LLVM 20.0.0git
HexagonCommonGEP.cpp
Go to the documentation of this file.
1//===- HexagonCommonGEP.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/ADT/ArrayRef.h"
10#include "llvm/ADT/FoldingSet.h"
12#include "llvm/ADT/STLExtras.h"
13#include "llvm/ADT/SetVector.h"
15#include "llvm/ADT/StringRef.h"
18#include "llvm/IR/BasicBlock.h"
19#include "llvm/IR/Constant.h"
20#include "llvm/IR/Constants.h"
22#include "llvm/IR/Dominators.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/Instruction.h"
26#include "llvm/IR/Type.h"
27#include "llvm/IR/Use.h"
28#include "llvm/IR/User.h"
29#include "llvm/IR/Value.h"
30#include "llvm/IR/Verifier.h"
32#include "llvm/Pass.h"
37#include "llvm/Support/Debug.h"
40#include <cassert>
41#include <cstddef>
42#include <cstdint>
43#include <iterator>
44#include <map>
45#include <set>
46#include <utility>
47#include <vector>
48
49#define DEBUG_TYPE "commgep"
50
51using namespace llvm;
52
53static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true),
55
56static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden);
57
58static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true),
60
61namespace llvm {
62
64
65} // end namespace llvm
66
67namespace {
68
69 struct GepNode;
70 using NodeSet = std::set<GepNode *>;
71 using NodeToValueMap = std::map<GepNode *, Value *>;
72 using NodeVect = std::vector<GepNode *>;
73 using NodeChildrenMap = std::map<GepNode *, NodeVect>;
74 using UseSet = SetVector<Use *>;
75 using NodeToUsesMap = std::map<GepNode *, UseSet>;
76
77 // Numbering map for gep nodes. Used to keep track of ordering for
78 // gep nodes.
79 struct NodeOrdering {
80 NodeOrdering() = default;
81
82 void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); }
83 void clear() { Map.clear(); }
84
85 bool operator()(const GepNode *N1, const GepNode *N2) const {
86 auto F1 = Map.find(N1), F2 = Map.find(N2);
87 assert(F1 != Map.end() && F2 != Map.end());
88 return F1->second < F2->second;
89 }
90
91 private:
92 std::map<const GepNode *, unsigned> Map;
93 unsigned LastNum = 0;
94 };
95
96 class HexagonCommonGEP : public FunctionPass {
97 public:
98 static char ID;
99
100 HexagonCommonGEP() : FunctionPass(ID) {
102 }
103
104 bool runOnFunction(Function &F) override;
105 StringRef getPassName() const override { return "Hexagon Common GEP"; }
106
107 void getAnalysisUsage(AnalysisUsage &AU) const override {
115 }
116
117 private:
118 using ValueToNodeMap = std::map<Value *, GepNode *>;
119 using ValueVect = std::vector<Value *>;
120 using NodeToValuesMap = std::map<GepNode *, ValueVect>;
121
122 void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order);
123 bool isHandledGepForm(GetElementPtrInst *GepI);
124 void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM);
125 void collect();
126 void common();
127
128 BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM,
129 NodeToValueMap &Loc);
130 BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM,
131 NodeToValueMap &Loc);
132 bool isInvariantIn(Value *Val, Loop *L);
133 bool isInvariantIn(GepNode *Node, Loop *L);
134 bool isInMainPath(BasicBlock *B, Loop *L);
135 BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM,
136 NodeToValueMap &Loc);
137 void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc);
138 void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM,
139 NodeToValueMap &Loc);
140 void computeNodePlacement(NodeToValueMap &Loc);
141
142 Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
143 BasicBlock *LocB);
144 void getAllUsersForNode(GepNode *Node, ValueVect &Values,
145 NodeChildrenMap &NCM);
146 void materialize(NodeToValueMap &Loc);
147
148 void removeDeadCode();
149
150 NodeVect Nodes;
151 NodeToUsesMap Uses;
152 NodeOrdering NodeOrder; // Node ordering, for deterministic behavior.
154 LLVMContext *Ctx;
155 LoopInfo *LI;
156 DominatorTree *DT;
158 Function *Fn;
159 };
160
161} // end anonymous namespace
162
163char HexagonCommonGEP::ID = 0;
164
165INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
166 false, false)
170INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
172
173namespace {
174
175 struct GepNode {
176 enum {
177 None = 0,
178 Root = 0x01,
179 Internal = 0x02,
180 Used = 0x04,
181 InBounds = 0x08,
182 Pointer = 0x10, // See note below.
183 };
184 // Note: GEP indices generally traverse nested types, and so a GepNode
185 // (representing a single index) can be associated with some composite
186 // type. The exception is the GEP input, which is a pointer, and not
187 // a composite type (at least not in the sense of having sub-types).
188 // Also, the corresponding index plays a different role as well: it is
189 // simply added to the input pointer. Since pointer types are becoming
190 // opaque (i.e. are no longer going to include the pointee type), the
191 // two pieces of information (1) the fact that it's a pointer, and
192 // (2) the pointee type, need to be stored separately. The pointee type
193 // will be stored in the PTy member, while the fact that the node
194 // operates on a pointer will be reflected by the flag "Pointer".
195
196 uint32_t Flags = 0;
197 union {
200 };
201 Value *Idx = nullptr;
202 Type *PTy = nullptr; // Type indexed by this node. For pointer nodes
203 // this is the "pointee" type, and indexing a
204 // pointer does not change the type.
