36using namespace PatternMatch;
41 cl::desc(
"Use ConstantInt's native fixed-length vector splat support."));
44 cl::desc(
"Use ConstantFP's native fixed-length vector splat support."));
47 cl::desc(
"Use ConstantInt's native scalable vector splat support."));
50 cl::desc(
"Use ConstantFP's native scalable vector splat support."));
58 if (
const ConstantFP *CFP = dyn_cast<ConstantFP>(
this))
59 return CFP->isZero() && CFP->isNegative();
63 if (
const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(
getSplatValue()))
64 return SplatCFP->isNegativeZeroValue();
67 if (
getType()->isFPOrFPVectorTy())
78 if (
const ConstantFP *CFP = dyn_cast<ConstantFP>(
this))
83 if (
const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(
getSplatValue()))
84 return SplatCFP->isZero();
92 if (
const ConstantInt *CI = dyn_cast<ConstantInt>(
this))
96 if (
const ConstantFP *CFP = dyn_cast<ConstantFP>(
this))
99 return CFP->isExactlyValue(+0.0);
103 return isa<ConstantAggregateZero>(
this) || isa<ConstantPointerNull>(
this) ||
104 isa<ConstantTokenNone>(
this) || isa<ConstantTargetNone>(
this);
109 if (
const ConstantInt *CI = dyn_cast<ConstantInt>(
this))
110 return CI->isMinusOne();
113 if (
const ConstantFP *CFP = dyn_cast<ConstantFP>(
this))
114 return CFP->getValueAPF().bitcastToAPInt().isAllOnes();
119 return SplatVal->isAllOnesValue();
126 if (
const ConstantInt *CI = dyn_cast<ConstantInt>(
this))
130 if (
const ConstantFP *CFP = dyn_cast<ConstantFP>(
this))
131 return CFP->getValueAPF().bitcastToAPInt().isOne();
136 return SplatVal->isOneValue();
143 if (
const ConstantInt *CI = dyn_cast<ConstantInt>(
this))
144 return !CI->isOneValue();
147 if (
const ConstantFP *CFP = dyn_cast<ConstantFP>(
this))
148 return !CFP->getValueAPF().bitcastToAPInt().isOne();
151 if (
auto *VTy = dyn_cast<FixedVectorType>(
getType())) {
152 for (
unsigned I = 0, E = VTy->getNumElements();
I != E; ++
I) {
163 return SplatVal->isNotOneValue();
171 if (
const ConstantInt *CI = dyn_cast<ConstantInt>(
this))
172 return CI->isMinValue(
true);
175 if (
const ConstantFP *CFP = dyn_cast<ConstantFP>(
this))
176 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
181 return SplatVal->isMinSignedValue();
188 if (
const ConstantInt *CI = dyn_cast<ConstantInt>(
this))
189 return !CI->isMinValue(
true);
192 if (
const ConstantFP *CFP = dyn_cast<ConstantFP>(
this))
193 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
196 if (
auto *VTy = dyn_cast<FixedVectorType>(
getType())) {
197 for (
unsigned I = 0, E = VTy->getNumElements();
I != E; ++
I) {
208 return SplatVal->isNotMinSignedValue();
215 if (
auto *CFP = dyn_cast<ConstantFP>(
this))
216 return CFP->getValueAPF().isFiniteNonZero();
218 if (
auto *VTy = dyn_cast<FixedVectorType>(
getType())) {
219 for (
unsigned I = 0, E = VTy->getNumElements();
I != E; ++
I) {
221 if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
228 if (
const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(
getSplatValue()))
229 return SplatCFP->isFiniteNonZeroFP();
236 if (
auto *CFP = dyn_cast<ConstantFP>(
this))
237 return CFP->getValueAPF().isNormal();
239 if (
auto *VTy = dyn_cast<FixedVectorType>(
getType())) {
240 for (
unsigned I = 0, E = VTy->getNumElements();
I != E; ++
I) {
242 if (!CFP || !CFP->getValueAPF().isNormal())
249 if (
const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(
getSplatValue()))
250 return SplatCFP->isNormalFP();
257 if (
auto *CFP = dyn_cast<ConstantFP>(
this))
258 return CFP->getValueAPF().getExactInverse(
nullptr);
260 if (
auto *VTy = dyn_cast<FixedVectorType>(
getType())) {
261 for (
unsigned I = 0, E = VTy->getNumElements();
I != E; ++
I) {
263 if (!CFP || !CFP->getValueAPF().getExactInverse(
nullptr))
270 if (
const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(
getSplatValue()))
271 return SplatCFP->hasExactInverseFP();
278 if (
auto *CFP = dyn_cast<ConstantFP>(
this))
281 if (
auto *VTy = dyn_cast<FixedVectorType>(
getType())) {
282 for (
unsigned I = 0, E = VTy->getNumElements();
I != E; ++
I) {
284 if (!CFP || !CFP->isNaN())
291 if (
const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(
getSplatValue()))
292 return SplatCFP->isNaN();
304 auto *VTy = dyn_cast<VectorType>(
getType());
305 if (!isa<Constant>(
Y) || !VTy || VTy !=
Y->getType())
309 if (!(VTy->getElementType()->isIntegerTy() ||
310 VTy->getElementType()->isFloatingPointTy()))
319 return CmpEq && (isa<PoisonValue>(CmpEq) ||
match(CmpEq,
m_One()));
325 if (
auto *VTy = dyn_cast<VectorType>(
C->getType())) {
328 if (isa<ConstantAggregateZero>(
C))
330 if (isa<ScalableVectorType>(
C->getType()))
333 for (
unsigned i = 0, e = cast<FixedVectorType>(VTy)->
getNumElements();
335 if (
Constant *Elem =
C->getAggregateElement(i))
346 this, [&](
const auto *
C) {
return isa<UndefValue>(
C); });
351 this, [&](
const auto *
C) {
return isa<PoisonValue>(
C); });
356 return isa<UndefValue>(
C) && !isa<PoisonValue>(
C);
361 if (isa<ConstantInt>(
this) || isa<ConstantFP>(
this))
364 if (
auto *VTy = dyn_cast<FixedVectorType>(
getType())) {
365 for (
unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
376 return ConstantInt::get(Ty, 0);
410 if (
PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
414 if (
VectorType *VTy = dyn_cast<VectorType>(Ty))
437 "Must be an aggregate/vector constant");
439 if (
const auto *
CC = dyn_cast<ConstantAggregate>(
this))
440 return Elt <
CC->getNumOperands() ?
CC->getOperand(Elt) :
nullptr;
442 if (
const auto *CAZ = dyn_cast<ConstantAggregateZero>(
this))
443 return Elt < CAZ->getElementCount().getKnownMinValue()
444 ? CAZ->getElementValue(Elt)
447 if (
const auto *CI = dyn_cast<ConstantInt>(
this))
448 return Elt < cast<VectorType>(
getType())
451 ? ConstantInt::get(
getContext(), CI->getValue())
454 if (
const auto *CFP = dyn_cast<ConstantFP>(
this))
455 return Elt < cast<VectorType>(
getType())
458 ? ConstantFP::get(
getContext(), CFP->getValue())
462 if (isa<ScalableVectorType>(
getType()))
465 if (
const auto *PV = dyn_cast<PoisonValue>(
this))
466 return Elt < PV->getNumElements() ? PV->getElementValue(Elt) :
nullptr;
468 if (
const auto *UV = dyn_cast<UndefValue>(
this))
469 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) :
nullptr;
471 if (
const auto *CDS = dyn_cast<ConstantDataSequential>(
this))
472 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
479 assert(isa<IntegerType>(Elt->
getType()) &&
"Index must be an integer");
480 if (
ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) {
482 if (CI->getValue().getActiveBits() > 64)
495#define HANDLE_CONSTANT(Name) \
496 case Value::Name##Val: \
497 cast<Name>(this)->destroyConstantImpl(); \
499#include "llvm/IR/Value.def"
512 if (!isa<Constant>(V)) {
513 dbgs() <<
"While deleting: " << *
this
514 <<
"\n\nUse still stuck around after Def is destroyed: " << *V
518 assert(isa<Constant>(V) &&
"References remain to Constant being destroyed");
519 cast<Constant>(V)->destroyConstant();
530 switch (
C->getValueID()) {
531 case Constant::ConstantIntVal:
534 case Constant::ConstantFPVal:
537 case Constant::ConstantAggregateZeroVal:
540 case Constant::ConstantArrayVal:
543 case Constant::ConstantStructVal:
546 case Constant::ConstantVectorVal:
549 case Constant::ConstantPointerNullVal:
552 case Constant::ConstantDataArrayVal:
555 case Constant::ConstantDataVectorVal:
558 case Constant::ConstantTokenNoneVal:
561 case Constant::BlockAddressVal:
564 case Constant::DSOLocalEquivalentVal:
567 case Constant::NoCFIValueVal:
570 case Constant::ConstantPtrAuthVal:
573 case Constant::UndefValueVal:
576 case Constant::PoisonValueVal:
579 case Constant::ConstantExprVal:
580 if (isa<CastConstantExpr>(
C))
582 else if (isa<BinaryConstantExpr>(
C))
584 else if (isa<ExtractElementConstantExpr>(
C))
586 else if (isa<InsertElementConstantExpr>(
C))
588 else if (isa<ShuffleVectorConstantExpr>(
C))
590 else if (isa<GetElementPtrConstantExpr>(
C))
609 while (!WorkList.
