LLVM 22.0.0git
ConstantFolding.cpp
Go to the documentation of this file.
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines routines for folding instructions into constants.
10//
11// Also, to supplement the basic IR ConstantExpr simplifications,
12// this file defines some additional folding routines that can make use of
13// DataLayout information. These functions cannot go in IR due to library
14// dependency issues.
15//
16//===----------------------------------------------------------------------===//
17
19#include "llvm/ADT/APFloat.h"
20#include "llvm/ADT/APInt.h"
21#include "llvm/ADT/APSInt.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/StringRef.h"
31#include "llvm/Config/config.h"
32#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GlobalValue.h"
40#include "llvm/IR/InstrTypes.h"
41#include "llvm/IR/Instruction.h"
44#include "llvm/IR/Intrinsics.h"
45#include "llvm/IR/IntrinsicsAArch64.h"
46#include "llvm/IR/IntrinsicsAMDGPU.h"
47#include "llvm/IR/IntrinsicsARM.h"
48#include "llvm/IR/IntrinsicsNVPTX.h"
49#include "llvm/IR/IntrinsicsWebAssembly.h"
50#include "llvm/IR/IntrinsicsX86.h"
52#include "llvm/IR/Operator.h"
53#include "llvm/IR/Type.h"
54#include "llvm/IR/Value.h"
59#include <cassert>
60#include <cerrno>
61#include <cfenv>
62#include <cmath>
63#include <cstdint>
64
65using namespace llvm;
66
68 "disable-fp-call-folding",
69 cl::desc("Disable constant-folding of FP intrinsics and libcalls."),
70 cl::init(false), cl::Hidden);
71
72namespace {
73
74//===----------------------------------------------------------------------===//
75// Constant Folding internal helper functions
76//===----------------------------------------------------------------------===//
77
78static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
79 Constant *C, Type *SrcEltTy,
80 unsigned NumSrcElts,
81 const DataLayout &DL) {
82 // Now that we know that the input value is a vector of integers, just shift
83 // and insert them into our result.
84 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
85 for (unsigned i = 0; i != NumSrcElts; ++i) {
86 Constant *Element;
87 if (DL.isLittleEndian())
88 Element = C->getAggregateElement(NumSrcElts - i - 1);
89 else
90 Element = C->getAggregateElement(i);
91
92 if (isa_and_nonnull<UndefValue>(Element)) {
93 Result <<= BitShift;
94 continue;
95 }
96
97 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
98 if (!ElementCI)
99 return ConstantExpr::getBitCast(C, DestTy);
100
101 Result <<= BitShift;
102 Result |= ElementCI->getValue().zext(Result.getBitWidth());
103 }
104
105 return nullptr;
106}
107
108/// Constant fold bitcast, symbolically evaluating it with DataLayout.
109/// This always returns a non-null constant, but it may be a
110/// ConstantExpr if unfoldable.
111Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
112 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
113 "Invalid constantexpr bitcast!");
114
115 // Catch the obvious splat cases.
116 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
117 return Res;
118
119 if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
120 // Handle a vector->scalar integer/fp cast.
121 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
122 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
123 Type *SrcEltTy = VTy->getElementType();
124
125 // If the vector is a vector of floating point, convert it to vector of int
126 // to simplify things.
127 if (SrcEltTy->isFloatingPointTy()) {
128 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
129 auto *SrcIVTy = FixedVectorType::get(
130 IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
131 // Ask IR to do the conversion now that #elts line up.
132 C = ConstantExpr::getBitCast(C, SrcIVTy);
133 }
134
135 APInt Result(DL.getTypeSizeInBits(DestTy), 0);
136 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
137 SrcEltTy, NumSrcElts, DL))
138 return CE;
139
140 if (isa<IntegerType>(DestTy))
141 return ConstantInt::get(DestTy, Result);
142
143 APFloat FP(DestTy->getFltSemantics(), Result);
144 return ConstantFP::get(DestTy->getContext(), FP);
145 }
146 }
147
148 // The code below only handles casts to vectors currently.
149 auto *DestVTy = dyn_cast<VectorType>(DestTy);
150 if (!DestVTy)
151 return ConstantExpr::getBitCast(C, DestTy);
152
153 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
154 // vector so the code below can handle it uniformly.
155 if (!isa<VectorType>(C->getType()) &&
157 Constant *Ops = C; // don't take the address of C!
158 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
159 }
160
161 // Some of what follows may extend to cover scalable vectors but the current
162 // implementation is fixed length specific.
163 if (!isa<FixedVectorType>(C->getType()))
164 return ConstantExpr::getBitCast(C, DestTy);
165
166 // If this is a bitcast from constant vector -> vector, fold it.
169 return ConstantExpr::getBitCast(C, DestTy);
170
171 // If the element types match, IR can fold it.
172 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
173 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
174 if (NumDstElt == NumSrcElt)
175 return ConstantExpr::getBitCast(C, DestTy);
176
177 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
178 Type *DstEltTy = DestVTy->getElementType();
179
180 // Otherwise, we're changing the number of elements in a vector, which
181 // requires endianness information to do the right thing. For example,
182 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
183 // folds to (little endian):
184 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
185 // and to (big endian):
186 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
187
188 // First thing is first. We only want to think about integer here, so if
189 // we have something in FP form, recast it as integer.
190 if (DstEltTy->isFloatingPointTy()) {
191 // Fold to an vector of integers with same size as our FP type.
192 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
193 auto *DestIVTy = FixedVectorType::get(
194 IntegerType::get(C->getContext(), FPWidth), NumDstElt);
195 // Recursively handle this integer conversion, if possible.
196 C = FoldBitCast(C, DestIVTy, DL);
197
198 // Finally, IR can handle this now that #elts line up.
199 return ConstantExpr::getBitCast(C, DestTy);
200 }
201
202 // Okay, we know the destination is integer, if the input is FP, convert
203 // it to integer first.
204 if (SrcEltTy->isFloatingPointTy()) {
205 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
206 auto *SrcIVTy = FixedVectorType::get(
207 IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
208 // Ask IR to do the conversion now that #elts line up.
209 C = ConstantExpr::getBitCast(C, SrcIVTy);
210 assert((isa<ConstantVector>(C) || // FIXME: Remove ConstantVector.
212 "Constant folding cannot fail for plain fp->int bitcast!");
213 }
214
215 // Now we know that the input and output vectors are both integer vectors
216 // of the same size, and that their #elements is not the same. Do the
217 // conversion here, which depends on whether the input or output has
218 // more elements.
219 bool isLittleEndian = DL.isLittleEndian();
220
222 if (NumDstElt < NumSrcElt) {
223 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
225 unsigned Ratio = NumSrcElt/NumDstElt;
226 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
227 unsigned SrcElt = 0;
228 for (unsigned i = 0; i != NumDstElt; ++i) {
229 // Build each element of the result.
230 Constant *Elt = Zero;
231 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
232 for (unsigned j = 0; j != Ratio; ++j) {
233 Constant *Src = C->getAggregateElement(SrcElt++);
236 cast<VectorType>(C->getType())->getElementType());
237 else
239 if (!Src) // Reject constantexpr elements.
240 return ConstantExpr::getBitCast(C, DestTy);
241
242 // Zero extend the element to the right size.
243 Src = ConstantFoldCastOperand(Instruction::ZExt, Src, Elt->getType(),
244 DL);
245 assert(Src && "Constant folding cannot fail on plain integers");
246
247 // Shift it to the right place, depending on endianness.
249 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
250 DL);
251 assert(Src && "Constant folding cannot fail on plain integers");
252
253 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
254
255 // Mix it in.
256 Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL);
257 assert(Elt && "Constant folding cannot fail on plain integers");
258 }
259 Result.push_back(Elt);
260 }
261 return ConstantVector::get(Result);
262 }
263
264 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
265 unsigned Ratio = NumDstElt/NumSrcElt;
266 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
267
268 // Loop over each source value, expanding into multiple results.
269 for (unsigned i = 0; i != NumSrcElt; ++i) {
270 auto *Element = C->getAggregateElement(i);
271
272 if (!Element) // Reject constantexpr elements.
273 return ConstantExpr::getBitCast(C, DestTy);
274
275 if (isa<UndefValue>(Element)) {
276 // Correctly Propagate undef values.
277 Result.append(Ratio, UndefValue::get(DstEltTy));
278 continue;
279 }
280
281 auto *Src = dyn_cast<ConstantInt>(Element);
282 if (!Src)
283 return ConstantExpr::getBitCast(C, DestTy);
284
285 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
286 for (unsigned j = 0; j != Ratio; ++j) {
287 // Shift the piece of the value into the right place, depending on
288 // endianness.
289 APInt Elt = Src->getValue().lshr(ShiftAmt);
290 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
291
292 // Truncate and remember this piece.
293 Result.push_back(ConstantInt::get(DstEltTy, Elt.trunc(DstBitSize)));
294 }
295 }
296
297 return ConstantVector::get(Result);
298}
299
300} // end anonymous namespace
301
302/// If this constant is a constant offset from a global, return the global and
303/// the constant. Because of constantexprs, this function is recursive.
305 APInt &Offset, const DataLayout &DL,
306 DSOLocalEquivalent **DSOEquiv) {
307 if (DSOEquiv)
308 *DSOEquiv = nullptr;
309
310 // Trivial case, constant is the global.
311 if ((GV = dyn_cast<GlobalValue>(C))) {
312 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
313 Offset = APInt(BitWidth, 0);
314 return true;
315 }
316
317 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
318 if (DSOEquiv)
319 *DSOEquiv = FoundDSOEquiv;
320 GV = FoundDSOEquiv->getGlobalValue();
321 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
322 Offset = APInt(BitWidth, 0);
323 return true;
324 }
325
326 // Otherwise, if this isn't a constant expr, bail out.
327 auto *CE = dyn_cast<ConstantExpr>(C);
328 if (!CE) return false;
329
330 // Look through ptr->int and ptr->ptr casts.
331 if (CE->getOpcode() == Instruction::PtrToInt ||
332 CE->getOpcode() == Instruction::PtrToAddr ||
333 CE->getOpcode() == Instruction::BitCast)
334 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
335 DSOEquiv);
336
337 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
338 auto *GEP = dyn_cast<GEPOperator>(CE);
339 if (!GEP)
340 return false;
341
342 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
343 APInt TmpOffset(BitWidth, 0);
344
345 // If the base isn't a global+constant, we aren't either.
346 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
347 DSOEquiv))
348 return false;
349
350 // Otherwise, add any offset that our operands provide.
351 if (!GEP->accumulateConstantOffset(DL, TmpOffset))
352 return false;
353
354 Offset = TmpOffset;
355 return true;
356}
357
359 const DataLayout &DL) {
360 do {
361 Type *SrcTy = C->getType();
362 if (SrcTy == DestTy)
363 return C;
364
365 TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
366 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
367 if (!TypeSize::isKnownGE(SrcSize, DestSize))
368 return nullptr;
369
370 // Catch the obvious splat cases (since all-zeros can coerce non-integral
371 // pointers legally).
372 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
373 return Res;
374
375 // If the type sizes are the same and a cast is legal, just directly
376 // cast the constant.
377 // But be careful not to coerce non-integral pointers illegally.
378 if (SrcSize == DestSize &&
379 DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
380 DL.isNonIntegralPointerType(DestTy->getScalarType())) {
381 Instruction::CastOps Cast = Instruction::BitCast;
382 // If we are going from a pointer to int or vice versa, we spell the cast
383 // differently.
384 if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
385 Cast = Instruction::IntToPtr;
386 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
387 Cast = Instruction::PtrToInt;
388
389 if (CastInst::castIsValid(Cast, C, DestTy))
390 return ConstantFoldCastOperand(Cast, C, DestTy, DL);
391 }
392
393 // If this isn't an aggregate type, there is nothing we can do to drill down
394 // and find a bitcastable constant.
395 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
396 return nullptr;
397
398 // We're simulating a load through a pointer that was bitcast to point to
399 // a different type, so we can try to walk down through the initial
400 // elements of an aggregate to see if some part of the aggregate is
401 // castable to implement the "load" semantic model.
402 if (SrcTy->isStructTy()) {
403 // Struct types might have leading zero-length elements like [0 x i32],
404 // which are certainly not what we are looking for, so skip them.
405 unsigned Elem = 0;
406 Constant *ElemC;
407 do {
408 ElemC = C->getAggregateElement(Elem++);
409 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
410 C = ElemC;
411 } else {
412 // For non-byte-sized vector elements, the first element is not
413 // necessarily located at the vector base address.
414 if (auto *VT = dyn_cast<VectorType>(SrcTy))
415 if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
416 return nullptr;
417
418 C = C->getAggregateElement(0u);
419 }
420 } while (C);
421
422 return nullptr;
423}
424
425namespace {
426
427/// Recursive helper to read bits out of global. C is the constant being copied
428/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
429/// results into and BytesLeft is the number of bytes left in
430/// the CurPtr buffer. DL is the DataLayout.
431bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
432 unsigned BytesLeft, const DataLayout &DL) {
433 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
434 "Out of range access");
435
436 // Reading type padding, return zero.
437 if (ByteOffset >= DL.getTypeStoreSize(C->getType()))
438 return true;
439
440 // If this element is zero or undefined, we can just return since *CurPtr is
441 // zero initialized.
443 return true;
444
445 if (auto *CI = dyn_cast<ConstantInt>(C)) {
446 if ((CI->getBitWidth() & 7) != 0)
447 return false;
448 const APInt &Val = CI->getValue();
449 unsigned IntBytes = unsigned(CI->getBitWidth()/8);
450
451 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
452 unsigned n = ByteOffset;
453 if (!DL.isLittleEndian())
454 n = IntBytes - n - 1;
455 CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue();
456 ++ByteOffset;
457 }
458 return true;
459 }
460
461 if (auto *CFP = dyn_cast<ConstantFP>(C)) {
462 if (CFP->getType()->isDoubleTy()) {
463 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
464 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
465 }
466 if (CFP->getType()->isFloatTy()){
467 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
468 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
469 }
470 if (CFP->getType()->isHalfTy()){
471 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
472 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
473 }
474 return false;
475 }
476
477 if (auto *CS = dyn_cast<ConstantStruct>(C)) {
478 const StructLayout *SL = DL.getStructLayout(CS->getType());
479 unsigned Index = SL->getElementContainingOffset(ByteOffset);
480 uint64_t CurEltOffset = SL->getElementOffset(Index);
481 ByteOffset -= CurEltOffset;
482
483 while (true) {
484 // If the element access is to the element itself and not to tail padding,
485 // read the bytes from the element.
486 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
487
488 if (ByteOffset < EltSize &&
489 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
490 BytesLeft, DL))
491 return false;
492
493 ++Index;
494
495 // Check to see if we read from the last struct element, if so we're done.
496 if (Index == CS->getType()->getNumElements())
497 return true;
498
499 // If we read all of the bytes we needed from this element we're done.
500 uint64_t NextEltOffset = SL->getElementOffset(Index);
501
502 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
503 return true;
504
505 // Move to the next element of the struct.
506 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
507 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
508 ByteOffset = 0;
509 CurEltOffset = NextEltOffset;
510 }
511 // not reached.
512 }
513
516 uint64_t NumElts, EltSize;
517 Type *EltTy;
518 if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
519 NumElts = AT->getNumElements();
520 EltTy = AT->getElementType();
521 EltSize = DL.getTypeAllocSize(EltTy);
522 } else {
523 NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
524 EltTy = cast<FixedVectorType>(C->getType())->getElementType();
525 // TODO: For non-byte-sized vectors, current implementation assumes there is
526 // padding to the next byte boundary between elements.
527 if (!DL.typeSizeEqualsStoreSize(EltTy))
528 return false;
529
530 EltSize = DL.getTypeStoreSize(EltTy);
531 }
532 uint64_t Index = ByteOffset / EltSize;
533 uint64_t Offset = ByteOffset - Index * EltSize;
534
535 for (; Index != NumElts; ++Index) {
536 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
537 BytesLeft, DL))
538 return false;
539
540 uint64_t BytesWritten = EltSize - Offset;
541 assert(BytesWritten <= EltSize && "Not indexing into this element?");
542 if (BytesWritten >= BytesLeft)
543 return true;
544
545 Offset = 0;
546 BytesLeft -= BytesWritten;
547 CurPtr += BytesWritten;
548 }
549 return true;
550 }
551
552 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
553 if (CE->getOpcode() == Instruction::IntToPtr &&
554 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
555 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
556 BytesLeft, DL);
557 }
558 }
559
560 // Otherwise, unknown initializer type.
561 return false;
562}
563
564Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
565 int64_t Offset, const DataLayout &DL) {
566 // Bail out early. Not expect to load from scalable global variable.
567 if (isa<ScalableVectorType>(LoadTy))
568 return nullptr;
569
570 auto *IntType = dyn_cast<IntegerType>(LoadTy);
571
572 // If this isn't an integer load we can't fold it directly.
573 if (!IntType) {
574 // If this is a non-integer load, we can try folding it as an int load and
575 // then bitcast the result. This can be useful for union cases. Note
576 // that address spaces don't matter here since we're not going to result in
577 // an actual new load.
578 if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
579 !LoadTy->isVectorTy())
580 return nullptr;
581
582 Type *MapTy = Type::getIntNTy(C->getContext(),
583 DL.getTypeSizeInBits(LoadTy).getFixedValue());
584 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
585 if (Res->isNullValue() && !LoadTy->isX86_AMXTy())
586 // Materializing a zero can be done trivially without a bitcast
587 return Constant::getNullValue(LoadTy);
588 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
589 Res = FoldBitCast(Res, CastTy, DL);
590 if (LoadTy->isPtrOrPtrVectorTy()) {
591 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
592 if (Res->isNullValue() && !LoadTy->isX86_AMXTy())
593 return Constant::getNullValue(LoadTy);
594 if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
595 // Be careful not to replace a load of an addrspace value with an inttoptr here
596 return nullptr;
597 Res = ConstantExpr::getIntToPtr(Res, LoadTy);
598 }
599 return Res;
600 }
601 return nullptr;
602 }
603
604 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
605 if (BytesLoaded > 32 || BytesLoaded == 0)
606 return nullptr;
607
608 // If we're not accessing anything in this constant, the result is undefined.
609 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
610 return PoisonValue::get(IntType);
611
612 // TODO: We should be able to support scalable types.
613 TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
614 if (InitializerSize.isScalable())
615 return nullptr;
616
617 // If we're not accessing anything in this constant, the result is undefined.
618 if (Offset >= (int64_t)InitializerSize.getFixedValue())
619 return PoisonValue::get(IntType);
620
621 unsigned char RawBytes[32] = {0};
622 unsigned char *CurPtr = RawBytes;
623 unsigned BytesLeft = BytesLoaded;
624
625 // If we're loading off the beginning of the global, some bytes may be valid.
626 if (Offset < 0) {
627 CurPtr += -Offset;
628 BytesLeft += Offset;
629 Offset = 0;
630 }
631
632 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
633 return nullptr;
634
635 APInt ResultVal = APInt(IntType->getBitWidth(), 0);
636 if (DL.isLittleEndian()) {
637 ResultVal = RawBytes[BytesLoaded - 1];
638 for (unsigned i = 1; i != BytesLoaded; ++i) {
639 ResultVal <<= 8;
640 ResultVal |= RawBytes[BytesLoaded - 1 - i];
641 }
642 } else {
643 ResultVal = RawBytes[0];
644 for (unsigned i = 1; i != BytesLoaded; ++i) {
645 ResultVal <<= 8;
646 ResultVal |= RawBytes[i];
647 }
648 }
649
650 return ConstantInt::get(IntType->getContext(), ResultVal);
651}
652
653} // anonymous namespace
654
655// If GV is a constant with an initializer read its representation starting
656// at Offset and return it as a constant array of unsigned char. Otherwise
657// return null.
660 if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
661 return nullptr;
662
663 const DataLayout &DL = GV->getDataLayout();
664 Constant *Init = const_cast<Constant *>(GV->getInitializer());
665 TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
666 if (InitSize < Offset)
667 return nullptr;
668
669 uint64_t NBytes = InitSize - Offset;
670 if (NBytes > UINT16_MAX)
671 // Bail for large initializers in excess of 64K to avoid allocating
672 // too much memory.
673 // Offset is assumed to be less than or equal than InitSize (this
674 // is enforced in ReadDataFromGlobal).
675 return nullptr;
676
677 SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
678 unsigned char *CurPtr = RawBytes.data();
679
680 if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
681 return nullptr;
682
683 return ConstantDataArray::get(GV->getContext(), RawBytes);
684}
685
686/// If this Offset points exactly to the start of an aggregate element, return
687/// that element, otherwise return nullptr.
689 const DataLayout &DL) {
690 if (Offset.isZero())
691 return Base;
692
694 return nullptr;
695
696 Type *ElemTy = Base->getType();
697 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
698 if (!Offset.isZero() || !Indices[0].isZero())
699 return nullptr;
700
701 Constant *C = Base;
702 for (const APInt &Index : drop_begin(Indices)) {
703 if (Index.isNegative() || Index.getActiveBits() >= 32)
704 return nullptr;
705
706 C = C->getAggregateElement(Index.getZExtValue());
707 if (!C)
708 return nullptr;
709 }
710
711 return C;
712}
713
715 const APInt &Offset,
716 const DataLayout &DL) {
717 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
718 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
719 return Result;
720
721 // Explicitly check for out-of-bounds access, so we return poison even if the
722 // constant is a uniform value.
723 TypeSize Size = DL.getTypeAllocSize(C->getType());
724 if (!Size.isScalable() && Offset.sge(Size.getFixedValue()))
725 return PoisonValue::get(Ty);
726
727 // Try an offset-independent fold of a uniform value.
728 if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty, DL))
729 return Result;
730
731 // Try hard to fold loads from bitcasted strange and non-type-safe things.
732 if (Offset.getSignificantBits() <= 64)
733 if (Constant *Result =
734 FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
735 return Result;
736
737 return nullptr;
738}
739
744
747 const DataLayout &DL) {
748 // We can only fold loads from constant globals with a definitive initializer.
749 // Check this upfront, to skip expensive offset calculations.
751 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
752 return nullptr;
753
754 C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
755 DL, Offset, /* AllowNonInbounds */ true));
756
757 if (C == GV)
758 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
759 Offset, DL))
760 return Result;
761
762 // If this load comes from anywhere in a uniform constant global, the value
763 // is always the same, regardless of the loaded offset.
764 return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty, DL);
765}
766
768 const DataLayout &DL) {
769 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
770 return ConstantFoldLoadFromConstPtr(C, Ty, std::move(Offset), DL);
771}
772
774 const DataLayout &DL) {
775 if (isa<PoisonValue>(C))
776 return PoisonValue::get(Ty);
777 if (isa<UndefValue>(C))
778 return UndefValue::get(Ty);
779 // If padding is needed when storing C to memory, then it isn't considered as
780 // uniform.
