LLVM 20.0.0git
LoopSimplify.cpp
Go to the documentation of this file.
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass performs several transformations to transform natural loops into a
10// simpler form, which makes subsequent analyses and transformations simpler and
11// more effective.
12//
13// Loop pre-header insertion guarantees that there is a single, non-critical
14// entry edge from outside of the loop to the loop header. This simplifies a
15// number of analyses and transformations, such as LICM.
16//
17// Loop exit-block insertion guarantees that all exit blocks from the loop
18// (blocks which are outside of the loop that have predecessors inside of the
19// loop) only have predecessors from inside of the loop (and are thus dominated
20// by the loop header). This simplifies transformations such as store-sinking
21// that are built into LICM.
22//
23// This pass also guarantees that loops will have exactly one backedge.
24//
25// Indirectbr instructions introduce several complications. If the loop
26// contains or is entered by an indirectbr instruction, it may not be possible
27// to transform the loop and make these guarantees. Client code should check
28// that these conditions are true before relying on them.
29//
30// Similar complications arise from callbr instructions, particularly in
31// asm-goto where blockaddress expressions are used.
32//
33// Note that the simplifycfg pass will clean up blocks which are split out but
34// end up being unnecessary, so usage of this pass should not pessimize
35// generated code.
36//
37// This pass obviously modifies the CFG, but updates loop information and
38// dominator information.
39//
40//===----------------------------------------------------------------------===//
41
43#include "llvm/ADT/SetVector.h"
45#include "llvm/ADT/Statistic.h"
57#include "llvm/IR/CFG.h"
58#include "llvm/IR/Constants.h"
59#include "llvm/IR/Dominators.h"
60#include "llvm/IR/Function.h"
62#include "llvm/IR/LLVMContext.h"
63#include "llvm/IR/Module.h"
65#include "llvm/Support/Debug.h"
71using namespace llvm;
72
73#define DEBUG_TYPE "loop-simplify"
74
75STATISTIC(NumNested , "Number of nested loops split out");
76
77// If the block isn't already, move the new block to right after some 'outside
78// block' block. This prevents the preheader from being placed inside the loop
79// body, e.g. when the loop hasn't been rotated.
82 Loop *L) {
83 // Check to see if NewBB is already well placed.
84 Function::iterator BBI = --NewBB->getIterator();
85 if (llvm::is_contained(SplitPreds, &*BBI))
86 return;
87
88 // If it isn't already after an outside block, move it after one. This is
89 // always good as it makes the uncond branch from the outside block into a
90 // fall-through.
91
92 // Figure out *which* outside block to put this after. Prefer an outside
93 // block that neighbors a BB actually in the loop.
94 BasicBlock *FoundBB = nullptr;
95 for (BasicBlock *Pred : SplitPreds) {
96 Function::iterator BBI = Pred->getIterator();
97 if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
98 FoundBB = Pred;
99 break;
100 }
101 }
102
103 // If our heuristic for a *good* bb to place this after doesn't find
104 // anything, just pick something. It's likely better than leaving it within
105 // the loop.
106 if (!FoundBB)
107 FoundBB = SplitPreds[0];
108 NewBB->moveAfter(FoundBB);
109}
110
111/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
112/// preheader, this method is called to insert one. This method has two phases:
113/// preheader insertion and analysis updating.
114///
116 LoopInfo *LI, MemorySSAUpdater *MSSAU,
117 bool PreserveLCSSA) {
118 BasicBlock *Header = L->getHeader();
119
120 // Compute the set of predecessors of the loop that are not in the loop.
121 SmallVector<BasicBlock*, 8> OutsideBlocks;
122 for (BasicBlock *P : predecessors(Header)) {
123 if (!L->contains(P)) { // Coming in from outside the loop?
124 // If the loop is branched to from an indirect terminator, we won't
125 // be able to fully transform the loop, because it prohibits
126 // edge splitting.
127 if (isa<IndirectBrInst>(P->getTerminator()))
128 return nullptr;
129
130 // Keep track of it.
131 OutsideBlocks.push_back(P);
132 }
133 }
134
135 // Split out the loop pre-header.
136 BasicBlock *PreheaderBB;
137 PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
138 LI, MSSAU, PreserveLCSSA);
139 if (!PreheaderBB)
140 return nullptr;
141
142 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
143 << PreheaderBB->getName() << "\n");
144
145 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
146 // code layout too horribly.
147 placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
148
149 return PreheaderBB;
150}
151
152/// Add the specified block, and all of its predecessors, to the specified set,
153/// if it's not already in there. Stop predecessor traversal when we reach
154/// StopBlock.
