LLVM  9.0.0svn
Verifier.cpp
Go to the documentation of this file.
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
11 //
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
14 //
15 // * Both of a binary operator's parameters are of the same type
16 // * Verify that the indices of mem access instructions match other operands
17 // * Verify that arithmetic and other things are only performed on first-class
18 // types. Verify that shifts & logicals only happen on integrals f.e.
19 // * All of the constants in a switch statement are of the correct type
20 // * The code is in valid SSA form
21 // * It should be illegal to put a label into any other type (like a structure)
22 // or to return one. [except constant arrays!]
23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 // * PHI nodes must have an entry for each predecessor, with no extras.
25 // * PHI nodes must be the first thing in a basic block, all grouped together
26 // * PHI nodes must have at least one entry
27 // * All basic blocks should only end with terminator insts, not contain them
28 // * The entry node to a function must not have predecessors
29 // * All Instructions must be embedded into a basic block
30 // * Functions cannot take a void-typed parameter
31 // * Verify that a function's argument list agrees with it's declared type.
32 // * It is illegal to specify a name for a void value.
33 // * It is illegal to have a internal global value with no initializer
34 // * It is illegal to have a ret instruction that returns a value that does not
35 // agree with the function return value type.
36 // * Function call argument types match the function prototype
37 // * A landing pad is defined by a landingpad instruction, and can be jumped to
38 // only by the unwind edge of an invoke instruction.
39 // * A landingpad instruction must be the first non-PHI instruction in the
40 // block.
41 // * Landingpad instructions must be in a function with a personality function.
42 // * All other things that are tested by asserts spread about the code...
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/LLVMContext.h"
90 #include "llvm/IR/Metadata.h"
91 #include "llvm/IR/Module.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/Statepoint.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/Pass.h"
101 #include "llvm/Support/Casting.h"
103 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/MathExtras.h"
107 #include <algorithm>
108 #include <cassert>
109 #include <cstdint>
110 #include <memory>
111 #include <string>
112 #include <utility>
113 
114 using namespace llvm;
115 
116 namespace llvm {
117 
120  const Module &M;
122  const DataLayout &DL;
124 
125  /// Track the brokenness of the module while recursively visiting.
126  bool Broken = false;
127  /// Broken debug info can be "recovered" from by stripping the debug info.
128  bool BrokenDebugInfo = false;
129  /// Whether to treat broken debug info as an error.
131 
132  explicit VerifierSupport(raw_ostream *OS, const Module &M)
133  : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
134 
135 private:
136  void Write(const Module *M) {
137  *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
138  }
139 
140  void Write(const Value *V) {
141  if (V)
142  Write(*V);
143  }
144 
145  void Write(const Value &V) {
146  if (isa<Instruction>(V)) {
147  V.print(*OS, MST);
148  *OS << '\n';
149  } else {
150  V.printAsOperand(*OS, true, MST);
151  *OS << '\n';
152  }
153  }
154 
155  void Write(const Metadata *MD) {
156  if (!MD)
157  return;
158  MD->print(*OS, MST, &M);
159  *OS << '\n';
160  }
161 
162  template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
163  Write(MD.get());
164  }
165 
166  void Write(const NamedMDNode *NMD) {
167  if (!NMD)
168  return;
169  NMD->print(*OS, MST);
170  *OS << '\n';
171  }
172 
173  void Write(Type *T) {
174  if (!T)
175  return;
176  *OS << ' ' << *T;
177  }
178 
179  void Write(const Comdat *C) {
180  if (!C)
181  return;
182  *OS << *C;
183  }
184 
185  void Write(const APInt *AI) {
186  if (!AI)
187  return;
188  *OS << *AI << '\n';
189  }
190 
191  void Write(const unsigned i) { *OS << i << '\n'; }
192 
193  template <typename T> void Write(ArrayRef<T> Vs) {
194  for (const T &V : Vs)
195  Write(V);
196  }
197 
198  template <typename T1, typename... Ts>
199  void WriteTs(const T1 &V1, const Ts &... Vs) {
200  Write(V1);
201  WriteTs(Vs...);
202  }
203 
204  template <typename... Ts> void WriteTs() {}
205 
206 public:
207  /// A check failed, so printout out the condition and the message.
208  ///
209  /// This provides a nice place to put a breakpoint if you want to see why
210  /// something is not correct.
211  void CheckFailed(const Twine &Message) {
212  if (OS)
213  *OS << Message << '\n';
214  Broken = true;
215  }
216 
217  /// A check failed (with values to print).
