LLVM 22.0.0git
ConstantFolding.cpp
Go to the documentation of this file.
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines routines for folding instructions into constants.
10//
11// Also, to supplement the basic IR ConstantExpr simplifications,
12// this file defines some additional folding routines that can make use of
13// DataLayout information. These functions cannot go in IR due to library
14// dependency issues.
15//
16//===----------------------------------------------------------------------===//
17
19#include "llvm/ADT/APFloat.h"
20#include "llvm/ADT/APInt.h"
21#include "llvm/ADT/APSInt.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/StringRef.h"
31#include "llvm/Config/config.h"
32#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GlobalValue.h"
40#include "llvm/IR/InstrTypes.h"
41#include "llvm/IR/Instruction.h"
44#include "llvm/IR/Intrinsics.h"
45#include "llvm/IR/IntrinsicsAArch64.h"
46#include "llvm/IR/IntrinsicsAMDGPU.h"
47#include "llvm/IR/IntrinsicsARM.h"
48#include "llvm/IR/IntrinsicsNVPTX.h"
49#include "llvm/IR/IntrinsicsWebAssembly.h"
50#include "llvm/IR/IntrinsicsX86.h"
52#include "llvm/IR/Operator.h"
53#include "llvm/IR/Type.h"
54#include "llvm/IR/Value.h"
59#include <cassert>
60#include <cerrno>
61#include <cfenv>
62#include <cmath>
63#include <cstdint>
64
65using namespace llvm;
66
68 "disable-fp-call-folding",
69 cl::desc("Disable constant-folding of FP intrinsics and libcalls."),
70 cl::init(false), cl::Hidden);
71
72namespace {
73
74//===----------------------------------------------------------------------===//
75// Constant Folding internal helper functions
76//===----------------------------------------------------------------------===//
77
78static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
79 Constant *C, Type *SrcEltTy,
80 unsigned NumSrcElts,
81 const DataLayout &DL) {
82 // Now that we know that the input value is a vector of integers, just shift
83 // and insert them into our result.
84 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
85 for (unsigned i = 0; i != NumSrcElts; ++i) {
86 Constant *Element;
87 if (DL.isLittleEndian())
88 Element = C->getAggregateElement(NumSrcElts - i - 1);
89 else
90 Element = C->getAggregateElement(i);
91
92 if (isa_and_nonnull<UndefValue>(Element)) {
93 Result <<= BitShift;
94 continue;
95 }
96
97 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
98 if (!ElementCI)
99 return ConstantExpr::getBitCast(C, DestTy);
100
101 Result <<= BitShift;
102 Result |= ElementCI->getValue().zext(Result.getBitWidth());
103 }
104
105 return nullptr;
106}
107
108/// Constant fold bitcast, symbolically evaluating it with DataLayout.
109/// This always returns a non-null constant, but it may be a
110/// ConstantExpr if unfoldable.
111Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
112 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
113 "Invalid constantexpr bitcast!");
114
115 // Catch the obvious splat cases.
116 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
117 return Res;
118
119 if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
120 // Handle a vector->scalar integer/fp cast.
121 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
122 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
123 Type *SrcEltTy = VTy->getElementType();
124
125 // If the vector is a vector of floating point, convert it to vector of int
126 // to simplify things.
127 if (SrcEltTy->isFloatingPointTy()) {
128 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
129 auto *SrcIVTy = FixedVectorType::get(
130 IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
131 // Ask IR to do the conversion now that #elts line up.
132 C = ConstantExpr::getBitCast(C, SrcIVTy);
133 }
134
135 APInt Result(DL.getTypeSizeInBits(DestTy), 0);
136 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
137 SrcEltTy, NumSrcElts, DL))
138 return CE;
139
140 if (isa<IntegerType>(DestTy))
141 return ConstantInt::get(DestTy, Result);
142
143 APFloat FP(DestTy->getFltSemantics(), Result);
144 return ConstantFP::get(DestTy->getContext(), FP);
145 }
146 }
147
148 // The code below only handles casts to vectors currently.
149 auto *DestVTy = dyn_cast<VectorType>(DestTy);
150 if (!DestVTy)
151 return ConstantExpr::getBitCast(C, DestTy);
152
153 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
154 // vector so the code below can handle it uniformly.
155 if (!isa<VectorType>(C->getType()) &&
157 Constant *Ops = C; // don't take the address of C!
158 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
159 }
160
161 // Some of what follows may extend to cover scalable vectors but the current
162 // implementation is fixed length specific.
163 if (!isa<FixedVectorType>(C->getType()))
164 return ConstantExpr::getBitCast(C, DestTy);
165
166 // If this is a bitcast from constant vector -> vector, fold it.
169 return ConstantExpr::getBitCast(C, DestTy);
170
171 // If the element types match, IR can fold it.
172 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
173 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
174 if (NumDstElt == NumSrcElt)
175 return ConstantExpr::getBitCast(C, DestTy);
176
177 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
178 Type *DstEltTy = DestVTy->getElementType();
179
180 // Otherwise, we're changing the number of elements in a vector, which
181 // requires endianness information to do the right thing. For example,
182 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
183 // folds to (little endian):
184 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
185 // and to (big endian):
186 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
187
188 // First thing is first. We only want to think about integer here, so if
189 // we have something in FP form, recast it as integer.
190 if (DstEltTy->isFloatingPointTy()) {
191 // Fold to an vector of integers with same size as our FP type.
192 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
193 auto *DestIVTy = FixedVectorType::get(
194 IntegerType::get(C->getContext(), FPWidth), NumDstElt);
195 // Recursively handle this integer conversion, if possible.
196 C = FoldBitCast(C, DestIVTy, DL);
197
198 // Finally, IR can handle this now that #elts line up.
199 return ConstantExpr::getBitCast(C, DestTy);
200 }
201
202 // Okay, we know the destination is integer, if the input is FP, convert
203 // it to integer first.
204 if (SrcEltTy->isFloatingPointTy()) {
205 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
206 auto *SrcIVTy = FixedVectorType::get(
207 IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
208 // Ask IR to do the conversion now that #elts line up.
209 C = ConstantExpr::getBitCast(C, SrcIVTy);
210 assert((isa<ConstantVector>(C) || // FIXME: Remove ConstantVector.
212 "Constant folding cannot fail for plain fp->int bitcast!");
213 }
214
215 // Now we know that the input and output vectors are both integer vectors
216 // of the same size, and that their #elements is not the same. Do the
217 // conversion here, which depends on whether the input or output has
218 // more elements.
219 bool isLittleEndian = DL.isLittleEndian();
220
222 if (NumDstElt < NumSrcElt) {
223 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
225 unsigned Ratio = NumSrcElt/NumDstElt;
226 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
227 unsigned SrcElt = 0;
228 for (unsigned i = 0; i != NumDstElt; ++i) {
229 // Build each element of the result.
230 Constant *Elt = Zero;
231 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
232 for (unsigned j = 0; j != Ratio; ++j) {
233 Constant *Src = C->getAggregateElement(SrcElt++);
236 cast<VectorType>(C->getType())->getElementType());
237 else
239 if (!Src) // Reject constantexpr elements.
240 return ConstantExpr::getBitCast(C, DestTy);
241
242 // Zero extend the element to the right size.
243 Src = ConstantFoldCastOperand(Instruction::ZExt, Src, Elt->getType(),
244 DL);
245 assert(Src && "Constant folding cannot fail on plain integers");
246
247 // Shift it to the right place, depending on endianness.
249 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
250 DL);
251 assert(Src && "Constant folding cannot fail on plain integers");
252
253 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
254
255 // Mix it in.
256 Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL);
257 assert(Elt && "Constant folding cannot fail on plain integers");
258 }
259 Result.push_back(Elt);
260 }
261 return ConstantVector::get(Result);
262 }
263
264 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
265 unsigned Ratio = NumDstElt/NumSrcElt;
266 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
267
268 // Loop over each source value, expanding into multiple results.
269 for (unsigned i = 0; i != NumSrcElt; ++i) {
270 auto *Element = C->getAggregateElement(i);
271
272 if (!Element) // Reject constantexpr elements.
273 return ConstantExpr::getBitCast(C, DestTy);
274
275 if (isa<UndefValue>(Element)) {
276 // Correctly Propagate undef values.
277 Result.append(Ratio, UndefValue::get(DstEltTy));
278 continue;
279 }
280
281 auto *Src = dyn_cast<ConstantInt>(Element);
282 if (!Src)
283 return ConstantExpr::getBitCast(C, DestTy);
284
285 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
286 for (unsigned j = 0; j != Ratio; ++j) {
287 // Shift the piece of the value into the right place, depending on
288 // endianness.
289 APInt Elt = Src->getValue().lshr(ShiftAmt);
290 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
291
292 // Truncate and remember this piece.
293 Result.push_back(ConstantInt::get(DstEltTy, Elt.trunc(DstBitSize)));
294 }
295 }
296
297 return ConstantVector::get(Result);
298}
299
300} // end anonymous namespace
301
302/// If this constant is a constant offset from a global, return the global and
303/// the constant. Because of constantexprs, this function is recursive.
305 APInt &Offset, const DataLayout &DL,
306 DSOLocalEquivalent **DSOEquiv) {
307 if (DSOEquiv)
308 *DSOEquiv = nullptr;
309
310 // Trivial case, constant is the global.
311 if ((GV = dyn_cast<GlobalValue>(C))) {
312 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
313 Offset = APInt(BitWidth, 0);
314 return true;
315 }
316
317 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
318 if (DSOEquiv)
319 *DSOEquiv = FoundDSOEquiv;
320 GV = FoundDSOEquiv->getGlobalValue();
321 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
322 Offset = APInt(BitWidth, 0);
323 return true;
324 }
325
326 // Otherwise, if this isn't a constant expr, bail out.
327 auto *CE = dyn_cast<ConstantExpr>(C);
328 if (!CE) return false;
329
330 // Look through ptr->int and ptr->ptr casts.
331 if (CE->getOpcode() == Instruction::PtrToInt ||
332 CE->getOpcode() == Instruction::PtrToAddr ||
333 CE->getOpcode() == Instruction::BitCast)
334 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
335 DSOEquiv);
336
337 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
338 auto *GEP = dyn_cast<GEPOperator>(CE);
339 if (!GEP)
340 return false;
341
342 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
343 APInt TmpOffset(BitWidth, 0);
344
345 // If the base isn't a global+constant, we aren't either.
346 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
347 DSOEquiv))
348 return false;
349
350 // Otherwise, add any offset that our operands provide.
351 if (!GEP->accumulateConstantOffset(DL, TmpOffset))
352 return false;
353
354 Offset = TmpOffset;
355 return true;
356}
357
359 const DataLayout &DL) {
360 do {
361 Type *SrcTy = C->getType();
362 if (SrcTy == DestTy)
363 return C;
364
365 TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
366 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
367 if (!TypeSize::isKnownGE(SrcSize, DestSize))
368 return nullptr;
369
370 // Catch the obvious splat cases (since all-zeros can coerce non-integral
371 // pointers legally).
372 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
373 return Res;
374
375 // If the type sizes are the same and a cast is legal, just directly
376 // cast the constant.
377 // But be careful not to coerce non-integral pointers illegally.
378 if (SrcSize == DestSize &&
379 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
380 DL.isNonIntegralPointerType(DestTy->getScalarType())) {
381 Instruction::CastOps Cast = Instruction::BitCast;
382 // If we are going from a pointer to int or vice versa, we spell the cast
383 // differently.
384 if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
385 Cast = Instruction::IntToPtr;
386 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
387 Cast = Instruction::PtrToInt;
388
389 if (CastInst::castIsValid(Cast, C, DestTy))
390 return ConstantFoldCastOperand(Cast, C, DestTy, DL);
391 }
392
393 // If this isn't an aggregate type, there is nothing we can do to drill down
394 // and find a bitcastable constant.
395 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
396 return nullptr;
397
398 // We're simulating a load through a pointer that was bitcast to point to
399 // a different type, so we can try to walk down through the initial
400 // elements of an aggregate to see if some part of the aggregate is
401 // castable to implement the "load" semantic model.
402 if (SrcTy->isStructTy()) {
403 // Struct types might have leading zero-length elements like [0 x i32],
404 // which are certainly not what we are looking for, so skip them.
405 unsigned Elem = 0;
406 Constant *ElemC;
407 do {
408 ElemC = C->getAggregateElement(Elem++);
409 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
410 C = ElemC;
411 } else {
412 // For non-byte-sized vector elements, the first element is not
413 // necessarily located at the vector base address.
414 if (auto *VT = dyn_cast<VectorType>(SrcTy))
415 if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
416 return nullptr;
417
418 C = C->getAggregateElement(0u);
419 }
420 } while (C);
421
422 return nullptr;
423}
424
425namespace {
426
427/// Recursive helper to read bits out of global. C is the constant being copied
428/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
429/// results into and BytesLeft is the number of bytes left in
430/// the CurPtr buffer. DL is the DataLayout.
431bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
432 unsigned BytesLeft, const DataLayout &DL) {
433 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
434 "Out of range access");
435
436 // Reading type padding, return zero.
437 if (ByteOffset >= DL.getTypeStoreSize(C->getType()))
438 return true;
439
440 // If this element is zero or undefined, we can just return since *CurPtr is
441 // zero initialized.
443 return true;
444
445 if (auto *CI = dyn_cast<ConstantInt>(C)) {
446 if ((CI->getBitWidth() & 7) != 0)
447 return false;
448 const APInt &Val = CI->getValue();
449 unsigned IntBytes = unsigned(CI->getBitWidth()/8);
450
451 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
452 unsigned n = ByteOffset;
453 if (!DL.isLittleEndian())
454 n = IntBytes - n - 1;
455 CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue();
456 ++ByteOffset;
457 }
458 return true;
459 }
460
461 if (auto *CFP = dyn_cast<ConstantFP>(C)) {
462 if (CFP->getType()->isDoubleTy()) {
463 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
464 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
465 }
466 if (CFP->getType()->isFloatTy()){
467 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
468 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
469 }
470 if (CFP->getType()->isHalfTy()){
471 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
472 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
473 }
474 return false;
475 }
476
477 if (auto *CS = dyn_cast<ConstantStruct>(C)) {
478 const StructLayout *SL = DL.getStructLayout(CS->getType());
479 unsigned Index = SL->getElementContainingOffset(ByteOffset);
480 uint64_t CurEltOffset = SL->getElementOffset(Index);
481 ByteOffset -= CurEltOffset;
482
483 while (true) {
484 // If the element access is to the element itself and not to tail padding,
485 // read the bytes from the element.
486 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
487
488 if (ByteOffset < EltSize &&
489 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
490 BytesLeft, DL))
491 return false;
492
493 ++Index;
494
495 // Check to see if we read from the last struct element, if so we're done.
496 if (Index == CS->getType()->getNumElements())
497 return true;
498
499 // If we read all of the bytes we needed from this element we're done.
500 uint64_t NextEltOffset = SL->getElementOffset(Index);
501
502 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
503 return true;
504
505 // Move to the next element of the struct.
506 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
507 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
508 ByteOffset = 0;
509 CurEltOffset = NextEltOffset;
510 }
511 // not reached.
512 }
513
516 uint64_t NumElts, EltSize;
517 Type *EltTy;
518 if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
519 NumElts = AT->getNumElements();
520 EltTy = AT->getElementType();
521 EltSize = DL.getTypeAllocSize(EltTy);
522 } else {
523 NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
524 EltTy = cast<FixedVectorType>(C->getType())->getElementType();
525 // TODO: For non-byte-sized vectors, current implementation assumes there is
526 // padding to the next byte boundary between elements.
527 if (!DL.typeSizeEqualsStoreSize(EltTy))
528 return false;
529
530 EltSize = DL.getTypeStoreSize(EltTy);
531 }
532 uint64_t Index = ByteOffset / EltSize;
533 uint64_t Offset = ByteOffset - Index * EltSize;
534
535 for (; Index != NumElts; ++Index) {
536 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
537 BytesLeft, DL))
538 return false;
539
540 uint64_t BytesWritten = EltSize - Offset;
541 assert(BytesWritten <= EltSize && "Not indexing into this element?");
542 if (BytesWritten >= BytesLeft)
543 return true;
544
545 Offset = 0;
546 BytesLeft -= BytesWritten;
547 CurPtr += BytesWritten;
548 }
549 return true;
550 }
551
552 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
553 if (CE->getOpcode() == Instruction::IntToPtr &&
554 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
555 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
556 BytesLeft, DL);
557 }
558 }
559
560 // Otherwise, unknown initializer type.
561 return false;
562}
563
564Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
565 int64_t Offset, const DataLayout &DL) {
566 // Bail out early. Not expect to load from scalable global variable.
567 if (isa<ScalableVectorType>(LoadTy))
568 return nullptr;
569
570 auto *IntType = dyn_cast<IntegerType>(LoadTy);
571
572 // If this isn't an integer load we can't fold it directly.
573 if (!IntType) {
574 // If this is a non-integer load, we can try folding it as an int load and
575 // then bitcast the result. This can be useful for union cases. Note
576 // that address spaces don't matter here since we're not going to result in
577 // an actual new load.
578 if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
579 !LoadTy->isVectorTy())
580 return nullptr;
581
582 Type *MapTy = Type::getIntNTy(C->getContext(),
583 DL.getTypeSizeInBits(LoadTy).getFixedValue());
584 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
585 if (Res->isNullValue() && !LoadTy->isX86_AMXTy())
586 // Materializing a zero can be done trivially without a bitcast
587 return Constant::getNullValue(LoadTy);
588 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
589 Res = FoldBitCast(Res, CastTy, DL);
590 if (LoadTy->isPtrOrPtrVectorTy()) {
591 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
592 if (Res->isNullValue() && !LoadTy->isX86_AMXTy())
593 return Constant::getNullValue(LoadTy);
594 if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
595 // Be careful not to replace a load of an addrspace value with an inttoptr here
596 return nullptr;
597 Res = ConstantExpr::getIntToPtr(Res, LoadTy);
598 }
599 return Res;
600 }
601 return nullptr;
602 }
603
604 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
605 if (BytesLoaded > 32 || BytesLoaded == 0)
606 return nullptr;
607
608 // If we're not accessing anything in this constant, the result is undefined.
609 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
610 return PoisonValue::get(IntType);
611
612 // TODO: We should be able to support scalable types.
613 TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
614 if (InitializerSize.isScalable())
615 return nullptr;
616
617 // If we're not accessing anything in this constant, the result is undefined.
618 if (Offset >= (int64_t)InitializerSize.getFixedValue())
619 return PoisonValue::get(IntType);
620
621 unsigned char RawBytes[32] = {0};
622 unsigned char *CurPtr = RawBytes;
623 unsigned BytesLeft = BytesLoaded;
624
625 // If we're loading off the beginning of the global, some bytes may be valid.
626 if (Offset < 0) {
627 CurPtr += -Offset;
628 BytesLeft += Offset;
629 Offset = 0;
630 }
631
632 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
633 return nullptr;
634
635 APInt ResultVal = APInt(IntType->getBitWidth(), 0);
636 if (DL.isLittleEndian()) {
637 ResultVal = RawBytes[BytesLoaded - 1];
638 for (unsigned i = 1; i != BytesLoaded; ++i) {
639 ResultVal <<= 8;
640 ResultVal |= RawBytes[BytesLoaded - 1 - i];
641 }
642 } else {
643 ResultVal = RawBytes[0];
644 for (unsigned i = 1; i != BytesLoaded; ++i) {
645 ResultVal <<= 8;
646 ResultVal |= RawBytes[i];
647 }
648 }
649
650 return ConstantInt::get(IntType->getContext(), ResultVal);
651}
652
653} // anonymous namespace
654
655// If GV is a constant with an initializer read its representation starting
656// at Offset and return it as a constant array of unsigned char. Otherwise
657// return null.
660 if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
661 return nullptr;
662
663 const DataLayout &DL = GV->getDataLayout();
664 Constant *Init = const_cast<Constant *>(GV->getInitializer());
665 TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
666 if (InitSize < Offset)
667 return nullptr;
668
669 uint64_t NBytes = InitSize - Offset;
670 if (NBytes > UINT16_MAX)
671 // Bail for large initializers in excess of 64K to avoid allocating
672 // too much memory.
673 // Offset is assumed to be less than or equal than InitSize (this
674 // is enforced in ReadDataFromGlobal).
675 return nullptr;
676
677 SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
678 unsigned char *CurPtr = RawBytes.data();
679
680 if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
681 return nullptr;
682
683 return ConstantDataArray::get(GV->getContext(), RawBytes);
684}
685
686/// If this Offset points exactly to the start of an aggregate element, return
687/// that element, otherwise return nullptr.
689 const DataLayout &DL) {
690 if (Offset.isZero())
691 return Base;
692
694 return nullptr;
695
696 Type *ElemTy = Base->getType();
697 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
698 if (!Offset.isZero() || !Indices[0].isZero())
699 return nullptr;
700
701 Constant *C = Base;
702 for (const APInt &Index : drop_begin(Indices)) {
703 if (Index.isNegative() || Index.getActiveBits() >= 32)
704 return nullptr;
705
706 C = C->getAggregateElement(Index.getZExtValue());
707 if (!C)
708 return nullptr;
709 }
710
711 return C;
712}
713
715 const APInt &Offset,
716 const DataLayout &DL) {
717 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
718 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
719 return Result;
720
721 // Explicitly check for out-of-bounds access, so we return poison even if the
722 // constant is a uniform value.
723 TypeSize Size = DL.getTypeAllocSize(C->getType());
724 if (!Size.isScalable() && Offset.sge(Size.getFixedValue()))
725 return PoisonValue::get(Ty);
726
727 // Try an offset-independent fold of a uniform value.
728 if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty, DL))
729 return Result;
730
731 // Try hard to fold loads from bitcasted strange and non-type-safe things.
732 if (Offset.getSignificantBits() <= 64)
733 if (Constant *Result =
734 FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
735 return Result;
736
737 return nullptr;
738}
739
744
747 const DataLayout &DL) {
748 // We can only fold loads from constant globals with a definitive initializer.
749 // Check this upfront, to skip expensive offset calculations.
751 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
752 return nullptr;
753
754 C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
755 DL, Offset, /* AllowNonInbounds */ true));
756
757 if (C == GV)
758 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
759 Offset, DL))
760 return Result;
761
762 // If this load comes from anywhere in a uniform constant global, the value
763 // is always the same, regardless of the loaded offset.
764 return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty, DL);
765}
766
768 const DataLayout &DL) {
769 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
770 return ConstantFoldLoadFromConstPtr(C, Ty, std::move(Offset), DL);
771}
772
774 const DataLayout &DL) {
775 if (isa<PoisonValue>(C))
776 return PoisonValue::get(Ty);
777 if (isa<UndefValue>(C))
778 return UndefValue::get(Ty);
779 // If padding is needed when storing C to memory, then it isn't considered as
780 // uniform.
