LLVM 19.0.0git
AMDGPULibCalls.cpp
Go to the documentation of this file.
1//===- AMDGPULibCalls.cpp -------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This file does AMD library function optimizations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AMDGPU.h"
15#include "AMDGPULibFunc.h"
16#include "GCNSubtarget.h"
21#include "llvm/IR/Dominators.h"
22#include "llvm/IR/IRBuilder.h"
24#include "llvm/IR/IntrinsicsAMDGPU.h"
25#include "llvm/IR/MDBuilder.h"
28#include <cmath>
29
30#define DEBUG_TYPE "amdgpu-simplifylib"
31
32using namespace llvm;
33using namespace llvm::PatternMatch;
34
35static cl::opt<bool> EnablePreLink("amdgpu-prelink",
36 cl::desc("Enable pre-link mode optimizations"),
37 cl::init(false),
39
40static cl::list<std::string> UseNative("amdgpu-use-native",
41 cl::desc("Comma separated list of functions to replace with native, or all"),
44
45#define MATH_PI numbers::pi
46#define MATH_E numbers::e
47#define MATH_SQRT2 numbers::sqrt2
48#define MATH_SQRT1_2 numbers::inv_sqrt2
49
50namespace llvm {
51
53private:
54 const TargetLibraryInfo *TLInfo = nullptr;
55 AssumptionCache *AC = nullptr;
56 DominatorTree *DT = nullptr;
57
59
60 bool UnsafeFPMath = false;
61
62 // -fuse-native.
63 bool AllNative = false;
64
65 bool useNativeFunc(const StringRef F) const;
66
67 // Return a pointer (pointer expr) to the function if function definition with
68 // "FuncName" exists. It may create a new function prototype in pre-link mode.
69 FunctionCallee getFunction(Module *M, const FuncInfo &fInfo);
70
71 bool parseFunctionName(const StringRef &FMangledName, FuncInfo &FInfo);
72
73 bool TDOFold(CallInst *CI, const FuncInfo &FInfo);
74
75 /* Specialized optimizations */
76
77 // pow/powr/pown
78 bool fold_pow(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo);
79
80 // rootn
81 bool fold_rootn(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo);
82
83 // -fuse-native for sincos
84 bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo);
85
86 // evaluate calls if calls' arguments are constants.
87 bool evaluateScalarMathFunc(const FuncInfo &FInfo, double &Res0, double &Res1,
88 Constant *copr0, Constant *copr1);
89 bool evaluateCall(CallInst *aCI, const FuncInfo &FInfo);
90
91 /// Insert a value to sincos function \p Fsincos. Returns (value of sin, value
92 /// of cos, sincos call).
93 std::tuple<Value *, Value *, Value *> insertSinCos(Value *Arg,
94 FastMathFlags FMF,
96 FunctionCallee Fsincos);
97
98 // sin/cos
99 bool fold_sincos(FPMathOperator *FPOp, IRBuilder<> &B, const FuncInfo &FInfo);
100
101 // __read_pipe/__write_pipe
102 bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
103 const FuncInfo &FInfo);
104
105 // Get a scalar native builtin single argument FP function
106 FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo);
107
108 /// Substitute a call to a known libcall with an intrinsic call. If \p
109 /// AllowMinSize is true, allow the replacement in a minsize function.
110 bool shouldReplaceLibcallWithIntrinsic(const CallInst *CI,
111 bool AllowMinSizeF32 = false,
112 bool AllowF64 = false,
113 bool AllowStrictFP = false);
114 void replaceLibCallWithSimpleIntrinsic(IRBuilder<> &B, CallInst *CI,
115 Intrinsic::ID IntrID);
116
117 bool tryReplaceLibcallWithSimpleIntrinsic(IRBuilder<> &B, CallInst *CI,
118 Intrinsic::ID IntrID,
119 bool AllowMinSizeF32 = false,
120 bool AllowF64 = false,
121 bool AllowStrictFP = false);
122
123protected:
124 bool isUnsafeMath(const FPMathOperator *FPOp) const;
125 bool isUnsafeFiniteOnlyMath(const FPMathOperator *FPOp) const;
126
128
129 static void replaceCall(Instruction *I, Value *With) {
130 I->replaceAllUsesWith(With);
131 I->eraseFromParent();
132 }
133
134 static void replaceCall(FPMathOperator *I, Value *With) {
135 replaceCall(cast<Instruction>(I), With);
136 }
137
138public:
140
141 bool fold(CallInst *CI);
142
144 void initNativeFuncs();
145
146 // Replace a normal math function call with that native version
147 bool useNative(CallInst *CI);
148};
149
150} // end llvm namespace
151
152template <typename IRB>
153static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg,
154 const Twine &Name = "") {
155 CallInst *R = B.CreateCall(Callee, Arg, Name);
156 if (Function *F = dyn_cast<Function>(Callee.getCallee()))
157 R->setCallingConv(F->getCallingConv());
158 return R;
159}
160
161template <typename IRB>
162static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1,
163 Value *Arg2, const Twine &Name = "") {
164 CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name);
165 if (Function *F = dyn_cast<Function>(Callee.getCallee()))
166 R->setCallingConv(F->getCallingConv());
167 return R;
168}
169
171 Type *PowNExpTy = Type::getInt32Ty(FT->getContext());
172 if (VectorType *VecTy = dyn_cast<VectorType>(FT->getReturnType()))
173 PowNExpTy = VectorType::get(PowNExpTy, VecTy->getElementCount());
174
175 return FunctionType::get(FT->getReturnType(),
176 {FT->getParamType(0), PowNExpTy}, false);
177}
178
179// Data structures for table-driven optimizations.
180// FuncTbl works for both f32 and f64 functions with 1 input argument
181
183 double result;
184 double input;
185};
186
187/* a list of {result, input} */
188static const TableEntry tbl_acos[] = {
189 {MATH_PI / 2.0, 0.0},
190 {MATH_PI / 2.0, -0.0},
191 {0.0, 1.0},
192 {MATH_PI, -1.0}
193};
194static const TableEntry tbl_acosh[] = {
195 {0.0, 1.0}
196};
197static const TableEntry tbl_acospi[] = {
198 {0.5, 0.0},
199 {0.5, -0.0},
200 {0.0, 1.0},
201 {1.0, -1.0}
202};
203static const TableEntry tbl_asin[] = {
204 {0.0, 0.0},
205 {-0.0, -0.0},
206 {MATH_PI / 2.0, 1.0},
207 {-MATH_PI / 2.0, -1.0}
208};
209static const TableEntry tbl_asinh[] = {
210 {0.0, 0.0},
211 {-0.0, -0.0}
212};
213static const TableEntry tbl_asinpi[] = {
214 {0.0, 0.0},
215 {-0.0, -0.0},
216 {0.5, 1.0},
217 {-0.5, -1.0}
218};
219static const TableEntry tbl_atan[] = {
220 {0.0, 0.0},
221 {-0.0, -0.0},
222 {MATH_PI / 4.0, 1.0},
223 {-MATH_PI / 4.0, -1.0}
224};
225static const TableEntry tbl_atanh[] = {
226 {0.0, 0.0},
227 {-0.0, -0.0}
228};
229static const TableEntry tbl_atanpi[] = {
230 {0.0, 0.0},
231 {-0.0, -0.0},
232 {0.25, 1.0},
233 {-0.25, -1.0}
234};
235static const TableEntry tbl_cbrt[] = {
236 {0.0, 0.0},
237 {-0.0, -0.0},
238 {1.0, 1.0},
239 {-1.0, -1.0},
240};
241static const TableEntry tbl_cos[] = {
242 {1.0, 0.0},
243 {1.0, -0.0}
244};
245static const TableEntry tbl_cosh[] = {
246 {1.0, 0.0},
247 {1.0, -0.0}
248};
249static const TableEntry tbl_cospi[] = {
250 {1.0, 0.0},
251 {1.0, -0.0}
252};
253static const TableEntry tbl_erfc[] = {
254 {1.0, 0.0},
255 {1.0, -0.0}
256};
257static const TableEntry tbl_erf[] = {
258 {0.0, 0.0},
259 {-0.0, -0.0}
260};
261static const TableEntry tbl_exp[] = {
262 {1.0, 0.0},
263 {1.0, -0.0},
264 {MATH_E, 1.0}
265};
266static const TableEntry tbl_exp2[] = {
267 {1.0, 0.0},
268 {1.0, -0.0},
269 {2.0, 1.0}
270};
271static const TableEntry tbl_exp10[] = {
272 {1.0, 0.0},
273 {1.0, -0.0},
274 {10.0, 1.0}
275};
276static const TableEntry tbl_expm1[] = {
277 {0.0, 0.0},
278 {-0.0, -0.0}
279};
280static const TableEntry tbl_log[] = {
281 {0.0, 1.0},
282 {1.0, MATH_E}
283};
284static const TableEntry tbl_log2[] = {
285 {0.0, 1.0},
286 {1.0, 2.0}
287};
288static const TableEntry tbl_log10[] = {
