44#include "llvm/IR/IntrinsicsAArch64.h"
55#define DEBUG_TYPE "instsimplify"
103 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
104 if (CPred == Pred && CLHS ==
LHS && CRHS ==
RHS)
117 unsigned MaxRecurse,
Constant *TrueOrFalse) {
119 if (SimplifiedCmp ==
Cond) {
127 return SimplifiedCmp;
133 unsigned MaxRecurse) {
141 unsigned MaxRecurse) {
151 unsigned MaxRecurse) {
202 if (!
B ||
B->getOpcode() != OpcodeToExpand)
204 Value *B0 =
B->getOperand(0), *B1 =
B->getOperand(1);
215 if ((L == B0 && R == B1) ||
236 unsigned MaxRecurse) {
253 unsigned MaxRecurse) {
356 unsigned MaxRecurse) {
393 if (TV ==
SI->getTrueValue() && FV ==
SI->getFalseValue())
399 if ((FV && !TV) || (TV && !FV)) {
403 if (Simplified && Simplified->getOpcode() ==
unsigned(Opcode) &&
404 !Simplified->hasPoisonGeneratingFlags()) {
408 Value *UnsimplifiedBranch = FV ?
SI->getTrueValue() :
SI->getFalseValue();
409 Value *UnsimplifiedLHS =
SI ==
LHS ? UnsimplifiedBranch :
LHS;
410 Value *UnsimplifiedRHS =
SI ==
LHS ?
RHS : UnsimplifiedBranch;
411 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
412 Simplified->getOperand(1) == UnsimplifiedRHS)
414 if (Simplified->isCommutative() &&
415 Simplified->getOperand(1) == UnsimplifiedLHS &&
416 Simplified->getOperand(0) == UnsimplifiedRHS)
447 Value *TV =
SI->getTrueValue();
448 Value *FV =
SI->getFalseValue();
468 if (
Cond->getType()->isVectorTy() ==
RHS->getType()->isVectorTy())
480 unsigned MaxRecurse) {
500 Value *CommonValue =
nullptr;
513 if (!V || (CommonValue && V != CommonValue))
544 Value *CommonValue =
nullptr;
558 if (!V || (CommonValue && V != CommonValue))
574 case Instruction::FAdd:
575 case Instruction::FSub:
576 case Instruction::FMul:
577 case Instruction::FDiv:
578 case Instruction::FRem:
579 if (Q.
CxtI !=
nullptr)
663 return ::simplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query,
RecursionLimit);
676 assert(V->getType()->isPtrOrPtrVectorTy());
679 V = V->stripAndAccumulateConstantOffsets(
DL,
Offset,
683 return Offset.sextOrTrunc(
DL.getIndexTypeSizeInBits(V->getType()));
702 Constant *Res = ConstantInt::get(
LHS->getContext(), LHSOffset - RHSOffset);
718 std::optional<bool> Imp =
723 case Instruction::Sub:
724 case Instruction::Xor:
725 case Instruction::URem:
726 case Instruction::SRem:
729 case Instruction::SDiv:
730 case Instruction::UDiv:
731 return ConstantInt::get(Ty, 1);
733 case Instruction::And:
734 case Instruction::Or:
789 Value *
X =
nullptr, *
Y =
nullptr, *Z = Op1;
847 if (
X->getType() ==
Y->getType())
894 return ::simplifySubInst(Op0, Op1, IsNSW, IsNUW, Q,
RecursionLimit);
944 Instruction::Add, Q, MaxRecurse))
966 return ::simplifyMulInst(Op0, Op1, IsNSW, IsNUW, Q,
RecursionLimit);
976 return (
C &&
C->isAllOnesValue());
982 unsigned MaxRecurse,
bool IsSigned) {
999 Type *Ty =
X->getType();
1005 Constant *PosDividendC = ConstantInt::get(Ty,
C->abs());
1006 Constant *NegDividendC = ConstantInt::get(Ty, -
C->abs());
1015 if (
C->isMinSignedValue())
1021 Constant *PosDivisorC = ConstantInt::get(Ty,
C->abs());
1022 Constant *NegDivisorC = ConstantInt::get(Ty, -
C->abs());
1048 unsigned MaxRecurse) {
1049 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
1050 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
1118 if (
isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1142 unsigned MaxRecurse) {
1165 (Opcode == Instruction::UDiv
1185 if ((Opcode == Instruction::SRem &&
1187 (Opcode == Instruction::URem &&
1195 if (Opcode == Instruction::SRem
1198 return C.srem(*C0).isZero();
1202 return C.urem(*C0).isZero();
1218 return simplifyDiv(Instruction::SDiv, Op0, Op1, IsExact, Q, MaxRecurse);
1230 return simplifyDiv(Instruction::UDiv, Op0, Op1, IsExact, Q, MaxRecurse);
1241 unsigned MaxRecurse) {
1252 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1262 unsigned MaxRecurse) {
1263 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1282 const APInt *AmountC;
1289 for (
unsigned I = 0,
1304 unsigned MaxRecurse) {
1354 assert(Opcode == Instruction::Shl &&
"Expected shl for nsw instruction");
1373 Value *Op1,
bool IsExact,
1392 if (Op0Known.
One[0])
1404 simplifyShift(Instruction::Shl, Op0, Op1, IsNSW, Q, MaxRecurse))
1428 if (IsNSW && IsNUW &&
1437 return ::simplifyShlInst(Op0, Op1, IsNSW, IsNUW, Q,
RecursionLimit);
1459 const APInt *ShRAmt, *ShLAmt;
1462 *ShRAmt == *ShLAmt) {
1465 if (ShRAmt->
uge(EffWidthY))
1513 ICmpInst *UnsignedICmp,
bool IsAnd,
1527 if (
match(UnsignedICmp,
1545 return IsAnd ? UnsignedICmp : ZeroICmp;
1551 return IsAnd ? ZeroICmp : UnsignedICmp;
1557 if (
match(UnsignedICmp,
1561 return UnsignedICmp;
1564 return UnsignedICmp;
1571 else if (
match(UnsignedICmp,
1582 return IsAnd ? ZeroICmp : UnsignedICmp;
1588 return IsAnd ? UnsignedICmp : ZeroICmp;
1598 return IsAnd ? UnsignedICmp : ZeroICmp;
1603 return IsAnd ? ZeroICmp : UnsignedICmp;
1627 const APInt *C0, *C1;
1637 if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1642 if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1650 if (Range0.contains(Range1))
1651 return IsAnd ? Cmp1 : Cmp0;
1652 if (Range1.contains(Range0))
1653 return IsAnd ? Cmp0 : Cmp1;
1662 const APInt *C0, *C1;
1671 if (AddInst->getOperand(1) != Op1->
getOperand(1))
1678 const APInt Delta = *C1 - *C0;
1753 const APInt *C0, *C1;
1762 if (AddInst->getOperand(1) != Op1->
getOperand(1))
1769 const APInt Delta = *C1 - *C0;
1838 if (!Range0 || !Range1)
1843 if (Range0->intersectWith(*Range1).isEmptySet())
1851 if (Range0->contains(*Range1))
1853 if (Range1->contains(*Range0))
1861 Value *LHS0 =
LHS->getOperand(0), *LHS1 =
LHS->getOperand(1);
1862 Value *RHS0 =
RHS->getOperand(0), *RHS1 =
RHS->getOperand(1);
1875 if ((
match(RHS0, AbsOrSelfLHS0) ||
match(RHS1, AbsOrSelfLHS0)) &&
1890 if ((
match(LHS0, AbsOrSelfRHS0) ||
match(LHS1, AbsOrSelfRHS0)) &&
1904 Value *Op1,
bool IsAnd) {
1908 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1909 Cast0->getSrcTy() == Cast1->getSrcTy()) {
1910 Op0 = Cast0->getOperand(0);
1911 Op1 = Cast1->getOperand(0);
1942 bool AllowRefinement,
1944 unsigned MaxRecurse);
1948 unsigned MaxRecurse) {
1949 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1965 if (Res == Absorber)
1975 if (Res == Absorber)
1985 nullptr, MaxRecurse))
1986 return Simplify(Res);
1989 nullptr, MaxRecurse))
1990 return Simplify(Res);
2022 unsigned MaxRecurse) {
2056 const APInt *Shift1, *Shift2;
2060 Shift1->
uge(*Shift2))
2073 unsigned MaxRecurse) {
2113 (~(*Mask)).lshr(*ShAmt).isZero())
2119 (~(*Mask)).shl(*ShAmt).isZero())
2124 const APInt *PowerC;
2146 Instruction::Or, Q, MaxRecurse))
2151 Instruction::Xor, Q, MaxRecurse))
2196 if (EffWidthY <= ShftCnt) {
2229 if (*Implied ==
true)
2232 if (*Implied ==
false)
2257 assert(
X->getType() ==
Y->getType() &&
"Expected same type for 'or' ops");
2258 Type *Ty =
X->getType();
2348 unsigned MaxRecurse) {
2387 C->ule(
X->getType()->getScalarSizeInBits())) {
2442 Instruction::And, Q, MaxRecurse))
2463 const APInt *C1, *C2;
2499 if (std::optional<bool> Implied =
2502 if (*Implied ==
false)
2505 if (*Implied ==
true)
2508 if (std::optional<bool> Implied =
2511 if (*Implied ==
false)
2514 if (*Implied ==
true)
2532 unsigned MaxRecurse) {
2574 if (
Value *R = foldAndOrNot(Op0, Op1))
2576 if (
Value *R = foldAndOrNot(Op1, Op0))
2629 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2630 if (Pred == Cmp->getPredicate() &&
LHS == CmpLHS &&
RHS == CmpRHS)
2633 LHS == CmpRHS &&
RHS == CmpLHS)
2647 return AI->isStaticAlloca();
2649 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2650 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2651 !GV->isThreadLocal();
2653 return A->hasByValAttr();
2686 auto isByValArg = [](
const Value *V) {
2688 return A &&
A->hasByValAttr();
2732 assert(
LHS->getType() ==
RHS->getType() &&
"Must have same types");
2755 unsigned IndexSize =
DL.getIndexTypeSizeInBits(
LHS->getType());
2756 APInt LHSOffset(IndexSize, 0), RHSOffset(IndexSize, 0);
2757 LHS =
LHS->stripAndAccumulateConstantOffsets(
DL, LHSOffset, AllowNonInbounds);
2758 RHS =
RHS->stripAndAccumulateConstantOffsets(
DL, RHSOffset, AllowNonInbounds);
2779 return I->getFunction();
2781 return A->getParent();
2787 APInt Dist = LHSOffset - RHSOffset;
2815 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2816 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2836 bool Captured =
false;
2844 unsigned OtherIdx = 1 - U->getOperandNo();
2854 CustomCaptureTracker Tracker;
2856 if (!Tracker.Captured)
2878 auto ExtractNotLHS = [](
Value *V) ->
Value * {
3070 *MulC != 0 &&
C->urem(*MulC) != 0) ||
3072 *MulC != 0 &&
C->srem(*MulC) != 0)))
3087 unsigned Depth = 0) {
3088 if (!Res.