781 if (!DL.typeSizeEqualsStoreSize(C->getType()))
782 return nullptr;
783 if (C->isNullValue() && !Ty->isX86_AMXTy())
784 return Constant::getNullValue(Ty);
785 if (C->isAllOnesValue() &&
786 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
787 return Constant::getAllOnesValue(Ty);
788 return nullptr;
789}
790
791namespace {
792
793/// One of Op0/Op1 is a constant expression.
794/// Attempt to symbolically evaluate the result of a binary operator merging
795/// these together. If target data info is available, it is provided as DL,
796/// otherwise DL is null.
797Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
798 const DataLayout &DL) {
799 // SROA
800
801 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
802 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
803 // bits.
804
805 if (Opc == Instruction::And) {
806 KnownBits Known0 = computeKnownBits(Op0, DL);
807 KnownBits Known1 = computeKnownBits(Op1, DL);
808 if ((Known1.One | Known0.Zero).isAllOnes()) {
809 // All the bits of Op0 that the 'and' could be masking are already zero.
810 return Op0;
811 }
812 if ((Known0.One | Known1.Zero).isAllOnes()) {
813 // All the bits of Op1 that the 'and' could be masking are already zero.
814 return Op1;
815 }
816
817 Known0 &= Known1;
818 if (Known0.isConstant())
819 return ConstantInt::get(Op0->getType(), Known0.getConstant());
820 }
821
822 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
823 // constant. This happens frequently when iterating over a global array.
824 if (Opc == Instruction::Sub) {
825 GlobalValue *GV1, *GV2;
826 APInt Offs1, Offs2;
827
828 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
829 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
830 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
831
832 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
833 // PtrToInt may change the bitwidth so we have convert to the right size
834 // first.
835 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
836 Offs2.zextOrTrunc(OpSize));
837 }
838 }
839
840 return nullptr;
841}
842
843/// If array indices are not pointer-sized integers, explicitly cast them so
844/// that they aren't implicitly casted by the getelementptr.
845Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
846 Type *ResultTy, GEPNoWrapFlags NW,
847 std::optional<ConstantRange> InRange,
848 const DataLayout &DL, const TargetLibraryInfo *TLI) {
849 Type *IntIdxTy = DL.getIndexType(ResultTy);
850 Type *IntIdxScalarTy = IntIdxTy->getScalarType();
851
852 bool Any = false;
854 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
855 if ((i == 1 ||
857 SrcElemTy, Ops.slice(1, i - 1)))) &&
858 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
859 Any = true;
860 Type *NewType =
861 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
863 CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType,
864 DL);
865 if (!NewIdx)
866 return nullptr;
867 NewIdxs.push_back(NewIdx);
868 } else
869 NewIdxs.push_back(Ops[i]);
870 }
871
872 if (!Any)
873 return nullptr;
874
875 Constant *C =
876 ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], NewIdxs, NW, InRange);
877 return ConstantFoldConstant(C, DL, TLI);
878}
879
880/// If we can symbolically evaluate the GEP constant expression, do so.
881Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
883 const DataLayout &DL,
884 const TargetLibraryInfo *TLI) {
885 Type *SrcElemTy = GEP->getSourceElementType();
886 Type *ResTy = GEP->getType();
887 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
888 return nullptr;
889
890 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, GEP->getNoWrapFlags(),
891 GEP->getInRange(), DL, TLI))
892 return C;
893
894 Constant *Ptr = Ops[0];
895 if (!Ptr->getType()->isPointerTy())
896 return nullptr;
897
898 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
899
900 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
901 if (!isa<ConstantInt>(Ops[i]) || !Ops[i]->getType()->isIntegerTy())
902 return nullptr;
903
904 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
906 BitWidth,
907 DL.getIndexedOffsetInType(
908 SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)),
909 /*isSigned=*/true, /*implicitTrunc=*/true);
910
911 std::optional<ConstantRange> InRange = GEP->getInRange();
912 if (InRange)
913 InRange = InRange->sextOrTrunc(BitWidth);
914
915 // If this is a GEP of a GEP, fold it all into a single GEP.
916 GEPNoWrapFlags NW = GEP->getNoWrapFlags();
917 bool Overflow = false;
918 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
919 NW &= GEP->getNoWrapFlags();
920
921 SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
922
923 // Do not try the incorporate the sub-GEP if some index is not a number.
924 bool AllConstantInt = true;
925 for (Value *NestedOp : NestedOps)
926 if (!isa<ConstantInt>(NestedOp)) {
927 AllConstantInt = false;
928 break;
929 }
930 if (!AllConstantInt)
931 break;
932
933 // Adjust inrange offset and intersect inrange attributes
934 if (auto GEPRange = GEP->getInRange()) {
935 auto AdjustedGEPRange = GEPRange->sextOrTrunc(BitWidth).subtract(Offset);
936 InRange =
937 InRange ? InRange->intersectWith(AdjustedGEPRange) : AdjustedGEPRange;
938 }
939
940 Ptr = cast<Constant>(GEP->getOperand(0));
941 SrcElemTy = GEP->getSourceElementType();
942 Offset = Offset.sadd_ov(
943 APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps),
944 /*isSigned=*/true, /*implicitTrunc=*/true),
945 Overflow);
946 }
947
948 // Preserving nusw (without inbounds) also requires that the offset
949 // additions did not overflow.
950 if (NW.hasNoUnsignedSignedWrap() && !NW.isInBounds() && Overflow)
952
953 // If the base value for this address is a literal integer value, fold the
954 // getelementptr to the resulting integer value casted to the pointer type.
955 APInt BaseIntVal(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
956 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
957 if (CE->getOpcode() == Instruction::IntToPtr) {
958 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
959 BaseIntVal = Base->getValue().zextOrTrunc(BaseIntVal.getBitWidth());
960 }
961 }
962
963 if ((Ptr->isNullValue() || BaseIntVal != 0) &&
964 !DL.mustNotIntroduceIntToPtr(Ptr->getType())) {
965
966 // If the index size is smaller than the pointer size, add to the low
967 // bits only.
968 BaseIntVal.insertBits(BaseIntVal.trunc(BitWidth) + Offset, 0);
969 Constant *C = ConstantInt::get(Ptr->getContext(), BaseIntVal);
970 return ConstantExpr::getIntToPtr(C, ResTy);
971 }
972
973 // Try to infer inbounds for GEPs of globals.
974 if (!NW.isInBounds() && Offset.isNonNegative()) {
975 bool CanBeNull, CanBeFreed;
976 uint64_t DerefBytes =
977 Ptr->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
978 if (DerefBytes != 0 && !CanBeNull && Offset.sle(DerefBytes))
980 }
981
982 // nusw + nneg -> nuw
983 if (NW.hasNoUnsignedSignedWrap() && Offset.isNonNegative())
985
986 // Otherwise canonicalize this to a single ptradd.
987 LLVMContext &Ctx = Ptr->getContext();
989 ConstantInt::get(Ctx, Offset), NW,
990 InRange);
991}
992
993/// Attempt to constant fold an instruction with the
994/// specified opcode and operands. If successful, the constant result is
995/// returned, if not, null is returned. Note that this function can fail when
996/// attempting to fold instructions like loads and stores, which have no
997/// constant expression form.
998Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1000 const DataLayout &DL,
1001 const TargetLibraryInfo *TLI,
1002 bool AllowNonDeterministic) {
1003 Type *DestTy = InstOrCE->getType();
1004
1005 if (Instruction::isUnaryOp(Opcode))
1006 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1007
1008 if (Instruction::isBinaryOp(Opcode)) {
1009 switch (Opcode) {
1010 default:
1011 break;
1012 case Instruction::FAdd:
1013 case Instruction::FSub:
1014 case Instruction::FMul:
1015 case Instruction::FDiv:
1016 case Instruction::FRem:
1017 // Handle floating point instructions separately to account for denormals
1018 // TODO: If a constant expression is being folded rather than an
1019 // instruction, denormals will not be flushed/treated as zero
1020 if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
1021 return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I,
1022 AllowNonDeterministic);
1023 }
1024 }
1025 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1026 }
1027
1028 if (Instruction::isCast(Opcode))
1029 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1030
1031 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1032 Type *SrcElemTy = GEP->getSourceElementType();
1034 return nullptr;
1035
1036 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1037 return C;
1038
1039 return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1),
1040 GEP->getNoWrapFlags(),
1041 GEP->getInRange());
1042 }
1043
1044 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1045 return CE->getWithOperands(Ops);
1046
1047 switch (Opcode) {
1048 default: return nullptr;
1049 case Instruction::ICmp:
1050 case Instruction::FCmp: {
1051 auto *C = cast<CmpInst>(InstOrCE);
1052 return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
1053 DL, TLI, C);
1054 }
1055 case Instruction::Freeze:
1056 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1057 case Instruction::Call:
1058 if (auto *F = dyn_cast<Function>(Ops.back())) {
1059 const auto *Call = cast<CallBase>(InstOrCE);
1061 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI,
1062 AllowNonDeterministic);
1063 }
1064 return nullptr;
1065 case Instruction::Select:
1066 return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]);
1067 case Instruction::ExtractElement:
1069 case Instruction::ExtractValue:
1071 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1072 case Instruction::InsertElement:
1073 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1074 case Instruction::InsertValue:
1076 Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
1077 case Instruction::ShuffleVector:
1079 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1080 case Instruction::Load: {
1081 const auto *LI = dyn_cast<LoadInst>(InstOrCE);
1082 if (LI->isVolatile())
1083 return nullptr;
1084 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1085 }
1086 }
1087}
1088
1089} // end anonymous namespace
1090
1091//===----------------------------------------------------------------------===//
1092// Constant Folding public APIs
1093//===----------------------------------------------------------------------===//
1094
1095namespace {
1096
1097Constant *
1098ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1099 const TargetLibraryInfo *TLI,
1102 return const_cast<Constant *>(C);
1103
1105 for (const Use &OldU : C->operands()) {
1106 Constant *OldC = cast<Constant>(&OldU);
1107 Constant *NewC = OldC;
1108 // Recursively fold the ConstantExpr's operands. If we have already folded
1109 // a ConstantExpr, we don't have to process it again.
1110 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1111 auto It = FoldedOps.find(OldC);
1112 if (It == FoldedOps.end()) {
1113 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1114 FoldedOps.insert({OldC, NewC});
1115 } else {
1116 NewC = It->second;
1117 }
1118 }
1119 Ops.push_back(NewC);
1120 }
1121
1122 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1123 if (Constant *Res = ConstantFoldInstOperandsImpl(
1124 CE, CE->getOpcode(), Ops, DL, TLI, /*AllowNonDeterministic=*/true))
1125 return Res;
1126 return const_cast<Constant *>(C);
1127 }
1128
1130 return ConstantVector::get(Ops);
1131}
1132
1133} // end anonymous namespace
1134
1136 const DataLayout &DL,
1137 const TargetLibraryInfo *TLI) {
1138 // Handle PHI nodes quickly here...
1139 if (auto *PN = dyn_cast<PHINode>(I)) {
1140 Constant *CommonValue = nullptr;
1141
1143 for (Value *Incoming : PN->incoming_values()) {
1144 // If the incoming value is undef then skip it. Note that while we could
1145 // skip the value if it is equal to the phi node itself we choose not to
1146 // because that would break the rule that constant folding only applies if
1147 // all operands are constants.
1149 continue;
1150 // If the incoming value is not a constant, then give up.
1151 auto *C = dyn_cast<Constant>(Incoming);
1152 if (!C)
1153 return nullptr;
1154 // Fold the PHI's operands.
1155 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1156 // If the incoming value is a different constant to
1157 // the one we saw previously, then give up.
1158 if (CommonValue && C != CommonValue)
1159 return nullptr;
1160 CommonValue = C;
1161 }
1162
1163 // If we reach here, all incoming values are the same constant or undef.
1164 return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1165 }
1166
1167 // Scan the operand list, checking to see if they are all constants, if so,
1168 // hand off to ConstantFoldInstOperandsImpl.
1169 if (!all_of(I->operands(), [](const Use &U) { return isa<Constant>(U); }))
1170 return nullptr;
1171
1174 for (const Use &OpU : I->operands()) {
1175 auto *Op = cast<Constant>(&OpU);
1176 // Fold the Instruction's operands.
1177 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1178 Ops.push_back(Op);
1179 }
1180
1181 return ConstantFoldInstOperands(I, Ops, DL, TLI);
1182}
1183
1185 const TargetLibraryInfo *TLI) {
1187 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1188}
1189
1192 const DataLayout &DL,
1193 const TargetLibraryInfo *TLI,
1194 bool AllowNonDeterministic) {
1195 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI,
1196 AllowNonDeterministic);
1197}
1198
1200 unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
1201 const TargetLibraryInfo *TLI, const Instruction *I) {
1202 CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
1203 // fold: icmp (inttoptr x), null -> icmp x, 0
1204 // fold: icmp null, (inttoptr x) -> icmp 0, x
1205 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1206 // fold: icmp 0, (ptrtoint x) -> icmp null, x
1207 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1208 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1209 //
1210 // FIXME: The following comment is out of data and the DataLayout is here now.
1211 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1212 // around to know if bit truncation is happening.
1213 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1214 if (Ops1->isNullValue()) {
1215 if (CE0->getOpcode() == Instruction::IntToPtr) {
1216 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1217 // Convert the integer value to the right size to ensure we get the
1218 // proper extension or truncation.
1219 if (Constant *C = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1220 /*IsSigned*/ false, DL)) {
1221 Constant *Null = Constant::getNullValue(C->getType());
1222 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1223 }
1224 }
1225
1226 // Only do this transformation if the int is intptrty in size, otherwise
1227 // there is a truncation or extension that we aren't modeling.
1228 if (CE0->getOpcode() == Instruction::PtrToInt) {
1229 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1230 if (CE0->getType() == IntPtrTy) {
1231 Constant *C = CE0->getOperand(0);
1232 Constant *Null = Constant::getNullValue(C->getType());
1233 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1234 }
1235 }
1236 }
1237
1238 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1239 if (CE0->getOpcode() == CE1->getOpcode()) {
1240 if (CE0->getOpcode() == Instruction::IntToPtr) {
1241 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1242
1243 // Convert the integer value to the right size to ensure we get the
1244 // proper extension or truncation.
1245 Constant *C0 = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1246 /*IsSigned*/ false, DL);
1247 Constant *C1 = ConstantFoldIntegerCast(CE1->getOperand(0), IntPtrTy,
1248 /*IsSigned*/ false, DL);
1249 if (C0 && C1)
1250 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1251 }
1252
1253 // Only do this transformation if the int is intptrty in size, otherwise
1254 // there is a truncation or extension that we aren't modeling.
1255 if (CE0->getOpcode() == Instruction::PtrToInt) {
1256 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1257 if (CE0->getType() == IntPtrTy &&
1258 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1260 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1261 }
1262 }
1263 }
1264 }
1265
1266 // Convert pointer comparison (base+offset1) pred (base+offset2) into
1267 // offset1 pred offset2, for the case where the offset is inbounds. This
1268 // only works for equality and unsigned comparison, as inbounds permits
1269 // crossing the sign boundary. However, the offset comparison itself is
1270 // signed.
1271 if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
1272 unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
1273 APInt Offset0(IndexWidth, 0);
1274 bool IsEqPred = ICmpInst::isEquality(Predicate);
1275 Value *Stripped0 = Ops0->stripAndAccumulateConstantOffsets(
1276 DL, Offset0, /*AllowNonInbounds=*/IsEqPred,
1277 /*AllowInvariantGroup=*/false, /*ExternalAnalysis=*/nullptr,
1278 /*LookThroughIntToPtr=*/IsEqPred);
1279 APInt Offset1(IndexWidth, 0);
1280 Value *Stripped1 = Ops1->stripAndAccumulateConstantOffsets(
1281 DL, Offset1, /*AllowNonInbounds=*/IsEqPred,
1282 /*AllowInvariantGroup=*/false, /*ExternalAnalysis=*/nullptr,
1283 /*LookThroughIntToPtr=*/IsEqPred);
1284 if (Stripped0 == Stripped1)
1285 return ConstantInt::getBool(
1286 Ops0->getContext(),
1287 ICmpInst::compare(Offset0, Offset1,
1288 ICmpInst::getSignedPredicate(Predicate)));
1289 }
1290 } else if (isa<ConstantExpr>(Ops1)) {
1291 // If RHS is a constant expression, but the left side isn't, swap the
1292 // operands and try again.
1293 Predicate = ICmpInst::getSwappedPredicate(Predicate);
1294 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1295 }
1296
1297 if (CmpInst::isFPPredicate(Predicate)) {
1298 // Flush any denormal constant float input according to denormal handling
1299 // mode.
1300 Ops0 = FlushFPConstant(Ops0, I, /*IsOutput=*/false);
1301 if (!Ops0)
1302 return nullptr;
1303 Ops1 = FlushFPConstant(Ops1, I, /*IsOutput=*/false);
1304 if (!Ops1)
1305 return nullptr;
1306 }
1307
1308 return ConstantFoldCompareInstruction(Predicate, Ops0, Ops1);
1309}
1310
1312 const DataLayout &DL) {
1314
1315 return ConstantFoldUnaryInstruction(Opcode, Op);
1316}
1317
1319 Constant *RHS,
1320 const DataLayout &DL) {
1322 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1323 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1324 return C;
1325
1327 return ConstantExpr::get(Opcode, LHS, RHS);
1328 return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1329}
1330
1333 switch (Mode) {
1335 return nullptr;
1336 case DenormalMode::IEEE:
1337 return ConstantFP::get(Ty->getContext(), APF);
1339 return ConstantFP::get(
1340 Ty->getContext(),
1343 return ConstantFP::get(Ty->getContext(),
1344 APFloat::getZero(APF.getSemantics(), false));
1345 default:
1346 break;
1347 }
1348
1349 llvm_unreachable("unknown denormal mode");
1350}
1351
1352/// Return the denormal mode that can be assumed when executing a floating point
1353/// operation at \p CtxI.
1355 if (!CtxI || !CtxI->getParent() || !CtxI->getFunction())
1356 return DenormalMode::getDynamic();
1357 return CtxI->getFunction()->getDenormalMode(Ty->getFltSemantics());
1358}
1359
1361 const Instruction *Inst,
1362 bool IsOutput) {
1363 const APFloat &APF = CFP->getValueAPF();
1364 if (!APF.isDenormal())
1365 return CFP;
1366
1368 return flushDenormalConstant(CFP->getType(), APF,
1369 IsOutput ? Mode.Output : Mode.Input);
1370}
1371
1373 bool IsOutput) {
1374 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Operand))
1375 return flushDenormalConstantFP(CFP, Inst, IsOutput);
1376
1378 return Operand;
1379
1380 Type *Ty = Operand->getType();
1381 VectorType *VecTy = dyn_cast<VectorType>(Ty);
1382 if (VecTy) {
1383 if (auto *Splat = dyn_cast_or_null<ConstantFP>(Operand->getSplatValue())) {
1384 ConstantFP *Folded = flushDenormalConstantFP(Splat, Inst, IsOutput);
1385 if (!Folded)
1386 return nullptr;
1387 return ConstantVector::getSplat(VecTy->getElementCount(), Folded);
1388 }
1389
1390 Ty = VecTy->getElementType();
1391 }
1392
1393 if (isa<ConstantExpr>(Operand))
1394 return Operand;
1395
1396 if (const auto *CV = dyn_cast<ConstantVector>(Operand)) {
1398 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1399 Constant *Element = CV->getAggregateElement(i);
1400 if (isa<UndefValue>(Element)) {
1401 NewElts.push_back(Element);
1402 continue;
1403 }
1404
1405 ConstantFP *CFP = dyn_cast<ConstantFP>(Element);
1406 if (!CFP)
1407 return nullptr;
1408
1409 ConstantFP *Folded = flushDenormalConstantFP(CFP, Inst, IsOutput);
1410 if (!Folded)
1411 return nullptr;
1412 NewElts.push_back(Folded);
1413 }
1414
1415 return ConstantVector::get(NewElts);
1416 }
1417
1418 if (const auto *CDV = dyn_cast<ConstantDataVector>(Operand)) {
1420 for (unsigned I = 0, E = CDV->getNumElements(); I < E; ++I) {
1421 const APFloat &Elt = CDV->getElementAsAPFloat(I);
1422 if (!Elt.isDenormal()) {
1423 NewElts.push_back(ConstantFP::get(Ty, Elt));
1424 } else {
1425 DenormalMode Mode = getInstrDenormalMode(Inst, Ty);
1426 ConstantFP *Folded =
1427 flushDenormalConstant(Ty, Elt, IsOutput ? Mode.Output : Mode.Input);
1428 if (!Folded)
1429 return nullptr;
1430 NewElts.push_back(Folded);
1431 }
1432 }
1433
1434 return ConstantVector::get(NewElts);
1435 }
1436
1437 return nullptr;
1438}
1439
1441 Constant *RHS, const DataLayout &DL,
1442 const Instruction *I,
1443 bool AllowNonDeterministic) {
1444 if (Instruction::isBinaryOp(Opcode)) {
1445 // Flush denormal inputs if needed.
1446 Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false);
1447 if (!Op0)
1448 return nullptr;
1449 Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false);
1450 if (!Op1)
1451 return nullptr;
1452
1453 // If nsz or an algebraic FMF flag is set, the result of the FP operation
1454 // may change due to future optimization. Don't constant fold them if
1455 // non-deterministic results are not allowed.
1456 if (!AllowNonDeterministic)
1458 if (FP->hasNoSignedZeros() || FP->hasAllowReassoc() ||
1459 FP->hasAllowContract() || FP->hasAllowReciprocal())
1460 return nullptr;
1461
1462 // Calculate constant result.
1463 Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
1464 if (!C)
1465 return nullptr;
1466
1467 // Flush denormal output if needed.
1468 C = FlushFPConstant(C, I, /* IsOutput */ true);
1469 if (!C)
1470 return nullptr;
1471
1472 // The precise NaN value is non-deterministic.
1473 if (!AllowNonDeterministic && C->isNaN())
1474 return nullptr;
1475
1476 return C;
1477 }
1478 // If instruction lacks a parent/function and the denormal mode cannot be
1479 // determined, use the default (IEEE).
1480 return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
1481}
1482
1484 Type *DestTy, const DataLayout &DL) {
1485 assert(Instruction::isCast(Opcode));
1486
1487 if (auto *CE = dyn_cast<ConstantExpr>(C))
1488 if (CE->isCast())
1489 if (unsigned NewOp = CastInst::isEliminableCastPair(
1490 Instruction::CastOps(CE->getOpcode()),
1491 Instruction::CastOps(Opcode), CE->getOperand(0)->getType(),
1492 C->getType(), DestTy, &DL))
1493 return ConstantFoldCastOperand(NewOp, CE->getOperand(0), DestTy, DL);
1494
1495 switch (Opcode) {
1496 default:
1497 llvm_unreachable("Missing case");
1498 case Instruction::PtrToAddr:
1499 case Instruction::PtrToInt:
1500 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1501 Constant *FoldedValue = nullptr;
1502 // If the input is an inttoptr, eliminate the pair. This requires knowing
1503 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1504 if (CE->getOpcode() == Instruction::IntToPtr) {
1505 // zext/trunc the inttoptr to pointer/address size.