781 if (!DL.typeSizeEqualsStoreSize(C->getType()))
782 return nullptr;
783 if (C->isNullValue() && !Ty->isX86_AMXTy())
784 return Constant::getNullValue(Ty);
785 if (C->isAllOnesValue() &&
786 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
787 return Constant::getAllOnesValue(Ty);
788 return nullptr;
789}
790
791namespace {
792
793/// One of Op0/Op1 is a constant expression.
794/// Attempt to symbolically evaluate the result of a binary operator merging
795/// these together. If target data info is available, it is provided as DL,
796/// otherwise DL is null.
797Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
798 const DataLayout &DL) {
799 // SROA
800
801 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
802 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
803 // bits.
804
805 if (Opc == Instruction::And) {
806 KnownBits Known0 = computeKnownBits(Op0, DL);
807 KnownBits Known1 = computeKnownBits(Op1, DL);
808 if ((Known1.One | Known0.Zero).isAllOnes()) {
809 // All the bits of Op0 that the 'and' could be masking are already zero.
810 return Op0;
811 }
812 if ((Known0.One | Known1.Zero).isAllOnes()) {
813 // All the bits of Op1 that the 'and' could be masking are already zero.
814 return Op1;
815 }
816
817 Known0 &= Known1;
818 if (Known0.isConstant())
819 return ConstantInt::get(Op0->getType(), Known0.getConstant());
820 }
821
822 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
823 // constant. This happens frequently when iterating over a global array.
824 if (Opc == Instruction::Sub) {
825 GlobalValue *GV1, *GV2;
826 APInt Offs1, Offs2;
827
828 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
829 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
830 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
831
832 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
833 // PtrToInt may change the bitwidth so we have convert to the right size
834 // first.
835 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
836 Offs2.zextOrTrunc(OpSize));
837 }
838 }
839
840 return nullptr;
841}
842
843/// If array indices are not pointer-sized integers, explicitly cast them so
844/// that they aren't implicitly casted by the getelementptr.
845Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
846 Type *ResultTy, GEPNoWrapFlags NW,
847 std::optional<ConstantRange> InRange,
848 const DataLayout &DL, const TargetLibraryInfo *TLI) {
849 Type *IntIdxTy = DL.getIndexType(ResultTy);
850 Type *IntIdxScalarTy = IntIdxTy->getScalarType();
851
852 bool Any = false;
854 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
855 if ((i == 1 ||
857 SrcElemTy, Ops.slice(1, i - 1)))) &&
858 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
859 Any = true;
860 Type *NewType =
861 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
863 CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType,
864 DL);
865 if (!NewIdx)
866 return nullptr;
867 NewIdxs.push_back(NewIdx);
868 } else
869 NewIdxs.push_back(Ops[i]);
870 }
871
872 if (!Any)
873 return nullptr;
874
875 Constant *C =
876 ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], NewIdxs, NW, InRange);
877 return ConstantFoldConstant(C, DL, TLI);
878}
879
880/// If we can symbolically evaluate the GEP constant expression, do so.
881Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
883 const DataLayout &DL,
884 const TargetLibraryInfo *TLI) {
885 Type *SrcElemTy = GEP->getSourceElementType();
886 Type *ResTy = GEP->getType();
887 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
888 return nullptr;
889
890 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, GEP->getNoWrapFlags(),
891 GEP->getInRange(), DL, TLI))
892 return C;
893
894 Constant *Ptr = Ops[0];
895 if (!Ptr->getType()->isPointerTy())
896 return nullptr;
897
898 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
899
900 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
901 if (!isa<ConstantInt>(Ops[i]) || !Ops[i]->getType()->isIntegerTy())
902 return nullptr;
903
904 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
906 BitWidth,
907 DL.getIndexedOffsetInType(
908 SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)),
909 /*isSigned=*/true, /*implicitTrunc=*/true);
910
911 std::optional<ConstantRange> InRange = GEP->getInRange();
912 if (InRange)
913 InRange = InRange->sextOrTrunc(BitWidth);
914
915 // If this is a GEP of a GEP, fold it all into a single GEP.
916 GEPNoWrapFlags NW = GEP->getNoWrapFlags();
917 bool Overflow = false;
918 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
919 NW &= GEP->getNoWrapFlags();
920
921 SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
922
923 // Do not try the incorporate the sub-GEP if some index is not a number.
924 bool AllConstantInt = true;
925 for (Value *NestedOp : NestedOps)
926 if (!isa<ConstantInt>(NestedOp)) {
927 AllConstantInt = false;
928 break;
929 }
930 if (!AllConstantInt)
931 break;
932
933 // Adjust inrange offset and intersect inrange attributes
934 if (auto GEPRange = GEP->getInRange()) {
935 auto AdjustedGEPRange = GEPRange->sextOrTrunc(BitWidth).subtract(Offset);
936 InRange =
937 InRange ? InRange->intersectWith(AdjustedGEPRange) : AdjustedGEPRange;
938 }
939
940 Ptr = cast<Constant>(GEP->getOperand(0));
941 SrcElemTy = GEP->getSourceElementType();
942 Offset = Offset.sadd_ov(
943 APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps),
944 /*isSigned=*/true, /*implicitTrunc=*/true),
945 Overflow);
946 }
947
948 // Preserving nusw (without inbounds) also requires that the offset
949 // additions did not overflow.
950 if (NW.hasNoUnsignedSignedWrap() && !NW.isInBounds() && Overflow)
952
953 // If the base value for this address is a literal integer value, fold the
954 // getelementptr to the resulting integer value casted to the pointer type.
955 APInt BaseIntVal(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
956 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
957 if (CE->getOpcode() == Instruction::IntToPtr) {
958 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
959 BaseIntVal = Base->getValue().zextOrTrunc(BaseIntVal.getBitWidth());
960 }
961 }
962
963 if ((Ptr->isNullValue() || BaseIntVal != 0) &&
964 !DL.mustNotIntroduceIntToPtr(Ptr->getType())) {
965
966 // If the index size is smaller than the pointer size, add to the low
967 // bits only.
968 BaseIntVal.insertBits(BaseIntVal.trunc(BitWidth) + Offset, 0);
969 Constant *C = ConstantInt::get(Ptr->getContext(), BaseIntVal);
970 return ConstantExpr::getIntToPtr(C, ResTy);
971 }
972
973 // Try to infer inbounds for GEPs of globals.
974 if (!NW.isInBounds() && Offset.isNonNegative()) {
975 bool CanBeNull, CanBeFreed;
976 uint64_t DerefBytes =
977 Ptr->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
978 if (DerefBytes != 0 && !CanBeNull && Offset.sle(DerefBytes))
980 }
981
982 // nusw + nneg -> nuw
983 if (NW.hasNoUnsignedSignedWrap() && Offset.isNonNegative())
985
986 // Otherwise canonicalize this to a single ptradd.
987 LLVMContext &Ctx = Ptr->getContext();
989 ConstantInt::get(Ctx, Offset), NW,
990 InRange);
991}
992
993/// Attempt to constant fold an instruction with the
994/// specified opcode and operands. If successful, the constant result is
995/// returned, if not, null is returned. Note that this function can fail when
996/// attempting to fold instructions like loads and stores, which have no
997/// constant expression form.
998Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1000 const DataLayout &DL,
1001 const TargetLibraryInfo *TLI,
1002 bool AllowNonDeterministic) {
1003 Type *DestTy = InstOrCE->getType();
1004
1005 if (Instruction::isUnaryOp(Opcode))
1006 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1007
1008 if (Instruction::isBinaryOp(Opcode)) {
1009 switch (Opcode) {
1010 default:
1011 break;
1012 case Instruction::FAdd:
1013 case Instruction::FSub:
1014 case Instruction::FMul:
1015 case Instruction::FDiv:
1016 case Instruction::FRem:
1017 // Handle floating point instructions separately to account for denormals
1018 // TODO: If a constant expression is being folded rather than an
1019 // instruction, denormals will not be flushed/treated as zero
1020 if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
1021 return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I,
1022 AllowNonDeterministic);
1023 }
1024 }
1025 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1026 }
1027
1028 if (Instruction::isCast(Opcode))
1029 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1030
1031 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1032 Type *SrcElemTy = GEP->getSourceElementType();
1034 return nullptr;
1035
1036 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1037 return C;
1038
1039 return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1),
1040 GEP->getNoWrapFlags(),
1041 GEP->getInRange());
1042 }
1043
1044 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1045 return CE->getWithOperands(Ops);
1046
1047 switch (Opcode) {
1048 default: return nullptr;
1049 case Instruction::ICmp:
1050 case Instruction::FCmp: {
1051 auto *C = cast<CmpInst>(InstOrCE);
1052 return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
1053 DL, TLI, C);
1054 }
1055 case Instruction::Freeze:
1056 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1057 case Instruction::Call:
1058 if (auto *F = dyn_cast<Function>(Ops.back())) {
1059 const auto *Call = cast<CallBase>(InstOrCE);
1061 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI,
1062 AllowNonDeterministic);
1063 }
1064 return nullptr;
1065 case Instruction::Select:
1066 return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]);
1067 case Instruction::ExtractElement:
1069 case Instruction::ExtractValue:
1071 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1072 case Instruction::InsertElement:
1073 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1074 case Instruction::InsertValue:
1076 Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
1077 case Instruction::ShuffleVector:
1079 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1080 case Instruction::Load: {
1081 const auto *LI = dyn_cast<LoadInst>(InstOrCE);
1082 if (LI->isVolatile())
1083 return nullptr;
1084 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1085 }
1086 }
1087}
1088
1089} // end anonymous namespace
1090
1091//===----------------------------------------------------------------------===//
1092// Constant Folding public APIs
1093//===----------------------------------------------------------------------===//
1094
1095namespace {
1096
1097Constant *
1098ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1099 const TargetLibraryInfo *TLI,
1102 return const_cast<Constant *>(C);
1103
1105 for (const Use &OldU : C->operands()) {
1106 Constant *OldC = cast<Constant>(&OldU);
1107 Constant *NewC = OldC;
1108 // Recursively fold the ConstantExpr's operands. If we have already folded
1109 // a ConstantExpr, we don't have to process it again.
1110 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1111 auto It = FoldedOps.find(OldC);
1112 if (It == FoldedOps.end()) {
1113 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1114 FoldedOps.insert({OldC, NewC});
1115 } else {
1116 NewC = It->second;
1117 }
1118 }
1119 Ops.push_back(NewC);
1120 }
1121
1122 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1123 if (Constant *Res = ConstantFoldInstOperandsImpl(
1124 CE, CE->getOpcode(), Ops, DL, TLI, /*AllowNonDeterministic=*/true))
1125 return Res;
1126 return const_cast<Constant *>(C);
1127 }
1128
1130 return ConstantVector::get(Ops);
1131}
1132
1133} // end anonymous namespace
1134
1136 const DataLayout &DL,
1137 const TargetLibraryInfo *TLI) {
1138 // Handle PHI nodes quickly here...
1139 if (auto *PN = dyn_cast<PHINode>(I)) {
1140 Constant *CommonValue = nullptr;
1141
1143 for (Value *Incoming : PN->incoming_values()) {
1144 // If the incoming value is undef then skip it. Note that while we could
1145 // skip the value if it is equal to the phi node itself we choose not to
1146 // because that would break the rule that constant folding only applies if
1147 // all operands are constants.
1149 continue;
1150 // If the incoming value is not a constant, then give up.
1151 auto *C = dyn_cast<Constant>(Incoming);
1152 if (!C)
1153 return nullptr;
1154 // Fold the PHI's operands.
1155 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1156 // If the incoming value is a different constant to
1157 // the one we saw previously, then give up.
1158 if (CommonValue && C != CommonValue)
1159 return nullptr;
1160 CommonValue = C;
1161 }
1162
1163 // If we reach here, all incoming values are the same constant or undef.
1164 return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1165 }
1166
1167 // Scan the operand list, checking to see if they are all constants, if so,
1168 // hand off to ConstantFoldInstOperandsImpl.
1169 if (!all_of(I->operands(), [](const Use &U) { return isa<Constant>(U); }))
1170 return nullptr;
1171
1174 for (const Use &OpU : I->operands()) {
1175 auto *Op = cast<Constant>(&OpU);
1176 // Fold the Instruction's operands.
1177 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1178 Ops.push_back(Op);
1179 }
1180
1181 return ConstantFoldInstOperands(I, Ops, DL, TLI);
1182}
1183
1185 const TargetLibraryInfo *TLI) {
1187 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1188}
1189
1192 const DataLayout &DL,
1193 const TargetLibraryInfo *TLI,
1194 bool AllowNonDeterministic) {
1195 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI,
1196 AllowNonDeterministic);
1197}
1198
1200 unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
1201 const TargetLibraryInfo *TLI, const Instruction *I) {
1202 CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
1203 // fold: icmp (inttoptr x), null -> icmp x, 0
1204 // fold: icmp null, (inttoptr x) -> icmp 0, x
1205 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1206 // fold: icmp 0, (ptrtoint x) -> icmp null, x
1207 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1208 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1209 //
1210 // FIXME: The following comment is out of data and the DataLayout is here now.
1211 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1212 // around to know if bit truncation is happening.
1213 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1214 if (Ops1->isNullValue()) {
1215 if (CE0->getOpcode() == Instruction::IntToPtr) {
1216 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1217 // Convert the integer value to the right size to ensure we get the
1218 // proper extension or truncation.
1219 if (Constant *C = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1220 /*IsSigned*/ false, DL)) {
1221 Constant *Null = Constant::getNullValue(C->getType());
1222 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1223 }
1224 }
1225
1226 // Only do this transformation if the int is intptrty in size, otherwise
1227 // there is a truncation or extension that we aren't modeling.
1228 if (CE0->getOpcode() == Instruction::PtrToInt) {
1229 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1230 if (CE0->getType() == IntPtrTy) {
1231 Constant *C = CE0->getOperand(0);
1232 Constant *Null = Constant::getNullValue(C->getType());
1233 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1234 }
1235 }
1236 }
1237
1238 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1239 if (CE0->getOpcode() == CE1->getOpcode()) {
1240 if (CE0->getOpcode() == Instruction::IntToPtr) {
1241 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1242
1243 // Convert the integer value to the right size to ensure we get the
1244 // proper extension or truncation.
1245 Constant *C0 = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1246 /*IsSigned*/ false, DL);
1247 Constant *C1 = ConstantFoldIntegerCast(CE1->getOperand(0), IntPtrTy,
1248 /*IsSigned*/ false, DL);
1249 if (C0 && C1)
1250 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1251 }
1252
1253 // Only do this transformation if the int is intptrty in size, otherwise
1254 // there is a truncation or extension that we aren't modeling.
1255 if (CE0->getOpcode() == Instruction::PtrToInt) {
1256 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1257 if (CE0->getType() == IntPtrTy &&
1258 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1260 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1261 }
1262 }
1263 }
1264 }
1265
1266 // Convert pointer comparison (base+offset1) pred (base+offset2) into
1267 // offset1 pred offset2, for the case where the offset is inbounds. This
1268 // only works for equality and unsigned comparison, as inbounds permits
1269 // crossing the sign boundary. However, the offset comparison itself is
1270 // signed.
1271 if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
1272 unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
1273 APInt Offset0(IndexWidth, 0);
1274 bool IsEqPred = ICmpInst::isEquality(Predicate);
1275 Value *Stripped0 = Ops0->stripAndAccumulateConstantOffsets(
1276 DL, Offset0, /*AllowNonInbounds=*/IsEqPred,
1277 /*AllowInvariantGroup=*/false, /*ExternalAnalysis=*/nullptr,
1278 /*LookThroughIntToPtr=*/IsEqPred);
1279 APInt Offset1(IndexWidth, 0);
1280 Value *Stripped1 = Ops1->stripAndAccumulateConstantOffsets(
1281 DL, Offset1, /*AllowNonInbounds=*/IsEqPred,
1282 /*AllowInvariantGroup=*/false, /*ExternalAnalysis=*/nullptr,
1283 /*LookThroughIntToPtr=*/IsEqPred);
1284 if (Stripped0 == Stripped1)
1285 return ConstantInt::getBool(
1286 Ops0->getContext(),
1287 ICmpInst::compare(Offset0, Offset1,
1288 ICmpInst::getSignedPredicate(Predicate)));
1289 }
1290 } else if (isa<ConstantExpr>(Ops1)) {
1291 // If RHS is a constant expression, but the left side isn't, swap the
1292 // operands and try again.
1293 Predicate = ICmpInst::getSwappedPredicate(Predicate);
1294 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1295 }
1296
1297 if (CmpInst::isFPPredicate(Predicate)) {
1298 // Flush any denormal constant float input according to denormal handling
1299 // mode.
1300 Ops0 = FlushFPConstant(Ops0, I, /*IsOutput=*/false);
1301 if (!Ops0)
1302 return nullptr;
1303 Ops1 = FlushFPConstant(Ops1, I, /*IsOutput=*/false);
1304 if (!Ops1)
1305 return nullptr;
1306 }
1307
1308 return ConstantFoldCompareInstruction(Predicate, Ops0, Ops1);
1309}
1310
1312 const DataLayout &DL) {
1314
1315 return ConstantFoldUnaryInstruction(Opcode, Op);
1316}
1317
1319 Constant *RHS,
1320 const DataLayout &DL) {
1322 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1323 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1324 return C;
1325
1327 return ConstantExpr::get(Opcode, LHS, RHS);
1328 return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1329}
1330
1333 switch (Mode) {
1335 return nullptr;
1336 case DenormalMode::IEEE:
1337 return ConstantFP::get(Ty->getContext(), APF);
1339 return ConstantFP::get(
1340 Ty->getContext(),
1343 return ConstantFP::get(Ty->getContext(),
1344 APFloat::getZero(APF.getSemantics(), false));
1345 default:
1346 break;
1347 }
1348
1349 llvm_unreachable("unknown denormal mode");
1350}
1351
1352/// Return the denormal mode that can be assumed when executing a floating point
1353/// operation at \p CtxI.
1355 if (!CtxI || !CtxI->getParent() || !CtxI->getFunction())
1356 return DenormalMode::getDynamic();
1357 return CtxI->getFunction()->getDenormalMode(Ty->getFltSemantics());
1358}
1359
1361 const Instruction *Inst,
1362 bool IsOutput) {
1363 const APFloat &APF = CFP->getValueAPF();
1364 if (!APF.isDenormal())
1365 return CFP;
1366
1368 return flushDenormalConstant(CFP->getType(), APF,
1369 IsOutput ? Mode.Output : Mode.Input);
1370}
1371
1373 bool IsOutput) {
1374 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Operand))
1375 return flushDenormalConstantFP(CFP, Inst, IsOutput);
1376
1378 return Operand;
1379
1380 Type *Ty = Operand->getType();
1381 VectorType *VecTy = dyn_cast<VectorType>(Ty);
1382 if (VecTy) {
1383 if (auto *Splat = dyn_cast_or_null<ConstantFP>(Operand->getSplatValue())) {
1384 ConstantFP *Folded = flushDenormalConstantFP(Splat, Inst, IsOutput);
1385 if (!Folded)
1386 return nullptr;
1387 return ConstantVector::getSplat(VecTy->getElementCount(), Folded);
1388 }
1389
1390 Ty = VecTy->getElementType();
1391 }
1392
1393 if (isa<ConstantExpr>(Operand))
1394 return Operand;
1395
1396 if (const auto *CV = dyn_cast<ConstantVector>(Operand)) {
1398 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1399 Constant *Element = CV->getAggregateElement(i);
1400 if (isa<UndefValue>(Element)) {
1401 NewElts.push_back(Element);
1402 continue;
1403 }
1404
1405 ConstantFP *CFP = dyn_cast<ConstantFP>(Element);
1406 if (!CFP)
1407 return nullptr;
1408
1409 ConstantFP *Folded = flushDenormalConstantFP(CFP, Inst, IsOutput);
1410 if (!Folded)
1411 return nullptr;
1412 NewElts.push_back(Folded);
1413 }
1414
1415 return ConstantVector::get(NewElts);
1416 }
1417
1418 if (const auto *CDV = dyn_cast<ConstantDataVector>(Operand)) {
1420 for (unsigned I = 0, E = CDV->getNumElements(); I < E; ++I) {
1421 const APFloat &Elt = CDV->getElementAsAPFloat(I);
1422 if (!Elt.isDenormal()) {
1423 NewElts.push_back(ConstantFP::get(Ty, Elt));
1424 } else {
1425 DenormalMode Mode = getInstrDenormalMode(Inst, Ty);
1426 ConstantFP *Folded =
1427 flushDenormalConstant(Ty, Elt, IsOutput ? Mode.Output : Mode.Input);
1428 if (!Folded)
1429 return nullptr;
1430 NewElts.push_back(Folded);
1431 }
1432 }
1433
1434 return ConstantVector::get(NewElts);
1435 }
1436
1437 return nullptr;
1438}
1439
1441 Constant *RHS, const DataLayout &DL,
1442 const Instruction *I,
1443 bool AllowNonDeterministic) {
1444 if (Instruction::isBinaryOp(Opcode)) {
1445 // Flush denormal inputs if needed.
1446 Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false);
1447 if (!Op0)
1448 return nullptr;
1449 Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false);
1450 if (!Op1)
1451 return nullptr;
1452
1453 // If nsz or an algebraic FMF flag is set, the result of the FP operation
1454 // may change due to future optimization. Don't constant fold them if
1455 // non-deterministic results are not allowed.
1456 if (!AllowNonDeterministic)
1458 if (FP->hasNoSignedZeros() || FP->hasAllowReassoc() ||
1459 FP->hasAllowContract() || FP->hasAllowReciprocal())
1460 return nullptr;
1461
1462 // Calculate constant result.
1463 Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
1464 if (!C)
1465 return nullptr;
1466
1467 // Flush denormal output if needed.
1468 C = FlushFPConstant(C, I, /* IsOutput */ true);
1469 if (!C)
1470 return nullptr;
1471
1472 // The precise NaN value is non-deterministic.
1473 if (!AllowNonDeterministic && C->isNaN())
1474 return nullptr;
1475
1476 return C;
1477 }
1478 // If instruction lacks a parent/function and the denormal mode cannot be
1479 // determined, use the default (IEEE).
1480 return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
1481}
1482
1484 Type *DestTy, const DataLayout &DL) {
1485 assert(Instruction::isCast(Opcode));
1486
1487 if (auto *CE = dyn_cast<ConstantExpr>(C))
1488 if (CE->isCast())
1489 if (unsigned NewOp = CastInst::isEliminableCastPair(
1490 Instruction::CastOps(CE->getOpcode()),
1491 Instruction::CastOps(Opcode), CE->getOperand(0)->getType(),
1492 C->getType(), DestTy, &DL))
1493 return ConstantFoldCastOperand(NewOp, CE->getOperand(0), DestTy, DL);
1494
1495 switch (Opcode) {
1496 default:
1497 llvm_unreachable("Missing case");
1498 case Instruction::PtrToAddr:
1499 case Instruction::PtrToInt:
1500 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1501 Constant *FoldedValue = nullptr;
1502 // If the input is an inttoptr, eliminate the pair. This requires knowing
1503 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1504 if (CE->getOpcode() == Instruction::IntToPtr) {
1505 // zext/trunc the inttoptr to pointer/address size.