empty()) {
611 if (
const auto *GV = dyn_cast<GlobalValue>(
WorkItem))
615 const Constant *ConstOp = dyn_cast<Constant>(
Op);
618 if (Visited.
insert(ConstOp).second)
626 auto DLLImportPredicate = [](
const GlobalValue *GV) {
627 return GV->isThreadLocal();
633 auto DLLImportPredicate = [](
const GlobalValue *GV) {
634 return GV->hasDLLImportStorageClass();
641 const Constant *UC = dyn_cast<Constant>(U);
642 if (!UC || isa<GlobalValue>(UC))
652 return getRelocationInfo() == GlobalRelocation;
656 return getRelocationInfo() != NoRelocation;
659Constant::PossibleRelocationsTy Constant::getRelocationInfo()
const {
660 if (isa<GlobalValue>(
this))
661 return GlobalRelocation;
663 if (
const BlockAddress *BA = dyn_cast<BlockAddress>(
this))
664 return BA->getFunction()->getRelocationInfo();
666 if (
const ConstantExpr *CE = dyn_cast<ConstantExpr>(
this)) {
667 if (CE->getOpcode() == Instruction::Sub) {
670 if (LHS && RHS &&
LHS->getOpcode() == Instruction::PtrToInt &&
671 RHS->getOpcode() == Instruction::PtrToInt) {
679 if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) &&
688 if (
auto *LHSGV = dyn_cast<GlobalValue>(LHS)) {
689 if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal())
690 return LocalRelocation;
691 }
else if (isa<DSOLocalEquivalent>(LHS)) {
692 if (RHSGV->isDSOLocal())
693 return LocalRelocation;
700 PossibleRelocationsTy
Result = NoRelocation;
702 Result = std::max(cast<Constant>(
Op)->getRelocationInfo(), Result);
711 if (isa<GlobalValue>(
C))
return false;
716 if (!
User)
return false;
729 if (RemoveDeadUsers) {
733 const_cast<Constant *
>(
C)->destroyConstant();
759 if (LastNonDeadUser == E)
762 I = std::next(LastNonDeadUser);
770bool Constant::hasNLiveUses(
unsigned N)
const {
771 unsigned NumUses = 0;
785 assert(
C && Replacement &&
"Expected non-nullptr constant arguments");
786 Type *Ty =
C->getType();
788 assert(Ty == Replacement->
getType() &&
"Expected matching types");
793 auto *VTy = dyn_cast<FixedVectorType>(Ty);
797 unsigned NumElts = VTy->getNumElements();
799 for (
unsigned i = 0; i != NumElts; ++i) {
800 Constant *EltC =
C->getAggregateElement(i);
802 "Expected matching types");
803 NewC[i] = EltC &&
match(EltC,
m_Undef()) ? Replacement : EltC;
809 assert(
C &&
Other &&
"Expected non-nullptr constant arguments");
813 Type *Ty =
C->getType();
817 auto *VTy = dyn_cast<FixedVectorType>(Ty);
821 Type *EltTy = VTy->getElementType();
822 unsigned NumElts = VTy->getNumElements();
824 cast<FixedVectorType>(
Other->getType())->getNumElements() == NumElts &&
827 bool FoundExtraUndef =
false;
829 for (
unsigned I = 0;
I != NumElts; ++
I) {
830 NewC[
I] =
C->getAggregateElement(
I);
832 assert(NewC[
I] && OtherEltC &&
"Unknown vector element");
835 FoundExtraUndef =
true;
844 if (isa<ConstantData>(
this))
846 if (isa<ConstantAggregate>(
this) || isa<ConstantExpr>(
this)) {
859ConstantInt::ConstantInt(
Type *Ty,
const APInt &V)
863 "Invalid constant for type");
887 if (
auto *VTy = dyn_cast<VectorType>(Ty))
895 if (
auto *VTy = dyn_cast<VectorType>(Ty))
908 std::unique_ptr<ConstantInt> &Slot =
925 std::unique_ptr<ConstantInt> &Slot =
936 assert(Slot->getType() == VTy);
945 if (
VectorType *VTy = dyn_cast<VectorType>(Ty))
961 "ConstantInt type doesn't match the type implied by its value!");
964 if (
VectorType *VTy = dyn_cast<VectorType>(Ty))
975void ConstantInt::destroyConstantImpl() {
993 if (
VectorType *VTy = dyn_cast<VectorType>(Ty))
1002 "ConstantFP type doesn't match the type implied by its value!");
1005 if (
auto *VTy = dyn_cast<VectorType>(Ty))
1018 if (
VectorType *VTy = dyn_cast<VectorType>(Ty))
1029 if (
VectorType *VTy = dyn_cast<VectorType>(Ty))
1040 if (
VectorType *VTy = dyn_cast<VectorType>(Ty))
1051 if (
VectorType *VTy = dyn_cast<VectorType>(Ty))
1062 if (
VectorType *VTy = dyn_cast<VectorType>(Ty))
1073 std::unique_ptr<ConstantFP> &Slot = pImpl->
FPConstants[V];
1087 std::unique_ptr<ConstantFP> &Slot =
1098 assert(Slot->getType() == VTy);
1107 if (
VectorType *VTy = dyn_cast<VectorType>(Ty))
1116 "FP type Mismatch");
1124void ConstantFP::destroyConstantImpl() {
1133 if (
auto *AT = dyn_cast<ArrayType>(
getType()))
1156 if (
auto *AT = dyn_cast<ArrayType>(Ty))
1158 if (
auto *VT = dyn_cast<VectorType>(Ty))
1159 return VT->getElementCount();
1191 if (
auto *AT = dyn_cast<ArrayType>(Ty))
1192 return AT->getNumElements();
1193 if (
auto *VT = dyn_cast<VectorType>(Ty))
1194 return cast<FixedVectorType>(VT)->getNumElements();
1228template <
typename ItTy,
typename EltTy>
1230 for (; Start !=
End; ++Start)
1236template <
typename SequentialTy,
typename ElementTy>
1238 assert(!V.empty() &&
"Cannot get empty int sequence.");
1242 if (
auto *CI = dyn_cast<ConstantInt>(
C))
1246 return SequentialTy::get(V[0]->getContext(), Elts);
1249template <
typename SequentialTy,
typename ElementTy>
1251 assert(!V.empty() &&
"Cannot get empty FP sequence.");
1255 if (
auto *CFP = dyn_cast<ConstantFP>(
C))
1256 Elts.
push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1259 return SequentialTy::getFP(V[0]->
getType(), Elts);
1262template <
typename SequenceTy>
1269 if (CI->getType()->isIntegerTy(8))
1270 return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
1271 else if (CI->getType()->isIntegerTy(16))
1272 return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1273 else if (CI->getType()->isIntegerTy(32))
1274 return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1275 else if (CI->getType()->isIntegerTy(64))
1276 return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1277 }
else if (
ConstantFP *CFP = dyn_cast<ConstantFP>(
C)) {
1278 if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy())
1279 return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1280 else if (CFP->getType()->isFloatTy())
1281 return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1282 else if (CFP->getType()->isDoubleTy())
1283 return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1296 if (
auto *ST = dyn_cast<StructType>(
T)) {
1299 for (
unsigned I = 0, E = V.size();
I != E; ++
I)
1301 "Initializer for struct element doesn't match!");
1308 assert(V.size() ==
T->getNumElements() &&
1309 "Invalid initializer for constant array");
1325 "Wrong type in array element initializer");
1345 return getSequenceIfElementsMatch<ConstantDataArray>(
C, V);
1354 unsigned VecSize = V.size();
1356 for (
unsigned i = 0; i != VecSize; ++i)
1357 EltTypes[i] = V[i]->
getType();
1366 "ConstantStruct::getTypeForElements cannot be called on empty list");
1373 assert((
T->isOpaque() || V.size() ==
T->getNumElements()) &&
1374 "Invalid initializer for constant struct");
1379 assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
1380 "Incorrect # elements specified to ConstantStruct::get");
1385 bool isPoison =
false;
1388 isUndef = isa<UndefValue>(V[0]);
1389 isPoison = isa<PoisonValue>(V[0]);
1390 isZero = V[0]->isNullValue();
1394 if (!