155static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
158 Worklist.push_back(InputBB);
159 do {
160 BasicBlock *BB = Worklist.pop_back_val();
161 if (Blocks.insert(BB).second && BB != StopBlock)
162 // If BB is not already processed and it is not a stop block then
163 // insert its predecessor in the work list
164 append_range(Worklist, predecessors(BB));
165 } while (!Worklist.empty());
166}
167
168/// The first part of loop-nestification is to find a PHI node that tells
169/// us how to partition the loops.
171 AssumptionCache *AC) {
172 const DataLayout &DL = L->getHeader()->getDataLayout();
173 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
174 PHINode *PN = cast<PHINode>(I);
175 ++I;
176 if (Value *V = simplifyInstruction(PN, {DL, nullptr, DT, AC})) {
177 // This is a degenerate PHI already, don't modify it!
178 PN->replaceAllUsesWith(V);
179 PN->eraseFromParent();
180 continue;
181 }
182
183 // Scan this PHI node looking for a use of the PHI node by itself.
184 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
185 if (PN->getIncomingValue(i) == PN &&
186 L->contains(PN->getIncomingBlock(i)))
187 // We found something tasty to remove.
188 return PN;
189 }
190 return nullptr;
191}
192
193/// If this loop has multiple backedges, try to pull one of them out into
194/// a nested loop.
195///
196/// This is important for code that looks like
197/// this:
198///
199/// Loop:
200/// ...
201/// br cond, Loop, Next
202/// ...
203/// br cond2, Loop, Out
204///
205/// To identify this common case, we look at the PHI nodes in the header of the
206/// loop. PHI nodes with unchanging values on one backedge correspond to values
207/// that change in the "outer" loop, but not in the "inner" loop.
208///
209/// If we are able to separate out a loop, return the new outer loop that was
210/// created.
211///
212static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
213 DominatorTree *DT, LoopInfo *LI,
214 ScalarEvolution *SE, bool PreserveLCSSA,
215 AssumptionCache *AC, MemorySSAUpdater *MSSAU) {
216 // Don't try to separate loops without a preheader.
217 if (!Preheader)
218 return nullptr;
219
220 // Treat the presence of convergent functions conservatively. The
221 // transformation is invalid if calls to certain convergent
222 // functions (like an AMDGPU barrier) get included in the resulting
223 // inner loop. But blocks meant for the inner loop will be
224 // identified later at a point where it's too late to abort the
225 // transformation. Also, the convergent attribute is not really
226 // sufficient to express the semantics of functions that are
227 // affected by this transformation. So we choose to back off if such
228 // a function call is present until a better alternative becomes
229 // available. This is similar to the conservative treatment of
230 // convergent function calls in GVNHoist and JumpThreading.
231 for (auto *BB : L->blocks()) {
232 for (auto &II : *BB) {
233 if (auto CI = dyn_cast<CallBase>(&II)) {
234 if (CI->isConvergent()) {
235 return nullptr;
236 }
237 }
238 }
239 }
240
241 // The header is not a landing pad; preheader insertion should ensure this.
242 BasicBlock *Header = L->getHeader();
243 assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
244
245 PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
246 if (!PN) return nullptr; // No known way to partition.
247
248 // Pull out all predecessors that have varying values in the loop. This
249 // handles the case when a PHI node has multiple instances of itself as
250 // arguments.
251 SmallVector<BasicBlock*, 8> OuterLoopPreds;
252 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
253 if (PN->getIncomingValue(i) != PN ||
254 !L->contains(PN->getIncomingBlock(i))) {
255 // We can't split indirect control flow edges.
256 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
257 return nullptr;
258 OuterLoopPreds.push_back(PN->getIncomingBlock(i));
259 }
260 }
261 LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
262
263 // If ScalarEvolution is around and knows anything about values in
264 // this loop, tell it to forget them, because we're about to
265 // substantially change it.
266 if (SE)
267 SE->forgetLoop(L);
268
269 BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
270 DT, LI, MSSAU, PreserveLCSSA);
271
272 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
273 // code layout too horribly.
274 placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
275
276 // Create the new outer loop.
277 Loop *NewOuter = LI->AllocateLoop();
278
279 // Change the parent loop to use the outer loop as its child now.
280 if (Loop *Parent = L->getParentLoop())
281 Parent->replaceChildLoopWith(L, NewOuter);
282 else
283 LI->changeTopLevelLoop(L, NewOuter);
284
285 // L is now a subloop of our outer loop.
286 NewOuter->addChildLoop(L);
287
288 for (BasicBlock *BB : L->blocks())
289 NewOuter->addBlockEntry(BB);
290
291 // Now reset the header in L, which had been moved by
292 // SplitBlockPredecessors for the outer loop.