1506 Type *MidTy = Opcode == Instruction::PtrToInt
1507 ? DL.getAddressType(CE->getType())
1508 : DL.getIntPtrType(CE->getType());
1509 FoldedValue = ConstantFoldIntegerCast(CE->getOperand(0), MidTy,
1510 /*IsSigned=*/false, DL);
1511 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1512 // If we have GEP, we can perform the following folds:
1513 // (ptrtoint/ptrtoaddr (gep null, x)) -> x
1514 // (ptrtoint/ptrtoaddr (gep (gep null, x), y) -> x + y, etc.
1515 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1516 APInt BaseOffset(BitWidth, 0);
1517 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1518 DL, BaseOffset, /*AllowNonInbounds=*/true));
1519 if (Base->isNullValue()) {
1520 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1521 } else {
1522 // ptrtoint/ptrtoaddr (gep i8, Ptr, (sub 0, V))
1523 // -> sub (ptrtoint/ptrtoaddr Ptr), V
1524 if (GEP->getNumIndices() == 1 &&
1525 GEP->getSourceElementType()->isIntegerTy(8)) {
1526 auto *Ptr = cast<Constant>(GEP->getPointerOperand());
1527 auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
1528 Type *IntIdxTy = DL.getIndexType(Ptr->getType());
1529 if (Sub && Sub->getType() == IntIdxTy &&
1530 Sub->getOpcode() == Instruction::Sub &&
1531 Sub->getOperand(0)->isNullValue())
1532 FoldedValue = ConstantExpr::getSub(
1533 ConstantExpr::getCast(Opcode, Ptr, IntIdxTy),
1534 Sub->getOperand(1));
1535 }
1536 }
1537 }
1538 if (FoldedValue) {
1539 // Do a zext or trunc to get to the ptrtoint/ptrtoaddr dest size.
1540 return ConstantFoldIntegerCast(FoldedValue, DestTy, /*IsSigned=*/false,
1541 DL);
1542 }
1543 }
1544 break;
1545 case Instruction::IntToPtr:
1546 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1547 // the int size is >= the ptr size and the address spaces are the same.
1548 // This requires knowing the width of a pointer, so it can't be done in
1549 // ConstantExpr::getCast.
1550 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1551 if (CE->getOpcode() == Instruction::PtrToInt) {
1552 Constant *SrcPtr = CE->getOperand(0);
1553 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1554 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1555
1556 if (MidIntSize >= SrcPtrSize) {
1557 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1558 if (SrcAS == DestTy->getPointerAddressSpace())
1559 return FoldBitCast(CE->getOperand(0), DestTy, DL);
1560 }
1561 }
1562 }
1563 break;
1564 case Instruction::Trunc:
1565 case Instruction::ZExt:
1566 case Instruction::SExt:
1567 case Instruction::FPTrunc:
1568 case Instruction::FPExt:
1569 case Instruction::UIToFP:
1570 case Instruction::SIToFP:
1571 case Instruction::FPToUI:
1572 case Instruction::FPToSI:
1573 case Instruction::AddrSpaceCast:
1574 break;
1575 case Instruction::BitCast:
1576 return FoldBitCast(C, DestTy, DL);
1577 }
1578
1580 return ConstantExpr::getCast(Opcode, C, DestTy);
1581 return ConstantFoldCastInstruction(Opcode, C, DestTy);
1582}
1583
1585 bool IsSigned, const DataLayout &DL) {
1586 Type *SrcTy = C->getType();
1587 if (SrcTy == DestTy)
1588 return C;
1589 if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1590 return ConstantFoldCastOperand(Instruction::Trunc, C, DestTy, DL);
1591 if (IsSigned)
1592 return ConstantFoldCastOperand(Instruction::SExt, C, DestTy, DL);
1593 return ConstantFoldCastOperand(Instruction::ZExt, C, DestTy, DL);
1594}
1595
1596//===----------------------------------------------------------------------===//
1597// Constant Folding for Calls
1598//
1599
1601 if (Call->isNoBuiltin())
1602 return false;
1603 if (Call->getFunctionType() != F->getFunctionType())
1604 return false;
1605
1606 // Allow FP calls (both libcalls and intrinsics) to avoid being folded.
1607 // This can be useful for GPU targets or in cross-compilation scenarios
1608 // when the exact target FP behaviour is required, and the host compiler's
1609 // behaviour may be slightly different from the device's run-time behaviour.
1610 if (DisableFPCallFolding && (F->getReturnType()->isFloatingPointTy() ||
1611 any_of(F->args(), [](const Argument &Arg) {
1612 return Arg.getType()->isFloatingPointTy();
1613 })))
1614 return false;
1615
1616 switch (F->getIntrinsicID()) {
1617 // Operations that do not operate floating-point numbers and do not depend on
1618 // FP environment can be folded even in strictfp functions.
1619 case Intrinsic::bswap:
1620 case Intrinsic::ctpop:
1621 case Intrinsic::ctlz:
1622 case Intrinsic::cttz:
1623 case Intrinsic::fshl:
1624 case Intrinsic::fshr:
1625 case Intrinsic::launder_invariant_group:
1626 case Intrinsic::strip_invariant_group:
1627 case Intrinsic::masked_load:
1628 case Intrinsic::get_active_lane_mask:
1629 case Intrinsic::abs:
1630 case Intrinsic::smax:
1631 case Intrinsic::smin:
1632 case Intrinsic::umax:
1633 case Intrinsic::umin:
1634 case Intrinsic::scmp:
1635 case Intrinsic::ucmp:
1636 case Intrinsic::sadd_with_overflow:
1637 case Intrinsic::uadd_with_overflow:
1638 case Intrinsic::ssub_with_overflow:
1639 case Intrinsic::usub_with_overflow:
1640 case Intrinsic::smul_with_overflow:
1641 case Intrinsic::umul_with_overflow:
1642 case Intrinsic::sadd_sat:
1643 case Intrinsic::uadd_sat:
1644 case Intrinsic::ssub_sat:
1645 case Intrinsic::usub_sat:
1646 case Intrinsic::smul_fix:
1647 case Intrinsic::smul_fix_sat:
1648 case Intrinsic::bitreverse:
1649 case Intrinsic::is_constant:
1650 case Intrinsic::vector_reduce_add:
1651 case Intrinsic::vector_reduce_mul:
1652 case Intrinsic::vector_reduce_and:
1653 case Intrinsic::vector_reduce_or:
1654 case Intrinsic::vector_reduce_xor:
1655 case Intrinsic::vector_reduce_smin:
1656 case Intrinsic::vector_reduce_smax:
1657 case Intrinsic::vector_reduce_umin:
1658 case Intrinsic::vector_reduce_umax:
1659 case Intrinsic::vector_extract:
1660 case Intrinsic::vector_insert:
1661 case Intrinsic::vector_interleave2:
1662 case Intrinsic::vector_deinterleave2:
1663 // Target intrinsics
1664 case Intrinsic::amdgcn_perm:
1665 case Intrinsic::amdgcn_wave_reduce_umin:
1666 case Intrinsic::amdgcn_wave_reduce_umax:
1667 case Intrinsic::amdgcn_wave_reduce_max:
1668 case Intrinsic::amdgcn_wave_reduce_min:
1669 case Intrinsic::amdgcn_wave_reduce_add:
1670 case Intrinsic::amdgcn_wave_reduce_sub:
1671 case Intrinsic::amdgcn_wave_reduce_and:
1672 case Intrinsic::amdgcn_wave_reduce_or:
1673 case Intrinsic::amdgcn_wave_reduce_xor:
1674 case Intrinsic::amdgcn_s_wqm:
1675 case Intrinsic::amdgcn_s_quadmask:
1676 case Intrinsic::amdgcn_s_bitreplicate:
1677 case Intrinsic::arm_mve_vctp8:
1678 case Intrinsic::arm_mve_vctp16:
1679 case Intrinsic::arm_mve_vctp32:
1680 case Intrinsic::arm_mve_vctp64:
1681 case Intrinsic::aarch64_sve_convert_from_svbool:
1682 case Intrinsic::wasm_alltrue:
1683 case Intrinsic::wasm_anytrue:
1684 case Intrinsic::wasm_dot:
1685 // WebAssembly float semantics are always known
1686 case Intrinsic::wasm_trunc_signed:
1687 case Intrinsic::wasm_trunc_unsigned:
1688 return true;
1689
1690 // Floating point operations cannot be folded in strictfp functions in
1691 // general case. They can be folded if FP environment is known to compiler.
1692 case Intrinsic::minnum:
1693 case Intrinsic::maxnum:
1694 case Intrinsic::minimum:
1695 case Intrinsic::maximum:
1696 case Intrinsic::minimumnum:
1697 case Intrinsic::maximumnum:
1698 case Intrinsic::log:
1699 case Intrinsic::log2:
1700 case Intrinsic::log10:
1701 case Intrinsic::exp:
1702 case Intrinsic::exp2:
1703 case Intrinsic::exp10:
1704 case Intrinsic::sqrt:
1705 case Intrinsic::sin:
1706 case Intrinsic::cos:
1707 case Intrinsic::sincos:
1708 case Intrinsic::sinh:
1709 case Intrinsic::cosh:
1710 case Intrinsic::atan:
1711 case Intrinsic::pow:
1712 case Intrinsic::powi:
1713 case Intrinsic::ldexp:
1714 case Intrinsic::fma:
1715 case Intrinsic::fmuladd:
1716 case Intrinsic::frexp:
1717 case Intrinsic::fptoui_sat:
1718 case Intrinsic::fptosi_sat:
1719 case Intrinsic::convert_from_fp16:
1720 case Intrinsic::convert_to_fp16:
1721 case Intrinsic::amdgcn_cos:
1722 case Intrinsic::amdgcn_cubeid:
1723 case Intrinsic::amdgcn_cubema:
1724 case Intrinsic::amdgcn_cubesc:
1725 case Intrinsic::amdgcn_cubetc:
1726 case Intrinsic::amdgcn_fmul_legacy:
1727 case Intrinsic::amdgcn_fma_legacy:
1728 case Intrinsic::amdgcn_fract:
1729 case Intrinsic::amdgcn_sin:
1730 // The intrinsics below depend on rounding mode in MXCSR.
1731 case Intrinsic::x86_sse_cvtss2si:
1732 case Intrinsic::x86_sse_cvtss2si64:
1733 case Intrinsic::x86_sse_cvttss2si:
1734 case Intrinsic::x86_sse_cvttss2si64:
1735 case Intrinsic::x86_sse2_cvtsd2si:
1736 case Intrinsic::x86_sse2_cvtsd2si64:
1737 case Intrinsic::x86_sse2_cvttsd2si:
1738 case Intrinsic::x86_sse2_cvttsd2si64:
1739 case Intrinsic::x86_avx512_vcvtss2si32:
1740 case Intrinsic::x86_avx512_vcvtss2si64:
1741 case Intrinsic::x86_avx512_cvttss2si:
1742 case Intrinsic::x86_avx512_cvttss2si64:
1743 case Intrinsic::x86_avx512_vcvtsd2si32:
1744 case Intrinsic::x86_avx512_vcvtsd2si64:
1745 case Intrinsic::x86_avx512_cvttsd2si:
1746 case Intrinsic::x86_avx512_cvttsd2si64:
1747 case Intrinsic::x86_avx512_vcvtss2usi32:
1748 case Intrinsic::x86_avx512_vcvtss2usi64:
1749 case Intrinsic::x86_avx512_cvttss2usi:
1750 case Intrinsic::x86_avx512_cvttss2usi64:
1751 case Intrinsic::x86_avx512_vcvtsd2usi32:
1752 case Intrinsic::x86_avx512_vcvtsd2usi64:
1753 case Intrinsic::x86_avx512_cvttsd2usi:
1754 case Intrinsic::x86_avx512_cvttsd2usi64:
1755
1756 // NVVM FMax intrinsics
1757 case Intrinsic::nvvm_fmax_d:
1758 case Intrinsic::nvvm_fmax_f:
1759 case Intrinsic::nvvm_fmax_ftz_f:
1760 case Intrinsic::nvvm_fmax_ftz_nan_f:
1761 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
1762 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
1763 case Intrinsic::nvvm_fmax_nan_f:
1764 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
1765 case Intrinsic::nvvm_fmax_xorsign_abs_f:
1766
1767 // NVVM FMin intrinsics
1768 case Intrinsic::nvvm_fmin_d:
1769 case Intrinsic::nvvm_fmin_f:
1770 case Intrinsic::nvvm_fmin_ftz_f:
1771 case Intrinsic::nvvm_fmin_ftz_nan_f:
1772 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
1773 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
1774 case Intrinsic::nvvm_fmin_nan_f:
1775 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
1776 case Intrinsic::nvvm_fmin_xorsign_abs_f:
1777
1778 // NVVM float/double to int32/uint32 conversion intrinsics
1779 case Intrinsic::nvvm_f2i_rm:
1780 case Intrinsic::nvvm_f2i_rn:
1781 case Intrinsic::nvvm_f2i_rp:
1782 case Intrinsic::nvvm_f2i_rz:
1783 case Intrinsic::nvvm_f2i_rm_ftz:
1784 case Intrinsic::nvvm_f2i_rn_ftz:
1785 case Intrinsic::nvvm_f2i_rp_ftz:
1786 case Intrinsic::nvvm_f2i_rz_ftz:
1787 case Intrinsic::nvvm_f2ui_rm:
1788 case Intrinsic::nvvm_f2ui_rn:
1789 case Intrinsic::nvvm_f2ui_rp:
1790 case Intrinsic::nvvm_f2ui_rz:
1791 case Intrinsic::nvvm_f2ui_rm_ftz:
1792 case Intrinsic::nvvm_f2ui_rn_ftz:
1793 case Intrinsic::nvvm_f2ui_rp_ftz:
1794 case Intrinsic::nvvm_f2ui_rz_ftz:
1795 case Intrinsic::nvvm_d2i_rm:
1796 case Intrinsic::nvvm_d2i_rn:
1797 case Intrinsic::nvvm_d2i_rp:
1798 case Intrinsic::nvvm_d2i_rz:
1799 case Intrinsic::nvvm_d2ui_rm:
1800 case Intrinsic::nvvm_d2ui_rn:
1801 case Intrinsic::nvvm_d2ui_rp:
1802 case Intrinsic::nvvm_d2ui_rz:
1803
1804 // NVVM float/double to int64/uint64 conversion intrinsics
1805 case Intrinsic::nvvm_f2ll_rm:
1806 case Intrinsic::nvvm_f2ll_rn:
1807 case Intrinsic::nvvm_f2ll_rp:
1808 case Intrinsic::nvvm_f2ll_rz:
1809 case Intrinsic::nvvm_f2ll_rm_ftz:
1810 case Intrinsic::nvvm_f2ll_rn_ftz:
1811 case Intrinsic::nvvm_f2ll_rp_ftz:
1812 case Intrinsic::nvvm_f2ll_rz_ftz:
1813 case Intrinsic::nvvm_f2ull_rm:
1814 case Intrinsic::nvvm_f2ull_rn:
1815 case Intrinsic::nvvm_f2ull_rp:
1816 case Intrinsic::nvvm_f2ull_rz:
1817 case Intrinsic::nvvm_f2ull_rm_ftz:
1818 case Intrinsic::nvvm_f2ull_rn_ftz:
1819 case Intrinsic::nvvm_f2ull_rp_ftz:
1820 case Intrinsic::nvvm_f2ull_rz_ftz:
1821 case Intrinsic::nvvm_d2ll_rm:
1822 case Intrinsic::nvvm_d2ll_rn:
1823 case Intrinsic::nvvm_d2ll_rp:
1824 case Intrinsic::nvvm_d2ll_rz:
1825 case Intrinsic::nvvm_d2ull_rm:
1826 case Intrinsic::nvvm_d2ull_rn:
1827 case Intrinsic::nvvm_d2ull_rp:
1828 case Intrinsic::nvvm_d2ull_rz:
1829
1830 // NVVM math intrinsics:
1831 case Intrinsic::nvvm_ceil_d:
1832 case Intrinsic::nvvm_ceil_f:
1833 case Intrinsic::nvvm_ceil_ftz_f:
1834
1835 case Intrinsic::nvvm_fabs:
1836 case Intrinsic::nvvm_fabs_ftz:
1837
1838 case Intrinsic::nvvm_floor_d:
1839 case Intrinsic::nvvm_floor_f:
1840 case Intrinsic::nvvm_floor_ftz_f:
1841
1842 case Intrinsic::nvvm_rcp_rm_d:
1843 case Intrinsic::nvvm_rcp_rm_f:
1844 case Intrinsic::nvvm_rcp_rm_ftz_f:
1845 case Intrinsic::nvvm_rcp_rn_d:
1846 case Intrinsic::nvvm_rcp_rn_f:
1847 case Intrinsic::nvvm_rcp_rn_ftz_f:
1848 case Intrinsic::nvvm_rcp_rp_d:
1849 case Intrinsic::nvvm_rcp_rp_f:
1850 case Intrinsic::nvvm_rcp_rp_ftz_f:
1851 case Intrinsic::nvvm_rcp_rz_d:
1852 case Intrinsic::nvvm_rcp_rz_f:
1853 case Intrinsic::nvvm_rcp_rz_ftz_f:
1854
1855 case Intrinsic::nvvm_round_d:
1856 case Intrinsic::nvvm_round_f:
1857 case Intrinsic::nvvm_round_ftz_f:
1858
1859 case Intrinsic::nvvm_saturate_d:
1860 case Intrinsic::nvvm_saturate_f:
1861 case Intrinsic::nvvm_saturate_ftz_f:
1862
1863 case Intrinsic::nvvm_sqrt_f:
1864 case Intrinsic::nvvm_sqrt_rn_d:
1865 case Intrinsic::nvvm_sqrt_rn_f:
1866 case Intrinsic::nvvm_sqrt_rn_ftz_f:
1867 return !Call->isStrictFP();
1868
1869 // NVVM add intrinsics with explicit rounding modes
1870 case Intrinsic::nvvm_add_rm_d:
1871 case Intrinsic::nvvm_add_rn_d:
1872 case Intrinsic::nvvm_add_rp_d:
1873 case Intrinsic::nvvm_add_rz_d:
1874 case Intrinsic::nvvm_add_rm_f:
1875 case Intrinsic::nvvm_add_rn_f:
1876 case Intrinsic::nvvm_add_rp_f:
1877 case Intrinsic::nvvm_add_rz_f:
1878 case Intrinsic::nvvm_add_rm_ftz_f:
1879 case Intrinsic::nvvm_add_rn_ftz_f:
1880 case Intrinsic::nvvm_add_rp_ftz_f:
1881 case Intrinsic::nvvm_add_rz_ftz_f:
1882
1883 // NVVM div intrinsics with explicit rounding modes
1884 case Intrinsic::nvvm_div_rm_d:
1885 case Intrinsic::nvvm_div_rn_d:
1886 case Intrinsic::nvvm_div_rp_d:
1887 case Intrinsic::nvvm_div_rz_d:
1888 case Intrinsic::nvvm_div_rm_f:
1889 case Intrinsic::nvvm_div_rn_f:
1890 case Intrinsic::nvvm_div_rp_f:
1891 case Intrinsic::nvvm_div_rz_f:
1892 case Intrinsic::nvvm_div_rm_ftz_f:
1893 case Intrinsic::nvvm_div_rn_ftz_f:
1894 case Intrinsic::nvvm_div_rp_ftz_f:
1895 case Intrinsic::nvvm_div_rz_ftz_f:
1896
1897 // NVVM mul intrinsics with explicit rounding modes
1898 case Intrinsic::nvvm_mul_rm_d:
1899 case Intrinsic::nvvm_mul_rn_d:
1900 case Intrinsic::nvvm_mul_rp_d:
1901 case Intrinsic::nvvm_mul_rz_d:
1902 case Intrinsic::nvvm_mul_rm_f:
1903 case Intrinsic::nvvm_mul_rn_f:
1904 case Intrinsic::nvvm_mul_rp_f:
1905 case Intrinsic::nvvm_mul_rz_f:
1906 case Intrinsic::nvvm_mul_rm_ftz_f:
1907 case Intrinsic::nvvm_mul_rn_ftz_f:
1908 case Intrinsic::nvvm_mul_rp_ftz_f:
1909 case Intrinsic::nvvm_mul_rz_ftz_f:
1910
1911 // NVVM fma intrinsics with explicit rounding modes
1912 case Intrinsic::nvvm_fma_rm_d:
1913 case Intrinsic::nvvm_fma_rn_d:
1914 case Intrinsic::nvvm_fma_rp_d:
1915 case Intrinsic::nvvm_fma_rz_d:
1916 case Intrinsic::nvvm_fma_rm_f:
1917 case Intrinsic::nvvm_fma_rn_f:
1918 case Intrinsic::nvvm_fma_rp_f:
1919 case Intrinsic::nvvm_fma_rz_f:
1920 case Intrinsic::nvvm_fma_rm_ftz_f:
1921 case Intrinsic::nvvm_fma_rn_ftz_f:
1922 case Intrinsic::nvvm_fma_rp_ftz_f:
1923 case Intrinsic::nvvm_fma_rz_ftz_f:
1924
1925 // Sign operations are actually bitwise operations, they do not raise
1926 // exceptions even for SNANs.
1927 case Intrinsic::fabs:
1928 case Intrinsic::copysign:
1929 case Intrinsic::is_fpclass:
1930 // Non-constrained variants of rounding operations means default FP
1931 // environment, they can be folded in any case.
1932 case Intrinsic::ceil:
1933 case Intrinsic::floor:
1934 case Intrinsic::round:
1935 case Intrinsic::roundeven:
1936 case Intrinsic::trunc:
1937 case Intrinsic::nearbyint:
1938 case Intrinsic::rint:
1939 case Intrinsic::canonicalize:
1940
1941 // Constrained intrinsics can be folded if FP environment is known
1942 // to compiler.
1943 case Intrinsic::experimental_constrained_fma:
1944 case Intrinsic::experimental_constrained_fmuladd:
1945 case Intrinsic::experimental_constrained_fadd:
1946 case Intrinsic::experimental_constrained_fsub:
1947 case Intrinsic::experimental_constrained_fmul:
1948 case Intrinsic::experimental_constrained_fdiv:
1949 case Intrinsic::experimental_constrained_frem:
1950 case Intrinsic::experimental_constrained_ceil:
1951 case Intrinsic::experimental_constrained_floor:
1952 case Intrinsic::experimental_constrained_round:
1953 case Intrinsic::experimental_constrained_roundeven:
1954 case Intrinsic::experimental_constrained_trunc:
1955 case Intrinsic::experimental_constrained_nearbyint:
1956 case Intrinsic::experimental_constrained_rint:
1957 case Intrinsic::experimental_constrained_fcmp:
1958 case Intrinsic::experimental_constrained_fcmps:
1959 return true;
1960 default:
1961 return false;
1962 case Intrinsic::not_intrinsic: break;
1963 }
1964
1965 if (!F->hasName() || Call->isStrictFP())
1966 return false;
1967
1968 // In these cases, the check of the length is required. We don't want to
1969 // return true for a name like "cos\0blah" which strcmp would return equal to
1970 // "cos", but has length 8.