205
206 GepNode() : Parent(nullptr) {}
207 GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) {
208 if (Flags & Root)
209 BaseVal = N->BaseVal;
210 else
211 Parent = N->Parent;
212 }
213
214 friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN);
215 };
216
218 OS << "{ {";
219 bool Comma = false;
220 if (GN.Flags & GepNode::Root) {
221 OS << "root";
222 Comma = true;
223 }
224 if (GN.Flags & GepNode::Internal) {
225 if (Comma)
226 OS << ',';
227 OS << "internal";
228 Comma = true;
229 }
230 if (GN.Flags & GepNode::Used) {
231 if (Comma)
232 OS << ',';
233 OS << "used";
234 }
235 if (GN.Flags & GepNode::InBounds) {
236 if (Comma)
237 OS << ',';
238 OS << "inbounds";
239 }
240 if (GN.Flags & GepNode::Pointer) {
241 if (Comma)
242 OS << ',';
243 OS << "pointer";
244 }
245 OS << "} ";
246 if (GN.Flags & GepNode::Root)
247 OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')';
248 else
249 OS << "Parent:" << GN.Parent;
250
251 OS << " Idx:";
252 if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx))
253 OS << CI->getValue().getSExtValue();
254 else if (GN.Idx->hasName())
255 OS << GN.Idx->getName();
256 else
257 OS << "<anon> =" << *GN.Idx;
258
259 OS << " PTy:";
260 if (GN.PTy->isStructTy()) {
261 StructType *STy = cast<StructType>(GN.PTy);
262 if (!STy->isLiteral())
263 OS << GN.PTy->getStructName();
264 else
265 OS << "<anon-struct>:" << *STy;
266 }
267 else
268 OS << *GN.PTy;
269 OS << " }";
270 return OS;
271 }
272
273 template <typename NodeContainer>
274 void dump_node_container(raw_ostream &OS, const NodeContainer &S) {
275 using const_iterator = typename NodeContainer::const_iterator;
276
277 for (const_iterator I = S.begin(), E = S.end(); I != E; ++I)
278 OS << *I << ' ' << **I << '\n';
279 }
280
282 const NodeVect &S) LLVM_ATTRIBUTE_UNUSED;
283 raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) {
285 return OS;
286 }
287
289 const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED;
290 raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){
291 for (const auto &I : M) {
292 const UseSet &Us = I.second;
293 OS << I.first << " -> #" << Us.size() << '{';
294 for (const Use *U : Us) {
295 User *R = U->getUser();
296 if (R->hasName())
297 OS << ' ' << R->getName();
298 else
299 OS << " <?>(" << *R << ')';
300 }
301 OS << " }\n";
302 }
303 return OS;
304 }
305
306 struct in_set {
307 in_set(const NodeSet &S) : NS(S) {}
308
309 bool operator() (GepNode *N) const {
310 return NS.find(N) != NS.end();
311 }
312
313 private:
314 const NodeSet &NS;
315 };
316
317} // end anonymous namespace
318
319inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) {
320 return A.Allocate();
321}
322
323void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root,
324 ValueVect &Order) {
325 // Compute block ordering for a typical DT-based traversal of the flow
326 // graph: "before visiting a block, all of its dominators must have been
327 // visited".
328
329 Order.push_back(Root);
330 for (auto *DTN : children<DomTreeNode*>(DT->getNode(Root)))
331 getBlockTraversalOrder(DTN->getBlock(), Order);
332}
333
334bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) {
335 // No vector GEPs.
336 if (!GepI->getType()->isPointerTy())
337 return false;
338 // No GEPs without any indices. (Is this possible?)
339 if (GepI->idx_begin() == GepI->idx_end())
340 return false;
341 return true;
342}
343
344void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI,
345 ValueToNodeMap &NM) {
346 LLVM_DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n');
347 GepNode *N = new (*Mem) GepNode;
348 Value *PtrOp = GepI->getPointerOperand();
349 uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0;
350 ValueToNodeMap::iterator F = NM.find(PtrOp);
351 if (F == NM.end()) {
352 N->BaseVal = PtrOp;
353 N->Flags |= GepNode::Root | InBounds;
354 } else {
355 // If PtrOp was a GEP instruction, it must have already been processed.
356 // The ValueToNodeMap entry for it is the last gep node in the generated
357 // chain. Link to it here.
358 N->Parent = F->second;
359 }
360 N->PTy = GepI->getSourceElementType();
361 N->Flags |= GepNode::Pointer;
362 N->Idx = *GepI->idx_begin();
363
364 // Collect the list of users of this GEP instruction. Will add it to the
365 // last node created for it.
366 UseSet Us;
367 for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end();
368 UI != UE; ++UI) {
369 // Check if this gep is used by anything other than other geps that
370 // we will process.
371 if (isa<GetElementPtrInst>(*UI)) {
372 GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI);
373 if (isHandledGepForm(UserG))
374 continue;
375 }
376 Us.insert(&UI.getUse());
377 }
378 Nodes.push_back(N);
379 NodeOrder.insert(N);
380
381 // Skip the first index operand, since it was already handled above. This
382 // dereferences the pointer operand.
383 GepNode *PN = N;
384 Type *PtrTy = GepI->getSourceElementType();
385 for (Use &U : llvm::drop_begin(GepI->indices())) {
386 Value *Op = U;
387 GepNode *Nx = new (*Mem) GepNode;
388 Nx->Parent = PN; // Link Nx to the previous node.
389 Nx->Flags |= GepNode::Internal | InBounds;
390 Nx->PTy = PtrTy;
391 Nx->Idx = Op;
392 Nodes.push_back(Nx);
393 NodeOrder.insert(Nx);
394 PN = Nx;
395
397 }
398
399 // After last node has been created, update the use information.
400 if (!Us.empty()) {
401 PN->Flags |= GepNode::Used;
402 Uses[PN].insert(Us.begin(), Us.end());
403 }
404
405 // Link the last node with the originating GEP instruction. This is to
406 // help with linking chained GEP instructions.
407 NM.insert(std::make_pair(GepI, PN));
408}
409
410void HexagonCommonGEP::collect() {
411 // Establish depth-first traversal order of the dominator tree.
412 ValueVect BO;
413 getBlockTraversalOrder(&Fn->front(), BO);
414
415 // The creation of gep nodes requires DT-traversal. When processing a GEP
416 // instruction that uses another GEP instruction as the base pointer, the
417 // gep node for the base pointer should already exist.