289 {0.0, 1.0},
290 {1.0, 10.0}
291};
292static const TableEntry tbl_rsqrt[] = {
293 {1.0, 1.0},
294 {MATH_SQRT1_2, 2.0}
295};
296static const TableEntry tbl_sin[] = {
297 {0.0, 0.0},
298 {-0.0, -0.0}
299};
300static const TableEntry tbl_sinh[] = {
301 {0.0, 0.0},
302 {-0.0, -0.0}
303};
304static const TableEntry tbl_sinpi[] = {
305 {0.0, 0.0},
306 {-0.0, -0.0}
307};
308static const TableEntry tbl_sqrt[] = {
309 {0.0, 0.0},
310 {1.0, 1.0},
311 {MATH_SQRT2, 2.0}
312};
313static const TableEntry tbl_tan[] = {
314 {0.0, 0.0},
315 {-0.0, -0.0}
316};
317static const TableEntry tbl_tanh[] = {
318 {0.0, 0.0},
319 {-0.0, -0.0}
320};
321static const TableEntry tbl_tanpi[] = {
322 {0.0, 0.0},
323 {-0.0, -0.0}
324};
325static const TableEntry tbl_tgamma[] = {
326 {1.0, 1.0},
327 {1.0, 2.0},
328 {2.0, 3.0},
329 {6.0, 4.0}
330};
331
333 switch(id) {
334 case AMDGPULibFunc::EI_DIVIDE:
335 case AMDGPULibFunc::EI_COS:
336 case AMDGPULibFunc::EI_EXP:
337 case AMDGPULibFunc::EI_EXP2:
338 case AMDGPULibFunc::EI_EXP10:
339 case AMDGPULibFunc::EI_LOG:
340 case AMDGPULibFunc::EI_LOG2:
341 case AMDGPULibFunc::EI_LOG10:
342 case AMDGPULibFunc::EI_POWR:
343 case AMDGPULibFunc::EI_RECIP:
344 case AMDGPULibFunc::EI_RSQRT:
345 case AMDGPULibFunc::EI_SIN:
346 case AMDGPULibFunc::EI_SINCOS:
347 case AMDGPULibFunc::EI_SQRT:
348 case AMDGPULibFunc::EI_TAN:
349 return true;
350 default:;
351 }
352 return false;
353}
354
356
358 switch(id) {
359 case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos);
360 case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh);
361 case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi);
362 case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin);
363 case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh);
364 case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi);
365 case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan);
366 case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh);
367 case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi);
368 case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt);
369 case AMDGPULibFunc::EI_NCOS:
370 case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos);
371 case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh);
372 case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi);
373 case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc);
374 case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf);
375 case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp);
376 case AMDGPULibFunc::EI_NEXP2:
377 case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2);
378 case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10);
379 case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1);
380 case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log);
381 case AMDGPULibFunc::EI_NLOG2:
382 case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2);
383 case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10);
384 case AMDGPULibFunc::EI_NRSQRT:
385 case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt);
386 case AMDGPULibFunc::EI_NSIN:
387 case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin);
388 case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh);
389 case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi);
390 case AMDGPULibFunc::EI_NSQRT:
391 case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt);
392 case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan);
393 case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh);
394 case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi);
395 case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma);
396 default:;
397 }
398 return TableRef();
399}
400
401static inline int getVecSize(const AMDGPULibFunc& FInfo) {
402 return FInfo.getLeads()[0].VectorSize;
403}
404
405static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) {
406 return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType;
407}
408
409FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) {
410 // If we are doing PreLinkOpt, the function is external. So it is safe to
411 // use getOrInsertFunction() at this stage.
412
414 : AMDGPULibFunc::getFunction(M, fInfo);
415}
416
417bool AMDGPULibCalls::parseFunctionName(const StringRef &FMangledName,
418 FuncInfo &FInfo) {
419 return AMDGPULibFunc::parse(FMangledName, FInfo);
420}
421
423 return UnsafeFPMath || FPOp->isFast();
424}
425
427 return UnsafeFPMath ||
428 (FPOp->hasApproxFunc() && FPOp->hasNoNaNs() && FPOp->hasNoInfs());
429}
430
432 const FPMathOperator *FPOp) const {
433 // TODO: Refine to approxFunc or contract
434 return isUnsafeMath(FPOp);
435}
436
438 UnsafeFPMath = F.getFnAttribute("unsafe-fp-math").getValueAsBool();
442}
443
444bool AMDGPULibCalls::useNativeFunc(const StringRef F) const {
445 return AllNative || llvm::is_contained(UseNative, F);
446}
447
449 AllNative = useNativeFunc("all") ||
450 (UseNative.getNumOccurrences() && UseNative.size() == 1 &&
451 UseNative.begin()->empty());
452}
453
454bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) {
455 bool native_sin = useNativeFunc("sin");
456 bool native_cos = useNativeFunc("cos");
457
458 if (native_sin && native_cos) {
459 Module *M = aCI->getModule();
460 Value *opr0 = aCI->getArgOperand(0);
461
462 AMDGPULibFunc nf;
463 nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType;
464 nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize;
465
468 FunctionCallee sinExpr = getFunction(M, nf);
469
472 FunctionCallee cosExpr = getFunction(M, nf);
473 if (sinExpr && cosExpr) {
474 Value *sinval =
475 CallInst::Create(sinExpr, opr0, "splitsin", aCI->getIterator());
476 Value *cosval =
477 CallInst::Create(cosExpr, opr0, "splitcos", aCI->getIterator());
478 new StoreInst(cosval, aCI->getArgOperand(1), aCI->getIterator());
479
480 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
481 << " with native version of sin/cos");
482
483 replaceCall(aCI, sinval);
484 return true;
485 }
486 }
487 return false;
488}
489
491 Function *Callee = aCI->getCalledFunction();
492 if (!Callee || aCI->isNoBuiltin())
493 return false;
494
495 FuncInfo FInfo;
496 if (!parseFunctionName(Callee->getName(), FInfo) || !FInfo.isMangled() ||
497 FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
498 getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) ||
499 !(AllNative || useNativeFunc(FInfo.getName()))) {
500 return false;
501 }
502
503 if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS)
504 return sincosUseNative(aCI, FInfo);
505
507 FunctionCallee F = getFunction(aCI->getModule(), FInfo);
508 if (!F)
509 return false;
510
511 aCI->setCalledFunction(F);
512 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
513 << " with native version");
514 return true;
515}
516
517// Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe
518// builtin, with appended type size and alignment arguments, where 2 or 4
519// indicates the original number of arguments. The library has optimized version
520// of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same
521// power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N
522// for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ...,
523// 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4.
524bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
525 const FuncInfo &FInfo) {
526 auto *Callee = CI->getCalledFunction();
527 if (!Callee->isDeclaration())
528 return false;
529
530 assert(Callee->hasName() && "Invalid read_pipe/write_pipe function");
531 auto *M = Callee->getParent();
532 std::string Name = std::string(Callee->getName());
533 auto NumArg = CI->arg_size();
534 if (NumArg != 4 && NumArg != 6)
535 return false;
536 ConstantInt *PacketSize =
537 dyn_cast<ConstantInt>(CI->getArgOperand(NumArg - 2));
538 ConstantInt *PacketAlign =
539 dyn_cast<ConstantInt>(CI->getArgOperand(NumArg - 1));
540 if (!PacketSize || !PacketAlign)
541 return false;
542
543 unsigned Size = PacketSize->getZExtValue();
544 Align Alignment = PacketAlign->getAlignValue();
545 if (Alignment != Size)
546 return false;
547
548 unsigned PtrArgLoc = CI->arg_size() - 3;
549 Value *PtrArg = CI->getArgOperand(PtrArgLoc);
550 Type *PtrTy = PtrArg->getType();
551
553 for (unsigned I = 0; I != PtrArgLoc; ++I)
554 ArgTys.push_back(CI->getArgOperand(I)->getType());
555 ArgTys.push_back(PtrTy);
556
557 Name = Name + "_" + std::to_string(Size);
558 auto *FTy = FunctionType::get(Callee->getReturnType(),
559 ArrayRef<Type *>(ArgTys), false);
560 AMDGPULibFunc NewLibFunc(Name, FTy);
562 if (!F)
563 return false;
564
566 for (unsigned I = 0; I != PtrArgLoc; ++I)
567 Args.push_back(CI->getArgOperand(I));
568 Args.push_back(PtrArg);
569
570 auto *NCI = B.CreateCall(F, Args);
571 NCI->setAttributes(CI->getAttributes());
572 CI->replaceAllUsesWith(NCI);
573 CI->dropAllReferences();
574 CI->eraseFromParent();
575
576 return true;
577}
578
579static bool isKnownIntegral(const Value *V, const DataLayout &DL,
580 FastMathFlags FMF) {
581 if (isa<PoisonValue>(V))
582 return true;
583 if (isa<UndefValue>(V))
584 return false;
585
586 if (const ConstantFP *CF = dyn_cast<ConstantFP>(V))
587 return CF->getValueAPF().isInteger();
588
589 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
590 const Constant *CV = dyn_cast<Constant>(V);
591 if (VFVTy && CV) {
592 unsigned NumElts = VFVTy->getNumElements();
593 for (unsigned i = 0; i != NumElts; ++i) {
594 Constant *Elt = CV->getAggregateElement(i);
595 if (!Elt)
596 return false;
597 if (isa<PoisonValue>(Elt))
598 continue;
599
600 const ConstantFP *CFP = dyn_cast<ConstantFP>(Elt);
601 if (!CFP || !CFP->getValue().isInteger())
602 return false;
603 }
604
605 return true;
606 }
607
608 const Instruction *I = dyn_cast<Instruction>(V);
609 if (!I)
610 return false;
611
612 switch (I->getOpcode()) {
613 case Instruction::SIToFP:
614 case Instruction::UIToFP:
615 // TODO: Could check nofpclass(inf) on incoming argument
616 if (FMF.noInfs())
617 return true;
618
619 // Need to check int size cannot produce infinity, which computeKnownFPClass
620 // knows how to do already.
621 return isKnownNeverInfinity(I, /*Depth=*/0, SimplifyQuery(DL));
622 case Instruction::Call: {
623 const CallInst *CI = cast<CallInst>(I);
624 switch (CI->getIntrinsicID()) {
625 case Intrinsic::trunc:
626 case Intrinsic::floor:
627 case Intrinsic::ceil:
628 case Intrinsic::rint:
629 case Intrinsic::nearbyint:
630 case Intrinsic::round:
631 case Intrinsic::roundeven:
632 return (FMF.noInfs() && FMF.noNaNs()) ||
633 isKnownNeverInfOrNaN(I, /*Depth=*/0, SimplifyQuery(DL));
634 default:
635 break;
636 }
637
638 break;
639 }
640 default:
641 break;
642 }
643
644 return false;
645}
646
647// This function returns false if no change; return true otherwise.
649 Function *Callee = CI->getCalledFunction();
650 // Ignore indirect calls.
651 if (!Callee || Callee->isIntrinsic() || CI->isNoBuiltin())
652 return false;
653
654 FuncInfo FInfo;
655 if (!parseFunctionName(Callee->getName(), FInfo))
656 return false;
657
658 // Further check the number of arguments to see if they match.
659 // TODO: Check calling convention matches too
660 if (!FInfo.isCompatibleSignature(CI->getFunctionType()))
661 return false;
662
663 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << '\n');
664
665 if (TDOFold(CI, FInfo))
666 return true;
667
668 IRBuilder<> B(CI);
669 if (CI->isStrictFP())
670 B.setIsFPConstrained(true);
671
672 if (FPMathOperator *FPOp = dyn_cast<FPMathOperator>(CI)) {
673 // Under unsafe-math, evaluate calls if possible.
674 // According to Brian Sumner, we can do this for all f32 function calls
675 // using host's double function calls.
676 if (canIncreasePrecisionOfConstantFold(FPOp) && evaluateCall(CI, FInfo))
677 return true;
678
679 // Copy fast flags from the original call.
680 FastMathFlags FMF = FPOp->getFastMathFlags();
681 B.setFastMathFlags(FMF);
682
683 // Specialized optimizations for each function call.
684 //
685 // TODO: Handle native functions
686 switch (FInfo.getId()) {
688 if (FMF.none())
689 return false;
690 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::exp,
691 FMF.approxFunc());
693 if (FMF.none())
694 return false;
695 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::exp2,
696 FMF.approxFunc());
698 if (FMF.none())
699 return false;
700 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log,
701 FMF.approxFunc());
703 if (FMF.none())
704 return false;
705 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log2,
706 FMF.approxFunc());
708 if (FMF.none())
709 return false;
710 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::log10,
711 FMF.approxFunc());
713 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::minnum,
714 true, true);
716 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::maxnum,
717 true, true);
719 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fma, true,
720 true);
722 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fmuladd,
723 true, true);
725 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::fabs, true,
726 true, true);
728 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::copysign,
729 true, true, true);
731 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::floor, true,
732 true);
734 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::ceil, true,
735 true);
737 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::trunc, true,
738 true);
740 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::rint, true,
741 true);
743 return tryReplaceLibcallWithSimpleIntrinsic(B, CI, Intrinsic::round, true,
744 true);
746 if (!shouldReplaceLibcallWithIntrinsic(CI, true, true))
747 return false;
748
749 Value *Arg1 = CI->getArgOperand(1);
750 if (VectorType *VecTy = dyn_cast<VectorType>(CI->getType());
751 VecTy && !isa<VectorType>(Arg1->getType())) {
752 Value *SplatArg1 = B.CreateVectorSplat(VecTy->getElementCount(), Arg1);
753 CI->setArgOperand(1, SplatArg1);
754 }
755
757 CI->getModule(), Intrinsic::ldexp,
758 {CI->getType(), CI->getArgOperand(1)->getType()}));
759 return true;
760 }
762 Module *M = Callee->getParent();
763 AMDGPULibFunc PowrInfo(AMDGPULibFunc::EI_POWR, FInfo);
764 FunctionCallee PowrFunc = getFunction(M, PowrInfo);
765 CallInst *Call = cast<CallInst>(FPOp);
766
767 // pow(x, y) -> powr(x, y) for x >= -0.0
768 // TODO: Account for flags on current call
769 if (PowrFunc &&
771 FPOp->getOperand(0), /*Depth=*/0,
772 SimplifyQuery(M->getDataLayout(), TLInfo, DT, AC, Call))) {
773 Call->setCalledFunction(PowrFunc);
774 return fold_pow(FPOp, B, PowrInfo) || true;
775 }
776
777 // pow(x, y) -> pown(x, y) for known integral y
778 if (isKnownIntegral(FPOp->getOperand(1), M->getDataLayout(),
779 FPOp->getFastMathFlags())) {
780 FunctionType *PownType = getPownType(CI->getFunctionType());
781 AMDGPULibFunc PownInfo(AMDGPULibFunc::EI_POWN, PownType, true);
782 FunctionCallee PownFunc = getFunction(M, PownInfo);
783 if (PownFunc) {
784 // TODO: If the incoming integral value is an sitofp/uitofp, it won't
785 // fold out without a known range. We can probably take the source
786 // value directly.
787 Value *CastedArg =
788 B.CreateFPToSI(FPOp->getOperand(1), PownType->getParamType(1));
789 // Have to drop any nofpclass attributes on the original call site.
790 Call->removeParamAttrs(
792 Call->setCalledFunction(PownFunc);
793 Call->setArgOperand(1, CastedArg);
794 return fold_pow(FPOp, B, PownInfo) || true;
795 }
796 }
797
798 return fold_pow(FPOp, B, FInfo);
799 }
802 return fold_pow(FPOp, B, FInfo);
804 return fold_rootn(FPOp, B, FInfo);
806 // TODO: Allow with strictfp + constrained intrinsic
807 return tryReplaceLibcallWithSimpleIntrinsic(
808 B, CI, Intrinsic::sqrt, true, true, /*AllowStrictFP=*/false);
811 return fold_sincos(FPOp, B, FInfo);
812 default:
813 break;
814 }
815 } else {
816 // Specialized optimizations for each function call
817 switch (FInfo.getId()) {
822 return fold_read_write_pipe(CI, B, FInfo);
823 default:
824 break;
825 }
826 }
827
828 return false;
829}
830
831bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) {
832 // Table-Driven optimization
833 const TableRef tr = getOptTable(FInfo.getId());
834 if (tr.empty())
835 return false;
836
837 int const sz = (int)tr.size();
838 Value *opr0 = CI->getArgOperand(0);
839
840 if (getVecSize(FInfo) > 1) {
841 if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) {
843 for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) {
844 ConstantFP *eltval = dyn_cast<ConstantFP>(
845 CV->getElementAsConstant((unsigned)eltNo));
846 assert(eltval && "Non-FP arguments in math function!");
847 bool found = false;
848 for (int i=0; i < sz; ++i) {
849 if (eltval->isExactlyValue(tr[i].input)) {
850 DVal.push_back(tr[i].result);
851 found = true;
852 break;
853 }
854 }
855 if (!found) {
856 // This vector constants not handled yet.