1971 StringRef Name = F->getName();
1972 switch (Name[0]) {
1973 default:
1974 return false;
1975 case 'a':
1976 return Name == "acos" || Name == "acosf" ||
1977 Name == "asin" || Name == "asinf" ||
1978 Name == "atan" || Name == "atanf" ||
1979 Name == "atan2" || Name == "atan2f";
1980 case 'c':
1981 return Name == "ceil" || Name == "ceilf" ||
1982 Name == "cos" || Name == "cosf" ||
1983 Name == "cosh" || Name == "coshf";
1984 case 'e':
1985 return Name == "exp" || Name == "expf" || Name == "exp2" ||
1986 Name == "exp2f" || Name == "erf" || Name == "erff";
1987 case 'f':
1988 return Name == "fabs" || Name == "fabsf" ||
1989 Name == "floor" || Name == "floorf" ||
1990 Name == "fmod" || Name == "fmodf";
1991 case 'i':
1992 return Name == "ilogb" || Name == "ilogbf";
1993 case 'l':
1994 return Name == "log" || Name == "logf" || Name == "logl" ||
1995 Name == "log2" || Name == "log2f" || Name == "log10" ||
1996 Name == "log10f" || Name == "logb" || Name == "logbf" ||
1997 Name == "log1p" || Name == "log1pf";
1998 case 'n':
1999 return Name == "nearbyint" || Name == "nearbyintf";
2000 case 'p':
2001 return Name == "pow" || Name == "powf";
2002 case 'r':
2003 return Name == "remainder" || Name == "remainderf" ||
2004 Name == "rint" || Name == "rintf" ||
2005 Name == "round" || Name == "roundf";
2006 case 's':
2007 return Name == "sin" || Name == "sinf" ||
2008 Name == "sinh" || Name == "sinhf" ||
2009 Name == "sqrt" || Name == "sqrtf";
2010 case 't':
2011 return Name == "tan" || Name == "tanf" ||
2012 Name == "tanh" || Name == "tanhf" ||
2013 Name == "trunc" || Name == "truncf";
2014 case '_':
2015 // Check for various function names that get used for the math functions
2016 // when the header files are preprocessed with the macro
2017 // __FINITE_MATH_ONLY__ enabled.
2018 // The '12' here is the length of the shortest name that can match.
2019 // We need to check the size before looking at Name[1] and Name[2]
2020 // so we may as well check a limit that will eliminate mismatches.
2021 if (Name.size() < 12 || Name[1] != '_')
2022 return false;
2023 switch (Name[2]) {
2024 default:
2025 return false;
2026 case 'a':
2027 return Name == "__acos_finite" || Name == "__acosf_finite" ||
2028 Name == "__asin_finite" || Name == "__asinf_finite" ||
2029 Name == "__atan2_finite" || Name == "__atan2f_finite";
2030 case 'c':
2031 return Name == "__cosh_finite" || Name == "__coshf_finite";
2032 case 'e':
2033 return Name == "__exp_finite" || Name == "__expf_finite" ||
2034 Name == "__exp2_finite" || Name == "__exp2f_finite";
2035 case 'l':
2036 return Name == "__log_finite" || Name == "__logf_finite" ||
2037 Name == "__log10_finite" || Name == "__log10f_finite";
2038 case 'p':
2039 return Name == "__pow_finite" || Name == "__powf_finite";
2040 case 's':
2041 return Name == "__sinh_finite" || Name == "__sinhf_finite";
2042 }
2043 }
2044}
2045
2046namespace {
2047
2048Constant *GetConstantFoldFPValue(double V, Type *Ty) {
2049 if (Ty->isHalfTy() || Ty->isFloatTy()) {
2050 APFloat APF(V);
2051 bool unused;
2052 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
2053 return ConstantFP::get(Ty->getContext(), APF);
2054 }
2055 if (Ty->isDoubleTy())
2056 return ConstantFP::get(Ty->getContext(), APFloat(V));
2057 llvm_unreachable("Can only constant fold half/float/double");
2058}
2059
2060#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2061Constant *GetConstantFoldFPValue128(float128 V, Type *Ty) {
2062 if (Ty->isFP128Ty())
2063 return ConstantFP::get(Ty, V);
2064 llvm_unreachable("Can only constant fold fp128");
2065}
2066#endif
2067
2068/// Clear the floating-point exception state.
2069inline void llvm_fenv_clearexcept() {
2070#if HAVE_DECL_FE_ALL_EXCEPT
2071 feclearexcept(FE_ALL_EXCEPT);
2072#endif
2073 errno = 0;
2074}
2075
2076/// Test if a floating-point exception was raised.
2077inline bool llvm_fenv_testexcept() {
2078 int errno_val = errno;
2079 if (errno_val == ERANGE || errno_val == EDOM)
2080 return true;
2081#if HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
2082 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
2083 return true;
2084#endif
2085 return false;
2086}
2087
2088static APFloat FTZPreserveSign(const APFloat &V) {
2089 if (V.isDenormal())
2090 return APFloat::getZero(V.getSemantics(), V.isNegative());
2091 return V;
2092}
2093
2094static APFloat FlushToPositiveZero(const APFloat &V) {
2095 if (V.isDenormal())
2096 return APFloat::getZero(V.getSemantics(), false);
2097 return V;
2098}
2099
2100static APFloat FlushWithDenormKind(const APFloat &V,
2101 DenormalMode::DenormalModeKind DenormKind) {
2104 switch (DenormKind) {
2106 return V;
2108 return FTZPreserveSign(V);
2110 return FlushToPositiveZero(V);
2111 default:
2112 llvm_unreachable("Invalid denormal mode!");
2113 }
2114}
2115
2116Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, Type *Ty,
2117 DenormalMode DenormMode = DenormalMode::getIEEE()) {
2118 if (!DenormMode.isValid() ||
2119 DenormMode.Input == DenormalMode::DenormalModeKind::Dynamic ||
2120 DenormMode.Output == DenormalMode::DenormalModeKind::Dynamic)
2121 return nullptr;
2122
2123 llvm_fenv_clearexcept();
2124 auto Input = FlushWithDenormKind(V, DenormMode.Input);
2125 double Result = NativeFP(Input.convertToDouble());
2126 if (llvm_fenv_testexcept()) {
2127 llvm_fenv_clearexcept();
2128 return nullptr;
2129 }
2130
2131 Constant *Output = GetConstantFoldFPValue(Result, Ty);
2132 if (DenormMode.Output == DenormalMode::DenormalModeKind::IEEE)
2133 return Output;
2134 const auto *CFP = static_cast<ConstantFP *>(Output);
2135 const auto Res = FlushWithDenormKind(CFP->getValueAPF(), DenormMode.Output);
2136 return ConstantFP::get(Ty->getContext(), Res);
2137}
2138
2139#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2140Constant *ConstantFoldFP128(float128 (*NativeFP)(float128), const APFloat &V,
2141 Type *Ty) {
2142 llvm_fenv_clearexcept();
2143 float128 Result = NativeFP(V.convertToQuad());
2144 if (llvm_fenv_testexcept()) {
2145 llvm_fenv_clearexcept();
2146 return nullptr;
2147 }
2148
2149 return GetConstantFoldFPValue128(Result, Ty);
2150}
2151#endif
2152
2153Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
2154 const APFloat &V, const APFloat &W, Type *Ty) {
2155 llvm_fenv_clearexcept();
2156 double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
2157 if (llvm_fenv_testexcept()) {
2158 llvm_fenv_clearexcept();
2159 return nullptr;
2160 }
2161
2162 return GetConstantFoldFPValue(Result, Ty);
2163}
2164
2165Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
2167 if (!VT)
2168 return nullptr;
2169
2170 // This isn't strictly necessary, but handle the special/common case of zero:
2171 // all integer reductions of a zero input produce zero.
2173 return ConstantInt::get(VT->getElementType(), 0);
2174
2175 // This is the same as the underlying binops - poison propagates.
2176 if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
2177 return PoisonValue::get(VT->getElementType());
2178
2179 // TODO: Handle undef.
2180 auto *EltC = dyn_cast_or_null<ConstantInt>(Op->getAggregateElement(0U));
2181 if (!EltC)
2182 return nullptr;
2183
2184 APInt Acc = EltC->getValue();
2185 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
2186 if (!(EltC = dyn_cast_or_null<ConstantInt>(Op->getAggregateElement(I))))
2187 return nullptr;
2188 const APInt &X = EltC->getValue();
2189 switch (IID) {
2190 case Intrinsic::vector_reduce_add:
2191 Acc = Acc + X;
2192 break;
2193 case Intrinsic::vector_reduce_mul:
2194 Acc = Acc * X;
2195 break;
2196 case Intrinsic::vector_reduce_and:
2197 Acc = Acc & X;
2198 break;
2199 case Intrinsic::vector_reduce_or:
2200 Acc = Acc | X;
2201 break;
2202 case Intrinsic::vector_reduce_xor:
2203 Acc = Acc ^ X;
2204 break;
2205 case Intrinsic::vector_reduce_smin:
2206 Acc = APIntOps::smin(Acc, X);
2207 break;
2208 case Intrinsic::vector_reduce_smax:
2209 Acc = APIntOps::smax(Acc, X);
2210 break;
2211 case Intrinsic::vector_reduce_umin:
2212 Acc = APIntOps::umin(Acc, X);
2213 break;
2214 case Intrinsic::vector_reduce_umax:
2215 Acc = APIntOps::umax(Acc, X);
2216 break;
2217 }
2218 }
2219
2220 return ConstantInt::get(Op->getContext(), Acc);
2221}
2222
2223/// Attempt to fold an SSE floating point to integer conversion of a constant
2224/// floating point. If roundTowardZero is false, the default IEEE rounding is
2225/// used (toward nearest, ties to even). This matches the behavior of the
2226/// non-truncating SSE instructions in the default rounding mode. The desired
2227/// integer type Ty is used to select how many bits are available for the
2228/// result. Returns null if the conversion cannot be performed, otherwise
2229/// returns the Constant value resulting from the conversion.
2230Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
2231 Type *Ty, bool IsSigned) {
2232 // All of these conversion intrinsics form an integer of at most 64bits.
2233 unsigned ResultWidth = Ty->getIntegerBitWidth();
2234 assert(ResultWidth <= 64 &&
2235 "Can only constant fold conversions to 64 and 32 bit ints");
2236
2237 uint64_t UIntVal;
2238 bool isExact = false;
2242 Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth,
2243 IsSigned, mode, &isExact);
2244 if (status != APFloat::opOK &&
2245 (!roundTowardZero || status != APFloat::opInexact))
2246 return nullptr;
2247 return ConstantInt::get(Ty, UIntVal, IsSigned);
2248}
2249
2250double getValueAsDouble(ConstantFP *Op) {
2251 Type *Ty = Op->getType();
2252
2253 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2254 return Op->getValueAPF().convertToDouble();
2255
2256 bool unused;
2257 APFloat APF = Op->getValueAPF();
2259 return APF.convertToDouble();
2260}
2261
2262static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
2263 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2264 C = &CI->getValue();
2265 return true;
2266 }
2267 if (isa<UndefValue>(Op)) {
2268 C = nullptr;
2269 return true;
2270 }
2271 return false;
2272}
2273
2274/// Checks if the given intrinsic call, which evaluates to constant, is allowed
2275/// to be folded.
2276///
2277/// \param CI Constrained intrinsic call.
2278/// \param St Exception flags raised during constant evaluation.
2279static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
2280 APFloat::opStatus St) {
2281 std::optional<RoundingMode> ORM = CI->getRoundingMode();
2282 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2283
2284 // If the operation does not change exception status flags, it is safe
2285 // to fold.
2286 if (St == APFloat::opStatus::opOK)
2287 return true;
2288
2289 // If evaluation raised FP exception, the result can depend on rounding
2290 // mode. If the latter is unknown, folding is not possible.
2291 if (ORM == RoundingMode::Dynamic)
2292 return false;
2293
2294 // If FP exceptions are ignored, fold the call, even if such exception is
2295 // raised.
2296 if (EB && *EB != fp::ExceptionBehavior::ebStrict)
2297 return true;
2298
2299 // Leave the calculation for runtime so that exception flags be correctly set
2300 // in hardware.
2301 return false;
2302}
2303
2304/// Returns the rounding mode that should be used for constant evaluation.
2305static RoundingMode
2306getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
2307 std::optional<RoundingMode> ORM = CI->getRoundingMode();
2308 if (!ORM || *ORM == RoundingMode::Dynamic)
2309 // Even if the rounding mode is unknown, try evaluating the operation.
2310 // If it does not raise inexact exception, rounding was not applied,
2311 // so the result is exact and does not depend on rounding mode. Whether
2312 // other FP exceptions are raised, it does not depend on rounding mode.
2314 return *ORM;
2315}
2316
2317/// Try to constant fold llvm.canonicalize for the given caller and value.
2318static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI,
2319 const APFloat &Src) {
2320 // Zero, positive and negative, is always OK to fold.
2321 if (Src.isZero()) {
2322 // Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
2323 return ConstantFP::get(
2324 CI->getContext(),
2325 APFloat::getZero(Src.getSemantics(), Src.isNegative()));
2326 }
2327
2328 if (!Ty->isIEEELikeFPTy())
2329 return nullptr;
2330
2331 // Zero is always canonical and the sign must be preserved.
2332 //
2333 // Denorms and nans may have special encodings, but it should be OK to fold a
2334 // totally average number.
2335 if (Src.isNormal() || Src.isInfinity())
2336 return ConstantFP::get(CI->getContext(), Src);
2337
2338 if (Src.isDenormal() && CI->getParent() && CI->getFunction()) {
2339 DenormalMode DenormMode =
2340 CI->getFunction()->getDenormalMode(Src.getSemantics());
2341
2342 if (DenormMode == DenormalMode::getIEEE())
2343 return ConstantFP::get(CI->getContext(), Src);
2344
2345 if (DenormMode.Input == DenormalMode::Dynamic)
2346 return nullptr;
2347
2348 // If we know if either input or output is flushed, we can fold.
2349 if ((DenormMode.Input == DenormalMode::Dynamic &&
2350 DenormMode.Output == DenormalMode::IEEE) ||
2351 (DenormMode.Input == DenormalMode::IEEE &&
2352 DenormMode.Output == DenormalMode::Dynamic))
2353 return nullptr;
2354
2355 bool IsPositive =
2356 (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero ||
2357 (DenormMode.Output == DenormalMode::PositiveZero &&
2358 DenormMode.Input == DenormalMode::IEEE));
2359
2360 return ConstantFP::get(CI->getContext(),
2361 APFloat::getZero(Src.getSemantics(), !IsPositive));
2362 }
2363
2364 return nullptr;
2365}
2366
2367static Constant *ConstantFoldScalarCall1(StringRef Name,
2368 Intrinsic::ID IntrinsicID,
2369 Type *Ty,
2370 ArrayRef<Constant *> Operands,
2371 const TargetLibraryInfo *TLI,
2372 const CallBase *Call) {
2373 assert(Operands.size() == 1 && "Wrong number of operands.");
2374
2375 if (IntrinsicID == Intrinsic::is_constant) {
2376 // We know we have a "Constant" argument. But we want to only
2377 // return true for manifest constants, not those that depend on
2378 // constants with unknowable values, e.g. GlobalValue or BlockAddress.
2379 if (Operands[0]->isManifestConstant())
2380 return ConstantInt::getTrue(Ty->getContext());
2381 return nullptr;
2382 }
2383
2384 if (isa<UndefValue>(Operands[0])) {
2385 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
2386 // ctpop() is between 0 and bitwidth, pick 0 for undef.
2387 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
2388 if (IntrinsicID == Intrinsic::cos ||
2389 IntrinsicID == Intrinsic::ctpop ||
2390 IntrinsicID == Intrinsic::fptoui_sat ||
2391 IntrinsicID == Intrinsic::fptosi_sat ||
2392 IntrinsicID == Intrinsic::canonicalize)
2393 return Constant::getNullValue(Ty);
2394 if (IntrinsicID == Intrinsic::bswap ||
2395 IntrinsicID == Intrinsic::bitreverse ||
2396 IntrinsicID == Intrinsic::launder_invariant_group ||
2397 IntrinsicID == Intrinsic::strip_invariant_group)
2398 return Operands[0];
2399 }
2400
2401 if (isa<ConstantPointerNull>(Operands[0])) {
2402 // launder(null) == null == strip(null) iff in addrspace 0
2403 if (IntrinsicID == Intrinsic::launder_invariant_group ||
2404 IntrinsicID == Intrinsic::strip_invariant_group) {
2405 // If instruction is not yet put in a basic block (e.g. when cloning
2406 // a function during inlining), Call's caller may not be available.
2407 // So check Call's BB first before querying Call->getCaller.
2408 const Function *Caller =
2409 Call->getParent() ? Call->getCaller() : nullptr;
2410 if (Caller &&
2412 Caller, Operands[0]->getType()->getPointerAddressSpace())) {
2413 return Operands[0];
2414 }
2415 return nullptr;
2416 }
2417 }
2418
2419 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
2420 if (IntrinsicID == Intrinsic::convert_to_fp16) {
2421 APFloat Val(Op->getValueAPF());
2422
2423 bool lost = false;
2425
2426 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
2427 }
2428
2429 APFloat U = Op->getValueAPF();
2430
2431 if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2432 IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2433 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2434
2435 if (U.isNaN())
2436 return nullptr;
2437
2438 unsigned Width = Ty->getIntegerBitWidth();
2439 APSInt Int(Width, !Signed);
2440 bool IsExact = false;
2442 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2443
2445 return ConstantInt::get(Ty, Int);
2446
2447 return nullptr;
2448 }
2449
2450 if (IntrinsicID == Intrinsic::fptoui_sat ||
2451 IntrinsicID == Intrinsic::fptosi_sat) {
2452 // convertToInteger() already has the desired saturation semantics.
2453 APSInt Int(Ty->getIntegerBitWidth(),
2454 IntrinsicID == Intrinsic::fptoui_sat);
2455 bool IsExact;
2456 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2457 return ConstantInt::get(Ty, Int);
2458 }
2459
2460 if (IntrinsicID == Intrinsic::canonicalize)
2461 return constantFoldCanonicalize(Ty, Call, U);
2462
2463#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2464 if (Ty->isFP128Ty()) {
2465 if (IntrinsicID == Intrinsic::log) {
2466 float128 Result = logf128(Op->getValueAPF().convertToQuad());
2467 return GetConstantFoldFPValue128(Result, Ty);
2468 }
2469
2470 LibFunc Fp128Func = NotLibFunc;
2471 if (TLI && TLI->getLibFunc(Name, Fp128Func) && TLI->has(Fp128Func) &&
2472 Fp128Func == LibFunc_logl)
2473 return ConstantFoldFP128(logf128, Op->getValueAPF(), Ty);
2474 }
2475#endif
2476
2477 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy() &&
2478 !Ty->isIntegerTy())
2479 return nullptr;
2480
2481 // Use internal versions of these intrinsics.
2482
2483 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2484 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2485 return ConstantFP::get(Ty->getContext(), U);
2486 }
2487
2488 if (IntrinsicID == Intrinsic::round) {
2489 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2490 return ConstantFP::get(Ty->getContext(), U);
2491 }
2492
2493 if (IntrinsicID == Intrinsic::roundeven) {
2494 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2495 return ConstantFP::get(Ty->getContext(), U);
2496 }
2497
2498 if (IntrinsicID == Intrinsic::ceil) {
2499 U.roundToIntegral(APFloat::rmTowardPositive);
2500 return ConstantFP::get(Ty->getContext(), U);
2501 }
2502
2503 if (IntrinsicID == Intrinsic::floor) {
2504 U.roundToIntegral(APFloat::rmTowardNegative);
2505 return ConstantFP::get(Ty->getContext(), U);
2506 }
2507
2508 if (IntrinsicID == Intrinsic::trunc) {
2509 U.roundToIntegral(APFloat::rmTowardZero);
2510 return ConstantFP::get(Ty->getContext(), U);
2511 }
2512
2513 if (IntrinsicID == Intrinsic::fabs) {
2514 U.clearSign();
2515 return ConstantFP::get(Ty->getContext(), U);
2516 }
2517
2518 if (IntrinsicID == Intrinsic::amdgcn_fract) {
2519 // The v_fract instruction behaves like the OpenCL spec, which defines
2520 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2521 // there to prevent fract(-small) from returning 1.0. It returns the
2522 // largest positive floating-point number less than 1.0."
2523 APFloat FloorU(U);
2524 FloorU.roundToIntegral(APFloat::rmTowardNegative);
2525 APFloat FractU(U - FloorU);
2526 APFloat AlmostOne(U.getSemantics(), 1);
2527 AlmostOne.next(/*nextDown*/ true);
2528 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
2529 }
2530
2531 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2532 // raise FP exceptions, unless the argument is signaling NaN.