418 ValueToNodeMap NM;
419 for (Value *I : BO) {
420 BasicBlock *B = cast<BasicBlock>(I);
421 for (Instruction &J : *B)
422 if (auto *GepI = dyn_cast<GetElementPtrInst>(&J))
423 if (isHandledGepForm(GepI))
424 processGepInst(GepI, NM);
425 }
426
427 LLVM_DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes);
428}
429
430static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM,
431 NodeVect &Roots) {
432 for (GepNode *N : Nodes) {
433 if (N->Flags & GepNode::Root) {
434 Roots.push_back(N);
435 continue;
436 }
437 GepNode *PN = N->Parent;
438 NCM[PN].push_back(N);
439 }
440}
441
442static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM,
443 NodeSet &Nodes) {
444 NodeVect Work;
445 Work.push_back(Root);
446 Nodes.insert(Root);
447
448 while (!Work.empty()) {
449 NodeVect::iterator First = Work.begin();
450 GepNode *N = *First;
451 Work.erase(First);
452 NodeChildrenMap::iterator CF = NCM.find(N);
453 if (CF != NCM.end()) {
454 llvm::append_range(Work, CF->second);
455 Nodes.insert(CF->second.begin(), CF->second.end());
456 }
457 }
458}
459
460namespace {
461
462 using NodeSymRel = std::set<NodeSet>;
463 using NodePair = std::pair<GepNode *, GepNode *>;
464 using NodePairSet = std::set<NodePair>;
465
466} // end anonymous namespace
467
468static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) {
469 for (const NodeSet &S : Rel)
470 if (S.count(N))
471 return &S;
472 return nullptr;
473}
474
475 // Create an ordered pair of GepNode pointers. The pair will be used in
476 // determining equality. The only purpose of the ordering is to eliminate
477 // duplication due to the commutativity of equality/non-equality.
478static NodePair node_pair(GepNode *N1, GepNode *N2) {
479 uintptr_t P1 = reinterpret_cast<uintptr_t>(N1);
480 uintptr_t P2 = reinterpret_cast<uintptr_t>(N2);
481 if (P1 <= P2)
482 return std::make_pair(N1, N2);
483 return std::make_pair(N2, N1);
484}
485
486static unsigned node_hash(GepNode *N) {
487 // Include everything except flags and parent.
489 ID.AddPointer(N->Idx);
490 ID.AddPointer(N->PTy);
491 return ID.ComputeHash();
492}
493
494static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq,
495 NodePairSet &Ne) {
496 // Don't cache the result for nodes with different hashes. The hash
497 // comparison is fast enough.
498 if (node_hash(N1) != node_hash(N2))
499 return false;
500
501 NodePair NP = node_pair(N1, N2);
502 NodePairSet::iterator FEq = Eq.find(NP);
503 if (FEq != Eq.end())
504 return true;
505 NodePairSet::iterator FNe = Ne.find(NP);
506 if (FNe != Ne.end())
507 return false;
508 // Not previously compared.
509 bool Root1 = N1->Flags & GepNode::Root;
510 uint32_t CmpFlags = GepNode::Root | GepNode::Pointer;
511 bool Different = (N1->Flags & CmpFlags) != (N2->Flags & CmpFlags);
512 NodePair P = node_pair(N1, N2);
513 // If the root/pointer flags have different values, the nodes are
514 // different.
515 // If both nodes are root nodes, but their base pointers differ,
516 // they are different.
517 if (Different || (Root1 && N1->BaseVal != N2->BaseVal)) {
518 Ne.insert(P);
519 return false;
520 }
521 // Here the root/pointer flags are identical, and for root nodes the
522 // base pointers are equal, so the root nodes are equal.
523 // For non-root nodes, compare their parent nodes.
524 if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) {
525 Eq.insert(P);
526 return true;
527 }
528 return false;
529}
530
531void HexagonCommonGEP::common() {
532 // The essence of this commoning is finding gep nodes that are equal.
533 // To do this we need to compare all pairs of nodes. To save time,
534 // first, partition the set of all nodes into sets of potentially equal
535 // nodes, and then compare pairs from within each partition.
536 using NodeSetMap = std::map<unsigned, NodeSet>;
537 NodeSetMap MaybeEq;
538
539 for (GepNode *N : Nodes) {
540 unsigned H = node_hash(N);
541 MaybeEq[H].insert(N);
542 }
543
544 // Compute the equivalence relation for the gep nodes. Use two caches,
545 // one for equality and the other for non-equality.
546 NodeSymRel EqRel; // Equality relation (as set of equivalence classes).
547 NodePairSet Eq, Ne; // Caches.
548 for (auto &I : MaybeEq) {
549 NodeSet &S = I.second;
550 for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) {
551 GepNode *N = *NI;
552 // If node already has a class, then the class must have been created
553 // in a prior iteration of this loop. Since equality is transitive,
554 // nothing more will be added to that class, so skip it.
555 if (node_class(N, EqRel))
556 continue;
557
558 // Create a new class candidate now.
559 NodeSet C;
560 for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ)
561 if (node_eq(N, *NJ, Eq, Ne))
562 C.insert(*NJ);
563 // If Tmp is empty, N would be the only element in it. Don't bother
564 // creating a class for it then.
565 if (!C.empty()) {
566 C.insert(N); // Finalize the set before adding it to the relation.
567 std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C);
568 (void)Ins;
569 assert(Ins.second && "Cannot add a class");
570 }
571 }
572 }
573
574 LLVM_DEBUG({
575 dbgs() << "Gep node equality:\n";
576 for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I)
577 dbgs() << "{ " << I->first << ", " << I->second << " }\n";
578
579 dbgs() << "Gep equivalence classes:\n";
580 for (const NodeSet &S : EqRel) {
581 dbgs() << '{';
582 for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) {
583 if (J != S.begin())
584 dbgs() << ',';
585 dbgs() << ' ' << *J;
586 }
587 dbgs() << " }\n";
588 }
589 });
590
591 // Create a projection from a NodeSet to the minimal element in it.