857 return false;
858 }
859 }
860 LLVMContext &context = CI->getParent()->getParent()->getContext();
861 Constant *nval;
862 if (getArgType(FInfo) == AMDGPULibFunc::F32) {
864 for (unsigned i = 0; i < DVal.size(); ++i) {
865 FVal.push_back((float)DVal[i]);
866 }
867 ArrayRef<float> tmp(FVal);
868 nval = ConstantDataVector::get(context, tmp);
869 } else { // F64
870 ArrayRef<double> tmp(DVal);
871 nval = ConstantDataVector::get(context, tmp);
872 }
873 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
874 replaceCall(CI, nval);
875 return true;
876 }
877 } else {
878 // Scalar version
879 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
880 for (int i = 0; i < sz; ++i) {
881 if (CF->isExactlyValue(tr[i].input)) {
882 Value *nval = ConstantFP::get(CF->getType(), tr[i].result);
883 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
884 replaceCall(CI, nval);
885 return true;
886 }
887 }
888 }
889 }
890
891 return false;
892}
893
894namespace llvm {
895static double log2(double V) {
896#if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L
897 return ::log2(V);
898#else
899 return log(V) / numbers::ln2;
900#endif
901}
902}
903
904bool AMDGPULibCalls::fold_pow(FPMathOperator *FPOp, IRBuilder<> &B,
905 const FuncInfo &FInfo) {
906 assert((FInfo.getId() == AMDGPULibFunc::EI_POW ||
907 FInfo.getId() == AMDGPULibFunc::EI_POWR ||
908 FInfo.getId() == AMDGPULibFunc::EI_POWN) &&
909 "fold_pow: encounter a wrong function call");
910
911 Module *M = B.GetInsertBlock()->getModule();
912 Type *eltType = FPOp->getType()->getScalarType();
913 Value *opr0 = FPOp->getOperand(0);
914 Value *opr1 = FPOp->getOperand(1);
915
916 const APFloat *CF = nullptr;
917 const APInt *CINT = nullptr;
918 if (!match(opr1, m_APFloatAllowPoison(CF)))
919 match(opr1, m_APIntAllowPoison(CINT));
920
921 // 0x1111111 means that we don't do anything for this call.
922 int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111);
923
924 if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0)) {
925 // pow/powr/pown(x, 0) == 1
926 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1\n");
927 Constant *cnval = ConstantFP::get(eltType, 1.0);
928 if (getVecSize(FInfo) > 1) {
929 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
930 }
931 replaceCall(FPOp, cnval);
932 return true;
933 }
934 if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) {
935 // pow/powr/pown(x, 1.0) = x
936 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << "\n");
937 replaceCall(FPOp, opr0);
938 return true;
939 }
940 if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) {
941 // pow/powr/pown(x, 2.0) = x*x
942 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << " * "
943 << *opr0 << "\n");
944 Value *nval = B.CreateFMul(opr0, opr0, "__pow2");
945 replaceCall(FPOp, nval);
946 return true;
947 }
948 if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) {
949 // pow/powr/pown(x, -1.0) = 1.0/x
950 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1 / " << *opr0 << "\n");
951 Constant *cnval = ConstantFP::get(eltType, 1.0);
952 if (getVecSize(FInfo) > 1) {
953 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
954 }
955 Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip");
956 replaceCall(FPOp, nval);
957 return true;
958 }
959
960 if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) {
961 // pow[r](x, [-]0.5) = sqrt(x)
962 bool issqrt = CF->isExactlyValue(0.5);
963 if (FunctionCallee FPExpr =
964 getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT
966 FInfo))) {
967 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << FInfo.getName()
968 << '(' << *opr0 << ")\n");
969 Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt"
970 : "__pow2rsqrt");
971 replaceCall(FPOp, nval);
972 return true;
973 }
974 }
975
976 if (!isUnsafeFiniteOnlyMath(FPOp))
977 return false;
978
979 // Unsafe Math optimization
980
981 // Remember that ci_opr1 is set if opr1 is integral
982 if (CF) {
983 double dval = (getArgType(FInfo) == AMDGPULibFunc::F32)
984 ? (double)CF->convertToFloat()
985 : CF->convertToDouble();
986 int ival = (int)dval;
987 if ((double)ival == dval) {
988 ci_opr1 = ival;
989 } else
990 ci_opr1 = 0x11111111;
991 }
992
993 // pow/powr/pown(x, c) = [1/](x*x*..x); where
994 // trunc(c) == c && the number of x == c && |c| <= 12
995 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1;
996 if (abs_opr1 <= 12) {
997 Constant *cnval;
998 Value *nval;
999 if (abs_opr1 == 0) {
1000 cnval = ConstantFP::get(eltType, 1.0);
1001 if (getVecSize(FInfo) > 1) {
1002 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
1003 }
1004 nval = cnval;
1005 } else {
1006 Value *valx2 = nullptr;
1007 nval = nullptr;
1008 while (abs_opr1 > 0) {
1009 valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0;
1010 if (abs_opr1 & 1) {
1011 nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2;
1012 }
1013 abs_opr1 >>= 1;
1014 }
1015 }
1016
1017 if (ci_opr1 < 0) {
1018 cnval = ConstantFP::get(eltType, 1.0);
1019 if (getVecSize(FInfo) > 1) {
1020 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
1021 }
1022 nval = B.CreateFDiv(cnval, nval, "__1powprod");
1023 }
1024 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> "
1025 << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0
1026 << ")\n");
1027 replaceCall(FPOp, nval);
1028 return true;
1029 }
1030
1031 // If we should use the generic intrinsic instead of emitting a libcall
1032 const bool ShouldUseIntrinsic = eltType->isFloatTy() || eltType->isHalfTy();
1033
1034 // powr ---> exp2(y * log2(x))
1035 // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31))
1036 FunctionCallee ExpExpr;
1037 if (ShouldUseIntrinsic)
1038 ExpExpr = Intrinsic::getDeclaration(M, Intrinsic::exp2, {FPOp->getType()});
1039 else {
1040 ExpExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo));
1041 if (!ExpExpr)
1042 return false;
1043 }
1044
1045 bool needlog = false;
1046 bool needabs = false;
1047 bool needcopysign = false;
1048 Constant *cnval = nullptr;
1049 if (getVecSize(FInfo) == 1) {
1050 CF = nullptr;
1051 match(opr0, m_APFloatAllowPoison(CF));
1052
1053 if (CF) {
1054 double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1055 ? (double)CF->convertToFloat()
1056 : CF->convertToDouble();
1057
1058 V = log2(std::abs(V));
1059 cnval = ConstantFP::get(eltType, V);
1060 needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) &&
1061 CF->isNegative();
1062 } else {
1063 needlog = true;
1064 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
1065 }
1066 } else {
1067 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0);
1068
1069 if (!CDV) {
1070 needlog = true;
1071 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
1072 } else {
1073 assert ((int)CDV->getNumElements() == getVecSize(FInfo) &&
1074 "Wrong vector size detected");
1075
1077 for (int i=0; i < getVecSize(FInfo); ++i) {
1078 double V = CDV->getElementAsAPFloat(i).convertToDouble();
1079 if (V < 0.0) needcopysign = true;
1080 V = log2(std::abs(V));
1081 DVal.push_back(V);
1082 }
1083 if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1085 for (unsigned i=0; i < DVal.size(); ++i) {
1086 FVal.push_back((float)DVal[i]);
1087 }
1088 ArrayRef<float> tmp(FVal);
1089 cnval = ConstantDataVector::get(M->getContext(), tmp);
1090 } else {
1091 ArrayRef<double> tmp(DVal);
1092 cnval = ConstantDataVector::get(M->getContext(), tmp);
1093 }
1094 }
1095 }
1096
1097 if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) {
1098 // We cannot handle corner cases for a general pow() function, give up
1099 // unless y is a constant integral value. Then proceed as if it were pown.