1506 Type *MidTy = Opcode == Instruction::PtrToInt
1507 ? DL.getAddressType(CE->getType())
1508 : DL.getIntPtrType(CE->getType());
1509 FoldedValue = ConstantFoldIntegerCast(CE->getOperand(0), MidTy,
1510 /*IsSigned=*/false, DL);
1511 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1512 // If we have GEP, we can perform the following folds:
1513 // (ptrtoint/ptrtoaddr (gep null, x)) -> x
1514 // (ptrtoint/ptrtoaddr (gep (gep null, x), y) -> x + y, etc.
1515 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1516 APInt BaseOffset(BitWidth, 0);
1517 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1518 DL, BaseOffset, /*AllowNonInbounds=*/true));
1519 if (Base->isNullValue()) {
1520 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1521 } else {
1522 // ptrtoint/ptrtoaddr (gep i8, Ptr, (sub 0, V))
1523 // -> sub (ptrtoint/ptrtoaddr Ptr), V
1524 if (GEP->getNumIndices() == 1 &&
1525 GEP->getSourceElementType()->isIntegerTy(8)) {
1526 auto *Ptr = cast<Constant>(GEP->getPointerOperand());
1527 auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
1528 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
1529 if (Sub && Sub->getType() == IntIdxTy &&
1530 Sub->getOpcode() == Instruction::Sub &&
1531 Sub->getOperand(0)->isNullValue())
1532 FoldedValue = ConstantExpr::getSub(
1533 ConstantExpr::getCast(Opcode, Ptr, IntIdxTy),
1534 Sub->getOperand(1));
1535 }
1536 }
1537 }
1538 if (FoldedValue) {
1539 // Do a zext or trunc to get to the ptrtoint/ptrtoaddr dest size.
1540 return ConstantFoldIntegerCast(FoldedValue, DestTy, /*IsSigned=*/false,
1541 DL);
1542 }
1543 }
1544 break;
1545 case Instruction::IntToPtr:
1546 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1547 // the int size is >= the ptr size and the address spaces are the same.
1548 // This requires knowing the width of a pointer, so it can't be done in
1549 // ConstantExpr::getCast.
1550 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1551 if (CE->getOpcode() == Instruction::PtrToInt) {
1552 Constant *SrcPtr = CE->getOperand(0);
1553 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1554 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1555
1556 if (MidIntSize >= SrcPtrSize) {
1557 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1558 if (SrcAS == DestTy->getPointerAddressSpace())
1559 return FoldBitCast(CE->getOperand(0), DestTy, DL);
1560 }
1561 }
1562 }
1563 break;
1564 case Instruction::Trunc:
1565 case Instruction::ZExt:
1566 case Instruction::SExt:
1567 case Instruction::FPTrunc:
1568 case Instruction::FPExt:
1569 case Instruction::UIToFP:
1570 case Instruction::SIToFP:
1571 case Instruction::FPToUI:
1572 case Instruction::FPToSI:
1573 case Instruction::AddrSpaceCast:
1574 break;
1575 case Instruction::BitCast:
1576 return FoldBitCast(C, DestTy, DL);
1577 }
1578
1580 return ConstantExpr::getCast(Opcode, C, DestTy);
1581 return ConstantFoldCastInstruction(Opcode, C, DestTy);
1582}
1583
1585 bool IsSigned, const DataLayout &DL) {
1586 Type *SrcTy = C->getType();
1587 if (SrcTy == DestTy)
1588 return C;
1589 if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1590 return ConstantFoldCastOperand(Instruction::Trunc, C, DestTy, DL);
1591 if (IsSigned)
1592 return ConstantFoldCastOperand(Instruction::SExt, C, DestTy, DL);
1593 return ConstantFoldCastOperand(Instruction::ZExt, C, DestTy, DL);
1594}
1595
1596//===----------------------------------------------------------------------===//
1597// Constant Folding for Calls
1598//
1599
1601 if (Call->isNoBuiltin())
1602 return false;
1603 if (Call->getFunctionType() != F->getFunctionType())
1604 return false;
1605
1606 // Allow FP calls (both libcalls and intrinsics) to avoid being folded.
1607 // This can be useful for GPU targets or in cross-compilation scenarios
1608 // when the exact target FP behaviour is required, and the host compiler's
1609 // behaviour may be slightly different from the device's run-time behaviour.
1610 if (DisableFPCallFolding && (F->getReturnType()->isFloatingPointTy() ||
1611 any_of(F->args(), [](const Argument &Arg) {
1612 return Arg.getType()->isFloatingPointTy();
1613 })))
1614 return false;
1615
1616 switch (F->getIntrinsicID()) {
1617 // Operations that do not operate floating-point numbers and do not depend on
1618 // FP environment can be folded even in strictfp functions.
1619 case Intrinsic::bswap:
1620 case Intrinsic::ctpop:
1621 case Intrinsic::ctlz:
1622 case Intrinsic::cttz:
1623 case Intrinsic::fshl:
1624 case Intrinsic::fshr:
1625 case Intrinsic::launder_invariant_group:
1626 case Intrinsic::strip_invariant_group:
1627 case Intrinsic::masked_load:
1628 case Intrinsic::get_active_lane_mask:
1629 case Intrinsic::abs:
1630 case Intrinsic::smax:
1631 case Intrinsic::smin:
1632 case Intrinsic::umax:
1633 case Intrinsic::umin:
1634 case Intrinsic::scmp:
1635 case Intrinsic::ucmp:
1636 case Intrinsic::sadd_with_overflow:
1637 case Intrinsic::uadd_with_overflow:
1638 case Intrinsic::ssub_with_overflow:
1639 case Intrinsic::usub_with_overflow:
1640 case Intrinsic::smul_with_overflow:
1641 case Intrinsic::umul_with_overflow:
1642 case Intrinsic::sadd_sat:
1643 case Intrinsic::uadd_sat:
1644 case Intrinsic::ssub_sat:
1645 case Intrinsic::usub_sat:
1646 case Intrinsic::smul_fix:
1647 case Intrinsic::smul_fix_sat:
1648 case Intrinsic::bitreverse:
1649 case Intrinsic::is_constant:
1650 case Intrinsic::vector_reduce_add:
1651 case Intrinsic::vector_reduce_mul:
1652 case Intrinsic::vector_reduce_and:
1653 case Intrinsic::vector_reduce_or:
1654 case Intrinsic::vector_reduce_xor:
1655 case Intrinsic::vector_reduce_smin:
1656 case Intrinsic::vector_reduce_smax:
1657 case Intrinsic::vector_reduce_umin:
1658 case Intrinsic::vector_reduce_umax:
1659 case Intrinsic::vector_extract:
1660 case Intrinsic::vector_insert:
1661 case Intrinsic::vector_interleave2:
1662 case Intrinsic::vector_interleave3:
1663 case Intrinsic::vector_interleave4:
1664 case Intrinsic::vector_interleave5:
1665 case Intrinsic::vector_interleave6:
1666 case Intrinsic::vector_interleave7:
1667 case Intrinsic::vector_interleave8:
1668 case Intrinsic::vector_deinterleave2:
1669 // Target intrinsics
1670 case Intrinsic::amdgcn_perm:
1671 case Intrinsic::amdgcn_wave_reduce_umin:
1672 case Intrinsic::amdgcn_wave_reduce_umax:
1673 case Intrinsic::amdgcn_wave_reduce_max:
1674 case Intrinsic::amdgcn_wave_reduce_min:
1675 case Intrinsic::amdgcn_wave_reduce_add:
1676 case Intrinsic::amdgcn_wave_reduce_sub:
1677 case Intrinsic::amdgcn_wave_reduce_and:
1678 case Intrinsic::amdgcn_wave_reduce_or:
1679 case Intrinsic::amdgcn_wave_reduce_xor:
1680 case Intrinsic::amdgcn_s_wqm:
1681 case Intrinsic::amdgcn_s_quadmask:
1682 case Intrinsic::amdgcn_s_bitreplicate:
1683 case Intrinsic::arm_mve_vctp8:
1684 case Intrinsic::arm_mve_vctp16:
1685 case Intrinsic::arm_mve_vctp32:
1686 case Intrinsic::arm_mve_vctp64:
1687 case Intrinsic::aarch64_sve_convert_from_svbool:
1688 case Intrinsic::wasm_alltrue:
1689 case Intrinsic::wasm_anytrue:
1690 case Intrinsic::wasm_dot:
1691 // WebAssembly float semantics are always known
1692 case Intrinsic::wasm_trunc_signed:
1693 case Intrinsic::wasm_trunc_unsigned:
1694 return true;
1695
1696 // Floating point operations cannot be folded in strictfp functions in
1697 // general case. They can be folded if FP environment is known to compiler.
1698 case Intrinsic::minnum:
1699 case Intrinsic::maxnum:
1700 case Intrinsic::minimum:
1701 case Intrinsic::maximum:
1702 case Intrinsic::minimumnum:
1703 case Intrinsic::maximumnum:
1704 case Intrinsic::log:
1705 case Intrinsic::log2:
1706 case Intrinsic::log10:
1707 case Intrinsic::exp:
1708 case Intrinsic::exp2:
1709 case Intrinsic::exp10:
1710 case Intrinsic::sqrt:
1711 case Intrinsic::sin:
1712 case Intrinsic::cos:
1713 case Intrinsic::sincos:
1714 case Intrinsic::sinh:
1715 case Intrinsic::cosh:
1716 case Intrinsic::atan:
1717 case Intrinsic::pow:
1718 case Intrinsic::powi:
1719 case Intrinsic::ldexp:
1720 case Intrinsic::fma:
1721 case Intrinsic::fmuladd:
1722 case Intrinsic::frexp:
1723 case Intrinsic::fptoui_sat:
1724 case Intrinsic::fptosi_sat:
1725 case Intrinsic::convert_from_fp16:
1726 case Intrinsic::convert_to_fp16:
1727 case Intrinsic::amdgcn_cos:
1728 case Intrinsic::amdgcn_cubeid:
1729 case Intrinsic::amdgcn_cubema:
1730 case Intrinsic::amdgcn_cubesc:
1731 case Intrinsic::amdgcn_cubetc:
1732 case Intrinsic::amdgcn_fmul_legacy:
1733 case Intrinsic::amdgcn_fma_legacy:
1734 case Intrinsic::amdgcn_fract:
1735 case Intrinsic::amdgcn_sin:
1736 // The intrinsics below depend on rounding mode in MXCSR.
1737 case Intrinsic::x86_sse_cvtss2si:
1738 case Intrinsic::x86_sse_cvtss2si64:
1739 case Intrinsic::x86_sse_cvttss2si:
1740 case Intrinsic::x86_sse_cvttss2si64:
1741 case Intrinsic::x86_sse2_cvtsd2si:
1742 case Intrinsic::x86_sse2_cvtsd2si64:
1743 case Intrinsic::x86_sse2_cvttsd2si:
1744 case Intrinsic::x86_sse2_cvttsd2si64:
1745 case Intrinsic::x86_avx512_vcvtss2si32:
1746 case Intrinsic::x86_avx512_vcvtss2si64:
1747 case Intrinsic::x86_avx512_cvttss2si:
1748 case Intrinsic::x86_avx512_cvttss2si64:
1749 case Intrinsic::x86_avx512_vcvtsd2si32:
1750 case Intrinsic::x86_avx512_vcvtsd2si64:
1751 case Intrinsic::x86_avx512_cvttsd2si:
1752 case Intrinsic::x86_avx512_cvttsd2si64:
1753 case Intrinsic::x86_avx512_vcvtss2usi32:
1754 case Intrinsic::x86_avx512_vcvtss2usi64:
1755 case Intrinsic::x86_avx512_cvttss2usi:
1756 case Intrinsic::x86_avx512_cvttss2usi64:
1757 case Intrinsic::x86_avx512_vcvtsd2usi32:
1758 case Intrinsic::x86_avx512_vcvtsd2usi64:
1759 case Intrinsic::x86_avx512_cvttsd2usi:
1760 case Intrinsic::x86_avx512_cvttsd2usi64:
1761
1762 // NVVM FMax intrinsics
1763 case Intrinsic::nvvm_fmax_d:
1764 case Intrinsic::nvvm_fmax_f:
1765 case Intrinsic::nvvm_fmax_ftz_f:
1766 case Intrinsic::nvvm_fmax_ftz_nan_f:
1767 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
1768 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
1769 case Intrinsic::nvvm_fmax_nan_f:
1770 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
1771 case Intrinsic::nvvm_fmax_xorsign_abs_f:
1772
1773 // NVVM FMin intrinsics
1774 case Intrinsic::nvvm_fmin_d:
1775 case Intrinsic::nvvm_fmin_f:
1776 case Intrinsic::nvvm_fmin_ftz_f:
1777 case Intrinsic::nvvm_fmin_ftz_nan_f:
1778 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
1779 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
1780 case Intrinsic::nvvm_fmin_nan_f:
1781 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
1782 case Intrinsic::nvvm_fmin_xorsign_abs_f:
1783
1784 // NVVM float/double to int32/uint32 conversion intrinsics
1785 case Intrinsic::nvvm_f2i_rm:
1786 case Intrinsic::nvvm_f2i_rn:
1787 case Intrinsic::nvvm_f2i_rp:
1788 case Intrinsic::nvvm_f2i_rz:
1789 case Intrinsic::nvvm_f2i_rm_ftz:
1790 case Intrinsic::nvvm_f2i_rn_ftz:
1791 case Intrinsic::nvvm_f2i_rp_ftz:
1792 case Intrinsic::nvvm_f2i_rz_ftz:
1793 case Intrinsic::nvvm_f2ui_rm:
1794 case Intrinsic::nvvm_f2ui_rn:
1795 case Intrinsic::nvvm_f2ui_rp:
1796 case Intrinsic::nvvm_f2ui_rz:
1797 case Intrinsic::nvvm_f2ui_rm_ftz:
1798 case Intrinsic::nvvm_f2ui_rn_ftz:
1799 case Intrinsic::nvvm_f2ui_rp_ftz:
1800 case Intrinsic::nvvm_f2ui_rz_ftz:
1801 case Intrinsic::nvvm_d2i_rm:
1802 case Intrinsic::nvvm_d2i_rn:
1803 case Intrinsic::nvvm_d2i_rp:
1804 case Intrinsic::nvvm_d2i_rz:
1805 case Intrinsic::nvvm_d2ui_rm:
1806 case Intrinsic::nvvm_d2ui_rn:
1807 case Intrinsic::nvvm_d2ui_rp:
1808 case Intrinsic::nvvm_d2ui_rz:
1809
1810 // NVVM float/double to int64/uint64 conversion intrinsics
1811 case Intrinsic::nvvm_f2ll_rm:
1812 case Intrinsic::nvvm_f2ll_rn:
1813 case Intrinsic::nvvm_f2ll_rp:
1814 case Intrinsic::nvvm_f2ll_rz:
1815 case Intrinsic::nvvm_f2ll_rm_ftz:
1816 case Intrinsic::nvvm_f2ll_rn_ftz:
1817 case Intrinsic::nvvm_f2ll_rp_ftz:
1818 case Intrinsic::nvvm_f2ll_rz_ftz:
1819 case Intrinsic::nvvm_f2ull_rm:
1820 case Intrinsic::nvvm_f2ull_rn:
1821 case Intrinsic::nvvm_f2ull_rp:
1822 case Intrinsic::nvvm_f2ull_rz:
1823 case Intrinsic::nvvm_f2ull_rm_ftz:
1824 case Intrinsic::nvvm_f2ull_rn_ftz:
1825 case Intrinsic::nvvm_f2ull_rp_ftz:
1826 case Intrinsic::nvvm_f2ull_rz_ftz:
1827 case Intrinsic::nvvm_d2ll_rm:
1828 case Intrinsic::nvvm_d2ll_rn:
1829 case Intrinsic::nvvm_d2ll_rp:
1830 case Intrinsic::nvvm_d2ll_rz:
1831 case Intrinsic::nvvm_d2ull_rm:
1832 case Intrinsic::nvvm_d2ull_rn:
1833 case Intrinsic::nvvm_d2ull_rp:
1834 case Intrinsic::nvvm_d2ull_rz:
1835
1836 // NVVM math intrinsics:
1837 case Intrinsic::nvvm_ceil_d:
1838 case Intrinsic::nvvm_ceil_f:
1839 case Intrinsic::nvvm_ceil_ftz_f:
1840
1841 case Intrinsic::nvvm_fabs:
1842 case Intrinsic::nvvm_fabs_ftz:
1843
1844 case Intrinsic::nvvm_floor_d:
1845 case Intrinsic::nvvm_floor_f:
1846 case Intrinsic::nvvm_floor_ftz_f:
1847
1848 case Intrinsic::nvvm_rcp_rm_d:
1849 case Intrinsic::nvvm_rcp_rm_f:
1850 case Intrinsic::nvvm_rcp_rm_ftz_f:
1851 case Intrinsic::nvvm_rcp_rn_d:
1852 case Intrinsic::nvvm_rcp_rn_f:
1853 case Intrinsic::nvvm_rcp_rn_ftz_f:
1854 case Intrinsic::nvvm_rcp_rp_d:
1855 case Intrinsic::nvvm_rcp_rp_f:
1856 case Intrinsic::nvvm_rcp_rp_ftz_f:
1857 case Intrinsic::nvvm_rcp_rz_d:
1858 case Intrinsic::nvvm_rcp_rz_f:
1859 case Intrinsic::nvvm_rcp_rz_ftz_f:
1860
1861 case Intrinsic::nvvm_round_d:
1862 case Intrinsic::nvvm_round_f:
1863 case Intrinsic::nvvm_round_ftz_f:
1864
1865 case Intrinsic::nvvm_saturate_d:
1866 case Intrinsic::nvvm_saturate_f:
1867 case Intrinsic::nvvm_saturate_ftz_f:
1868
1869 case Intrinsic::nvvm_sqrt_f:
1870 case Intrinsic::nvvm_sqrt_rn_d:
1871 case Intrinsic::nvvm_sqrt_rn_f:
1872 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1873 return !Call->isStrictFP();
1874
1875 // NVVM add intrinsics with explicit rounding modes
1876 case Intrinsic::nvvm_add_rm_d:
1877 case Intrinsic::nvvm_add_rn_d:
1878 case Intrinsic::nvvm_add_rp_d:
1879 case Intrinsic::nvvm_add_rz_d:
1880 case Intrinsic::nvvm_add_rm_f:
1881 case Intrinsic::nvvm_add_rn_f:
1882 case Intrinsic::nvvm_add_rp_f:
1883 case Intrinsic::nvvm_add_rz_f:
1884 case Intrinsic::nvvm_add_rm_ftz_f:
1885 case Intrinsic::nvvm_add_rn_ftz_f:
1886 case Intrinsic::nvvm_add_rp_ftz_f:
1887 case Intrinsic::nvvm_add_rz_ftz_f:
1888
1889 // NVVM div intrinsics with explicit rounding modes
1890 case Intrinsic::nvvm_div_rm_d:
1891 case Intrinsic::nvvm_div_rn_d:
1892 case Intrinsic::nvvm_div_rp_d:
1893 case Intrinsic::nvvm_div_rz_d:
1894 case Intrinsic::nvvm_div_rm_f:
1895 case Intrinsic::nvvm_div_rn_f:
1896 case Intrinsic::nvvm_div_rp_f:
1897 case Intrinsic::nvvm_div_rz_f:
1898 case Intrinsic::nvvm_div_rm_ftz_f:
1899 case Intrinsic::nvvm_div_rn_ftz_f:
1900 case Intrinsic::nvvm_div_rp_ftz_f:
1901 case Intrinsic::nvvm_div_rz_ftz_f:
1902
1903 // NVVM mul intrinsics with explicit rounding modes
1904 case Intrinsic::nvvm_mul_rm_d:
1905 case Intrinsic::nvvm_mul_rn_d:
1906 case Intrinsic::nvvm_mul_rp_d:
1907 case Intrinsic::nvvm_mul_rz_d:
1908 case Intrinsic::nvvm_mul_rm_f:
1909 case Intrinsic::nvvm_mul_rn_f:
1910 case Intrinsic::nvvm_mul_rp_f:
1911 case Intrinsic::nvvm_mul_rz_f:
1912 case Intrinsic::nvvm_mul_rm_ftz_f:
1913 case Intrinsic::nvvm_mul_rn_ftz_f:
1914 case Intrinsic::nvvm_mul_rp_ftz_f:
1915 case Intrinsic::nvvm_mul_rz_ftz_f:
1916
1917 // NVVM fma intrinsics with explicit rounding modes
1918 case Intrinsic::nvvm_fma_rm_d:
1919 case Intrinsic::nvvm_fma_rn_d:
1920 case Intrinsic::nvvm_fma_rp_d:
1921 case Intrinsic::nvvm_fma_rz_d:
1922 case Intrinsic::nvvm_fma_rm_f:
1923 case Intrinsic::nvvm_fma_rn_f:
1924 case Intrinsic::nvvm_fma_rp_f:
1925 case Intrinsic::nvvm_fma_rz_f:
1926 case Intrinsic::nvvm_fma_rm_ftz_f:
1927 case Intrinsic::nvvm_fma_rn_ftz_f:
1928 case Intrinsic::nvvm_fma_rp_ftz_f:
1929 case Intrinsic::nvvm_fma_rz_ftz_f:
1930
1931 // Sign operations are actually bitwise operations, they do not raise
1932 // exceptions even for SNANs.
1933 case Intrinsic::fabs:
1934 case Intrinsic::copysign:
1935 case Intrinsic::is_fpclass:
1936 // Non-constrained variants of rounding operations means default FP
1937 // environment, they can be folded in any case.
1938 case Intrinsic::ceil:
1939 case Intrinsic::floor:
1940 case Intrinsic::round:
1941 case Intrinsic::roundeven:
1942 case Intrinsic::trunc:
1943 case Intrinsic::nearbyint:
1944 case Intrinsic::rint:
1945 case Intrinsic::canonicalize:
1946
1947 // Constrained intrinsics can be folded if FP environment is known
1948 // to compiler.