C->isNullValue())
1396 if (!isa<PoisonValue>(
C))
1398 if (isa<PoisonValue>(
C) || !isa<UndefValue>(
C))
1410 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1416 assert(V.size() == cast<FixedVectorType>(
T)->getNumElements() &&
1417 "Invalid initializer for constant vector");
1429 assert(!V.empty() &&
"Vectors can't be empty");
1435 bool isZero =
C->isNullValue();
1437 bool isPoison = isa<PoisonValue>(
C);
1442 for (
unsigned i = 1, e = V.size(); i != e; ++i)
1444 isZero =
isUndef = isPoison = isSplatFP = isSplatInt =
false;
1456 return ConstantFP::get(
C->getContext(),
T->getElementCount(),
1457 cast<ConstantFP>(
C)->getValue());
1459 return ConstantInt::get(
C->getContext(),
T->getElementCount(),
1460 cast<ConstantInt>(
C)->getValue());
1465 return getSequenceIfElementsMatch<ConstantDataVector>(
C, V);
1473 if (!EC.isScalable()) {
1475 if (!V->isNullValue()) {
1477 return ConstantInt::get(V->getContext(), EC,
1478 cast<ConstantInt>(V)->getValue());
1480 return ConstantFP::get(V->getContext(), EC,
1481 cast<ConstantFP>(V)->getValue());
1486 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1495 if (!V->isNullValue()) {
1497 return ConstantInt::get(V->getContext(), EC,
1498 cast<ConstantInt>(V)->getValue());
1500 return ConstantFP::get(V->getContext(), EC,
1501 cast<ConstantFP>(V)->getValue());
1506 if (V->isNullValue())
1508 else if (isa<UndefValue>(V))
1530void ConstantTokenNone::destroyConstantImpl() {
1540 return cast<ShuffleVectorConstantExpr>(
this)->ShuffleMask;
1544 return cast<ShuffleVectorConstantExpr>(
this)->ShuffleMaskForBitcode;
1548 bool OnlyIfReduced,
Type *SrcTy)
const {
1555 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty :
nullptr;
1557 case Instruction::Trunc:
1558 case Instruction::ZExt:
1559 case Instruction::SExt:
1560 case Instruction::FPTrunc:
1561 case Instruction::FPExt:
1562 case Instruction::UIToFP:
1563 case Instruction::SIToFP:
1564 case Instruction::FPToUI:
1565 case Instruction::FPToSI:
1566 case Instruction::PtrToInt:
1567 case Instruction::IntToPtr:
1568 case Instruction::BitCast:
1569 case Instruction::AddrSpaceCast:
1571 case Instruction::InsertElement:
1574 case Instruction::ExtractElement:
1576 case Instruction::ShuffleVector:
1579 case Instruction::GetElementPtr: {
1580 auto *GEPO = cast<GEPOperator>(
this);
1583 SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.
slice(1),
1584 GEPO->getNoWrapFlags(), GEPO->getInRange(), OnlyIfReducedTy);
1600 return Val == 0 || Val == 1;
1607 return Val == 0 || Val == 1 || Val == -1;
1608 return isIntN(NumBits, Val);
1674 "Cannot create an aggregate zero of non-aggregate type!");
1676 std::unique_ptr<ConstantAggregateZero> &Entry =
1685void ConstantAggregateZero::destroyConstantImpl() {
1690void ConstantArray::destroyConstantImpl() {
1699void ConstantStruct::destroyConstantImpl() {
1704void ConstantVector::destroyConstantImpl() {
1709 assert(this->
getType()->isVectorTy() &&
"Only valid for vectors!");
1710 if (isa<ConstantAggregateZero>(
this))
1712 if (
auto *CI = dyn_cast<ConstantInt>(
this))
1713 return ConstantInt::get(
getContext(), CI->getValue());
1714 if (
auto *CFP = dyn_cast<ConstantFP>(
this))
1715 return ConstantFP::get(
getContext(), CFP->getValue());
1717 return CV->getSplatValue();
1719 return CV->getSplatValue(AllowPoison);
1723 const auto *Shuf = dyn_cast<ConstantExpr>(
this);
1724 if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector &&
1725 isa<UndefValue>(Shuf->getOperand(1))) {
1727 const auto *IElt = dyn_cast<ConstantExpr>(Shuf->getOperand(0));
1728 if (IElt && IElt->getOpcode() == Instruction::InsertElement &&
1729 isa<UndefValue>(IElt->getOperand(0))) {
1733 ConstantInt *Index = dyn_cast<ConstantInt>(IElt->getOperand(2));
1735 if (Index && Index->getValue() == 0 &&
1758 if (isa<PoisonValue>(OpC))
1762 if (isa<PoisonValue>(Elt))
1772 if (
const ConstantInt *CI = dyn_cast<ConstantInt>(
this))
1773 return CI->getValue();
1775 if (isa<ConstantExpr>(
this))
1776 return cast<ConstantInt>(this->
getSplatValue())->getValue();
1781 assert(
C && isa<ConstantInt>(
C) &&
"Not a vector of numbers!");
1782 return cast<ConstantInt>(
C)->getValue();
1786 if (
auto *CI = dyn_cast<ConstantInt>(
this))
1791 return ConstantRange::getFull(
BitWidth);
1793 if (
auto *CI = dyn_cast_or_null<ConstantInt>(
1797 if (
auto *CDV = dyn_cast<ConstantDataVector>(
this)) {
1799 for (
unsigned I = 0, E = CDV->getNumElements();
I < E; ++
I)
1800 CR = CR.
unionWith(CDV->getElementAsAPInt(
I));
1804 if (
auto *CV = dyn_cast<ConstantVector>(
this)) {
1806 for (
unsigned I = 0, E = CV->getNumOperands();
I < E; ++
I) {
1809 return ConstantRange::getFull(
BitWidth);
1810 if (isa<PoisonValue>(Elem))
1812 auto *CI = dyn_cast<ConstantInt>(Elem);
1814 return ConstantRange::getFull(
BitWidth);
1820 return ConstantRange::getFull(
BitWidth);
1827 std::unique_ptr<ConstantPointerNull> &Entry =
1836void ConstantPointerNull::destroyConstantImpl() {
1845 "Target extension type not allowed to have a zeroinitializer");
1846 std::unique_ptr<ConstantTargetNone> &Entry =
1855void ConstantTargetNone::destroyConstantImpl() {
1868void UndefValue::destroyConstantImpl() {
1887void PoisonValue::destroyConstantImpl() {
1899 F->getContext().pImpl->BlockAddresses[std::make_pair(
F, BB)];
1909 Value::BlockAddressVal, AllocMarker) {
1912 BB->AdjustBlockAddressRefCount(1);
1920 assert(
F &&
"Block must have a parent");
1922 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(
F, BB));
1923 assert(BA &&
"Refcount and block address map disagree!");
1928void BlockAddress::destroyConstantImpl() {
1943 assert(
From == NewBB &&
"From does not match any operand");
1944 NewBB = cast<BasicBlock>(To);
1976 "DSOLocalFunction does not match the expected global value");
1980DSOLocalEquivalent::DSOLocalEquivalent(
GlobalValue *GV)
1986void DSOLocalEquivalent::destroyConstantImpl() {
1993 assert(isa<Constant>(To) &&
"Can only replace the operands with a constant");
1996 if (
const auto *ToObj = dyn_cast<GlobalValue>(To)) {
2033 assert(
NC->getGlobalValue() == GV &&
2034 "NoCFIValue does not match the expected global value");
2044void NoCFIValue::destroyConstantImpl() {
2053 assert(GV &&
"Can only replace the operands with a global value");
2088 assert(Key->getBitWidth() == 32);
2098void ConstantPtrAuth::destroyConstantImpl() {
2103 assert(isa<Constant>(ToV) &&
"Cannot make Constant refer to non-constant!");
2104 Constant *To = cast<Constant>(ToV);
2109 unsigned NumUpdated = 0;
2112 unsigned OperandNo = 0;
2114 Constant *Val = cast<Constant>(
O->get());
2116 OperandNo = (
O - OperandList);
2124 Values,
this,
From, To, NumUpdated, OperandNo);
2129 if (!CastV || CastV->getOpcode() != Instruction::IntToPtr)
2132 const auto *IntVal = dyn_cast<ConstantInt>(CastV->getOperand(0));
2136 return IntVal->getValue() ==
Value;
2140 const Value *Discriminator,
2158 const Value *AddrDiscriminator =
nullptr;
2164 if (!