218  ///
219  /// This calls the Message-only version so that the above is easier to set a
220  /// breakpoint on.
221  template <typename T1, typename... Ts>
222  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
223  CheckFailed(Message);
224  if (OS)
225  WriteTs(V1, Vs...);
226  }
227 
228  /// A debug info check failed.
229  void DebugInfoCheckFailed(const Twine &Message) {
230  if (OS)
231  *OS << Message << '\n';
232  Broken |= TreatBrokenDebugInfoAsError;
233  BrokenDebugInfo = true;
234  }
235 
236  /// A debug info check failed (with values to print).
237  template <typename T1, typename... Ts>
238  void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
239  const Ts &... Vs) {
240  DebugInfoCheckFailed(Message);
241  if (OS)
242  WriteTs(V1, Vs...);
243  }
244 };
245 
246 } // namespace llvm
247 
248 namespace {
249 
250 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
251  friend class InstVisitor<Verifier>;
252 
253  DominatorTree DT;
254 
255  /// When verifying a basic block, keep track of all of the
256  /// instructions we have seen so far.
257  ///
258  /// This allows us to do efficient dominance checks for the case when an
259  /// instruction has an operand that is an instruction in the same block.
260  SmallPtrSet<Instruction *, 16> InstsInThisBlock;
261 
262  /// Keep track of the metadata nodes that have been checked already.
264 
265  /// Keep track which DISubprogram is attached to which function.
266  DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
267 
268  /// Track all DICompileUnits visited.
270 
271  /// The result type for a landingpad.
272  Type *LandingPadResultTy;
273 
274  /// Whether we've seen a call to @llvm.localescape in this function
275  /// already.
276  bool SawFrameEscape;
277 
278  /// Whether the current function has a DISubprogram attached to it.
279  bool HasDebugInfo = false;
280 
281  /// Whether source was present on the first DIFile encountered in each CU.
282  DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
283 
284  /// Stores the count of how many objects were passed to llvm.localescape for a
285  /// given function and the largest index passed to llvm.localrecover.
287 
288  // Maps catchswitches and cleanuppads that unwind to siblings to the
289  // terminators that indicate the unwind, used to detect cycles therein.
290  MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
291 
292  /// Cache of constants visited in search of ConstantExprs.
293  SmallPtrSet<const Constant *, 32> ConstantExprVisited;
294 
295  /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296  SmallVector<const Function *, 4> DeoptimizeDeclarations;
297 
298  // Verify that this GlobalValue is only used in this module.
299  // This map is used to avoid visiting uses twice. We can arrive at a user
300  // twice, if they have multiple operands. In particular for very large
301  // constant expressions, we can arrive at a particular user many times.
302  SmallPtrSet<const Value *, 32> GlobalValueVisited;
303 
304  // Keeps track of duplicate function argument debug info.
306 
307  TBAAVerifier TBAAVerifyHelper;
308 
309  void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
310 
311 public:
312  explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
313  const Module &M)
314  : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
315  SawFrameEscape(false), TBAAVerifyHelper(this) {
316  TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
317  }
318 
319  bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
320 
321  bool verify(const Function &F) {
322  assert(F.getParent() == &M &&
323  "An instance of this class only works with a specific module!");
324 
325  // First ensure the function is well-enough formed to compute dominance
326  // information, and directly compute a dominance tree. We don't rely on the
327  // pass manager to provide this as it isolates us from a potentially
328  // out-of-date dominator tree and makes it significantly more complex to run
329  // this code outside of a pass manager.
330  // FIXME: It's really gross that we have to cast away constness here.
331  if (!F.empty())
332  DT.recalculate(const_cast<Function &>(F));
333 
334  for (const BasicBlock &BB : F) {
335  if (!BB.empty() && BB.back().isTerminator())
336  continue;
337 
338  if (OS) {
339  *OS << "Basic Block in function '" << F.getName()
340  << "' does not have terminator!\n";
341  BB.printAsOperand(*OS, true, MST);
342  *OS << "\n";
343  }
344  return false;
345  }
346 
347  Broken = false;
348  // FIXME: We strip const here because the inst visitor strips const.
349  visit(const_cast<Function &>(F));
350  verifySiblingFuncletUnwinds();
351  InstsInThisBlock.clear();
352  DebugFnArgs.clear();
353  LandingPadResultTy = nullptr;
354  SawFrameEscape = false;
355  SiblingFuncletInfo.clear();
356 
357  return !Broken;
358  }
359 
360  /// Verify the module that this instance of \c Verifier was initialized with.