1100 if (!isKnownIntegral(opr1, M->getDataLayout(), FPOp->getFastMathFlags()))
1101 return false;
1102 }
1103
1104 Value *nval;
1105 if (needabs) {
1106 nval = B.CreateUnaryIntrinsic(Intrinsic::fabs, opr0, nullptr, "__fabs");
1107 } else {
1108 nval = cnval ? cnval : opr0;
1109 }
1110 if (needlog) {
1111 FunctionCallee LogExpr;
1112 if (ShouldUseIntrinsic) {
1113 LogExpr =
1114 Intrinsic::getDeclaration(M, Intrinsic::log2, {FPOp->getType()});
1115 } else {
1116 LogExpr = getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo));
1117 if (!LogExpr)
1118 return false;
1119 }
1120
1121 nval = CreateCallEx(B,LogExpr, nval, "__log2");
1122 }
1123
1124 if (FInfo.getId() == AMDGPULibFunc::EI_POWN) {
1125 // convert int(32) to fp(f32 or f64)
1126 opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F");
1127 }
1128 nval = B.CreateFMul(opr1, nval, "__ylogx");
1129 nval = CreateCallEx(B,ExpExpr, nval, "__exp2");
1130
1131 if (needcopysign) {
1132 Type* nTyS = B.getIntNTy(eltType->getPrimitiveSizeInBits());
1133 Type *nTy = FPOp->getType()->getWithNewType(nTyS);
1134 unsigned size = nTy->getScalarSizeInBits();
1135 Value *opr_n = FPOp->getOperand(1);
1136 if (opr_n->getType()->getScalarType()->isIntegerTy())
1137 opr_n = B.CreateZExtOrTrunc(opr_n, nTy, "__ytou");
1138 else
1139 opr_n = B.CreateFPToSI(opr1, nTy, "__ytou");
1140
1141 Value *sign = B.CreateShl(opr_n, size-1, "__yeven");
1142 sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign");
1143 nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign);
1144 nval = B.CreateBitCast(nval, opr0->getType());
1145 }
1146
1147 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> "
1148 << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n");
1149 replaceCall(FPOp, nval);
1150
1151 return true;
1152}
1153
1154bool AMDGPULibCalls::fold_rootn(FPMathOperator *FPOp, IRBuilder<> &B,
1155 const FuncInfo &FInfo) {
1156 Value *opr0 = FPOp->getOperand(0);
1157 Value *opr1 = FPOp->getOperand(1);
1158
1159 const APInt *CINT = nullptr;
1160 if (!match(opr1, m_APIntAllowPoison(CINT)))
1161 return false;
1162
1163 Function *Parent = B.GetInsertBlock()->getParent();
1164
1165 int ci_opr1 = (int)CINT->getSExtValue();
1166 if (ci_opr1 == 1 && !Parent->hasFnAttribute(Attribute::StrictFP)) {
1167 // rootn(x, 1) = x
1168 //
1169 // TODO: Insert constrained canonicalize for strictfp case.
1170 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> " << *opr0 << '\n');
1171 replaceCall(FPOp, opr0);
1172 return true;
1173 }
1174
1175 Module *M = B.GetInsertBlock()->getModule();
1176
1177 CallInst *CI = cast<CallInst>(FPOp);
1178 if (ci_opr1 == 2 &&
1179 shouldReplaceLibcallWithIntrinsic(CI,
1180 /*AllowMinSizeF32=*/true,
1181 /*AllowF64=*/true)) {
1182 // rootn(x, 2) = sqrt(x)
1183 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> sqrt(" << *opr0 << ")\n");
1184
1185 CallInst *NewCall = B.CreateUnaryIntrinsic(Intrinsic::sqrt, opr0, CI);
1186 NewCall->takeName(CI);
1187
1188 // OpenCL rootn has a looser ulp of 2 requirement than sqrt, so add some
1189 // metadata.
1190 MDBuilder MDHelper(M->getContext());
1191 MDNode *FPMD = MDHelper.createFPMath(std::max(FPOp->getFPAccuracy(), 2.0f));
1192 NewCall->setMetadata(LLVMContext::MD_fpmath, FPMD);
1193
1194 replaceCall(CI, NewCall);
1195 return true;
1196 }
1197
1198 if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x)
1199 if (FunctionCallee FPExpr =
1200 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) {
1201 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> cbrt(" << *opr0
1202 << ")\n");
1203 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt");
1204 replaceCall(FPOp, nval);
1205 return true;
1206 }
1207 } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x
1208 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> 1.0 / " << *opr0 << "\n");
1209 Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0),
1210 opr0,
1211 "__rootn2div");
1212 replaceCall(FPOp, nval);
1213 return true;
1214 }
1215
1216 if (ci_opr1 == -2 &&
1217 shouldReplaceLibcallWithIntrinsic(CI,
1218 /*AllowMinSizeF32=*/true,
1219 /*AllowF64=*/true)) {
1220 // rootn(x, -2) = rsqrt(x)
1221
1222 // The original rootn had looser ulp requirements than the resultant sqrt
1223 // and fdiv.
1224 MDBuilder MDHelper(M->getContext());
1225 MDNode *FPMD = MDHelper.createFPMath(std::max(FPOp->getFPAccuracy(), 2.0f));
1226
1227 // TODO: Could handle strictfp but need to fix strict sqrt emission
1228 FastMathFlags FMF = FPOp->getFastMathFlags();
1229 FMF.setAllowContract(true);
1230
1231 CallInst *Sqrt = B.CreateUnaryIntrinsic(Intrinsic::sqrt, opr0, CI);
1232 Instruction *RSqrt = cast<Instruction>(
1233 B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), Sqrt));
1234 Sqrt->setFastMathFlags(FMF);
1235 RSqrt->setFastMathFlags(FMF);
1236 RSqrt->setMetadata(LLVMContext::MD_fpmath, FPMD);
1237
1238 LLVM_DEBUG(errs() << "AMDIC: " << *FPOp << " ---> rsqrt(" << *opr0
1239 << ")\n");
1240 replaceCall(CI, RSqrt);
1241 return true;
1242 }
1243
1244 return false;
1245}
1246
1247// Get a scalar native builtin single argument FP function
1248FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M,
1249 const FuncInfo &FInfo) {
1250 if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()))
1251 return nullptr;
1252 FuncInfo nf = FInfo;
1254 return getFunction(M, nf);
1255}
1256
1257// Some library calls are just wrappers around llvm intrinsics, but compiled
1258// conservatively. Preserve the flags from the original call site by
1259// substituting them with direct calls with all the flags.
1260bool AMDGPULibCalls::shouldReplaceLibcallWithIntrinsic(const CallInst *CI,
1261 bool AllowMinSizeF32,
1262 bool AllowF64,
1263 bool AllowStrictFP) {
1264 Type *FltTy = CI->getType()->getScalarType();
1265 const bool IsF32 = FltTy->isFloatTy();
1266
1267 // f64 intrinsics aren't implemented for most operations.
1268 if (!IsF32 && !FltTy->isHalfTy() && (!AllowF64 || !FltTy->isDoubleTy()))
1269 return false;
1270
1271 // We're implicitly inlining by replacing the libcall with the intrinsic, so
1272 // don't do it for noinline call sites.