match(Discriminator,
2165 m_Intrinsic<Intrinsic::ptrauth_blend>(
2170 AddrDiscriminator = Discriminator;
2176 if (
auto *Cast = dyn_cast<PtrToIntOperator>(AddrDiscriminator))
2177 AddrDiscriminator = Cast->getPointerOperand();
2192 APInt Off2(
DL.getIndexTypeSizeInBits(AddrDiscriminator->
getType()), 0);
2196 return Base1 == Base2 && Off1 == Off2;
2205 bool OnlyIfReduced =
false) {
2223 bool OnlyIfReduced) {
2227 "Cast opcode not supported as constant expression");
2228 assert(
C && Ty &&
"Null arguments to getCast");
2234 case Instruction::Trunc:
2236 case Instruction::PtrToInt:
2238 case Instruction::IntToPtr:
2240 case Instruction::BitCast:
2242 case Instruction::AddrSpaceCast:
2281 bool fromVec = isa<VectorType>(
C->getType());
2282 bool toVec = isa<VectorType>(Ty);
2284 assert((fromVec == toVec) &&
"Cannot convert from scalar to/from vector");
2285 assert(
C->getType()->isIntOrIntVectorTy() &&
"Trunc operand must be integer");
2288 "SrcTy must be larger than DestTy for Trunc!");
2294 bool OnlyIfReduced) {
2295 assert(
C->getType()->isPtrOrPtrVectorTy() &&
2296 "PtrToInt source must be pointer or pointer vector");
2298 "PtrToInt destination must be integer or integer vector");
2299 assert(isa<VectorType>(
C->getType()) == isa<VectorType>(DstTy));
2300 if (isa<VectorType>(
C->getType()))
2301 assert(cast<VectorType>(
C->getType())->getElementCount() ==
2302 cast<VectorType>(DstTy)->getElementCount() &&
2303 "Invalid cast between a different number of vector elements");
2304 return getFoldedCast(Instruction::PtrToInt,
C, DstTy, OnlyIfReduced);
2308 bool OnlyIfReduced) {
2309 assert(
C->getType()->isIntOrIntVectorTy() &&
2310 "IntToPtr source must be integer or integer vector");
2312 "IntToPtr destination must be a pointer or pointer vector");
2313 assert(isa<VectorType>(
C->getType()) == isa<VectorType>(DstTy));
2314 if (isa<VectorType>(
C->getType()))
2315 assert(cast<VectorType>(
C->getType())->getElementCount() ==
2316 cast<VectorType>(DstTy)->getElementCount() &&
2317 "Invalid cast between a different number of vector elements");
2318 return getFoldedCast(Instruction::IntToPtr,
C, DstTy, OnlyIfReduced);
2322 bool OnlyIfReduced) {
2324 "Invalid constantexpr bitcast!");
2328 if (
C->getType() == DstTy)
return C;
2330 return getFoldedCast(Instruction::BitCast,
C, DstTy, OnlyIfReduced);
2334 bool OnlyIfReduced) {
2336 "Invalid constantexpr addrspacecast!");
2337 return getFoldedCast(Instruction::AddrSpaceCast,
C, DstTy, OnlyIfReduced);
2341 unsigned Flags,
Type *OnlyIfReducedTy) {
2344 "Invalid opcode in binary constant expression");
2346 "Binop not supported as constant expression");
2348 "Operand types in binary constant expression should match");
2352 case Instruction::Add:
2353 case Instruction::Sub:
2354 case Instruction::Mul:
2356 "Tried to create an integer operation on a non-integer type!");
2358 case Instruction::And:
2359 case Instruction::Or:
2360 case Instruction::Xor:
2362 "Tried to create a logical operation on a non-integral type!");
2372 if (OnlyIfReducedTy == C1->
getType())
2384 case Instruction::UDiv:
2385 case Instruction::SDiv:
2386 case Instruction::URem:
2387 case Instruction::SRem:
2388 case Instruction::FAdd:
2389 case Instruction::FSub:
2390 case Instruction::FMul:
2391 case Instruction::FDiv:
2392 case Instruction::FRem:
2393 case Instruction::And:
2394 case Instruction::Or:
2395 case Instruction::LShr:
2396 case Instruction::AShr:
2397 case Instruction::Shl:
2399 case Instruction::Add:
2400 case Instruction::Sub:
2401 case Instruction::Mul:
2402 case Instruction::Xor:
2411 case Instruction::UDiv:
2412 case Instruction::SDiv:
2413 case Instruction::URem:
2414 case Instruction::SRem:
2415 case Instruction::FAdd:
2416 case Instruction::FSub:
2417 case Instruction::FMul:
2418 case Instruction::FDiv:
2419 case Instruction::FRem:
2420 case Instruction::And:
2421 case Instruction::Or:
2422 case Instruction::LShr:
2423 case Instruction::AShr:
2424 case Instruction::Shl:
2426 case Instruction::Add:
2427 case Instruction::Sub:
2428 case Instruction::Mul:
2429 case Instruction::Xor:
2438 case Instruction::ZExt:
2439 case Instruction::SExt:
2440 case Instruction::FPTrunc:
2441 case Instruction::FPExt:
2442 case Instruction::UIToFP:
2443 case Instruction::SIToFP:
2444 case Instruction::FPToUI:
2445 case Instruction::FPToSI:
2447 case Instruction::Trunc:
2448 case Instruction::PtrToInt:
2449 case Instruction::IntToPtr:
2450 case Instruction::BitCast:
2451 case Instruction::AddrSpaceCast:
2460 case Instruction::ZExt:
2461 case Instruction::SExt:
2462 case Instruction::FPTrunc:
2463 case Instruction::FPExt:
2464 case Instruction::UIToFP:
2465 case Instruction::SIToFP:
2466 case Instruction::FPToUI:
2467 case Instruction::FPToSI:
2469 case Instruction::Trunc:
2470 case Instruction::PtrToInt:
2471 case Instruction::IntToPtr:
2472 case Instruction::BitCast:
2473 case Instruction::AddrSpaceCast:
2498 Constant *Indices[2] = {Zero, One};
2506 std::optional<ConstantRange>
InRange,
2507 Type *OnlyIfReducedTy) {
2508 assert(Ty &&
"Must specify element type");
2519 if (OnlyIfReducedTy == ReqTy)
2523 if (
VectorType *VecTy = dyn_cast<VectorType>(ReqTy))
2524 EltCount = VecTy->getElementCount();
2527 std::vector<Constant*> ArgVec;
2528 ArgVec.reserve(1 + Idxs.
size());
2529 ArgVec.push_back(
C);
2531 for (; GTI != GTE; ++GTI) {
2532 auto *
Idx = cast<Constant>(GTI.getOperand());
2534 (!isa<VectorType>(
Idx->getType()) ||
2535 cast<VectorType>(
Idx->getType())->getElementCount() == EltCount) &&
2536 "getelementptr index type missmatch");
2538 if (GTI.isStruct() &&
Idx->getType()->isVectorTy()) {
2539 Idx =
Idx->getSplatValue();
2540 }
else if (GTI.isSequential() && EltCount.isNonZero() &&
2541 !