insert(V).second)
3115 switch (
I->getOpcode()) {
3116 case Instruction::And:
3120 case Instruction::URem:
3121 case Instruction::UDiv:
3122 case Instruction::LShr:
3125 case Instruction::Call:
3147 for (
Value *GV : GreaterValues)
3156 unsigned MaxRecurse) {
3240 const APInt *C1, *C2;
3287 const APInt *C1, *C2;
3301 unsigned MaxRecurse) {
3304 if (MaxRecurse && (LBO || RBO)) {
3306 Value *
A =
nullptr, *
B =
nullptr, *
C =
nullptr, *
D =
nullptr;
3308 bool NoLHSWrapProblem =
false, NoRHSWrapProblem =
false;
3309 if (LBO && LBO->
getOpcode() == Instruction::Add) {
3319 if (RBO && RBO->
getOpcode() == Instruction::Add) {
3331 if ((
A ==
RHS ||
B ==
RHS) && NoLHSWrapProblem)
3338 if ((
C ==
LHS ||
D ==
LHS) && NoRHSWrapProblem)
3341 C ==
LHS ?
D :
C, Q, MaxRecurse - 1))
3345 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3347 if (
A &&
C && (
A ==
C ||
A ==
D ||
B ==
C ||
B ==
D) && CanSimplify) {
3354 }
else if (
A ==
D) {
3358 }
else if (
B ==
C) {
3386 if (
C->isStrictlyPositive()) {
3392 if (
C->isNonNegative()) {
3442 case Instruction::Shl: {
3458 case Instruction::And:
3459 case Instruction::Or: {
3460 const APInt *C1, *C2;
3490 case Instruction::UDiv:
3491 case Instruction::LShr:
3499 case Instruction::SDiv:
3507 case Instruction::AShr:
3514 case Instruction::Shl: {
3535 unsigned MaxRecurse) {
3697 (
A ==
C ||
A ==
D ||
B ==
C ||
B ==
D)) {
3706 (
A ==
C ||
A ==
D ||
B ==
C ||
B ==
D)) {
3747 switch (
II->getIntrinsicID()) {
3748 case Intrinsic::uadd_sat:
3758 case Intrinsic::usub_sat:
3781 return A->getRange();
3783 return CB->getRange();
3785 return std::nullopt;
3836 if (LhsCr->icmp(Pred, *RhsCr))
3863 if (RI->getOperand(0)->getType() == SrcTy)
3875 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3879 RI->getOperand(0), Q, MaxRecurse - 1))
3884 if (
SrcOp == RI->getOperand(0)) {
3901 assert(Trunc &&
"Constant-fold of ImmConstant should not fail");
3904 assert(RExt &&
"Constant-fold of ImmConstant should not fail");
3907 assert(AnyEq &&
"Constant-fold of ImmConstant should not fail");
3914 SrcOp, Trunc, Q, MaxRecurse - 1))
3955 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3963 if (
SrcOp == RI->getOperand(0)) {
3979 assert(Trunc &&
"Constant-fold of ImmConstant should not fail");
3982 assert(RExt &&
"Constant-fold of ImmConstant should not fail");
3985 assert(AnyEq &&
"Constant-fold of ImmConstant should not fail");
4073 if (std::optional<bool> Res =
4079 if (
LHS->getType()->isPointerTy())
4100 return ::simplifyICmpInst(Predicate, LHS, RHS, Q,
RecursionLimit);
4107 unsigned MaxRecurse) {
4164 if (std::optional<bool> Res =
4170 std::optional<KnownFPClass> FullKnownClassLHS;
4174 auto computeLHSClass = [=, &FullKnownClassLHS](
FPClassTest InterestedFlags =
4176 if (FullKnownClassLHS)
4177 return *FullKnownClassLHS;
4190 FullKnownClassLHS = computeLHSClass();
4191 if ((FullKnownClassLHS->KnownFPClasses & ClassTest) ==
fcNone)
4193 if ((FullKnownClassLHS->KnownFPClasses & ~ClassTest) ==
fcNone)
4208 if (
C->isNegative() && !
C->isNegZero()) {
4267 return ConstantInt::get(RetTy, IsMaxNum);
4276 return ConstantInt::get(RetTy, !IsMaxNum);
4292 Interested |=
fcNan;
4336 return ::simplifyFCmpInst(Predicate, LHS, RHS, FMF, Q,
RecursionLimit);
4342 bool AllowRefinement,
4344 unsigned MaxRecurse) {
4346 "If AllowRefinement=false then CanUseUndef=false");
4347 for (
const auto &OpAndRepOp :
Ops) {
4353 if (V == OpAndRepOp.first)
4354 return OpAndRepOp.second;
4377 for (
const auto &OpAndRepOp :
Ops) {
4380 if (OpAndRepOp.first->getType()->isVectorTy() &&
4387 bool AnyReplaced =
false;
4388 for (
Value *InstOp :
I->operands()) {
4390 InstOp,
Ops, Q, AllowRefinement, DropFlags, MaxRecurse)) {
4392 AnyReplaced = InstOp != NewInstOp;
4406 if (!AllowRefinement) {
4412 unsigned Opcode = BO->getOpcode();
4415 if (!BO->getType()->isFPOrFPVectorTy()) {
4424 if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
4425 NewOps[0] == NewOps[1]) {
4428 if (PDI->isDisjoint()) {
4440 if ((Opcode == Instruction::Sub || Opcode == Instruction::Xor) &&
4441 NewOps[0] == NewOps[1] &&
4442 any_of(
Ops, [=](
const auto &Rep) {
return NewOps[0] == Rep.second; }))
4453 if ((NewOps[0] == Absorber || NewOps[1] == Absorber) &&
4455 [=](
const auto &Rep) {
return impliesPoison(BO, Rep.first); }))
4475 auto PreventSelfSimplify = [V](
Value *Simplified) {
4476 return Simplified != V ? Simplified :
nullptr;
4479 return PreventSelfSimplify(
4486 for (
Value *NewOp : NewOps) {
4502 if (!AllowRefinement) {
4506 II &&
II->getIntrinsicID() == Intrinsic::abs) {
4507 if (!ConstOps[0]->isNotMinSignedValue())
4514 if (DropFlags && Res &&
I->hasPoisonGeneratingAnnotations())
4525 bool AllowRefinement,
4527 unsigned MaxRecurse) {
4529 DropFlags, MaxRecurse);
4534 bool AllowRefinement,
4538 if (!AllowRefinement)
4541 return ::simplifyWithOpReplaced(V,
Op, RepOp, Q, AllowRefinement, DropFlags,
4548 const APInt *
Y,
bool TrueWhenUnset) {
4555 return TrueWhenUnset ? FalseVal : TrueVal;
4561 return TrueWhenUnset ? FalseVal : TrueVal;
4563 if (
Y->isPowerOf2()) {
4571 return TrueWhenUnset ? TrueVal : FalseVal;
4581 return TrueWhenUnset ? TrueVal : FalseVal;
4592 if (CmpRHS == TVal || CmpRHS == FVal) {
4598 if (CmpLHS == FVal) {
4605 Value *
X = CmpLHS, *
Y = CmpRHS;
4606 bool PeekedThroughSelectShuffle =
false;
4608 if (Shuf && Shuf->isSelect()) {
4609 if (Shuf->getOperand(0) ==
Y)
4610 FVal = Shuf->getOperand(1);
4611 else if (Shuf->getOperand(1) ==
Y)
4612 FVal = Shuf->getOperand(0);
4615 PeekedThroughSelectShuffle =
true;
4620 if (!MMI || TVal !=
X ||
4638 if (PeekedThroughSelectShuffle)
4674 ArrayRef<std::pair<Value *, Value *>> Replacements,
Value *TrueVal,
4676 Value *SimplifiedFalseVal =
4679 nullptr, MaxRecurse);
4680 if (!SimplifiedFalseVal)
4681 SimplifiedFalseVal = FalseVal;
4683 Value *SimplifiedTrueVal =
4686 nullptr, MaxRecurse);
4687 if (!SimplifiedTrueVal)
4688 SimplifiedTrueVal = TrueVal;
4690 if (SimplifiedFalseVal == SimplifiedTrueVal)
4701 unsigned MaxRecurse) {
4703 Value *CmpLHS, *CmpRHS;
4719 if (TrueVal->getType()->isIntOrIntVectorTy()) {
4727 X->getType()->getScalarSizeInBits());
4747 if (
match(TrueVal, isFsh) && FalseVal ==
X && CmpLHS == ShAmt)
4760 if (
match(FalseVal, isRotate) && TrueVal ==
X && CmpLHS == ShAmt &&
4782 FalseVal, Q, MaxRecurse))
4787 FalseVal, Q, MaxRecurse))
4797 {{
X, CmpRHS}, {
Y, CmpRHS}}, TrueVal, FalseVal, Q, MaxRecurse))
4806 {{
X, CmpRHS}, {
Y, CmpRHS}}, TrueVal, FalseVal, Q, MaxRecurse))
4818 unsigned MaxRecurse) {
4820 Value *CmpLHS, *CmpRHS;
4825 bool IsEquiv =
I->isEquivalence();
4826 if (
I->isEquivalence(
true)) {
4844 if (CmpLHS ==
F && CmpRHS ==
T)
4847 if (CmpLHS !=
T || CmpRHS !=
F)
4900 unsigned DiffVals = 0;
4902 for (
unsigned i = 0; i < 2; i++) {
4918 if (!