361  bool verify() {
362  Broken = false;
363 
364  // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365  for (const Function &F : M)
366  if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
367  DeoptimizeDeclarations.push_back(&F);
368 
369  // Now that we've visited every function, verify that we never asked to
370  // recover a frame index that wasn't escaped.
371  verifyFrameRecoverIndices();
372  for (const GlobalVariable &GV : M.globals())
373  visitGlobalVariable(GV);
374 
375  for (const GlobalAlias &GA : M.aliases())
376  visitGlobalAlias(GA);
377 
378  for (const NamedMDNode &NMD : M.named_metadata())
379  visitNamedMDNode(NMD);
380 
381  for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
382  visitComdat(SMEC.getValue());
383 
384  visitModuleFlags(M);
385  visitModuleIdents(M);
386  visitModuleCommandLines(M);
387 
388  verifyCompileUnits();
389 
390  verifyDeoptimizeCallingConvs();
391  DISubprogramAttachments.clear();
392  return !Broken;
393  }
394 
395 private:
396  // Verification methods...
397  void visitGlobalValue(const GlobalValue &GV);
398  void visitGlobalVariable(const GlobalVariable &GV);
399  void visitGlobalAlias(const GlobalAlias &GA);
400  void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
401  void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
402  const GlobalAlias &A, const Constant &C);
403  void visitNamedMDNode(const NamedMDNode &NMD);
404  void visitMDNode(const MDNode &MD);
405  void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
406  void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
407  void visitComdat(const Comdat &C);
408  void visitModuleIdents(const Module &M);
409  void visitModuleCommandLines(const Module &M);
410  void visitModuleFlags(const Module &M);
411  void visitModuleFlag(const MDNode *Op,
413  SmallVectorImpl<const MDNode *> &Requirements);
414  void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
415  void visitFunction(const Function &F);
416  void visitBasicBlock(BasicBlock &BB);
417  void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
418  void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
419 
420  template <class Ty> bool isValidMetadataArray(const MDTuple &N);
421 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
422 #include "llvm/IR/Metadata.def"
423  void visitDIScope(const DIScope &N);
424  void visitDIVariable(const DIVariable &N);
425  void visitDILexicalBlockBase(const DILexicalBlockBase &N);
426  void visitDITemplateParameter(const DITemplateParameter &N);
427 
428  void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
429 
430  // InstVisitor overrides...
432  void visit(Instruction &I);
433 
434  void visitTruncInst(TruncInst &I);
435  void visitZExtInst(ZExtInst &I);
436  void visitSExtInst(SExtInst &I);
437  void visitFPTruncInst(FPTruncInst &I);
438  void visitFPExtInst(FPExtInst &I);
439  void visitFPToUIInst(FPToUIInst &I);
440  void visitFPToSIInst(FPToSIInst &I);
441  void visitUIToFPInst(UIToFPInst &I);
442  void visitSIToFPInst(SIToFPInst &I);
443  void visitIntToPtrInst(IntToPtrInst &I);
444  void visitPtrToIntInst(PtrToIntInst &I);
445  void visitBitCastInst(BitCastInst &I);
446  void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
447  void visitPHINode(PHINode &PN);
448  void visitCallBase(CallBase &Call);
449  void visitUnaryOperator(UnaryOperator &U);
450  void visitBinaryOperator(BinaryOperator &B);
451  void visitICmpInst(ICmpInst &IC);
452  void visitFCmpInst(FCmpInst &FC);
453  void visitExtractElementInst(ExtractElementInst &EI);
454  void visitInsertElementInst(InsertElementInst &EI);
455  void visitShuffleVectorInst(ShuffleVectorInst &EI);
456  void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
457  void visitCallInst(CallInst &CI);
458  void visitInvokeInst(InvokeInst &II);
459  void visitGetElementPtrInst(GetElementPtrInst &GEP);
460  void visitLoadInst(LoadInst &LI);
461  void visitStoreInst(StoreInst &SI);
462  void verifyDominatesUse(Instruction &I, unsigned i);
463  void visitInstruction(Instruction &I);
464  void visitTerminator(Instruction &I);
465  void visitBranchInst(BranchInst &BI);
466  void visitReturnInst(ReturnInst &RI);
467  void visitSwitchInst(SwitchInst &SI);
468  void visitIndirectBrInst(IndirectBrInst &BI);
469  void visitCallBrInst(CallBrInst &CBI);
470  void visitSelectInst(SelectInst &SI);
471  void visitUserOp1(Instruction &I);
472  void visitUserOp2(Instruction &I) { visitUserOp1(I); }
473  void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
474  void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
475  void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