Idx->getType()->isVectorTy()) {
2544 ArgVec.push_back(
Idx);
2555 Type *OnlyIfReducedTy) {
2557 "Tried to create extractelement operation on non-vector type!");
2559 "Extractelement index must be an integer type!");
2564 Type *ReqTy = cast<VectorType>(Val->
getType())->getElementType();
2565 if (OnlyIfReducedTy == ReqTy)
2579 "Tried to create insertelement operation on non-vector type!");
2581 "Insertelement types must match!");
2583 "Insertelement index must be i32 type!");
2588 if (OnlyIfReducedTy == Val->
getType())
2601 Type *OnlyIfReducedTy) {
2603 "Invalid shuffle vector constant expr operands!");
2608 unsigned NElts = Mask.size();
2609 auto V1VTy = cast<VectorType>(V1->
getType());
2610 Type *EltTy = V1VTy->getElementType();
2611 bool TypeIsScalable = isa<ScalableVectorType>(V1VTy);
2614 if (OnlyIfReducedTy == ShufTy)
2626 assert(
C->getType()->isIntOrIntVectorTy() &&
2627 "Cannot NEG a nonintegral value!");
2628 return getSub(ConstantInt::get(
C->getType(), 0),
C,
false, HasNSW);
2632 assert(
C->getType()->isIntOrIntVectorTy() &&
2633 "Cannot NOT a nonintegral value!");
2638 bool HasNUW,
bool HasNSW) {
2641 return get(Instruction::Add, C1, C2, Flags);
2645 bool HasNUW,
bool HasNSW) {
2648 return get(Instruction::Sub, C1, C2, Flags);
2652 bool HasNUW,
bool HasNSW) {
2655 return get(Instruction::Mul, C1, C2, Flags);
2659 return get(Instruction::Xor, C1, C2);
2663 Type *Ty =
C->getType();
2666 return ConstantInt::get(Ty, IVal->
logBase2());
2669 auto *VecTy = dyn_cast<FixedVectorType>(Ty);
2674 for (
unsigned I = 0, E = VecTy->getNumElements();
I != E; ++
I) {
2679 if (isa<UndefValue>(Elt)) {
2692 bool AllowRHSConstant,
bool NSZ) {
2698 case Instruction::Add:
2699 case Instruction::Or:
2700 case Instruction::Xor:
2702 case Instruction::Mul:
2703 return ConstantInt::get(Ty, 1);
2704 case Instruction::And:
2706 case Instruction::FAdd:
2708 case Instruction::FMul:
2709 return ConstantFP::get(Ty, 1.0);
2716 if (!AllowRHSConstant)
2720 case Instruction::Sub:
2721 case Instruction::Shl:
2722 case Instruction::LShr:
2723 case Instruction::AShr:
2724 case Instruction::FSub:
2726 case Instruction::SDiv:
2727 case Instruction::UDiv:
2728 return ConstantInt::get(Ty, 1);
2729 case Instruction::FDiv:
2730 return ConstantFP::get(Ty, 1.0);
2738 case Intrinsic::umax:
2740 case Intrinsic::umin:
2742 case Intrinsic::smax:
2745 case Intrinsic::smin:
2754 bool AllowRHSConstant,
bool NSZ) {
2755 if (
I->isBinaryOp())
2763 bool AllowLHSConstant) {
2768 case Instruction::Or:
2771 case Instruction::And:
2772 case Instruction::Mul:
2777 if (!AllowLHSConstant)
2783 case Instruction::Shl:
2784 case Instruction::LShr:
2785 case Instruction::AShr:
2786 case Instruction::SDiv:
2787 case Instruction::UDiv:
2788 case Instruction::URem:
2789 case Instruction::SRem:
2795void ConstantExpr::destroyConstantImpl() {
2803GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2807 SrcElementTy(SrcElementTy),
2812 for (
unsigned i = 0, E = IdxList.
size(); i != E; ++i)
2813 OperandList[i+1] = IdxList[i];
2817 return SrcElementTy;
2821 return ResElementTy;
2833 return ATy->getElementType();
2834 return cast<VectorType>(
getType())->getElementType();
2844 if (
auto *
IT = dyn_cast<IntegerType>(Ty)) {
2845 switch (
IT->getBitWidth()) {
2859 return AT->getNumElements();
2860 return cast<FixedVectorType>(
getType())->getNumElements();
2869const char *ConstantDataSequential::getElementPointer(
unsigned Elt)
const {
2889 if (
ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2909 std::unique_ptr<ConstantDataSequential> *Entry = &Slot.second;
2910 for (; *Entry; Entry = &(*Entry)->Next)
2911 if ((*Entry)->getType() == Ty)
2912 return Entry->get();
2916 if (isa<ArrayType>(Ty)) {
2919 return Entry->get();
2922 assert(isa<VectorType>(Ty));
2925 return Entry->get();
2928void ConstantDataSequential::destroyConstantImpl() {
2935 assert(Slot != CDSConstants.
end() &&
"CDS not found in uniquing table");
2937 std::unique_ptr<ConstantDataSequential> *Entry = &Slot->getValue();
2940 if (!(*Entry)->Next) {
2943 assert(Entry->get() ==
this &&
"Hash mismatch in ConstantDataSequential");
2951 std::unique_ptr<ConstantDataSequential> &
Node = *Entry;
2952 assert(
Node &&
"Didn't find entry in its uniquing hash table!");
2954 if (
Node.get() ==
this) {
2970 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
2971 "Element type is not a 16-bit float type");
2973 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
2977 assert(ElementType->isFloatTy() &&
"Element type is not a 32-bit float type");
2979 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
2983 assert(ElementType->isDoubleTy() &&
2984 "Element type is not a 64-bit float type");
2986 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
2998 ElementVals.
append(Str.begin(), Str.end());
3000 return get(Context, ElementVals);
3008 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3013 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3018 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3023 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3028 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3033 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3045 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
3046 "Element type is not a 16-bit float type");
3048 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3053 assert(ElementType->isFloatTy() &&
"Element type is not a 32-bit float type");
3055 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3060 assert(ElementType->isDoubleTy() &&
3061 "Element type is not a 64-bit float type");
3063 const char *
Data =
reinterpret_cast<const char *
>(Elts.
data());
3069 "Element type not compatible with ConstantData");
3071 if (CI->getType()->isIntegerTy(8)) {
3073 return get(V->getContext(), Elts);
3075 if (CI->getType()->isIntegerTy(16)) {
3077 return get(V->getContext(), Elts);
3079 if (CI->getType()->isIntegerTy(32)) {
3081 return get(V->getContext(), Elts);
3083 assert(CI->getType()->isIntegerTy(64) &&
"Unsupported ConstantData type");
3085 return get(V->getContext(), Elts);
3088 if (
ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3089 if (CFP->getType()->isHalfTy()) {
3091 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3092 return getFP(V->getType(), Elts);
3094 if (CFP->getType()->isBFloatTy()) {
3096 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3097 return getFP(V->getType(), Elts);
3099 if (CFP->getType()->isFloatTy()) {
3101 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3102 return getFP(V->getType(), Elts);
3104 if (CFP->getType()->isDoubleTy()) {
3106 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3107 return getFP(V->getType(), Elts);
3116 "Accessor can only be used when element is an integer");
3117 const char *EltPtr = getElementPointer(Elt);
3124 return *
reinterpret_cast<const uint8_t *
>(EltPtr);
3126 return *
reinterpret_cast<const uint16_t *
>(EltPtr);
3128 return *
reinterpret_cast<const uint32_t *
>(EltPtr);
3130 return *
reinterpret_cast<const uint64_t *
>(EltPtr);
3136 "Accessor can only be used when element is an integer");
3137 const char *EltPtr = getElementPointer(Elt);
3144 auto EltVal = *
reinterpret_cast<const uint8_t *
>(EltPtr);
3145 return APInt(8, EltVal);
3148 auto EltVal = *
reinterpret_cast<const uint16_t *
>(EltPtr);
3149 return APInt(16, EltVal);
3152 auto EltVal = *
reinterpret_cast<const uint32_t *
>(EltPtr);
3153 return APInt(32, EltVal);
3156 auto EltVal = *
reinterpret_cast<const uint64_t *
>(EltPtr);
3157 return APInt(64, EltVal);
3163 const char *EltPtr = getElementPointer(Elt);
3167 llvm_unreachable(
"Accessor can only be used when element is float/double!");
3169 auto EltVal = *
reinterpret_cast<const uint16_t *
>(EltPtr);
3173 auto EltVal = *
reinterpret_cast<const uint16_t *
>(EltPtr);
3177 auto EltVal = *
reinterpret_cast<const uint32_t *
>(EltPtr);
3181 auto EltVal = *
reinterpret_cast<const uint64_t *
>(EltPtr);
3189 "Accessor can only be used when element is a 'float'");
3190 return *
reinterpret_cast<const float *
>(getElementPointer(Elt));
3195 "Accessor can only be used when element is a 'float'");
3196 return *
reinterpret_cast<const double *
>(getElementPointer(Elt));
3218 if (Str.back() != 0)
return false;
3221 return !Str.drop_back().contains(0);
3224bool ConstantDataVector::isSplatData()
const {
3239 IsSplat = isSplatData();
3264 Value *Replacement =
nullptr;
3268#define HANDLE_CONSTANT(Name) \
3269 case Value::Name##Val: \
3270 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \
3272#include "llvm/IR/Value.def"
3281 assert(Replacement !=
this &&
"I didn't contain From!");
3291 assert(isa<Constant>(To) &&
"Cannot make Constant refer to non-constant!");
3292 Constant *ToC = cast<Constant>(To);
3299 unsigned NumUpdated = 0;
3302 bool AllSame =
true;
3304 unsigned OperandNo = 0;
3306 Constant *Val = cast<Constant>(O->get());
3308 OperandNo = (O - OperandList);
3313 AllSame &= Val == ToC;
3319 if (AllSame && isa<UndefValue>(ToC))
3328 Values,
this,
From, ToC, NumUpdated, OperandNo);
3332 assert(isa<Constant>(To) &&
"Cannot make Constant refer to non-constant!");
3333 Constant *ToC = cast<Constant>(To);
3342 unsigned NumUpdated = 0;
3343 bool AllSame =
true;
3344 unsigned OperandNo = 0;
3346 Constant *Val = cast<Constant>(
O->get());
3348 OperandNo = (
O - OperandList);
3353 AllSame &= Val == ToC;
3359 if (AllSame && isa<UndefValue>(ToC))
3364 Values,
this,
From, ToC, NumUpdated, OperandNo);
3368 assert(isa<Constant>(To) &&
"Cannot make Constant refer to non-constant!");
3369 Constant *ToC = cast<Constant>(To);
3373 unsigned NumUpdated = 0;
3374 unsigned OperandNo = 0;
3390 Values,
this,
From, ToC, NumUpdated, OperandNo);
3394 assert(isa<Constant>(ToV) &&
"Cannot make Constant refer to non-constant!");
3395 Constant *To = cast<Constant>(ToV);
3398 unsigned NumUpdated = 0;
3399 unsigned OperandNo = 0;
3409 assert(NumUpdated &&
"I didn't contain From!");
3416 NewOps,
this,
From, To, NumUpdated, OperandNo);
3424 case Instruction::Trunc:
3425 case Instruction::PtrToInt:
3426 case Instruction::IntToPtr:
3427 case Instruction::BitCast:
3428 case Instruction::AddrSpaceCast:
3431 case Instruction::InsertElement:
3433 case Instruction::ExtractElement:
3435 case Instruction::ShuffleVector:
3438 case Instruction::GetElementPtr: {
3439 const auto *GO = cast<GEPOperator>(
this);