1949 case Intrinsic::experimental_constrained_fma:
1950 case Intrinsic::experimental_constrained_fmuladd:
1951 case Intrinsic::experimental_constrained_fadd:
1952 case Intrinsic::experimental_constrained_fsub:
1953 case Intrinsic::experimental_constrained_fmul:
1954 case Intrinsic::experimental_constrained_fdiv:
1955 case Intrinsic::experimental_constrained_frem:
1956 case Intrinsic::experimental_constrained_ceil:
1957 case Intrinsic::experimental_constrained_floor:
1958 case Intrinsic::experimental_constrained_round:
1959 case Intrinsic::experimental_constrained_roundeven:
1960 case Intrinsic::experimental_constrained_trunc:
1961 case Intrinsic::experimental_constrained_nearbyint:
1962 case Intrinsic::experimental_constrained_rint:
1963 case Intrinsic::experimental_constrained_fcmp:
1964 case Intrinsic::experimental_constrained_fcmps:
1965 return true;
1966 default:
1967 return false;
1968 case Intrinsic::not_intrinsic: break;
1969 }
1970
1971 if (!F->hasName() || Call->isStrictFP())
1972 return false;
1973
1974 // In these cases, the check of the length is required. We don't want to
1975 // return true for a name like "cos\0blah" which strcmp would return equal to
1976 // "cos", but has length 8.
1977 StringRef Name = F->getName();
1978 switch (Name[0]) {
1979 default:
1980 return false;
1981 case 'a':
1982 return Name == "acos" || Name == "acosf" ||
1983 Name == "asin" || Name == "asinf" ||
1984 Name == "atan" || Name == "atanf" ||
1985 Name == "atan2" || Name == "atan2f";
1986 case 'c':
1987 return Name == "ceil" || Name == "ceilf" ||
1988 Name == "cos" || Name == "cosf" ||
1989 Name == "cosh" || Name == "coshf";
1990 case 'e':
1991 return Name == "exp" || Name == "expf" || Name == "exp2" ||
1992 Name == "exp2f" || Name == "erf" || Name == "erff";
1993 case 'f':
1994 return Name == "fabs" || Name == "fabsf" ||
1995 Name == "floor" || Name == "floorf" ||
1996 Name == "fmod" || Name == "fmodf";
1997 case 'i':
1998 return Name == "ilogb" || Name == "ilogbf";
1999 case 'l':
2000 return Name == "log" || Name == "logf" || Name == "logl" ||
2001 Name == "log2" || Name == "log2f" || Name == "log10" ||
2002 Name == "log10f" || Name == "logb" || Name == "logbf" ||
2003 Name == "log1p" || Name == "log1pf";
2004 case 'n':
2005 return Name == "nearbyint" || Name == "nearbyintf";
2006 case 'p':
2007 return Name == "pow" || Name == "powf";
2008 case 'r':
2009 return Name == "remainder" || Name == "remainderf" ||
2010 Name == "rint" || Name == "rintf" ||
2011 Name == "round" || Name == "roundf";
2012 case 's':
2013 return Name == "sin" || Name == "sinf" ||
2014 Name == "sinh" || Name == "sinhf" ||
2015 Name == "sqrt" || Name == "sqrtf";
2016 case 't':
2017 return Name == "tan" || Name == "tanf" ||
2018 Name == "tanh" || Name == "tanhf" ||
2019 Name == "trunc" || Name == "truncf";
2020 case '_':
2021 // Check for various function names that get used for the math functions
2022 // when the header files are preprocessed with the macro
2023 // __FINITE_MATH_ONLY__ enabled.
2024 // The '12' here is the length of the shortest name that can match.
2025 // We need to check the size before looking at Name[1] and Name[2]
2026 // so we may as well check a limit that will eliminate mismatches.
2027 if (Name.size() < 12 || Name[1] != '_')
2028 return false;
2029 switch (Name[2]) {
2030 default:
2031 return false;
2032 case 'a':
2033 return Name == "__acos_finite" || Name == "__acosf_finite" ||
2034 Name == "__asin_finite" || Name == "__asinf_finite" ||
2035 Name == "__atan2_finite" || Name == "__atan2f_finite";
2036 case 'c':
2037 return Name == "__cosh_finite" || Name == "__coshf_finite";
2038 case 'e':
2039 return Name == "__exp_finite" || Name == "__expf_finite" ||
2040 Name == "__exp2_finite" || Name == "__exp2f_finite";
2041 case 'l':
2042 return Name == "__log_finite" || Name == "__logf_finite" ||
2043 Name == "__log10_finite" || Name == "__log10f_finite";
2044 case 'p':
2045 return Name == "__pow_finite" || Name == "__powf_finite";
2046 case 's':
2047 return Name == "__sinh_finite" || Name == "__sinhf_finite";
2048 }
2049 }
2050}
2051
2052namespace {
2053
2054Constant *GetConstantFoldFPValue(double V, Type *Ty) {
2055 if (Ty->isHalfTy() || Ty->isFloatTy()) {
2056 APFloat APF(V);
2057 bool unused;
2058 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
2059 return ConstantFP::get(Ty->getContext(), APF);
2060 }
2061 if (Ty->isDoubleTy())
2062 return ConstantFP::get(Ty->getContext(), APFloat(V));
2063 llvm_unreachable("Can only constant fold half/float/double");
2064}
2065
2066#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2067Constant *GetConstantFoldFPValue128(float128 V, Type *Ty) {
2068 if (Ty->isFP128Ty())
2069 return ConstantFP::get(Ty, V);
2070 llvm_unreachable("Can only constant fold fp128");
2071}
2072#endif
2073
2074/// Clear the floating-point exception state.
2075inline void llvm_fenv_clearexcept() {
2076#if HAVE_DECL_FE_ALL_EXCEPT
2077 feclearexcept(FE_ALL_EXCEPT);
2078#endif
2079 errno = 0;
2080}
2081
2082/// Test if a floating-point exception was raised.
2083inline bool llvm_fenv_testexcept() {
2084 int errno_val = errno;
2085 if (errno_val == ERANGE || errno_val == EDOM)
2086 return true;
2087#if HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
2088 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
2089 return true;
2090#endif
2091 return false;
2092}
2093
2094static APFloat FTZPreserveSign(const APFloat &V) {
2095 if (V.isDenormal())
2096 return APFloat::getZero(V.getSemantics(), V.isNegative());
2097 return V;
2098}
2099
2100static APFloat FlushToPositiveZero(const APFloat &V) {
2101 if (V.isDenormal())
2102 return APFloat::getZero(V.getSemantics(), false);
2103 return V;
2104}
2105
2106static APFloat FlushWithDenormKind(const APFloat &V,
2107 DenormalMode::DenormalModeKind DenormKind) {
2110 switch (DenormKind) {
2112 return V;
2114 return FTZPreserveSign(V);
2116 return FlushToPositiveZero(V);
2117 default:
2118 llvm_unreachable("Invalid denormal mode!");
2119 }
2120}
2121
2122Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, Type *Ty,
2123 DenormalMode DenormMode = DenormalMode::getIEEE()) {
2124 if (!DenormMode.isValid() ||
2125 DenormMode.Input == DenormalMode::DenormalModeKind::Dynamic ||
2126 DenormMode.Output == DenormalMode::DenormalModeKind::Dynamic)
2127 return nullptr;
2128
2129 llvm_fenv_clearexcept();
2130 auto Input = FlushWithDenormKind(V, DenormMode.Input);
2131 double Result = NativeFP(Input.convertToDouble());
2132 if (llvm_fenv_testexcept()) {
2133 llvm_fenv_clearexcept();
2134 return nullptr;
2135 }
2136
2137 Constant *Output = GetConstantFoldFPValue(Result, Ty);
2138 if (DenormMode.Output == DenormalMode::DenormalModeKind::IEEE)
2139 return Output;
2140 const auto *CFP = static_cast<ConstantFP *>(Output);
2141 const auto Res = FlushWithDenormKind(CFP->getValueAPF(), DenormMode.Output);
2142 return ConstantFP::get(Ty->getContext(), Res);
2143}
2144
2145#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2146Constant *ConstantFoldFP128(float128 (*NativeFP)(float128), const APFloat &V,
2147 Type *Ty) {
2148 llvm_fenv_clearexcept();
2149 float128 Result = NativeFP(V.convertToQuad());
2150 if (llvm_fenv_testexcept()) {
2151 llvm_fenv_clearexcept();
2152 return nullptr;
2153 }
2154
2155 return GetConstantFoldFPValue128(Result, Ty);
2156}
2157#endif
2158
2159Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
2160 const APFloat &V, const APFloat &W, Type *Ty) {
2161 llvm_fenv_clearexcept();
2162 double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
2163 if (llvm_fenv_testexcept()) {
2164 llvm_fenv_clearexcept();
2165 return nullptr;
2166 }
2167
2168 return GetConstantFoldFPValue(Result, Ty);
2169}
2170
2171Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
2172 auto *OpVT = cast<VectorType>(Op->getType());
2173
2174 // This is the same as the underlying binops - poison propagates.
2175 if (Op->containsPoisonElement())
2176 return PoisonValue::get(OpVT->getElementType());
2177
2178 // Shortcut non-accumulating reductions.
2179 if (Constant *SplatVal = Op->getSplatValue()) {
2180 switch (IID) {
2181 case Intrinsic::vector_reduce_and:
2182 case Intrinsic::vector_reduce_or:
2183 case Intrinsic::vector_reduce_smin:
2184 case Intrinsic::vector_reduce_smax:
2185 case Intrinsic::vector_reduce_umin:
2186 case Intrinsic::vector_reduce_umax:
2187 return SplatVal;
2188 case Intrinsic::vector_reduce_add:
2189 if (SplatVal->isNullValue())
2190 return SplatVal;
2191 break;
2192 case Intrinsic::vector_reduce_mul:
2193 if (SplatVal->isNullValue() || SplatVal->isOneValue())
2194 return SplatVal;
2195 break;
2196 case Intrinsic::vector_reduce_xor:
2197 if (SplatVal->isNullValue())
2198 return SplatVal;
2199 if (OpVT->getElementCount().isKnownMultipleOf(2))
2200 return Constant::getNullValue(OpVT->getElementType());
2201 break;
2202 }
2203 }
2204
2206 if (!VT)
2207 return nullptr;
2208
2209 // TODO: Handle undef.
2210 auto *EltC = dyn_cast_or_null<ConstantInt>(Op->getAggregateElement(0U));
2211 if (!EltC)
2212 return nullptr;
2213
2214 APInt Acc = EltC->getValue();
2215 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
2216 if (!(EltC = dyn_cast_or_null<ConstantInt>(Op->getAggregateElement(I))))
2217 return nullptr;
2218 const APInt &X = EltC->getValue();
2219 switch (IID) {
2220 case Intrinsic::vector_reduce_add:
2221 Acc = Acc + X;
2222 break;
2223 case Intrinsic::vector_reduce_mul:
2224 Acc = Acc * X;
2225 break;
2226 case Intrinsic::vector_reduce_and:
2227 Acc = Acc & X;
2228 break;
2229 case Intrinsic::vector_reduce_or:
2230 Acc = Acc | X;
2231 break;
2232 case Intrinsic::vector_reduce_xor:
2233 Acc = Acc ^ X;
2234 break;
2235 case Intrinsic::vector_reduce_smin:
2236 Acc = APIntOps::smin(Acc, X);
2237 break;
2238 case Intrinsic::vector_reduce_smax:
2239 Acc = APIntOps::smax(Acc, X);
2240 break;
2241 case Intrinsic::vector_reduce_umin:
2242 Acc = APIntOps::umin(Acc, X);
2243 break;
2244 case Intrinsic::vector_reduce_umax:
2245 Acc = APIntOps::umax(Acc, X);
2246 break;
2247 }
2248 }
2249
2250 return ConstantInt::get(Op->getContext(), Acc);
2251}
2252
2253/// Attempt to fold an SSE floating point to integer conversion of a constant
2254/// floating point. If roundTowardZero is false, the default IEEE rounding is
2255/// used (toward nearest, ties to even). This matches the behavior of the
2256/// non-truncating SSE instructions in the default rounding mode. The desired
2257/// integer type Ty is used to select how many bits are available for the
2258/// result. Returns null if the conversion cannot be performed, otherwise
2259/// returns the Constant value resulting from the conversion.
2260Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
2261 Type *Ty, bool IsSigned) {
2262 // All of these conversion intrinsics form an integer of at most 64bits.
2263 unsigned ResultWidth = Ty->getIntegerBitWidth();
2264 assert(ResultWidth <= 64 &&
2265 "Can only constant fold conversions to 64 and 32 bit ints");
2266
2267 uint64_t UIntVal;
2268 bool isExact = false;
2272 Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth,
2273 IsSigned, mode, &isExact);
2274 if (status != APFloat::opOK &&
2275 (!roundTowardZero || status != APFloat::opInexact))
2276 return nullptr;
2277 return ConstantInt::get(Ty, UIntVal, IsSigned);
2278}
2279
2280double getValueAsDouble(ConstantFP *Op) {
2281 Type *Ty = Op->getType();
2282
2283 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2284 return Op->getValueAPF().convertToDouble();
2285
2286 bool unused;
2287 APFloat APF = Op->getValueAPF();
2289 return APF.convertToDouble();
2290}
2291
2292static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
2293 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2294 C = &CI->getValue();
2295 return true;
2296 }
2297 if (isa<UndefValue>(Op)) {
2298 C = nullptr;
2299 return true;
2300 }
2301 return false;
2302}
2303
2304/// Checks if the given intrinsic call, which evaluates to constant, is allowed
2305/// to be folded.
2306///
2307/// \param CI Constrained intrinsic call.
2308/// \param St Exception flags raised during constant evaluation.
2309static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
2310 APFloat::opStatus St) {
2311 std::optional<RoundingMode> ORM = CI->getRoundingMode();
2312 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2313
2314 // If the operation does not change exception status flags, it is safe
2315 // to fold.
2316 if (St == APFloat::opStatus::opOK)
2317 return true;
2318
2319 // If evaluation raised FP exception, the result can depend on rounding
2320 // mode. If the latter is unknown, folding is not possible.
2321 if (ORM == RoundingMode::Dynamic)
2322 return false;
2323
2324 // If FP exceptions are ignored, fold the call, even if such exception is
2325 // raised.
2326 if (EB && *EB != fp::ExceptionBehavior::ebStrict)
2327 return true;
2328
2329 // Leave the calculation for runtime so that exception flags be correctly set
2330 // in hardware.
2331 return false;
2332}
2333
2334/// Returns the rounding mode that should be used for constant evaluation.
2335static RoundingMode
2336getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
2337 std::optional<RoundingMode> ORM = CI->getRoundingMode();
2338 if (!ORM || *ORM == RoundingMode::Dynamic)
2339 // Even if the rounding mode is unknown, try evaluating the operation.
2340 // If it does not raise inexact exception, rounding was not applied,
2341 // so the result is exact and does not depend on rounding mode. Whether
2342 // other FP exceptions are raised, it does not depend on rounding mode.
2344 return *ORM;
2345}
2346
2347/// Try to constant fold llvm.canonicalize for the given caller and value.
2348static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI,
2349 const APFloat &Src) {
2350 // Zero, positive and negative, is always OK to fold.
2351 if (Src.isZero()) {
2352 // Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
2353 return ConstantFP::get(
2354 CI->getContext(),
2355 APFloat::getZero(Src.getSemantics(), Src.isNegative()));
2356 }
2357
2358 if (!Ty->isIEEELikeFPTy())
2359 return nullptr;
2360
2361 // Zero is always canonical and the sign must be preserved.
2362 //
2363 // Denorms and nans may have special encodings, but it should be OK to fold a
2364 // totally average number.
2365 if (Src.isNormal() || Src.isInfinity())
2366 return ConstantFP::get(CI->getContext(), Src);
2367
2368 if (Src.isDenormal() && CI->getParent() && CI->getFunction()) {
2369 DenormalMode DenormMode =
2370 CI->getFunction()->getDenormalMode(Src.getSemantics());
2371
2372 if (DenormMode == DenormalMode::getIEEE())
2373 return ConstantFP::get(CI->getContext(), Src);
2374
2375 if (DenormMode.Input == DenormalMode::Dynamic)
2376 return nullptr;
2377
2378 // If we know if either input or output is flushed, we can fold.
2379 if ((DenormMode.Input == DenormalMode::Dynamic &&
2380 DenormMode.Output == DenormalMode::IEEE) ||
2381 (DenormMode.Input == DenormalMode::IEEE &&
2382 DenormMode.Output == DenormalMode::Dynamic))
2383 return nullptr;
2384
2385 bool IsPositive =
2386 (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero ||
2387 (DenormMode.Output == DenormalMode::PositiveZero &&
2388 DenormMode.Input == DenormalMode::IEEE));
2389
2390 return ConstantFP::get(CI->getContext(),
2391 APFloat::getZero(Src.getSemantics(), !IsPositive));
2392 }
2393
2394 return nullptr;
2395}
2396
2397static Constant *ConstantFoldScalarCall1(StringRef Name,
2398 Intrinsic::ID IntrinsicID,
2399 Type *Ty,
2400 ArrayRef<Constant *> Operands,
2401 const TargetLibraryInfo *TLI,
2402 const CallBase *Call) {
2403 assert(Operands.size() == 1 && "Wrong number of operands.");
2404
2405 if (IntrinsicID == Intrinsic::is_constant) {
2406 // We know we have a "Constant" argument. But we want to only
2407 // return true for manifest constants, not those that depend on
2408 // constants with unknowable values, e.g. GlobalValue or BlockAddress.
2409 if (Operands[0]->isManifestConstant())
2410 return ConstantInt::getTrue(Ty->getContext());
2411 return nullptr;
2412 }
2413
2414 if (isa<UndefValue>(Operands[0])) {
2415 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
2416 // ctpop() is between 0 and bitwidth, pick 0 for undef.
2417 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
2418 if (IntrinsicID == Intrinsic::cos ||
2419 IntrinsicID == Intrinsic::ctpop ||
2420 IntrinsicID == Intrinsic::fptoui_sat ||
2421 IntrinsicID == Intrinsic::fptosi_sat ||
2422 IntrinsicID == Intrinsic::canonicalize)
2423 return Constant::getNullValue(Ty);
2424 if (IntrinsicID == Intrinsic::bswap ||
2425 IntrinsicID == Intrinsic::bitreverse ||
2426 IntrinsicID == Intrinsic::launder_invariant_group ||
2427 IntrinsicID == Intrinsic::strip_invariant_group)
2428 return Operands[0];
2429 }
2430
2431 if (isa<ConstantPointerNull>(Operands[0])) {
2432 // launder(null) == null == strip(null) iff in addrspace 0
2433 if (IntrinsicID == Intrinsic::launder_invariant_group ||
2434 IntrinsicID == Intrinsic::strip_invariant_group) {
2435 // If instruction is not yet put in a basic block (e.g. when cloning
2436 // a function during inlining), Call's caller may not be available.
2437 // So check Call's BB first before querying Call->getCaller.
2438 const Function *Caller =
2439 Call->getParent() ? Call->getCaller() : nullptr;
2440 if (Caller &&
2442 Caller, Operands[0]->getType()->getPointerAddressSpace())) {
2443 return Operands[0];
2444 }
2445 return nullptr;
2446 }
2447 }
2448
2449 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
2450 if (IntrinsicID == Intrinsic::convert_to_fp16) {
2451 APFloat Val(Op->getValueAPF());
2452
2453 bool lost = false;
2455
2456 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
2457 }
2458
2459 APFloat U = Op->getValueAPF();
2460
2461 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2462 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2463 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2464
2465 if (U.isNaN())
2466 return nullptr;
2467
2468 unsigned Width = Ty->getIntegerBitWidth();
2469 APSInt Int(Width, !Signed);
2470 bool IsExact = false;
2472 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2473
2475 return ConstantInt::get(Ty, Int);
2476
2477 return nullptr;
2478 }
2479
2480 if (IntrinsicID == Intrinsic::fptoui_sat ||
2481 IntrinsicID == Intrinsic::fptosi_sat) {
2482 // convertToInteger() already has the desired saturation semantics.
2483 APSInt Int(Ty->getIntegerBitWidth(),
2484 IntrinsicID == Intrinsic::fptoui_sat);
2485 bool IsExact;
2486 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2487 return ConstantInt::get(Ty, Int);
2488 }
2489
2490 if (IntrinsicID == Intrinsic::canonicalize)
2491 return constantFoldCanonicalize(Ty, Call, U);
2492
2493#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2494 if (Ty->isFP128Ty()) {
2495 if (IntrinsicID == Intrinsic::log) {
2496 float128 Result = logf128(Op->getValueAPF().convertToQuad());
2497 return GetConstantFoldFPValue128(Result, Ty);
2498 }
2499
2500 LibFunc Fp128Func = NotLibFunc;
2501 if (TLI && TLI->getLibFunc(Name, Fp128Func) && TLI->has(Fp128Func) &&
2502 Fp128Func == LibFunc_logl)
2503 return ConstantFoldFP128(logf128, Op->getValueAPF(), Ty);
2504 }
2505#endif
2506
2507 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy() &&
2508 !Ty->isIntegerTy())
2509 return nullptr;
2510
2511 // Use internal versions of these intrinsics.
2512
2513 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2514 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2515 return ConstantFP::get(Ty->getContext(), U);
2516 }
2517
2518 if (IntrinsicID == Intrinsic::round) {
2519 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2520 return ConstantFP::get(Ty->getContext(), U);
2521 }
2522
2523 if (IntrinsicID == Intrinsic::roundeven) {
2524 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2525 return ConstantFP::get(Ty->getContext(), U);
2526 }
2527
2528 if (IntrinsicID == Intrinsic::ceil) {
2529 U.roundToIntegral(APFloat::rmTowardPositive);
2530 return ConstantFP::get(Ty->getContext(), U);
2531 }
2532
2533 if (IntrinsicID == Intrinsic::floor) {
2534 U.roundToIntegral(APFloat::rmTowardNegative);
2535 return ConstantFP::get(Ty->getContext(), U);
2536 }
2537
2538 if (IntrinsicID == Intrinsic::trunc) {
2539 U.roundToIntegral(APFloat::rmTowardZero);
2540 return ConstantFP::get(Ty->getContext(), U);
2541 }
2542
2543 if (IntrinsicID == Intrinsic::fabs) {
2544 U.clearSign();
2545 return ConstantFP::get(Ty->getContext(), U);
2546 }
2547
2548 if (IntrinsicID == Intrinsic::amdgcn_fract) {
2549 // The v_fract instruction behaves like the OpenCL spec, which defines
2550 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2551 // there to prevent fract(-small) from returning 1.0. It returns the
2552 // largest positive floating-point number less than 1.0."
2553 APFloat FloorU(U);
2554 FloorU.roundToIntegral(APFloat::rmTowardNegative);
2555 APFloat FractU(U - FloorU);
2556 APFloat AlmostOne(U.getSemantics(), 1);
2557 AlmostOne.next(/*nextDown*/ true);
2558 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
2559 }
2560
2561 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2562 // raise FP exceptions, unless the argument is signaling NaN.