293 L->moveToHeader(Header);
294
295 // Determine which blocks should stay in L and which should be moved out to
296 // the Outer loop now.
298 for (BasicBlock *P : predecessors(Header)) {
299 if (DT->dominates(Header, P))
300 addBlockAndPredsToSet(P, Header, BlocksInL);
301 }
302
303 // Scan all of the loop children of L, moving them to OuterLoop if they are
304 // not part of the inner loop.
305 const std::vector<Loop*> &SubLoops = L->getSubLoops();
306 for (size_t I = 0; I != SubLoops.size(); )
307 if (BlocksInL.count(SubLoops[I]->getHeader()))
308 ++I; // Loop remains in L
309 else
310 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
311
312 SmallVector<BasicBlock *, 8> OuterLoopBlocks;
313 OuterLoopBlocks.push_back(NewBB);
314 // Now that we know which blocks are in L and which need to be moved to
315 // OuterLoop, move any blocks that need it.
316 for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
317 BasicBlock *BB = L->getBlocks()[i];
318 if (!BlocksInL.count(BB)) {
319 // Move this block to the parent, updating the exit blocks sets
320 L->removeBlockFromLoop(BB);
321 if ((*LI)[BB] == L) {
322 LI->changeLoopFor(BB, NewOuter);
323 OuterLoopBlocks.push_back(BB);
324 }
325 --i;
326 }
327 }
328
329 // Split edges to exit blocks from the inner loop, if they emerged in the
330 // process of separating the outer one.
331 formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA);
332
333 if (PreserveLCSSA) {
334 // Fix LCSSA form for L. Some values, which previously were only used inside
335 // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
336 // in corresponding exit blocks.
337 // We don't need to form LCSSA recursively, because there cannot be uses
338 // inside a newly created loop of defs from inner loops as those would
339 // already be a use of an LCSSA phi node.
340 formLCSSA(*L, *DT, LI, SE);
341
342 assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
343 "LCSSA is broken after separating nested loops!");
344 }
345
346 return NewOuter;
347}
348
349/// This method is called when the specified loop has more than one
350/// backedge in it.
351///
352/// If this occurs, revector all of these backedges to target a new basic block
353/// and have that block branch to the loop header. This ensures that loops
354/// have exactly one backedge.
356 DominatorTree *DT, LoopInfo *LI,
357 MemorySSAUpdater *MSSAU) {
358 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
359
360 // Get information about the loop
361 BasicBlock *Header = L->getHeader();
362 Function *F = Header->getParent();
363
364 // Unique backedge insertion currently depends on having a preheader.
365 if (!Preheader)
366 return nullptr;
367
368 // The header is not an EH pad; preheader insertion should ensure this.
369 assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
370
371 // Figure out which basic blocks contain back-edges to the loop header.
372 std::vector<BasicBlock*> BackedgeBlocks;
373 for (BasicBlock *P : predecessors(Header)) {
374 // Indirect edges cannot be split, so we must fail if we find one.
375 if (isa<IndirectBrInst>(P->getTerminator()))
376 return nullptr;
377
378 if (P != Preheader) BackedgeBlocks.push_back(P);
379 }
380
381 // Create and insert the new backedge block...
382 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
383 Header->getName() + ".backedge", F);
384 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
385 BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
386
387 LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
388 << BEBlock->getName() << "\n");
389
390 // Move the new backedge block to right after the last backedge block.
391 Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
392 F->splice(InsertPos, F, BEBlock->getIterator());
393
394 // Now that the block has been inserted into the function, create PHI nodes in
395 // the backedge block which correspond to any PHI nodes in the header block.
396 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
397 PHINode *PN = cast<PHINode>(I);
398 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
399 PN->getName()+".be", BETerminator->getIterator());
400
401 // Loop over the PHI node, moving all entries except the one for the
402 // preheader over to the new PHI node.
403 unsigned PreheaderIdx = ~0U;
404 bool HasUniqueIncomingValue = true;
405 Value *UniqueValue = nullptr;
406 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
407 BasicBlock *IBB = PN->getIncomingBlock(i);
408 Value *IV = PN->getIncomingValue(i);
409 if (IBB == Preheader) {
410 PreheaderIdx = i;
411 } else {
412 NewPN->addIncoming(IV, IBB);
413 if (HasUniqueIncomingValue) {
414 if (!UniqueValue)
415 UniqueValue = IV;
416 else if (UniqueValue != IV)
417 HasUniqueIncomingValue = false;
418 }
419 }
420 }
421
422 // Delete all of the incoming values from the old PN except the preheader's
423 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
424 if (PreheaderIdx != 0) {
425 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
426 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
427 }
428 // Nuke all entries except the zero'th.