2533
2534 std::optional<APFloat::roundingMode> RM;
2535 switch (IntrinsicID) {
2536 default:
2537 break;
2538 case Intrinsic::experimental_constrained_nearbyint:
2539 case Intrinsic::experimental_constrained_rint: {
2541 RM = CI->getRoundingMode();
2542 if (!RM || *RM == RoundingMode::Dynamic)
2543 return nullptr;
2544 break;
2545 }
2546 case Intrinsic::experimental_constrained_round:
2548 break;
2549 case Intrinsic::experimental_constrained_ceil:
2551 break;
2552 case Intrinsic::experimental_constrained_floor:
2554 break;
2555 case Intrinsic::experimental_constrained_trunc:
2557 break;
2558 }
2559 if (RM) {
2561 if (U.isFinite()) {
2562 APFloat::opStatus St = U.roundToIntegral(*RM);
2563 if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2564 St == APFloat::opInexact) {
2565 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2566 if (EB == fp::ebStrict)
2567 return nullptr;
2568 }
2569 } else if (U.isSignaling()) {
2570 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2571 if (EB && *EB != fp::ebIgnore)
2572 return nullptr;
2573 U = APFloat::getQNaN(U.getSemantics());
2574 }
2575 return ConstantFP::get(Ty->getContext(), U);
2576 }
2577
2578 // NVVM float/double to signed/unsigned int32/int64 conversions:
2579 switch (IntrinsicID) {
2580 // f2i
2581 case Intrinsic::nvvm_f2i_rm:
2582 case Intrinsic::nvvm_f2i_rn:
2583 case Intrinsic::nvvm_f2i_rp:
2584 case Intrinsic::nvvm_f2i_rz:
2585 case Intrinsic::nvvm_f2i_rm_ftz:
2586 case Intrinsic::nvvm_f2i_rn_ftz:
2587 case Intrinsic::nvvm_f2i_rp_ftz:
2588 case Intrinsic::nvvm_f2i_rz_ftz:
2589 // f2ui
2590 case Intrinsic::nvvm_f2ui_rm:
2591 case Intrinsic::nvvm_f2ui_rn:
2592 case Intrinsic::nvvm_f2ui_rp:
2593 case Intrinsic::nvvm_f2ui_rz:
2594 case Intrinsic::nvvm_f2ui_rm_ftz:
2595 case Intrinsic::nvvm_f2ui_rn_ftz:
2596 case Intrinsic::nvvm_f2ui_rp_ftz:
2597 case Intrinsic::nvvm_f2ui_rz_ftz:
2598 // d2i
2599 case Intrinsic::nvvm_d2i_rm:
2600 case Intrinsic::nvvm_d2i_rn:
2601 case Intrinsic::nvvm_d2i_rp:
2602 case Intrinsic::nvvm_d2i_rz:
2603 // d2ui
2604 case Intrinsic::nvvm_d2ui_rm:
2605 case Intrinsic::nvvm_d2ui_rn:
2606 case Intrinsic::nvvm_d2ui_rp:
2607 case Intrinsic::nvvm_d2ui_rz:
2608 // f2ll
2609 case Intrinsic::nvvm_f2ll_rm:
2610 case Intrinsic::nvvm_f2ll_rn:
2611 case Intrinsic::nvvm_f2ll_rp:
2612 case Intrinsic::nvvm_f2ll_rz:
2613 case Intrinsic::nvvm_f2ll_rm_ftz:
2614 case Intrinsic::nvvm_f2ll_rn_ftz:
2615 case Intrinsic::nvvm_f2ll_rp_ftz:
2616 case Intrinsic::nvvm_f2ll_rz_ftz:
2617 // f2ull
2618 case Intrinsic::nvvm_f2ull_rm:
2619 case Intrinsic::nvvm_f2ull_rn:
2620 case Intrinsic::nvvm_f2ull_rp:
2621 case Intrinsic::nvvm_f2ull_rz:
2622 case Intrinsic::nvvm_f2ull_rm_ftz:
2623 case Intrinsic::nvvm_f2ull_rn_ftz:
2624 case Intrinsic::nvvm_f2ull_rp_ftz:
2625 case Intrinsic::nvvm_f2ull_rz_ftz:
2626 // d2ll
2627 case Intrinsic::nvvm_d2ll_rm:
2628 case Intrinsic::nvvm_d2ll_rn:
2629 case Intrinsic::nvvm_d2ll_rp:
2630 case Intrinsic::nvvm_d2ll_rz:
2631 // d2ull
2632 case Intrinsic::nvvm_d2ull_rm:
2633 case Intrinsic::nvvm_d2ull_rn:
2634 case Intrinsic::nvvm_d2ull_rp:
2635 case Intrinsic::nvvm_d2ull_rz: {
2636 // In float-to-integer conversion, NaN inputs are converted to 0.
2637 if (U.isNaN()) {
2638 // In float-to-integer conversion, NaN inputs are converted to 0
2639 // when the source and destination bitwidths are both less than 64.
2640 if (nvvm::FPToIntegerIntrinsicNaNZero(IntrinsicID))
2641 return ConstantInt::get(Ty, 0);
2642
2643 // Otherwise, the most significant bit is set.
2644 unsigned BitWidth = Ty->getIntegerBitWidth();
2645 uint64_t Val = 1ULL << (BitWidth - 1);
2646 return ConstantInt::get(Ty, APInt(BitWidth, Val, /*IsSigned=*/false));
2647 }
2648
2649 APFloat::roundingMode RMode =
2651 bool IsFTZ = nvvm::FPToIntegerIntrinsicShouldFTZ(IntrinsicID);
2652 bool IsSigned = nvvm::FPToIntegerIntrinsicResultIsSigned(IntrinsicID);
2653
2654 APSInt ResInt(Ty->getIntegerBitWidth(), !IsSigned);
2655 auto FloatToRound = IsFTZ ? FTZPreserveSign(U) : U;
2656
2657 // Return max/min value for integers if the result is +/-inf or
2658 // is too large to fit in the result's integer bitwidth.
2659 bool IsExact = false;
2660 FloatToRound.convertToInteger(ResInt, RMode, &IsExact);
2661 return ConstantInt::get(Ty, ResInt);
2662 }
2663 }
2664
2665 /// We only fold functions with finite arguments. Folding NaN and inf is
2666 /// likely to be aborted with an exception anyway, and some host libms
2667 /// have known errors raising exceptions.
2668 if (!U.isFinite())
2669 return nullptr;
2670
2671 /// Currently APFloat versions of these functions do not exist, so we use
2672 /// the host native double versions. Float versions are not called
2673 /// directly but for all these it is true (float)(f((double)arg)) ==
2674 /// f(arg). Long double not supported yet.
2675 const APFloat &APF = Op->getValueAPF();
2676
2677 switch (IntrinsicID) {
2678 default: break;
2679 case Intrinsic::log:
2680 return ConstantFoldFP(log, APF, Ty);
2681 case Intrinsic::log2:
2682 // TODO: What about hosts that lack a C99 library?
2683 return ConstantFoldFP(log2, APF, Ty);
2684 case Intrinsic::log10:
2685 // TODO: What about hosts that lack a C99 library?
2686 return ConstantFoldFP(log10, APF, Ty);
2687 case Intrinsic::exp:
2688 return ConstantFoldFP(exp, APF, Ty);
2689 case Intrinsic::exp2:
2690 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2691 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2692 case Intrinsic::exp10:
2693 // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library.
2694 return ConstantFoldBinaryFP(pow, APFloat(10.0), APF, Ty);
2695 case Intrinsic::sin:
2696 return ConstantFoldFP(sin, APF, Ty);
2697 case Intrinsic::cos:
2698 return ConstantFoldFP(cos, APF, Ty);
2699 case Intrinsic::sinh:
2700 return ConstantFoldFP(sinh, APF, Ty);
2701 case Intrinsic::cosh:
2702 return ConstantFoldFP(cosh, APF, Ty);
2703 case Intrinsic::atan:
2704 // Implement optional behavior from C's Annex F for +/-0.0.
2705 if (U.isZero())
2706 return ConstantFP::get(Ty->getContext(), U);
2707 return ConstantFoldFP(atan, APF, Ty);
2708 case Intrinsic::sqrt:
2709 return ConstantFoldFP(sqrt, APF, Ty);
2710
2711 // NVVM Intrinsics:
2712 case Intrinsic::nvvm_ceil_ftz_f:
2713 case Intrinsic::nvvm_ceil_f:
2714 case Intrinsic::nvvm_ceil_d:
2715 return ConstantFoldFP(
2716 ceil, APF, Ty,
2718 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2719
2720 case Intrinsic::nvvm_fabs_ftz:
2721 case Intrinsic::nvvm_fabs:
2722 return ConstantFoldFP(
2723 fabs, APF, Ty,
2725 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2726
2727 case Intrinsic::nvvm_floor_ftz_f:
2728 case Intrinsic::nvvm_floor_f:
2729 case Intrinsic::nvvm_floor_d:
2730 return ConstantFoldFP(
2731 floor, APF, Ty,
2733 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2734
2735 case Intrinsic::nvvm_rcp_rm_ftz_f:
2736 case Intrinsic::nvvm_rcp_rn_ftz_f:
2737 case Intrinsic::nvvm_rcp_rp_ftz_f:
2738 case Intrinsic::nvvm_rcp_rz_ftz_f:
2739 case Intrinsic::nvvm_rcp_rm_d:
2740 case Intrinsic::nvvm_rcp_rm_f:
2741 case Intrinsic::nvvm_rcp_rn_d:
2742 case Intrinsic::nvvm_rcp_rn_f:
2743 case Intrinsic::nvvm_rcp_rp_d:
2744 case Intrinsic::nvvm_rcp_rp_f:
2745 case Intrinsic::nvvm_rcp_rz_d:
2746 case Intrinsic::nvvm_rcp_rz_f: {
2747 APFloat::roundingMode RoundMode = nvvm::GetRCPRoundingMode(IntrinsicID);
2748 bool IsFTZ = nvvm::RCPShouldFTZ(IntrinsicID);
2749
2750 auto Denominator = IsFTZ ? FTZPreserveSign(APF) : APF;
2752 APFloat::opStatus Status = Res.divide(Denominator, RoundMode);
2753
2755 if (IsFTZ)
2756 Res = FTZPreserveSign(Res);
2757 return ConstantFP::get(Ty->getContext(), Res);
2758 }
2759 return nullptr;
2760 }
2761
2762 case Intrinsic::nvvm_round_ftz_f:
2763 case Intrinsic::nvvm_round_f:
2764 case Intrinsic::nvvm_round_d: {
2765 // nvvm_round is lowered to PTX cvt.rni, which will round to nearest
2766 // integer, choosing even integer if source is equidistant between two
2767 // integers, so the semantics are closer to "rint" rather than "round".
2768 bool IsFTZ = nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID);
2769 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2771 return ConstantFP::get(Ty->getContext(), V);
2772 }
2773
2774 case Intrinsic::nvvm_saturate_ftz_f:
2775 case Intrinsic::nvvm_saturate_d:
2776 case Intrinsic::nvvm_saturate_f: {
2777 bool IsFTZ = nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID);
2778 auto V = IsFTZ ? FTZPreserveSign(APF) : APF;
2779 if (V.isNegative() || V.isZero() || V.isNaN())
2780 return ConstantFP::getZero(Ty);
2782 if (V > One)
2783 return ConstantFP::get(Ty->getContext(), One);
2784 return ConstantFP::get(Ty->getContext(), APF);
2785 }
2786
2787 case Intrinsic::nvvm_sqrt_rn_ftz_f:
2788 case Intrinsic::nvvm_sqrt_f:
2789 case Intrinsic::nvvm_sqrt_rn_d:
2790 case Intrinsic::nvvm_sqrt_rn_f:
2791 if (APF.isNegative())
2792 return nullptr;
2793 return ConstantFoldFP(
2794 sqrt, APF, Ty,
2796 nvvm::UnaryMathIntrinsicShouldFTZ(IntrinsicID)));
2797
2798 // AMDGCN Intrinsics:
2799 case Intrinsic::amdgcn_cos:
2800 case Intrinsic::amdgcn_sin: {
2801 double V = getValueAsDouble(Op);
2802 if (V < -256.0 || V > 256.0)
2803 // The gfx8 and gfx9 architectures handle arguments outside the range
2804 // [-256, 256] differently. This should be a rare case so bail out
2805 // rather than trying to handle the difference.
2806 return nullptr;
2807 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2808 double V4 = V * 4.0;
2809 if (V4 == floor(V4)) {
2810 // Force exact results for quarter-integer inputs.
2811 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2812 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2813 } else {
2814 if (IsCos)
2815 V = cos(V * 2.0 * numbers::pi);
2816 else
2817 V = sin(V * 2.0 * numbers::pi);
2818 }
2819 return GetConstantFoldFPValue(V, Ty);
2820 }
2821 }
2822
2823 if (!TLI)
2824 return nullptr;
2825
2827 if (!TLI->getLibFunc(Name, Func))
2828 return nullptr;
2829
2830 switch (Func) {
2831 default:
2832 break;
2833 case LibFunc_acos:
2834 case LibFunc_acosf:
2835 case LibFunc_acos_finite:
2836 case LibFunc_acosf_finite:
2837 if (TLI->has(Func))
2838 return ConstantFoldFP(acos, APF, Ty);
2839 break;
2840 case LibFunc_asin:
2841 case LibFunc_asinf:
2842 case LibFunc_asin_finite:
2843 case LibFunc_asinf_finite:
2844 if (TLI->has(Func))
2845 return ConstantFoldFP(asin, APF, Ty);
2846 break;
2847 case LibFunc_atan:
2848 case LibFunc_atanf:
2849 // Implement optional behavior from C's Annex F for +/-0.0.
2850 if (U.isZero())
2851 return ConstantFP::get(Ty->getContext(), U);
2852 if (TLI->has(Func))
2853 return ConstantFoldFP(atan, APF, Ty);
2854 break;
2855 case LibFunc_ceil:
2856 case LibFunc_ceilf:
2857 if (TLI->has(Func)) {
2858 U.roundToIntegral(APFloat::rmTowardPositive);
2859 return ConstantFP::get(Ty->getContext(), U);
2860 }
2861 break;
2862 case LibFunc_cos:
2863 case LibFunc_cosf:
2864 if (TLI->has(Func))
2865 return ConstantFoldFP(cos, APF, Ty);
2866 break;
2867 case LibFunc_cosh:
2868 case LibFunc_coshf:
2869 case LibFunc_cosh_finite:
2870 case LibFunc_coshf_finite:
2871 if (TLI->has(Func))
2872 return ConstantFoldFP(cosh, APF, Ty);
2873 break;
2874 case LibFunc_exp:
2875 case LibFunc_expf:
2876 case LibFunc_exp_finite:
2877 case LibFunc_expf_finite:
2878 if (TLI->has(Func))
2879 return ConstantFoldFP(exp, APF, Ty);
2880 break;
2881 case LibFunc_exp2:
2882 case LibFunc_exp2f:
2883 case LibFunc_exp2_finite:
2884 case LibFunc_exp2f_finite:
2885 if (TLI->has(Func))
2886 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2887 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2888 break;
2889 case LibFunc_fabs:
2890 case LibFunc_fabsf:
2891 if (TLI->has(Func)) {
2892 U.clearSign();
2893 return ConstantFP::get(Ty->getContext(), U);
2894 }
2895 break;
2896 case LibFunc_floor:
2897 case LibFunc_floorf:
2898 if (TLI->has(Func)) {
2899 U.roundToIntegral(APFloat::rmTowardNegative);
2900 return ConstantFP::get(Ty->getContext(), U);
2901 }
2902 break;
2903 case LibFunc_log:
2904 case LibFunc_logf:
2905 case LibFunc_log_finite:
2906 case LibFunc_logf_finite:
2907 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2908 return ConstantFoldFP(log, APF, Ty);
2909 break;
2910 case LibFunc_log2:
2911 case LibFunc_log2f:
2912 case LibFunc_log2_finite:
2913 case LibFunc_log2f_finite:
2914 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2915 // TODO: What about hosts that lack a C99 library?
2916 return ConstantFoldFP(log2, APF, Ty);
2917 break;
2918 case LibFunc_log10:
2919 case LibFunc_log10f:
2920 case LibFunc_log10_finite:
2921 case LibFunc_log10f_finite:
2922 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2923 // TODO: What about hosts that lack a C99 library?
2924 return ConstantFoldFP(log10, APF, Ty);
2925 break;
2926 case LibFunc_ilogb:
2927 case LibFunc_ilogbf:
2928 if (!APF.isZero() && TLI->has(Func))
2929 return ConstantInt::get(Ty, ilogb(APF), true);
2930 break;
2931 case LibFunc_logb:
2932 case LibFunc_logbf:
2933 if (!APF.isZero() && TLI->has(Func))
2934 return ConstantFoldFP(logb, APF, Ty);
2935 break;
2936 case LibFunc_log1p:
2937 case LibFunc_log1pf:
2938 // Implement optional behavior from C's Annex F for +/-0.0.
2939 if (U.isZero())
2940 return ConstantFP::get(Ty->getContext(), U);
2941 if (APF > APFloat::getOne(APF.getSemantics(), true) && TLI->has(Func))
2942 return ConstantFoldFP(log1p, APF, Ty);
2943 break;
2944 case LibFunc_logl:
2945 return nullptr;
2946 case LibFunc_erf:
2947 case LibFunc_erff:
2948 if (TLI->has(Func))
2949 return ConstantFoldFP(erf, APF, Ty);
2950 break;
2951 case LibFunc_nearbyint:
2952 case LibFunc_nearbyintf:
2953 case LibFunc_rint:
2954 case LibFunc_rintf:
2955 if (TLI->has(Func)) {
2956 U.roundToIntegral(APFloat::rmNearestTiesToEven);
2957 return ConstantFP::get(Ty->getContext(), U);
2958 }
2959 break;
2960 case LibFunc_round:
2961 case LibFunc_roundf:
2962 if (TLI->has(Func)) {
2963 U.roundToIntegral(APFloat::rmNearestTiesToAway);
2964 return ConstantFP::get(Ty->getContext(), U);
2965 }
2966 break;
2967 case LibFunc_sin:
2968 case LibFunc_sinf:
2969 if (TLI->has(Func))
2970 return ConstantFoldFP(sin, APF, Ty);
2971 break;
2972 case LibFunc_sinh:
2973 case LibFunc_sinhf:
2974 case LibFunc_sinh_finite:
2975 case LibFunc_sinhf_finite:
2976 if (TLI->has(Func))
2977 return ConstantFoldFP(sinh, APF, Ty);
2978 break;
2979 case LibFunc_sqrt:
2980 case LibFunc_sqrtf:
2981 if (!APF.isNegative() && TLI->has(Func))
2982 return ConstantFoldFP(sqrt, APF, Ty);
2983 break;
2984 case LibFunc_tan:
2985 case LibFunc_tanf:
2986 if (TLI->has(Func))
2987 return ConstantFoldFP(tan, APF, Ty);
2988 break;
2989 case LibFunc_tanh:
2990 case LibFunc_tanhf:
2991 if (TLI->has(Func))
2992 return ConstantFoldFP(tanh, APF, Ty);
2993 break;
2994 case LibFunc_trunc:
2995 case LibFunc_truncf:
2996 if (TLI->has(Func)) {
2997 U.roundToIntegral(APFloat::rmTowardZero);
2998 return ConstantFP::get(Ty->getContext(), U);
2999 }
3000 break;
3001 }
3002 return nullptr;
3003 }
3004
3005 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
3006 switch (IntrinsicID) {
3007 case Intrinsic::bswap:
3008 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
3009 case Intrinsic::ctpop:
3010 return ConstantInt::get(Ty, Op->getValue().popcount());
3011 case Intrinsic::bitreverse:
3012 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
3013 case Intrinsic::convert_from_fp16: {
3014 APFloat Val(APFloat::IEEEhalf(), Op->getValue());
3015
3016 bool lost = false;
3017 APFloat::opStatus status = Val.convert(
3018 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
3019
3020 // Conversion is always precise.
3021 (void)status;
3022 assert(status != APFloat::opInexact && !lost &&
3023 "Precision lost during fp16 constfolding");
3024
3025 return ConstantFP::get(Ty->getContext(), Val);
3026 }
3027
3028 case Intrinsic::amdgcn_s_wqm: {
3029 uint64_t Val = Op->getZExtValue();
3030 Val |= (Val & 0x5555555555555555ULL) << 1 |
3031 ((Val >> 1) & 0x5555555555555555ULL);
3032 Val |= (Val & 0x3333333333333333ULL) << 2 |
3033 ((Val >> 2) & 0x3333333333333333ULL);
3034 return ConstantInt::get(Ty, Val);
3035 }
3036
3037 case Intrinsic::amdgcn_s_quadmask: {
3038 uint64_t Val = Op->getZExtValue();
3039 uint64_t QuadMask = 0;
3040 for (unsigned I = 0; I < Op->getBitWidth() / 4; ++I, Val >>= 4) {
3041 if (!(Val & 0xF))
3042 continue;
3043
3044 QuadMask |= (1ULL << I);
3045 }
3046 return ConstantInt::get(Ty, QuadMask);
3047 }
3048
3049 case Intrinsic::amdgcn_s_bitreplicate: {
3050 uint64_t Val = Op->getZExtValue();
3051 Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
3052 Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
3053 Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
3054 Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
3055 Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
3056 Val = Val | Val << 1;
3057 return ConstantInt::get(Ty, Val);
3058 }
3059 }
3060 }
3061
3062 if (Operands[0]->getType()->isVectorTy()) {
3063 auto *Op = cast<Constant>(Operands[0]);
3064 switch (IntrinsicID) {
3065 default: break;
3066 case Intrinsic::vector_reduce_add:
3067 case Intrinsic::vector_reduce_mul:
3068 case Intrinsic::vector_reduce_and:
3069 case Intrinsic::vector_reduce_or:
3070 case Intrinsic::vector_reduce_xor:
3071 case Intrinsic::vector_reduce_smin:
3072 case Intrinsic::vector_reduce_smax:
3073 case Intrinsic::vector_reduce_umin:
3074 case Intrinsic::vector_reduce_umax:
3075 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
3076 return C;
3077 break;
3078 case Intrinsic::x86_sse_cvtss2si:
3079 case Intrinsic::x86_sse_cvtss2si64:
3080 case Intrinsic::x86_sse2_cvtsd2si:
3081 case Intrinsic::x86_sse2_cvtsd2si64:
3082 if (ConstantFP *FPOp =
3083 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3084 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3085 /*roundTowardZero=*/false, Ty,
3086 /*IsSigned*/true);
3087 break;
3088 case Intrinsic::x86_sse_cvttss2si:
3089 case Intrinsic::x86_sse_cvttss2si64:
3090 case Intrinsic::x86_sse2_cvttsd2si:
3091 case Intrinsic::x86_sse2_cvttsd2si64:
3092 if (ConstantFP *FPOp =
3093 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3094 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3095 /*roundTowardZero=*/true, Ty,
3096 /*IsSigned*/true);
3097 break;
3098
3099 case Intrinsic::wasm_anytrue:
3100 return Op->isZeroValue() ? ConstantInt::get(Ty, 0)
3101 : ConstantInt::get(Ty, 1);
3102
3103 case Intrinsic::wasm_alltrue:
3104 // Check each element individually
3105 unsigned E = cast<FixedVectorType>(Op->getType())->getNumElements();
3106 for (unsigned I = 0; I != E; ++I) {
3107 Constant *Elt = Op->getAggregateElement(I);
3108 // Return false as soon as we find a non-true element.
3109 if (Elt && Elt->isZeroValue())
3110 return ConstantInt::get(Ty, 0);
3111 // Bail as soon as we find an element we cannot prove to be true.