SI || !IdenticalSI)
4920 if (
SI->getCondition() != IdenticalSI->getCondition())
4924 Value *IdenticalSIOtherVal =
nullptr;
4925 if (
SI->getTrueValue() == IdenticalSI->getTrueValue()) {
4927 IdenticalSIOtherVal = IdenticalSI->getFalseValue();
4928 }
else if (
SI->getFalseValue() == IdenticalSI->getFalseValue()) {
4930 IdenticalSIOtherVal = IdenticalSI->getTrueValue();
4937 if (!SIOtherVal || IdenticalSIOtherVal != &IdenticalPN)
4975 assert(
Cond->getType()->isIntOrIntVectorTy(1) &&
4976 "Select must have bool or bool vector condition");
4977 assert(TrueVal->getType() == FalseVal->getType() &&
4978 "Select must have same types for true/false ops");
4980 if (
Cond->getType() == TrueVal->getType()) {
5043 if (TrueVal == FalseVal)
5046 if (
Cond == TrueVal) {
5054 if (
Cond == FalseVal) {
5085 for (
unsigned i = 0; i != NumElts; ++i) {
5089 if (!TEltC || !FEltC)
5105 if (NewC.
size() == NumElts)
5121 return *Imp ? TrueVal : FalseVal;
5148 if (Indices.
empty())
5178 bool IsScalableVec =
5179 SrcTy->isScalableTy() ||
any_of(Indices, [](
const Value *V) {
5183 if (Indices.
size() == 1) {
5185 if (!IsScalableVec && Ty->isSized()) {
5190 if (TyAllocSize == 0 && Ptr->
getType() == GEPTy)
5198 auto CanSimplify = [GEPTy, &
P, Ptr]() ->
bool {
5199 return P->getType() == GEPTy &&
5203 if (TyAllocSize == 1 &&
5214 TyAllocSize == 1ULL <<
C && CanSimplify())
5233 APInt BasePtrOffset(IdxWidth, 0);
5234 Value *StrippedBasePtr =
5244 !BasePtrOffset.
isZero()) {
5245 auto *CI = ConstantInt::get(GEPTy->
getContext(), BasePtrOffset);
5251 !BasePtrOffset.
isOne()) {
5252 auto *CI = ConstantInt::get(GEPTy->
getContext(), BasePtrOffset - 1);
5273 return ::simplifyGEPInst(SrcTy, Ptr, Indices, NW, Q,
RecursionLimit);
5293 if (EV->getAggregateOperand()->getType() == Agg->
getType() &&
5294 EV->getIndices() == Idxs) {
5300 return EV->getAggregateOperand();
5303 if (Agg == EV->getAggregateOperand())
5313 return ::simplifyInsertValueInst(Agg, Val, Idxs, Q,
RecursionLimit);
5322 if (VecC && ValC && IdxC)
5343 if (VecC && ValC && VecC->getSplatValue() == ValC)
5363 unsigned NumIdxs = Idxs.
size();
5367 unsigned NumInsertValueIdxs = InsertValueIdxs.
size();
5368 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
5369 if (InsertValueIdxs.
slice(0, NumCommonIdxs) ==
5370 Idxs.
slice(0, NumCommonIdxs)) {
5371 if (NumIdxs == NumInsertValueIdxs)
5372 return IVI->getInsertedValueOperand();
5379 if (Idxs.
size() == 1 &&
5386 assert(Idxs[0] == 1 &&
"invalid index");
5420 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
5424 if (IdxC->getValue().ult(MinNumElts))
5435 if (IE && IE->getOperand(2) == Idx)
5436 return IE->getOperand(1);
5447 return ::simplifyExtractElementInst(Vec, Idx, Q,
RecursionLimit);
5459 Value *CommonValue =
nullptr;
5460 bool HasPoisonInput =
false;
5461 bool HasUndefInput =
false;
5467 HasPoisonInput =
true;
5472 HasUndefInput =
true;
5475 if (CommonValue &&
Incoming != CommonValue)
5486 if (HasPoisonInput || HasUndefInput) {
5494 if (HasUndefInput &&
5509 auto *Src = CI->getOperand(0);
5510 Type *SrcTy = Src->getType();
5511 Type *MidTy = CI->getType();
5513 if (Src->getType() == Ty) {
5514 auto FirstOp = CI->getOpcode();
5517 &Q.
DL) == Instruction::BitCast)
5523 if (CastOpc == Instruction::BitCast)
5524 if (
Op->getType() == Ty)
5529 if ((CastOpc == Instruction::PtrToInt || CastOpc == Instruction::PtrToAddr) &&
5548 int MaskVal,
Value *RootVec,
5549 unsigned MaxRecurse) {
5560 int RootElt = MaskVal;
5561 Value *SourceOp = Op0;
5562 if (MaskVal >= InVecNumElts) {
5563 RootElt = MaskVal - InVecNumElts;
5571 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
5572 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
5581 if (RootVec != SourceOp)
5586 if (RootElt != DestElt)
5595 unsigned MaxRecurse) {
5600 unsigned MaskNumElts = Mask.size();
5601 ElementCount InVecEltCount = InVecTy->getElementCount();
5606 Indices.
assign(Mask.begin(), Mask.end());
5611 bool MaskSelects0 =
false, MaskSelects1 =
false;
5613 for (
unsigned i = 0; i != MaskNumElts; ++i) {
5614 if (Indices[i] == -1)
5616 if ((
unsigned)Indices[i] < InVecNumElts)
5617 MaskSelects0 =
true;
5619 MaskSelects1 =
true;
5633 if (Op0Const && Op1Const)
5639 if (!Scalable && Op0Const && !Op1Const) {
5657 if (
all_of(Indices, [InsertIndex](
int MaskElt) {
5658 return MaskElt == InsertIndex || MaskElt == -1;
5664 for (
unsigned i = 0; i != MaskNumElts; ++i)
5665 if (Indices[i] == -1)
5693 Value *RootVec =
nullptr;
5694 for (
unsigned i = 0; i != MaskNumElts; ++i) {
5701 if (!RootVec || RootVec->
getType() != RetTy)
5711 return ::simplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q,
RecursionLimit);
5744 Type *Ty = In->getType();
5746 unsigned NumElts = VecTy->getNumElements();
5748 for (
unsigned i = 0; i != NumElts; ++i) {
5749 Constant *EltC = In->getAggregateElement(i);
5754 else if (EltC && EltC->
isNaN())
5755 NewC[i] = ConstantFP::get(
5771 auto *
Splat = In->getSplatValue();
5773 "Found a scalable-vector NaN but not a splat");
5802 if (FMF.