2563
2564 std::optional<APFloat::roundingMode> RM;
2565 switch (IntrinsicID) {
2566 default:
2567 break;
2568 case Intrinsic::experimental_constrained_nearbyint:
2569 case Intrinsic::experimental_constrained_rint: {
2571 RM = CI->getRoundingMode();
2572 if (!RM || *RM == RoundingMode::Dynamic)
2573 return nullptr;
2574 break;
2575 }
2576 case Intrinsic::experimental_constrained_round:
2578 break;
2579 case Intrinsic::experimental_constrained_ceil:
2581 break;
2582 case Intrinsic::experimental_constrained_floor:
2584 break;
2585 case Intrinsic::experimental_constrained_trunc:
2587 break;
2588 }
2589 if (RM) {
2591 if (U.isFinite()) {
2592 APFloat::opStatus St = U.roundToIntegral(*RM);
2593 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2594 St == APFloat::opInexact) {
2595 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2596 if (EB == fp::ebStrict)
2597 return nullptr;
2598 }
2599 } else if (U.isSignaling()) {
2600 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2601 if (EB && *EB != fp::ebIgnore)
2602 return nullptr;
2603 U = APFloat::getQNaN(U.getSemantics());
2604 }
2605 return ConstantFP::get(Ty->getContext(), U);
2606 }
2607
2608 // NVVM float/double to signed/unsigned int32/int64 conversions:
2609 switch (IntrinsicID) {
2610 // f2i
2611 case Intrinsic::nvvm_f2i_rm:
2612 case Intrinsic::nvvm_f2i_rn:
2613 case Intrinsic::nvvm_f2i_rp:
2614 case Intrinsic::nvvm_f2i_rz:
2615 case Intrinsic::nvvm_f2i_rm_ftz:
2616 case Intrinsic::nvvm_f2i_rn_ftz:
2617 case Intrinsic::nvvm_f2i_rp_ftz:
2618 case Intrinsic::nvvm_f2i_rz_ftz:
2619 // f2ui
2620 case Intrinsic::nvvm_f2ui_rm:
2621 case Intrinsic::nvvm_f2ui_rn:
2622 case Intrinsic::nvvm_f2ui_rp:
2623 case Intrinsic::nvvm_f2ui_rz:
2624 case Intrinsic::nvvm_f2ui_rm_ftz:
2625 case Intrinsic::nvvm_f2ui_rn_ftz:
2626 case Intrinsic::nvvm_f2ui_rp_ftz:
2627 case Intrinsic::nvvm_f2ui_rz_ftz:
2628 // d2i
2629 case Intrinsic::nvvm_d2i_rm:
2630 case Intrinsic::nvvm_d2i_rn:
2631 case Intrinsic::nvvm_d2i_rp:
2632 case Intrinsic::nvvm_d2i_rz:
2633 // d2ui
2634 case Intrinsic::nvvm_d2ui_rm:
2635 case Intrinsic::nvvm_d2ui_rn:
2636 case Intrinsic::nvvm_d2ui_rp:
2637 case Intrinsic::nvvm_d2ui_rz:
2638 // f2ll
2639 case Intrinsic::nvvm_f2ll_rm:
2640 case Intrinsic::nvvm_f2ll_rn:
2641 case Intrinsic::nvvm_f2ll_rp:
2642 case Intrinsic::nvvm_f2ll_rz:
2643 case Intrinsic::nvvm_f2ll_rm_ftz:
2644 case Intrinsic::nvvm_f2ll_rn_ftz:
2645 case Intrinsic::nvvm_f2ll_rp_ftz:
2646 case Intrinsic::nvvm_f2ll_rz_ftz:
2647 // f2ull
2648 case Intrinsic::nvvm_f2ull_rm:
2649 case Intrinsic::nvvm_f2ull_rn:
2650 case Intrinsic::nvvm_f2ull_rp:
2651 case Intrinsic::nvvm_f2ull_rz:
2652 case Intrinsic::nvvm_f2ull_rm_ftz:
2653 case Intrinsic::nvvm_f2ull_rn_ftz:
2654 case Intrinsic::nvvm_f2ull_rp_ftz:
2655 case Intrinsic::nvvm_f2ull_rz_ftz:
2656 // d2ll
2657 case Intrinsic::nvvm_d2ll_rm:
2658 case Intrinsic::nvvm_d2ll_rn:
2659 case Intrinsic::nvvm_d2ll_rp:
2660 case Intrinsic::nvvm_d2ll_rz:
2661 // d2ull
2662 case Intrinsic::nvvm_d2ull_rm:
2663 case Intrinsic::nvvm_d2ull_rn:
2664 case Intrinsic::nvvm_d2ull_rp:
2665 case Intrinsic::nvvm_d2ull_rz: {
2666 // In float-to-integer conversion, NaN inputs are converted to 0.
2667 if (U.isNaN()) {
2668 // In float-to-integer conversion, NaN inputs are converted to 0
2669 // when the source and destination bitwidths are both less than 64.
2670 if (nvvm::FPToIntegerIntrinsicNaNZero(IntrinsicID))
2671 return ConstantInt::get(Ty, 0);
2672
2673 // Otherwise, the most significant bit is set.
2674 unsigned BitWidth = Ty->getIntegerBitWidth();
2675 uint64_t Val = 1ULL << (BitWidth - 1);
2676 return ConstantInt::get(Ty, APInt(BitWidth, Val, /*IsSigned=*/false));
2677 }
2678
2679 APFloat::roundingMode RMode =
2681 bool IsFTZ = nvvm::FPToIntegerIntrinsicShouldFTZ(IntrinsicID);
2682 bool IsSigned = nvvm::FPToIntegerIntrinsicResultIsSigned(IntrinsicID);
2683
2684 APSInt ResInt(Ty->getIntegerBitWidth(), !IsSigned);
2685 auto FloatToRound = IsFTZ ? FTZPreserveSign(U) : U;
2686
2687 // Return max/min value for integers if the result is +/-inf or
2688 // is too large to fit in the result's integer bitwidth.
2689 bool IsExact = false;
2690 FloatToRound.convertToInteger(ResInt, RMode, &IsExact);
2691 return ConstantInt::get(Ty, ResInt);
2692 }
2693 }
2694
2695 /// We only fold functions with finite arguments. Folding NaN and inf is
2696 /// likely to be aborted with an exception anyway, and some host libms
2697 /// have known errors raising exceptions.
2698 if (!U.isFinite())
2699 return nullptr;
2700
2701 /// Currently APFloat versions of these functions do not exist, so we use
2702 /// the host native double versions. Float versions are not called
2703 /// directly but for all these it is true (float)(f((double)arg)) ==
2704 /// f(arg). Long double not supported yet.
2705 const APFloat &APF = Op->getValueAPF();
2706
2707 switch (IntrinsicID) {
2708 default: break;
2709 case Intrinsic::log:
2710 return ConstantFoldFP(log, APF, Ty);
2711 case Intrinsic::log2:
2712 // TODO: What about hosts that lack a C99 library?
2713 return ConstantFoldFP(log2, APF, Ty);
2714 case Intrinsic::log10:
2715 // TODO: What about hosts that lack a C99 library?
2716 return ConstantFoldFP(log10, APF, Ty);
2717 case Intrinsic::exp:
2718 return ConstantFoldFP(exp, APF, Ty);
2719 case Intrinsic::exp2:
2720 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2721 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2722 case Intrinsic::exp10:
2723 // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library.
2724 return ConstantFoldBinaryFP(pow, APFloat(10.0), APF, Ty);
2725 case Intrinsic::sin:
2726 return ConstantFoldFP(sin, APF, Ty);
2727 case Intrinsic::cos:
2728 return ConstantFoldFP(cos, APF, Ty);
2729 case Intrinsic::sinh:
2730 return ConstantFoldFP(sinh, APF, Ty);
2731 case Intrinsic::cosh:
2732 return ConstantFoldFP(cosh, APF, Ty);
2733 case Intrinsic::atan:
2734 // Implement optional behavior from C's Annex F for +/-0.0.
2735 if (U.isZero())
2736 return ConstantFP::get(Ty->getContext(), U);
2737 return ConstantFoldFP(atan, APF, Ty);
2738 case Intrinsic::sqrt:
2739 return ConstantFoldFP(sqrt, APF, Ty);
2740
2741 // NVVM Intrinsics:
2742 case Intrinsic::nvvm_ceil_ftz_f:
2743 case Intrinsic::nvvm_ceil_f:
2744 case Intrinsic::nvvm_ceil_d:
2745 return ConstantFoldFP(
2746 ceil, APF, Ty,
2748 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2749
2750 case Intrinsic::nvvm_fabs_ftz:
2751 case Intrinsic::nvvm_fabs:
2752 return ConstantFoldFP(
2753 fabs, APF, Ty,
2755 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2756
2757 case Intrinsic::nvvm_floor_ftz_f:
2758 case Intrinsic::nvvm_floor_f:
2759 case Intrinsic::nvvm_floor_d:
2760 return ConstantFoldFP(
2761 floor, APF, Ty,
2763 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2764
2765 case Intrinsic::nvvm_rcp_rm_ftz_f:
2766 case Intrinsic::nvvm_rcp_rn_ftz_f:
2767 case Intrinsic::nvvm_rcp_rp_ftz_f:
2768 case Intrinsic::nvvm_rcp_rz_ftz_f:
2769 case Intrinsic::nvvm_rcp_rm_d:
2770 case Intrinsic::nvvm_rcp_rm_f:
2771 case Intrinsic::nvvm_rcp_rn_d:
2772 case Intrinsic::nvvm_rcp_rn_f:
2773 case Intrinsic::nvvm_rcp_rp_d:
2774 case Intrinsic::nvvm_rcp_rp_f:
2775 case Intrinsic::nvvm_rcp_rz_d:
2776 case Intrinsic::nvvm_rcp_rz_f: {
2777 APFloat::roundingMode RoundMode = nvvm::GetRCPRoundingMode(IntrinsicID);
2778 bool IsFTZ = nvvm::RCPShouldFTZ(IntrinsicID);
2779
2780 auto Denominator = IsFTZ ? FTZPreserveSign(APF) : APF;
2782 APFloat::opStatus Status = Res.divide(Denominator, RoundMode);
2783
2785 if (IsFTZ)
2786 Res = FTZPreserveSign(Res);
2787 return ConstantFP::get(Ty->getContext(), Res);
2788 }
2789 return nullptr;
2790 }
2791
2792 case Intrinsic::nvvm_round_ftz_f:
2793 case Intrinsic::nvvm_round_f:
2794 case Intrinsic::nvvm_round_d: {
2795 // nvvm_round is lowered to PTX cvt.rni, which will round to nearest
2796 // integer, choosing even integer if source is equidistant between two
2797 // integers, so the semantics are closer to "rint" rather than "round".
2798 bool IsFTZ = nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID);
2799 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2801 return ConstantFP::get(Ty->getContext(), V);
2802 }
2803
2804 case Intrinsic::nvvm_saturate_ftz_f:
2805 case Intrinsic::nvvm_saturate_d:
2806 case Intrinsic::nvvm_saturate_f: {
2807 bool IsFTZ = nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID);
2808 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2809 if (V.isNegative() || V.isZero() || V.isNaN())
2810 return ConstantFP::getZero(Ty);
2812 if (V > One)
2813 return ConstantFP::get(Ty->getContext(), One);
2814 return ConstantFP::get(Ty->getContext(), APF);
2815 }
2816
2817 case Intrinsic::nvvm_sqrt_rn_ftz_f:
2818 case Intrinsic::nvvm_sqrt_f:
2819 case Intrinsic::nvvm_sqrt_rn_d:
2820 case Intrinsic::nvvm_sqrt_rn_f:
2821 if (APF.isNegative())
2822 return nullptr;
2823 return ConstantFoldFP(
2824 sqrt, APF, Ty,
2826 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2827
2828 // AMDGCN Intrinsics:
2829 case Intrinsic::amdgcn_cos:
2830 case Intrinsic::amdgcn_sin: {
2831 double V = getValueAsDouble(Op);
2832 if (V < -256.0 || V > 256.0)
2833 // The gfx8 and gfx9 architectures handle arguments outside the range
2834 // [-256, 256] differently. This should be a rare case so bail out
2835 // rather than trying to handle the difference.
2836 return nullptr;
2837 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2838 double V4 = V * 4.0;
2839 if (V4 == floor(V4)) {
2840 // Force exact results for quarter-integer inputs.
2841 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2842 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2843 } else {
2844 if (IsCos)
2845 V = cos(V * 2.0 * numbers::pi);
2846 else
2847 V = sin(V * 2.0 * numbers::pi);
2848 }
2849 return GetConstantFoldFPValue(V, Ty);
2850 }
2851 }
2852
2853 if (!TLI)
2854 return nullptr;
2855
2857 if (!TLI->getLibFunc(Name, Func))
2858 return nullptr;
2859
2860 switch (Func) {
2861 default:
2862 break;
2863 case LibFunc_acos:
2864 case LibFunc_acosf:
2865 case LibFunc_acos_finite:
2866 case LibFunc_acosf_finite:
2867 if (TLI->has(Func))
2868 return ConstantFoldFP(acos, APF, Ty);
2869 break;
2870 case LibFunc_asin:
2871 case LibFunc_asinf:
2872 case LibFunc_asin_finite:
2873 case LibFunc_asinf_finite:
2874 if (TLI->has(Func))
2875 return ConstantFoldFP(asin, APF, Ty);
2876 break;
2877 case LibFunc_atan:
2878 case LibFunc_atanf:
2879 // Implement optional behavior from C's Annex F for +/-0.0.
2880 if (U.isZero())
2881 return ConstantFP::get(Ty->getContext(), U);
2882 if (TLI->has(Func))
2883 return ConstantFoldFP(atan, APF, Ty);
2884 break;
2885 case LibFunc_ceil:
2886 case LibFunc_ceilf:
2887 if (TLI->has(Func)) {
2888 U.roundToIntegral(APFloat::rmTowardPositive);
2889 return ConstantFP::get(Ty->getContext(), U);
2890 }
2891 break;
2892 case LibFunc_cos:
2893 case LibFunc_cosf:
2894 if (TLI->has(Func))
2895 return ConstantFoldFP(cos, APF, Ty);
2896 break;
2897 case LibFunc_cosh:
2898 case LibFunc_coshf:
2899 case LibFunc_cosh_finite:
2900 case LibFunc_coshf_finite:
2901 if (TLI->has(Func))
2902 return ConstantFoldFP(cosh, APF, Ty);
2903 break;
2904 case LibFunc_exp:
2905 case LibFunc_expf:
2906 case LibFunc_exp_finite:
2907 case LibFunc_expf_finite:
2908 if (TLI->has(Func))
2909 return ConstantFoldFP(exp, APF, Ty);
2910 break;
2911 case LibFunc_exp2:
2912 case LibFunc_exp2f:
2913 case LibFunc_exp2_finite:
2914 case LibFunc_exp2f_finite:
2915 if (TLI->has(Func))
2916 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2917 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2918 break;
2919 case LibFunc_fabs:
2920 case LibFunc_fabsf:
2921 if (TLI->has(Func)) {
2922 U.clearSign();
2923 return ConstantFP::get(Ty->getContext(), U);
2924 }
2925 break;
2926 case LibFunc_floor:
2927 case LibFunc_floorf:
2928 if (TLI->has(Func)) {
2929 U.roundToIntegral(APFloat::rmTowardNegative);
2930 return ConstantFP::get(Ty->getContext(), U);
2931 }
2932 break;
2933 case LibFunc_log:
2934 case LibFunc_logf:
2935 case LibFunc_log_finite:
2936 case LibFunc_logf_finite:
2937 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2938 return ConstantFoldFP(log, APF, Ty);
2939 break;
2940 case LibFunc_log2:
2941 case LibFunc_log2f:
2942 case LibFunc_log2_finite:
2943 case LibFunc_log2f_finite:
2944 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2945 // TODO: What about hosts that lack a C99 library?
2946 return ConstantFoldFP(log2, APF, Ty);
2947 break;
2948 case LibFunc_log10:
2949 case LibFunc_log10f:
2950 case LibFunc_log10_finite:
2951 case LibFunc_log10f_finite:
2952 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2953 // TODO: What about hosts that lack a C99 library?
2954 return ConstantFoldFP(log10, APF, Ty);
2955 break;
2956 case LibFunc_ilogb:
2957 case LibFunc_ilogbf:
2958 if (!APF.isZero() && TLI->has(Func))
2959 return ConstantInt::get(Ty, ilogb(APF), true);
2960 break;
2961 case LibFunc_logb:
2962 case LibFunc_logbf:
2963 if (!APF.isZero() && TLI->has(Func))
2964 return ConstantFoldFP(logb, APF, Ty);
2965 break;
2966 case LibFunc_log1p:
2967 case LibFunc_log1pf:
2968 // Implement optional behavior from C's Annex F for +/-0.0.
2969 if (U.isZero())
2970 return ConstantFP::get(Ty->getContext(), U);
2971 if (APF > APFloat::getOne(APF.getSemantics(), true) && TLI->has(Func))
2972 return ConstantFoldFP(log1p, APF, Ty);
2973 break;
2974 case LibFunc_logl:
2975 return nullptr;
2976 case LibFunc_erf:
2977 case LibFunc_erff:
2978 if (TLI->has(Func))
2979 return ConstantFoldFP(erf, APF, Ty);
2980 break;
2981 case LibFunc_nearbyint:
2982 case LibFunc_nearbyintf:
2983 case LibFunc_rint:
2984 case LibFunc_rintf:
2985 if (TLI->has(Func)) {
2986 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2987 return ConstantFP::get(Ty->getContext(), U);
2988 }
2989 break;
2990 case LibFunc_round:
2991 case LibFunc_roundf:
2992 if (TLI->has(Func)) {
2993 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2994 return ConstantFP::get(Ty->getContext(), U);
2995 }
2996 break;
2997 case LibFunc_sin:
2998 case LibFunc_sinf:
2999 if (TLI->has(Func))
3000 return ConstantFoldFP(sin, APF, Ty);
3001 break;
3002 case LibFunc_sinh:
3003 case LibFunc_sinhf:
3004 case LibFunc_sinh_finite:
3005 case LibFunc_sinhf_finite:
3006 if (TLI->has(Func))
3007 return ConstantFoldFP(sinh, APF, Ty);
3008 break;
3009 case LibFunc_sqrt:
3010 case LibFunc_sqrtf:
3011 if (!APF.isNegative() && TLI->has(Func))
3012 return ConstantFoldFP(sqrt, APF, Ty);
3013 break;
3014 case LibFunc_tan:
3015 case LibFunc_tanf:
3016 if (TLI->has(Func))
3017 return ConstantFoldFP(tan, APF, Ty);
3018 break;
3019 case LibFunc_tanh:
3020 case LibFunc_tanhf:
3021 if (TLI->has(Func))
3022 return ConstantFoldFP(tanh, APF, Ty);
3023 break;
3024 case LibFunc_trunc:
3025 case LibFunc_truncf:
3026 if (TLI->has(Func)) {
3027 U.roundToIntegral(APFloat::rmTowardZero);
3028 return ConstantFP::get(Ty->getContext(), U);
3029 }
3030 break;
3031 }
3032 return nullptr;
3033 }
3034
3035 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
3036 switch (IntrinsicID) {
3037 case Intrinsic::bswap:
3038 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
3039 case Intrinsic::ctpop:
3040 return ConstantInt::get(Ty, Op->getValue().popcount());
3041 case Intrinsic::bitreverse:
3042 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
3043 case Intrinsic::convert_from_fp16: {
3044 APFloat Val(APFloat::IEEEhalf(), Op->getValue());
3045
3046 bool lost = false;
3047 APFloat::opStatus status = Val.convert(
3048 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
3049
3050 // Conversion is always precise.
3051 (void)status;
3052 assert(status != APFloat::opInexact && !lost &&
3053 "Precision lost during fp16 constfolding");
3054
3055 return ConstantFP::get(Ty->getContext(), Val);
3056 }
3057
3058 case Intrinsic::amdgcn_s_wqm: {
3059 uint64_t Val = Op->getZExtValue();
3060 Val |= (Val & 0x5555555555555555ULL) << 1 |
3061 ((Val >> 1) & 0x5555555555555555ULL);
3062 Val |= (Val & 0x3333333333333333ULL) << 2 |
3063 ((Val >> 2) & 0x3333333333333333ULL);
3064 return ConstantInt::get(Ty, Val);
3065 }
3066
3067 case Intrinsic::amdgcn_s_quadmask: {
3068 uint64_t Val = Op->getZExtValue();
3069 uint64_t QuadMask = 0;
3070 for (unsigned I = 0; I < Op->getBitWidth() / 4; ++I, Val >>= 4) {
3071 if (!(Val & 0xF))
3072 continue;
3073
3074 QuadMask |= (1ULL << I);
3075 }
3076 return ConstantInt::get(Ty, QuadMask);
3077 }
3078
3079 case Intrinsic::amdgcn_s_bitreplicate: {
3080 uint64_t Val = Op->getZExtValue();
3081 Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
3082 Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
3083 Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
3084 Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
3085 Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
3086 Val = Val | Val << 1;
3087 return ConstantInt::get(Ty, Val);
3088 }
3089 }
3090 }
3091
3092 if (Operands[0]->getType()->isVectorTy()) {
3093 auto *Op = cast<Constant>(Operands[0]);
3094 switch (IntrinsicID) {
3095 default: break;
3096 case Intrinsic::vector_reduce_add:
3097 case Intrinsic::vector_reduce_mul:
3098 case Intrinsic::vector_reduce_and:
3099 case Intrinsic::vector_reduce_or:
3100 case Intrinsic::vector_reduce_xor:
3101 case Intrinsic::vector_reduce_smin:
3102 case Intrinsic::vector_reduce_smax:
3103 case Intrinsic::vector_reduce_umin:
3104 case Intrinsic::vector_reduce_umax:
3105 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
3106 return C;
3107 break;
3108 case Intrinsic::x86_sse_cvtss2si:
3109 case Intrinsic::x86_sse_cvtss2si64:
3110 case Intrinsic::x86_sse2_cvtsd2si:
3111 case Intrinsic::x86_sse2_cvtsd2si64:
3112 if (ConstantFP *FPOp =
3113 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3114 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3115 /*roundTowardZero=*/false, Ty,
3116 /*IsSigned*/true);
3117 break;
3118 case Intrinsic::x86_sse_cvttss2si:
3119 case Intrinsic::x86_sse_cvttss2si64:
3120 case Intrinsic::x86_sse2_cvttsd2si:
3121 case Intrinsic::x86_sse2_cvttsd2si64:
3122 if (ConstantFP *FPOp =
3123 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3124 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3125 /*roundTowardZero=*/true, Ty,
3126 /*IsSigned*/true);
3127 break;
3128
3129 case Intrinsic::wasm_anytrue:
3130 return Op->isZeroValue() ? ConstantInt::get(Ty, 0)
3131 : ConstantInt::get(Ty, 1);
3132
3133 case Intrinsic::wasm_alltrue:
3134 // Check each element individually
3135 unsigned E = cast<FixedVectorType>(Op->getType())->getNumElements();
3136 for (unsigned I = 0; I != E; ++I) {
3137 Constant *Elt = Op->getAggregateElement(I);
3138 // Return false as soon as we find a non-true element.