3112 if (!Elt || !isa<ConstantInt>(Elt))
3113 return nullptr;
3114 }
3115
3116 return ConstantInt::get(Ty, 1);
3117 }
3118 }
3119
3120 return nullptr;
3121}
3122
3123static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
3127 FCmpInst::Predicate Cond = FCmp->getPredicate();
3128 if (FCmp->isSignaling()) {
3129 if (Op1.isNaN() || Op2.isNaN())
3131 } else {
3132 if (Op1.isSignaling() || Op2.isSignaling())
3134 }
3135 bool Result = FCmpInst::compare(Op1, Op2, Cond);
3136 if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
3137 return ConstantInt::get(Call->getType()->getScalarType(), Result);
3138 return nullptr;
3139}
3140
3141static Constant *ConstantFoldLibCall2(StringRef Name, Type *Ty,
3142 ArrayRef<Constant *> Operands,
3143 const TargetLibraryInfo *TLI) {
3144 if (!TLI)
3145 return nullptr;
3146
3148 if (!TLI->getLibFunc(Name, Func))
3149 return nullptr;
3150
3151 const auto *Op1 = dyn_cast<ConstantFP>(Operands[0]);
3152 if (!Op1)
3153 return nullptr;
3154
3155 const auto *Op2 = dyn_cast<ConstantFP>(Operands[1]);
3156 if (!Op2)
3157 return nullptr;
3158
3159 const APFloat &Op1V = Op1->getValueAPF();
3160 const APFloat &Op2V = Op2->getValueAPF();
3161
3162 switch (Func) {
3163 default:
3164 break;
3165 case LibFunc_pow:
3166 case LibFunc_powf:
3167 case LibFunc_pow_finite:
3168 case LibFunc_powf_finite:
3169 if (TLI->has(Func))
3170 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3171 break;
3172 case LibFunc_fmod:
3173 case LibFunc_fmodf:
3174 if (TLI->has(Func)) {
3175 APFloat V = Op1->getValueAPF();
3176 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
3177 return ConstantFP::get(Ty->getContext(), V);
3178 }
3179 break;
3180 case LibFunc_remainder:
3181 case LibFunc_remainderf:
3182 if (TLI->has(Func)) {
3183 APFloat V = Op1->getValueAPF();
3184 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
3185 return ConstantFP::get(Ty->getContext(), V);
3186 }
3187 break;
3188 case LibFunc_atan2:
3189 case LibFunc_atan2f:
3190 // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
3191 // (Solaris), so we do not assume a known result for that.
3192 if (Op1V.isZero() && Op2V.isZero())
3193 return nullptr;
3194 [[fallthrough]];
3195 case LibFunc_atan2_finite:
3196 case LibFunc_atan2f_finite:
3197 if (TLI->has(Func))
3198 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
3199 break;
3200 }
3201
3202 return nullptr;
3203}
3204
3205static Constant *ConstantFoldIntrinsicCall2(Intrinsic::ID IntrinsicID, Type *Ty,
3206 ArrayRef<Constant *> Operands,
3207 const CallBase *Call) {
3208 assert(Operands.size() == 2 && "Wrong number of operands.");
3209
3210 if (Ty->isFloatingPointTy()) {
3211 // TODO: We should have undef handling for all of the FP intrinsics that
3212 // are attempted to be folded in this function.
3213 bool IsOp0Undef = isa<UndefValue>(Operands[0]);
3214 bool IsOp1Undef = isa<UndefValue>(Operands[1]);
3215 switch (IntrinsicID) {
3216 case Intrinsic::maxnum:
3217 case Intrinsic::minnum:
3218 case Intrinsic::maximum:
3219 case Intrinsic::minimum:
3220 case Intrinsic::maximumnum:
3221 case Intrinsic::minimumnum:
3222 case Intrinsic::nvvm_fmax_d:
3223 case Intrinsic::nvvm_fmin_d:
3224 // If one argument is undef, return the other argument.
3225 if (IsOp0Undef)
3226 return Operands[1];
3227 if (IsOp1Undef)
3228 return Operands[0];
3229 break;
3230
3231 case Intrinsic::nvvm_fmax_f:
3232 case Intrinsic::nvvm_fmax_ftz_f:
3233 case Intrinsic::nvvm_fmax_ftz_nan_f:
3234 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3235 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3236 case Intrinsic::nvvm_fmax_nan_f:
3237 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3238 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3239
3240 case Intrinsic::nvvm_fmin_f:
3241 case Intrinsic::nvvm_fmin_ftz_f:
3242 case Intrinsic::nvvm_fmin_ftz_nan_f:
3243 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3244 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3245 case Intrinsic::nvvm_fmin_nan_f:
3246 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3247 case Intrinsic::nvvm_fmin_xorsign_abs_f:
3248 // If one arg is undef, the other arg can be returned only if it is
3249 // constant, as we may need to flush it to sign-preserving zero or
3250 // canonicalize the NaN.
3251 if (!IsOp0Undef && !IsOp1Undef)
3252 break;
3253 if (auto *Op = dyn_cast<ConstantFP>(Operands[IsOp0Undef ? 1 : 0])) {
3254 if (Op->isNaN()) {
3255 APInt NVCanonicalNaN(32, 0x7fffffff);
3256 return ConstantFP::get(
3257 Ty, APFloat(Ty->getFltSemantics(), NVCanonicalNaN));
3258 }
3259 if (nvvm::FMinFMaxShouldFTZ(IntrinsicID))
3260 return ConstantFP::get(Ty, FTZPreserveSign(Op->getValueAPF()));
3261 else
3262 return Op;
3263 }
3264 break;
3265 }
3266 }
3267
3268 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3269 const APFloat &Op1V = Op1->getValueAPF();
3270
3271 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3272 if (Op2->getType() != Op1->getType())
3273 return nullptr;
3274 const APFloat &Op2V = Op2->getValueAPF();
3275
3276 if (const auto *ConstrIntr =
3278 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3279 APFloat Res = Op1V;
3281 switch (IntrinsicID) {
3282 default:
3283 return nullptr;
3284 case Intrinsic::experimental_constrained_fadd:
3285 St = Res.add(Op2V, RM);
3286 break;
3287 case Intrinsic::experimental_constrained_fsub:
3288 St = Res.subtract(Op2V, RM);
3289 break;
3290 case Intrinsic::experimental_constrained_fmul:
3291 St = Res.multiply(Op2V, RM);
3292 break;
3293 case Intrinsic::experimental_constrained_fdiv:
3294 St = Res.divide(Op2V, RM);
3295 break;
3296 case Intrinsic::experimental_constrained_frem:
3297 St = Res.mod(Op2V);
3298 break;
3299 case Intrinsic::experimental_constrained_fcmp:
3300 case Intrinsic::experimental_constrained_fcmps:
3301 return evaluateCompare(Op1V, Op2V, ConstrIntr);
3302 }
3303 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
3304 St))
3305 return ConstantFP::get(Ty->getContext(), Res);
3306 return nullptr;
3307 }
3308
3309 switch (IntrinsicID) {
3310 default:
3311 break;
3312 case Intrinsic::copysign:
3313 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
3314 case Intrinsic::minnum:
3315 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
3316 case Intrinsic::maxnum:
3317 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
3318 case Intrinsic::minimum:
3319 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
3320 case Intrinsic::maximum:
3321 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
3322 case Intrinsic::minimumnum:
3323 return ConstantFP::get(Ty->getContext(), minimumnum(Op1V, Op2V));
3324 case Intrinsic::maximumnum:
3325 return ConstantFP::get(Ty->getContext(), maximumnum(Op1V, Op2V));
3326
3327 case Intrinsic::nvvm_fmax_d:
3328 case Intrinsic::nvvm_fmax_f:
3329 case Intrinsic::nvvm_fmax_ftz_f:
3330 case Intrinsic::nvvm_fmax_ftz_nan_f:
3331 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3332 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3333 case Intrinsic::nvvm_fmax_nan_f:
3334 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3335 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3336
3337 case Intrinsic::nvvm_fmin_d:
3338 case Intrinsic::nvvm_fmin_f:
3339 case Intrinsic::nvvm_fmin_ftz_f:
3340 case Intrinsic::nvvm_fmin_ftz_nan_f:
3341 case Intrinsic::nvvm_fmin_ftz_nan_xorsign_abs_f:
3342 case Intrinsic::nvvm_fmin_ftz_xorsign_abs_f:
3343 case Intrinsic::nvvm_fmin_nan_f:
3344 case Intrinsic::nvvm_fmin_nan_xorsign_abs_f:
3345 case Intrinsic::nvvm_fmin_xorsign_abs_f: {
3346
3347 bool ShouldCanonicalizeNaNs = !(IntrinsicID == Intrinsic::nvvm_fmax_d ||
3348 IntrinsicID == Intrinsic::nvvm_fmin_d);
3349 bool IsFTZ = nvvm::FMinFMaxShouldFTZ(IntrinsicID);
3350 bool IsNaNPropagating = nvvm::FMinFMaxPropagatesNaNs(IntrinsicID);
3351 bool IsXorSignAbs = nvvm::FMinFMaxIsXorSignAbs(IntrinsicID);
3352
3353 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3354 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3355
3356 bool XorSign = false;
3357 if (IsXorSignAbs) {
3358 XorSign = A.isNegative() ^ B.isNegative();
3359 A = abs(A);
3360 B = abs(B);
3361 }
3362
3363 bool IsFMax = false;
3364 switch (IntrinsicID) {
3365 case Intrinsic::nvvm_fmax_d:
3366 case Intrinsic::nvvm_fmax_f:
3367 case Intrinsic::nvvm_fmax_ftz_f:
3368 case Intrinsic::nvvm_fmax_ftz_nan_f:
3369 case Intrinsic::nvvm_fmax_ftz_nan_xorsign_abs_f:
3370 case Intrinsic::nvvm_fmax_ftz_xorsign_abs_f:
3371 case Intrinsic::nvvm_fmax_nan_f:
3372 case Intrinsic::nvvm_fmax_nan_xorsign_abs_f:
3373 case Intrinsic::nvvm_fmax_xorsign_abs_f:
3374 IsFMax = true;
3375 break;
3376 }
3377 APFloat Res = IsFMax ? maximum(A, B) : minimum(A, B);
3378
3379 if (ShouldCanonicalizeNaNs) {
3380 APFloat NVCanonicalNaN(Res.getSemantics(), APInt(32, 0x7fffffff));
3381 if (A.isNaN() && B.isNaN())
3382 return ConstantFP::get(Ty, NVCanonicalNaN);
3383 else if (IsNaNPropagating && (A.isNaN() || B.isNaN()))
3384 return ConstantFP::get(Ty, NVCanonicalNaN);
3385 }
3386
3387 if (A.isNaN() && B.isNaN())
3388 return Operands[1];
3389 else if (A.isNaN())
3390 Res = B;
3391 else if (B.isNaN())
3392 Res = A;
3393
3394 if (IsXorSignAbs && XorSign != Res.isNegative())
3395 Res.changeSign();
3396
3397 return ConstantFP::get(Ty->getContext(), Res);
3398 }
3399
3400 case Intrinsic::nvvm_add_rm_f:
3401 case Intrinsic::nvvm_add_rn_f:
3402 case Intrinsic::nvvm_add_rp_f:
3403 case Intrinsic::nvvm_add_rz_f:
3404 case Intrinsic::nvvm_add_rm_d:
3405 case Intrinsic::nvvm_add_rn_d:
3406 case Intrinsic::nvvm_add_rp_d:
3407 case Intrinsic::nvvm_add_rz_d:
3408 case Intrinsic::nvvm_add_rm_ftz_f:
3409 case Intrinsic::nvvm_add_rn_ftz_f:
3410 case Intrinsic::nvvm_add_rp_ftz_f:
3411 case Intrinsic::nvvm_add_rz_ftz_f: {
3412
3413 bool IsFTZ = nvvm::FAddShouldFTZ(IntrinsicID);
3414 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3415 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3416
3417 APFloat::roundingMode RoundMode =
3418 nvvm::GetFAddRoundingMode(IntrinsicID);
3419
3420 APFloat Res = A;
3421 APFloat::opStatus Status = Res.add(B, RoundMode);
3422
3423 if (!Res.isNaN() &&
3425 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3426 return ConstantFP::get(Ty->getContext(), Res);
3427 }
3428 return nullptr;
3429 }
3430
3431 case Intrinsic::nvvm_mul_rm_f:
3432 case Intrinsic::nvvm_mul_rn_f:
3433 case Intrinsic::nvvm_mul_rp_f:
3434 case Intrinsic::nvvm_mul_rz_f:
3435 case Intrinsic::nvvm_mul_rm_d:
3436 case Intrinsic::nvvm_mul_rn_d:
3437 case Intrinsic::nvvm_mul_rp_d:
3438 case Intrinsic::nvvm_mul_rz_d:
3439 case Intrinsic::nvvm_mul_rm_ftz_f:
3440 case Intrinsic::nvvm_mul_rn_ftz_f:
3441 case Intrinsic::nvvm_mul_rp_ftz_f:
3442 case Intrinsic::nvvm_mul_rz_ftz_f: {
3443
3444 bool IsFTZ = nvvm::FMulShouldFTZ(IntrinsicID);
3445 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3446 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3447
3448 APFloat::roundingMode RoundMode =
3449 nvvm::GetFMulRoundingMode(IntrinsicID);
3450
3451 APFloat Res = A;
3452 APFloat::opStatus Status = Res.multiply(B, RoundMode);
3453
3454 if (!Res.isNaN() &&
3456 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3457 return ConstantFP::get(Ty->getContext(), Res);
3458 }
3459 return nullptr;
3460 }
3461
3462 case Intrinsic::nvvm_div_rm_f:
3463 case Intrinsic::nvvm_div_rn_f:
3464 case Intrinsic::nvvm_div_rp_f:
3465 case Intrinsic::nvvm_div_rz_f:
3466 case Intrinsic::nvvm_div_rm_d:
3467 case Intrinsic::nvvm_div_rn_d:
3468 case Intrinsic::nvvm_div_rp_d:
3469 case Intrinsic::nvvm_div_rz_d:
3470 case Intrinsic::nvvm_div_rm_ftz_f:
3471 case Intrinsic::nvvm_div_rn_ftz_f:
3472 case Intrinsic::nvvm_div_rp_ftz_f:
3473 case Intrinsic::nvvm_div_rz_ftz_f: {
3474 bool IsFTZ = nvvm::FDivShouldFTZ(IntrinsicID);
3475 APFloat A = IsFTZ ? FTZPreserveSign(Op1V) : Op1V;
3476 APFloat B = IsFTZ ? FTZPreserveSign(Op2V) : Op2V;
3477 APFloat::roundingMode RoundMode =
3478 nvvm::GetFDivRoundingMode(IntrinsicID);
3479
3480 APFloat Res = A;
3481 APFloat::opStatus Status = Res.divide(B, RoundMode);
3482 if (!Res.isNaN() &&
3484 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3485 return ConstantFP::get(Ty->getContext(), Res);
3486 }
3487 return nullptr;
3488 }
3489 }
3490
3491 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
3492 return nullptr;
3493
3494 switch (IntrinsicID) {
3495 default:
3496 break;
3497 case Intrinsic::pow:
3498 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
3499 case Intrinsic::amdgcn_fmul_legacy:
3500 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3501 // NaN or infinity, gives +0.0.
3502 if (Op1V.isZero() || Op2V.isZero())
3503 return ConstantFP::getZero(Ty);
3504 return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
3505 }
3506
3507 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
3508 switch (IntrinsicID) {
3509 case Intrinsic::ldexp: {
3510 return ConstantFP::get(
3511 Ty->getContext(),
3512 scalbn(Op1V, Op2C->getSExtValue(), APFloat::rmNearestTiesToEven));
3513 }
3514 case Intrinsic::is_fpclass: {
3515 FPClassTest Mask = static_cast<FPClassTest>(Op2C->getZExtValue());
3516 bool Result =
3517 ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) ||
3518 ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) ||
3519 ((Mask & fcNegInf) && Op1V.isNegInfinity()) ||
3520 ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) ||
3521 ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) ||
3522 ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) ||
3523 ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) ||
3524 ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) ||
3525 ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) ||
3526 ((Mask & fcPosInf) && Op1V.isPosInfinity());
3527 return ConstantInt::get(Ty, Result);
3528 }
3529 case Intrinsic::powi: {
3530 int Exp = static_cast<int>(Op2C->getSExtValue());
3531 switch (Ty->getTypeID()) {
3532 case Type::HalfTyID:
3533 case Type::FloatTyID: {
3534 APFloat Res(static_cast<float>(std::pow(Op1V.convertToFloat(), Exp)));
3535 if (Ty->isHalfTy()) {
3536 bool Unused;
3538 &Unused);
3539 }
3540 return ConstantFP::get(Ty->getContext(), Res);
3541 }
3542 case Type::DoubleTyID:
3543 return ConstantFP::get(Ty, std::pow(Op1V.convertToDouble(), Exp));
3544 default:
3545 return nullptr;
3546 }
3547 }
3548 default:
3549 break;
3550 }
3551 }
3552 return nullptr;
3553 }
3554
3555 if (Operands[0]->getType()->isIntegerTy() &&
3556 Operands[1]->getType()->isIntegerTy()) {
3557 const APInt *C0, *C1;
3558 if (!getConstIntOrUndef(Operands[0], C0) ||
3559 !getConstIntOrUndef(Operands[1], C1))
3560 return nullptr;
3561
3562 switch (IntrinsicID) {
3563 default: break;
3564 case Intrinsic::smax:
3565 case Intrinsic::smin:
3566 case Intrinsic::umax:
3567 case Intrinsic::umin:
3568 if (!C0 && !C1)
3569 return UndefValue::get(Ty);
3570 if (!C0 || !C1)
3571 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
3572 return ConstantInt::get(
3573 Ty, ICmpInst::compare(*C0, *C1,
3574 MinMaxIntrinsic::getPredicate(IntrinsicID))
3575 ? *C0
3576 : *C1);
3577
3578 case Intrinsic::scmp:
3579 case Intrinsic::ucmp:
3580 if (!C0 || !C1)
3581 return ConstantInt::get(Ty, 0);
3582
3583 int Res;
3584 if (IntrinsicID == Intrinsic::scmp)
3585 Res = C0->sgt(*C1) ? 1 : C0->slt(*C1) ? -1 : 0;
3586 else
3587 Res = C0->ugt(*C1) ? 1 : C0->ult(*C1) ? -1 : 0;
3588 return ConstantInt::get(Ty, Res, /*IsSigned=*/true);
3589
3590 case Intrinsic::usub_with_overflow:
3591 case Intrinsic::ssub_with_overflow:
3592 // X - undef -> { 0, false }
3593 // undef - X -> { 0, false }
3594 if (!C0 || !C1)
3595 return Constant::getNullValue(Ty);
3596 [[fallthrough]];
3597 case Intrinsic::uadd_with_overflow:
3598 case Intrinsic::sadd_with_overflow:
3599 // X + undef -> { -1, false }
3600 // undef + x -> { -1, false }
3601 if (!C0 || !C1) {
3602 return ConstantStruct::get(
3603 cast<StructType>(Ty),
3604 {Constant::getAllOnesValue(Ty->getStructElementType(0)),
3605 Constant::getNullValue(Ty->getStructElementType(1))});
3606 }
3607 [[fallthrough]];
3608 case Intrinsic::smul_with_overflow:
3609 case Intrinsic::umul_with_overflow: {
3610 // undef * X -> { 0, false }
3611 // X * undef -> { 0, false }
3612 if (!C0 || !C1)
3613 return Constant::getNullValue(Ty);
3614
3615 APInt Res;
3616 bool Overflow;
3617 switch (IntrinsicID) {
3618 default: llvm_unreachable("Invalid case");
3619 case Intrinsic::sadd_with_overflow:
3620 Res = C0->sadd_ov(*C1, Overflow);
3621 break;
3622 case Intrinsic::uadd_with_overflow:
3623 Res = C0->uadd_ov(*C1, Overflow);
3624 break;
3625 case Intrinsic::ssub_with_overflow:
3626 Res = C0->ssub_ov(*C1, Overflow);
3627 break;
3628 case Intrinsic::usub_with_overflow:
3629 Res = C0->usub_ov(*C1, Overflow);
3630 break;
3631 case Intrinsic::smul_with_overflow:
3632 Res = C0->smul_ov(*C1, Overflow);
3633 break;
3634 case Intrinsic::umul_with_overflow:
3635 Res = C0->umul_ov(*C1, Overflow);
3636 break;
3637 }
3638 Constant *Ops[] = {
3639 ConstantInt::get(Ty->getContext(), Res),
3640 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
3641 };
3643 }
3644 case Intrinsic::uadd_sat:
3645 case Intrinsic::sadd_sat:
3646 if (!C0 && !C1)
3647 return UndefValue::get(Ty);
3648 if (!C0 || !C1)
3649 return Constant::getAllOnesValue(Ty);
3650 if (IntrinsicID == Intrinsic::uadd_sat)
3651 return ConstantInt::get(Ty, C0->uadd_sat(*C1));
3652 else
3653 return ConstantInt::get(Ty, C0->sadd_sat(*C1));
3654 case Intrinsic::usub_sat:
3655 case Intrinsic::ssub_sat:
3656 if (!C0 && !C1)
3657 return UndefValue::get(Ty);
3658 if (!C0 || !C1)
3659 return Constant::getNullValue(Ty);
3660 if (IntrinsicID == Intrinsic::usub_sat)
3661 return ConstantInt::get(Ty, C0->usub_sat(*C1));
3662 else
3663 return ConstantInt::get(Ty, C0->ssub_sat(*C1));
3664 case Intrinsic::cttz:
3665 case Intrinsic::ctlz:
3666 assert(C1 && "Must be constant int");
3667
3668 // cttz(0, 1) and ctlz(0, 1) are poison.
3669 if (C1->isOne() && (!C0 || C0->isZero()))
3670 return PoisonValue::get(Ty);
3671 if (!C0)
3672 return Constant::getNullValue(Ty);
3673 if (IntrinsicID == Intrinsic::cttz)
3674 return ConstantInt::get(Ty, C0->countr_zero());
3675 else
3676 return ConstantInt::get(Ty, C0->countl_zero());
3677
3678 case Intrinsic::abs:
3679 assert(C1 && "Must be constant int");
3680 assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
3681
3682 // Undef or minimum val operand with poison min --> poison
3683 if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
3684 return PoisonValue::get(Ty);
3685
3686 // Undef operand with no poison min --> 0 (sign bit must be clear)
3687 if (!C0)
3688 return Constant::getNullValue(Ty);
3689
3690 return ConstantInt::get(Ty, C0->abs());
3691 case Intrinsic::amdgcn_wave_reduce_umin:
3692 case Intrinsic::amdgcn_wave_reduce_umax:
3693 case Intrinsic::amdgcn_wave_reduce_max:
3694 case Intrinsic::amdgcn_wave_reduce_min:
3695 case Intrinsic::amdgcn_wave_reduce_add:
3696 case Intrinsic::amdgcn_wave_reduce_sub:
3697 case Intrinsic::amdgcn_wave_reduce_and:
3698 case Intrinsic::amdgcn_wave_reduce_or:
3699 case Intrinsic::amdgcn_wave_reduce_xor:
3700 return dyn_cast<Constant>(Operands[0]);
3701 }
3702
3703 return nullptr;
3704 }
3705
3706 // Support ConstantVector in case we have an Undef in the top.
3707 if ((isa<ConstantVector>(Operands[0]) ||
3708 isa<ConstantDataVector>(Operands[0])) &&
3709 // Check for default rounding mode.
3710 // FIXME: Support other rounding modes?