noNaNs() && (IsNan || IsUndef))
5804 if (FMF.
noInfs() && (IsInf || IsUndef))
6019 return simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
6026 return ::simplifyFAddInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
6034 return ::simplifyFSubInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
6042 return ::simplifyFMulInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
6050 return ::simplifyFMAFMul(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
6083 return ConstantFP::get(Op0->
getType(), 1.0);
6095 return ConstantFP::get(Op0->
getType(), -1.0);
6109 return ::simplifyFDivInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
6147 return ::simplifyFRemInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
6156 unsigned MaxRecurse) {
6158 case Instruction::FNeg:
6170 unsigned MaxRecurse) {
6172 case Instruction::FNeg:
6193 case Instruction::Add:
6196 case Instruction::Sub:
6199 case Instruction::Mul:
6202 case Instruction::SDiv:
6204 case Instruction::UDiv:
6206 case Instruction::SRem:
6208 case Instruction::URem:
6210 case Instruction::Shl:
6213 case Instruction::LShr:
6215 case Instruction::AShr:
6217 case Instruction::And:
6219 case Instruction::Or:
6221 case Instruction::Xor:
6223 case Instruction::FAdd:
6225 case Instruction::FSub:
6227 case Instruction::FMul:
6229 case Instruction::FDiv:
6231 case Instruction::FRem:
6243 unsigned MaxRecurse) {
6245 case Instruction::FAdd:
6247 case Instruction::FSub:
6249 case Instruction::FMul:
6251 case Instruction::FDiv:
6265 return ::simplifyBinOp(Opcode, LHS, RHS, FMF, Q,
RecursionLimit);
6278 return ::simplifyCmpInst(Predicate, LHS, RHS, Q,
RecursionLimit);
6287 case Intrinsic::fabs:
6288 case Intrinsic::floor:
6289 case Intrinsic::ceil:
6290 case Intrinsic::trunc:
6291 case Intrinsic::rint:
6292 case Intrinsic::nearbyint:
6293 case Intrinsic::round:
6294 case Intrinsic::roundeven:
6295 case Intrinsic::canonicalize:
6296 case Intrinsic::arithmetic_fence:
6308 case Intrinsic::floor:
6309 case Intrinsic::ceil:
6310 case Intrinsic::trunc:
6311 case Intrinsic::rint:
6312 case Intrinsic::nearbyint:
6313 case Intrinsic::round:
6314 case Intrinsic::roundeven:
6329 if (!OffsetConstInt || OffsetConstInt->getBitWidth() > 64)
6333 DL.getIndexTypeSizeInBits(Ptr->
getType()));
6334 if (OffsetInt.
srem(4) != 0)
6346 if (LoadedCE->getOpcode() == Instruction::Trunc) {
6352 if (LoadedCE->getOpcode() != Instruction::Sub)
6356 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
6358 auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
6362 APInt LoadedRHSOffset;
6365 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
6368 return LoadedLHSPtr;
6399 if (
C && (
C->isZero() ||
C->isInfinity()))
6408 if (
C &&
C->isNaN())
6409 return ConstantFP::get(Op0->
getType(),
C->makeQuiet());
6428 if (
II->getIntrinsicID() == IID)
6445 case Intrinsic::fabs:
6449 case Intrinsic::bswap:
6454 case Intrinsic::bitreverse:
6459 case Intrinsic::ctpop: {
6462 return ConstantInt::get(Op0->
getType(), 1);
6471 case Intrinsic::exp:
6473 if (
Call->hasAllowReassoc() &&
6477 case Intrinsic::exp2:
6479 if (
Call->hasAllowReassoc() &&
6483 case Intrinsic::exp10:
6485 if (
Call->hasAllowReassoc() &&
6489 case Intrinsic::log:
6491 if (
Call->hasAllowReassoc() &&
6495 case Intrinsic::log2:
6497 if (
Call->hasAllowReassoc() &&
6503 case Intrinsic::log10:
6506 if (
Call->hasAllowReassoc() &&
6512 case Intrinsic::vector_reverse:
6540 if (Op1 ==
X || Op1 ==
Y ||
6557 assert((IID == Intrinsic::maxnum || IID == Intrinsic::minnum ||
6558 IID == Intrinsic::maximum || IID == Intrinsic::minimum ||
6559 IID == Intrinsic::maximumnum || IID == Intrinsic::minimumnum) &&
6560 "Unsupported intrinsic");
6566 if (!
M0 ||
M0->getIntrinsicID() != IID)
6568 Value *X0 =
M0->getOperand(0);
6569 Value *Y0 =
M0->getOperand(1);
6576 if (X0 == Op1 || Y0 == Op1)
6582 Value *X1 =
M1->getOperand(0);
6583 Value *Y1 =
M1->getOperand(1);
6591 if ((X0 == X1 && Y0 == Y1) || (X0 == Y1 && Y0 == X1))
6614 assert(OutNewConstVal !=
nullptr);
6616 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
6617 bool ReturnsOtherForAllNaNs =
6618 IID == Intrinsic::minimumnum || IID == Intrinsic::maximumnum;
6619 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum ||
6620 IID == Intrinsic::minimumnum;
6624 *OutNewConstVal =
const_cast<Constant *
>(RHSConst);
6643 }
else if (ReturnsOtherForAllNaNs || !CAPF.
isSignaling()) {
6655 (ReturnsOtherForAllNaNs || (
Call &&
Call->hasNoNaNs()))) {
6656 *OutNewConstVal =
const_cast<Constant *
>(RHSConst);
6667 (PropagateNaN || (
Call &&
Call->hasNoNaNs())))
6677 unsigned Width = ReturnType->getPrimitiveSizeInBits();
6681 case Intrinsic::aarch64_sve_eorv:
6682 case Intrinsic::aarch64_sve_orv:
6683 case Intrinsic::aarch64_sve_saddv:
6684 case Intrinsic::aarch64_sve_uaddv:
6685 case Intrinsic::aarch64_sve_umaxv:
6687 return ConstantInt::get(ReturnType, 0);
6689 case Intrinsic::aarch64_sve_andv:
6690 case Intrinsic::aarch64_sve_uminv:
6694 case Intrinsic::aarch64_sve_smaxv:
6698 case Intrinsic::aarch64_sve_sminv:
6705 case Intrinsic::aarch64_sve_andv:
6706 case Intrinsic::aarch64_sve_orv:
6707 case Intrinsic::aarch64_sve_smaxv:
6708 case Intrinsic::aarch64_sve_sminv:
6709 case Intrinsic::aarch64_sve_umaxv:
6710 case Intrinsic::aarch64_sve_uminv:
6714 assert(SplatVal->getType() == ReturnType &&
"Unexpected result type!");
6719 case Intrinsic::aarch64_sve_eorv:
6722 return ConstantInt::get(ReturnType, 0);
6733 unsigned BitWidth = ReturnType->getScalarSizeInBits();
6735 case Intrinsic::get_active_lane_mask: {
6741 Attribute Attr =
F->getFnAttribute(Attribute::VScaleRange);
6742 if (ScalableTy && Attr.
isValid()) {
6747 (
uint64_t)ScalableTy->getMinNumElements() * (*VScaleMax);
6749 const APInt *Op1Val;
6751 Op1Val->
uge(MaxPossibleMaskElements))
6756 case Intrinsic::abs:
6764 case Intrinsic::cttz: {
6770 case Intrinsic::ctlz: {
6778 case Intrinsic::ptrmask: {
6786 "Invalid mask width");
6803 APInt IrrelevantPtrBits =
6806 Instruction::Or,
C, ConstantInt::get(
C->getType(), IrrelevantPtrBits),
6808 if (
C !=
nullptr &&
C->isAllOnesValue())
6813 case Intrinsic::smax:
6814 case Intrinsic::smin:
6815 case Intrinsic::umax:
6816 case Intrinsic::umin: {
6827 return ConstantInt::get(
6835 return ConstantInt::get(ReturnType, *
C);
6847 if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
6849 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
6850 const APInt *InnerC;
6873 case Intrinsic::scmp:
6874 case Intrinsic::ucmp: {
6883 return ConstantInt::get(ReturnType, 1);
6892 case Intrinsic::usub_with_overflow:
6893 case Intrinsic::ssub_with_overflow:
6900 case Intrinsic::uadd_with_overflow:
6901 case Intrinsic::sadd_with_overflow:
6911 case Intrinsic::umul_with_overflow:
6912 case Intrinsic::smul_with_overflow:
6922 case Intrinsic::uadd_sat:
6928 case Intrinsic::sadd_sat:
6943 case Intrinsic::usub_sat:
6948 case Intrinsic::ssub_sat:
6956 case Intrinsic::load_relative:
6961 case Intrinsic::powi:
6964 if (Power->isZero())
6965 return ConstantFP::get(Op0->
getType(), 1.0);
6971 case Intrinsic::ldexp:
6973 case Intrinsic::copysign:
6983 case Intrinsic::is_fpclass: {
6987 return ConstantInt::get(ReturnType,
true);
6989 return ConstantInt::get(ReturnType,
false);
6994 case Intrinsic::maxnum:
6995 case Intrinsic::minnum:
6996 case Intrinsic::maximum:
6997 case Intrinsic::minimum:
6998 case Intrinsic::maximumnum:
6999 case Intrinsic::minimumnum: {
7020 if (
Constant *SplatVal =
C->getSplatValue()) {
7026 }
else if (ElemCount.