3441 Ops.
slice(1), GO->getNoWrapFlags(),
"");
3447 if (isa<OverflowingBinaryOperator>(BO)) {
3453 if (isa<PossiblyExactOperator>(BO))
This file defines the StringMap class.
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
BlockVerifier::State From
static bool isAllZeros(StringRef Arr)
Return true if the array is empty or all zeros.
static cl::opt< bool > UseConstantIntForScalableSplat("use-constant-int-for-scalable-splat", cl::init(false), cl::Hidden, cl::desc("Use ConstantInt's native scalable vector splat support."))
static cl::opt< bool > UseConstantIntForFixedLengthSplat("use-constant-int-for-fixed-length-splat", cl::init(false), cl::Hidden, cl::desc("Use ConstantInt's native fixed-length vector splat support."))
static Constant * getFPSequenceIfElementsMatch(ArrayRef< Constant * > V)
static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt)
static Constant * getIntSequenceIfElementsMatch(ArrayRef< Constant * > V)
static Constant * getSequenceIfElementsMatch(Constant *C, ArrayRef< Constant * > V)
static bool ConstHasGlobalValuePredicate(const Constant *C, bool(*Predicate)(const GlobalValue *))
Check if C contains a GlobalValue for which Predicate is true.
static cl::opt< bool > UseConstantFPForScalableSplat("use-constant-fp-for-scalable-splat", cl::init(false), cl::Hidden, cl::desc("Use ConstantFP's native scalable vector splat support."))
static bool constantIsDead(const Constant *C, bool RemoveDeadUsers)
Return true if the specified constantexpr is dead.
static bool containsUndefinedElement(const Constant *C, function_ref< bool(const Constant *)> HasFn)
static Constant * getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty, bool OnlyIfReduced=false)
This is a utility function to handle folding of casts and lookup of the cast in the ExprConstants map...
static cl::opt< bool > UseConstantFPForFixedLengthSplat("use-constant-fp-for-fixed-length-splat", cl::init(false), cl::Hidden, cl::desc("Use ConstantFP's native fixed-length vector splat support."))
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
Looks at all the uses of the given value Returns the Liveness deduced from the uses of this value Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses If the result is MaybeLiveUses might be modified but its content should be ignored(since it might not be complete). DeadArgumentEliminationPass
static Function * getFunction(Constant *C)
static bool isSigned(unsigned int Opcode)
static char getTypeID(Type *Ty)
This file contains the declaration of the GlobalIFunc class, which represents a single indirect funct...
static bool isUndef(ArrayRef< int > Mask)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Merge contiguous icmps into a memcmp
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
static unsigned getAddressSpace(const Value *V, unsigned MaxLookup)
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static unsigned getNumElements(Type *Ty)
This file defines the SmallVector class.
static SymbolRef::Type getType(const Symbol *Sym)
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
static APFloat getSNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for SNaN values.
opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
bool bitwiseIsEqual(const APFloat &RHS) const
static APFloat getAllOnesValue(const fltSemantics &Semantics)
Returns a float which is bitcasted from an all one value int.
const fltSemantics & getSemantics() const
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
unsigned logBase2() const
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Class to represent array types.
static ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
Type * getElementType() const
LLVM Basic Block Representation.
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches,...
const Function * getParent() const
Return the enclosing method, or null if none.
BinaryConstantExpr - This class is private to Constants.cpp, and is used behind the scenes to impleme...
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
The address of a basic block.
static BlockAddress * lookup(const BasicBlock *BB)
Lookup an existing BlockAddress constant for the given BasicBlock.
Function * getFunction() const
BasicBlock * getBasicBlock() const
static BlockAddress * get(Function *F, BasicBlock *BB)
Return a BlockAddress for the specified function and basic block.
CastConstantExpr - This class is private to Constants.cpp, and is used behind the scenes to implement...
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
static bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
All zero aggregate value.
ElementCount getElementCount() const
Return the number of elements in the array, vector, or struct.
Constant * getSequentialElement() const
If this CAZ has array or vector type, return a zero with the right element type.
Constant * getElementValue(Constant *C) const
Return a zero of the right value for the specified GEP index if we can, otherwise return null (e....
Constant * getStructElement(unsigned Elt) const
If this CAZ has struct type, return a zero with the right element type for the specified element.
static ConstantAggregateZero * get(Type *Ty)
Base class for aggregate constants (with operands).
ConstantAggregate(Type *T, ValueTy VT, ArrayRef< Constant * > V, AllocInfo AllocInfo)
ConstantArray - Constant Array Declarations.
static Constant * get(ArrayType *T, ArrayRef< Constant * > V)
ArrayType * getType() const
Specialize the getType() method to always return an ArrayType, which reduces the amount of casting ne...
An array constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
static Constant * getString(LLVMContext &Context, StringRef Initializer, bool AddNull=true)
This method constructs a CDS and initializes it with a text string.
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
static Constant * getFP(Type *ElementType, ArrayRef< uint16_t > Elts)
getFP() constructors - Return a constant of array type with a float element type taken from argument ...
APInt getElementAsAPInt(unsigned i) const
If this is a sequential container of integers (of any size), return the specified element as an APInt...
double getElementAsDouble(unsigned i) const
If this is an sequential container of doubles, return the specified element as a double.
StringRef getAsString() const
If this array is isString(), then this method returns the array as a StringRef.
uint64_t getElementByteSize() const
Return the size (in bytes) of each element in the array/vector.
float getElementAsFloat(unsigned i) const
If this is an sequential container of floats, return the specified element as a float.
bool isString(unsigned CharSize=8) const
This method returns true if this is an array of CharSize integers.
uint64_t getElementAsInteger(unsigned i) const
If this is a sequential container of integers (of any size), return the specified element in the low ...
static Constant * getImpl(StringRef Bytes, Type *Ty)
This is the underlying implementation of all of the ConstantDataSequential::get methods.
unsigned getNumElements() const
Return the number of elements in the array or vector.
Constant * getElementAsConstant(unsigned i) const
Return a Constant for a specified index's element.
Type * getElementType() const
Return the element type of the array/vector.
bool isCString() const
This method returns true if the array "isString", ends with a null byte, and does not contains any ot...
APFloat getElementAsAPFloat(unsigned i) const
If this is a sequential container of floating point type, return the specified element as an APFloat.
StringRef getRawDataValues() const
Return the raw, underlying, bytes of this data.
static bool isElementTypeCompatible(Type *Ty)
Return true if a ConstantDataSequential can be formed with a vector or array of the specified element...
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
Constant * getSplatValue() const
If this is a splat constant, meaning that all of the elements have the same value,...
static Constant * getSplat(unsigned NumElts, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
bool isSplat() const
Returns true if this is a splat constant, meaning that all elements have the same value.
static Constant * get(LLVMContext &Context, ArrayRef< uint8_t > Elts)
get() constructors - Return a constant with vector type with an element count and element type matchi...
static Constant * getFP(Type *ElementType, ArrayRef< uint16_t > Elts)
getFP() constructors - Return a constant of vector type with a float element type taken from argument...
Base class for constants with no operands.
