LLVM 20.0.0git
LoopTermFold.cpp
Go to the documentation of this file.
1//===- LoopTermFold.cpp - Eliminate last use of IV in exit branch----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//===----------------------------------------------------------------------===//
9
11#include "llvm/ADT/Statistic.h"
22#include "llvm/Config/llvm-config.h"
23#include "llvm/IR/BasicBlock.h"
24#include "llvm/IR/Dominators.h"
25#include "llvm/IR/IRBuilder.h"
26#include "llvm/IR/InstrTypes.h"
27#include "llvm/IR/Instruction.h"
29#include "llvm/IR/Type.h"
30#include "llvm/IR/Value.h"
32#include "llvm/Pass.h"
33#include "llvm/Support/Debug.h"
41#include <cassert>
42#include <optional>
43
44using namespace llvm;
45
46#define DEBUG_TYPE "loop-term-fold"
47
48STATISTIC(NumTermFold,
49 "Number of terminating condition fold recognized and performed");
50
51static std::optional<std::tuple<PHINode *, PHINode *, const SCEV *, bool>>
53 const LoopInfo &LI, const TargetTransformInfo &TTI) {
54 if (!L->isInnermost()) {
55 LLVM_DEBUG(dbgs() << "Cannot fold on non-innermost loop\n");
56 return std::nullopt;
57 }
58 // Only inspect on simple loop structure
59 if (!L->isLoopSimplifyForm()) {
60 LLVM_DEBUG(dbgs() << "Cannot fold on non-simple loop\n");
61 return std::nullopt;
62 }
63
65 LLVM_DEBUG(dbgs() << "Cannot fold on backedge that is loop variant\n");
66 return std::nullopt;
67 }
68
69 BasicBlock *LoopLatch = L->getLoopLatch();
70 BranchInst *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
71 if (!BI || BI->isUnconditional())
72 return std::nullopt;
73 auto *TermCond = dyn_cast<ICmpInst>(BI->getCondition());
74 if (!TermCond) {
76 dbgs() << "Cannot fold on branching condition that is not an ICmpInst");
77 return std::nullopt;
78 }
79 if (!TermCond->hasOneUse()) {
81 dbgs()
82 << "Cannot replace terminating condition with more than one use\n");
83 return std::nullopt;
84 }
85
86 BinaryOperator *LHS = dyn_cast<BinaryOperator>(TermCond->getOperand(0));
87 Value *RHS = TermCond->getOperand(1);
88 if (!LHS || !L->isLoopInvariant(RHS))
89 // We could pattern match the inverse form of the icmp, but that is
90 // non-canonical, and this pass is running *very* late in the pipeline.
91 return std::nullopt;
92
93 // Find the IV used by the current exit condition.
94 PHINode *ToFold;
95 Value *ToFoldStart, *ToFoldStep;
96 if (!matchSimpleRecurrence(LHS, ToFold, ToFoldStart, ToFoldStep))
97 return std::nullopt;
98
99 // Ensure the simple recurrence is a part of the current loop.
100 if (ToFold->getParent() != L->getHeader())
101 return std::nullopt;
102
103 // If that IV isn't dead after we rewrite the exit condition in terms of
104 // another IV, there's no point in doing the transform.
105 if (!isAlmostDeadIV(ToFold, LoopLatch, TermCond))
106 return std::nullopt;
107
108 // Inserting instructions in the preheader has a runtime cost, scale
109 // the allowed cost with the loops trip count as best we can.
110 const unsigned ExpansionBudget = [&]() {
111 unsigned Budget = 2 * SCEVCheapExpansionBudget;
112 if (unsigned SmallTC = SE.getSmallConstantMaxTripCount(L))
113 return std::min(Budget, SmallTC);
114 if (std::optional<unsigned> SmallTC = getLoopEstimatedTripCount(L))
115 return std::min(Budget, *SmallTC);
116 // Unknown trip count, assume long running by default.
117 return Budget;
118 }();
119
120 const SCEV *BECount = SE.getBackedgeTakenCount(L);
121 const DataLayout &DL = L->getHeader()->getDataLayout();
122 SCEVExpander Expander(SE, DL, "lsr_fold_term_cond");
123
124 PHINode *ToHelpFold = nullptr;
125 const SCEV *TermValueS = nullptr;
126 bool MustDropPoison = false;
127 auto InsertPt = L->getLoopPreheader()->getTerminator();
128 for (PHINode &PN : L->getHeader()->phis()) {
129 if (ToFold == &PN)
130 continue;
131
132 if (!SE.isSCEVable(PN.getType())) {
133 LLVM_DEBUG(dbgs() << "IV of phi '" << PN
134 << "' is not SCEV-able, not qualified for the "
135 "terminating condition folding.\n");
136 continue;
137 }
138 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
139 // Only speculate on affine AddRec
140 if (!AddRec || !AddRec->isAffine()) {
141 LLVM_DEBUG(dbgs() << "SCEV of phi '" << PN
142 << "' is not an affine add recursion, not qualified "
143 "for the terminating condition folding.\n");
144 continue;
145 }
146
147 // Check that we can compute the value of AddRec on the exiting iteration
148 // without soundness problems. evaluateAtIteration internally needs
149 // to multiply the stride of the iteration number - which may wrap around.