1273 if (CI->isNoInline())
1274 return false;
1275
1276 const Function *ParentF = CI->getFunction();
1277 // TODO: Handle strictfp
1278 if (!AllowStrictFP && ParentF->hasFnAttribute(Attribute::StrictFP))
1279 return false;
1280
1281 if (IsF32 && !AllowMinSizeF32 && ParentF->hasMinSize())
1282 return false;
1283 return true;
1284}
1285
1286void AMDGPULibCalls::replaceLibCallWithSimpleIntrinsic(IRBuilder<> &B,
1287 CallInst *CI,
1288 Intrinsic::ID IntrID) {
1289 if (CI->arg_size() == 2) {
1290 Value *Arg0 = CI->getArgOperand(0);
1291 Value *Arg1 = CI->getArgOperand(1);
1292 VectorType *Arg0VecTy = dyn_cast<VectorType>(Arg0->getType());
1293 VectorType *Arg1VecTy = dyn_cast<VectorType>(Arg1->getType());
1294 if (Arg0VecTy && !Arg1VecTy) {
1295 Value *SplatRHS = B.CreateVectorSplat(Arg0VecTy->getElementCount(), Arg1);
1296 CI->setArgOperand(1, SplatRHS);
1297 } else if (!Arg0VecTy && Arg1VecTy) {
1298 Value *SplatLHS = B.CreateVectorSplat(Arg1VecTy->getElementCount(), Arg0);
1299 CI->setArgOperand(0, SplatLHS);
1300 }
1301 }
1302
1304 Intrinsic::getDeclaration(CI->getModule(), IntrID, {CI->getType()}));
1305}
1306
1307bool AMDGPULibCalls::tryReplaceLibcallWithSimpleIntrinsic(
1308 IRBuilder<> &B, CallInst *CI, Intrinsic::ID IntrID, bool AllowMinSizeF32,
1309 bool AllowF64, bool AllowStrictFP) {
1310 if (!shouldReplaceLibcallWithIntrinsic(CI, AllowMinSizeF32, AllowF64,
1311 AllowStrictFP))
1312 return false;
1313 replaceLibCallWithSimpleIntrinsic(B, CI, IntrID);
1314 return true;
1315}
1316
1317std::tuple<Value *, Value *, Value *>
1318AMDGPULibCalls::insertSinCos(Value *Arg, FastMathFlags FMF, IRBuilder<> &B,
1319 FunctionCallee Fsincos) {
1320 DebugLoc DL = B.getCurrentDebugLocation();
1321 Function *F = B.GetInsertBlock()->getParent();
1322 B.SetInsertPointPastAllocas(F);
1323
1324 AllocaInst *Alloc = B.CreateAlloca(Arg->getType(), nullptr, "__sincos_");
1325
1326 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1327 // If the argument is an instruction, it must dominate all uses so put our
1328 // sincos call there. Otherwise, right after the allocas works well enough
1329 // if it's an argument or constant.
1330
1331 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
1332
1333 // SetInsertPoint unwelcomely always tries to set the debug loc.
1334 B.SetCurrentDebugLocation(DL);
1335 }
1336
1337 Type *CosPtrTy = Fsincos.getFunctionType()->getParamType(1);
1338
1339 // The allocaInst allocates the memory in private address space. This need
1340 // to be addrspacecasted to point to the address space of cos pointer type.
1341 // In OpenCL 2.0 this is generic, while in 1.2 that is private.
1342 Value *CastAlloc = B.CreateAddrSpaceCast(Alloc, CosPtrTy);
1343
1344 CallInst *SinCos = CreateCallEx2(B, Fsincos, Arg, CastAlloc);
1345
1346 // TODO: Is it worth trying to preserve the location for the cos calls for the
1347 // load?
1348
1349 LoadInst *LoadCos = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1350 return {SinCos, LoadCos, SinCos};
1351}
1352
1353// fold sin, cos -> sincos.
1354bool AMDGPULibCalls::fold_sincos(FPMathOperator *FPOp, IRBuilder<> &B,
1355 const FuncInfo &fInfo) {
1356 assert(fInfo.getId() == AMDGPULibFunc::EI_SIN ||
1357 fInfo.getId() == AMDGPULibFunc::EI_COS);
1358
1359 if ((getArgType(fInfo) != AMDGPULibFunc::F32 &&
1360 getArgType(fInfo) != AMDGPULibFunc::F64) ||
1361 fInfo.getPrefix() != AMDGPULibFunc::NOPFX)
1362 return false;
1363
1364 bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN;
1365
1366 Value *CArgVal = FPOp->getOperand(0);
1367 CallInst *CI = cast<CallInst>(FPOp);
1368
1369 Function *F = B.GetInsertBlock()->getParent();
1370 Module *M = F->getParent();
1371
1372 // Merge the sin and cos. For OpenCL 2.0, there may only be a generic pointer
1373 // implementation. Prefer the private form if available.
1374 AMDGPULibFunc SinCosLibFuncPrivate(AMDGPULibFunc::EI_SINCOS, fInfo);
1375 SinCosLibFuncPrivate.getLeads()[0].PtrKind =
1377
1378 AMDGPULibFunc SinCosLibFuncGeneric(AMDGPULibFunc::EI_SINCOS, fInfo);
1379 SinCosLibFuncGeneric.getLeads()[0].PtrKind =
1381
1382 FunctionCallee FSinCosPrivate = getFunction(M, SinCosLibFuncPrivate);
1383 FunctionCallee FSinCosGeneric = getFunction(M, SinCosLibFuncGeneric);
1384 FunctionCallee FSinCos = FSinCosPrivate ? FSinCosPrivate : FSinCosGeneric;
1385 if (!FSinCos)
1386 return false;
1387
1388 SmallVector<CallInst *> SinCalls;
1389 SmallVector<CallInst *> CosCalls;
1390 SmallVector<CallInst *> SinCosCalls;
1391 FuncInfo PartnerInfo(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN,
1392 fInfo);
1393 const std::string PairName = PartnerInfo.mangle();
1394
1395 StringRef SinName = isSin ? CI->getCalledFunction()->getName() : PairName;
1396 StringRef CosName = isSin ? PairName : CI->getCalledFunction()->getName();
1397 const std::string SinCosPrivateName = SinCosLibFuncPrivate.mangle();
1398 const std::string SinCosGenericName = SinCosLibFuncGeneric.mangle();
1399
1400 // Intersect the two sets of flags.
1401 FastMathFlags FMF = FPOp->getFastMathFlags();
1402 MDNode *FPMath = CI->getMetadata(LLVMContext::MD_fpmath);
1403
1404 SmallVector<DILocation *> MergeDbgLocs = {CI->getDebugLoc()};
1405
1406 for (User* U : CArgVal->users()) {
1407 CallInst *XI = dyn_cast<CallInst>(U);
1408 if (!XI || XI->getFunction() != F || XI->isNoBuiltin())
1409 continue;
1410
1411 Function *UCallee = XI->getCalledFunction();
1412 if (!UCallee)
1413 continue;
1414
1415 bool Handled = true;
1416
1417 if (UCallee->getName() == SinName)
1418 SinCalls.push_back(XI);
1419 else if (UCallee->getName() == CosName)
1420 CosCalls.push_back(XI);
1421 else if (UCallee->getName() == SinCosPrivateName ||
1422 UCallee->getName() == SinCosGenericName)
1423 SinCosCalls.push_back(XI);
1424 else
1425 Handled = false;
1426
1427 if (Handled) {
1428 MergeDbgLocs.push_back(XI->getDebugLoc());
1429 auto *OtherOp = cast<FPMathOperator>(XI);
1430 FMF &= OtherOp->getFastMathFlags();
1432 FPMath, XI->getMetadata(LLVMContext::MD_fpmath));
1433 }
1434 }
1435
1436 if (SinCalls.empty() || CosCalls.empty())
1437 return false;
1438
1439 B.setFastMathFlags(FMF);
1440 B.setDefaultFPMathTag(FPMath);
1441 DILocation *DbgLoc = DILocation::getMergedLocations(MergeDbgLocs);
1442 B.SetCurrentDebugLocation(DbgLoc);
1443
1444 auto [Sin, Cos, SinCos] = insertSinCos(CArgVal, FMF, B, FSinCos);
1445
1446 auto replaceTrigInsts = [](ArrayRef<CallInst *> Calls, Value *Res) {
1447 for (CallInst *C : Calls)
1448 C->replaceAllUsesWith(Res);
1449
1450 // Leave the other dead instructions to avoid clobbering iterators.
1451 };
1452
1453 replaceTrigInsts(SinCalls, Sin);
1454 replaceTrigInsts(CosCalls, Cos);
1455 replaceTrigInsts(SinCosCalls, SinCos);
1456
1457 // It's safe to delete the original now.
1458 CI->eraseFromParent();
1459 return true;
1460}
1461
1462bool AMDGPULibCalls::evaluateScalarMathFunc(const FuncInfo &FInfo, double &Res0,
1463 double &Res1, Constant *copr0,
1464 Constant *copr1) {
1465 // By default, opr0/opr1/opr3 holds values of float/double type.
1466 // If they are not float/double, each function has to its
1467 // operand separately.