A constant value that is initialized with an expression using other constant values.
static Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static Constant * getAlignOf(Type *Ty)
getAlignOf constant expr - computes the alignment of a type in a target independent way (Note: the re...
static Constant * getPointerCast(Constant *C, Type *Ty)
Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant expression.
static Constant * getTruncOrBitCast(Constant *C, Type *Ty)
static Constant * getPointerBitCastOrAddrSpaceCast(Constant *C, Type *Ty)
Create a BitCast or AddrSpaceCast for a pointer type depending on the address space.
bool isCast() const
Return true if this is a convert constant expression.
static Constant * getIdentity(Instruction *I, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary or intrinsic Instruction.
static bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
Constant * getShuffleMaskForBitcode() const
Assert that this is a shufflevector and return the mask.
static Constant * getBinOpAbsorber(unsigned Opcode, Type *Ty, bool AllowLHSConstant=false)
Return the absorbing element for the given binary operation, i.e.
static Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static Constant * getNot(Constant *C)
const char * getOpcodeName() const
Return a string representation for an opcode.
static Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static Constant * getPtrToInt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static Constant * getSizeOf(Type *Ty)
getSizeOf constant expr - computes the (alloc) size of a type (in address-units, not bits) in a targe...
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
static Constant * getIntrinsicIdentity(Intrinsic::ID, Type *Ty)
static Constant * getXor(Constant *C1, Constant *C2)
static Constant * getMul(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
ArrayRef< int > getShuffleMask() const
Assert that this is a shufflevector and return the mask.
static bool isSupportedBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is supported.
static Constant * getAddrSpaceCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
unsigned getOpcode() const
Return the opcode at the root of this constant expression.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
static Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static bool isSupportedCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is supported.
static Constant * getNeg(Constant *C, bool HasNSW=false)
static Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static Constant * getExactLogBase2(Constant *C)
If C is a scalar/fixed width vector of known powers of 2, then this function returns a new scalar/fix...
Constant * getWithOperands(ArrayRef< Constant * > Ops) const
This returns the current constant expression with the operands replaced with the specified values.
Instruction * getAsInstruction() const
Returns an Instruction which implements the same operation as this ConstantExpr.
ConstantFP - Floating Point Values [float, double].
static Constant * getSNaN(Type *Ty, bool Negative=false, APInt *Payload=nullptr)
static Constant * getInfinity(Type *Ty, bool Negative=false)
static Constant * getZero(Type *Ty, bool Negative=false)
static Constant * getNaN(Type *Ty, bool Negative=false, uint64_t Payload=0)
bool isExactlyValue(const APFloat &V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
static bool isValueValidForType(Type *Ty, const APFloat &V)
Return true if Ty is big enough to represent V.
static Constant * getQNaN(Type *Ty, bool Negative=false, APInt *Payload=nullptr)
This is the shared class of boolean and integer constants.
static bool isValueValidForType(Type *Ty, uint64_t V)
This static method returns true if the type Ty is big enough to represent the value V.
static ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getFalse(LLVMContext &Context)
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
static ConstantInt * getBool(LLVMContext &Context, bool V)
A constant pointer value that points to null.
static ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
PointerType * getType() const
Specialize the getType() method to always return an PointerType, which reduces the amount of casting ...
A signed pointer, in the ptrauth sense.
Constant * getAddrDiscriminator() const
The address discriminator if any, or the null constant.
bool isKnownCompatibleWith(const Value *Key, const Value *Discriminator, const DataLayout &DL) const
Check whether an authentication operation with key Key and (possibly blended) discriminator Discrimin...
bool hasSpecialAddressDiscriminator(uint64_t Value) const
Whether the address uses a special address discriminator.
static ConstantPtrAuth * get(Constant *Ptr, ConstantInt *Key, ConstantInt *Disc, Constant *AddrDisc)
Return a pointer signed with the specified parameters.
ConstantPtrAuth * getWithSameSchema(Constant *Pointer) const
Produce a new ptrauth expression signing the given value using the same schema as is stored in one.
ConstantInt * getKey() const
The Key ID, an i32 constant.
bool hasAddressDiscriminator() const
Whether there is any non-null address discriminator.
ConstantInt * getDiscriminator() const
The integer discriminator, an i64 constant, or 0.
This class represents a range of values.
ConstantRange unionWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the union of this range with another range.
static Constant * get(StructType *T, ArrayRef< Constant * > V)
static StructType * getTypeForElements(ArrayRef< Constant * > V, bool Packed=false)
Return an anonymous struct type to use for a constant with the specified set of elements.
StructType * getType() const
Specialization - reduce amount of casting.
A constant target extension type default initializer.
static ConstantTargetNone * get(TargetExtType *T)
Static factory methods - Return objects of the specified value.
TargetExtType * getType() const
Specialize the getType() method to always return an TargetExtType, which reduces the amount of castin...
A constant token which is empty.
static ConstantTokenNone * get(LLVMContext &Context)
Return the ConstantTokenNone.
ConstantClass * getOrCreate(TypeClass *Ty, ValType V)
Return the specified constant from the map, creating it if necessary.
void remove(ConstantClass *CP)
Remove this constant from the map.
ConstantClass * replaceOperandsInPlace(ArrayRef< Constant * > Operands, ConstantClass *CP, Value *From, Constant *To, unsigned NumUpdated=0, unsigned OperandNo=~0u)
Constant Vector Declarations.
FixedVectorType * getType() const
Specialize the getType() method to always return a FixedVectorType, which reduces the amount of casti...
Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
bool hasExactInverseFP() const
Return true if this scalar has an exact multiplicative inverse or this vector has an exact multiplica...
static Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
bool containsUndefElement() const
Return true if this is a vector constant that includes any strictly undef (not poison) elements.
static Constant * mergeUndefsWith(Constant *C, Constant *Other)
Merges undefs of a Constant with another Constant, along with the undefs already present.
ConstantRange toConstantRange() const
Convert constant to an approximate constant range.
static Constant * getAllOnesValue(Type *Ty)
bool hasZeroLiveUses() const
Return true if the constant has no live uses.
bool isOneValue() const
Returns true if the value is one.
bool isManifestConstant() const
Return true if a constant is ConstantData or a ConstantAggregate or ConstantExpr that contain only Co...
bool isNegativeZeroValue() const
Return true if the value is what would be returned by getZeroValueForNegation.
bool isAllOnesValue() const
Return true if this is the value that would be returned by getAllOnesValue.
bool hasOneLiveUse() const
Return true if the constant has exactly one live use.
bool needsRelocation() const
This method classifies the entry according to whether or not it may generate a relocation entry (eith...
bool isDLLImportDependent() const
Return true if the value is dependent on a dllimport variable.
const APInt & getUniqueInteger() const
If C is a constant integer then return its value, otherwise C must be a vector of constant integers,...
bool containsConstantExpression() const
Return true if this is a fixed width vector constant that includes any constant expressions.
bool isFiniteNonZeroFP() const
Return true if this is a finite and non-zero floating-point scalar constant or a fixed width vector c...
void removeDeadConstantUsers() const
If there are any dead constant users dangling off of this constant, remove them.
bool isNormalFP() const
Return true if this is a normal (as opposed to denormal, infinity, nan, or zero) floating-point scala...
bool needsDynamicRelocation() const
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
bool isNaN() const
Return true if this is a floating-point NaN constant or a vector floating-point constant with all NaN...
bool isMinSignedValue() const
Return true if the value is the smallest signed value.
bool isConstantUsed() const
Return true if the constant has users other than constant expressions and other dangling things.
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
bool isThreadDependent() const
Return true if the value can vary between threads.
bool isZeroValue() const
Return true if the value is negative zero or null value.
void destroyConstant()
Called if some element of this constant is no longer valid.
bool isNotMinSignedValue() const
Return true if the value is not the smallest signed value, or, for vectors, does not contain smallest...
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
bool isNotOneValue() const
Return true if the value is not the one value, or, for vectors, does not contain one value elements.
bool isElementWiseEqual(Value *Y) const
Return true if this constant and a constant 'Y' are element-wise equal.
bool containsUndefOrPoisonElement() const
Return true if this is a vector constant that includes any undef or poison elements.
bool containsPoisonElement() const
Return true if this is a vector constant that includes any poison elements.
void handleOperandChange(Value *, Value *)
This method is a special form of User::replaceUsesOfWith (which does not work on constants) that does...
Wrapper for a function that represents a value that functionally represents the original function.
GlobalValue * getGlobalValue() const
static DSOLocalEquivalent * get(GlobalValue *GV)
Return a DSOLocalEquivalent for the specified global value.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
static constexpr ElementCount getFixed(ScalarTy MinVal)
static FixedVectorType * get(Type *ElementType, unsigned NumElts)
Represents flags for the getelementptr instruction/expression.
GetElementPtrConstantExpr - This class is private to Constants.cpp, and is used behind the scenes to ...
std::optional< ConstantRange > getInRange() const
Type * getResultElementType() const
Type * getSourceElementType() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static Type * getGEPReturnType(Value *Ptr, ArrayRef< Value * > IdxList)
Returns the pointer type returned by the GEP instruction, which may be a vector of pointers.
