intrinsic::cos:
1713 case Intrinsic::sincos:
1714 case Intrinsic::sinh:
1715 case Intrinsic::cosh:
1716 case Intrinsic::atan:
1717 case Intrinsic::pow:
1718 case Intrinsic::powi:
1719 case Intrinsic::ldexp:
1720 case Intrinsic::fma:
1721 case Intrinsic::fmuladd:
1722 case Intrinsic::frexp:
1723 case Intrinsic::fptoui_sat:
1724 case Intrinsic::fptosi_sat:
1725 case Intrinsic::convert_from_fp16:
1726 case Intrinsic::convert_to_fp16:
1727 case Intrinsic::amdgcn_cos:
1728 case Intrinsic::amdgcn_cubeid:
1729 case Intrinsic::amdgcn_cubema:
1730 case Intrinsic::amdgcn_cubesc:
1731 case Intrinsic::amdgcn_cubetc:
1732 case Intrinsic::amdgcn_fmul_legacy:
1733 case Intrinsic::amdgcn_fma_legacy:
1734 case Intrinsic::amdgcn_fract:
1735 case Intrinsic::amdgcn_sin:
1737 case Intrinsic::x86_sse_cvtss2si:
1738 case Intrinsic::x86_sse_cvtss2si64:
1739 case Intrinsic::x86_sse_cvttss2si:
1740 case Intrinsic::x86_sse_cvttss2si64:
1741 case Intrinsic::x86_sse2_cvtsd2si:
1742 case Intrinsic::x86_sse2_cvtsd2si64:
1743 case Intrinsic::x86_sse2_cvttsd2si:
1744 case Intrinsic::x86_sse2_cvttsd2si64:
1745 case Intrinsic::x86_avx512_vcvtss2si32:
1746 case Intrinsic::x86_avx512_vcvtss2si64:
1747 case Intrinsic::x86_avx512_cvttss2si:
1748 case Intrinsic::x86_avx512_cvttss2si64:
1749 case Intrinsic::x86_avx512_vcvtsd2si32:
1750 case Intrinsic::x86_avx512_vcvtsd2si64:
1751 case Intrinsic::x86_avx512_cvttsd2si:
1752 case Intrinsic::x86_avx512_cvttsd2si64:
1753 case Intrinsic::x86_avx512_vcvtss2usi32:
1754 case Intrinsic::x86_avx512_vcvtss2usi64:
1755 case Intrinsic::x86_avx512_cvttss2usi:
1756 case Intrinsic::x86_avx512_cvttss2usi64:
1757 case Intrinsic::x86_avx512_vcvtsd2usi32:
1758 case Intrinsic::x86_avx512_vcvtsd2usi64:
1759 case Intrinsic::x86_avx512_cvttsd2usi:
1760 case Intrinsic::x86_avx512_cvttsd2usi64:
1763 case Intrinsic::nvvm_fmax_d:
1764 case Intrinsic::nvvm_fmax_f:
1765 case Intrinsic::nvvm_fmax_ftz_f:
1766 case Intrinsic::nvvm_fmax_ftz_nan_f:
1767 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
1768 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
1769 case Intrinsic::nvvm_fmax_nan_f:
1770 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
1771 case Intrinsic::nvvm_fmax_xorsign_abs_f:
1774 case Intrinsic::nvvm_fmin_d:
1775 case Intrinsic::nvvm_fmin_f:
1776 case Intrinsic::nvvm_fmin_ftz_f:
1777 case Intrinsic::nvvm_fmin_ftz_nan_f:
1778 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
1779 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
1780 case Intrinsic::nvvm_fmin_nan_f:
1781 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
1782 case Intrinsic::nvvm_fmin_xorsign_abs_f:
1785 case Intrinsic::nvvm_f2i_rm:
1786 case Intrinsic::nvvm_f2i_rn:
1787 case Intrinsic::nvvm_f2i_rp:
1788 case Intrinsic::nvvm_f2i_rz:
1789 case Intrinsic::nvvm_f2i_rm_ftz:
1790 case Intrinsic::nvvm_f2i_rn_ftz:
1791 case Intrinsic::nvvm_f2i_rp_ftz:
1792 case Intrinsic::nvvm_f2i_rz_ftz:
1793 case Intrinsic::nvvm_f2ui_rm:
1794 case Intrinsic::nvvm_f2ui_rn:
1795 case Intrinsic::nvvm_f2ui_rp:
1796 case Intrinsic::nvvm_f2ui_rz:
1797 case Intrinsic::nvvm_f2ui_rm_ftz:
1798 case Intrinsic::nvvm_f2ui_rn_ftz:
1799 case Intrinsic::nvvm_f2ui_rp_ftz:
1800 case Intrinsic::nvvm_f2ui_rz_ftz:
1801 case Intrinsic::nvvm_d2i_rm:
1802 case Intrinsic::nvvm_d2i_rn:
1803 case Intrinsic::nvvm_d2i_rp:
1804 case Intrinsic::nvvm_d2i_rz:
1805 case Intrinsic::nvvm_d2ui_rm:
1806 case Intrinsic::nvvm_d2ui_rn:
1807 case Intrinsic::nvvm_d2ui_rp:
1808 case Intrinsic::nvvm_d2ui_rz:
1811 case Intrinsic::nvvm_f2ll_rm:
1812 case Intrinsic::nvvm_f2ll_rn:
1813 case Intrinsic::nvvm_f2ll_rp:
1814 case Intrinsic::nvvm_f2ll_rz:
1815 case Intrinsic::nvvm_f2ll_rm_ftz:
1816 case Intrinsic::nvvm_f2ll_rn_ftz:
1817 case Intrinsic::nvvm_f2ll_rp_ftz:
1818 case Intrinsic::nvvm_f2ll_rz_ftz:
1819 case Intrinsic::nvvm_f2ull_rm:
1820 case Intrinsic::nvvm_f2ull_rn:
1821 case Intrinsic::nvvm_f2ull_rp:
1822 case Intrinsic::nvvm_f2ull_rz:
1823 case Intrinsic::nvvm_f2ull_rm_ftz:
1824 case Intrinsic::nvvm_f2ull_rn_ftz:
1825 case Intrinsic::nvvm_f2ull_rp_ftz:
1826 case Intrinsic::nvvm_f2ull_rz_ftz:
1827 case Intrinsic::nvvm_d2ll_rm:
1828 case Intrinsic::nvvm_d2ll_rn:
1829 case Intrinsic::nvvm_d2ll_rp:
1830 case Intrinsic::nvvm_d2ll_rz:
1831 case Intrinsic::nvvm_d2ull_rm:
1832 case Intrinsic::nvvm_d2ull_rn:
1833 case Intrinsic::nvvm_d2ull_rp:
1834 case Intrinsic::nvvm_d2ull_rz:
1837 case Intrinsic::nvvm_ceil_d:
1838 case Intrinsic::nvvm_ceil_f:
1839 case Intrinsic::nvvm_ceil_ftz_f:
1841 case Intrinsic::nvvm_fabs:
1842 case Intrinsic::nvvm_fabs_ftz:
1844 case Intrinsic::nvvm_floor_d:
1845 case Intrinsic::nvvm_floor_f:
1846 case Intrinsic::nvvm_floor_ftz_f:
1848 case Intrinsic::nvvm_rcp_rm_d:
1849 case Intrinsic::nvvm_rcp_rm_f:
1850 case Intrinsic::nvvm_rcp_rm_ftz_f:
1851 case Intrinsic::nvvm_rcp_rn_d:
1852 case Intrinsic::nvvm_rcp_rn_f:
1853 case Intrinsic::nvvm_rcp_rn_ftz_f:
1854 case Intrinsic::nvvm_rcp_rp_d:
1855 case Intrinsic::nvvm_rcp_rp_f:
1856 case Intrinsic::nvvm_rcp_rp_ftz_f:
1857 case Intrinsic::nvvm_rcp_rz_d:
1858 case Intrinsic::nvvm_rcp_rz_f:
1859 case Intrinsic::nvvm_rcp_rz_ftz_f:
1861 case Intrinsic::nvvm_round_d:
1862 case Intrinsic::nvvm_round_f:
1863 case Intrinsic::nvvm_round_ftz_f:
1865 case Intrinsic::nvvm_saturate_d:
1866 case Intrinsic::nvvm_saturate_f:
1867 case Intrinsic::nvvm_saturate_ftz_f:
1869 case Intrinsic::nvvm_sqrt_f:
1870 case Intrinsic::nvvm_sqrt_rn_d:
1871 case Intrinsic::nvvm_sqrt_rn_f:
1872 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1873 return !