592 using ProjMap = std::map<const NodeSet *, GepNode *>;
593 ProjMap PM;
594 for (const NodeSet &S : EqRel) {
595 GepNode *Min = *llvm::min_element(S, NodeOrder);
596 std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min));
597 (void)Ins;
598 assert(Ins.second && "Cannot add minimal element");
599
600 // Update the min element's flags, and user list.
601 uint32_t Flags = 0;
602 UseSet &MinUs = Uses[Min];
603 for (GepNode *N : S) {
604 uint32_t NF = N->Flags;
605 // If N is used, append all original values of N to the list of
606 // original values of Min.
607 if (NF & GepNode::Used)
608 MinUs.insert(Uses[N].begin(), Uses[N].end());
609 Flags |= NF;
610 }
611 if (MinUs.empty())
612 Uses.erase(Min);
613
614 // The collected flags should include all the flags from the min element.
615 assert((Min->Flags & Flags) == Min->Flags);
616 Min->Flags = Flags;
617 }
618
619 // Commoning: for each non-root gep node, replace "Parent" with the
620 // selected (minimum) node from the corresponding equivalence class.
621 // If a given parent does not have an equivalence class, leave it
622 // unchanged (it means that it's the only element in its class).
623 for (GepNode *N : Nodes) {
624 if (N->Flags & GepNode::Root)
625 continue;
626 const NodeSet *PC = node_class(N->Parent, EqRel);
627 if (!PC)
628 continue;
629 ProjMap::iterator F = PM.find(PC);
630 if (F == PM.end())
631 continue;
632 // Found a replacement, use it.
633 GepNode *Rep = F->second;
634 N->Parent = Rep;
635 }
636
637 LLVM_DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes);
638
639 // Finally, erase the nodes that are no longer used.
640 NodeSet Erase;
641 for (GepNode *N : Nodes) {
642 const NodeSet *PC = node_class(N, EqRel);
643 if (!PC)
644 continue;
645 ProjMap::iterator F = PM.find(PC);
646 if (F == PM.end())
647 continue;
648 if (N == F->second)
649 continue;
650 // Node for removal.
651 Erase.insert(N);
652 }
653 erase_if(Nodes, in_set(Erase));
654
655 LLVM_DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes);
656}
657
658template <typename T>
660 LLVM_DEBUG({
661 dbgs() << "NCD of {";
662 for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E;
663 ++I) {
664 if (!*I)
665 continue;
666 BasicBlock *B = cast<BasicBlock>(*I);
667 dbgs() << ' ' << B->getName();
668 }
669 dbgs() << " }\n";
670 });
671
672 // Allow null basic blocks in Blocks. In such cases, return nullptr.
673 typename T::iterator I = Blocks.begin(), E = Blocks.end();
674 if (I == E || !*I)
675 return nullptr;
676 BasicBlock *Dom = cast<BasicBlock>(*I);
677 while (++I != E) {
678 BasicBlock *B = cast_or_null<BasicBlock>(*I);
679 Dom = B ? DT->findNearestCommonDominator(Dom, B) : nullptr;
680 if (!Dom)
681 return nullptr;
682 }
683 LLVM_DEBUG(dbgs() << "computed:" << Dom->getName() << '\n');
684 return Dom;
685}
686
687template <typename T>
689 // If two blocks, A and B, dominate a block C, then A dominates B,
690 // or B dominates A.
691 typename T::iterator I = Blocks.begin(), E = Blocks.end();
692 // Find the first non-null block.
693 while (I != E && !*I)
694 ++I;
695 if (I == E)
696 return DT->getRoot();
697 BasicBlock *DomB = cast<BasicBlock>(*I);
698 while (++I != E) {
699 if (!*I)
700 continue;
701 BasicBlock *B = cast<BasicBlock>(*I);
702 if (DT->dominates(B, DomB))
703 continue;
704 if (!DT->dominates(DomB, B))
705 return nullptr;
706 DomB = B;
707 }
708 return DomB;
709}
710
711// Find the first use in B of any value from Values. If no such use,
712// return B->end().
713template <typename T>
715 BasicBlock::iterator FirstUse = B->end(), BEnd = B->end();
716
717 using iterator = typename T::iterator;
718
719 for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) {
720 Value *V = *I;
721 // If V is used in a PHI node, the use belongs to the incoming block,
722 // not the block with the PHI node. In the incoming block, the use
723 // would be considered as being at the end of it, so it cannot
724 // influence the position of the first use (which is assumed to be
725 // at the end to start with).
726 if (isa<PHINode>(V))
727 continue;
728 if (!isa<Instruction>(V))
729 continue;
730 Instruction *In = cast<Instruction>(V);
731 if (In->getParent() != B)
732 continue;
733 BasicBlock::iterator It = In->getIterator();
734 if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd))
735 FirstUse = It;
736 }
737 return FirstUse;
738}
739
740static bool is_empty(const BasicBlock *B) {
741 return B->empty() || (&*B->begin() == B->getTerminator());
742}
743
744BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node,
745 NodeChildrenMap &NCM, NodeToValueMap &Loc) {
746 LLVM_DEBUG(dbgs() << "Loc for node:" << Node << '\n');
747 // Recalculate the placement for Node, assuming that the locations of
748 // its children in Loc are valid.
749 // Return nullptr if there is no valid placement for Node (for example, it
750 // uses an index value that is not available at the location required
751 // to dominate all children, etc.).
752
753 // Find the nearest common dominator for:
754 // - all users, if the node is used, and
755 // - all children.
756 ValueVect Bs;
757 if (Node->Flags & GepNode::Used) {
758 // Append all blocks with uses of the original values to the
759 // block vector Bs.
760 NodeToUsesMap::iterator UF = Uses.find(Node);
761 assert(UF != Uses.end() && "Used node with no use information");
762 UseSet &Us = UF->second;
763 for (Use *U : Us) {
764 User *R = U->getUser();
765 if (!isa<Instruction>(R))
766 continue;
767 BasicBlock *PB = isa<PHINode>(R)
768 ? cast<PHINode>(R)->getIncomingBlock(*U)
769 : cast<Instruction>(R)->getParent();
770 Bs.push_back(PB);
771 }
772 }
773 // Append the location of each child.