150 // The issue here is subtle because computing the result accounting for
151 // wrap is insufficient. In order to use the result in an exit test, we
152 // must also know that AddRec doesn't take the same value on any previous
153 // iteration. The simplest case to consider is a candidate IV which is
154 // narrower than the trip count (and thus original IV), but this can
155 // also happen due to non-unit strides on the candidate IVs.
156 if (!AddRec->hasNoSelfWrap() ||
157 !SE.isKnownNonZero(AddRec->getStepRecurrence(SE)))
158 continue;
159
160 const SCEVAddRecExpr *PostInc = AddRec->getPostIncExpr(SE);
161 const SCEV *TermValueSLocal = PostInc->evaluateAtIteration(BECount, SE);
162 if (!Expander.isSafeToExpand(TermValueSLocal)) {
164 dbgs() << "Is not safe to expand terminating value for phi node" << PN
165 << "\n");
166 continue;
167 }
168
169 if (Expander.isHighCostExpansion(TermValueSLocal, L, ExpansionBudget, &TTI,
170 InsertPt)) {
172 dbgs() << "Is too expensive to expand terminating value for phi node"
173 << PN << "\n");
174 continue;
175 }
176
177 // The candidate IV may have been otherwise dead and poison from the
178 // very first iteration. If we can't disprove that, we can't use the IV.
179 if (!mustExecuteUBIfPoisonOnPathTo(&PN, LoopLatch->getTerminator(), &DT)) {
180 LLVM_DEBUG(dbgs() << "Can not prove poison safety for IV " << PN << "\n");
181 continue;
182 }
183
184 // The candidate IV may become poison on the last iteration. If this
185 // value is not branched on, this is a well defined program. We're
186 // about to add a new use to this IV, and we have to ensure we don't
187 // insert UB which didn't previously exist.
188 bool MustDropPoisonLocal = false;
189 Instruction *PostIncV =
190 cast<Instruction>(PN.getIncomingValueForBlock(LoopLatch));
191 if (!mustExecuteUBIfPoisonOnPathTo(PostIncV, LoopLatch->getTerminator(),
192 &DT)) {
193 LLVM_DEBUG(dbgs() << "Can not prove poison safety to insert use" << PN
194 << "\n");
195
196 // If this is a complex recurrance with multiple instructions computing
197 // the backedge value, we might need to strip poison flags from all of
198 // them.
199 if (PostIncV->getOperand(0) != &PN)
200 continue;
201
202 // In order to perform the transform, we need to drop the poison
203 // generating flags on this instruction (if any).
204 MustDropPoisonLocal = PostIncV->hasPoisonGeneratingFlags();
205 }
206
207 // We pick the last legal alternate IV. We could expore choosing an optimal
208 // alternate IV if we had a decent heuristic to do so.
209 ToHelpFold = &PN;
210 TermValueS = TermValueSLocal;
211 MustDropPoison = MustDropPoisonLocal;
212 }
213
214 LLVM_DEBUG(if (ToFold && !ToHelpFold) dbgs()
215 << "Cannot find other AddRec IV to help folding\n";);
216
217 LLVM_DEBUG(if (ToFold && ToHelpFold) dbgs()
218 << "\nFound loop that can fold terminating condition\n"
219 << " BECount (SCEV): " << *SE.getBackedgeTakenCount(L) << "\n"
220 << " TermCond: " << *TermCond << "\n"
221 << " BrandInst: " << *BI << "\n"
222 << " ToFold: " << *ToFold << "\n"
223 << " ToHelpFold: " << *ToHelpFold << "\n");
224
225 if (!ToFold || !ToHelpFold)
226 return std::nullopt;
227 return std::make_tuple(ToFold, ToHelpFold, TermValueS, MustDropPoison);
228}
229
231 LoopInfo &LI, const TargetTransformInfo &TTI,
232 TargetLibraryInfo &TLI, MemorySSA *MSSA) {
233 std::unique_ptr<MemorySSAUpdater> MSSAU;
234 if (MSSA)
235 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
236
237 auto Opt = canFoldTermCondOfLoop(L, SE, DT, LI, TTI);
238 if (!Opt)
239 return false;
240
241 auto [ToFold, ToHelpFold, TermValueS, MustDrop] = *Opt;
242
243 NumTermFold++;
244
245 BasicBlock *LoopPreheader = L->getLoopPreheader();
246 BasicBlock *LoopLatch = L->getLoopLatch();
247
248 (void)ToFold;
249 LLVM_DEBUG(dbgs() << "To fold phi-node:\n"
250 << *ToFold << "\n"
251 << "New term-cond phi-node:\n"
252 << *ToHelpFold << "\n");
253
254 Value *StartValue = ToHelpFold->getIncomingValueForBlock(LoopPreheader);
255 (void)StartValue;
256 Value *LoopValue = ToHelpFold->getIncomingValueForBlock(LoopLatch);
257
258 // See comment in canFoldTermCondOfLoop on why this is sufficient.