Call->isStrictFP();
1876 case Intrinsic::nvvm_add_rm_d:
1877 case Intrinsic::nvvm_add_rn_d:
1878 case Intrinsic::nvvm_add_rp_d:
1879 case Intrinsic::nvvm_add_rz_d:
1880 case Intrinsic::nvvm_add_rm_f:
1881 case Intrinsic::nvvm_add_rn_f:
1882 case Intrinsic::nvvm_add_rp_f:
1883 case Intrinsic::nvvm_add_rz_f:
1884 case Intrinsic::nvvm_add_rm_ftz_f:
1885 case Intrinsic::nvvm_add_rn_ftz_f:
1886 case Intrinsic::nvvm_add_rp_ftz_f:
1887 case Intrinsic::nvvm_add_rz_ftz_f:
1890 case Intrinsic::nvvm_div_rm_d:
1891 case Intrinsic::nvvm_div_rn_d:
1892 case Intrinsic::nvvm_div_rp_d:
1893 case Intrinsic::nvvm_div_rz_d:
1894 case Intrinsic::nvvm_div_rm_f:
1895 case Intrinsic::nvvm_div_rn_f:
1896 case Intrinsic::nvvm_div_rp_f:
1897 case Intrinsic::nvvm_div_rz_f:
1898 case Intrinsic::nvvm_div_rm_ftz_f:
1899 case Intrinsic::nvvm_div_rn_ftz_f:
1900 case Intrinsic::nvvm_div_rp_ftz_f:
1901 case Intrinsic::nvvm_div_rz_ftz_f:
1904 case Intrinsic::nvvm_mul_rm_d:
1905 case Intrinsic::nvvm_mul_rn_d:
1906 case Intrinsic::nvvm_mul_rp_d:
1907 case Intrinsic::nvvm_mul_rz_d:
1908 case Intrinsic::nvvm_mul_rm_f:
1909 case Intrinsic::nvvm_mul_rn_f:
1910 case Intrinsic::nvvm_mul_rp_f:
1911 case Intrinsic::nvvm_mul_rz_f:
1912 case Intrinsic::nvvm_mul_rm_ftz_f:
1913 case Intrinsic::nvvm_mul_rn_ftz_f:
1914 case Intrinsic::nvvm_mul_rp_ftz_f:
1915 case Intrinsic::nvvm_mul_rz_ftz_f:
1918 case Intrinsic::nvvm_fma_rm_d:
1919 case Intrinsic::nvvm_fma_rn_d:
1920 case Intrinsic::nvvm_fma_rp_d:
1921 case Intrinsic::nvvm_fma_rz_d:
1922 case Intrinsic::nvvm_fma_rm_f:
1923 case Intrinsic::nvvm_fma_rn_f:
1924 case Intrinsic::nvvm_fma_rp_f:
1925 case Intrinsic::nvvm_fma_rz_f:
1926 case Intrinsic::nvvm_fma_rm_ftz_f:
1927 case Intrinsic::nvvm_fma_rn_ftz_f:
1928 case Intrinsic::nvvm_fma_rp_ftz_f:
1929 case Intrinsic::nvvm_fma_rz_ftz_f:
1933 case Intrinsic::fabs:
1934 case Intrinsic::copysign:
1935 case Intrinsic::is_fpclass:
1938 case Intrinsic::ceil:
1939 case Intrinsic::floor:
1940 case Intrinsic::round:
1941 case Intrinsic::roundeven:
1942 case Intrinsic::trunc:
1943 case Intrinsic::nearbyint:
1944 case Intrinsic::rint:
1945 case Intrinsic::canonicalize:
1949 case Intrinsic::experimental_constrained_fma:
1950 case Intrinsic::experimental_constrained_fmuladd:
1951 case Intrinsic::experimental_constrained_fadd:
1952 case Intrinsic::experimental_constrained_fsub:
1953 case Intrinsic::experimental_constrained_fmul:
1954 case Intrinsic::experimental_constrained_fdiv:
1955 case Intrinsic::experimental_constrained_frem:
1956 case Intrinsic::experimental_constrained_ceil:
1957 case Intrinsic::experimental_constrained_floor:
1958 case Intrinsic::experimental_constrained_round:
1959 case Intrinsic::experimental_constrained_roundeven:
1960 case Intrinsic::experimental_constrained_trunc:
1961 case Intrinsic::experimental_constrained_nearbyint:
1962 case Intrinsic::experimental_constrained_rint:
1963 case Intrinsic::experimental_constrained_fcmp:
1964 case Intrinsic::experimental_constrained_fcmps:
1971 if (!
F->hasName() ||
Call->isStrictFP())
1982 return Name ==
"acos" || Name ==
"acosf" ||
1983 Name ==
"asin" || Name ==
"asinf" ||
1984 Name ==
"atan" || Name ==
"atanf" ||
1985 Name ==
"atan2" || Name ==
"atan2f";
1987 return Name ==
"ceil" || Name ==
"ceilf" ||
1988 Name ==
"cos" || Name ==
"cosf" ||
1989 Name ==
"cosh" || Name ==
"coshf";
1991 return Name ==
"exp" || Name ==
"expf" || Name ==
"exp2" ||
1992 Name ==
"exp2f" || Name ==
"erf" || Name ==
"erff";
1994 return Name ==
"fabs" || Name ==
"fabsf" ||
1995 Name ==
"floor" || Name ==
"floorf" ||
1996 Name ==
"fmod" || Name ==
"fmodf";
1998 return Name ==
"ilogb" || Name ==
"ilogbf";
2000 return Name ==
"log" || Name ==
"logf" || Name ==
"logl" ||
2001 Name ==
"log2" || Name ==
"log2f" || Name ==
"log10" ||
2002 Name ==
"log10f" || Name ==
"logb" || Name ==
"logbf" ||
2003 Name ==
"log1p" || Name ==
"log1pf";
2005 return Name ==
"nearbyint" || Name ==
"nearbyintf";
2007 return Name ==
"pow" || Name ==
"powf";
2009 return Name ==
"remainder" || Name ==
"remainderf" ||
2010 Name ==
"rint" || Name ==
"rintf" ||
2011 Name ==
"round" || Name ==
"roundf";
2013 return Name ==
"sin" || Name ==
"sinf" ||
2014 Name ==
"sinh" || Name ==
"sinhf" ||
2015 Name ==
"sqrt" || Name ==
"sqrtf";
2017 return Name ==
"tan" || Name ==
"tanf" ||
2018 Name ==
"tanh" || Name ==
"tanhf" ||
2019 Name ==
"trunc" || Name ==
"truncf";
2027 if (Name.size() < 12 || Name[1] !=
'_')
2033 return Name ==
"__acos_finite" || Name ==
"__acosf_finite" ||
2034 Name ==
"__asin_finite" || Name ==
"__asinf_finite" ||
2035 Name ==
"__atan2_finite" || Name ==
"__atan2f_finite";
2037 return Name ==
"__cosh_finite" || Name ==
"__coshf_finite";
2039 return Name ==
"__exp_finite" || Name ==
"__expf_finite" ||
2040 Name ==
"__exp2_finite" || Name ==
"__exp2f_finite";
2042 return Name ==
"__log_finite" || Name ==
"__logf_finite" ||
2043 Name ==
"__log10_finite" || Name ==
"__log10f_finite";
2045 return Name ==
"__pow_finite" || Name ==
"__powf_finite";
2047 return Name ==
"__sinh_finite" || Name ==
"__sinhf_finite";
2055 if (Ty->isHalfTy() || Ty->isFloatTy()) {
2059 return ConstantFP::get(Ty->getContext(), APF);
2061 if (Ty->isDoubleTy())
2062 return ConstantFP::get(Ty->getContext(),
APFloat(V));
2066#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2067Constant *GetConstantFoldFPValue128(float128 V,
Type *Ty) {
2068 if (Ty->isFP128Ty())
2069 return ConstantFP::get(Ty, V);
2075inline void llvm_fenv_clearexcept() {
2076#if HAVE_DECL_FE_ALL_EXCEPT
2077 feclearexcept(FE_ALL_EXCEPT);
2083inline bool llvm_fenv_testexcept() {
2084 int errno_val = errno;
2085 if (errno_val == ERANGE || errno_val == EDOM)
2087#if HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
2088 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
2110 switch (DenormKind) {
2114 return FTZPreserveSign(V);
2116 return FlushToPositiveZero(V);
2124 if (!DenormMode.isValid() ||
2129 llvm_fenv_clearexcept();
2130 auto Input = FlushWithDenormKind(V, DenormMode.Input);
2131 double Result = NativeFP(
Input.convertToDouble());
2132 if (llvm_fenv_testexcept()) {
2133 llvm_fenv_clearexcept();
2137 Constant *Output = GetConstantFoldFPValue(Result, Ty);
2140 const auto *CFP =
static_cast<ConstantFP *
>(Output);
2141 const auto Res = FlushWithDenormKind(CFP->getValueAPF(), DenormMode.Output);
2142 return ConstantFP::get(Ty->getContext(), Res);
2145#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2146Constant *ConstantFoldFP128(float128 (*NativeFP)(float128),
const APFloat &V,
2148 llvm_fenv_clearexcept();
2149 float128
Result = NativeFP(V.convertToQuad());
2150 if (llvm_fenv_testexcept()) {
2151 llvm_fenv_clearexcept();
2155 return GetConstantFoldFPValue128(Result, Ty);
2159Constant *ConstantFoldBinaryFP(
double (*NativeFP)(
double,
double),
2161 llvm_fenv_clearexcept();
2162 double Result = NativeFP(V.convertToDouble(),
W.convertToDouble());
2163 if (llvm_fenv_testexcept()) {
2164 llvm_fenv_clearexcept();
2168 return GetConstantFoldFPValue(Result, Ty);
2175 if (
Op->containsPoisonElement())
2179 if (
Constant *SplatVal =
Op->getSplatValue()) {
2181 case Intrinsic::vector_reduce_and:
2182 case Intrinsic::vector_reduce_or:
2183 case Intrinsic::vector_reduce_smin:
2184 case Intrinsic::vector_reduce_smax:
2185 case Intrinsic::vector_reduce_umin:
2186 case Intrinsic::vector_reduce_umax:
2188 case Intrinsic::vector_reduce_add:
2189 if (SplatVal->isNullValue())
2192 case Intrinsic::vector_reduce_mul:
2193 if (SplatVal->isNullValue() || SplatVal->isOneValue())
2196 case Intrinsic::vector_reduce_xor:
2197 if (SplatVal->isNullValue())
2199 if (OpVT->getElementCount().isKnownMultipleOf(2))
2214 APInt Acc = EltC->getValue();
2218 const APInt &
X = EltC->getValue();
2220 case Intrinsic::vector_reduce_add:
2223 case Intrinsic::vector_reduce_mul:
2226 case Intrinsic::vector_reduce_and:
2229 case Intrinsic::vector_reduce_or:
2232 case Intrinsic::vector_reduce_xor:
2235 case Intrinsic::vector_reduce_smin:
2238 case Intrinsic::vector_reduce_smax:
2241 case Intrinsic::vector_reduce_umin:
2244 case Intrinsic::vector_reduce_umax:
2250 return ConstantInt::get(
Op->getContext(), Acc);
2260Constant *ConstantFoldSSEConvertToInt(
const APFloat &Val,
bool roundTowardZero,
2261 Type *Ty,
bool IsSigned) {
2263 unsigned ResultWidth = Ty->getIntegerBitWidth();
2264 assert(ResultWidth <= 64 &&
2265 "Can only constant fold conversions to 64 and 32 bit ints");
2268 bool isExact =
false;
2273 IsSigned,
mode, &isExact);
2277 return ConstantInt::get(Ty, UIntVal, IsSigned);
2281 Type *Ty =
Op->getType();
2283 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2284 return Op->getValueAPF().convertToDouble();
2294 C = &CI->getValue();
2353 return ConstantFP::get(
2358 if (!Ty->isIEEELikeFPTy())
2365 if (Src.isNormal() || Src.isInfinity())
2366 return ConstantFP::get(CI->
getContext(), Src);
2373 return ConstantFP::get(CI->
getContext(), Src);
2403 assert(Operands.