774 NodeChildrenMap::iterator CF = NCM.find(Node);
775 if (CF != NCM.end()) {
776 NodeVect &Cs = CF->second;
777 for (GepNode *CN : Cs) {
778 NodeToValueMap::iterator LF = Loc.find(CN);
779 // If the child is only used in GEP instructions (i.e. is not used in
780 // non-GEP instructions), the nearest dominator computed for it may
781 // have been null. In such case it won't have a location available.
782 if (LF == Loc.end())
783 continue;
784 Bs.push_back(LF->second);
785 }
786 }
787
788 BasicBlock *DomB = nearest_common_dominator(DT, Bs);
789 if (!DomB)
790 return nullptr;
791 // Check if the index used by Node dominates the computed dominator.
792 Instruction *IdxI = dyn_cast<Instruction>(Node->Idx);
793 if (IdxI && !DT->dominates(IdxI->getParent(), DomB))
794 return nullptr;
795
796 // Avoid putting nodes into empty blocks.
797 while (is_empty(DomB)) {
798 DomTreeNode *N = (*DT)[DomB]->getIDom();
799 if (!N)
800 break;
801 DomB = N->getBlock();
802 }
803
804 // Otherwise, DomB is fine. Update the location map.
805 Loc[Node] = DomB;
806 return DomB;
807}
808
809BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node,
810 NodeChildrenMap &NCM, NodeToValueMap &Loc) {
811 LLVM_DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n');
812 // Recalculate the placement of Node, after recursively recalculating the
813 // placements of all its children.
814 NodeChildrenMap::iterator CF = NCM.find(Node);
815 if (CF != NCM.end()) {
816 NodeVect &Cs = CF->second;
817 for (GepNode *C : Cs)
818 recalculatePlacementRec(C, NCM, Loc);
819 }
820 BasicBlock *LB = recalculatePlacement(Node, NCM, Loc);
821 LLVM_DEBUG(dbgs() << "LocRec end for node:" << Node << '\n');
822 return LB;
823}
824
825bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) {
826 if (isa<Constant>(Val) || isa<Argument>(Val))
827 return true;
828 Instruction *In = dyn_cast<Instruction>(Val);
829 if (!In)
830 return false;
831 BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent();
832 return DT->properlyDominates(DefB, HdrB);
833}
834
835bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) {
836 if (Node->Flags & GepNode::Root)
837 if (!isInvariantIn(Node->BaseVal, L))
838 return false;
839 return isInvariantIn(Node->Idx, L);
840}
841
842bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) {
843 BasicBlock *HB = L->getHeader();
844 BasicBlock *LB = L->getLoopLatch();
845 // B must post-dominate the loop header or dominate the loop latch.
846 if (PDT->dominates(B, HB))
847 return true;
848 if (LB && DT->dominates(B, LB))
849 return true;
850 return false;
851}
852
854 if (BasicBlock *PH = L->getLoopPreheader())
855 return PH;
856 if (!OptSpeculate)
857 return nullptr;
858 DomTreeNode *DN = DT->getNode(L->getHeader());
859 if (!DN)
860 return nullptr;
861 return DN->getIDom()->getBlock();
862}
863
864BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node,
865 NodeChildrenMap &NCM, NodeToValueMap &Loc) {
866 // Find the "topmost" location for Node: it must be dominated by both,
867 // its parent (or the BaseVal, if it's a root node), and by the index
868 // value.
869 ValueVect Bs;
870 if (Node->Flags & GepNode::Root) {
871 if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal))
872 Bs.push_back(PIn->getParent());
873 } else {
874 Bs.push_back(Loc[Node->Parent]);
875 }
876 if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx))
877 Bs.push_back(IIn->getParent());
878 BasicBlock *TopB = nearest_common_dominatee(DT, Bs);
879
880 // Traverse the loop nest upwards until we find a loop in which Node
881 // is no longer invariant, or until we get to the upper limit of Node's
882 // placement. The traversal will also stop when a suitable "preheader"
883 // cannot be found for a given loop. The "preheader" may actually be
884 // a regular block outside of the loop (i.e. not guarded), in which case
885 // the Node will be speculated.
886 // For nodes that are not in the main path of the containing loop (i.e.
887 // are not executed in each iteration), do not move them out of the loop.
888 BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]);
889 if (LocB) {
890 Loop *Lp = LI->getLoopFor(LocB);
891 while (Lp) {
892 if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp))
893 break;
894 BasicBlock *NewLoc = preheader(DT, Lp);
895 if (!NewLoc || !DT->dominates(TopB, NewLoc))
896 break;
897 Lp = Lp->getParentLoop();
898 LocB = NewLoc;
899 }
900 }
901 Loc[Node] = LocB;
902
903 // Recursively compute the locations of all children nodes.
904 NodeChildrenMap::iterator CF = NCM.find(Node);
905 if (CF != NCM.end()) {
906 NodeVect &Cs = CF->second;
907 for (GepNode *C : Cs)
908 adjustForInvariance(C, NCM, Loc);
909 }
910 return LocB;
911}
912
913namespace {
914
915 struct LocationAsBlock {
916 LocationAsBlock(const NodeToValueMap &L) : Map(L) {}
917
918 const NodeToValueMap &Map;
919 };
920
922 const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ;
923 raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) {
924 for (const auto &I : Loc.Map) {
925 OS << I.first << " -> ";
926 if (BasicBlock *B = cast_or_null<BasicBlock>(I.second))
927 OS << B->getName() << '(' << B << ')';
928 else
929 OS << "<null-block>";
930 OS << '\n';
931 }
932 return OS;
933 }
934
935 inline bool is_constant(GepNode *N) {
936 return isa<ConstantInt>(N->Idx);
937 }
938
939} // end anonymous namespace
940
941void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U,
942 NodeToValueMap &Loc) {
943 User *R = U->getUser();
944 LLVM_DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R
945 << '\n');
946 BasicBlock *PB = cast<Instruction>(R)->getParent();
947
948 GepNode *N = Node;
949 GepNode *C = nullptr, *NewNode = nullptr;
950 while (is_constant(N) && !(N->Flags & GepNode::Root)) {
951 // XXX if (single-use) dont-replicate;
952 GepNode *NewN = new (*Mem) GepNode(N);
953 Nodes.push_back(NewN);
954 Loc[NewN] = PB;
955
956 if (N == Node)
957 NewNode = NewN;
958 NewN->Flags &= ~GepNode::Used;
959 if (C)
960 C->Parent = NewN;
961 C = NewN;
962 N = N->Parent;
963 }
964 if (!NewNode)
965 return;
966
967 // Move over all uses that share the same user as U from Node to NewNode.