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
PointerType * getType() const
Global values are always pointers.
InsertElementConstantExpr - This class is private to Constants.cpp, and is used behind the scenes to ...
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
const char * getOpcodeName() const
void setIsExact(bool b=true)
Set or clear the exact flag on this instruction, which must be an operator which supports this flag.
Class to represent integer types.
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
unsigned getBitWidth() const
Get the number of bits in this IntegerType.
A wrapper class for inspecting calls to intrinsic functions.
DenseMap< unsigned, std::unique_ptr< ConstantInt > > IntOneConstants
DenseMap< unsigned, std::unique_ptr< ConstantInt > > IntZeroConstants
DenseMap< APFloat, std::unique_ptr< ConstantFP > > FPConstants
DenseMap< PointerType *, std::unique_ptr< ConstantPointerNull > > CPNConstants
DenseMap< Type *, std::unique_ptr< ConstantAggregateZero > > CAZConstants
ConstantInt * TheFalseVal
DenseMap< Type *, std::unique_ptr< PoisonValue > > PVConstants
DenseMap< std::pair< const Function *, const BasicBlock * >, BlockAddress * > BlockAddresses
DenseMap< APInt, std::unique_ptr< ConstantInt > > IntConstants
std::unique_ptr< ConstantTokenNone > TheNoneToken
VectorConstantsTy VectorConstants
DenseMap< const GlobalValue *, NoCFIValue * > NoCFIValues
DenseMap< Type *, std::unique_ptr< UndefValue > > UVConstants
StringMap< std::unique_ptr< ConstantDataSequential > > CDSConstants
StructConstantsTy StructConstants
ConstantUniqueMap< ConstantPtrAuth > ConstantPtrAuths
DenseMap< TargetExtType *, std::unique_ptr< ConstantTargetNone > > CTNConstants
ConstantUniqueMap< ConstantExpr > ExprConstants
DenseMap< std::pair< ElementCount, APInt >, std::unique_ptr< ConstantInt > > IntSplatConstants
ArrayConstantsTy ArrayConstants
DenseMap< const GlobalValue *, DSOLocalEquivalent * > DSOLocalEquivalents
DenseMap< std::pair< ElementCount, APFloat >, std::unique_ptr< ConstantFP > > FPSplatConstants
This is an important class for using LLVM in a threaded context.
LLVMContextImpl *const pImpl
Wrapper for a value that won't be replaced with a CFI jump table pointer in LowerTypeTestsModule.
static NoCFIValue * get(GlobalValue *GV)
Return a NoCFIValue for the specified function.
PointerType * getType() const
NoCFIValue is always a pointer.
GlobalValue * getGlobalValue() const
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
In order to facilitate speculative execution, many instructions do not invoke immediate undefined beh...
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
PoisonValue * getStructElement(unsigned Elt) const
If this poison has struct type, return a poison with the right element type for the specified element...
PoisonValue * getSequentialElement() const
If this poison has array or vector type, return a poison with the right element type.
PoisonValue * getElementValue(Constant *C) const
Return an poison of the right value for the specified GEP index if we can, otherwise return null (e....
ShuffleVectorConstantExpr - This class is private to Constants.cpp, and is used behind the scenes to ...
This instruction constructs a fixed permutation of two input vectors.
static bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask)
Return true if a shufflevector instruction can be formed with the specified operands.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringMap - This is an unconventional map that is specialized for handling keys that are "strings",...
iterator find(StringRef Key)
StringRef - Represent a constant reference to a string, i.e.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Class to represent struct types.
static StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Class to represent target extensions types, which are generally unintrospectable from target-independ...
bool hasProperty(Property Prop) const
Returns true if the target extension type contains the given property.
@ HasZeroInit
zeroinitializer is valid for this target extension type.
The instances of the Type class are immutable: once they are created, they are never changed.
unsigned getIntegerBitWidth() const
static Type * getDoubleTy(LLVMContext &C)
const fltSemantics & getFltSemantics() const
bool isVectorTy() const
True if this is an instance of VectorType.
static Type * getFloatingPointTy(LLVMContext &C, const fltSemantics &S)
bool isArrayTy() const
True if this is an instance of ArrayType.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
static IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
bool isBFloatTy() const
Return true if this is 'bfloat', a 16-bit bfloat type.
unsigned getStructNumElements() const
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
@ HalfTyID
16-bit floating point type
@ TargetExtTyID
Target extension type.
@ ScalableVectorTyID
Scalable SIMD vector type.
@ FloatTyID
32-bit floating point type
@ IntegerTyID
Arbitrary bit width integers.
@ FixedVectorTyID
Fixed width SIMD vector type.
@ BFloatTyID
16-bit floating point type (7-bit significand)
@ DoubleTyID
64-bit floating point type
@ X86_FP80TyID
80-bit floating point type (X87)
@ PPC_FP128TyID
128-bit floating point type (two 64-bits, PowerPC)
@ FP128TyID
128-bit floating point type (112-bit significand)
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isStructTy() const
True if this is an instance of StructType.
bool isFirstClassType() const
Return true if the type is "first class", meaning it is a valid type for a Value.
static IntegerType * getInt16Ty(LLVMContext &C)
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
static IntegerType * getInt8Ty(LLVMContext &C)
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
static IntegerType * getInt32Ty(LLVMContext &C)
static IntegerType * getInt64Ty(LLVMContext &C)
static Type * getFloatTy(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
TypeID getTypeID() const
Return the type id for the type.
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
'undef' values are things that do not have specified contents.
UndefValue * getElementValue(Constant *C) const
Return an undef of the right value for the specified GEP index if we can, otherwise return null (e....
UndefValue * getStructElement(unsigned Elt) const
If this undef has struct type, return a undef with the right element type for the specified element.
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
unsigned getNumElements() const
Return the number of elements in the array, vector, or struct.
UndefValue * getSequentialElement() const
If this Undef has array or vector type, return a undef with the right element type.
A Use represents the edge between a Value definition and its users.
const Use * getOperandList() const
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
iterator_range< value_op_iterator > operand_values()
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
user_iterator_impl< const User > const_user_iterator
user_iterator user_begin()
unsigned char SubclassOptionalData
Hold subclass data that can be dropped.
const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr) const
Accumulate the constant offset this value has compared to a base pointer.
const Value * stripPointerCastsAndAliases() const
Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
const Value * stripInBoundsConstantOffsets() const
Strip off pointer casts and all-constant inbounds GEPs.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
unsigned getValueID() const
Return an ID for the concrete type of this object.
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVMContext & getContext() const
All values hold a context through their type.
iterator_range< use_iterator > uses()
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
ValueTy
Concrete subclass of this.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static VectorType * getInteger(VectorType *VTy)
This static method gets a VectorType with the same number of elements as the input type,...
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
An efficient, type-erasing, non-owning reference to a callable.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_Undef()
Match an arbitrary undef constant.
initializer< Ty > init(const Ty &Val)
NodeAddr< FuncNode * > Func
This is an optimization pass for GlobalISel generic memory operations.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
gep_type_iterator gep_type_end(const User *GEP)
void deleteConstant(Constant *C)
Constant * ConstantFoldGetElementPtr(Type *Ty, Constant *C, std::optional< ConstantRange > InRange, ArrayRef< Value * > Idxs)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
Constant * ConstantFoldInsertElementInstruction(Constant *Val, Constant *Elt, Constant *Idx)
Attempt to constant fold an insertelement instruction with the specified operands and indices.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Constant * ConstantFoldExtractElementInstruction(Constant *Val, Constant *Idx)
Attempt to constant fold an extractelement instruction with the specified operands and indices.
bool isIntN(unsigned N, int64_t x)
Checks if an signed integer fits into the given (dynamic) bit width.
OutputIt copy(R &&Range, OutputIt Out)
constexpr unsigned BitWidth
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
gep_type_iterator gep_type_begin(const User *GEP)
Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
Constant * ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2, ArrayRef< int > Mask)
Attempt to constant fold a shufflevector instruction with the specified operands and mask.
Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
Implement std::hash so that hash_code can be used in STL containers.
static const fltSemantics & IEEEsingle() LLVM_READNONE
static constexpr roundingMode rmNearestTiesToEven
static const fltSemantics & PPCDoubleDouble() LLVM_READNONE
static const fltSemantics & x87DoubleExtended() LLVM_READNONE
static const fltSemantics & IEEEquad() LLVM_READNONE
static const fltSemantics & IEEEdouble() LLVM_READNONE
static const fltSemantics & IEEEhalf() LLVM_READNONE
static const fltSemantics & BFloat() LLVM_READNONE
Summary of memprof metadata on allocations.
Information about how a User object was allocated, to be passed into the User constructor.