3139 if (Elt && Elt->isZeroValue())
3140 return ConstantInt::get(Ty, 0);
3141 // Bail as soon as we find an element we cannot prove to be true.
3142 if (!Elt || !isa<ConstantInt>(Elt))
3143 return nullptr;
3144 }
3145
3146 return ConstantInt::get(Ty, 1);
3147 }
3148 }
3149
3150 return nullptr;
3151}
3152
3153static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
3157 FCmpInst::Predicate Cond = FCmp->getPredicate();
3158 if (FCmp->isSignaling()) {
3159 if (Op1.isNaN() || Op2.isNaN())
3161 } else {
3162 if (Op1.isSignaling() || Op2.isSignaling())
3164 }
3165 bool Result = FCmpInst::compare(Op1, Op2, Cond);
3166 if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
3167 return ConstantInt::get(Call->getType()->getScalarType(), Result);
3168 return nullptr;
3169}
3170
3171static Constant *ConstantFoldLibCall2(StringRef Name, Type *Ty,
3172 ArrayRef<Constant *> Operands,
3173 const TargetLibraryInfo *TLI) {
3174 if (!TLI)
3175 return nullptr;
3176
3178 if (!TLI->getLibFunc(Name, Func))
3179 return nullptr;
3180
3181 const auto *Op1 = dyn_cast<ConstantFP>(Operands[0]);
3182 if (!Op1)
3183 return nullptr;
3184
3185 const auto *Op2 = dyn_cast<ConstantFP>(Operands[1]);
3186 if (!Op2)
3187 return nullptr;
3188
3189 const APFloat &Op1V = Op1->getValueAPF();
3190 const APFloat &Op2V = Op2->getValueAPF();
3191
3192 switch (Func) {
3193 default:
3194 break;
3195 case LibFunc_pow:
3196 case LibFunc_powf:
3197 case LibFunc_pow_finite:
3198 case LibFunc_powf_finite:
3199 if (TLI->has(Func))
3200 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3201 break;
3202 case LibFunc_fmod:
3203 case LibFunc_fmodf:
3204 if (TLI->has(Func)) {
3205 APFloat V = Op1->getValueAPF();
3206 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
3207 return ConstantFP::get(Ty->getContext(), V);
3208 }
3209 break;
3210 case LibFunc_remainder:
3211 case LibFunc_remainderf:
3212 if (TLI->has(Func)) {
3213 APFloat V = Op1->getValueAPF();
3214 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
3215 return ConstantFP::get(Ty->getContext(), V);
3216 }
3217 break;
3218 case LibFunc_atan2:
3219 case LibFunc_atan2f:
3220 // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
3221 // (Solaris), so we do not assume a known result for that.
3222 if (Op1V.isZero() && Op2V.isZero())
3223 return nullptr;
3224 [[fallthrough]];
3225 case LibFunc_atan2_finite:
3226 case LibFunc_atan2f_finite:
3227 if (TLI->has(Func))
3228 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
3229 break;
3230 }
3231
3232 return nullptr;
3233}
3234
3235static Constant *ConstantFoldIntrinsicCall2(Intrinsic::ID IntrinsicID, Type *Ty,
3236 ArrayRef<Constant *> Operands,
3237 const CallBase *Call) {
3238 assert(Operands.size() == 2 && "Wrong number of operands.");
3239
3240 if (Ty->isFloatingPointTy()) {
3241 // TODO: We should have undef handling for all of the FP intrinsics that
3242 // are attempted to be folded in this function.
3243 bool IsOp0Undef = isa<UndefValue>(Operands[0]);
3244 bool IsOp1Undef = isa<UndefValue>(Operands[1]);
3245 switch (IntrinsicID) {
3246 case Intrinsic::maxnum:
3247 case Intrinsic::minnum:
3248 case Intrinsic::maximum:
3249 case Intrinsic::minimum:
3250 case Intrinsic::maximumnum:
3251 case Intrinsic::minimumnum:
3252 case Intrinsic::nvvm_fmax_d:
3253 case Intrinsic::nvvm_fmin_d:
3254 // If one argument is undef, return the other argument.
3255 if (IsOp0Undef)
3256 return Operands[1];
3257 if (IsOp1Undef)
3258 return Operands[0];
3259 break;
3260
3261 case Intrinsic::nvvm_fmax_f:
3262 case Intrinsic::nvvm_fmax_ftz_f:
3263 case Intrinsic::nvvm_fmax_ftz_nan_f:
3264 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3265 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3266 case Intrinsic::nvvm_fmax_nan_f:
3267 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3268 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3269
3270 case Intrinsic::nvvm_fmin_f:
3271 case Intrinsic::nvvm_fmin_ftz_f:
3272 case Intrinsic::nvvm_fmin_ftz_nan_f:
3273 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3274 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3275 case Intrinsic::nvvm_fmin_nan_f:
3276 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3277 case Intrinsic::nvvm_fmin_xorsign_abs_f:
3278 // If one arg is undef, the other arg can be returned only if it is
3279 // constant, as we may need to flush it to sign-preserving zero or
3280 // canonicalize the NaN.
3281 if (!IsOp0Undef && !IsOp1Undef)
3282 break;
3283 if (auto *Op = dyn_cast<ConstantFP>(Operands[IsOp0Undef ? 1 : 0])) {
3284 if (Op->isNaN()) {
3285 APInt NVCanonicalNaN(32, 0x7fffffff);
3286 return ConstantFP::get(
3287 Ty, APFloat(Ty->getFltSemantics(), NVCanonicalNaN));
3288 }
3289 if (nvvm::FMinFMaxShouldFTZ(IntrinsicID))
3290 return ConstantFP::get(Ty, FTZPreserveSign(Op->getValueAPF()));
3291 else
3292 return Op;
3293 }
3294 break;
3295 }
3296 }
3297
3298 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3299 const APFloat &Op1V = Op1->getValueAPF();
3300
3301 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3302 if (Op2->getType() != Op1->getType())
3303 return nullptr;
3304 const APFloat &Op2V = Op2->getValueAPF();
3305
3306 if (const auto *ConstrIntr =
3308 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3309 APFloat Res = Op1V;
3311 switch (IntrinsicID) {
3312 default:
3313 return nullptr;
3314 case Intrinsic::experimental_constrained_fadd:
3315 St = Res.add(Op2V, RM);
3316 break;
3317 case Intrinsic::experimental_constrained_fsub:
3318 St = Res.subtract(Op2V, RM);
3319 break;
3320 case Intrinsic::experimental_constrained_fmul:
3321 St = Res.multiply(Op2V, RM);
3322 break;
3323 case Intrinsic::experimental_constrained_fdiv:
3324 St = Res.divide(Op2V, RM);
3325 break;
3326 case Intrinsic::experimental_constrained_frem:
3327 St = Res.mod(Op2V);
3328 break;
3329 case Intrinsic::experimental_constrained_fcmp:
3330 case Intrinsic::experimental_constrained_fcmps:
3331 return evaluateCompare(Op1V, Op2V, ConstrIntr);
3332 }
3333 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
3334 St))
3335 return ConstantFP::get(Ty->getContext(), Res);
3336 return nullptr;
3337 }
3338
3339 switch (IntrinsicID) {
3340 default:
3341 break;
3342 case Intrinsic::copysign:
3343 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
3344 case Intrinsic::minnum:
3345 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
3346 case Intrinsic::maxnum:
3347 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
3348 case Intrinsic::minimum:
3349 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
3350 case Intrinsic::maximum:
3351 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
3352 case Intrinsic::minimumnum:
3353 return ConstantFP::get(Ty->getContext(), minimumnum(Op1V, Op2V));
3354 case Intrinsic::maximumnum:
3355 return ConstantFP::get(Ty->getContext(), maximumnum(Op1V, Op2V));
3356
3357 case Intrinsic::nvvm_fmax_d:
3358 case Intrinsic::nvvm_fmax_f:
3359 case Intrinsic::nvvm_fmax_ftz_f:
3360 case Intrinsic::nvvm_fmax_ftz_nan_f:
3361 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3362 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3363 case Intrinsic::nvvm_fmax_nan_f:
3364 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3365 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3366
3367 case Intrinsic::nvvm_fmin_d:
3368 case Intrinsic::nvvm_fmin_f:
3369 case Intrinsic::nvvm_fmin_ftz_f:
3370 case Intrinsic::nvvm_fmin_ftz_nan_f:
3371 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3372 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3373 case Intrinsic::nvvm_fmin_nan_f:
3374 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3375 case Intrinsic::nvvm_fmin_xorsign_abs_f: {
3376
3377 bool ShouldCanonicalizeNaNs = !(IntrinsicID == Intrinsic::nvvm_fmax_d ||
3378 IntrinsicID == Intrinsic::nvvm_fmin_d);
3379 bool IsFTZ = nvvm::FMinFMaxShouldFTZ(IntrinsicID);
3380 bool IsNaNPropagating = nvvm::FMinFMaxPropagatesNaNs(IntrinsicID);
3381 bool IsXorSignAbs = nvvm::FMinFMaxIsXorSignAbs(IntrinsicID);
3382
3383 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3384 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3385
3386 bool XorSign = false;
3387 if (IsXorSignAbs) {
3388 XorSign = A.isNegative() ^ B.isNegative();
3389 A = abs(A);
3390 B = abs(B);
3391 }
3392
3393 bool IsFMax = false;
3394 switch (IntrinsicID) {
3395 case Intrinsic::nvvm_fmax_d:
3396 case Intrinsic::nvvm_fmax_f:
3397 case Intrinsic::nvvm_fmax_ftz_f:
3398 case Intrinsic::nvvm_fmax_ftz_nan_f:
3399 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3400 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3401 case Intrinsic::nvvm_fmax_nan_f:
3402 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3403 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3404 IsFMax = true;
3405 break;
3406 }
3407 APFloat Res = IsFMax ? maximum(A, B) : minimum(A, B);
3408
3409 if (ShouldCanonicalizeNaNs) {
3410 APFloat NVCanonicalNaN(Res.getSemantics(), APInt(32, 0x7fffffff));
3411 if (A.isNaN() && B.isNaN())
3412 return ConstantFP::get(Ty, NVCanonicalNaN);
3413 else if (IsNaNPropagating && (A.isNaN() || B.isNaN()))
3414 return ConstantFP::get(Ty, NVCanonicalNaN);
3415 }
3416
3417 if (A.isNaN() && B.isNaN())
3418 return Operands[1];
3419 else if (A.isNaN())
3420 Res = B;
3421 else if (B.isNaN())
3422 Res = A;
3423
3424 if (IsXorSignAbs && XorSign != Res.isNegative())
3425 Res.changeSign();
3426
3427 return ConstantFP::get(Ty->getContext(), Res);
3428 }
3429
3430 case Intrinsic::nvvm_add_rm_f:
3431 case Intrinsic::nvvm_add_rn_f:
3432 case Intrinsic::nvvm_add_rp_f:
3433 case Intrinsic::nvvm_add_rz_f:
3434 case Intrinsic::nvvm_add_rm_d:
3435 case Intrinsic::nvvm_add_rn_d:
3436 case Intrinsic::nvvm_add_rp_d:
3437 case Intrinsic::nvvm_add_rz_d:
3438 case Intrinsic::nvvm_add_rm_ftz_f:
3439 case Intrinsic::nvvm_add_rn_ftz_f:
3440 case Intrinsic::nvvm_add_rp_ftz_f:
3441 case Intrinsic::nvvm_add_rz_ftz_f: {
3442
3443 bool IsFTZ = nvvm::FAddShouldFTZ(IntrinsicID);
3444 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3445 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3446
3447 APFloat::roundingMode RoundMode =
3448 nvvm::GetFAddRoundingMode(IntrinsicID);
3449
3450 APFloat Res = A;
3451 APFloat::opStatus Status = Res.add(B, RoundMode);
3452
3453 if (!Res.isNaN() &&
3455 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3456 return ConstantFP::get(Ty->getContext(), Res);
3457 }
3458 return nullptr;
3459 }
3460
3461 case Intrinsic::nvvm_mul_rm_f:
3462 case Intrinsic::nvvm_mul_rn_f:
3463 case Intrinsic::nvvm_mul_rp_f:
3464 case Intrinsic::nvvm_mul_rz_f:
3465 case Intrinsic::nvvm_mul_rm_d:
3466 case Intrinsic::nvvm_mul_rn_d:
3467 case Intrinsic::nvvm_mul_rp_d:
3468 case Intrinsic::nvvm_mul_rz_d:
3469 case Intrinsic::nvvm_mul_rm_ftz_f:
3470 case Intrinsic::nvvm_mul_rn_ftz_f:
3471 case Intrinsic::nvvm_mul_rp_ftz_f:
3472 case Intrinsic::nvvm_mul_rz_ftz_f: {
3473
3474 bool IsFTZ = nvvm::FMulShouldFTZ(IntrinsicID);
3475 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3476 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3477
3478 APFloat::roundingMode RoundMode =
3479 nvvm::GetFMulRoundingMode(IntrinsicID);
3480
3481 APFloat Res = A;
3482 APFloat::opStatus Status = Res.multiply(B, RoundMode);
3483
3484 if (!Res.isNaN() &&
3486 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3487 return ConstantFP::get(Ty->getContext(), Res);
3488 }
3489 return nullptr;
3490 }
3491
3492 case Intrinsic::nvvm_div_rm_f:
3493 case Intrinsic::nvvm_div_rn_f:
3494 case Intrinsic::nvvm_div_rp_f:
3495 case Intrinsic::nvvm_div_rz_f:
3496 case Intrinsic::nvvm_div_rm_d:
3497 case Intrinsic::nvvm_div_rn_d:
3498 case Intrinsic::nvvm_div_rp_d:
3499 case Intrinsic::nvvm_div_rz_d:
3500 case Intrinsic::nvvm_div_rm_ftz_f:
3501 case Intrinsic::nvvm_div_rn_ftz_f:
3502 case Intrinsic::nvvm_div_rp_ftz_f:
3503 case Intrinsic::nvvm_div_rz_ftz_f: {
3504 bool IsFTZ = nvvm::FDivShouldFTZ(IntrinsicID);
3505 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3506 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3507 APFloat::roundingMode RoundMode =
3508 nvvm::GetFDivRoundingMode(IntrinsicID);
3509
3510 APFloat Res = A;
3511 APFloat::opStatus Status = Res.divide(B, RoundMode);
3512 if (!Res.isNaN() &&
3514 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3515 return ConstantFP::get(Ty->getContext(), Res);
3516 }
3517 return nullptr;
3518 }
3519 }
3520
3521 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
3522 return nullptr;
3523
3524 switch (IntrinsicID) {
3525 default:
3526 break;
3527 case Intrinsic::pow:
3528 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3529 case Intrinsic::amdgcn_fmul_legacy:
3530 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3531 // NaN or infinity, gives +0.0.
3532 if (Op1V.isZero() || Op2V.isZero())
3533 return ConstantFP::getZero(Ty);
3534 return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
3535 }
3536
3537 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
3538 switch (IntrinsicID) {
3539 case Intrinsic::ldexp: {
3540 return ConstantFP::get(
3541 Ty->getContext(),
3542 scalbn(Op1V, Op2C->getSExtValue(), APFloat::rmNearestTiesToEven));
3543 }
3544 case Intrinsic::is_fpclass: {
3545 FPClassTest Mask = static_cast<FPClassTest>(Op2C->getZExtValue());
3546 bool Result =
3547 ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) ||
3548 ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) ||
3549 ((Mask & fcNegInf) && Op1V.isNegInfinity()) ||
3550 ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) ||
3551 ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) ||
3552 ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) ||
3553 ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) ||
3554 ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) ||
3555 ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) ||
3556 ((Mask & fcPosInf) && Op1V.isPosInfinity());
3557 return ConstantInt::get(Ty, Result);
3558 }
3559 case Intrinsic::powi: {
3560 int Exp = static_cast<int>(Op2C->getSExtValue());
3561 switch (Ty->getTypeID()) {
3562 case Type::HalfTyID:
3563 case Type::FloatTyID: {
3564 APFloat Res(static_cast<float>(std::pow(Op1V.convertToFloat(), Exp)));
3565 if (Ty->isHalfTy()) {
3566 bool Unused;
3568 &Unused);
3569 }
3570 return ConstantFP::get(Ty->getContext(), Res);
3571 }
3572 case Type::DoubleTyID:
3573 return ConstantFP::get(Ty, std::pow(Op1V.convertToDouble(), Exp));
3574 default:
3575 return nullptr;
3576 }
3577 }
3578 default:
3579 break;
3580 }
3581 }
3582 return nullptr;
3583 }
3584
3585 if (Operands[0]->getType()->isIntegerTy() &&
3586 Operands[1]->getType()->isIntegerTy()) {
3587 const APInt *C0, *C1;
3588 if (!getConstIntOrUndef(Operands[0], C0) ||
3589 !getConstIntOrUndef(Operands[1], C1))
3590 return nullptr;
3591
3592 switch (IntrinsicID) {
3593 default: break;
3594 case Intrinsic::smax:
3595 case Intrinsic::smin:
3596 case Intrinsic::umax:
3597 case Intrinsic::umin:
3598 if (!C0 && !C1)
3599 return UndefValue::get(Ty);
3600 if (!C0 || !C1)
3601 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
3602 return ConstantInt::get(
3603 Ty, ICmpInst::compare(*C0, *C1,
3604 MinMaxIntrinsic::getPredicate(IntrinsicID))
3605 ? *C0
3606 : *C1);
3607
3608 case Intrinsic::scmp:
3609 case Intrinsic::ucmp:
3610 if (!C0 || !C1)
3611 return ConstantInt::get(Ty, 0);
3612
3613 int Res;
3614 if (IntrinsicID == Intrinsic::scmp)
3615 Res = C0->sgt(*C1) ? 1 : C0->slt(*C1) ? -1 : 0;
3616 else
3617 Res = C0->ugt(*C1) ? 1 : C0->ult(*C1) ? -1 : 0;
3618 return ConstantInt::get(Ty, Res, /*IsSigned=*/true);
3619
3620 case Intrinsic::usub_with_overflow:
3621 case Intrinsic::ssub_with_overflow:
3622 // X - undef -> { 0, false }
3623 // undef - X -> { 0, false }
3624 if (!C0 || !C1)
3625 return Constant::getNullValue(Ty);
3626 [[fallthrough]];
3627 case Intrinsic::uadd_with_overflow:
3628 case Intrinsic::sadd_with_overflow:
3629 // X + undef -> { -1, false }
3630 // undef + x -> { -1, false }
3631 if (!C0 || !C1) {
3632 return ConstantStruct::get(
3633 cast<StructType>(Ty),
3634 {Constant::getAllOnesValue(Ty->getStructElementType(0)),
3635 Constant::getNullValue(Ty->getStructElementType(1))});
3636 }
3637 [[fallthrough]];
3638 case Intrinsic::smul_with_overflow:
3639 case Intrinsic::umul_with_overflow: {
3640 // undef * X -> { 0, false }
3641 // X * undef -> { 0, false }
3642 if (!C0 || !C1)
3643 return Constant::getNullValue(Ty);
3644
3645 APInt Res;
3646 bool Overflow;
3647 switch (IntrinsicID) {
3648 default: llvm_unreachable("Invalid case");
3649 case Intrinsic::sadd_with_overflow:
3650 Res = C0->sadd_ov(*C1, Overflow);
3651 break;
3652 case Intrinsic::uadd_with_overflow:
3653 Res = C0->uadd_ov(*C1, Overflow);
3654 break;
3655 case Intrinsic::ssub_with_overflow:
3656 Res = C0->ssub_ov(*C1, Overflow);
3657 break;
3658 case Intrinsic::usub_with_overflow:
3659 Res = C0->usub_ov(*C1, Overflow);
3660 break;
3661 case Intrinsic::smul_with_overflow:
3662 Res = C0->smul_ov(*C1, Overflow);
3663 break;
3664 case Intrinsic::umul_with_overflow:
3665 Res = C0->umul_ov(*C1, Overflow);
3666 break;
3667 }
3668 Constant *Ops[] = {
3669 ConstantInt::get(Ty->getContext(), Res),
3670 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
3671 };
3673 }
3674 case Intrinsic::uadd_sat:
3675 case Intrinsic::sadd_sat:
3676 if (!C0 && !C1)
3677 return UndefValue::get(Ty);
3678 if (!C0 || !C1)
3679 return Constant::getAllOnesValue(Ty);
3680 if (IntrinsicID == Intrinsic::uadd_sat)
3681 return ConstantInt::get(Ty, C0->uadd_sat(*C1));
3682 else
3683 return ConstantInt::get(Ty, C0->sadd_sat(*C1));
3684 case Intrinsic::usub_sat:
3685 case Intrinsic::ssub_sat:
3686 if (!C0 && !C1)
3687 return UndefValue::get(Ty);
3688 if (!C0 || !C1)
3689 return Constant::getNullValue(Ty);
3690 if (IntrinsicID == Intrinsic::usub_sat)
3691 return ConstantInt::get(Ty, C0->usub_sat(*C1));
3692 else
3693 return ConstantInt::get(Ty, C0->ssub_sat(*C1));
3694 case Intrinsic::cttz:
3695 case Intrinsic::ctlz:
3696 assert(C1 && "Must be constant int");
3697
3698 // cttz(0, 1) and ctlz(0, 1) are poison.
3699 if (C1->isOne() && (!C0 || C0->isZero()))
3700 return PoisonValue::get(Ty);
3701 if (!C0)
3702 return Constant::getNullValue(Ty);
3703 if (IntrinsicID == Intrinsic::cttz)
3704 return ConstantInt::get(Ty, C0->countr_zero());
3705 else
3706 return ConstantInt::get(Ty, C0->countl_zero());
3707
3708 case Intrinsic::abs:
3709 assert(C1 && "Must be constant int");
3710 assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
3711
3712 // Undef or minimum val operand with poison min --> poison
3713 if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
3714 return PoisonValue::get(Ty);
3715
3716 // Undef operand with no poison min --> 0 (sign bit must be clear)
3717 if (!C0)
3718 return Constant::getNullValue(Ty);
3719
3720 return ConstantInt::get(Ty, C0->abs());
3721 case Intrinsic::amdgcn_wave_reduce_umin:
3722 case Intrinsic::amdgcn_wave_reduce_umax:
3723 case Intrinsic::amdgcn_wave_reduce_max:
3724 case Intrinsic::amdgcn_wave_reduce_min:
3725 case Intrinsic::amdgcn_wave_reduce_add:
3726 case Intrinsic::amdgcn_wave_reduce_sub:
3727 case Intrinsic::amdgcn_wave_reduce_and:
3728 case Intrinsic::amdgcn_wave_reduce_or:
3729 case Intrinsic::amdgcn_wave_reduce_xor:
3730 return dyn_cast<Constant>(Operands[0]);
3731 }
3732
3733 return nullptr;
3734 }
3735
3736 // Support ConstantVector in case we have an Undef in the top.