isFixed()) {
7036 auto *Elt =
C->getAggregateElement(i);
7043 (ElemResult != OptResult &&
7051 OptResult = ElemResult;
7077 case Intrinsic::vector_extract: {
7083 IdxN == 0 &&
X->getType() == ReturnType)
7089 case Intrinsic::aarch64_sve_andv:
7090 case Intrinsic::aarch64_sve_eorv:
7091 case Intrinsic::aarch64_sve_orv:
7092 case Intrinsic::aarch64_sve_saddv:
7093 case Intrinsic::aarch64_sve_smaxv:
7094 case Intrinsic::aarch64_sve_sminv:
7095 case Intrinsic::aarch64_sve_uaddv:
7096 case Intrinsic::aarch64_sve_umaxv:
7097 case Intrinsic::aarch64_sve_uminv:
7111 unsigned NumOperands = Args.size();
7122 case Intrinsic::vscale: {
7123 Type *RetTy =
F->getReturnType();
7126 return ConstantInt::get(RetTy,
C->getZExtValue());
7134 if (NumOperands == 1)
7137 if (NumOperands == 2)
7143 case Intrinsic::masked_load:
7144 case Intrinsic::masked_gather: {
7145 Value *MaskArg = Args[1];
7146 Value *PassthruArg = Args[2];
7152 case Intrinsic::fshl:
7153 case Intrinsic::fshr: {
7154 Value *Op0 = Args[0], *Op1 = Args[1], *ShAmtArg = Args[2];
7162 return Args[IID == Intrinsic::fshl ? 0 : 1];
7164 const APInt *ShAmtC;
7169 return Args[IID == Intrinsic::fshl ? 0 : 1];
7182 case Intrinsic::experimental_constrained_fma: {
7185 *FPI->getRoundingMode()))
7189 case Intrinsic::fma:
7190 case Intrinsic::fmuladd: {
7196 case Intrinsic::smul_fix:
7197 case Intrinsic::smul_fix_sat: {
7198 Value *Op0 = Args[0];
7199 Value *Op1 = Args[1];
7200 Value *Op2 = Args[2];
7201 Type *ReturnType =
F->getReturnType();
7226 case Intrinsic::vector_insert: {
7227 Value *Vec = Args[0];
7228 Value *SubVec = Args[1];
7229 Value *Idx = Args[2];
7230 Type *ReturnType =
F->getReturnType();
7239 X->getType() == ReturnType)
7244 case Intrinsic::experimental_constrained_fadd: {
7247 *FPI->getExceptionBehavior(),
7248 *FPI->getRoundingMode());
7250 case Intrinsic::experimental_constrained_fsub: {
7253 *FPI->getExceptionBehavior(),
7254 *FPI->getRoundingMode());
7256 case Intrinsic::experimental_constrained_fmul: {
7259 *FPI->getExceptionBehavior(),
7260 *FPI->getRoundingMode());
7262 case Intrinsic::experimental_constrained_fdiv: {
7265 *FPI->getExceptionBehavior(),
7266 *FPI->getRoundingMode());
7268 case Intrinsic::experimental_constrained_frem: {
7271 *FPI->getExceptionBehavior(),
7272 *FPI->getRoundingMode());
7274 case Intrinsic::experimental_constrained_ldexp:
7276 case Intrinsic::experimental_gc_relocate: {
7297 case Intrinsic::experimental_vp_reverse: {
7325 ConstantArgs.
reserve(Args.size());
7326 for (
Value *Arg : Args) {
7346 if (
Call->isMustTailCall())
7358 if (
F &&
F->isIntrinsic())
7385 return ::simplifyFreezeInst(Op0, Q);
7399 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
7430 unsigned MaxRecurse) {
7431 assert(
I->getFunction() &&
"instruction should be inserted in a function");
7433 "context instruction should be in the same function");
7437 switch (
I->getOpcode()) {
7442 [](
Value *V) { return cast<Constant>(V); });
7446 case Instruction::FNeg:
7448 case Instruction::FAdd:
7451 case Instruction::Add:
7455 case Instruction::FSub:
7458 case Instruction::Sub:
7462 case Instruction::FMul:
7465 case Instruction::Mul:
7469 case Instruction::SDiv:
7473 case Instruction::UDiv:
7477 case Instruction::FDiv:
7480 case Instruction::SRem:
7482 case Instruction::URem:
7484 case Instruction::FRem:
7487 case Instruction::Shl:
7491 case Instruction::LShr:
7495 case Instruction::AShr:
7499 case Instruction::And:
7501 case Instruction::Or:
7503 case Instruction::Xor:
7505 case Instruction::ICmp:
7507 NewOps[1], Q, MaxRecurse);
7508 case Instruction::FCmp:
7510 NewOps[1],
I->getFastMathFlags(), Q, MaxRecurse);
7511 case Instruction::Select:
7513 case Instruction::GetElementPtr: {
7516 ArrayRef(NewOps).slice(1), GEPI->getNoWrapFlags(), Q,
7519 case Instruction::InsertValue: {
7524 case Instruction::InsertElement:
7526 case Instruction::ExtractValue: {
7531 case Instruction::ExtractElement:
7533 case Instruction::ShuffleVector: {
7536 SVI->getShuffleMask(), SVI->getType(), Q,
7539 case Instruction::PHI:
7541 case Instruction::Call:
7545 case Instruction::Freeze:
7547#define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
7548#include "llvm/IR/Instruction.def"
7549#undef HANDLE_CAST_INST
7552 case Instruction::Alloca:
7555 case Instruction::Load:
7564 "Number of operands should match the instruction!");
7565 return ::simplifyInstructionWithOperands(
I, NewOps, SQ,
RecursionLimit);
7595 bool Simplified =
false;
7602 for (
User *U :
I->users())
7607 I->replaceAllUsesWith(SimpleV);
7609 if (!
I->isEHPad() && !
I->isTerminator() && !
I->mayHaveSideEffects())
7610 I->eraseFromParent();
7616 for (
unsigned Idx = 0; Idx != Worklist.
size(); ++Idx) {
7622 if (UnsimplifiedUsers)
7623 UnsimplifiedUsers->insert(
I);
7632 for (
User *U :
I->users())
7636 I->replaceAllUsesWith(SimpleV);
7638 if (!
I->isEHPad() && !
I->isTerminator() && !
I->mayHaveSideEffects())
7639 I->eraseFromParent();
7648 assert(
I != SimpleV &&
"replaceAndRecursivelySimplify(X,X) is not valid!");
7649 assert(SimpleV &&
"Must provide a simplified value.");
7657 auto *DT = DTWP ? &DTWP->
getDomTree() :
nullptr;
7659 auto *TLI = TLIWP ? &TLIWP->
getTLI(
F) :
nullptr;
7662 return {
F.getDataLayout(), TLI, DT, AC};
7670template <
class T,
class... TArgs>
7673 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(
F);
7674 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(
F);
7675 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(
F);
7676 return {
F.getDataLayout(), TLI, DT, AC};
7690void InstSimplifyFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Value * simplifyCmpSelFalseCase(CmpPredicate Pred, Value *LHS, Value *RHS, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse)
Simplify comparison with false branch of select.
static Value * simplifyCmpSelCase(CmpPredicate Pred, Value *LHS, Value *RHS, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse, Constant *TrueOrFalse)
Simplify comparison with true or false branch of select: sel = select i1 cond, i32 tv,...
static Value * foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1)
Given a min/max intrinsic, see if it can be removed based on having an operand that is another min/ma...
static Value * expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L, Value *R, Instruction::BinaryOps OpcodeToExpand, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify binops of form "A op (B op' C)" or the commuted variant by distributing op over op'.
static Constant * foldOrCommuteConstant(Instruction::BinaryOps Opcode, Value *&Op0, Value *&Op1, const SimplifyQuery &Q)
static bool haveNonOverlappingStorage(const Value *V1, const Value *V2)
Return true if V1 and V2 are each the base of some distict storage region [V, object_size(V)] which d...
static Constant * foldConstant(Instruction::UnaryOps Opcode, Value *&Op, const SimplifyQuery &Q)
static Value * handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse)
We know comparison with both branches of select can be simplified, but they are not equal.
static Value * threadCmpOverPHI(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
In the case of a comparison with a PHI instruction, try to simplify the comparison by seeing whether ...
static Constant * propagateNaN(Constant *In)
Try to propagate existing NaN values when possible.