429 PN->removeIncomingValueIf([](unsigned Idx) { return Idx != 0; },
430 /* DeletePHIIfEmpty */ false);
431
432 // Finally, add the newly constructed PHI node as the entry for the BEBlock.
433 PN->addIncoming(NewPN, BEBlock);
434
435 // As an optimization, if all incoming values in the new PhiNode (which is a
436 // subset of the incoming values of the old PHI node) have the same value,
437 // eliminate the PHI Node.
438 if (HasUniqueIncomingValue) {
439 NewPN->replaceAllUsesWith(UniqueValue);
440 NewPN->eraseFromParent();
441 }
442 }
443
444 // Now that all of the PHI nodes have been inserted and adjusted, modify the
445 // backedge blocks to jump to the BEBlock instead of the header.
446 // If one of the backedges has llvm.loop metadata attached, we remove
447 // it from the backedge and add it to BEBlock.
448 MDNode *LoopMD = nullptr;
449 for (BasicBlock *BB : BackedgeBlocks) {
450 Instruction *TI = BB->getTerminator();
451 if (!LoopMD)
452 LoopMD = TI->getMetadata(LLVMContext::MD_loop);
453 TI->setMetadata(LLVMContext::MD_loop, nullptr);
454 TI->replaceSuccessorWith(Header, BEBlock);
455 }
456 BEBlock->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopMD);
457
458 //===--- Update all analyses which we must preserve now -----------------===//
459
460 // Update Loop Information - we know that this block is now in the current
461 // loop and all parent loops.
462 L->addBasicBlockToLoop(BEBlock, *LI);
463
464 // Update dominator information
465 DT->splitBlock(BEBlock);
466
467 if (MSSAU)
468 MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader,
469 BEBlock);
470
471 return BEBlock;
472}
473
474/// Simplify one loop and queue further loops for simplification.
476 DominatorTree *DT, LoopInfo *LI,
478 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
479 bool Changed = false;
480 if (MSSAU && VerifyMemorySSA)
481 MSSAU->getMemorySSA()->verifyMemorySSA();
482
483ReprocessLoop:
484
485 // Check to see that no blocks (other than the header) in this loop have
486 // predecessors that are not in the loop. This is not valid for natural
487 // loops, but can occur if the blocks are unreachable. Since they are
488 // unreachable we can just shamelessly delete those CFG edges!
489 for (BasicBlock *BB : L->blocks()) {
490 if (BB == L->getHeader())
491 continue;
492
494 for (BasicBlock *P : predecessors(BB))
495 if (!L->contains(P))
496 BadPreds.insert(P);
497
498 // Delete each unique out-of-loop (and thus dead) predecessor.
499 for (BasicBlock *P : BadPreds) {
500
501 LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
502 << P->getName() << "\n");
503
504 // Zap the dead pred's terminator and replace it with unreachable.
505 Instruction *TI = P->getTerminator();
506 changeToUnreachable(TI, PreserveLCSSA,
507 /*DTU=*/nullptr, MSSAU);
508 Changed = true;
509 }
510 }
511
512 if (MSSAU && VerifyMemorySSA)
513 MSSAU->getMemorySSA()->verifyMemorySSA();
514
515 // If there are exiting blocks with branches on undef, resolve the undef in
516 // the direction which will exit the loop. This will help simplify loop
517 // trip count computations.
518 SmallVector<BasicBlock*, 8> ExitingBlocks;
519 L->getExitingBlocks(ExitingBlocks);
520 for (BasicBlock *ExitingBlock : ExitingBlocks)
521 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
522 if (BI->isConditional()) {
523 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
524
526 << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
527 << ExitingBlock->getName() << "\n");
528
529 BI->setCondition(ConstantInt::get(Cond->getType(),
530 !L->contains(BI->getSuccessor(0))));
531
532 Changed = true;
533 }
534 }
535
536 // Does the loop already have a preheader? If so, don't insert one.
537 BasicBlock *Preheader = L->getLoopPreheader();
538 if (!Preheader) {
539 Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA);
540 if (Preheader)
541 Changed = true;
542 }
543
544 // Next, check to make sure that all exit nodes of the loop only have
545 // predecessors that are inside of the loop. This check guarantees that the
546 // loop preheader/header will dominate the exit blocks. If the exit block has
547 // predecessors from outside of the loop, split the edge now.
548 if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA))
549 Changed = true;
550
551 if (MSSAU && VerifyMemorySSA)
552 MSSAU->getMemorySSA()->verifyMemorySSA();
553
554 // If the header has more than two predecessors at this point (from the
555 // preheader and from multiple backedges), we must adjust the loop.