968 NodeToUsesMap::iterator UF = Uses.find(Node);
969 assert(UF != Uses.end());
970 UseSet &Us = UF->second;
971 UseSet NewUs;
972 for (Use *U : Us) {
973 if (U->getUser() == R)
974 NewUs.insert(U);
975 }
976 for (Use *U : NewUs)
977 Us.remove(U); // erase takes an iterator.
978
979 if (Us.empty()) {
980 Node->Flags &= ~GepNode::Used;
981 Uses.erase(UF);
982 }
983
984 // Should at least have U in NewUs.
985 NewNode->Flags |= GepNode::Used;
986 LLVM_DEBUG(dbgs() << "new node: " << NewNode << " " << *NewNode << '\n');
987 assert(!NewUs.empty());
988 Uses[NewNode] = NewUs;
989}
990
991void HexagonCommonGEP::separateConstantChains(GepNode *Node,
992 NodeChildrenMap &NCM, NodeToValueMap &Loc) {
993 // First approximation: extract all chains.
994 NodeSet Ns;
995 nodes_for_root(Node, NCM, Ns);
996
997 LLVM_DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n');
998 // Collect all used nodes together with the uses from loads and stores,
999 // where the GEP node could be folded into the load/store instruction.
1000 NodeToUsesMap FNs; // Foldable nodes.
1001 for (GepNode *N : Ns) {
1002 if (!(N->Flags & GepNode::Used))
1003 continue;
1004 NodeToUsesMap::iterator UF = Uses.find(N);
1005 assert(UF != Uses.end());
1006 UseSet &Us = UF->second;
1007 // Loads/stores that use the node N.
1008 UseSet LSs;
1009 for (Use *U : Us) {
1010 User *R = U->getUser();
1011 // We're interested in uses that provide the address. It can happen
1012 // that the value may also be provided via GEP, but we won't handle
1013 // those cases here for now.
1014 if (LoadInst *Ld = dyn_cast<LoadInst>(R)) {
1015 unsigned PtrX = LoadInst::getPointerOperandIndex();
1016 if (&Ld->getOperandUse(PtrX) == U)
1017 LSs.insert(U);
1018 } else if (StoreInst *St = dyn_cast<StoreInst>(R)) {
1019 unsigned PtrX = StoreInst::getPointerOperandIndex();
1020 if (&St->getOperandUse(PtrX) == U)
1021 LSs.insert(U);
1022 }
1023 }
1024 // Even if the total use count is 1, separating the chain may still be
1025 // beneficial, since the constant chain may be longer than the GEP alone
1026 // would be (e.g. if the parent node has a constant index and also has
1027 // other children).
1028 if (!LSs.empty())
1029 FNs.insert(std::make_pair(N, LSs));
1030 }
1031
1032 LLVM_DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs);
1033
1034 for (auto &FN : FNs) {
1035 GepNode *N = FN.first;
1036 UseSet &Us = FN.second;
1037 for (Use *U : Us)
1038 separateChainForNode(N, U, Loc);
1039 }
1040}
1041
1042void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) {
1043 // Compute the inverse of the Node.Parent links. Also, collect the set
1044 // of root nodes.
1045 NodeChildrenMap NCM;
1046 NodeVect Roots;
1047 invert_find_roots(Nodes, NCM, Roots);
1048
1049 // Compute the initial placement determined by the users' locations, and
1050 // the locations of the child nodes.
1051 for (GepNode *Root : Roots)
1052 recalculatePlacementRec(Root, NCM, Loc);
1053
1054 LLVM_DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc));
1055
1056 if (OptEnableInv) {
1057 for (GepNode *Root : Roots)
1058 adjustForInvariance(Root, NCM, Loc);
1059
1060 LLVM_DEBUG(dbgs() << "Node placement after adjustment for invariance:\n"
1061 << LocationAsBlock(Loc));
1062 }
1063 if (OptEnableConst) {
1064 for (GepNode *Root : Roots)
1065 separateConstantChains(Root, NCM, Loc);
1066 }
1067 LLVM_DEBUG(dbgs() << "Node use information:\n" << Uses);
1068
1069 // At the moment, there is no further refinement of the initial placement.
1070 // Such a refinement could include splitting the nodes if they are placed
1071 // too far from some of its users.
1072
1073 LLVM_DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc));
1074}
1075
1076Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
1077 BasicBlock *LocB) {
1078 LLVM_DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName()
1079 << " for nodes:\n"
1080 << NA);
1081 unsigned Num = NA.size();
1082 GepNode *RN = NA[0];
1083 assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root");
1084
1085 GetElementPtrInst *NewInst = nullptr;
1086 Value *Input = RN->BaseVal;
1087 Type *InpTy = RN->PTy;
1088
1089 unsigned Idx = 0;
1090 do {
1091 SmallVector<Value*, 4> IdxList;
1092 // If the type of the input of the first node is not a pointer,
1093 // we need to add an artificial i32 0 to the indices (because the
1094 // actual input in the IR will be a pointer).