1468 double opr0 = 0.0, opr1 = 0.0;
1469 ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0);
1470 ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1);
1471 if (fpopr0) {
1472 opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1473 ? fpopr0->getValueAPF().convertToDouble()
1474 : (double)fpopr0->getValueAPF().convertToFloat();
1475 }
1476
1477 if (fpopr1) {
1478 opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1479 ? fpopr1->getValueAPF().convertToDouble()
1480 : (double)fpopr1->getValueAPF().convertToFloat();
1481 }
1482
1483 switch (FInfo.getId()) {
1484 default : return false;
1485
1487 Res0 = acos(opr0);
1488 return true;
1489
1491 // acosh(x) == log(x + sqrt(x*x - 1))
1492 Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0));
1493 return true;
1494
1496 Res0 = acos(opr0) / MATH_PI;
1497 return true;
1498
1500 Res0 = asin(opr0);
1501 return true;
1502
1504 // asinh(x) == log(x + sqrt(x*x + 1))
1505 Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0));
1506 return true;
1507
1509 Res0 = asin(opr0) / MATH_PI;
1510 return true;
1511
1513 Res0 = atan(opr0);
1514 return true;
1515
1517 // atanh(x) == (log(x+1) - log(x-1))/2;
1518 Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0;
1519 return true;
1520
1522 Res0 = atan(opr0) / MATH_PI;
1523 return true;
1524
1526 Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0);
1527 return true;
1528
1530 Res0 = cos(opr0);
1531 return true;
1532
1534 Res0 = cosh(opr0);
1535 return true;
1536
1538 Res0 = cos(MATH_PI * opr0);
1539 return true;
1540
1542 Res0 = exp(opr0);
1543 return true;
1544
1546 Res0 = pow(2.0, opr0);
1547 return true;
1548
1550 Res0 = pow(10.0, opr0);
1551 return true;
1552
1554 Res0 = log(opr0);
1555 return true;
1556
1558 Res0 = log(opr0) / log(2.0);
1559 return true;
1560
1562 Res0 = log(opr0) / log(10.0);
1563 return true;
1564
1566 Res0 = 1.0 / sqrt(opr0);
1567 return true;
1568
1570 Res0 = sin(opr0);
1571 return true;
1572
1574 Res0 = sinh(opr0);
1575 return true;
1576
1578 Res0 = sin(MATH_PI * opr0);
1579 return true;
1580
1582 Res0 = tan(opr0);
1583 return true;
1584
1586 Res0 = tanh(opr0);
1587 return true;
1588
1590 Res0 = tan(MATH_PI * opr0);
1591 return true;
1592
1593 // two-arg functions
1596 Res0 = pow(opr0, opr1);
1597 return true;
1598
1600 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1601 double val = (double)iopr1->getSExtValue();
1602 Res0 = pow(opr0, val);
1603 return true;
1604 }
1605 return false;
1606 }
1607
1609 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1610 double val = (double)iopr1->getSExtValue();
1611 Res0 = pow(opr0, 1.0 / val);
1612 return true;
1613 }
1614 return false;
1615 }
1616
1617 // with ptr arg
1619 Res0 = sin(opr0);
1620 Res1 = cos(opr0);
1621 return true;
1622 }
1623
1624 return false;
1625}
1626
1627bool AMDGPULibCalls::evaluateCall(CallInst *aCI, const FuncInfo &FInfo) {
1628 int numArgs = (int)aCI->arg_size();
1629 if (numArgs > 3)
1630 return false;
1631
1632 Constant *copr0 = nullptr;
1633 Constant *copr1 = nullptr;
1634 if (numArgs > 0) {
1635 if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr)
1636 return false;
1637 }
1638
1639 if (numArgs > 1) {
1640 if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) {
1641 if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS)
1642 return false;
1643 }
1644 }
1645
1646 // At this point, all arguments to aCI are constants.
1647
1648 // max vector size is 16, and sincos will generate two results.
1649 double DVal0[16], DVal1[16];
1650 int FuncVecSize = getVecSize(FInfo);
1651 bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS);
1652 if (FuncVecSize == 1) {
1653 if (!evaluateScalarMathFunc(FInfo, DVal0[0], DVal1[0], copr0, copr1)) {
1654 return false;
1655 }
1656 } else {
1657 ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0);
1658 ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1);
1659 for (int i = 0; i < FuncVecSize; ++i) {
1660 Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr;
1661 Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr;
1662 if (!evaluateScalarMathFunc(FInfo, DVal0[i], DVal1[i], celt0, celt1)) {
1663 return false;
1664 }
1665 }
1666 }
1667
1668 LLVMContext &context = aCI->getContext();
1669 Constant *nval0, *nval1;
1670 if (FuncVecSize == 1) {
1671 nval0 = ConstantFP::get(aCI->getType(), DVal0[0]);
1672 if (hasTwoResults)
1673 nval1 = ConstantFP::get(aCI->getType(), DVal1[0]);
1674 } else {
1675 if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1676 SmallVector <float, 0> FVal0, FVal1;
1677 for (int i = 0; i < FuncVecSize; ++i)
1678 FVal0.push_back((float)DVal0[i]);
1679 ArrayRef<float> tmp0(FVal0);
1680 nval0 = ConstantDataVector::get(context, tmp0);
1681 if (hasTwoResults) {
1682 for (int i = 0; i < FuncVecSize; ++i)
1683 FVal1.push_back((float)DVal1[i]);
1684 ArrayRef<float> tmp1(FVal1);
1685 nval1 = ConstantDataVector::get(context, tmp1);
1686 }
1687 } else {
1688 ArrayRef<double> tmp0(DVal0);
1689 nval0 = ConstantDataVector::get(context, tmp0);
1690 if (hasTwoResults) {
1691 ArrayRef<double> tmp1(DVal1);
1692 nval1 = ConstantDataVector::get(context, tmp1);
1693 }
1694 }
1695 }
1696
1697 if (hasTwoResults) {
1698 // sincos
1699 assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS &&
1700 "math function with ptr arg not supported yet");
1701 new StoreInst(nval1, aCI->getArgOperand(1), aCI->getIterator());
1702 }
1703
1704 replaceCall(aCI, nval0);
1705 return true;
1706}
1707
1710 AMDGPULibCalls Simplifier;
1711 Simplifier.initNativeFuncs();
1712 Simplifier.initFunction(F, AM);
1713
1714 bool Changed = false;
1715
1716 LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1717 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1718
1719 for (auto &BB : F) {
1720 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) {
1721 // Ignore non-calls.
1722 CallInst *CI = dyn_cast<CallInst>(I);
1723 ++I;
1724
1725 if (CI) {
1726 if (Simplifier.fold(CI))
1727 Changed = true;
1728 }
1729 }
1730 }
1731 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1732}
1733
1736 if (UseNative.empty())
1737 return PreservedAnalyses::all();
1738
1739 AMDGPULibCalls Simplifier;
1740 Simplifier.initNativeFuncs();
1741 Simplifier.initFunction(F, AM);
1742
1743 bool Changed = false;
1744 for (auto &BB : F) {
1745 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) {
1746 // Ignore non-calls.