3737 if ((isa<ConstantVector>(Operands[0]) ||
3738 isa<ConstantDataVector>(Operands[0])) &&
3739 // Check for default rounding mode.
3740 // FIXME: Support other rounding modes?
3741 isa<ConstantInt>(Operands[1]) &&
3742 cast<ConstantInt>(Operands[1])->getValue() == 4) {
3743 auto *Op = cast<Constant>(Operands[0]);
3744 switch (IntrinsicID) {
3745 default: break;
3746 case Intrinsic::x86_avx512_vcvtss2si32:
3747 case Intrinsic::x86_avx512_vcvtss2si64:
3748 case Intrinsic::x86_avx512_vcvtsd2si32:
3749 case Intrinsic::x86_avx512_vcvtsd2si64:
3750 if (ConstantFP *FPOp =
3751 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3752 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3753 /*roundTowardZero=*/false, Ty,
3754 /*IsSigned*/true);
3755 break;
3756 case Intrinsic::x86_avx512_vcvtss2usi32:
3757 case Intrinsic::x86_avx512_vcvtss2usi64:
3758 case Intrinsic::x86_avx512_vcvtsd2usi32:
3759 case Intrinsic::x86_avx512_vcvtsd2usi64:
3760 if (ConstantFP *FPOp =
3761 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3762 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3763 /*roundTowardZero=*/false, Ty,
3764 /*IsSigned*/false);
3765 break;
3766 case Intrinsic::x86_avx512_cvttss2si:
3767 case Intrinsic::x86_avx512_cvttss2si64:
3768 case Intrinsic::x86_avx512_cvttsd2si:
3769 case Intrinsic::x86_avx512_cvttsd2si64:
3770 if (ConstantFP *FPOp =
3771 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3772 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3773 /*roundTowardZero=*/true, Ty,
3774 /*IsSigned*/true);
3775 break;
3776 case Intrinsic::x86_avx512_cvttss2usi:
3777 case Intrinsic::x86_avx512_cvttss2usi64:
3778 case Intrinsic::x86_avx512_cvttsd2usi:
3779 case Intrinsic::x86_avx512_cvttsd2usi64:
3780 if (ConstantFP *FPOp =
3781 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3782 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3783 /*roundTowardZero=*/true, Ty,
3784 /*IsSigned*/false);
3785 break;
3786 }
3787 }
3788 return nullptr;
3789}
3790
3791static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
3792 const APFloat &S0,
3793 const APFloat &S1,
3794 const APFloat &S2) {
3795 unsigned ID;
3796 const fltSemantics &Sem = S0.getSemantics();
3797 APFloat MA(Sem), SC(Sem), TC(Sem);
3798 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
3799 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
3800 // S2 < 0
3801 ID = 5;
3802 SC = -S0;
3803 } else {
3804 ID = 4;
3805 SC = S0;
3806 }
3807 MA = S2;
3808 TC = -S1;
3809 } else if (abs(S1) >= abs(S0)) {
3810 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
3811 // S1 < 0
3812 ID = 3;
3813 TC = -S2;
3814 } else {
3815 ID = 2;
3816 TC = S2;
3817 }
3818 MA = S1;
3819 SC = S0;
3820 } else {
3821 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
3822 // S0 < 0
3823 ID = 1;
3824 SC = S2;
3825 } else {
3826 ID = 0;
3827 SC = -S2;
3828 }
3829 MA = S0;
3830 TC = -S1;
3831 }
3832 switch (IntrinsicID) {
3833 default:
3834 llvm_unreachable("unhandled amdgcn cube intrinsic");
3835 case Intrinsic::amdgcn_cubeid:
3836 return APFloat(Sem, ID);
3837 case Intrinsic::amdgcn_cubema:
3838 return MA + MA;
3839 case Intrinsic::amdgcn_cubesc:
3840 return SC;
3841 case Intrinsic::amdgcn_cubetc:
3842 return TC;
3843 }
3844}
3845
3846static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
3847 Type *Ty) {
3848 const APInt *C0, *C1, *C2;
3849 if (!getConstIntOrUndef(Operands[0], C0) ||
3850 !getConstIntOrUndef(Operands[1], C1) ||
3851 !getConstIntOrUndef(Operands[2], C2))
3852 return nullptr;
3853
3854 if (!C2)
3855 return UndefValue::get(Ty);
3856
3857 APInt Val(32, 0);
3858 unsigned NumUndefBytes = 0;
3859 for (unsigned I = 0; I < 32; I += 8) {
3860 unsigned Sel = C2->extractBitsAsZExtValue(8, I);
3861 unsigned B = 0;
3862
3863 if (Sel >= 13)
3864 B = 0xff;
3865 else if (Sel == 12)
3866 B = 0x00;
3867 else {
3868 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3869 if (!Src)
3870 ++NumUndefBytes;
3871 else if (Sel < 8)
3872 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3873 else
3874 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3875 }
3876
3877 Val.insertBits(B, I, 8);
3878 }
3879
3880 if (NumUndefBytes == 4)
3881 return UndefValue::get(Ty);
3882
3883 return ConstantInt::get(Ty, Val);
3884}
3885
3886static Constant *ConstantFoldScalarCall3(StringRef Name,
3887 Intrinsic::ID IntrinsicID,
3888 Type *Ty,
3889 ArrayRef<Constant *> Operands,
3890 const TargetLibraryInfo *TLI,
3891 const CallBase *Call) {
3892 assert(Operands.size() == 3 && "Wrong number of operands.");
3893
3894 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3895 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3896 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
3897 const APFloat &C1 = Op1->getValueAPF();
3898 const APFloat &C2 = Op2->getValueAPF();
3899 const APFloat &C3 = Op3->getValueAPF();
3900
3901 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
3902 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3903 APFloat Res = C1;
3905 switch (IntrinsicID) {
3906 default:
3907 return nullptr;
3908 case Intrinsic::experimental_constrained_fma:
3909 case Intrinsic::experimental_constrained_fmuladd:
3910 St = Res.fusedMultiplyAdd(C2, C3, RM);
3911 break;
3912 }
3913 if (mayFoldConstrained(
3914 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
3915 return ConstantFP::get(Ty->getContext(), Res);
3916 return nullptr;
3917 }
3918
3919 switch (IntrinsicID) {
3920 default: break;
3921 case Intrinsic::amdgcn_fma_legacy: {
3922 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3923 // NaN or infinity, gives +0.0.
3924 if (C1.isZero() || C2.isZero()) {
3925 // It's tempting to just return C3 here, but that would give the
3926 // wrong result if C3 was -0.0.
3927 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
3928 }
3929 [[fallthrough]];
3930 }
3931 case Intrinsic::fma:
3932 case Intrinsic::fmuladd: {
3933 APFloat V = C1;
3935 return ConstantFP::get(Ty->getContext(), V);
3936 }
3937
3938 case Intrinsic::nvvm_fma_rm_f:
3939 case Intrinsic::nvvm_fma_rn_f:
3940 case Intrinsic::nvvm_fma_rp_f:
3941 case Intrinsic::nvvm_fma_rz_f:
3942 case Intrinsic::nvvm_fma_rm_d:
3943 case Intrinsic::nvvm_fma_rn_d:
3944 case Intrinsic::nvvm_fma_rp_d:
3945 case Intrinsic::nvvm_fma_rz_d:
3946 case Intrinsic::nvvm_fma_rm_ftz_f:
3947 case Intrinsic::nvvm_fma_rn_ftz_f:
3948 case Intrinsic::nvvm_fma_rp_ftz_f:
3949 case Intrinsic::nvvm_fma_rz_ftz_f: {
3950 bool IsFTZ = nvvm::FMAShouldFTZ(IntrinsicID);
3951 APFloat A = IsFTZ ? FTZPreserveSign(C1) : C1;
3952 APFloat B = IsFTZ ? FTZPreserveSign(C2) : C2;
3953 APFloat C = IsFTZ ? FTZPreserveSign(C3) : C3;
3954
3955 APFloat::roundingMode RoundMode =
3956 nvvm::GetFMARoundingMode(IntrinsicID);
3957
3958 APFloat Res = A;
3959 APFloat::opStatus Status = Res.fusedMultiplyAdd(B, C, RoundMode);
3960
3961 if (!Res.isNaN() &&
3963 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3964 return ConstantFP::get(Ty->getContext(), Res);
3965 }
3966 return nullptr;
3967 }
3968
3969 case Intrinsic::amdgcn_cubeid:
3970 case Intrinsic::amdgcn_cubema:
3971 case Intrinsic::amdgcn_cubesc:
3972 case Intrinsic::amdgcn_cubetc: {
3973 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3974 return ConstantFP::get(Ty->getContext(), V);
3975 }
3976 }
3977 }
3978 }
3979 }
3980
3981 if (IntrinsicID == Intrinsic::smul_fix ||
3982 IntrinsicID == Intrinsic::smul_fix_sat) {
3983 const APInt *C0, *C1;
3984 if (!getConstIntOrUndef(Operands[0], C0) ||
3985 !getConstIntOrUndef(Operands[1], C1))
3986 return nullptr;
3987
3988 // undef * C -> 0
3989 // C * undef -> 0
3990 if (!C0 || !C1)
3991 return Constant::getNullValue(Ty);
3992
3993 // This code performs rounding towards negative infinity in case the result
3994 // cannot be represented exactly for the given scale. Targets that do care
3995 // about rounding should use a target hook for specifying how rounding
3996 // should be done, and provide their own folding to be consistent with
3997 // rounding. This is the same approach as used by
3998 // DAGTypeLegalizer::ExpandIntRes_MULFIX.
3999 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
4000 unsigned Width = C0->getBitWidth();
4001 assert(Scale < Width && "Illegal scale.");
4002 unsigned ExtendedWidth = Width * 2;
4003 APInt Product =
4004 (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
4005 if (IntrinsicID == Intrinsic::smul_fix_sat) {
4006 APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
4007 APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
4008 Product = APIntOps::smin(Product, Max);
4009 Product = APIntOps::smax(Product, Min);
4010 }
4011 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
4012 }
4013
4014 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
4015 const APInt *C0, *C1, *C2;
4016 if (!getConstIntOrUndef(Operands[0], C0) ||
4017 !getConstIntOrUndef(Operands[1], C1) ||
4018 !getConstIntOrUndef(Operands[2], C2))
4019 return nullptr;
4020
4021 bool IsRight = IntrinsicID == Intrinsic::fshr;
4022 if (!C2)
4023 return Operands[IsRight ? 1 : 0];
4024 if (!C0 && !C1)
4025 return UndefValue::get(Ty);
4026
4027 // The shift amount is interpreted as modulo the bitwidth. If the shift
4028 // amount is effectively 0, avoid UB due to oversized inverse shift below.
4029 unsigned BitWidth = C2->getBitWidth();
4030 unsigned ShAmt = C2->urem(BitWidth);
4031 if (!ShAmt)
4032 return Operands[IsRight ? 1 : 0];
4033
4034 // (C0 << ShlAmt) | (C1 >> LshrAmt)
4035 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
4036 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
4037 if (!C0)
4038 return ConstantInt::get(Ty, C1->lshr(LshrAmt));
4039 if (!C1)
4040 return ConstantInt::get(Ty, C0->shl(ShlAmt));
4041 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
4042 }
4043
4044 if (IntrinsicID == Intrinsic::amdgcn_perm)
4045 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
4046
4047 return nullptr;
4048}
4049
4050static Constant *ConstantFoldScalarCall(StringRef Name,
4051 Intrinsic::ID IntrinsicID,
4052 Type *Ty,
4053 ArrayRef<Constant *> Operands,
4054 const TargetLibraryInfo *TLI,
4055 const CallBase *Call) {
4056 if (IntrinsicID != Intrinsic::not_intrinsic &&
4057 any_of(Operands, IsaPred<PoisonValue>) &&
4058 intrinsicPropagatesPoison(IntrinsicID))
4059 return PoisonValue::get(Ty);
4060
4061 if (Operands.size() == 1)
4062 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
4063
4064 if (Operands.size() == 2) {
4065 if (Constant *FoldedLibCall =
4066 ConstantFoldLibCall2(Name, Ty, Operands, TLI)) {
4067 return FoldedLibCall;
4068 }
4069 return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands, Call);
4070 }
4071
4072 if (Operands.size() == 3)
4073 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
4074
4075 return nullptr;
4076}
4077
4078static Constant *ConstantFoldFixedVectorCall(
4079 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
4080 ArrayRef<Constant *> Operands, const DataLayout &DL,
4081 const TargetLibraryInfo *TLI, const CallBase *Call) {
4083 SmallVector<Constant *, 4> Lane(Operands.size());
4084 Type *Ty = FVTy->getElementType();
4085
4086 switch (IntrinsicID) {
4087 case Intrinsic::masked_load: {
4088 auto *SrcPtr = Operands[0];
4089 auto *Mask = Operands[1];
4090 auto *Passthru = Operands[2];
4091
4092 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
4093
4094 SmallVector<Constant *, 32> NewElements;
4095 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4096 auto *MaskElt = Mask->getAggregateElement(I);
4097 if (!MaskElt)
4098 break;
4099 auto *PassthruElt = Passthru->getAggregateElement(I);
4100 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
4101 if (isa<UndefValue>(MaskElt)) {
4102 if (PassthruElt)
4103 NewElements.push_back(PassthruElt);
4104 else if (VecElt)
4105 NewElements.push_back(VecElt);
4106 else
4107 return nullptr;
4108 }
4109 if (MaskElt->isNullValue()) {
4110 if (!PassthruElt)
4111 return nullptr;
4112 NewElements.push_back(PassthruElt);
4113 } else if (MaskElt->isOneValue()) {
4114 if (!VecElt)
4115 return nullptr;
4116 NewElements.push_back(VecElt);
4117 } else {
4118 return nullptr;
4119 }
4120 }
4121 if (NewElements.size() != FVTy->getNumElements())
4122 return nullptr;
4123 return ConstantVector::get(NewElements);
4124 }
4125 case Intrinsic::arm_mve_vctp8:
4126 case Intrinsic::arm_mve_vctp16:
4127 case Intrinsic::arm_mve_vctp32:
4128 case Intrinsic::arm_mve_vctp64: {
4129 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
4130 unsigned Lanes = FVTy->getNumElements();
4131 uint64_t Limit = Op->getZExtValue();
4132
4134 for (unsigned i = 0; i < Lanes; i++) {
4135 if (i < Limit)
4137 else
4139 }
4140 return ConstantVector::get(NCs);
4141 }
4142 return nullptr;
4143 }
4144 case Intrinsic::get_active_lane_mask: {
4145 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
4146 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
4147 if (Op0 && Op1) {
4148 unsigned Lanes = FVTy->getNumElements();
4149 uint64_t Base = Op0->getZExtValue();
4150 uint64_t Limit = Op1->getZExtValue();
4151
4153 for (unsigned i = 0; i < Lanes; i++) {
4154 if (Base + i < Limit)
4156 else
4158 }
4159 return ConstantVector::get(NCs);
4160 }
4161 return nullptr;
4162 }
4163 case Intrinsic::vector_extract: {
4164 auto *Idx = dyn_cast<ConstantInt>(Operands[1]);
4165 Constant *Vec = Operands[0];
4166 if (!Idx || !isa<FixedVectorType>(Vec->getType()))
4167 return nullptr;
4168
4169 unsigned NumElements = FVTy->getNumElements();
4170 unsigned VecNumElements =
4171 cast<FixedVectorType>(Vec->getType())->getNumElements();
4172 unsigned StartingIndex = Idx->getZExtValue();
4173
4174 // Extracting entire vector is nop
4175 if (NumElements == VecNumElements && StartingIndex == 0)
4176 return Vec;
4177
4178 for (unsigned I = StartingIndex, E = StartingIndex + NumElements; I < E;
4179 ++I) {
4180 Constant *Elt = Vec->getAggregateElement(I);
4181 if (!Elt)
4182 return nullptr;
4183 Result[I - StartingIndex] = Elt;
4184 }
4185
4186 return ConstantVector::get(Result);
4187 }
4188 case Intrinsic::vector_insert: {
4189 Constant *Vec = Operands[0];
4190 Constant *SubVec = Operands[1];
4191 auto *Idx = dyn_cast<ConstantInt>(Operands[2]);
4192 if (!Idx || !isa<FixedVectorType>(Vec->getType()))
4193 return nullptr;
4194
4195 unsigned SubVecNumElements =
4196 cast<FixedVectorType>(SubVec->getType())->getNumElements();
4197 unsigned VecNumElements =
4198 cast<FixedVectorType>(Vec->getType())->getNumElements();
4199 unsigned IdxN = Idx->getZExtValue();
4200 // Replacing entire vector with a subvec is nop
4201 if (SubVecNumElements == VecNumElements && IdxN == 0)
4202 return SubVec;
4203
4204 for (unsigned I = 0; I < VecNumElements; ++I) {
4205 Constant *Elt;
4206 if (I < IdxN + SubVecNumElements)
4207 Elt = SubVec->getAggregateElement(I - IdxN);
4208 else
4209 Elt = Vec->getAggregateElement(I);
4210 if (!Elt)
4211 return nullptr;
4212 Result[I] = Elt;
4213 }
4214 return ConstantVector::get(Result);
4215 }
4216 case Intrinsic::vector_interleave2:
4217 case Intrinsic::vector_interleave3:
4218 case Intrinsic::vector_interleave4:
4219 case Intrinsic::vector_interleave5:
4220 case Intrinsic::vector_interleave6:
4221 case Intrinsic::vector_interleave7:
4222 case Intrinsic::vector_interleave8: {
4223 unsigned NumElements =
4224 cast<FixedVectorType>(Operands[0]->getType())->getNumElements();
4225 unsigned NumOperands = Operands.size();
4226 for (unsigned I = 0; I < NumElements; ++I) {
4227 for (unsigned J = 0; J < NumOperands; ++J) {
4228 Constant *Elt = Operands[J]->getAggregateElement(I);
4229 if (!Elt)
4230 return nullptr;
4231 Result[NumOperands * I + J] = Elt;
4232 }
4233 }
4234 return ConstantVector::get(Result);
4235 }
4236 case Intrinsic::wasm_dot: {
4237 unsigned NumElements =
4238 cast<FixedVectorType>(Operands[0]->getType())->getNumElements();
4239
4240 assert(NumElements == 8 && Result.size() == 4 &&
4241 "wasm dot takes i16x8 and produces i32x4");
4242 assert(Ty->isIntegerTy());
4243 int32_t MulVector[8];
4244
4245 for (unsigned I = 0; I < NumElements; ++I) {
4246 ConstantInt *Elt0 =
4247 cast<ConstantInt>(Operands[0]->getAggregateElement(I));
4248 ConstantInt *Elt1 =
4249 cast<ConstantInt>(Operands[1]->getAggregateElement(I));
4250
4251 MulVector[I] = Elt0->getSExtValue() * Elt1->getSExtValue();
4252 }
4253 for (unsigned I = 0; I < Result.size(); I++) {
4254 int64_t IAdd = (int64_t)MulVector[I * 2] + (int64_t)MulVector[I * 2 + 1];
4255 Result[I] = ConstantInt::get(Ty, IAdd);
4256 }
4257
4258 return ConstantVector::get(Result);
4259 }
4260 default:
4261 break;
4262 }
4263
4264 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4265 // Gather a column of constants.
4266 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
4267 // Some intrinsics use a scalar type for certain arguments.
4268 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J, /*TTI=*/nullptr)) {
4269 Lane[J] = Operands[J];
4270 continue;
4271 }
4272
4273 Constant *Agg = Operands[J]->getAggregateElement(I);
4274 if (!Agg)
4275 return nullptr;
4276
4277 Lane[J] = Agg;
4278 }
4279
4280 // Use the regular scalar folding to simplify this column.
4281 Constant *Folded =
4282 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
4283 if (!Folded)
4284 return nullptr;
4285 Result[I] = Folded;
4286 }
4287
4288 return ConstantVector::get(Result);
4289}
4290
4291static Constant *ConstantFoldScalableVectorCall(
4292 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
4293 ArrayRef<Constant *> Operands, const DataLayout &DL,
4294 const TargetLibraryInfo *TLI, const CallBase *Call) {
4295 switch (IntrinsicID) {
4296 case Intrinsic::aarch64_sve_convert_from_svbool: {
4297 auto *Src = dyn_cast<Constant>(Operands[0]);
4298 if (!Src || !Src->isNullValue())
4299 break;
4300
4301 return ConstantInt::getFalse(SVTy);
4302 }
4303 case Intrinsic::get_active_lane_mask: {
4304 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
4305 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
4306 if (Op0 && Op1 && Op0->getValue().uge(Op1->getValue()))
4307 return ConstantVector::getNullValue(SVTy);
4308 break;
4309 }
4310 default:
4311 break;
4312 }
4313
4314 // If trivially vectorizable, try folding it via the scalar call if all
4315 // operands are splats.
4316
4317 // TODO: ConstantFoldFixedVectorCall should probably check this too?
4318 if (!isTriviallyVectorizable(IntrinsicID))
4319 return nullptr;
4320
4322 for (auto [I, Op] : enumerate(Operands)) {
4323 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, I, /*TTI=*/nullptr)) {
4324 SplatOps.push_back(Op);
4325 continue;
4326 }
4327 Constant *Splat = Op->getSplatValue();
4328 if (!Splat)
4329 return nullptr;
4330 SplatOps.push_back(Splat);
4331 }
4332 Constant *Folded = ConstantFoldScalarCall(
4333 Name, IntrinsicID, SVTy->getElementType(), SplatOps, TLI, Call);
4334 if (!Folded)
4335 return nullptr;
4336 return ConstantVector::getSplat(SVTy->getElementCount(), Folded);
4337}
4338
4339static std::pair<Constant *, Constant *>
4340ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) {
4341 if (isa<PoisonValue>(Op))
4342 return {Op, PoisonValue::get(IntTy)};
4343
4344 auto *ConstFP = dyn_cast<ConstantFP>(Op);
4345 if (!ConstFP)
4346 return {};
4347
4348 const APFloat &U = ConstFP->getValueAPF();
4349 int FrexpExp;
4350 APFloat FrexpMant = frexp(U, FrexpExp, APFloat::rmNearestTiesToEven);
4351 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
4352
4353 // The exponent is an "unspecified value" for inf/nan. We use zero to avoid
4354 // using undef.
4355 Constant *Result1 = FrexpMant.isFinite()
4356 ? ConstantInt::getSigned(IntTy, FrexpExp)
4357 : ConstantInt::getNullValue(IntTy);
4358 return {Result0, Result1};
4359}
4360
4361/// Handle intrinsics that return tuples, which may be tuples of vectors.