1095 if (!(NA[Idx]->Flags & GepNode::Pointer)) {
1096 Type *Int32Ty = Type::getInt32Ty(*Ctx);
1097 IdxList.push_back(ConstantInt::get(Int32Ty, 0));
1098 }
1099
1100 // Keep adding indices from NA until we have to stop and generate
1101 // an "intermediate" GEP.
1102 while (++Idx <= Num) {
1103 GepNode *N = NA[Idx-1];
1104 IdxList.push_back(N->Idx);
1105 if (Idx < Num) {
1106 // We have to stop if we reach a pointer.
1107 if (NA[Idx]->Flags & GepNode::Pointer)
1108 break;
1109 }
1110 }
1111 NewInst = GetElementPtrInst::Create(InpTy, Input, IdxList, "cgep", At);
1112 NewInst->setIsInBounds(RN->Flags & GepNode::InBounds);
1113 LLVM_DEBUG(dbgs() << "new GEP: " << *NewInst << '\n');
1114 if (Idx < Num) {
1115 Input = NewInst;
1116 InpTy = NA[Idx]->PTy;
1117 }
1118 } while (Idx <= Num);
1119
1120 return NewInst;
1121}
1122
1123void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values,
1124 NodeChildrenMap &NCM) {
1125 NodeVect Work;
1126 Work.push_back(Node);
1127
1128 while (!Work.empty()) {
1129 NodeVect::iterator First = Work.begin();
1130 GepNode *N = *First;
1131 Work.erase(First);
1132 if (N->Flags & GepNode::Used) {
1133 NodeToUsesMap::iterator UF = Uses.find(N);
1134 assert(UF != Uses.end() && "No use information for used node");
1135 UseSet &Us = UF->second;
1136 for (const auto &U : Us)
1137 Values.push_back(U->getUser());
1138 }
1139 NodeChildrenMap::iterator CF = NCM.find(N);
1140 if (CF != NCM.end()) {
1141 NodeVect &Cs = CF->second;
1142 llvm::append_range(Work, Cs);
1143 }
1144 }
1145}
1146
1147void HexagonCommonGEP::materialize(NodeToValueMap &Loc) {
1148 LLVM_DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n');
1149 NodeChildrenMap NCM;
1150 NodeVect Roots;
1151 // Compute the inversion again, since computing placement could alter
1152 // "parent" relation between nodes.
1153 invert_find_roots(Nodes, NCM, Roots);
1154
1155 while (!Roots.empty()) {
1156 NodeVect::iterator First = Roots.begin();
1157 GepNode *Root = *First, *Last = *First;
1158 Roots.erase(First);
1159
1160 NodeVect NA; // Nodes to assemble.
1161 // Append to NA all child nodes up to (and including) the first child
1162 // that:
1163 // (1) has more than 1 child, or
1164 // (2) is used, or
1165 // (3) has a child located in a different block.
1166 bool LastUsed = false;
1167 unsigned LastCN = 0;
1168 // The location may be null if the computation failed (it can legitimately
1169 // happen for nodes created from dead GEPs).
1170 Value *LocV = Loc[Last];
1171 if (!LocV)
1172 continue;
1173 BasicBlock *LastB = cast<BasicBlock>(LocV);
1174 do {
1175 NA.push_back(Last);
1176 LastUsed = (Last->Flags & GepNode::Used);
1177 if (LastUsed)
1178 break;
1179 NodeChildrenMap::iterator CF = NCM.find(Last);
1180 LastCN = (CF != NCM.end()) ? CF->second.size() : 0;
1181 if (LastCN != 1)
1182 break;
1183 GepNode *Child = CF->second.front();
1184 BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]);
1185 if (ChildB != nullptr && LastB != ChildB)
1186 break;
1187 Last = Child;
1188 } while (true);
1189
1190 BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator();
1191 if (LastUsed || LastCN > 0) {
1192 ValueVect Urs;
1193 getAllUsersForNode(Root, Urs, NCM);
1194 BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB);
1195 if (FirstUse != LastB->end())
1196 InsertAt = FirstUse;
1197 }
1198
1199 // Generate a new instruction for NA.
1200 Value *NewInst = fabricateGEP(NA, InsertAt, LastB);
1201
1202 // Convert all the children of Last node into roots, and append them
1203 // to the Roots list.
1204 if (LastCN > 0) {
1205 NodeVect &Cs = NCM[Last];
1206 for (GepNode *CN : Cs) {
1207 CN->Flags &= ~GepNode::Internal;
1208 CN->Flags |= GepNode::Root;
1209 CN->BaseVal = NewInst;
1210 Roots.push_back(CN);
1211 }
1212 }
1213
1214 // Lastly, if the Last node was used, replace all uses with the new GEP.
1215 // The uses reference the original GEP values.
1216 if (LastUsed) {
1217 NodeToUsesMap::iterator UF = Uses.find(Last);
1218 assert(UF != Uses.end() && "No use information found");
1219 UseSet &Us = UF->second;
1220 for (Use *U : Us)
1221 U->set(NewInst);
1222 }
1223 }
1224}
1225
1226void HexagonCommonGEP::removeDeadCode() {
1227 ValueVect BO;
1228 BO.push_back(&Fn->front());
1229
1230 for (unsigned i = 0; i < BO.size(); ++i) {
1231 BasicBlock *B = cast<BasicBlock>(BO[i]);
1232 for (auto *DTN : children<DomTreeNode *>(DT->getNode(B)))
1233 BO.push_back(DTN->getBlock());
1234 }
1235
1236 for (Value *V : llvm::reverse(BO)) {
1237 BasicBlock *B = cast<BasicBlock>(V);
1238 ValueVect Ins;
1239 for (Instruction &I : llvm::reverse(*B))
1240 Ins.push_back(&I);
1241 for (Value *I : Ins) {
1242 Instruction *In = cast<Instruction>(I);
1244 In->eraseFromParent();
1245 }
1246 }
1247}
1248
1249bool HexagonCommonGEP::runOnFunction(Function &F) {
1250 if (skipFunction(F))
1251 return false;
1252
1253 // For now bail out on C++ exception handling.