259 if (MustDrop)
260 cast<Instruction>(LoopValue)->dropPoisonGeneratingFlags();
261
262 // SCEVExpander for both use in preheader and latch
263 const DataLayout &DL = L->getHeader()->getDataLayout();
264 SCEVExpander Expander(SE, DL, "lsr_fold_term_cond");
265
266 assert(Expander.isSafeToExpand(TermValueS) &&
267 "Terminating value was checked safe in canFoldTerminatingCondition");
268
269 // Create new terminating value at loop preheader
270 Value *TermValue = Expander.expandCodeFor(TermValueS, ToHelpFold->getType(),
271 LoopPreheader->getTerminator());
272
273 LLVM_DEBUG(dbgs() << "Start value of new term-cond phi-node:\n"
274 << *StartValue << "\n"
275 << "Terminating value of new term-cond phi-node:\n"
276 << *TermValue << "\n");
277
278 // Create new terminating condition at loop latch
279 BranchInst *BI = cast<BranchInst>(LoopLatch->getTerminator());
280 ICmpInst *OldTermCond = cast<ICmpInst>(BI->getCondition());
281 IRBuilder<> LatchBuilder(LoopLatch->getTerminator());
282 Value *NewTermCond =
283 LatchBuilder.CreateICmp(CmpInst::ICMP_EQ, LoopValue, TermValue,
284 "lsr_fold_term_cond.replaced_term_cond");
285 // Swap successors to exit loop body if IV equals to new TermValue
286 if (BI->getSuccessor(0) == L->getHeader())
287 BI->swapSuccessors();
288
289 LLVM_DEBUG(dbgs() << "Old term-cond:\n"
290 << *OldTermCond << "\n"
291 << "New term-cond:\n"
292 << *NewTermCond << "\n");
293
294 BI->setCondition(NewTermCond);
295
296 Expander.clear();
297 OldTermCond->eraseFromParent();
298 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
299 return true;
300}
301
302namespace {
303
304class LoopTermFold : public LoopPass {
305public:
306 static char ID; // Pass ID, replacement for typeid
307
308 LoopTermFold();
309
310private:
311 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
312 void getAnalysisUsage(AnalysisUsage &AU) const override;
313};
314
315} // end anonymous namespace
316
317LoopTermFold::LoopTermFold() : LoopPass(ID) {
319}
320
321void LoopTermFold::getAnalysisUsage(AnalysisUsage &AU) const {
333}
334
335bool LoopTermFold::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
336 if (skipLoop(L))
337 return false;
338
339 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
340 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
341 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
342 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
343 *L->getHeader()->getParent());
344 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
345 *L->getHeader()->getParent());
346 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
347 MemorySSA *MSSA = nullptr;
348 if (MSSAAnalysis)
349 MSSA = &MSSAAnalysis->getMSSA();
350 return RunTermFold(L, SE, DT, LI, TTI, TLI, MSSA);
351}
352
355 LPMUpdater &) {
356 if (!RunTermFold(&L, AR.SE, AR.DT, AR.LI, AR.TTI, AR.TLI, AR.MSSA))
357 return PreservedAnalyses::all();
358
360 if (AR.MSSA)
361 PA.preserve<MemorySSAAnalysis>();
362 return PA;
363}
364
365char LoopTermFold::ID = 0;
366
367INITIALIZE_PASS_BEGIN(LoopTermFold, "loop-term-fold", "Loop Terminator Folding",
368 false, false)
373INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
374INITIALIZE_PASS_END(LoopTermFold, "loop-term-fold", "Loop Terminator Folding",
376
377Pass *llvm::createLoopTermFoldPass() { return new LoopTermFold(); }
@ PostInc
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
#define LLVM_DEBUG(...)