556 BasicBlock *LoopLatch = L->getLoopLatch();
557 if (!LoopLatch) {
558 // If this is really a nested loop, rip it out into a child loop. Don't do
559 // this for loops with a giant number of backedges, just factor them into a
560 // common backedge instead.
561 if (L->getNumBackEdges() < 8) {
562 if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE,
563 PreserveLCSSA, AC, MSSAU)) {
564 ++NumNested;
565 // Enqueue the outer loop as it should be processed next in our
566 // depth-first nest walk.
567 Worklist.push_back(OuterL);
568
569 // This is a big restructuring change, reprocess the whole loop.
570 Changed = true;
571 // GCC doesn't tail recursion eliminate this.
572 // FIXME: It isn't clear we can't rely on LLVM to TRE this.
573 goto ReprocessLoop;
574 }
575 }
576
577 // If we either couldn't, or didn't want to, identify nesting of the loops,
578 // insert a new block that all backedges target, then make it jump to the
579 // loop header.
580 LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU);
581 if (LoopLatch)
582 Changed = true;
583 }
584
585 if (MSSAU && VerifyMemorySSA)
586 MSSAU->getMemorySSA()->verifyMemorySSA();
587
588 const DataLayout &DL = L->getHeader()->getDataLayout();
589
590 // Scan over the PHI nodes in the loop header. Since they now have only two
591 // incoming values (the loop is canonicalized), we may have simplified the PHI
592 // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
593 PHINode *PN;
594 for (BasicBlock::iterator I = L->getHeader()->begin();
595 (PN = dyn_cast<PHINode>(I++)); )
596 if (Value *V = simplifyInstruction(PN, {DL, nullptr, DT, AC})) {
597 if (SE) SE->forgetValue(PN);
598 if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
599 PN->replaceAllUsesWith(V);
600 PN->eraseFromParent();
601 Changed = true;
602 }
603 }
604
605 // If this loop has multiple exits and the exits all go to the same
606 // block, attempt to merge the exits. This helps several passes, such
607 // as LoopRotation, which do not support loops with multiple exits.
608 // SimplifyCFG also does this (and this code uses the same utility
609 // function), however this code is loop-aware, where SimplifyCFG is
610 // not. That gives it the advantage of being able to hoist
611 // loop-invariant instructions out of the way to open up more
612 // opportunities, and the disadvantage of having the responsibility
613 // to preserve dominator information.
614 auto HasUniqueExitBlock = [&]() {
615 BasicBlock *UniqueExit = nullptr;
616 for (auto *ExitingBB : ExitingBlocks)
617 for (auto *SuccBB : successors(ExitingBB)) {
618 if (L->contains(SuccBB))
619 continue;
620
621 if (!UniqueExit)
622 UniqueExit = SuccBB;
623 else if (UniqueExit != SuccBB)
624 return false;
625 }
626
627 return true;
628 };
629 if (HasUniqueExitBlock()) {
630 for (BasicBlock *ExitingBlock : ExitingBlocks) {
631 if (!ExitingBlock->getSinglePredecessor()) continue;
632 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
633 if (!BI || !BI->isConditional()) continue;
634 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
635 if (!CI || CI->getParent() != ExitingBlock) continue;
636
637 // Attempt to hoist out all instructions except for the
638 // comparison and the branch.
639 bool AllInvariant = true;
640 bool AnyInvariant = false;
641 for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
642 Instruction *Inst = &*I++;
643 if (Inst == CI)
644 continue;
645 if (!L->makeLoopInvariant(
646 Inst, AnyInvariant,
647 Preheader ? Preheader->getTerminator() : nullptr, MSSAU, SE)) {
648 AllInvariant = false;
649 break;
650 }
651 }
652 if (AnyInvariant)
653 Changed = true;
654 if (!AllInvariant) continue;
655
656 // The block has now been cleared of all instructions except for
657 // a comparison and a conditional branch. SimplifyCFG may be able
658 // to fold it now.
659 if (!foldBranchToCommonDest(BI, /*DTU=*/nullptr, MSSAU))
660 continue;
661
662 // Success. The block is now dead, so remove it from the loop,
663 // update the dominator tree and delete it.