static Value * simplifyICmpOfBools(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Fold an icmp when its operands have i1 scalar type.
static Value * simplifyICmpWithBinOpOnLHS(CmpPredicate Pred, BinaryOperator *LBO, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
static void getUnsignedMonotonicValues(SmallPtrSetImpl< Value * > &Res, Value *V, MonotonicType Type, const SimplifyQuery &Q, unsigned Depth=0)
Get values V_i such that V uge V_i (GreaterEq) or V ule V_i (LowerEq).
static Value * simplifyRelativeLoad(Constant *Ptr, Constant *Offset, const DataLayout &DL)
static Value * simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q, unsigned MaxRecurse)
These are simplifications common to SDiv and UDiv.
static Value * simplifyPHINode(PHINode *PN, ArrayRef< Value * > IncomingValues, const SimplifyQuery &Q)
See if we can fold the given phi. If not, returns null.
static bool isSameCompare(Value *V, CmpPredicate Pred, Value *LHS, Value *RHS)
isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
static Value * simplifyAndCommutative(Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
static bool isIdempotent(Intrinsic::ID ID)
static std::optional< ConstantRange > getRange(Value *V, const InstrInfoQuery &IIQ)
Helper method to get range from metadata or attribute.
static Value * simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd)
Try to simplify and/or of icmp with ctpop intrinsic.
static Value * simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, ICmpInst *UnsignedICmp, bool IsAnd, const SimplifyQuery &Q)
Commuted variants are assumed to be handled by calling this function again with the parameters swappe...
static Value * tryConstantFoldCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
static Value * simplifyWithOpsReplaced(Value *V, ArrayRef< std::pair< Value *, Value * > > Ops, const SimplifyQuery &Q, bool AllowRefinement, SmallVectorImpl< Instruction * > *DropFlags, unsigned MaxRecurse)
static Value * simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, const InstrInfoQuery &IIQ)
static Value * simplifyAndOrOfFCmpsWithConstants(FCmpInst *Cmp0, FCmpInst *Cmp1, bool IsAnd)
Test if a pair of compares with a shared operand and 2 constants has an empty set intersection,...
static Value * simplifyICmpWithMinMax(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
simplify integer comparisons where at least one operand of the compare matches an integer min/max idi...
static Value * simplifyCmpSelTrueCase(CmpPredicate Pred, Value *LHS, Value *RHS, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse)
Simplify comparison with true branch of select.
static Value * simplifyIntrinsic(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
static Value * simplifyICmpUsingMonotonicValues(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q)
Returns true if a shift by Amount always yields poison.
static Value * simplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for an LShr or AShr, see if we can fold the result.
static Value * simplifyICmpWithIntrinsicOnLHS(CmpPredicate Pred, Value *LHS, Value *RHS)
static Value * simplifyByDomEq(unsigned Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
Test if there is a dominating equivalence condition for the two operands.
static Value * simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, const SimplifyQuery &, unsigned)
Given the operand for a UnaryOperator, see if we can fold the result.
static Value * simplifyICmpWithBinOp(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
TODO: A large part of this logic is duplicated in InstCombine's foldICmpBinOp().
static Value * simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, const SimplifyQuery &Q)
static Value * expandBinOp(Instruction::BinaryOps Opcode, Value *V, Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify a binary operator of form "V op OtherOp" where V is "(B0 opex B1)" by distributing 'o...
static Value * simplifyICmpWithZero(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Try hard to fold icmp with zero RHS because this is a common case.
static Value * simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify a select instruction when its condition operand is a floating-point comparison.
static Constant * getFalse(Type *Ty)
For a boolean type or a vector of boolean type, return false or a vector with every element false.
static Value * simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
Check for common or similar folds of integer division or integer remainder.
static bool removesFPFraction(Intrinsic::ID ID)
Return true if the intrinsic rounds a floating-point value to an integral floating-point value (not a...
static Value * simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, const InstrInfoQuery &IIQ)
static Value * simplifySelectWithEquivalence(ArrayRef< std::pair< Value *, Value * > > Replacements, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify a select instruction when its condition operand is an integer equality or floating-po...
static bool trySimplifyICmpWithAdds(CmpPredicate Pred, Value *LHS, Value *RHS, const InstrInfoQuery &IIQ)
static Value * simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, const APInt *Y, bool TrueWhenUnset)
Try to simplify a select instruction when its condition operand is an integer comparison where one op...
static Value * simplifyAssociativeBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
Generic simplifications for associative binary operations.
static Value * threadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
In the case of a binary operation with an operand that is a PHI instruction, try to simplify the bino...
static Value * simplifyCmpSelOfMaxMin(Value *CmpLHS, Value *CmpRHS, CmpPredicate Pred, Value *TVal, Value *FVal)
static Constant * simplifyFPOp(ArrayRef< Value * > Ops, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior, RoundingMode Rounding)
Perform folds that are common to any floating-point operation.
static Value * threadCmpOverSelect(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
In the case of a comparison with a select instruction, try to simplify the comparison by seeing wheth...
static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, SmallSetVector< Instruction *, 8 > *UnsimplifiedUsers=nullptr)
Implementation of recursive simplification through an instruction's uses.
static bool isAllocDisjoint(const Value *V)
Return true if the underlying object (storage) must be disjoint from storage returned by any noalias ...
static Constant * getTrue(Type *Ty)
For a boolean type or a vector of boolean type, return true or a vector with every element true.
static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, unsigned MaxRecurse, bool IsSigned)
Return true if we can simplify X / Y to 0.
static Value * simplifyLdexp(Value *Op0, Value *Op1, const SimplifyQuery &Q, bool IsStrict)
static Value * simplifyLogicOfAddSub(Value *Op0, Value *Op1, Instruction::BinaryOps Opcode)
Given a bitwise logic op, check if the operands are add/sub with a common source value and inverted c...
static Value * simplifySelectWithBitTest(Value *CondVal, Value *TrueVal, Value *FalseVal)
An alternative way to test if a bit is set or not.
static Value * simplifyOrLogic(Value *X, Value *Y)
static Type * getCompareTy(Value *Op)
static Value * simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, const SimplifyQuery &Q)
static bool isICmpTrue(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
Given a predicate and two operands, return true if the comparison is true.
bool isSelectWithIdenticalPHI(PHINode &PN, PHINode &IdenticalPN)
Look for the following pattern and simplify to_fold to identicalPhi.
static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V)
Compute the base pointer and cumulative constant offsets for V.
static Value * foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, int MaskVal, Value *RootVec, unsigned MaxRecurse)
For the given destination element of a shuffle, peek through shuffles to match a root vector source o...
static Value * simplifyAndOrOfFCmps(const SimplifyQuery &Q, FCmpInst *LHS, FCmpInst *RHS, bool IsAnd)
static MinMaxOptResult OptimizeConstMinMax(const Constant *RHSConst, const Intrinsic::ID IID, const CallBase *Call, Constant **OutNewConstVal)
static Value * simplifyICmpWithConstant(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
static Value * extractEquivalentCondition(Value *V, CmpPredicate Pred, Value *LHS, Value *RHS)
Rummage around inside V looking for something equivalent to the comparison "LHS Pred RHS".
static Value * simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0, Value *Op1, bool IsAnd)
static Value * threadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
In the case of a binary operation with a select instruction as an operand, try to simplify the binop ...
static Constant * computePointerDifference(const DataLayout &DL, Value *LHS, Value *RHS)
Compute the constant difference between two pointer values.
static Value * simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd)
Test if a pair of compares with a shared operand and 2 constants has an empty set intersection,...
static Value * simplifyAndOrWithICmpEq(unsigned Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
static Value * simplifyICmpWithDominatingAssume(CmpPredicate Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q)
static Value * simplifyShift(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, bool IsNSW, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for an Shl, LShr or AShr, see if we can fold the result.
static Value * simplifySVEIntReduction(Intrinsic::ID IID, Type *ReturnType, Value *Op0, Value *Op1)
static Constant * computePointerICmp(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
static Value * simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
These are simplifications common to SRem and URem.
static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT)
Does the given value dominate the specified phi node?
static Value * simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify a select instruction when its condition operand is an integer comparison.
static Value * foldMinimumMaximumSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1)
Given a min/max intrinsic, see if it can be removed based on having an operand that is another min/ma...
static Value * simplifyUnaryIntrinsic(Function *F, Value *Op0, const SimplifyQuery &Q, const CallBase *Call)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This header provides classes for managing per-loop analyses.
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file implements a set that has insertion order iteration characteristics.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static const uint32_t IV[8]
APFloat makeQuiet() const
Assuming this is an IEEE-754 NaN value, quiet its signaling bit.
Class for arbitrary precision integers.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
void setSignBit()
Set the sign bit to 1.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
bool sle(const APInt &RHS) const
Signed less or equal comparison.
unsigned countr_zero() const
Count the number of trailing zero bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
bool isNonPositive() const
Determine if this APInt Value is non-positive (<= 0).
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
bool getBoolValue() const
Convert APInt to a boolean value.