Definition: Debug.h:106
This header provides classes for managing per-loop analyses.
static std::optional< std::tuple< PHINode *, PHINode *, const SCEV *, bool > > canFoldTermCondOfLoop(Loop *L, ScalarEvolution &SE, DominatorTree &DT, const LoopInfo &LI, const TargetTransformInfo &TTI)
loop term fold
loop term Loop Terminator Folding
static bool RunTermFold(Loop *L, ScalarEvolution &SE, DominatorTree &DT, LoopInfo &LI, const TargetTransformInfo &TTI, TargetLibraryInfo &TLI, MemorySSA *MSSA)
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:57
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
This pass exposes codegen information to IR-level passes.
Value * RHS
Value * LHS
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
Represent the analysis usage information of a pass.
AnalysisUsage & addRequiredID(const void *ID)
Definition: Pass.cpp:270
AnalysisUsage & addPreservedID(const void *ID)
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:239
Conditional or Unconditional Branch instruction.
void setCondition(Value *V)
void swapSuccessors()
Swap the successors of this branch instruction.
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
Value * getCondition() const
@ ICMP_EQ
equal
Definition: InstrTypes.h:694
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:317
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
This instruction compares its operands according to the predicate given to the constructor.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2383
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2697
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:94
bool hasPoisonGeneratingFlags() const LLVM_READONLY
Return true if this operator has flags which may cause this instruction to evaluate to poison despite...
This class provides an interface for updating the loop pass manager based on mutations to the loop ne...
The legacy pass manager's analysis pass to compute loop information.
Definition: LoopInfo.h:593
virtual bool runOnLoop(Loop *L, LPPassManager &LPM)=0
PreservedAnalyses run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &U)
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
An analysis that produces MemorySSA for a function.
Definition: MemorySSA.h:928
Legacy analysis pass which computes MemorySSA.
Definition: MemorySSA.h:985
Encapsulates MemorySSA, including all data associated with memory accesses.
Definition: MemorySSA.h:701
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
Pass interface - Implemented by all 'passes'.
Definition: Pass.h:94
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:98
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values.
const SCEVAddRecExpr * getPostIncExpr(ScalarEvolution &SE) const
Return an expression representing the value of this expression one iteration of the loop ahead.
This class uses information about analyze scalars to rewrite expressions in canonical form.
bool isSafeToExpand(const SCEV *S) const
Return true if the given expression is safe to expand in the sense that all materialized values are s...
bool isHighCostExpansion(ArrayRef< const SCEV * > Exprs, Loop *L, unsigned Budget, const TargetTransformInfo *TTI, const Instruction *At)
Return true for expressions that can't be evaluated at runtime within given Budget.
void clear()
Erase the contents of the InsertedExpressions map so that users trying to expand the same expression ...
Value * expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I)
Insert code to directly compute the specified SCEV expression into the program.
This class represents an analyzed expression in the program.
The main scalar evolution driver.
bool isKnownNonZero(const SCEV *S)
Test if the given expression is known to be non-zero.
const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
unsigned getSmallConstantMaxTripCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > *Predicates=nullptr)
Returns the upper bound of the loop trip count as a normal unsigned value.
bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
bool hasLoopInvariantBackedgeTakenCount(const Loop *L)
Return true if the specified loop has an analyzable loop-invariant backedge-taken count.
Provides information about what library functions are available for the current target.
Wrapper pass for TargetTransformInfo.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Value * getOperand(unsigned i) const
Definition: User.h:228
LLVM Value Representation.
Definition: Value.h:74
const ParentTy * getParent() const
Definition: ilist_node.h:32
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, Instruction *OnPathTo, DominatorTree *DT)
Return true if undefined behavior would provable be executed on the path to OnPathTo if Root produced...
std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Returns a loop's estimated trip count based on branch weight metadata.
Definition: LoopUtils.cpp:850
char & LoopSimplifyID
Pass * createLoopTermFoldPass()
bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
bool DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Examine each PHI in the given block and delete it if it is dead.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
cl::opt< unsigned > SCEVCheapExpansionBudget
PreservedAnalyses getLoopPassPreservedAnalyses()
Returns the minimum set of Analyses that all loop passes must preserve.
bool isAlmostDeadIV(PHINode *IV, BasicBlock *LatchBlock, Value *Cond)
Return true if the induction variable IV in a Loop whose latch is LatchBlock would become dead if the...
Definition: LoopUtils.cpp:470
void initializeLoopTermFoldPass(PassRegistry &)
The adaptor from a function pass to a loop pass computes these analyses and makes them available to t...