size() == 1 &&
"Wrong number of operands.");
2405 if (IntrinsicID == Intrinsic::is_constant) {
2409 if (Operands[0]->isManifestConstant())
2418 if (IntrinsicID == Intrinsic::cos ||
2419 IntrinsicID == Intrinsic::ctpop ||
2420 IntrinsicID == Intrinsic::fptoui_sat ||
2421 IntrinsicID == Intrinsic::fptosi_sat ||
2422 IntrinsicID == Intrinsic::canonicalize)
2424 if (IntrinsicID == Intrinsic::bswap ||
2425 IntrinsicID == Intrinsic::bitreverse ||
2426 IntrinsicID == Intrinsic::launder_invariant_group ||
2427 IntrinsicID == Intrinsic::strip_invariant_group)
2433 if (IntrinsicID == Intrinsic::launder_invariant_group ||
2434 IntrinsicID == Intrinsic::strip_invariant_group) {
2439 Call->getParent() ?
Call->getCaller() :
nullptr;
2450 if (IntrinsicID == Intrinsic::convert_to_fp16) {
2461 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2462 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2463 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2468 unsigned Width = Ty->getIntegerBitWidth();
2470 bool IsExact =
false;
2475 return ConstantInt::get(Ty,
Int);
2480 if (IntrinsicID == Intrinsic::fptoui_sat ||
2481 IntrinsicID == Intrinsic::fptosi_sat) {
2484 IntrinsicID == Intrinsic::fptoui_sat);
2487 return ConstantInt::get(Ty,
Int);
2490 if (IntrinsicID == Intrinsic::canonicalize)
2491 return constantFoldCanonicalize(Ty,
Call, U);
2493#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2494 if (Ty->isFP128Ty()) {
2495 if (IntrinsicID == Intrinsic::log) {
2496 float128
Result = logf128(
Op->getValueAPF().convertToQuad());
2497 return GetConstantFoldFPValue128(Result, Ty);
2501 if (TLI && TLI->
getLibFunc(Name, Fp128Func) && TLI->
has(Fp128Func) &&
2502 Fp128Func == LibFunc_logl)
2503 return ConstantFoldFP128(logf128,
Op->getValueAPF(), Ty);
2507 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy() &&
2513 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2515 return ConstantFP::get(Ty->getContext(), U);
2518 if (IntrinsicID == Intrinsic::round) {
2520 return ConstantFP::get(Ty->getContext(), U);
2523 if (IntrinsicID == Intrinsic::roundeven) {
2525 return ConstantFP::get(Ty->getContext(), U);
2528 if (IntrinsicID == Intrinsic::ceil) {
2530 return ConstantFP::get(Ty->getContext(), U);
2533 if (IntrinsicID == Intrinsic::floor) {
2535 return ConstantFP::get(Ty->getContext(), U);
2538 if (IntrinsicID == Intrinsic::trunc) {
2540 return ConstantFP::get(Ty->getContext(), U);
2543 if (IntrinsicID == Intrinsic::fabs) {
2545 return ConstantFP::get(Ty->getContext(), U);
2548 if (IntrinsicID == Intrinsic::amdgcn_fract) {
2556 APFloat AlmostOne(U.getSemantics(), 1);
2557 AlmostOne.next(
true);
2558 return ConstantFP::get(Ty->getContext(),
minimum(FractU, AlmostOne));
2564 std::optional<APFloat::roundingMode>
RM;
2565 switch (IntrinsicID) {
2568 case Intrinsic::experimental_constrained_nearbyint:
2569 case Intrinsic::experimental_constrained_rint: {
2571 RM = CI->getRoundingMode();
2576 case Intrinsic::experimental_constrained_round:
2579 case Intrinsic::experimental_constrained_ceil:
2582 case Intrinsic::experimental_constrained_floor:
2585 case Intrinsic::experimental_constrained_trunc:
2593 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2595 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2599 }
else if (U.isSignaling()) {
2600 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2605 return ConstantFP::get(Ty->getContext(), U);
2609 switch (IntrinsicID) {
2611 case Intrinsic::nvvm_f2i_rm:
2612 case Intrinsic::nvvm_f2i_rn:
2613 case Intrinsic::nvvm_f2i_rp:
2614 case Intrinsic::nvvm_f2i_rz:
2615 case Intrinsic::nvvm_f2i_rm_ftz:
2616 case Intrinsic::nvvm_f2i_rn_ftz:
2617 case Intrinsic::nvvm_f2i_rp_ftz:
2618 case Intrinsic::nvvm_f2i_rz_ftz:
2620 case Intrinsic::nvvm_f2ui_rm:
2621 case Intrinsic::nvvm_f2ui_rn:
2622 case Intrinsic::nvvm_f2ui_rp:
2623 case Intrinsic::nvvm_f2ui_rz:
2624 case Intrinsic::nvvm_f2ui_rm_ftz:
2625 case Intrinsic::nvvm_f2ui_rn_ftz:
2626 case Intrinsic::nvvm_f2ui_rp_ftz:
2627 case Intrinsic::nvvm_f2ui_rz_ftz:
2629 case Intrinsic::nvvm_d2i_rm:
2630 case Intrinsic::nvvm_d2i_rn:
2631 case Intrinsic::nvvm_d2i_rp:
2632 case Intrinsic::nvvm_d2i_rz:
2634 case Intrinsic::nvvm_d2ui_rm:
2635 case Intrinsic::nvvm_d2ui_rn:
2636 case Intrinsic::nvvm_d2ui_rp:
2637 case Intrinsic::nvvm_d2ui_rz:
2639 case Intrinsic::nvvm_f2ll_rm:
2640 case Intrinsic::nvvm_f2ll_rn:
2641 case Intrinsic::nvvm_f2ll_rp:
2642 case Intrinsic::nvvm_f2ll_rz:
2643 case Intrinsic::nvvm_f2ll_rm_ftz:
2644 case Intrinsic::nvvm_f2ll_rn_ftz:
2645 case Intrinsic::nvvm_f2ll_rp_ftz:
2646 case Intrinsic::nvvm_f2ll_rz_ftz:
2648 case Intrinsic::nvvm_f2ull_rm:
2649 case Intrinsic::nvvm_f2ull_rn:
2650 case Intrinsic::nvvm_f2ull_rp:
2651 case Intrinsic::nvvm_f2ull_rz:
2652 case Intrinsic::nvvm_f2ull_rm_ftz:
2653 case Intrinsic::nvvm_f2ull_rn_ftz:
2654 case Intrinsic::nvvm_f2ull_rp_ftz:
2655 case Intrinsic::nvvm_f2ull_rz_ftz:
2657 case Intrinsic::nvvm_d2ll_rm:
2658 case Intrinsic::nvvm_d2ll_rn:
2659 case Intrinsic::nvvm_d2ll_rp:
2660 case Intrinsic::nvvm_d2ll_rz:
2662 case Intrinsic::nvvm_d2ull_rm:
2663 case Intrinsic::nvvm_d2ull_rn:
2664 case Intrinsic::nvvm_d2ull_rp:
2665 case Intrinsic::nvvm_d2ull_rz: {
2671 return ConstantInt::get(Ty, 0);
2674 unsigned BitWidth = Ty->getIntegerBitWidth();
2684 APSInt ResInt(Ty->getIntegerBitWidth(), !IsSigned);
2685 auto FloatToRound = IsFTZ ? FTZPreserveSign(U) : U;
2689 bool IsExact =
false;
2690 FloatToRound.convertToInteger(ResInt, RMode, &IsExact);
2691 return ConstantInt::get(Ty, ResInt);
2707 switch (IntrinsicID) {
2709 case Intrinsic::log:
2710 return ConstantFoldFP(log, APF, Ty);
2711 case Intrinsic::log2:
2713 return ConstantFoldFP(
log2, APF, Ty);
2714 case Intrinsic::log10:
2716 return ConstantFoldFP(log10, APF, Ty);
2717 case Intrinsic::exp:
2718 return ConstantFoldFP(exp, APF, Ty);
2719 case Intrinsic::exp2:
2721 return ConstantFoldBinaryFP(pow,
APFloat(2.0), APF, Ty);
2722 case Intrinsic::exp10:
2724 return ConstantFoldBinaryFP(pow,
APFloat(10.0), APF, Ty);
2725 case Intrinsic::sin:
2726 return ConstantFoldFP(sin, APF, Ty);
2727 case Intrinsic::cos:
2728 return ConstantFoldFP(cos, APF, Ty);
2729 case Intrinsic::sinh:
2730 return ConstantFoldFP(sinh, APF, Ty);
2731 case Intrinsic::cosh:
2732 return ConstantFoldFP(cosh, APF, Ty);