3711 isa<ConstantInt>(Operands[1]) &&
3712 cast<ConstantInt>(Operands[1])->getValue() == 4) {
3713 auto *Op = cast<Constant>(Operands[0]);
3714 switch (IntrinsicID) {
3715 default: break;
3716 case Intrinsic::x86_avx512_vcvtss2si32:
3717 case Intrinsic::x86_avx512_vcvtss2si64:
3718 case Intrinsic::x86_avx512_vcvtsd2si32:
3719 case Intrinsic::x86_avx512_vcvtsd2si64:
3720 if (ConstantFP *FPOp =
3721 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3722 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3723 /*roundTowardZero=*/false, Ty,
3724 /*IsSigned*/true);
3725 break;
3726 case Intrinsic::x86_avx512_vcvtss2usi32:
3727 case Intrinsic::x86_avx512_vcvtss2usi64:
3728 case Intrinsic::x86_avx512_vcvtsd2usi32:
3729 case Intrinsic::x86_avx512_vcvtsd2usi64:
3730 if (ConstantFP *FPOp =
3731 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3732 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3733 /*roundTowardZero=*/false, Ty,
3734 /*IsSigned*/false);
3735 break;
3736 case Intrinsic::x86_avx512_cvttss2si:
3737 case Intrinsic::x86_avx512_cvttss2si64:
3738 case Intrinsic::x86_avx512_cvttsd2si:
3739 case Intrinsic::x86_avx512_cvttsd2si64:
3740 if (ConstantFP *FPOp =
3741 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3742 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3743 /*roundTowardZero=*/true, Ty,
3744 /*IsSigned*/true);
3745 break;
3746 case Intrinsic::x86_avx512_cvttss2usi:
3747 case Intrinsic::x86_avx512_cvttss2usi64:
3748 case Intrinsic::x86_avx512_cvttsd2usi:
3749 case Intrinsic::x86_avx512_cvttsd2usi64:
3750 if (ConstantFP *FPOp =
3751 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
3752 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
3753 /*roundTowardZero=*/true, Ty,
3754 /*IsSigned*/false);
3755 break;
3756 }
3757 }
3758 return nullptr;
3759}
3760
3761static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
3762 const APFloat &S0,
3763 const APFloat &S1,
3764 const APFloat &S2) {
3765 unsigned ID;
3766 const fltSemantics &Sem = S0.getSemantics();
3767 APFloat MA(Sem), SC(Sem), TC(Sem);
3768 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
3769 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
3770 // S2 < 0
3771 ID = 5;
3772 SC = -S0;
3773 } else {
3774 ID = 4;
3775 SC = S0;
3776 }
3777 MA = S2;
3778 TC = -S1;
3779 } else if (abs(S1) >= abs(S0)) {
3780 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
3781 // S1 < 0
3782 ID = 3;
3783 TC = -S2;
3784 } else {
3785 ID = 2;
3786 TC = S2;
3787 }
3788 MA = S1;
3789 SC = S0;
3790 } else {
3791 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
3792 // S0 < 0
3793 ID = 1;
3794 SC = S2;
3795 } else {
3796 ID = 0;
3797 SC = -S2;
3798 }
3799 MA = S0;
3800 TC = -S1;
3801 }
3802 switch (IntrinsicID) {
3803 default:
3804 llvm_unreachable("unhandled amdgcn cube intrinsic");
3805 case Intrinsic::amdgcn_cubeid:
3806 return APFloat(Sem, ID);
3807 case Intrinsic::amdgcn_cubema:
3808 return MA + MA;
3809 case Intrinsic::amdgcn_cubesc:
3810 return SC;
3811 case Intrinsic::amdgcn_cubetc:
3812 return TC;
3813 }
3814}
3815
3816static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
3817 Type *Ty) {
3818 const APInt *C0, *C1, *C2;
3819 if (!getConstIntOrUndef(Operands[0], C0) ||
3820 !getConstIntOrUndef(Operands[1], C1) ||
3821 !getConstIntOrUndef(Operands[2], C2))
3822 return nullptr;
3823
3824 if (!C2)
3825 return UndefValue::get(Ty);
3826
3827 APInt Val(32, 0);
3828 unsigned NumUndefBytes = 0;
3829 for (unsigned I = 0; I < 32; I += 8) {
3830 unsigned Sel = C2->extractBitsAsZExtValue(8, I);
3831 unsigned B = 0;
3832
3833 if (Sel >= 13)
3834 B = 0xff;
3835 else if (Sel == 12)
3836 B = 0x00;
3837 else {
3838 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3839 if (!Src)
3840 ++NumUndefBytes;
3841 else if (Sel < 8)
3842 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3843 else
3844 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3845 }
3846
3847 Val.insertBits(B, I, 8);
3848 }
3849
3850 if (NumUndefBytes == 4)
3851 return UndefValue::get(Ty);
3852
3853 return ConstantInt::get(Ty, Val);
3854}
3855
3856static Constant *ConstantFoldScalarCall3(StringRef Name,
3857 Intrinsic::ID IntrinsicID,
3858 Type *Ty,
3859 ArrayRef<Constant *> Operands,
3860 const TargetLibraryInfo *TLI,
3861 const CallBase *Call) {
3862 assert(Operands.size() == 3 && "Wrong number of operands.");
3863
3864 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3865 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3866 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
3867 const APFloat &C1 = Op1->getValueAPF();
3868 const APFloat &C2 = Op2->getValueAPF();
3869 const APFloat &C3 = Op3->getValueAPF();
3870
3871 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
3872 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3873 APFloat Res = C1;
3875 switch (IntrinsicID) {
3876 default:
3877 return nullptr;
3878 case Intrinsic::experimental_constrained_fma:
3879 case Intrinsic::experimental_constrained_fmuladd:
3880 St = Res.fusedMultiplyAdd(C2, C3, RM);
3881 break;
3882 }
3883 if (mayFoldConstrained(
3884 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
3885 return ConstantFP::get(Ty->getContext(), Res);
3886 return nullptr;
3887 }
3888
3889 switch (IntrinsicID) {
3890 default: break;
3891 case Intrinsic::amdgcn_fma_legacy: {
3892 // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3893 // NaN or infinity, gives +0.0.
3894 if (C1.isZero() || C2.isZero()) {
3895 // It's tempting to just return C3 here, but that would give the
3896 // wrong result if C3 was -0.0.
3897 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
3898 }
3899 [[fallthrough]];
3900 }
3901 case Intrinsic::fma:
3902 case Intrinsic::fmuladd: {
3903 APFloat V = C1;
3905 return ConstantFP::get(Ty->getContext(), V);
3906 }
3907
3908 case Intrinsic::nvvm_fma_rm_f:
3909 case Intrinsic::nvvm_fma_rn_f:
3910 case Intrinsic::nvvm_fma_rp_f:
3911 case Intrinsic::nvvm_fma_rz_f:
3912 case Intrinsic::nvvm_fma_rm_d:
3913 case Intrinsic::nvvm_fma_rn_d:
3914 case Intrinsic::nvvm_fma_rp_d:
3915 case Intrinsic::nvvm_fma_rz_d:
3916 case Intrinsic::nvvm_fma_rm_ftz_f:
3917 case Intrinsic::nvvm_fma_rn_ftz_f:
3918 case Intrinsic::nvvm_fma_rp_ftz_f:
3919 case Intrinsic::nvvm_fma_rz_ftz_f: {
3920 bool IsFTZ = nvvm::FMAShouldFTZ(IntrinsicID);
3921 APFloat A = IsFTZ ? FTZPreserveSign(C1) : C1;
3922 APFloat B = IsFTZ ? FTZPreserveSign(C2) : C2;
3923 APFloat C = IsFTZ ? FTZPreserveSign(C3) : C3;
3924
3925 APFloat::roundingMode RoundMode =
3926 nvvm::GetFMARoundingMode(IntrinsicID);
3927
3928 APFloat Res = A;
3929 APFloat::opStatus Status = Res.fusedMultiplyAdd(B, C, RoundMode);
3930
3931 if (!Res.isNaN() &&
3933 Res = IsFTZ ? FTZPreserveSign(Res) : Res;
3934 return ConstantFP::get(Ty->getContext(), Res);
3935 }
3936 return nullptr;
3937 }
3938
3939 case Intrinsic::amdgcn_cubeid:
3940 case Intrinsic::amdgcn_cubema:
3941 case Intrinsic::amdgcn_cubesc:
3942 case Intrinsic::amdgcn_cubetc: {
3943 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3944 return ConstantFP::get(Ty->getContext(), V);
3945 }
3946 }
3947 }
3948 }
3949 }
3950
3951 if (IntrinsicID == Intrinsic::smul_fix ||
3952 IntrinsicID == Intrinsic::smul_fix_sat) {
3953 const APInt *C0, *C1;
3954 if (!getConstIntOrUndef(Operands[0], C0) ||
3955 !getConstIntOrUndef(Operands[1], C1))
3956 return nullptr;
3957
3958 // undef * C -> 0
3959 // C * undef -> 0
3960 if (!C0 || !C1)
3961 return Constant::getNullValue(Ty);
3962
3963 // This code performs rounding towards negative infinity in case the result
3964 // cannot be represented exactly for the given scale. Targets that do care
3965 // about rounding should use a target hook for specifying how rounding
3966 // should be done, and provide their own folding to be consistent with
3967 // rounding. This is the same approach as used by
3968 // DAGTypeLegalizer::ExpandIntRes_MULFIX.
3969 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
3970 unsigned Width = C0->getBitWidth();
3971 assert(Scale < Width && "Illegal scale.");
3972 unsigned ExtendedWidth = Width * 2;
3973 APInt Product =
3974 (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
3975 if (IntrinsicID == Intrinsic::smul_fix_sat) {
3976 APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
3977 APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
3978 Product = APIntOps::smin(Product, Max);
3979 Product = APIntOps::smax(Product, Min);
3980 }
3981 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
3982 }
3983
3984 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
3985 const APInt *C0, *C1, *C2;
3986 if (!getConstIntOrUndef(Operands[0], C0) ||
3987 !getConstIntOrUndef(Operands[1], C1) ||
3988 !getConstIntOrUndef(Operands[2], C2))
3989 return nullptr;
3990
3991 bool IsRight = IntrinsicID == Intrinsic::fshr;
3992 if (!C2)
3993 return Operands[IsRight ? 1 : 0];
3994 if (!C0 && !C1)
3995 return UndefValue::get(Ty);
3996
3997 // The shift amount is interpreted as modulo the bitwidth. If the shift
3998 // amount is effectively 0, avoid UB due to oversized inverse shift below.
3999 unsigned BitWidth = C2->getBitWidth();
4000 unsigned ShAmt = C2->urem(BitWidth);
4001 if (!ShAmt)
4002 return Operands[IsRight ? 1 : 0];
4003
4004 // (C0 << ShlAmt) | (C1 >> LshrAmt)
4005 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
4006 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
4007 if (!C0)
4008 return ConstantInt::get(Ty, C1->lshr(LshrAmt));
4009 if (!C1)
4010 return ConstantInt::get(Ty, C0->shl(ShlAmt));
4011 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
4012 }
4013
4014 if (IntrinsicID == Intrinsic::amdgcn_perm)
4015 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
4016
4017 return nullptr;
4018}
4019
4020static Constant *ConstantFoldScalarCall(StringRef Name,
4021 Intrinsic::ID IntrinsicID,
4022 Type *Ty,
4023 ArrayRef<Constant *> Operands,
4024 const TargetLibraryInfo *TLI,
4025 const CallBase *Call) {
4026 if (IntrinsicID != Intrinsic::not_intrinsic &&
4027 any_of(Operands, IsaPred<PoisonValue>) &&
4028 intrinsicPropagatesPoison(IntrinsicID))
4029 return PoisonValue::get(Ty);
4030
4031 if (Operands.size() == 1)
4032 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
4033
4034 if (Operands.size() == 2) {
4035 if (Constant *FoldedLibCall =
4036 ConstantFoldLibCall2(Name, Ty, Operands, TLI)) {
4037 return FoldedLibCall;
4038 }
4039 return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands, Call);
4040 }
4041
4042 if (Operands.size() == 3)
4043 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
4044
4045 return nullptr;
4046}
4047
4048static Constant *ConstantFoldFixedVectorCall(
4049 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
4050 ArrayRef<Constant *> Operands, const DataLayout &DL,
4051 const TargetLibraryInfo *TLI, const CallBase *Call) {
4053 SmallVector<Constant *, 4> Lane(Operands.size());
4054 Type *Ty = FVTy->getElementType();
4055
4056 switch (IntrinsicID) {
4057 case Intrinsic::masked_load: {
4058 auto *SrcPtr = Operands[0];
4059 auto *Mask = Operands[1];
4060 auto *Passthru = Operands[2];
4061
4062 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
4063
4064 SmallVector<Constant *, 32> NewElements;
4065 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4066 auto *MaskElt = Mask->getAggregateElement(I);
4067 if (!MaskElt)
4068 break;
4069 auto *PassthruElt = Passthru->getAggregateElement(I);
4070 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
4071 if (isa<UndefValue>(MaskElt)) {
4072 if (PassthruElt)
4073 NewElements.push_back(PassthruElt);
4074 else if (VecElt)
4075 NewElements.push_back(VecElt);
4076 else
4077 return nullptr;
4078 }
4079 if (MaskElt->isNullValue()) {
4080 if (!PassthruElt)
4081 return nullptr;
4082 NewElements.push_back(PassthruElt);
4083 } else if (MaskElt->isOneValue()) {
4084 if (!VecElt)
4085 return nullptr;
4086 NewElements.push_back(VecElt);
4087 } else {
4088 return nullptr;
4089 }
4090 }
4091 if (NewElements.size() != FVTy->getNumElements())
4092 return nullptr;
4093 return ConstantVector::get(NewElements);
4094 }
4095 case Intrinsic::arm_mve_vctp8:
4096 case Intrinsic::arm_mve_vctp16:
4097 case Intrinsic::arm_mve_vctp32:
4098 case Intrinsic::arm_mve_vctp64: {
4099 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
4100 unsigned Lanes = FVTy->getNumElements();
4101 uint64_t Limit = Op->getZExtValue();
4102
4104 for (unsigned i = 0; i < Lanes; i++) {
4105 if (i < Limit)
4107 else
4109 }
4110 return ConstantVector::get(NCs);
4111 }
4112 return nullptr;
4113 }
4114 case Intrinsic::get_active_lane_mask: {
4115 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
4116 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
4117 if (Op0 && Op1) {
4118 unsigned Lanes = FVTy->getNumElements();
4119 uint64_t Base = Op0->getZExtValue();
4120 uint64_t Limit = Op1->getZExtValue();
4121
4123 for (unsigned i = 0; i < Lanes; i++) {
4124 if (Base + i < Limit)
4126 else
4128 }
4129 return ConstantVector::get(NCs);
4130 }
4131 return nullptr;
4132 }
4133 case Intrinsic::vector_extract: {
4134 auto *Idx = dyn_cast<ConstantInt>(Operands[1]);
4135 Constant *Vec = Operands[0];
4136 if (!Idx || !isa<FixedVectorType>(Vec->getType()))
4137 return nullptr;
4138
4139 unsigned NumElements = FVTy->getNumElements();
4140 unsigned VecNumElements =
4141 cast<FixedVectorType>(Vec->getType())->getNumElements();
4142 unsigned StartingIndex = Idx->getZExtValue();
4143
4144 // Extracting entire vector is nop
4145 if (NumElements == VecNumElements && StartingIndex == 0)
4146 return Vec;
4147
4148 for (unsigned I = StartingIndex, E = StartingIndex + NumElements; I < E;
4149 ++I) {
4150 Constant *Elt = Vec->getAggregateElement(I);
4151 if (!Elt)
4152 return nullptr;
4153 Result[I - StartingIndex] = Elt;
4154 }
4155
4156 return ConstantVector::get(Result);
4157 }
4158 case Intrinsic::vector_insert: {
4159 Constant *Vec = Operands[0];
4160 Constant *SubVec = Operands[1];
4161 auto *Idx = dyn_cast<ConstantInt>(Operands[2]);
4162 if (!Idx || !isa<FixedVectorType>(Vec->getType()))
4163 return nullptr;
4164
4165 unsigned SubVecNumElements =
4166 cast<FixedVectorType>(SubVec->getType())->getNumElements();
4167 unsigned VecNumElements =
4168 cast<FixedVectorType>(Vec->getType())->getNumElements();
4169 unsigned IdxN = Idx->getZExtValue();
4170 // Replacing entire vector with a subvec is nop
4171 if (SubVecNumElements == VecNumElements && IdxN == 0)
4172 return SubVec;
4173
4174 for (unsigned I = 0; I < VecNumElements; ++I) {
4175 Constant *Elt;
4176 if (I < IdxN + SubVecNumElements)
4177 Elt = SubVec->getAggregateElement(I - IdxN);
4178 else
4179 Elt = Vec->getAggregateElement(I);
4180 if (!Elt)
4181 return nullptr;
4182 Result[I] = Elt;
4183 }
4184 return ConstantVector::get(Result);
4185 }
4186 case Intrinsic::vector_interleave2: {
4187 unsigned NumElements =
4188 cast<FixedVectorType>(Operands[0]->getType())->getNumElements();
4189 for (unsigned I = 0; I < NumElements; ++I) {
4190 Constant *Elt0 = Operands[0]->getAggregateElement(I);
4191 Constant *Elt1 = Operands[1]->getAggregateElement(I);
4192 if (!Elt0 || !Elt1)
4193 return nullptr;
4194 Result[2 * I] = Elt0;
4195 Result[2 * I + 1] = Elt1;
4196 }
4197 return ConstantVector::get(Result);
4198 }
4199 case Intrinsic::wasm_dot: {
4200 unsigned NumElements =
4201 cast<FixedVectorType>(Operands[0]->getType())->getNumElements();
4202
4203 assert(NumElements == 8 && Result.size() == 4 &&
4204 "wasm dot takes i16x8 and produces i32x4");
4205 assert(Ty->isIntegerTy());
4206 int32_t MulVector[8];
4207
4208 for (unsigned I = 0; I < NumElements; ++I) {
4209 ConstantInt *Elt0 =
4210 cast<ConstantInt>(Operands[0]->getAggregateElement(I));
4211 ConstantInt *Elt1 =
4212 cast<ConstantInt>(Operands[1]->getAggregateElement(I));
4213
4214 MulVector[I] = Elt0->getSExtValue() * Elt1->getSExtValue();
4215 }
4216 for (unsigned I = 0; I < Result.size(); I++) {
4217 int64_t IAdd = (int64_t)MulVector[I * 2] + (int64_t)MulVector[I * 2 + 1];
4218 Result[I] = ConstantInt::get(Ty, IAdd);
4219 }
4220
4221 return ConstantVector::get(Result);
4222 }
4223 default:
4224 break;
4225 }
4226
4227 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4228 // Gather a column of constants.
4229 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
4230 // Some intrinsics use a scalar type for certain arguments.
4231 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J, /*TTI=*/nullptr)) {
4232 Lane[J] = Operands[J];
4233 continue;
4234 }
4235
4236 Constant *Agg = Operands[J]->getAggregateElement(I);
4237 if (!Agg)
4238 return nullptr;
4239
4240 Lane[J] = Agg;
4241 }
4242
4243 // Use the regular scalar folding to simplify this column.
4244 Constant *Folded =
4245 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
4246 if (!Folded)
4247 return nullptr;
4248 Result[I] = Folded;
4249 }
4250
4251 return ConstantVector::get(Result);
4252}
4253
4254static Constant *ConstantFoldScalableVectorCall(
4255 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
4256 ArrayRef<Constant *> Operands, const DataLayout &DL,
4257 const TargetLibraryInfo *TLI, const CallBase *Call) {
4258 switch (IntrinsicID) {
4259 case Intrinsic::aarch64_sve_convert_from_svbool: {
4260 auto *Src = dyn_cast<Constant>(Operands[0]);
4261 if (!Src || !Src->isNullValue())
4262 break;
4263
4264 return ConstantInt::getFalse(SVTy);
4265 }
4266 case Intrinsic::get_active_lane_mask: {
4267 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
4268 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
4269 if (Op0 && Op1 && Op0->getValue().uge(Op1->getValue()))
4270 return ConstantVector::getNullValue(SVTy);
4271 break;
4272 }
4273 default:
4274 break;
4275 }
4276
4277 // If trivially vectorizable, try folding it via the scalar call if all
4278 // operands are splats.
4279
4280 // TODO: ConstantFoldFixedVectorCall should probably check this too?
4281 if (!isTriviallyVectorizable(IntrinsicID))
4282 return nullptr;
4283
4285 for (auto [I, Op] : enumerate(Operands)) {
4286 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, I, /*TTI=*/nullptr)) {
4287 SplatOps.push_back(Op);
4288 continue;
4289 }
4290 Constant *Splat = Op->getSplatValue();
4291 if (!Splat)
4292 return nullptr;
4293 SplatOps.push_back(Splat);
4294 }
4295 Constant *Folded = ConstantFoldScalarCall(
4296 Name, IntrinsicID, SVTy->getElementType(), SplatOps, TLI, Call);
4297 if (!Folded)
4298 return nullptr;
4299 return ConstantVector::getSplat(SVTy->getElementCount(), Folded);
4300}
4301
4302static std::pair<Constant *, Constant *>
4303ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) {
4304 if (isa<PoisonValue>(Op))
4305 return {Op, PoisonValue::get(IntTy)};
4306
4307 auto *ConstFP = dyn_cast<ConstantFP>(Op);
4308 if (!ConstFP)
4309 return {};
4310
4311 const APFloat &U = ConstFP->getValueAPF();
4312 int FrexpExp;
4313 APFloat FrexpMant = frexp(U, FrexpExp, APFloat::rmNearestTiesToEven);
4314 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
4315
4316 // The exponent is an "unspecified value" for inf/nan. We use zero to avoid
4317 // using undef.
4318 Constant *Result1 = FrexpMant.isFinite()
4319 ? ConstantInt::getSigned(IntTy, FrexpExp)
4320 : ConstantInt::getNullValue(IntTy);
4321 return {Result0, Result1};
4322}
4323
4324/// Handle intrinsics that return tuples, which may be tuples of vectors.