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
bool isMask(unsigned numBits) const
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
bool isSignBitSet() const
Determine if sign bit of this APInt is set.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
bool isOne() const
Determine if this is a value of 1.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
an instruction to allocate memory on the stack
A container for analyses that lazily runs them and caches their results.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const T & back() const
back - Get the last element.
size_t size() const
size - Get the array size.
ArrayRef< T > drop_back(size_t N=1) const
Drop the last N elements of the array.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
An immutable pass that tracks lazily created AssumptionCache objects.
AssumptionCache & getAssumptionCache(Function &F)
Get the cached assumptions for a function.
A cache of @llvm.assume calls within a function.
MutableArrayRef< ResultElem > assumptionsFor(const Value *V)
Access the list of assumptions which affect this value.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI std::optional< unsigned > getVScaleRangeMax() const
Returns the maximum value for the vscale_range attribute or std::nullopt when unknown.
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM Basic Block Representation.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, const DataLayout *DL)
Determine how a pair of casts can be eliminated, if they can be at all.
This class is the base class for the comparison instructions.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate getStrictPredicate() const
For example, SGE -> SGT, SLE -> SLT, ULE -> ULT, UGE -> UGT.
bool isFalseWhenEqual() const
This is just a convenience.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
@ ICMP_SGE
signed greater or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static bool isFPPredicate(Predicate P)
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
static LLVM_ABI bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
static bool isIntPredicate(Predicate P)
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getBinOpAbsorber(unsigned Opcode, Type *Ty, bool AllowLHSConstant=false)
Return the absorbing element for the given binary operation, i.e.
static LLVM_ABI Constant * getNot(Constant *C)
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI std::optional< ConstantFPRange > makeExactFCmpRegion(FCmpInst::Predicate Pred, const APFloat &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
ConstantFP - Floating Point Values [float, double].
const APFloat & getValueAPF() const
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
static Constant * getNegativeZero(Type *Ty)
static LLVM_ABI Constant * getNaN(Type *Ty, bool Negative=false, uint64_t Payload=0)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
This class represents a range of values.
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
LLVM_ABI bool isFullSet() const
Return true if this set contains all of the elements possible for this data-type.
LLVM_ABI bool isEmptySet() const
Return true if this set contains no members.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI ConstantRange inverse() const
Return a new range that is the logical not of the current set.
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
LLVM_ABI bool isAllOnesValue() const
Return true if this is the value that would be returned by getAllOnesValue.
LLVM_ABI bool isMaxSignedValue() const
Return true if the value is the largest signed value.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI bool isNaN() const
Return true if this is a floating-point NaN constant or a vector floating-point constant with all NaN...
LLVM_ABI bool isMinSignedValue() const
Return true if the value is the smallest signed value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
unsigned getAddressSizeInBits(unsigned AS) const
The size in bits of an address in for the given AS.
IntegerType * getAddressType(LLVMContext &C, unsigned AddressSpace) const
Returns the type of an address in AddressSpace.
LLVM_ABI unsigned getIndexTypeSizeInBits(Type *Ty) const
The size in bits of the index used in GEP calculation for this type.
LLVM_ABI IntegerType * getIndexType(LLVMContext &C, unsigned AddressSpace) const
Returns the type of a GEP index in AddressSpace.
LLVM_ABI TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
unsigned getIndexSizeInBits(unsigned AS) const
The size in bits of indices used for address calculation in getelementptr and for addresses in the gi...
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
Legacy analysis pass which computes a DominatorTree.
DominatorTree & getDomTree()
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction compares its operands according to the predicate given to the constructor.
Convenience struct for specifying and reasoning about fast-math flags.
bool noSignedZeros() const
bool allowReassoc() const
Flag queries.
Represents calls to the gc.relocate intrinsic.
LLVM_ABI Value * getBasePtr() const
LLVM_ABI Value * getDerivedPtr() const
Represents flags for the getelementptr instruction/expression.
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
This instruction compares its operands according to the predicate given to the constructor.
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
This instruction inserts a struct field of array element value into an aggregate value.
LLVM_ABI bool hasNoSignedZeros() const LLVM_READONLY
Determine whether the no-signed-zeros flag is set.
static bool isBitwiseLogicOp(unsigned Opcode)
Determine if the Opcode is and/or/xor.
LLVM_ABI bool isAssociative() const LLVM_READONLY
Return true if the instruction is associative:
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
An instruction for reading from memory.
bool isVolatile() const
Return true if this is a load from a volatile memory location.
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
op_range incoming_values()
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
Pass interface - Implemented by all 'passes'.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getTrueValue() const
size_type size() const
Determine the number of elements in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
static void commuteShuffleMask(MutableArrayRef< int > Mask, unsigned InVecNumElts)
Change values in a shuffle permute mask assuming the two vector operands of length InVecNumElts have ...
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
void reserve(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
TargetLibraryInfo & getTLI(const Function &F)
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Base class of all SIMD vector types.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
This class represents zero extension of integer types.
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
const ParentTy * getParent() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrAdd_match< PointerOpTy, OffsetOpTy > m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp)
Matches GEP with i8 source element type.
cst_pred_ty< is_negative > m_Negative()
Match an integer or vector of negative values.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
auto m_PtrToIntOrAddr(const OpTy &Op)
Matches PtrToInt or PtrToAddr.
cstfp_pred_ty< is_inf > m_Inf()
Match a positive or negative infinity FP constant.
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
BinaryOp_match< cstfp_pred_ty< is_any_zero_fp >, RHS, Instruction::FSub > m_FNegNSZ(const RHS &X)
Match 'fneg X' as 'fsub +-0.0, X'.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
ap_match< APInt > m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
ap_match< APFloat > m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
cstfp_pred_ty< is_neg_zero_fp > m_NegZeroFP()
Match a floating-point negative zero.
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_Sqrt(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
cst_pred_ty< is_zero_int > m_ZeroInt()
Match an integer 0 or a vector with all elements equal to 0.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap > m_NSWShl(const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
cst_pred_ty< custom_checkfn< APInt > > m_CheckedInt(function_ref< bool(const APInt &)> CheckFn)
Match an integer or vector where CheckFn(ele) for each element is true.
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
CastInst_match< OpTy, UIToFPInst > m_UIToFP(const OpTy &Op)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
CastInst_match< OpTy, SIToFPInst > m_SIToFP(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Exact_match< T > m_Exact(const T &SubPattern)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
BinaryOp_match< LHS, RHS, Instruction::FAdd, true > m_c_FAdd(const LHS &L, const RHS &R)
Matches FAdd with LHS and RHS in either order.
LogicalOp_match< LHS, RHS, Instruction::And, true > m_c_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
cstfp_pred_ty< is_nan > m_NaN()
Match an arbitrary NaN constant.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_BSwap(const Opnd0 &Op0)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
LogicalOp_match< LHS, RHS, Instruction::Or, true > m_c_LogicalOr(const LHS &L, const RHS &R)
Matches L || R with LHS and RHS in either order.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap > m_NSWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
ExceptionBehavior
Exception behavior used for floating point operations.
@ ebStrict
This corresponds to "fpexcept.strict".
@ ebIgnore
This corresponds to "fpexcept.ignore".
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
LLVM_ABI Value * simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q)
Given operands for a AShr, fold the result or return nulll.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
LLVM_ABI KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, const SimplifyQuery &SQ, unsigned Depth=0)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Value * simplifyFMulInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FMul, fold the result or return null.
LLVM_ABI Value * simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef< Value * > Indices, GEPNoWrapFlags NW, const SimplifyQuery &Q)
Given operands for a GetElementPtrInst, fold the result or return null.
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
LLVM_ABI bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
LLVM_ABI Value * simplifyFreezeInst(Value *Op, const SimplifyQuery &Q)
Given an operand for a Freeze, see if we can fold the result.
LLVM_ABI Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
LLVM_ABI APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth)
Return the minimum or maximum constant value for the specified integer min/max flavor and type.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Value * simplifySDivInst(Value *LHS, Value *RHS, bool IsExact, const SimplifyQuery &Q)
Given operands for an SDiv, fold the result or return null.
FunctionAddr VTableAddr uintptr_t uintptr_t Int32Ty
LLVM_ABI Value * simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q)
Given operand for a UnaryOperator, fold the result or return null.
bool isDefaultFPEnvironment(fp::ExceptionBehavior EB, RoundingMode RM)
Returns true if the exception handling behavior and rounding mode match what is used in the default f...
LLVM_ABI Value * simplifyMulInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Mul, fold the result or return null.
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
LLVM_ABI Value * simplifyInstructionWithOperands(Instruction *I, ArrayRef< Value * > NewOps, const SimplifyQuery &Q)
Like simplifyInstruction but the operands of I are replaced with NewOps.
LLVM_ABI Value * simplifyCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
Given a callsite, callee, and arguments, fold the result or return null.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
bool canRoundingModeBe(RoundingMode RM, RoundingMode QRM)
Returns true if the rounding mode RM may be QRM at compile time or at run time.