2733 case Intrinsic::atan:
2736 return ConstantFP::get(Ty->getContext(), U);
2737 return ConstantFoldFP(atan, APF, Ty);
2738 case Intrinsic::sqrt:
2739 return ConstantFoldFP(sqrt, APF, Ty);
2742 case Intrinsic::nvvm_ceil_ftz_f:
2743 case Intrinsic::nvvm_ceil_f:
2744 case Intrinsic::nvvm_ceil_d:
2745 return ConstantFoldFP(
2750 case Intrinsic::nvvm_fabs_ftz:
2751 case Intrinsic::nvvm_fabs:
2752 return ConstantFoldFP(
2757 case Intrinsic::nvvm_floor_ftz_f:
2758 case Intrinsic::nvvm_floor_f:
2759 case Intrinsic::nvvm_floor_d:
2760 return ConstantFoldFP(
2765 case Intrinsic::nvvm_rcp_rm_ftz_f:
2766 case Intrinsic::nvvm_rcp_rn_ftz_f:
2767 case Intrinsic::nvvm_rcp_rp_ftz_f:
2768 case Intrinsic::nvvm_rcp_rz_ftz_f:
2769 case Intrinsic::nvvm_rcp_rm_d:
2770 case Intrinsic::nvvm_rcp_rm_f:
2771 case Intrinsic::nvvm_rcp_rn_d:
2772 case Intrinsic::nvvm_rcp_rn_f:
2773 case Intrinsic::nvvm_rcp_rp_d:
2774 case Intrinsic::nvvm_rcp_rp_f:
2775 case Intrinsic::nvvm_rcp_rz_d:
2776 case Intrinsic::nvvm_rcp_rz_f: {
2780 auto Denominator = IsFTZ ? FTZPreserveSign(APF) : APF;
2786 Res = FTZPreserveSign(Res);
2787 return ConstantFP::get(Ty->getContext(), Res);
2792 case Intrinsic::nvvm_round_ftz_f:
2793 case Intrinsic::nvvm_round_f:
2794 case Intrinsic::nvvm_round_d: {
2799 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2801 return ConstantFP::get(Ty->getContext(), V);
2804 case Intrinsic::nvvm_saturate_ftz_f:
2805 case Intrinsic::nvvm_saturate_d:
2806 case Intrinsic::nvvm_saturate_f: {
2808 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2809 if (V.isNegative() || V.isZero() || V.isNaN())
2813 return ConstantFP::get(Ty->getContext(), One);
2814 return ConstantFP::get(Ty->getContext(), APF);
2817 case Intrinsic::nvvm_sqrt_rn_ftz_f:
2818 case Intrinsic::nvvm_sqrt_f:
2819 case Intrinsic::nvvm_sqrt_rn_d:
2820 case Intrinsic::nvvm_sqrt_rn_f:
2823 return ConstantFoldFP(
2829 case Intrinsic::amdgcn_cos:
2830 case Intrinsic::amdgcn_sin: {
2831 double V = getValueAsDouble(
Op);
2832 if (V < -256.0 || V > 256.0)
2837 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2838 double V4 = V * 4.0;
2839 if (V4 == floor(V4)) {
2841 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2842 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2849 return GetConstantFoldFPValue(V, Ty);
2865 case LibFunc_acos_finite:
2866 case LibFunc_acosf_finite:
2868 return ConstantFoldFP(acos, APF, Ty);
2872 case LibFunc_asin_finite:
2873 case LibFunc_asinf_finite:
2875 return ConstantFoldFP(asin, APF, Ty);
2881 return ConstantFP::get(Ty->getContext(), U);
2883 return ConstantFoldFP(atan, APF, Ty);
2887 if (TLI->
has(Func)) {
2889 return ConstantFP::get(Ty->getContext(), U);
2895 return ConstantFoldFP(cos, APF, Ty);
2899 case LibFunc_cosh_finite:
2900 case LibFunc_coshf_finite:
2902 return ConstantFoldFP(cosh, APF, Ty);
2906 case LibFunc_exp_finite:
2907 case LibFunc_expf_finite:
2909 return ConstantFoldFP(exp, APF, Ty);
2913 case LibFunc_exp2_finite:
2914 case LibFunc_exp2f_finite:
2917 return ConstantFoldBinaryFP(pow,
APFloat(2.0), APF, Ty);
2921 if (TLI->
has(Func)) {
2923 return ConstantFP::get(Ty->getContext(), U);
2927 case LibFunc_floorf:
2928 if (TLI->
has(Func)) {
2930 return ConstantFP::get(Ty->getContext(), U);
2935 case LibFunc_log_finite:
2936 case LibFunc_logf_finite:
2938 return ConstantFoldFP(log, APF, Ty);
2942 case LibFunc_log2_finite:
2943 case LibFunc_log2f_finite:
2946 return ConstantFoldFP(
log2, APF, Ty);
2949 case LibFunc_log10f:
2950 case LibFunc_log10_finite:
2951 case LibFunc_log10f_finite:
2954 return ConstantFoldFP(log10, APF, Ty);
2957 case LibFunc_ilogbf:
2959 return ConstantInt::get(Ty,
ilogb(APF),
true);
2964 return ConstantFoldFP(logb, APF, Ty);
2967 case LibFunc_log1pf:
2970 return ConstantFP::get(Ty->getContext(), U);
2972 return ConstantFoldFP(log1p, APF, Ty);
2979 return ConstantFoldFP(erf, APF, Ty);
2981 case LibFunc_nearbyint:
2982 case LibFunc_nearbyintf:
2985 if (TLI->
has(Func)) {
2987 return ConstantFP::get(Ty->getContext(), U);
2991 case LibFunc_roundf:
2992 if (TLI->
has(Func)) {
2994 return ConstantFP::get(Ty->getContext(), U);
3000 return ConstantFoldFP(sin, APF, Ty);
3004 case LibFunc_sinh_finite:
3005 case LibFunc_sinhf_finite:
3007 return ConstantFoldFP(sinh, APF, Ty);
3012 return ConstantFoldFP(sqrt, APF, Ty);
3017 return ConstantFoldFP(tan, APF, Ty);
3022 return ConstantFoldFP(tanh, APF, Ty);
3025 case LibFunc_truncf:
3026 if (TLI->
has(Func)) {
3028 return ConstantFP::get(Ty->getContext(), U);
3036 switch (IntrinsicID) {
3037 case Intrinsic::bswap:
3038 return ConstantInt::get(Ty->getContext(),
Op->getValue().byteSwap());
3039 case Intrinsic::ctpop:
3040 return ConstantInt::get(Ty,
Op->getValue().popcount());
3041 case Intrinsic::bitreverse:
3042 return ConstantInt::get(Ty->getContext(),
Op->getValue().reverseBits());
3043 case Intrinsic::convert_from_fp16: {
3053 "Precision lost during fp16 constfolding");
3055 return ConstantFP::get(Ty->getContext(), Val);
3058 case Intrinsic::amdgcn_s_wqm: {
3060 Val |= (Val & 0x5555555555555555ULL) << 1 |
3061 ((Val >> 1) & 0x5555555555555555ULL);
3062 Val |= (Val & 0x3333333333333333ULL) << 2 |
3063 ((Val >> 2) & 0x3333333333333333ULL);
3064 return ConstantInt::get(Ty, Val);
3067 case Intrinsic::amdgcn_s_quadmask: {
3070 for (
unsigned I = 0;
I <
Op->getBitWidth() / 4; ++
I, Val >>= 4) {
3074 QuadMask |= (1ULL <<
I);
3076 return ConstantInt::get(Ty, QuadMask);
3079 case Intrinsic::amdgcn_s_bitreplicate: {
3081 Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
3082 Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
3083 Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
3084 Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
3085 Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
3086 Val = Val | Val << 1;
3087 return ConstantInt::get(Ty, Val);
3092 if (Operands[0]->
getType()->isVectorTy()) {
3094 switch (IntrinsicID) {
3096 case Intrinsic::vector_reduce_add:
3097 case Intrinsic::vector_reduce_mul:
3098 case Intrinsic::vector_reduce_and:
3099 case Intrinsic::vector_reduce_or:
3100 case Intrinsic::vector_reduce_xor:
3101 case Intrinsic::vector_reduce_smin:
3102 case Intrinsic::vector_reduce_smax:
3103 case Intrinsic::vector_reduce_umin:
3104 case Intrinsic::vector_reduce_umax:
3105 if (
Constant *
C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
3108 case Intrinsic::x86_sse_cvtss2si:
3109 case Intrinsic::x86_sse_cvtss2si64:
3110 case Intrinsic::x86_sse2_cvtsd2si:
3111 case Intrinsic::x86_sse2_cvtsd2si64:
3114 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3118 case Intrinsic::x86_sse_cvttss2si:
3119 case Intrinsic::x86_sse_cvttss2si64:
3120 case Intrinsic::x86_sse2_cvttsd2si:
3121 case Intrinsic::x86_sse2_cvttsd2si64:
3124 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3129 case Intrinsic::wasm_anytrue:
3130 return Op->isZeroValue() ? ConstantInt::get(Ty, 0)
3133 case Intrinsic::wasm_alltrue:
3136 for (
unsigned I = 0;
I !=
E; ++
I) {
3140 return ConstantInt::get(Ty, 0);
3146 return ConstantInt::get(Ty, 1);
3158 if (FCmp->isSignaling()) {
3167 return ConstantInt::get(
Call->getType()->getScalarType(), Result);
3189 const APFloat &Op1V = Op1->getValueAPF();
3190 const APFloat &Op2V = Op2->getValueAPF();
3197 case LibFunc_pow_finite:
3198 case LibFunc_powf_finite:
3200 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3204 if (TLI->
has(Func)) {
3205 APFloat V = Op1->getValueAPF();
3207 return ConstantFP::get(Ty->getContext(), V);
3210 case LibFunc_remainder:
3211 case LibFunc_remainderf:
3212 if (TLI->
has(Func)) {
3213 APFloat V = Op1->getValueAPF();
3215 return ConstantFP::get(Ty->getContext(), V);
3219 case LibFunc_atan2f:
3225 case LibFunc_atan2_finite:
3226 case LibFunc_atan2f_finite:
3228 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
3238 assert(Operands.
size() == 2 &&
"Wrong number of operands.");
3240 if (Ty->isFloatingPointTy()) {
3245 switch (IntrinsicID) {
3246 case Intrinsic::maxnum:
3247 case Intrinsic::minnum:
3248 case Intrinsic::maximum:
3249 case Intrinsic::minimum:
3250 case Intrinsic::maximumnum:
3251 case Intrinsic::minimumnum:
3252 case Intrinsic::nvvm_fmax_d:
3253 case Intrinsic::nvvm_fmin_d:
3261 case Intrinsic::nvvm_fmax_f:
3262 case Intrinsic::nvvm_fmax_ftz_f:
3263 case Intrinsic::nvvm_fmax_ftz_nan_f:
3264 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3265 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3266 case Intrinsic::nvvm_fmax_nan_f:
3267 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3268 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3270 case Intrinsic::nvvm_fmin_f:
3271 case Intrinsic::nvvm_fmin_ftz_f:
3272 case Intrinsic::nvvm_fmin_ftz_nan_f:
3273 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3274 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3275 case Intrinsic::nvvm_fmin_nan_f:
3276 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3277 case Intrinsic::nvvm_fmin_xorsign_abs_f:
3281 if (!IsOp0Undef && !IsOp1Undef)
3285 APInt NVCanonicalNaN(32, 0x7fffffff);
3286 return ConstantFP::get(
3287 Ty,
APFloat(Ty->getFltSemantics(), NVCanonicalNaN));
3290 return ConstantFP::get(Ty, FTZPreserveSign(
Op->getValueAPF()));
3299 const APFloat &Op1V = Op1->getValueAPF();
3302 if (Op2->getType() != Op1->getType())
3304 const APFloat &Op2V = Op2->getValueAPF();
3306 if (
const auto *ConstrIntr =
3311 switch (IntrinsicID) {
3314 case Intrinsic::experimental_constrained_fadd:
3315 St = Res.
add(Op2V, RM);
3317 case Intrinsic::experimental_constrained_fsub:
3320 case Intrinsic::experimental_constrained_fmul:
3323 case Intrinsic::experimental_constrained_fdiv:
3324 St = Res.
divide(Op2V, RM);
3326 case Intrinsic::experimental_constrained_frem:
3329 case Intrinsic::experimental_constrained_fcmp:
3330 case Intrinsic::experimental_constrained_fcmps:
3331 return evaluateCompare(Op1V, Op2V, ConstrIntr);
3335 return ConstantFP::get(Ty->getContext(), Res);
3339 switch (IntrinsicID) {
3342 case Intrinsic::copysign:
3344 case Intrinsic::minnum:
3345 return ConstantFP::get(Ty->getContext(),
minnum(Op1V, Op2V));
3346 case Intrinsic::maxnum:
3347 return ConstantFP::get(Ty->getContext(),
maxnum(Op1V, Op2V));
3348 case Intrinsic::minimum:
3349 return ConstantFP::get(Ty->getContext(),
minimum(Op1V, Op2V));
3350 case Intrinsic::maximum:
3351 return ConstantFP::get(Ty->getContext(),
maximum(Op1V, Op2V));
3352 case Intrinsic::minimumnum:
3353 return ConstantFP::get(Ty->getContext(),
minimumnum(Op1V, Op2V));
3354 case Intrinsic::maximumnum:
3355 return ConstantFP::get(Ty->getContext(),
maximumnum(Op1V, Op2V));
3357 case Intrinsic::nvvm_fmax_d:
3358 case Intrinsic::nvvm_fmax_f:
3359 case Intrinsic::nvvm_fmax_ftz_f:
3360 case Intrinsic::nvvm_fmax_ftz_nan_f:
3361 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3362 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3363 case Intrinsic::nvvm_fmax_nan_f:
3364 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3365 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3367 case Intrinsic::nvvm_fmin_d:
3368 case Intrinsic::nvvm_fmin_f:
3369 case Intrinsic::nvvm_fmin_ftz_f:
3370 case Intrinsic::nvvm_fmin_ftz_nan_f:
3371 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3372 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3373 case Intrinsic::nvvm_fmin_nan_f:
3374 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3375 case Intrinsic::nvvm_fmin_xorsign_abs_f: {
3377 bool ShouldCanonicalizeNaNs = !(IntrinsicID == Intrinsic::nvvm_fmax_d ||
3378 IntrinsicID == Intrinsic::nvvm_fmin_d);
3383 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3384 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3386 bool XorSign =
false;
3388 XorSign =
A.isNegative() ^
B.isNegative();
3393 bool IsFMax =
false;
3394 switch (IntrinsicID) {
3395 case Intrinsic::nvvm_fmax_d:
3396 case Intrinsic::nvvm_fmax_f:
3397 case Intrinsic::nvvm_fmax_ftz_f:
3398 case Intrinsic::nvvm_fmax_ftz_nan_f:
3399 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3400 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3401 case Intrinsic::nvvm_fmax_nan_f:
3402 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3403 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3409 if (ShouldCanonicalizeNaNs) {
3411 if (
A.isNaN() &&
B.isNaN())
3412 return ConstantFP::get(Ty, NVCanonicalNaN);
3413 else if (IsNaNPropagating && (
A.isNaN() ||
B.isNaN()))
3414 return ConstantFP::get(Ty, NVCanonicalNaN);
3417 if (
A.isNaN() &&
B.isNaN())
3427 return ConstantFP::get(Ty->getContext(), Res);
3430 case Intrinsic::nvvm_add_rm_f:
3431 case Intrinsic::nvvm_add_rn_f:
3432 case Intrinsic::nvvm_add_rp_f:
3433 case Intrinsic::nvvm_add_rz_f:
3434 case Intrinsic::nvvm_add_rm_d:
3435 case Intrinsic::nvvm_add_rn_d:
3436 case Intrinsic::nvvm_add_rp_d:
3437 case Intrinsic::nvvm_add_rz_d:
3438 case Intrinsic::nvvm_add_rm_ftz_f:
3439 case Intrinsic::nvvm_add_rn_ftz_f:
3440 case Intrinsic::nvvm_add_rp_ftz_f:
3441 case Intrinsic::nvvm_add_rz_ftz_f: {
3444 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3445 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3455 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3456 return ConstantFP::get(Ty->getContext(), Res);
3461 case Intrinsic::nvvm_mul_rm_f:
3462 case Intrinsic::nvvm_mul_rn_f:
3463 case Intrinsic::nvvm_mul_rp_f:
3464 case Intrinsic::nvvm_mul_rz_f:
3465 case Intrinsic::nvvm_mul_rm_d:
3466 case Intrinsic::nvvm_mul_rn_d:
3467 case Intrinsic::nvvm_mul_rp_d:
3468 case Intrinsic::nvvm_mul_rz_d:
3469 case Intrinsic::nvvm_mul_rm_ftz_f:
3470 case Intrinsic::nvvm_mul_rn_ftz_f:
3471 case Intrinsic::nvvm_mul_rp_ftz_f:
3472 case Intrinsic::nvvm_mul_rz_ftz_f: {
3475 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3476 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3486 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3487 return ConstantFP::get(Ty->getContext(), Res);
3492 case Intrinsic::nvvm_div_rm_f:
3493 case Intrinsic::nvvm_div_rn_f:
3494 case Intrinsic::nvvm_div_rp_f:
3495 case Intrinsic::nvvm_div_rz_f:
3496 case Intrinsic::nvvm_div_rm_d:
3497 case Intrinsic::nvvm_div_rn_d:
3498 case Intrinsic::nvvm_div_rp_d:
3499 case Intrinsic::nvvm_div_rz_d:
3500 case Intrinsic::nvvm_div_rm_ftz_f:
3501 case Intrinsic::nvvm_div_rn_ftz_f:
3502 case Intrinsic::nvvm_div_rp_ftz_f:
3503 case Intrinsic::nvvm_div_rz_ftz_f: {
3505 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3506 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3514 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3515 return ConstantFP::get(Ty->getContext(), Res);
3521 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
3524 switch (IntrinsicID) {
3527 case Intrinsic::pow:
3528 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3529 case Intrinsic::amdgcn_fmul_legacy:
3534 return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
3538 switch (IntrinsicID) {
3539 case Intrinsic::ldexp: {
3540 return ConstantFP::get(
3544 case Intrinsic::is_fpclass: {
3557 return ConstantInt::get(Ty, Result);
3559 case Intrinsic::powi: {
3560 int Exp =
static_cast<int>(Op2C->getSExtValue());
3561 switch (Ty->getTypeID()) {
3565 if (Ty->isHalfTy()) {
3570 return ConstantFP::get(Ty->getContext(), Res);
3585 if (Operands[0]->
getType()->isIntegerTy() &&
3586 Operands[1]->
getType()->isIntegerTy()) {
3587 const APInt *C0, *C1;
3588 if (!getConstIntOrUndef(Operands[0], C0) ||
3589 !getConstIntOrUndef(Operands[1], C1))
3592 switch (IntrinsicID) {
3594 case Intrinsic::smax:
3595 case Intrinsic::smin:
3596 case Intrinsic::umax:
3597 case Intrinsic::umin:
3602 return ConstantInt::get(
3608 case Intrinsic::scmp:
3609 case Intrinsic::ucmp:
3611 return ConstantInt::get(Ty, 0);
3614 if (IntrinsicID == Intrinsic::scmp)
3615 Res = C0->
sgt(*C1) ? 1 : C0->
slt(*C1) ? -1 : 0;
3617 Res = C0->
ugt(*C1) ? 1 : C0->
ult(*C1) ? -1 : 0;
3618 return ConstantInt::get(Ty, Res,
true);
3620 case Intrinsic::usub_with_overflow:
3621 case Intrinsic::ssub_with_overflow:
3627 case Intrinsic::uadd_with_overflow:
3628 case Intrinsic::sadd_with_overflow:
3638 case Intrinsic::smul_with_overflow:
3639 case Intrinsic::umul_with_overflow: {
3647 switch (IntrinsicID) {
3649 case Intrinsic::sadd_with_overflow:
3650 Res = C0->
sadd_ov(*C1, Overflow);
3652 case Intrinsic::uadd_with_overflow:
3653 Res = C0->
uadd_ov(*C1, Overflow);
3655 case Intrinsic::ssub_with_overflow:
3656 Res = C0->
ssub_ov(*C1, Overflow);
3658 case Intrinsic::usub_with_overflow:
3659 Res = C0->
usub_ov(*C1, Overflow);
3661 case Intrinsic::smul_with_overflow:
3662 Res = C0->
smul_ov(*C1, Overflow);
3664 case Intrinsic::umul_with_overflow:
3665 Res = C0->
umul_ov(*C1, Overflow);
3669 ConstantInt::get(Ty->getContext(), Res),
3674 case Intrinsic::uadd_sat:
3675 case Intrinsic::sadd_sat:
3680 if (IntrinsicID == Intrinsic::uadd_sat)
3681 return ConstantInt::get(Ty, C0->
uadd_sat(*C1));
3683 return ConstantInt::get(Ty, C0->
sadd_sat(*C1));
3684 case Intrinsic::usub_sat:
3685 case Intrinsic::ssub_sat:
3690 if (IntrinsicID == Intrinsic::usub_sat)
3691 return ConstantInt::get(Ty, C0->
usub_sat(*C1));
3693 return ConstantInt::get(Ty, C0->
ssub_sat(*C1));
3694 case Intrinsic::cttz:
3695 case Intrinsic::ctlz:
3696 assert(C1 &&
"Must be constant int");
3703 if (IntrinsicID == Intrinsic::cttz)
3708 case Intrinsic::abs:
3709 assert(C1 &&
"Must be constant int");
3720 return ConstantInt::get(Ty, C0->
abs());
3721 case Intrinsic::amdgcn_wave_reduce_umin:
3722 case Intrinsic::amdgcn_wave_reduce_umax:
3723 case Intrinsic::amdgcn_wave_reduce_max:
3724 case Intrinsic::amdgcn_wave_reduce_min:
3725 case Intrinsic::amdgcn_wave_reduce_add:
3726 case Intrinsic::amdgcn_wave_reduce_sub:
3727 case Intrinsic::amdgcn_wave_reduce_and:
3728 case Intrinsic::amdgcn_wave_reduce_or:
3729 case Intrinsic::amdgcn_wave_reduce_xor:
3744 switch (IntrinsicID) {
3746 case Intrinsic::x86_avx512_vcvtss2si32:
3747 case Intrinsic::x86_avx512_vcvtss2si64:
3748 case Intrinsic::x86_avx512_vcvtsd2si32:
3749 case Intrinsic::x86_avx512_vcvtsd2si64:
3752 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3756 case Intrinsic::x86_avx512_vcvtss2usi32:
3757 case Intrinsic::x86_avx512_vcvtss2usi64:
3758 case Intrinsic::x86_avx512_vcvtsd2usi32:
3759 case Intrinsic::x86_avx512_vcvtsd2usi64:
3762 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3766 case Intrinsic::x86_avx512_cvttss2si:
3767 case Intrinsic::x86_avx512_cvttss2si64:
3768 case Intrinsic::x86_avx512_cvttsd2si:
3769 case Intrinsic::x86_avx512_cvttsd2si64:
3772 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3776 case Intrinsic::x86_avx512_cvttss2usi:
3777 case Intrinsic::x86_avx512_cvttss2usi64:
3778 case Intrinsic::x86_avx512_cvttsd2usi:
3779 case Intrinsic::x86_avx512_cvttsd2usi64:
3782 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3797 APFloat MA(Sem), SC(Sem), TC(Sem);
3810 if (
S1.isNegative() &&
S1.isNonZero() && !