664 LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
665 << ExitingBlock->getName() << "\n");
666
667 assert(pred_empty(ExitingBlock));
668 Changed = true;
669 LI->removeBlock(ExitingBlock);
670
671 DomTreeNode *Node = DT->getNode(ExitingBlock);
672 while (!Node->isLeaf()) {
673 DomTreeNode *Child = Node->back();
674 DT->changeImmediateDominator(Child, Node->getIDom());
675 }
676 DT->eraseNode(ExitingBlock);
677 if (MSSAU) {
679 ExitBlockSet.insert(ExitingBlock);
680 MSSAU->removeBlocks(ExitBlockSet);
681 }
682
684 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
686 ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
687 ExitingBlock->eraseFromParent();
688 }
689 }
690
691 if (MSSAU && VerifyMemorySSA)
692 MSSAU->getMemorySSA()->verifyMemorySSA();
693
694 return Changed;
695}
696
699 MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
700 bool Changed = false;
701
702#ifndef NDEBUG
703 // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
704 // form.
705 if (PreserveLCSSA) {
706 assert(DT && "DT not available.");
707 assert(LI && "LI not available.");
708 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
709 "Requested to preserve LCSSA, but it's already broken.");
710 }
711#endif
712
713 // Worklist maintains our depth-first queue of loops in this nest to process.
714 SmallVector<Loop *, 4> Worklist;
715 Worklist.push_back(L);
716
717 // Walk the worklist from front to back, pushing newly found sub loops onto
718 // the back. This will let us process loops from back to front in depth-first
719 // order. We can use this simple process because loops form a tree.
720 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
721 Loop *L2 = Worklist[Idx];
722 Worklist.append(L2->begin(), L2->end());
723 }
724
725 while (!Worklist.empty())
726 Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
727 AC, MSSAU, PreserveLCSSA);
728
729 // Changing exit conditions for blocks may affect exit counts of this loop and
730 // any of its parents, so we must invalidate the entire subtree if we've made
731 // any changes. Do this here rather than in simplifyOneLoop() as the top-most
732 // loop is going to be the same for all child loops.
733 if (Changed && SE)
734 SE->forgetTopmostLoop(L);
735
736 return Changed;
737}
738
739namespace {
740 struct LoopSimplify : public FunctionPass {
741 static char ID; // Pass identification, replacement for typeid
742 LoopSimplify() : FunctionPass(ID) {
744 }
745
746 bool runOnFunction(Function &F) override;
747
748 void getAnalysisUsage(AnalysisUsage &AU) const override {
750
751 // We need loop information to identify the loops...
754
757
764 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
767 }
768
769 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
770 void verifyAnalysis() const override;
771 };
772}
773
774char LoopSimplify::ID = 0;
775INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
776 "Canonicalize natural loops", false, false)
780INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", "Canonicalize natural loops",
782
783// Publicly exposed interface to pass...
784char &llvm::LoopSimplifyID = LoopSimplify::ID;
785Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
786
787/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
788/// it in any convenient order) inserting preheaders...
789///
790bool LoopSimplify::runOnFunction(Function &F) {
791 bool Changed = false;
792 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
793 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
794 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
795 ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
796 AssumptionCache *AC =
797 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
798 MemorySSA *MSSA = nullptr;
799 std::unique_ptr<MemorySSAUpdater> MSSAU;
800 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
801 if (MSSAAnalysis) {
802 MSSA = &MSSAAnalysis->getMSSA();
803 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
804 }
805
806 bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
807
808 // Simplify each loop nest in the function.
809 for (auto *L : *LI)
810 Changed |= simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA);
811
812#ifndef NDEBUG
813 if (PreserveLCSSA) {
814 bool InLCSSA = all_of(
815 *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
816 assert(InLCSSA && "LCSSA is broken after loop-simplify.");
817 }
818#endif
819 return Changed;
820}
821
824 bool Changed = false;
825 LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
829 auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F);
830 std::unique_ptr<MemorySSAUpdater> MSSAU;
831 if (MSSAAnalysis) {
832 auto *MSSA = &MSSAAnalysis->getMSSA();
833 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
834 }
835
836
837 // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
838 // after simplifying the loops. MemorySSA is preserved if it exists.
839 for (auto *L : *LI)
840 Changed |=
841 simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false);
842
843 if (!Changed)
844 return PreservedAnalyses::all();
845
850 if (MSSAAnalysis)
852 // BPI maps conditional terminators to probabilities, LoopSimplify can insert
853 // blocks, but it does so only by splitting existing blocks and edges. This
854 // results in the interesting property that all new terminators inserted are
855 // unconditional branches which do not appear in BPI. All deletions are
856 // handled via ValueHandle callbacks w/in BPI.
858 return PA;
859}
860
861// FIXME: Restore this code when we re-enable verification in verifyAnalysis
862// below.
863#if 0
864static void verifyLoop(Loop *L) {
865 // Verify subloops.
866 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
867 verifyLoop(*I);
868
869 // It used to be possible to just assert L->isLoopSimplifyForm(), however
870 // with the introduction of indirectbr, there are now cases where it's
871 // not possible to transform a loop as necessary. We can at least check
872 // that there is an indirectbr near any time there's trouble.