1254 for (const BasicBlock &BB : F)
1255 for (const Instruction &I : BB)
1256 if (isa<InvokeInst>(I) || isa<LandingPadInst>(I))
1257 return false;
1258
1259 Fn = &F;
1260 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1261 PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1262 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1263 Ctx = &F.getContext();
1264
1265 Nodes.clear();
1266 Uses.clear();
1267 NodeOrder.clear();
1268
1270 Mem = &Allocator;
1271
1272 collect();
1273 common();
1274
1275 NodeToValueMap Loc;
1276 computeNodePlacement(Loc);
1277 materialize(Loc);
1278 removeDeadCode();
1279
1280#ifdef EXPENSIVE_CHECKS
1281 // Run this only when expensive checks are enabled.
1282 if (verifyFunction(F, &dbgs()))
1283 report_fatal_error("Broken function");
1284#endif
1285 return true;
1286}
1287
1288namespace llvm {
1289
1291 return new HexagonCommonGEP();
1292 }
1293
1294} // end namespace llvm
This file defines the BumpPtrAllocator interface.
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
#define LLVM_ATTRIBUTE_UNUSED
Definition: Compiler.h:282
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(...)
Definition: Debug.h:106
DenseMap< Block *, BlockRelaxAux > Blocks
Definition: ELF_riscv.cpp:507
This file defines a hash set that can be used to remove duplication of nodes in a graph.
This file defines the little GraphTraits<X> template class that should be specialized by classes that...
static unsigned node_hash(GepNode *N)
static cl::opt< bool > OptEnableInv("commgep-inv", cl::init(true), cl::Hidden)
static NodePair node_pair(GepNode *N1, GepNode *N2)
static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, NodePairSet &Ne)
static const NodeSet * node_class(GepNode *N, NodeSymRel &Rel)
static cl::opt< bool > OptEnableConst("commgep-const", cl::init(true), cl::Hidden)
static BasicBlock * nearest_common_dominatee(DominatorTree *DT, T &Blocks)
static cl::opt< bool > OptSpeculate("commgep-speculate", cl::init(true), cl::Hidden)
static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM, NodeVect &Roots)
static BasicBlock * nearest_common_dominator(DominatorTree *DT, T &Blocks)
static bool is_empty(const BasicBlock *B)
Hexagon Common GEP
static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, NodeSet &Nodes)
static BasicBlock * preheader(DominatorTree *DT, Loop *L)
static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B)
This defines the Use class.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define H(x, y, z)
Definition: MD5.cpp:57
#define P(N)
PassBuilder PB(Machine, PassOpts->PTO, std::nullopt, &PIC)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:57
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
Basic Register Allocator
Remove Loads Into Fake Uses
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallVector class.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
iterator end()
Definition: BasicBlock.h:461
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:239
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
This class represents an Operation in the Expression.
DomTreeNodeBase * getIDom() const
NodeT * getBlock() const
NodeT * getRoot() const
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
bool properlyDominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
properlyDominates - Returns true iff A dominates B and A != B.
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:317
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
Instruction * findNearestCommonDominator(Instruction *I1, Instruction *I2) const
Find the nearest instruction I that dominates both I1 and I2, in the sense that a result produced bef...
Definition: Dominators.cpp:344
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition: FoldingSet.h:327
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
virtual bool runOnFunction(Function &F)=0
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:933
bool isInBounds() const
Determine whether the GEP has the inbounds flag.
static Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
iterator_range< op_iterator > indices()
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Definition: Instructions.h:956
void setIsInBounds(bool b=true)
Set or clear the inbounds flag on this GEP instruction.
Type * getSourceElementType() const
Definition: Instructions.h:990
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:176
static unsigned getPointerOperandIndex()
Definition: Instructions.h:257
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
The legacy pass manager's analysis pass to compute loop information.
Definition: LoopInfo.h:593
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
A NodeSet contains a set of SUnit DAG nodes with additional information that assigns a priority to th...
SetVector< SUnit * >::const_iterator iterator
iterator begin()
bool insert(SUnit *SU)
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
Definition: PassRegistry.h:37
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:98
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
PostDominatorTree Class - Concrete subclass of DominatorTree that is used to compute the post-dominat...
A vector that has set insertion semantics.
Definition: SetVector.h:57
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
A BumpPtrAllocator that allows only elements of a specific type to be allocated.
Definition: Allocator.h:389
An instruction for storing to memory.
Definition: Instructions.h:292
static unsigned getPointerOperandIndex()
Definition: Instructions.h:383
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
Class to represent struct types.
Definition: DerivedTypes.h:218
bool isLiteral() const
Return true if this type is uniqued by structural equivalence, false if it is a struct definition.
Definition: DerivedTypes.h:288
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:264
StringRef getStructName() const
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:258
static IntegerType * getInt32Ty(LLVMContext &C)
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
user_iterator user_begin()
Definition: Value.h:397
user_iterator user_end()
Definition: Value.h:405
user_iterator_impl< User > user_iterator
Definition: Value.h:390
bool hasName() const
Definition: Value.h:261
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
const ParentTy * getParent() const
Definition: ilist_node.h:32
self_iterator getIterator()
Definition: ilist_node.h:132
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
void dump_node_container(raw_ostream &OS, const NodeContainer &S)
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
const_iterator begin(StringRef path, Style style=Style::native)
Get begin iterator over path.
Definition: Path.cpp:226
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:235
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
auto min_element(R &&Range)
Provide wrappers to std::min_element which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:2004
bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
Definition: Verifier.cpp:7297
void initializeHexagonCommonGEPPass(PassRegistry &)
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2115
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
Definition: Local.cpp:406
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:420
@ None
Definition: CodeGenData.h:106
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
FunctionPass * createHexagonCommonGEP()
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
Definition: APFixedPoint.h:303
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition: STLExtras.h:2099
#define N
GepNode(const GepNode *N)
in_set(const NodeSet &S)