S1.isNaN()) {
3832 switch (IntrinsicID) {
3835 case Intrinsic::amdgcn_cubeid:
3837 case Intrinsic::amdgcn_cubema:
3839 case Intrinsic::amdgcn_cubesc:
3841 case Intrinsic::amdgcn_cubetc:
3848 const APInt *C0, *C1, *C2;
3849 if (!getConstIntOrUndef(Operands[0], C0) ||
3850 !getConstIntOrUndef(Operands[1], C1) ||
3851 !getConstIntOrUndef(Operands[2], C2))
3858 unsigned NumUndefBytes = 0;
3859 for (
unsigned I = 0;
I < 32;
I += 8) {
3868 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3872 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3874 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3877 Val.insertBits(
B,
I, 8);
3880 if (NumUndefBytes == 4)
3883 return ConstantInt::get(Ty, Val);
3892 assert(Operands.
size() == 3 &&
"Wrong number of operands.");
3897 const APFloat &C1 = Op1->getValueAPF();
3898 const APFloat &C2 = Op2->getValueAPF();
3899 const APFloat &C3 = Op3->getValueAPF();
3905 switch (IntrinsicID) {
3908 case Intrinsic::experimental_constrained_fma:
3909 case Intrinsic::experimental_constrained_fmuladd:
3913 if (mayFoldConstrained(
3915 return ConstantFP::get(Ty->getContext(), Res);
3919 switch (IntrinsicID) {
3921 case Intrinsic::amdgcn_fma_legacy: {
3927 return ConstantFP::get(Ty->getContext(),
APFloat(0.0f) + C3);
3931 case Intrinsic::fma:
3932 case Intrinsic::fmuladd: {
3935 return ConstantFP::get(Ty->getContext(), V);
3938 case Intrinsic::nvvm_fma_rm_f:
3939 case Intrinsic::nvvm_fma_rn_f:
3940 case Intrinsic::nvvm_fma_rp_f:
3941 case Intrinsic::nvvm_fma_rz_f:
3942 case Intrinsic::nvvm_fma_rm_d:
3943 case Intrinsic::nvvm_fma_rn_d:
3944 case Intrinsic::nvvm_fma_rp_d:
3945 case Intrinsic::nvvm_fma_rz_d:
3946 case Intrinsic::nvvm_fma_rm_ftz_f:
3947 case Intrinsic::nvvm_fma_rn_ftz_f:
3948 case Intrinsic::nvvm_fma_rp_ftz_f:
3949 case Intrinsic::nvvm_fma_rz_ftz_f: {
3951 APFloat A = IsFTZ ? FTZPreserveSign(C1) : C1;
3952 APFloat B = IsFTZ ? FTZPreserveSign(C2) : C2;
3953 APFloat C = IsFTZ ? FTZPreserveSign(C3) : C3;
3963 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3964 return ConstantFP::get(Ty->getContext(), Res);
3969 case Intrinsic::amdgcn_cubeid:
3970 case Intrinsic::amdgcn_cubema:
3971 case Intrinsic::amdgcn_cubesc:
3972 case Intrinsic::amdgcn_cubetc: {
3973 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3974 return ConstantFP::get(Ty->getContext(), V);
3981 if (IntrinsicID == Intrinsic::smul_fix ||
3982 IntrinsicID == Intrinsic::smul_fix_sat) {
3983 const APInt *C0, *C1;
3984 if (!getConstIntOrUndef(Operands[0], C0) ||
3985 !getConstIntOrUndef(Operands[1], C1))
4001 assert(Scale < Width &&
"Illegal scale.");
4002 unsigned ExtendedWidth = Width * 2;
4004 (C0->
sext(ExtendedWidth) * C1->
sext(ExtendedWidth)).
ashr(Scale);
4005 if (IntrinsicID == Intrinsic::smul_fix_sat) {
4011 return ConstantInt::get(Ty->getContext(), Product.
sextOrTrunc(Width));
4014 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
4015 const APInt *C0, *C1, *C2;
4016 if (!getConstIntOrUndef(Operands[0], C0) ||
4017 !getConstIntOrUndef(Operands[1], C1) ||
4018 !getConstIntOrUndef(Operands[2], C2))
4021 bool IsRight = IntrinsicID == Intrinsic::fshr;
4023 return Operands[IsRight ? 1 : 0];
4032 return Operands[IsRight ? 1 : 0];
4035 unsigned LshrAmt = IsRight ? ShAmt :
BitWidth - ShAmt;
4036 unsigned ShlAmt = !IsRight ? ShAmt :
BitWidth - ShAmt;
4038 return ConstantInt::get(Ty, C1->
lshr(LshrAmt));
4040 return ConstantInt::get(Ty, C0->
shl(ShlAmt));
4041 return ConstantInt::get(Ty, C0->
shl(ShlAmt) | C1->
lshr(LshrAmt));
4044 if (IntrinsicID == Intrinsic::amdgcn_perm)
4045 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
4061 if (Operands.
size() == 1)
4062 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI,
Call);
4064 if (Operands.
size() == 2) {
4066 ConstantFoldLibCall2(Name, Ty, Operands, TLI)) {
4067 return FoldedLibCall;
4069 return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands,
Call);
4072 if (Operands.
size() == 3)
4073 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI,
Call);
4078static Constant *ConstantFoldFixedVectorCall(
4086 switch (IntrinsicID) {
4087 case Intrinsic::masked_load: {
4088 auto *SrcPtr = Operands[0];
4089 auto *
Mask = Operands[1];
4090 auto *Passthru = Operands[2];
4096 auto *MaskElt =
Mask->getAggregateElement(
I);
4099 auto *PassthruElt = Passthru->getAggregateElement(
I);
4109 if (MaskElt->isNullValue()) {
4113 }
else if (MaskElt->isOneValue()) {
4125 case Intrinsic::arm_mve_vctp8:
4126 case Intrinsic::arm_mve_vctp16:
4127 case Intrinsic::arm_mve_vctp32:
4128 case Intrinsic::arm_mve_vctp64: {
4134 for (
unsigned i = 0; i < Lanes; i++) {
4144 case Intrinsic::get_active_lane_mask: {
4150 uint64_t Limit = Op1->getZExtValue();
4153 for (
unsigned i = 0; i < Lanes; i++) {
4154 if (
Base + i < Limit)
4163 case Intrinsic::vector_extract: {
4170 unsigned VecNumElements =
4172 unsigned StartingIndex = Idx->getZExtValue();
4175 if (NumElements == VecNumElements && StartingIndex == 0)
4178 for (
unsigned I = StartingIndex,
E = StartingIndex + NumElements;
I <
E;
4183 Result[
I - StartingIndex] = Elt;
4188 case Intrinsic::vector_insert: {
4195 unsigned SubVecNumElements =
4197 unsigned VecNumElements =
4199 unsigned IdxN = Idx->getZExtValue();
4201 if (SubVecNumElements == VecNumElements && IdxN == 0)
4204 for (
unsigned I = 0;
I < VecNumElements; ++
I) {
4206 if (
I < IdxN + SubVecNumElements)
4216 case Intrinsic::vector_interleave2:
4217 case Intrinsic::vector_interleave3:
4218 case Intrinsic::vector_interleave4:
4219 case Intrinsic::vector_interleave5:
4220 case Intrinsic::vector_interleave6:
4221 case Intrinsic::vector_interleave7:
4222 case Intrinsic::vector_interleave8: {
4223 unsigned NumElements =
4225 unsigned NumOperands = Operands.
size();
4226 for (
unsigned I = 0;
I < NumElements; ++
I) {
4227 for (
unsigned J = 0; J < NumOperands; ++J) {
4228 Constant *Elt = Operands[J]->getAggregateElement(
I);
4231 Result[NumOperands *
I + J] = Elt;
4236 case Intrinsic::wasm_dot: {
4237 unsigned NumElements =
4241 "wasm dot takes i16x8 and produces i32x4");
4242 assert(Ty->isIntegerTy());
4243 int32_t MulVector[8];
4245 for (
unsigned I = 0;
I < NumElements; ++
I) {
4253 for (
unsigned I = 0;
I <
Result.size();
I++) {
4254 int64_t IAdd = (int64_t)MulVector[
I * 2] + (int64_t)MulVector[
I * 2 + 1];
4255 Result[
I] = ConstantInt::get(Ty, IAdd);
4266 for (
unsigned J = 0, JE = Operands.
size(); J != JE; ++J) {
4269 Lane[J] = Operands[J];
4273 Constant *Agg = Operands[J]->getAggregateElement(
I);
4282 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI,
Call);
4291static Constant *ConstantFoldScalableVectorCall(
4295 switch (IntrinsicID) {
4296 case Intrinsic::aarch64_sve_convert_from_svbool: {
4298 if (!Src || !Src->isNullValue())
4303 case Intrinsic::get_active_lane_mask: {
4306 if (Op0 && Op1 && Op0->getValue().uge(Op1->getValue()))
4332 Constant *Folded = ConstantFoldScalarCall(
4339static std::pair<Constant *, Constant *>
4348 const APFloat &U = ConstFP->getValueAPF();
4351 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
4358 return {Result0, Result1};
4368 switch (IntrinsicID) {
4369 case Intrinsic::frexp: {
4377 for (
unsigned I = 0,
E = FVTy0->getNumElements();
I !=
E; ++
I) {
4378 Constant *Lane = Operands[0]->getAggregateElement(
I);
4379 std::tie(Results0[
I], Results1[
I]) =
4380 ConstantFoldScalarFrexpCall(Lane, Ty1);
4389 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1);
4394 case Intrinsic::sincos: {
4398 auto ConstantFoldScalarSincosCall =
4399 [&](
Constant *
Op) -> std::pair<Constant *, Constant *> {
4401 ConstantFoldScalarCall(Name, Intrinsic::sin, TyScalar,
Op, TLI,
Call);
4403 ConstantFoldScalarCall(Name, Intrinsic::cos, TyScalar,
Op, TLI,
Call);
4404 return std::make_pair(SinResult, CosResult);
4412 Constant *Lane = Operands[0]->getAggregateElement(
I);
4413 std::tie(SinResults[
I], CosResults[
I]) =
4414 ConstantFoldScalarSincosCall(Lane);
4415 if (!SinResults[
I] || !CosResults[
I])
4423 auto [SinResult, CosResult] = ConstantFoldScalarSincosCall(Operands[0]);
4424 if (!SinResult || !CosResult)
4428 case Intrinsic::vector_deinterleave2: {
4429 auto *Vec = Operands[0];
4441 unsigned NumElements = VecTy->getElementCount().getFixedValue() / 2;
4443 for (
unsigned I = 0;
I < NumElements; ++
I) {
4457 return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI,
Call);
4473 return ConstantFoldIntrinsicCall2(
ID, Ty, {LHS, RHS},
Call);
4479 bool AllowNonDeterministic) {
4480 if (
Call->isNoBuiltin())
4497 Type *Ty =
F->getReturnType();
4498 if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy())
4503 return ConstantFoldFixedVectorCall(
4504 Name, IID, FVTy, Operands,
F->getDataLayout(), TLI,
Call);
4507 return ConstantFoldScalableVectorCall(
4508 Name, IID, SVTy, Operands,
F->getDataLayout(), TLI,
Call);
4511 return ConstantFoldStructCall(Name, IID, StTy, Operands,
4512 F->getDataLayout(), TLI,
Call);
4517 return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI,
Call);
4524 if (
Call->isNoBuiltin() ||
Call->isStrictFP())
4534 if (
Call->arg_size() == 1) {
4544 case LibFunc_log10l:
4546 case LibFunc_log10f:
4547 return Op.isNaN() || (!