4362static Constant *
4363ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID,
4364 StructType *StTy, ArrayRef<Constant *> Operands,
4365 const DataLayout &DL, const TargetLibraryInfo *TLI,
4366 const CallBase *Call) {
4367
4368 switch (IntrinsicID) {
4369 case Intrinsic::frexp: {
4370 Type *Ty0 = StTy->getContainedType(0);
4371 Type *Ty1 = StTy->getContainedType(1)->getScalarType();
4372
4373 if (auto *FVTy0 = dyn_cast<FixedVectorType>(Ty0)) {
4374 SmallVector<Constant *, 4> Results0(FVTy0->getNumElements());
4375 SmallVector<Constant *, 4> Results1(FVTy0->getNumElements());
4376
4377 for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) {
4378 Constant *Lane = Operands[0]->getAggregateElement(I);
4379 std::tie(Results0[I], Results1[I]) =
4380 ConstantFoldScalarFrexpCall(Lane, Ty1);
4381 if (!Results0[I])
4382 return nullptr;
4383 }
4384
4385 return ConstantStruct::get(StTy, ConstantVector::get(Results0),
4386 ConstantVector::get(Results1));
4387 }
4388
4389 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1);
4390 if (!Result0)
4391 return nullptr;
4392 return ConstantStruct::get(StTy, Result0, Result1);
4393 }
4394 case Intrinsic::sincos: {
4395 Type *Ty = StTy->getContainedType(0);
4396 Type *TyScalar = Ty->getScalarType();
4397
4398 auto ConstantFoldScalarSincosCall =
4399 [&](Constant *Op) -> std::pair<Constant *, Constant *> {
4400 Constant *SinResult =
4401 ConstantFoldScalarCall(Name, Intrinsic::sin, TyScalar, Op, TLI, Call);
4402 Constant *CosResult =
4403 ConstantFoldScalarCall(Name, Intrinsic::cos, TyScalar, Op, TLI, Call);
4404 return std::make_pair(SinResult, CosResult);
4405 };
4406
4407 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
4408 SmallVector<Constant *> SinResults(FVTy->getNumElements());
4409 SmallVector<Constant *> CosResults(FVTy->getNumElements());
4410
4411 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4412 Constant *Lane = Operands[0]->getAggregateElement(I);
4413 std::tie(SinResults[I], CosResults[I]) =
4414 ConstantFoldScalarSincosCall(Lane);
4415 if (!SinResults[I] || !CosResults[I])
4416 return nullptr;
4417 }
4418
4419 return ConstantStruct::get(StTy, ConstantVector::get(SinResults),
4420 ConstantVector::get(CosResults));
4421 }
4422
4423 auto [SinResult, CosResult] = ConstantFoldScalarSincosCall(Operands[0]);
4424 if (!SinResult || !CosResult)
4425 return nullptr;
4426 return ConstantStruct::get(StTy, SinResult, CosResult);
4427 }
4428 case Intrinsic::vector_deinterleave2: {
4429 auto *Vec = Operands[0];
4430 auto *VecTy = cast<VectorType>(Vec->getType());
4431
4432 if (auto *EltC = Vec->getSplatValue()) {
4433 ElementCount HalfEC = VecTy->getElementCount().divideCoefficientBy(2);
4434 auto *HalfVec = ConstantVector::getSplat(HalfEC, EltC);
4435 return ConstantStruct::get(StTy, HalfVec, HalfVec);
4436 }
4437
4438 if (!isa<FixedVectorType>(Vec->getType()))
4439 return nullptr;
4440
4441 unsigned NumElements = VecTy->getElementCount().getFixedValue() / 2;
4442 SmallVector<Constant *, 4> Res0(NumElements), Res1(NumElements);
4443 for (unsigned I = 0; I < NumElements; ++I) {
4444 Constant *Elt0 = Vec->getAggregateElement(2 * I);
4445 Constant *Elt1 = Vec->getAggregateElement(2 * I + 1);
4446 if (!Elt0 || !Elt1)
4447 return nullptr;
4448 Res0[I] = Elt0;
4449 Res1[I] = Elt1;
4450 }
4451 return ConstantStruct::get(StTy, ConstantVector::get(Res0),
4452 ConstantVector::get(Res1));
4453 }
4454 default:
4455 // TODO: Constant folding of vector intrinsics that fall through here does
4456 // not work (e.g. overflow intrinsics)
4457 return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI, Call);
4458 }
4459
4460 return nullptr;
4461}
4462
4463} // end anonymous namespace
4464
4466 Constant *RHS, Type *Ty,
4469 // Ensure we check flags like StrictFP that might prevent this from getting
4470 // folded before generating a result.
4471 if (Call && !canConstantFoldCallTo(Call, Call->getCalledFunction()))
4472 return nullptr;
4473 return ConstantFoldIntrinsicCall2(ID, Ty, {LHS, RHS}, Call);
4474}
4475
4477 ArrayRef<Constant *> Operands,
4478 const TargetLibraryInfo *TLI,
4479 bool AllowNonDeterministic) {
4480 if (Call->isNoBuiltin())
4481 return nullptr;
4482 if (!F->hasName())
4483 return nullptr;
4484
4485 // If this is not an intrinsic and not recognized as a library call, bail out.
4486 Intrinsic::ID IID = F->getIntrinsicID();
4487 if (IID == Intrinsic::not_intrinsic) {
4488 if (!TLI)
4489 return nullptr;
4490 LibFunc LibF;
4491 if (!TLI->getLibFunc(*F, LibF))
4492 return nullptr;
4493 }
4494
4495 // Conservatively assume that floating-point libcalls may be
4496 // non-deterministic.
4497 Type *Ty = F->getReturnType();
4498 if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy())
4499 return nullptr;
4500
4501 StringRef Name = F->getName();
4502 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
4503 return ConstantFoldFixedVectorCall(
4504 Name, IID, FVTy, Operands, F->getDataLayout(), TLI, Call);
4505
4506 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
4507 return ConstantFoldScalableVectorCall(
4508 Name, IID, SVTy, Operands, F->getDataLayout(), TLI, Call);
4509
4510 if (auto *StTy = dyn_cast<StructType>(Ty))
4511 return ConstantFoldStructCall(Name, IID, StTy, Operands,
4512 F->getDataLayout(), TLI, Call);
4513
4514 // TODO: If this is a library function, we already discovered that above,
4515 // so we should pass the LibFunc, not the name (and it might be better
4516 // still to separate intrinsic handling from libcalls).
4517 return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI, Call);
4518}
4519
4521 const TargetLibraryInfo *TLI) {
4522 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
4523 // (and to some extent ConstantFoldScalarCall).
4524 if (Call->isNoBuiltin() || Call->isStrictFP())
4525 return false;
4526 Function *F = Call->getCalledFunction();
4527 if (!F)
4528 return false;
4529
4530 LibFunc Func;
4531 if (!TLI || !TLI->getLibFunc(*F, Func))
4532 return false;
4533
4534 if (Call->arg_size() == 1) {
4535 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
4536 const APFloat &Op = OpC->getValueAPF();
4537 switch (Func) {
4538 case LibFunc_logl:
4539 case LibFunc_log:
4540 case LibFunc_logf:
4541 case LibFunc_log2l:
4542 case LibFunc_log2:
4543 case LibFunc_log2f:
4544 case LibFunc_log10l:
4545 case LibFunc_log10:
4546 case LibFunc_log10f:
4547 return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
4548
4549 case LibFunc_ilogb:
4550 return !Op.isNaN() && !Op.isZero() && !Op.isInfinity();
4551
4552 case LibFunc_expl:
4553 case LibFunc_exp:
4554 case LibFunc_expf:
4555 // FIXME: These boundaries are slightly conservative.
4556 if (OpC->getType()->isDoubleTy())
4557 return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
4558 if (OpC->getType()->isFloatTy())
4559 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
4560 break;
4561
4562 case LibFunc_exp2l:
4563 case LibFunc_exp2:
4564 case LibFunc_exp2f:
4565 // FIXME: These boundaries are slightly conservative.
4566 if (OpC->getType()->isDoubleTy())
4567 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
4568 if (OpC->getType()->isFloatTy())
4569 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
4570 break;
4571
4572 case LibFunc_sinl:
4573 case LibFunc_sin:
4574 case LibFunc_sinf:
4575 case LibFunc_cosl:
4576 case LibFunc_cos:
4577 case LibFunc_cosf:
4578 return !Op.isInfinity();
4579
4580 case LibFunc_tanl:
4581 case LibFunc_tan:
4582 case LibFunc_tanf: {
4583 // FIXME: Stop using the host math library.
4584 // FIXME: The computation isn't done in the right precision.
4585 Type *Ty = OpC->getType();
4586 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
4587 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
4588 break;
4589 }
4590
4591 case LibFunc_atan:
4592 case LibFunc_atanf:
4593 case LibFunc_atanl:
4594 // Per POSIX, this MAY fail if Op is denormal. We choose not failing.
4595 return true;
4596
4597 case LibFunc_asinl:
4598 case LibFunc_asin:
4599 case LibFunc_asinf:
4600 case LibFunc_acosl:
4601 case LibFunc_acos:
4602 case LibFunc_acosf:
4603 return !(Op < APFloat::getOne(Op.getSemantics(), true) ||
4604 Op > APFloat::getOne(Op.getSemantics()));
4605
4606 case LibFunc_sinh:
4607 case LibFunc_cosh:
4608 case LibFunc_sinhf:
4609 case LibFunc_coshf:
4610 case LibFunc_sinhl:
4611 case LibFunc_coshl:
4612 // FIXME: These boundaries are slightly conservative.
4613 if (OpC->getType()->isDoubleTy())
4614 return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
4615 if (OpC->getType()->isFloatTy())
4616 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
4617 break;
4618
4619 case LibFunc_sqrtl:
4620 case LibFunc_sqrt:
4621 case LibFunc_sqrtf:
4622 return Op.isNaN() || Op.isZero() || !Op.isNegative();
4623
4624 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
4625 // maybe others?
4626 default:
4627 break;
4628 }
4629 }
4630 }
4631
4632 if (Call->arg_size() == 2) {
4633 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
4634 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
4635 if (Op0C && Op1C) {
4636 const APFloat &Op0 = Op0C->getValueAPF();
4637 const APFloat &Op1 = Op1C->getValueAPF();
4638
4639 switch (Func) {
4640 case LibFunc_powl:
4641 case LibFunc_pow:
4642 case LibFunc_powf: {
4643 // FIXME: Stop using the host math library.
4644 // FIXME: The computation isn't done in the right precision.
4645 Type *Ty = Op0C->getType();
4646 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
4647 if (Ty == Op1C->getType())
4648 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
4649 }
4650 break;
4651 }
4652
4653 case LibFunc_fmodl:
4654 case LibFunc_fmod:
4655 case LibFunc_fmodf:
4656 case LibFunc_remainderl:
4657 case LibFunc_remainder:
4658 case LibFunc_remainderf:
4659 return Op0.isNaN() || Op1.isNaN() ||
4660 (!Op0.isInfinity() && !Op1.isZero());
4661
4662 case LibFunc_atan2:
4663 case LibFunc_atan2f:
4664 case LibFunc_atan2l:
4665 // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
4666 // GLIBC and MSVC do not appear to raise an error on those, we
4667 // cannot rely on that behavior. POSIX and C11 say that a domain error
4668 // may occur, so allow for that possibility.
4669 return !Op0.isZero() || !Op1.isZero();
4670
4671 default:
4672 break;
4673 }
4674 }
4675 }
4676
4677 return false;
4678}
4679
4681 unsigned CastOp, const DataLayout &DL,
4682 PreservedCastFlags *Flags) {
4683 switch (CastOp) {
4684 case Instruction::BitCast:
4685 // Bitcast is always lossless.
4686 return ConstantFoldCastOperand(Instruction::BitCast, C, InvCastTo, DL);
4687 case Instruction::Trunc: {
4688 auto *ZExtC = ConstantFoldCastOperand(Instruction::ZExt, C, InvCastTo, DL);
4689 if (Flags) {
4690 // Truncation back on ZExt value is always NUW.
4691 Flags->NUW = true;
4692 // Test positivity of C.
4693 auto *SExtC =
4694 ConstantFoldCastOperand(Instruction::SExt, C, InvCastTo, DL);
4695 Flags->NSW = ZExtC == SExtC;
4696 }
4697 return ZExtC;
4698 }
4699 case Instruction::SExt:
4700 case Instruction::ZExt: {
4701 auto *InvC = ConstantExpr::getTrunc(C, InvCastTo);
4702 auto *CastInvC = ConstantFoldCastOperand(CastOp, InvC, C->getType(), DL);
4703 // Must satisfy CastOp(InvC) == C.
4704 if (!CastInvC || CastInvC != C)
4705 return nullptr;
4706 if (Flags && CastOp == Instruction::ZExt) {
4707 auto *SExtInvC =
4708 ConstantFoldCastOperand(Instruction::SExt, InvC, C->getType(), DL);
4709 // Test positivity of InvC.
4710 Flags->NNeg = CastInvC == SExtInvC;
4711 }
4712 return InvC;
4713 }
4714 default:
4715 return nullptr;
4716 }
4717}
4718
4720 const DataLayout &DL,
4721 PreservedCastFlags *Flags) {
4722 return getLosslessInvCast(C, DestTy, Instruction::ZExt, DL, Flags);
4723}
4724
4726 const DataLayout &DL,
4727 PreservedCastFlags *Flags) {
4728 return getLosslessInvCast(C, DestTy, Instruction::SExt, DL, Flags);
4729}
4730
4731void TargetFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
constexpr LLT S1
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Constant * FoldBitCast(Constant *V, Type *DestTy)
static ConstantFP * flushDenormalConstant(Type *Ty, const APFloat &APF, DenormalMode::DenormalModeKind Mode)
Constant * getConstantAtOffset(Constant *Base, APInt Offset, const DataLayout &DL)
If this Offset points exactly to the start of an aggregate element, return that element,...
static cl::opt< bool > DisableFPCallFolding("disable-fp-call-folding", cl::desc("Disable constant-folding of FP intrinsics and libcalls."), cl::init(false), cl::Hidden)
static ConstantFP * flushDenormalConstantFP(ConstantFP *CFP, const Instruction *Inst, bool IsOutput)
static DenormalMode getInstrDenormalMode(const Instruction *CtxI, Type *Ty)
Return the denormal mode that can be assumed when executing a floating point operation at CtxI.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
Hexagon Common GEP
amode Optimize addressing mode
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
This file contains the definitions of the enumerations and flags associated with NVVM Intrinsics,...
if(PassOpts->AAPipeline)
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
The Input class is used to parse a yaml document into in-memory structs and vectors.
static constexpr roundingMode rmTowardZero
Definition APFloat.h:348
llvm::RoundingMode roundingMode
IEEE-754R 4.3: Rounding-direction attributes.
Definition APFloat.h:342
static const fltSemantics & IEEEdouble()
Definition APFloat.h:297
static constexpr roundingMode rmTowardNegative
Definition APFloat.h:347
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:344
static constexpr roundingMode rmTowardPositive
Definition APFloat.h:346
static const fltSemantics & IEEEhalf()
Definition APFloat.h:294
static constexpr roundingMode rmNearestTiesToAway
Definition APFloat.h:349
opStatus
IEEE-754R 7: Default exception handling.
Definition APFloat.h:360
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
Definition APFloat.h:1102
opStatus divide(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1190
void copySign(const APFloat &RHS)
Definition APFloat.h:1284
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition APFloat.cpp:6053
opStatus subtract(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1172
bool isNegative() const
Definition APFloat.h:1431
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
Definition APFloat.cpp:6112
bool isPosInfinity() const
Definition APFloat.h:1444
bool isNormal() const
Definition APFloat.h:1435
bool isDenormal() const
Definition APFloat.h:1432
opStatus add(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1163
const fltSemantics & getSemantics() const
Definition APFloat.h:1439
bool isNonZero() const
Definition APFloat.h:1440
bool isFinite() const
Definition APFloat.h:1436
bool isNaN() const
Definition APFloat.h:1429
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
Definition APFloat.h:1070
opStatus multiply(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1181
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
Definition APFloat.cpp:6143
bool isSignaling() const
Definition APFloat.h:1433
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
Definition APFloat.h:1217
bool isZero() const
Definition APFloat.h:1427
APInt bitcastToAPInt() const
Definition APFloat.h:1335
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
Definition APFloat.h:1314
opStatus mod(const APFloat &RHS)
Definition APFloat.h:1208
bool isNegInfinity() const
Definition APFloat.h:1445
opStatus roundToIntegral(roundingMode RM)
Definition APFloat.h:1230
void changeSign()
Definition APFloat.h:1279
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Definition APFloat.h:1061
bool isInfinity() const
Definition APFloat.h:1428
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1971
LLVM_ABI APInt usub_sat(const APInt &RHS) const
Definition APInt.cpp:2055
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition APInt.h:424
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1541
LLVM_ABI uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const
Definition APInt.cpp:520
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
APInt abs() const
Get the absolute value.
Definition APInt.h:1796
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
Definition APInt.cpp:2026
bool sgt(const APInt &RHS) const
Signed greater than comparison.
Definition APInt.h:1202
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1948
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1183
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:381
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1489
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1112
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:210
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1928
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1935
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1640
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1599
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:220
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1041
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
Definition APInt.cpp:2036
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:828
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1960
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:874
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition APInt.h:1131
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1941
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:390
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:852
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
Definition APInt.cpp:2045
An arbitrary precision integer that knows its signedness.
Definition APSInt.h:24
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, const DataLayout *DL)
Determine how a pair of casts can be eliminated, if they can be at all.
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
bool isSigned() const
Definition InstrTypes.h:930
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:827
static bool isFPPredicate(Predicate P)
Definition InstrTypes.h:770
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
Definition Constants.h:715
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
static LLVM_ABI Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
Definition Constants.h:1387
static LLVM_ABI Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static LLVM_ABI bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
Definition Constants.h:1274
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:277
const APFloat & getValueAPF() const
Definition Constants.h:320
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:131
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition Constants.h:169
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
Definition Constants.cpp:76
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition Constants.cpp:90
Constrained floating point compare intrinsics.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI std::optional< RoundingMode > getRoundingMode() const
Wrapper for a function that represents a value that functionally represents the original function.
Definition Constants.h:952
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:233
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This provides a helper for copying FMF from an instruction or setting specified flags.
Definition IRBuilder.h:93
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition Type.cpp:802
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Definition Function.cpp:806
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutNoUnsignedSignedWrap() const
static GEPNoWrapFlags noUnsignedWrap()
bool hasNoUnsignedSignedWrap() const
bool isInBounds() const
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
Definition Globals.cpp:132
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
bool isCast() const
bool isBinaryOp() const
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
bool isUnaryOp() const
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Class to represent scalable SIMD vectors.
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition DataLayout.h:712
LLVM_ABI unsigned getElementContainingOffset(uint64_t FixedOffset) const
Given a valid byte offset into the structure, returns the structure index that contains it.
TypeSize getElementOffset(unsigned Idx) const
Definition DataLayout.h:743
Class to represent struct types.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:297
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:296
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ HalfTyID
16-bit floating point type
Definition Type.h:56
@ FloatTyID
32-bit floating point type
Definition Type.h:58
@ DoubleTyID
64-bit floating point type
Definition Type.h:59
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:294
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:197
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
Definition Type.cpp:295
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition Type.h:311
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
Definition Type.h:270
bool isX86_AMXTy() const
Return true if this is X86 AMX.
Definition Type.h:200
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:300
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
Definition Type.h:381
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:106
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1099
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:237
const ParentTy * getParent() const
Definition ilist_node.h:34
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
Definition APInt.h:2249
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
Definition APInt.h:2254
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
Definition APInt.h:2259
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
Definition APInt.h:2264
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ CE
Windows NT (Windows on ARM)
Definition MCAsmInfo.h:48
initializer< Ty > init(const Ty &Val)
@ ebStrict
This corresponds to "fpexcept.strict".
Definition FPEnv.h:42
@ ebIgnore
This corresponds to "fpexcept.ignore".
Definition FPEnv.h:40
constexpr double pi
APFloat::roundingMode GetFMARoundingMode(Intrinsic::ID IntrinsicID)
DenormalMode GetNVVMDenormMode(bool ShouldFTZ)
bool FPToIntegerIntrinsicNaNZero(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFDivRoundingMode(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicResultIsSigned(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFPToIntegerRoundingMode(Intrinsic::ID IntrinsicID)
bool RCPShouldFTZ(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FDivShouldFTZ(Intrinsic::ID IntrinsicID)
bool FAddShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxIsXorSignAbs(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFMulRoundingMode(Intrinsic::ID IntrinsicID)
bool UnaryMathIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFAddRoundingMode(Intrinsic::ID IntrinsicID)
bool FMAShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMulShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetRCPRoundingMode(Intrinsic::ID IntrinsicID)
bool FMinFMaxPropagatesNaNs(Intrinsic::ID IntrinsicID)
NodeAddr< FuncNode * > Func
Definition RDFGraph.h:393
LLVM_ABI std::error_code status(const Twine &path, file_status &result, bool follow=true)
Get file status as if by POSIX stat().
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
@ Offset
Definition DWP.cpp:532
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
LLVM_ABI Constant * ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, const DataLayout &DL)
ConstantFoldLoadThroughBitcast - try to cast constant to destination type returning null if unsuccess...
static double log2(double V)
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
LLVM_ABI Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2472
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
unsigned getPointerAddressSpace(const Type *T)
Definition SPIRVUtils.h:345
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
Definition APFloat.h:1545
LLVM_ABI Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
LLVM_ABI Constant * ConstantFoldUnaryInstruction(unsigned Opcode, Constant *V)
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
LLVM_ABI bool isMathLibCallNoop(const CallBase *Call, const TargetLibraryInfo *TLI)
Check whether the given call has no side-effects.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:732
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Definition APFloat.h:1625
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
Definition APFloat.h:1516
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:676
LLVM_ABI Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
Definition APFloat.h:1537
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
Definition APFloat.h:1580
LLVM_ABI Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Constant * FlushFPConstant(Constant *Operand, const Instruction *I, bool IsOutput)
Attempt to flush float point constant according to denormal mode set in the instruction's parent func...
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
Definition APFloat.h:1611
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
Definition APFloat.h:1525
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Constant * ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL)
Extract value of C at the given Offset reinterpreted as Ty.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
Definition APFloat.h:1561
@ Sub
Subtraction of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
DWARFExpression::Operation Op
RoundingMode
Rounding mode.
@ NearestTiesToEven
roundTiesToEven.
@ Dynamic
Denotes mode unknown at compile time.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
Attempt to constant fold an insertvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
Definition APFloat.h:1598
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
Definition APFloat.h:1638
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:866
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
DenormalModeKind
Represent handled modes for denormal (aka subnormal) modes in the floating point environment.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ Dynamic
Denormals have unknown treatment.
@ IEEE
IEEE-754 denormal numbers preserved.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getDynamic()
static constexpr DenormalMode getIEEE()
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
Definition KnownBits.h:54
const APInt & getConstant() const
Returns the value when all bits have a known value.
Definition KnownBits.h:60