4325static Constant *
4326ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID,
4327 StructType *StTy, ArrayRef<Constant *> Operands,
4328 const DataLayout &DL, const TargetLibraryInfo *TLI,
4329 const CallBase *Call) {
4330
4331 switch (IntrinsicID) {
4332 case Intrinsic::frexp: {
4333 Type *Ty0 = StTy->getContainedType(0);
4334 Type *Ty1 = StTy->getContainedType(1)->getScalarType();
4335
4336 if (auto *FVTy0 = dyn_cast<FixedVectorType>(Ty0)) {
4337 SmallVector<Constant *, 4> Results0(FVTy0->getNumElements());
4338 SmallVector<Constant *, 4> Results1(FVTy0->getNumElements());
4339
4340 for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) {
4341 Constant *Lane = Operands[0]->getAggregateElement(I);
4342 std::tie(Results0[I], Results1[I]) =
4343 ConstantFoldScalarFrexpCall(Lane, Ty1);
4344 if (!Results0[I])
4345 return nullptr;
4346 }
4347
4348 return ConstantStruct::get(StTy, ConstantVector::get(Results0),
4349 ConstantVector::get(Results1));
4350 }
4351
4352 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1);
4353 if (!Result0)
4354 return nullptr;
4355 return ConstantStruct::get(StTy, Result0, Result1);
4356 }
4357 case Intrinsic::sincos: {
4358 Type *Ty = StTy->getContainedType(0);
4359 Type *TyScalar = Ty->getScalarType();
4360
4361 auto ConstantFoldScalarSincosCall =
4362 [&](Constant *Op) -> std::pair<Constant *, Constant *> {
4363 Constant *SinResult =
4364 ConstantFoldScalarCall(Name, Intrinsic::sin, TyScalar, Op, TLI, Call);
4365 Constant *CosResult =
4366 ConstantFoldScalarCall(Name, Intrinsic::cos, TyScalar, Op, TLI, Call);
4367 return std::make_pair(SinResult, CosResult);
4368 };
4369
4370 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
4371 SmallVector<Constant *> SinResults(FVTy->getNumElements());
4372 SmallVector<Constant *> CosResults(FVTy->getNumElements());
4373
4374 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
4375 Constant *Lane = Operands[0]->getAggregateElement(I);
4376 std::tie(SinResults[I], CosResults[I]) =
4377 ConstantFoldScalarSincosCall(Lane);
4378 if (!SinResults[I] || !CosResults[I])
4379 return nullptr;
4380 }
4381
4382 return ConstantStruct::get(StTy, ConstantVector::get(SinResults),
4383 ConstantVector::get(CosResults));
4384 }
4385
4386 auto [SinResult, CosResult] = ConstantFoldScalarSincosCall(Operands[0]);
4387 if (!SinResult || !CosResult)
4388 return nullptr;
4389 return ConstantStruct::get(StTy, SinResult, CosResult);
4390 }
4391 case Intrinsic::vector_deinterleave2: {
4392 auto *Vec = Operands[0];
4393 auto *VecTy = cast<VectorType>(Vec->getType());
4394
4395 if (auto *EltC = Vec->getSplatValue()) {
4396 ElementCount HalfEC = VecTy->getElementCount().divideCoefficientBy(2);
4397 auto *HalfVec = ConstantVector::getSplat(HalfEC, EltC);
4398 return ConstantStruct::get(StTy, HalfVec, HalfVec);
4399 }
4400
4401 if (!isa<FixedVectorType>(Vec->getType()))
4402 return nullptr;
4403
4404 unsigned NumElements = VecTy->getElementCount().getFixedValue() / 2;
4405 SmallVector<Constant *, 4> Res0(NumElements), Res1(NumElements);
4406 for (unsigned I = 0; I < NumElements; ++I) {
4407 Constant *Elt0 = Vec->getAggregateElement(2 * I);
4408 Constant *Elt1 = Vec->getAggregateElement(2 * I + 1);
4409 if (!Elt0 || !Elt1)
4410 return nullptr;
4411 Res0[I] = Elt0;
4412 Res1[I] = Elt1;
4413 }
4414 return ConstantStruct::get(StTy, ConstantVector::get(Res0),
4415 ConstantVector::get(Res1));
4416 }
4417 default:
4418 // TODO: Constant folding of vector intrinsics that fall through here does
4419 // not work (e.g. overflow intrinsics)
4420 return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI, Call);
4421 }
4422
4423 return nullptr;
4424}
4425
4426} // end anonymous namespace
4427
4429 Constant *RHS, Type *Ty,
4432 // Ensure we check flags like StrictFP that might prevent this from getting
4433 // folded before generating a result.
4434 if (Call && !canConstantFoldCallTo(Call, Call->getCalledFunction()))
4435 return nullptr;
4436 return ConstantFoldIntrinsicCall2(ID, Ty, {LHS, RHS}, Call);
4437}
4438
4440 ArrayRef<Constant *> Operands,
4441 const TargetLibraryInfo *TLI,
4442 bool AllowNonDeterministic) {
4443 if (Call->isNoBuiltin())
4444 return nullptr;
4445 if (!F->hasName())
4446 return nullptr;
4447
4448 // If this is not an intrinsic and not recognized as a library call, bail out.
4449 Intrinsic::ID IID = F->getIntrinsicID();
4450 if (IID == Intrinsic::not_intrinsic) {
4451 if (!TLI)
4452 return nullptr;
4453 LibFunc LibF;
4454 if (!TLI->getLibFunc(*F, LibF))
4455 return nullptr;
4456 }
4457
4458 // Conservatively assume that floating-point libcalls may be
4459 // non-deterministic.
4460 Type *Ty = F->getReturnType();
4461 if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy())
4462 return nullptr;
4463
4464 StringRef Name = F->getName();
4465 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
4466 return ConstantFoldFixedVectorCall(
4467 Name, IID, FVTy, Operands, F->getDataLayout(), TLI, Call);
4468
4469 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
4470 return ConstantFoldScalableVectorCall(
4471 Name, IID, SVTy, Operands, F->getDataLayout(), TLI, Call);
4472
4473 if (auto *StTy = dyn_cast<StructType>(Ty))
4474 return ConstantFoldStructCall(Name, IID, StTy, Operands,
4475 F->getDataLayout(), TLI, Call);
4476
4477 // TODO: If this is a library function, we already discovered that above,
4478 // so we should pass the LibFunc, not the name (and it might be better
4479 // still to separate intrinsic handling from libcalls).
4480 return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI, Call);
4481}
4482
4484 const TargetLibraryInfo *TLI) {
4485 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
4486 // (and to some extent ConstantFoldScalarCall).
4487 if (Call->isNoBuiltin() || Call->isStrictFP())
4488 return false;
4489 Function *F = Call->getCalledFunction();
4490 if (!F)
4491 return false;
4492
4493 LibFunc Func;
4494 if (!TLI || !TLI->getLibFunc(*F, Func))
4495 return false;
4496
4497 if (Call->arg_size() == 1) {
4498 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
4499 const APFloat &Op = OpC->getValueAPF();
4500 switch (Func) {
4501 case LibFunc_logl:
4502 case LibFunc_log:
4503 case LibFunc_logf:
4504 case LibFunc_log2l:
4505 case LibFunc_log2:
4506 case LibFunc_log2f:
4507 case LibFunc_log10l:
4508 case LibFunc_log10:
4509 case LibFunc_log10f:
4510 return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
4511
4512 case LibFunc_ilogb:
4513 return !Op.isNaN() && !Op.isZero() && !Op.isInfinity();
4514
4515 case LibFunc_expl:
4516 case LibFunc_exp:
4517 case LibFunc_expf:
4518 // FIXME: These boundaries are slightly conservative.
4519 if (OpC->getType()->isDoubleTy())
4520 return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
4521 if (OpC->getType()->isFloatTy())
4522 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
4523 break;
4524
4525 case LibFunc_exp2l:
4526 case LibFunc_exp2:
4527 case LibFunc_exp2f:
4528 // FIXME: These boundaries are slightly conservative.
4529 if (OpC->getType()->isDoubleTy())
4530 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
4531 if (OpC->getType()->isFloatTy())
4532 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
4533 break;
4534
4535 case LibFunc_sinl:
4536 case LibFunc_sin:
4537 case LibFunc_sinf:
4538 case LibFunc_cosl:
4539 case LibFunc_cos:
4540 case LibFunc_cosf:
4541 return !Op.isInfinity();
4542
4543 case LibFunc_tanl:
4544 case LibFunc_tan:
4545 case LibFunc_tanf: {
4546 // FIXME: Stop using the host math library.
4547 // FIXME: The computation isn't done in the right precision.
4548 Type *Ty = OpC->getType();
4549 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
4550 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
4551 break;
4552 }
4553
4554 case LibFunc_atan:
4555 case LibFunc_atanf:
4556 case LibFunc_atanl:
4557 // Per POSIX, this MAY fail if Op is denormal. We choose not failing.
4558 return true;
4559
4560 case LibFunc_asinl:
4561 case LibFunc_asin:
4562 case LibFunc_asinf:
4563 case LibFunc_acosl:
4564 case LibFunc_acos:
4565 case LibFunc_acosf:
4566 return !(Op < APFloat::getOne(Op.getSemantics(), true) ||
4567 Op > APFloat::getOne(Op.getSemantics()));
4568
4569 case LibFunc_sinh:
4570 case LibFunc_cosh:
4571 case LibFunc_sinhf:
4572 case LibFunc_coshf:
4573 case LibFunc_sinhl:
4574 case LibFunc_coshl:
4575 // FIXME: These boundaries are slightly conservative.
4576 if (OpC->getType()->isDoubleTy())
4577 return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
4578 if (OpC->getType()->isFloatTy())
4579 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
4580 break;
4581
4582 case LibFunc_sqrtl:
4583 case LibFunc_sqrt:
4584 case LibFunc_sqrtf:
4585 return Op.isNaN() || Op.isZero() || !Op.isNegative();
4586
4587 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
4588 // maybe others?
4589 default:
4590 break;
4591 }
4592 }
4593 }
4594
4595 if (Call->arg_size() == 2) {
4596 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
4597 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
4598 if (Op0C && Op1C) {
4599 const APFloat &Op0 = Op0C->getValueAPF();
4600 const APFloat &Op1 = Op1C->getValueAPF();
4601
4602 switch (Func) {
4603 case LibFunc_powl:
4604 case LibFunc_pow:
4605 case LibFunc_powf: {
4606 // FIXME: Stop using the host math library.
4607 // FIXME: The computation isn't done in the right precision.
4608 Type *Ty = Op0C->getType();
4609 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
4610 if (Ty == Op1C->getType())
4611 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
4612 }
4613 break;
4614 }
4615
4616 case LibFunc_fmodl:
4617 case LibFunc_fmod:
4618 case LibFunc_fmodf:
4619 case LibFunc_remainderl:
4620 case LibFunc_remainder:
4621 case LibFunc_remainderf:
4622 return Op0.isNaN() || Op1.isNaN() ||
4623 (!Op0.isInfinity() && !Op1.isZero());
4624
4625 case LibFunc_atan2:
4626 case LibFunc_atan2f:
4627 case LibFunc_atan2l:
4628 // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
4629 // GLIBC and MSVC do not appear to raise an error on those, we
4630 // cannot rely on that behavior. POSIX and C11 say that a domain error
4631 // may occur, so allow for that possibility.
4632 return !Op0.isZero() || !Op1.isZero();
4633
4634 default:
4635 break;
4636 }
4637 }
4638 }
4639
4640 return false;
4641}
4642
4644 unsigned CastOp, const DataLayout &DL,
4645 PreservedCastFlags *Flags) {
4646 switch (CastOp) {
4647 case Instruction::BitCast:
4648 // Bitcast is always lossless.
4649 return ConstantFoldCastOperand(Instruction::BitCast, C, InvCastTo, DL);
4650 case Instruction::Trunc: {
4651 auto *ZExtC = ConstantFoldCastOperand(Instruction::ZExt, C, InvCastTo, DL);
4652 if (Flags) {
4653 // Truncation back on ZExt value is always NUW.
4654 Flags->NUW = true;
4655 // Test positivity of C.
4656 auto *SExtC =
4657 ConstantFoldCastOperand(Instruction::SExt, C, InvCastTo, DL);
4658 Flags->NSW = ZExtC == SExtC;
4659 }
4660 return ZExtC;
4661 }
4662 case Instruction::SExt:
4663 case Instruction::ZExt: {
4664 auto *InvC = ConstantExpr::getTrunc(C, InvCastTo);
4665 auto *CastInvC = ConstantFoldCastOperand(CastOp, InvC, C->getType(), DL);
4666 // Must satisfy CastOp(InvC) == C.
4667 if (!CastInvC || CastInvC != C)
4668 return nullptr;
4669 if (Flags && CastOp == Instruction::ZExt) {
4670 auto *SExtInvC =
4671 ConstantFoldCastOperand(Instruction::SExt, InvC, C->getType(), DL);
4672 // Test positivity of InvC.
4673 Flags->NNeg = CastInvC == SExtInvC;
4674 }
4675 return InvC;
4676 }
4677 default:
4678 return nullptr;
4679 }
4680}
4681
4683 const DataLayout &DL,
4684 PreservedCastFlags *Flags) {
4685 return getLosslessInvCast(C, DestTy, Instruction::ZExt, DL, Flags);
4686}
4687
4689 const DataLayout &DL,
4690 PreservedCastFlags *Flags) {
4691 return getLosslessInvCast(C, DestTy, Instruction::SExt, DL, Flags);
4692}
4693
4694void TargetFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
constexpr LLT S1
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Constant * FoldBitCast(Constant *V, Type *DestTy)
static ConstantFP * flushDenormalConstant(Type *Ty, const APFloat &APF, DenormalMode::DenormalModeKind Mode)
Constant * getConstantAtOffset(Constant *Base, APInt Offset, const DataLayout &DL)
If this Offset points exactly to the start of an aggregate element, return that element,...
static cl::opt< bool > DisableFPCallFolding("disable-fp-call-folding", cl::desc("Disable constant-folding of FP intrinsics and libcalls."), cl::init(false), cl::Hidden)
static ConstantFP * flushDenormalConstantFP(ConstantFP *CFP, const Instruction *Inst, bool IsOutput)
static DenormalMode getInstrDenormalMode(const Instruction *CtxI, Type *Ty)
Return the denormal mode that can be assumed when executing a floating point operation at CtxI.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
Hexagon Common GEP
amode Optimize addressing mode
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
This file contains the definitions of the enumerations and flags associated with NVVM Intrinsics,...
if(PassOpts->AAPipeline)
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
The Input class is used to parse a yaml document into in-memory structs and vectors.
static constexpr roundingMode rmNearestTiesToAway
Definition APFloat.h:349
static constexpr roundingMode rmTowardNegative
Definition APFloat.h:347
llvm::RoundingMode roundingMode
IEEE-754R 4.3: Rounding-direction attributes.
Definition APFloat.h:342
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:344
static const fltSemantics & IEEEdouble()
Definition APFloat.h:297
static constexpr roundingMode rmTowardZero
Definition APFloat.h:348
static constexpr roundingMode rmTowardPositive
Definition APFloat.h:346
static const fltSemantics & IEEEhalf()
Definition APFloat.h:294
opStatus
IEEE-754R 7: Default exception handling.
Definition APFloat.h:360
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
Definition APFloat.h:1102
opStatus divide(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1190
void copySign(const APFloat &RHS)
Definition APFloat.h:1284
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition APFloat.cpp:6059
opStatus subtract(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1172
bool isNegative() const
Definition APFloat.h:1431
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
Definition APFloat.cpp:6118
bool isPosInfinity() const
Definition APFloat.h:1444
bool isNormal() const
Definition APFloat.h:1435
bool isDenormal() const
Definition APFloat.h:1432
opStatus add(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1163
const fltSemantics & getSemantics() const
Definition APFloat.h:1439
bool isNonZero() const
Definition APFloat.h:1440
bool isFinite() const
Definition APFloat.h:1436
bool isNaN() const
Definition APFloat.h:1429
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
Definition APFloat.h:1070
opStatus multiply(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1181
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
Definition APFloat.cpp:6149
bool isSignaling() const
Definition APFloat.h:1433
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
Definition APFloat.h:1217
bool isZero() const
Definition APFloat.h:1427
APInt bitcastToAPInt() const
Definition APFloat.h:1335
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
Definition APFloat.h:1314
opStatus mod(const APFloat &RHS)
Definition APFloat.h:1208
bool isNegInfinity() const
Definition APFloat.h:1445
opStatus roundToIntegral(roundingMode RM)
Definition APFloat.h:1230
void changeSign()
Definition APFloat.h:1279
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Definition APFloat.h:1061
bool isInfinity() const
Definition APFloat.h:1428
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1971
LLVM_ABI APInt usub_sat(const APInt &RHS) const
Definition APInt.cpp:2055
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition APInt.h:423
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
LLVM_ABI uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const
Definition APInt.cpp:520
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
APInt abs() const
Get the absolute value.
Definition APInt.h:1795
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
Definition APInt.cpp:2026
bool sgt(const APInt &RHS) const
Signed greater than comparison.
Definition APInt.h:1201
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1948
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1182
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:380
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1111
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:209
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1928
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1935
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1639
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1598
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:219
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1041
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
Definition APInt.cpp:2036
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:827
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1960
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:873
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition APInt.h:1130
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1941
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:389
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:851
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
Definition APInt.cpp:2045
An arbitrary precision integer that knows its signedness.
Definition APSInt.h:24
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, const DataLayout *DL)
Determine how a pair of casts can be eliminated, if they can be at all.
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
bool isSigned() const
Definition InstrTypes.h:930
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition InstrTypes.h:827
static bool isFPPredicate(Predicate P)
Definition InstrTypes.h:770
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
Definition Constants.h:715
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
static LLVM_ABI Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
Definition Constants.h:1387
static LLVM_ABI Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static LLVM_ABI bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
Definition Constants.h:1274
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:277
const APFloat & getValueAPF() const
Definition Constants.h:320
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:131
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition Constants.h:169
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
Definition Constants.cpp:76
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition Constants.cpp:90
Constrained floating point compare intrinsics.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI std::optional< RoundingMode > getRoundingMode() const
Wrapper for a function that represents a value that functionally represents the original function.
Definition Constants.h:952
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:233
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This provides a helper for copying FMF from an instruction or setting specified flags.
Definition IRBuilder.h:93
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition Type.cpp:803
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Definition Function.cpp:803
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutNoUnsignedSignedWrap() const
static GEPNoWrapFlags noUnsignedWrap()
bool hasNoUnsignedSignedWrap() const
bool isInBounds() const
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
Definition Globals.cpp:132
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
bool isCast() const
bool isBinaryOp() const
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
bool isUnaryOp() const
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Class to represent scalable SIMD vectors.
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition DataLayout.h:712
LLVM_ABI unsigned getElementContainingOffset(uint64_t FixedOffset) const
Given a valid byte offset into the structure, returns the structure index that contains it.
TypeSize getElementOffset(unsigned Idx) const
Definition DataLayout.h:743
Class to represent struct types.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:298
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ HalfTyID
16-bit floating point type
Definition Type.h:56
@ FloatTyID
32-bit floating point type
Definition Type.h:58
@ DoubleTyID
64-bit floating point type
Definition Type.h:59
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:295
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
Definition Type.cpp:296
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition Type.h:311
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:294
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
Definition Type.h:270
bool isX86_AMXTy() const
Return true if this is X86 AMX.
Definition Type.h:200
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:301
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
Definition Type.h:381
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:107
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1099
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:201
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:253
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:238
const ParentTy * getParent() const
Definition ilist_node.h:34
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
Definition APInt.h:2248
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
Definition APInt.h:2253
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
Definition APInt.h:2258
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
Definition APInt.h:2263
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ CE
Windows NT (Windows on ARM)
Definition MCAsmInfo.h:48
initializer< Ty > init(const Ty &Val)
@ ebStrict
This corresponds to "fpexcept.strict".
Definition FPEnv.h:42
@ ebIgnore
This corresponds to "fpexcept.ignore".
Definition FPEnv.h:40
constexpr double pi
APFloat::roundingMode GetFMARoundingMode(Intrinsic::ID IntrinsicID)
DenormalMode GetNVVMDenormMode(bool ShouldFTZ)
bool FPToIntegerIntrinsicNaNZero(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFDivRoundingMode(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicResultIsSigned(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFPToIntegerRoundingMode(Intrinsic::ID IntrinsicID)
bool RCPShouldFTZ(Intrinsic::ID IntrinsicID)
bool FPToIntegerIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FDivShouldFTZ(Intrinsic::ID IntrinsicID)
bool FAddShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxIsXorSignAbs(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFMulRoundingMode(Intrinsic::ID IntrinsicID)
bool UnaryMathIntrinsicShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMinFMaxShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetFAddRoundingMode(Intrinsic::ID IntrinsicID)
bool FMAShouldFTZ(Intrinsic::ID IntrinsicID)
bool FMulShouldFTZ(Intrinsic::ID IntrinsicID)
APFloat::roundingMode GetRCPRoundingMode(Intrinsic::ID IntrinsicID)
bool FMinFMaxPropagatesNaNs(Intrinsic::ID IntrinsicID)
NodeAddr< FuncNode * > Func
Definition RDFGraph.h:393
LLVM_ABI std::error_code status(const Twine &path, file_status &result, bool follow=true)
Get file status as if by POSIX stat().
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
@ Offset
Definition DWP.cpp:477
LLVM_ABI Constant * ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, Constant *RHS, Type *Ty, Instruction *FMFSource)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
LLVM_ABI Constant * ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, const DataLayout &DL)
ConstantFoldLoadThroughBitcast - try to cast constant to destination type returning null if unsuccess...
static double log2(double V)
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
LLVM_ABI Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2472
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
unsigned getPointerAddressSpace(const Type *T)
Definition SPIRVUtils.h:345
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
APFloat abs(APFloat X)
Returns the absolute value of the argument.
Definition APFloat.h:1545
LLVM_ABI Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
LLVM_ABI Constant * ConstantFoldUnaryInstruction(unsigned Opcode, Constant *V)
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
LLVM_ABI bool isMathLibCallNoop(const CallBase *Call, const TargetLibraryInfo *TLI)
Check whether the given call has no side-effects.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:732
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Definition APFloat.h:1625
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
Definition APFloat.h:1516
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:676
LLVM_ABI Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
Definition APFloat.h:1537
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
Definition APFloat.h:1580
LLVM_ABI Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Constant * FlushFPConstant(Constant *Operand, const Instruction *I, bool IsOutput)
Attempt to flush float point constant according to denormal mode set in the instruction's parent func...
LLVM_ABI Constant * getLosslessUnsignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
Definition APFloat.h:1611
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
Definition APFloat.h:1525
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI Constant * getLosslessSignedTrunc(Constant *C, Type *DestTy, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Constant * ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL)
Extract value of C at the given Offset reinterpreted as Ty.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
Definition APFloat.h:1561
@ Sub
Subtraction of integers.
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
DWARFExpression::Operation Op
RoundingMode
Rounding mode.
@ NearestTiesToEven
roundTiesToEven.
@ Dynamic
Denotes mode unknown at compile time.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
ConstantFoldInsertValueInstruction - Attempt to constant fold an insertvalue instruction with the spe...
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
Definition APFloat.h:1598
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
Definition APFloat.h:1638
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:830
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
DenormalModeKind
Represent handled modes for denormal (aka subnormal) modes in the floating point environment.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ Dynamic
Denormals have unknown treatment.
@ IEEE
IEEE-754 denormal numbers preserved.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getDynamic()
static constexpr DenormalMode getIEEE()
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
bool isConstant() const
Returns true if we know the value of all bits.
Definition KnownBits.h:54
const APInt & getConstant() const
Returns the value when all bits have a known value.
Definition KnownBits.h:60