Op.isZero() && !
Op.isNegative());
4550 return !
Op.isNaN() && !
Op.isZero() && !
Op.isInfinity();
4556 if (OpC->getType()->isDoubleTy())
4558 if (OpC->getType()->isFloatTy())
4566 if (OpC->getType()->isDoubleTy())
4568 if (OpC->getType()->isFloatTy())
4578 return !
Op.isInfinity();
4582 case LibFunc_tanf: {
4585 Type *Ty = OpC->getType();
4586 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
4587 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) !=
nullptr;
4613 if (OpC->getType()->isDoubleTy())
4615 if (OpC->getType()->isFloatTy())
4622 return Op.isNaN() ||
Op.isZero() || !
Op.isNegative();
4632 if (
Call->arg_size() == 2) {
4642 case LibFunc_powf: {
4646 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
4648 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) !=
nullptr;
4656 case LibFunc_remainderl:
4657 case LibFunc_remainder:
4658 case LibFunc_remainderf:
4663 case LibFunc_atan2f:
4664 case LibFunc_atan2l:
4684 case Instruction::BitCast:
4687 case Instruction::Trunc: {
4695 Flags->NSW = ZExtC == SExtC;
4699 case Instruction::SExt:
4700 case Instruction::ZExt: {
4704 if (!CastInvC || CastInvC !=
C)
4706 if (Flags && CastOp == Instruction::ZExt) {
4710 Flags->NNeg = CastInvC == SExtInvC;
4731void TargetFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Constant * FoldBitCast(Constant *V, Type *DestTy)
static ConstantFP * flushDenormalConstant(Type *Ty, const APFloat &APF, DenormalMode::DenormalModeKind Mode)
Constant * getConstantAtOffset(Constant *Base, APInt Offset, const DataLayout &DL)
If this Offset points exactly to the start of an aggregate element, return that element,...
static cl::opt< bool > DisableFPCallFolding("disable-fp-call-folding", cl::desc("Disable constant-folding of FP intrinsics and libcalls."), cl::init(false), cl::Hidden)
static ConstantFP * flushDenormalConstantFP(ConstantFP *CFP, const Instruction *Inst, bool IsOutput)
static DenormalMode getInstrDenormalMode(const Instruction *CtxI, Type *Ty)
Return the denormal mode that can be assumed when executing a floating point operation at CtxI.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
amode Optimize addressing mode
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
This file contains the definitions of the enumerations and flags associated with NVVM Intrinsics,...
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static constexpr roundingMode rmTowardZero
llvm::RoundingMode roundingMode
IEEE-754R 4.3: Rounding-direction attributes.
static const fltSemantics & IEEEdouble()
static constexpr roundingMode rmTowardNegative
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardPositive
static const fltSemantics & IEEEhalf()
static constexpr roundingMode rmNearestTiesToAway
opStatus
IEEE-754R 7: Default exception handling.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
opStatus divide(const APFloat &RHS, roundingMode RM)
void copySign(const APFloat &RHS)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
bool isPosInfinity() const
opStatus add(const APFloat &RHS, roundingMode RM)
const fltSemantics & getSemantics() const
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
opStatus multiply(const APFloat &RHS, roundingMode RM)
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
APInt bitcastToAPInt() const
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
opStatus mod(const APFloat &RHS)
bool isNegInfinity() const
opStatus roundToIntegral(roundingMode RM)
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt usub_sat(const APInt &RHS) const
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
LLVM_ABI uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
bool sgt(const APInt &RHS) const
Signed greater than comparison.
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool slt(const APInt &RHS) const
Signed less than comparison.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
bool isOne() const
Determine if this is a value of 1.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
An arbitrary precision integer that knows its signedness.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, const DataLayout *DL)
Determine how a pair of casts can be eliminated, if they can be at all.
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
static bool isFPPredicate(Predicate P)
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
static LLVM_ABI Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
static LLVM_ABI Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static LLVM_ABI bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
const APFloat & getValueAPF() const
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Constrained floating point compare intrinsics.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI std::optional< RoundingMode > getRoundingMode() const
Wrapper for a function that represents a value that functionally represents the original function.
A parsed version of the target data layout string in and methods for querying it.
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This provides a helper for copying FMF from an instruction or setting specified flags.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutNoUnsignedSignedWrap() const
static GEPNoWrapFlags noUnsignedWrap()
bool hasNoUnsignedSignedWrap() const
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
This is an important class for using LLVM in a threaded context.
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Class to represent scalable SIMD vectors.
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
LLVM_ABI unsigned getElementContainingOffset(uint64_t FixedOffset) const
Given a valid byte offset into the structure, returns the structure index that contains it.
TypeSize getElementOffset(unsigned Idx) const
Class to represent struct types.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ HalfTyID
16-bit floating point type
@ FloatTyID
32-bit floating point type
@ DoubleTyID
64-bit floating point type
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isX86_AMXTy() const
Return true if this is X86 AMX.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
const ParentTy * getParent() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ CE
Windows NT (Windows on ARM)
initializer< Ty > init(const Ty &Val)
@ ebStrict
This corresponds to "fpexcept.strict".
@ ebIgnore
This corresponds to "fpexcept.ignore".
APFloat::roundingMode GetFMARoundingMode(Intrinsic::ID IntrinsicID)
DenormalMode GetNVVMDenormMode(bool ShouldFTZ)
bool FPToIntegerIntrinsicNaNZero(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFDivRoundingMode(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicResultIsSigned(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFPToIntegerRoundingMode(Intrinsic::ID IntrinsicID)
bool RCPShouldFTZ(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FDivShouldFTZ(Intrinsic::ID IntrinsicID)
bool FAddShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxIsXorSignAbs(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFMulRoundingMode(Intrinsic::ID IntrinsicID)
bool UnaryMathIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFAddRoundingMode(Intrinsic::ID IntrinsicID)
bool FMAShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMulShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetRCPRoundingMode(Intrinsic::ID IntrinsicID)
bool FMinFMaxPropagatesNaNs(Intrinsic::ID IntrinsicID)
NodeAddr< FuncNode * > Func
LLVM_ABI std::error_code status(const Twine &path, file_status &result, bool follow=true)
Get file status as if by POSIX stat().
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, const DataLayout &DL)
ConstantFoldLoadThroughBitcast - try to cast constant to destination type returning null if unsuccess...
static double log2(double V)
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
LLVM_ABI Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
unsigned getPointerAddressSpace(const Type *T)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
LLVM_ABI Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
LLVM_ABI Constant * ConstantFoldUnaryInstruction(unsigned Opcode, Constant *V)
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
LLVM_ABI bool isMathLibCallNoop(const CallBase *Call, const TargetLibraryInfo *TLI)
Check whether the given call has no side-effects.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
LLVM_ABI Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Constant * FlushFPConstant(Constant *Operand, const Instruction *I, bool IsOutput)
Attempt to flush float point constant according to denormal mode set in the instruction's parent func...
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Constant * ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL)
Extract value of C at the given Offset reinterpreted as Ty.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
@ Sub
Subtraction of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
DWARFExpression::Operation Op
RoundingMode
Rounding mode.
@ NearestTiesToEven
roundTiesToEven.
@ Dynamic
Denotes mode unknown at compile time.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
Attempt to constant fold an insertvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
DenormalModeKind
Represent handled modes for denormal (aka subnormal) modes in the floating point environment.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ Dynamic
Denormals have unknown treatment.
@ IEEE
IEEE-754 denormal numbers preserved.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getDynamic()
static constexpr DenormalMode getIEEE()
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
const APInt & getConstant() const
Returns the value when all bits have a known value.