LLVM_ABI bool isNoAliasCall(const Value *V)
Return true if this pointer is returned by a noalias function.
LLVM_ABI Value * simplifyFCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q)
Given operands for an FCmpInst, fold the result or return null.
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI Constant * ConstantFoldGetElementPtr(Type *Ty, Constant *C, std::optional< ConstantRange > InRange, ArrayRef< Value * > Idxs)
LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
LLVM_ABI Value * simplifyShuffleVectorInst(Value *Op0, Value *Op1, ArrayRef< int > Mask, Type *RetTy, const SimplifyQuery &Q)
Given operands for a ShuffleVectorInst, fold the result or return null.
LLVM_ABI Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
LLVM_ABI Value * simplifyOrInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an Or, fold the result or return null.
LLVM_ABI Value * simplifyXorInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an Xor, fold the result or return null.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
LLVM_ABI ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI bool isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI)
Tests if a value is a call or invoke to a library function that allocates memory (either malloc,...
LLVM_ABI bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
LLVM_ABI Value * simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, const SimplifyQuery &Q)
Given operands for a CastInst, fold the result or return null.
LLVM_ABI Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
unsigned M1(unsigned Val)
LLVM_ABI Value * simplifySubInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Sub, fold the result or return null.
LLVM_ABI Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, const TargetLibraryInfo *TLI, ObjectSizeOpts Opts={})
Compute the size of the object pointed by Ptr.
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_ABI Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
LLVM_ABI SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF)
Return the inverse minimum/maximum flavor of the specified flavor.
LLVM_ABI bool replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI=nullptr, const DominatorTree *DT=nullptr, AssumptionCache *AC=nullptr, SmallSetVector< Instruction *, 8 > *UnsimplifiedUsers=nullptr)
Replace all uses of 'I' with 'SimpleV' and simplify the uses recursively.
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
SelectPatternFlavor
Specific patterns of select instructions we can match.
LLVM_ABI Value * simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Shl, fold the result or return null.
LLVM_ABI Value * simplifyFNegInst(Value *Op, FastMathFlags FMF, const SimplifyQuery &Q)
Given operand for an FNeg, fold the result or return null.
LLVM_ABI Value * simplifyFSubInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FSub, fold the result or return null.
LLVM_ABI bool canReplacePointersIfEqual(const Value *From, const Value *To, const DataLayout &DL)
Returns true if a pointer value From can be replaced with another pointer value \To if they are deeme...
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI Value * simplifyFRemInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FRem, fold the result or return null.
LLVM_ABI Value * simplifyFAddInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FAdd, fold the result or return null.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI Value * simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q)
Given operands for a LShr, fold the result or return null.
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
LLVM_ABI Value * simplifyICmpInst(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an ICmpInst, fold the result or return null.
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Value * simplifyAndInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an And, fold the result or return null.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI Value * simplifyExtractValueInst(Value *Agg, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an ExtractValueInst, fold the result or return null.
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI Value * simplifyInsertValueInst(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an InsertValueInst, fold the result or return null.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI Value * simplifyFDivInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FDiv, fold the result or return null.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI Value * simplifyLoadInst(LoadInst *LI, Value *PtrOp, const SimplifyQuery &Q)
Given a load instruction and its pointer operand, fold the result or return null.
LLVM_ABI Value * simplifyFMAFMul(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for the multiplication of a FMA, fold the result or return null.
LLVM_ABI SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, FastMathFlags FMF=FastMathFlags(), Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
LLVM_ABI Value * simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q)
Given a constrained FP intrinsic call, tries to compute its simplified version.
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
std::optional< DecomposedBitTest > decomposeBitTest(Value *Cond, bool LookThroughTrunc=true, bool AllowNonZeroC=false, bool DecomposeAnd=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
LLVM_ABI Value * findScalarElement(Value *V, unsigned EltNo)
Given a vector and an element number, see if the scalar value is already around as a register,...
LLVM_ABI bool isKnownNonEqual(const Value *V1, const Value *V2, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the given values are known to be non-equal when defined.
LLVM_ABI Value * simplifyUDivInst(Value *LHS, Value *RHS, bool IsExact, const SimplifyQuery &Q)
Given operands for a UDiv, fold the result or return null.
DWARFExpression::Operation Op
LLVM_ABI bool PointerMayBeCaptured(const Value *V, bool ReturnCaptures, unsigned MaxUsesToExplore=0)
PointerMayBeCaptured - Return true if this pointer value may be captured by the enclosing function (w...
LLVM_ABI Value * simplifyBinaryIntrinsic(Intrinsic::ID IID, Type *ReturnType, Value *Op0, Value *Op1, const SimplifyQuery &Q, const CallBase *Call)
Given operands for a BinaryIntrinsic, fold the result or return null.
RoundingMode
Rounding mode.
@ NearestTiesToEven
roundTiesToEven.
@ TowardNegative
roundTowardNegative.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
unsigned M0(unsigned Val)
LLVM_ABI unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI Value * simplifyInsertElementInst(Value *Vec, Value *Elt, Value *Idx, const SimplifyQuery &Q)
Given operands for an InsertElement, fold the result or return null.
constexpr unsigned BitWidth
LLVM_ABI Value * simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, const SimplifyQuery &Q, bool AllowRefinement, SmallVectorImpl< Instruction * > *DropFlags=nullptr)
See if V simplifies when its operand Op is replaced with RepOp.
LLVM_ABI bool maskIsAllZeroOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Value * simplifySRemInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an SRem, fold the result or return null.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
Attempt to constant fold an insertvalue instruction with the specified operands and indices.
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return true if the given value is known to have exactly one bit set when defined.
LLVM_ABI std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
LLVM_ABI Value * simplifyCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a CmpInst, fold the result or return null.
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI const SimplifyQuery getBestSimplifyQuery(Pass &, Function &)
std::pair< Value *, FPClassTest > fcmpToClassTest(FCmpInst::Predicate Pred, const Function &F, Value *LHS, Value *RHS, bool LookThroughSrc=true)
Returns a pair of values, which if passed to llvm.is.fpclass, returns the same result as an fcmp with...
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
bool isCheckForZeroAndMulWithOverflow(Value *Op0, Value *Op1, bool IsAnd, Use *&Y)
Match one of the patterns up to the select/logic op: Op0 = icmp ne i4 X, 0 Agg = call { i4,...
bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF)
Returns true if the possibility of a signaling NaN can be safely ignored.
LLVM_ABI Value * simplifyURemInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a URem, fold the result or return null.
LLVM_ABI Value * simplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &Q)
Given operands for an ExtractElementInst, fold the result or return null.
LLVM_ABI Value * simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q)
Given operands for a SelectInst, fold the result or return null.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI std::optional< bool > computeKnownFPSignBit(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return false if we can prove that the specified FP value's sign bit is 0.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This callback is used in conjunction with PointerMayBeCaptured.
virtual Action captured(const Use *U, UseCaptureInfo CI)=0
Use U directly captures CI.UseCC and additionally CI.ResultCC through the return value of the user of...
virtual void tooManyUses()=0
tooManyUses - The depth of traversal has breached a limit.
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
InstrInfoQuery provides an interface to query additional information for instructions like metadata o...
bool isExact(const BinaryOperator *Op) const
MDNode * getMetadata(const Instruction *I, unsigned KindID) const
bool hasNoSignedWrap(const InstT *Op) const
bool hasNoUnsignedWrap(const InstT *Op) const
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
bool hasConflict() const
Returns true if there is conflicting information.
unsigned getBitWidth() const
Get the bit width of this value.
unsigned countMaxActiveBits() const
Returns the maximum number of bits needed to represent all possible unsigned values with these known ...
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
APInt getMinValue() const
Return the minimal unsigned value possible given these KnownBits.
bool isNegative() const
Returns true if this value is known to be negative.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
bool isKnownAlwaysNaN() const
Return true if it's known this must always be a nan.
static constexpr FPClassTest OrderedLessThanZeroMask
std::optional< bool > SignBit
std::nullopt if the sign bit is unknown, true if the sign bit is definitely set or false if the sign ...
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool isKnownNever(FPClassTest Mask) const
Return true if it's known this can never be one of the mask entries.
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
The adaptor from a function pass to a loop pass computes these analyses and makes them available to t...
Various options to control the behavior of getObjectSize.
bool NullIsUnknownSize
If this is true, null pointers in address space 0 will be treated as though they can't be evaluated.
Mode EvalMode
How we want to evaluate this object's size.
@ Min
Evaluate all branches of an unknown condition.
SelectPatternFlavor Flavor
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
bool CanUseUndef
Controls whether simplifications are allowed to constrain the range of possible values for uses of un...
SimplifyQuery getWithInstruction(const Instruction *I) const
LLVM_ABI bool isUndefValue(Value *V) const
If CanUseUndef is true, returns whether V is undef.
const TargetLibraryInfo * TLI
SimplifyQuery getWithoutUndef() const
Capture information for a specific Use.