873
874 // Indirectbr can interfere with preheader and unique backedge insertion.
875 if (!L->getLoopPreheader() || !L->getLoopLatch()) {
876 bool HasIndBrPred = false;
877 for (BasicBlock *Pred : predecessors(L->getHeader()))
878 if (isa<IndirectBrInst>(Pred->getTerminator())) {
879 HasIndBrPred = true;
880 break;
881 }
882 assert(HasIndBrPred &&
883 "LoopSimplify has no excuse for missing loop header info!");
884 (void)HasIndBrPred;
885 }
886
887 // Indirectbr can interfere with exit block canonicalization.
888 if (!L->hasDedicatedExits()) {
889 bool HasIndBrExiting = false;
890 SmallVector<BasicBlock*, 8> ExitingBlocks;
891 L->getExitingBlocks(ExitingBlocks);
892 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
893 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
894 HasIndBrExiting = true;
895 break;
896 }
897 }
898
899 assert(HasIndBrExiting &&
900 "LoopSimplify has no excuse for missing exit block info!");
901 (void)HasIndBrExiting;
902 }
903}
904#endif
905
906void LoopSimplify::verifyAnalysis() const {
907 // FIXME: This routine is being called mid-way through the loop pass manager
908 // as loop passes destroy this analysis. That's actually fine, but we have no
909 // way of expressing that here. Once all of the passes that destroy this are
910 // hoisted out of the loop pass manager we can add back verification here.
911#if 0
912 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
913 verifyLoop(*I);
914#endif
915}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
basic Basic Alias true
This is the interface for LLVM's primary stateless and local alias analysis.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(...)
Definition: Debug.h:106
DenseMap< Block *, BlockRelaxAux > Blocks
Definition: ELF_riscv.cpp:507
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
static void placeSplitBlockCarefully(BasicBlock *NewBB, SmallVectorImpl< BasicBlock * > &SplitPreds, Loop *L)
static PHINode * findPHIToPartitionLoops(Loop *L, DominatorTree *DT, AssumptionCache *AC)
The first part of loop-nestification is to find a PHI node that tells us how to partition the loops.
static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, SmallPtrSetImpl< BasicBlock * > &Blocks)
Add the specified block, and all of its predecessors, to the specified set, if it's not already in th...
loop Canonicalize natural loops
static bool simplifyOneLoop(Loop *L, SmallVectorImpl< Loop * > &Worklist, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify one loop and queue further loops for simplification.
loop simplify
static Loop * separateNestedLoop(Loop *L, BasicBlock *Preheader, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, bool PreserveLCSSA, AssumptionCache *AC, MemorySSAUpdater *MSSAU)
If this loop has multiple backedges, try to pull one of them out into a nested loop.
static BasicBlock * insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU)
This method is called when the specified loop has more than one backedge in it.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
uint64_t IntrinsicInst * II
#define P(N)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:57
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This is the interface for a SCEV-based alias analysis.
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
static const uint32_t IV[8]
Definition: blake3_impl.h:78
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
Definition: PassManager.h:429
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:410
Represent the analysis usage information of a pass.
AnalysisUsage & addPreservedID(const void *ID)
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
A function analysis which provides an AssumptionCache.
An immutable pass that tracks lazily created AssumptionCache objects.
A cache of @llvm.assume calls within a function.
Legacy wrapper pass to provide the BasicAAResult object.
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:212
void moveAfter(BasicBlock *MovePos)
Unlink this basic block from its current function and insert it right after MovePos in the function M...
Definition: BasicBlock.cpp:287
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:219
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:239
void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs=false)
Update PHI nodes in this BasicBlock before removal of predecessor Pred.
Definition: BasicBlock.cpp:516
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
Analysis pass which computes BranchProbabilityInfo.
Legacy analysis pass which computes BranchProbabilityInfo.
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:661
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
void splitBlock(NodeT *NewBB)
splitBlock - BB is split and now it has one successor.
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:317
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
virtual bool runOnFunction(Function &F)=0
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
BasicBlockListType::iterator iterator
Definition: Function.h:68
iterator end()
Definition: Function.h:855
Legacy wrapper pass to provide the GlobalsAAResult object.
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:94
void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB)
Replace specified successor OldBB to point at the provided block.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:390
void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
Definition: Metadata.cpp:1679
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition: Instruction.h:472
Analysis pass that exposes the LoopInfo for a function.