1747 CallInst *CI = dyn_cast<CallInst>(I);
1748 ++I;
1749 if (CI && Simplifier.useNative(CI))
1750 Changed = true;
1751 }
1752 }
1753 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1754}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isKnownIntegral(const Value *V, const DataLayout &DL, FastMathFlags FMF)
static const TableEntry tbl_log[]
static const TableEntry tbl_tgamma[]
static AMDGPULibFunc::EType getArgType(const AMDGPULibFunc &FInfo)
static const TableEntry tbl_expm1[]
static const TableEntry tbl_asinpi[]
static const TableEntry tbl_cos[]
#define MATH_SQRT2
static const TableEntry tbl_exp10[]
static CallInst * CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg, const Twine &Name="")
static CallInst * CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1, Value *Arg2, const Twine &Name="")
static const TableEntry tbl_rsqrt[]
static const TableEntry tbl_atanh[]
static const TableEntry tbl_cosh[]
static const TableEntry tbl_asin[]
static const TableEntry tbl_sinh[]
static const TableEntry tbl_acos[]
static const TableEntry tbl_tan[]
static const TableEntry tbl_cospi[]
static const TableEntry tbl_tanpi[]
static cl::opt< bool > EnablePreLink("amdgpu-prelink", cl::desc("Enable pre-link mode optimizations"), cl::init(false), cl::Hidden)
static bool HasNative(AMDGPULibFunc::EFuncId id)
ArrayRef< TableEntry > TableRef
static int getVecSize(const AMDGPULibFunc &FInfo)
static const TableEntry tbl_sin[]
static const TableEntry tbl_atan[]
static const TableEntry tbl_log2[]
static const TableEntry tbl_acospi[]
static const TableEntry tbl_sqrt[]
static const TableEntry tbl_asinh[]
#define MATH_E
static TableRef getOptTable(AMDGPULibFunc::EFuncId id)
static const TableEntry tbl_acosh[]
static const TableEntry tbl_exp[]
static const TableEntry tbl_cbrt[]
static const TableEntry tbl_sinpi[]
static const TableEntry tbl_atanpi[]
#define MATH_PI
static FunctionType * getPownType(FunctionType *FT)
static const TableEntry tbl_erf[]
static const TableEntry tbl_log10[]
#define MATH_SQRT1_2
static const TableEntry tbl_erfc[]
static cl::list< std::string > UseNative("amdgpu-use-native", cl::desc("Comma separated list of functions to replace with native, or all"), cl::CommaSeparated, cl::ValueOptional, cl::Hidden)
static const TableEntry tbl_tanh[]
static const TableEntry tbl_exp2[]
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_DEBUG(X)
Definition: Debug.h:101
#define DEBUG_WITH_TYPE(TYPE, X)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition: Debug.h:64
std::string Name
uint64_t Size
AMD GCN specific subclass of TargetSubtarget.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
FunctionAnalysisManager FAM
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static void replaceCall(FPMathOperator *I, Value *With)
bool isUnsafeFiniteOnlyMath(const FPMathOperator *FPOp) const
bool canIncreasePrecisionOfConstantFold(const FPMathOperator *FPOp) const
bool fold(CallInst *CI)
static void replaceCall(Instruction *I, Value *With)
bool useNative(CallInst *CI)
void initFunction(Function &F, FunctionAnalysisManager &FAM)
bool isUnsafeMath(const FPMathOperator *FPOp) const
static unsigned getEPtrKindFromAddrSpace(unsigned AS)
Wrapper class for AMDGPULIbFuncImpl.
static bool parse(StringRef MangledName, AMDGPULibFunc &Ptr)
std::string getName() const
Get unmangled name for mangled library function and name for unmangled library function.
static FunctionCallee getOrInsertFunction(llvm::Module *M, const AMDGPULibFunc &fInfo)
void setPrefix(ENamePrefix PFX)
EFuncId getId() const
bool isCompatibleSignature(const FunctionType *FuncTy) const
bool isMangled() const
Param * getLeads()
Get leading parameters for mangled lib functions.
void setId(EFuncId Id)
ENamePrefix getPrefix() const
bool isNegative() const
Definition: APFloat.h:1348
double convertToDouble() const
Converts this APFloat to host double value.
Definition: APFloat.cpp:5341
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
Definition: APFloat.h:1331
float convertToFloat() const
Converts this APFloat to host float value.
Definition: APFloat.cpp:5369
bool isZero() const
Definition: APFloat.h:1344
bool isInteger() const
Definition: APFloat.h:1365
Class for arbitrary precision integers.
Definition: APInt.h:77
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1521
an instruction to allocate memory on the stack
Definition: Instructions.h:60
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
Definition: PassManager.h:424
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:405
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:165
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:160
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:167
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Definition: InstrTypes.h:1965
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1465
bool isStrictFP() const
Determine if the call requires strict floating point semantics.
Definition: InstrTypes.h:1971
bool isNoInline() const
Return true if the call should not be inlined.
Definition: InstrTypes.h:1974
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1410
void setArgOperand(unsigned i, Value *v)
Definition: InstrTypes.h:1415
FunctionType * getFunctionType() const
Definition: InstrTypes.h:1323
Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
unsigned arg_size() const
Definition: InstrTypes.h:1408
AttributeList getAttributes() const
Return the parameter attributes for this call.
Definition: InstrTypes.h:1542
void setCalledFunction(Function *Fn)
Sets the function called, including updating the function type.
Definition: InstrTypes.h:1504
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
unsigned getNumElements() const
Return the number of elements in the array or vector.
Definition: Constants.cpp:2767
Constant * getElementAsConstant(unsigned i) const
Return a Constant for a specified index's element.
Definition: Constants.cpp:3109
APFloat getElementAsAPFloat(unsigned i) const
If this is a sequential container of floating point type, return the specified element as an APFloat.
Definition: Constants.cpp:3072
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
Definition: Constants.h:767
static Constant * getSplat(unsigned NumElts, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
Definition: Constants.cpp:2977
static Constant * get(LLVMContext &Context, ArrayRef< uint8_t > Elts)
get() constructors - Return a constant with vector type with an element count and element type matchi...
Definition: Constants.cpp:2916
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:269
const APFloat & getValue() const
Definition: Constants.h:313
const APFloat & getValueAPF() const
Definition: Constants.h:312
bool isExactlyValue(const APFloat &V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
Definition: Constants.cpp:1100
This is the shared class of boolean and integer constants.
Definition: Constants.h:81
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:155
Align getAlignValue() const
Return the constant as an llvm::Align, interpreting 0 as Align(1).
Definition: Constants.h:173
This is an important base class in LLVM.
Definition: Constant.h:41
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:432
Debug location.
static DILocation * getMergedLocations(ArrayRef< DILocation * > Locs)
Try to combine the vector of locations passed as input in a single one.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
A debug info location.
Definition: DebugLoc.h:33
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition: Operator.h:202
bool isFast() const
Test if this operation allows all non-strict floating-point transforms.
Definition: Operator.h:273
bool hasNoNaNs() const
Test if this operation's arguments and results are assumed not-NaN.
Definition: Operator.h:289
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags.
Definition: Operator.h:320
bool hasNoInfs() const
Test if this operation's arguments and results are assumed not-infinite.
Definition: Operator.h:294
bool hasApproxFunc() const
Test if this operation allows approximations of math library functions or intrinsics.
Definition: Operator.h:315
float getFPAccuracy() const
Get the maximum error permitted by this operation in ULPs.
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:20
void setAllowContract(bool B=true)
Definition: FMF.h:91
bool noInfs() const
Definition: FMF.h:67
bool none() const
Definition: FMF.h:58
bool approxFunc() const
Definition: FMF.h:71
bool noNaNs() const
Definition: FMF.h:66
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
Definition: DerivedTypes.h:168
FunctionType * getFunctionType()
Definition: DerivedTypes.h:185
Class to represent function types.
Definition: DerivedTypes.h:103
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:135
static FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition: Function.h:695
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.cpp:690
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2664
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:476
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:66
void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:92
const Function * getFunction() const
Return the function this instruction belongs to.
Definition: Instruction.cpp:70
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:381
void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
Definition: Metadata.cpp:1635
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:173
Metadata node.
Definition: Metadata.h:1067
static MDNode * getMostGenericFPMath(MDNode *A, MDNode *B)
Definition: Metadata.cpp:1167
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses none()
Convenience factory function for the empty preserved set.
Definition: Analysis.h:114
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
An instruction for storing to memory.
Definition: Instructions.h:289
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
Definition: Type.h:154
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
Definition: Type.h:143
Type * getWithNewType(Type *EltTy) const
Given vector type, change the element type, whilst keeping the old number of elements.
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
Definition: Type.h:157
static IntegerType * getInt32Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:228
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition: Type.h:348
void dropAllReferences()
Drop all references to operands.
Definition: User.h:299
Value * getOperand(unsigned i) const
Definition: User.h:169
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
iterator_range< user_iterator > users()
Definition: Value.h:421
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1074
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:383
Base class of all SIMD vector types.
Definition: DerivedTypes.h:403
const ParentTy * getParent() const
Definition: ilist_node.h:32
self_iterator getIterator()
Definition: ilist_node.h:132
@ FLAT_ADDRESS
Address space for flat memory.
@ PRIVATE_ADDRESS
Address space for private memory.
AttributeMask typeIncompatible(Type *Ty, AttributeSafetyKind ASK=ASK_ALL)
Which attributes cannot be applied to a type.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=std::nullopt)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1484
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
Definition: PatternMatch.h:305
apfloat_match m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
Definition: PatternMatch.h:322
@ ValueOptional
Definition: CommandLine.h:130
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
@ CommaSeparated
Definition: CommandLine.h:163
constexpr double ln2
Definition: MathExtras.h:33
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
static double log2(double V)
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1680
bool isKnownNeverInfinity(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if the floating-point scalar value is not an infinity or if the floating-point vector val...
bool isKnownNeverInfOrNaN(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if the floating-point value can never contain a NaN or infinity.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1879
bool cannotBeOrderedLessThanZero(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if we can prove that the specified FP value is either NaN or never less than -0....
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39