Definition: LoopInfo.h:566
std::vector< Loop * >::const_iterator iterator
iterator end() const
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
void addBlockEntry(BlockT *BB)
This adds a basic block directly to the basic block list.
void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild)
This is used when splitting loops up.
iterator begin() const
void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop)
Replace the specified loop in the top-level loops list with the indicated loop.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopT * AllocateLoop(ArgsTy &&...Args)
void changeLoopFor(BlockT *BB, LoopT *L)
Change the top-level loop that contains BB to the specified loop.
std::vector< Loop * >::const_iterator iterator
iterator/begin/end - The interface to the top-level loops in the current function.
The legacy pass manager's analysis pass to compute loop information.
Definition: LoopInfo.h:593
bool replacementPreservesLCSSAForm(Instruction *From, Value *To)
Returns true if replacing From with To everywhere is guaranteed to preserve LCSSA form.
Definition: LoopInfo.h:439
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
bool isRecursivelyLCSSAForm(const DominatorTree &DT, const LoopInfo &LI, bool IgnoreTokens=true) const
Return true if this Loop and all inner subloops are in LCSSA form.
Definition: LoopInfo.cpp:470
Metadata node.
Definition: Metadata.h:1069
An analysis that produces MemorySSA for a function.
Definition: MemorySSA.h:928
MemorySSA * getMemorySSA() const
Get handle on MemorySSA.
void updatePhisWhenInsertingUniqueBackedgeBlock(BasicBlock *LoopHeader, BasicBlock *LoopPreheader, BasicBlock *BackedgeBlock)
Update MemorySSA when inserting a unique backedge block for a loop.
void removeBlocks(const SmallSetVector< BasicBlock *, 8 > &DeadBlocks)
Remove all MemoryAcceses in a set of BasicBlocks about to be deleted.
Legacy analysis pass which computes MemorySSA.
Definition: MemorySSA.h:985
Encapsulates MemorySSA, including all data associated with memory accesses.
Definition: MemorySSA.h:701
void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
Definition: MemorySSA.cpp:1905
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
void removeIncomingValueIf(function_ref< bool(unsigned)> Predicate, bool DeletePHIIfEmpty=true)
Remove all incoming values for which the predicate returns true.
void setIncomingBlock(unsigned i, BasicBlock *BB)
void setIncomingValue(unsigned i, Value *V)
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
Pass interface - Implemented by all 'passes'.
Definition: Pass.h:94
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:98
virtual void verifyAnalysis() const
verifyAnalysis() - This member can be implemented by a analysis pass to check state of analysis infor...
Definition: Pass.cpp:106
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
void preserve()
Mark an analysis as preserved.
Definition: Analysis.h:131
Legacy wrapper pass to provide the SCEVAAResult object.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
void forgetTopmostLoop(const Loop *L)
void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:162
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:363
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:452
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:370
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:683
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
'undef' values are things that do not have specified contents.
Definition: Constants.h:1412
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
const ParentTy * getParent() const
Definition: ilist_node.h:32
self_iterator getIterator()
Definition: ilist_node.h:132
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
constexpr double e
Definition: MathExtras.h:47
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
BasicBlock * InsertPreheaderForLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
InsertPreheaderForLoop - Once we discover that a loop doesn't have a preheader, this method is called...
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1697
char & LoopSimplifyID
auto successors(const MachineBasicBlock *BB)
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2115
char & LCSSAID
Definition: LCSSA.cpp:542
void initializeLoopSimplifyPass(PassRegistry &)
Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
unsigned changeToUnreachable(Instruction *I, bool PreserveLCSSA=false, DomTreeUpdater *DTU=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Insert an unreachable instruction before the specified instruction, making it and the rest of the cod...
Definition: Local.cpp:2909
BasicBlock * SplitBlockPredecessors(BasicBlock *BB, ArrayRef< BasicBlock * > Preds, const char *Suffix, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method introduces at least one new basic block into the function and moves some of the predecess...
bool VerifyMemorySSA
Enables verification of MemorySSA.
Definition: MemorySSA.cpp:84
bool formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Ensure that all exit blocks of the loop are dedicated exits.
Definition: LoopUtils.cpp:57
char & BreakCriticalEdgesID
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1903
bool foldBranchToCommonDest(BranchInst *BI, llvm::DomTreeUpdater *DTU=nullptr, MemorySSAUpdater *MSSAU=nullptr, const TargetTransformInfo *TTI=nullptr, unsigned BonusInstThreshold=1)
If this basic block is ONLY a setcc and a branch, and if a predecessor branches to us and one of our ...
bool pred_empty(const BasicBlock *BB)
Definition: CFG.h:118
bool formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put loop into LCSSA form.
Definition: LCSSA.cpp:443
Pass * createLoopSimplifyPass()