476  void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
477  void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
478  void visitAtomicRMWInst(AtomicRMWInst &RMWI);
479  void visitFenceInst(FenceInst &FI);
480  void visitAllocaInst(AllocaInst &AI);
481  void visitExtractValueInst(ExtractValueInst &EVI);
482  void visitInsertValueInst(InsertValueInst &IVI);
483  void visitEHPadPredecessors(Instruction &I);
484  void visitLandingPadInst(LandingPadInst &LPI);
485  void visitResumeInst(ResumeInst &RI);
486  void visitCatchPadInst(CatchPadInst &CPI);
487  void visitCatchReturnInst(CatchReturnInst &CatchReturn);
488  void visitCleanupPadInst(CleanupPadInst &CPI);
489  void visitFuncletPadInst(FuncletPadInst &FPI);
490  void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
491  void visitCleanupReturnInst(CleanupReturnInst &CRI);
492 
493  void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
494  void verifySwiftErrorValue(const Value *SwiftErrorVal);
495  void verifyMustTailCall(CallInst &CI);
496  bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
497  unsigned ArgNo, std::string &Suffix);
498  bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
499  void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
500  const Value *V);
501  void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
502  void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
503  const Value *V, bool IsIntrinsic);
504  void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
505 
506  void visitConstantExprsRecursively(const Constant *EntryC);
507  void visitConstantExpr(const ConstantExpr *CE);
508  void verifyStatepoint(const CallBase &Call);
509  void verifyFrameRecoverIndices();
510  void verifySiblingFuncletUnwinds();
511 
512  void verifyFragmentExpression(const DbgVariableIntrinsic &I);
513  template <typename ValueOrMetadata>
514  void verifyFragmentExpression(const DIVariable &V,
516  ValueOrMetadata *Desc);
517  void verifyFnArgs(const DbgVariableIntrinsic &I);
518 
519  /// Module-level debug info verification...
520  void verifyCompileUnits();
521 
522  /// Module-level verification that all @llvm.experimental.deoptimize
523  /// declarations share the same calling convention.
524  void verifyDeoptimizeCallingConvs();
525 
526  /// Verify all-or-nothing property of DIFile source attribute within a CU.
527  void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
528 };
529 
530 } // end anonymous namespace
531 
532 /// We know that cond should be true, if not print an error message.
533 #define Assert(C, ...) \
534  do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
535 
536 /// We know that a debug info condition should be true, if not print
537 /// an error message.
538 #define AssertDI(C, ...) \
539  do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
540 
541 void Verifier::visit(Instruction &I) {
542  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
543  Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
545 }
546 
547 // Helper to recursively iterate over indirect users. By
548 // returning false, the callback can ask to stop recursing
549 // further.
550 static void forEachUser(const Value *User,
552  llvm::function_ref<bool(const Value *)> Callback) {
553  if (!Visited.insert(User).second)
554  return;
555  for (const Value *TheNextUser : User->materialized_users())
556  if (Callback(TheNextUser))
557  forEachUser(TheNextUser, Visited, Callback);
558 }
559 
560 void Verifier::visitGlobalValue(const GlobalValue &GV) {
562  "Global is external, but doesn't have external or weak linkage!", &GV);
563 
565  "huge alignment values are unsupported", &GV);
566  Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
567  "Only global variables can have appending linkage!", &GV);
568 
569  if (GV.hasAppendingLinkage()) {
570  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
571  Assert(GVar && GVar->getValueType()->isArrayTy(),
572  "Only global arrays can have appending linkage!", GVar);
573  }
574 
575  if (GV.isDeclarationForLinker())
576  Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
577 
578  if (GV.hasDLLImportStorageClass()) {
579  Assert(!GV.isDSOLocal(),
580  "GlobalValue with DLLImport Storage is dso_local!", &GV);
581 
582  Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
584  "Global is marked as dllimport, but not external", &GV);
585  }
586 
587  if (GV.hasLocalLinkage())
588  Assert(GV.isDSOLocal(),
589  "GlobalValue with private or internal linkage must be dso_local!",
590  &GV);
591 
592  if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
593  Assert(GV.isDSOLocal(),
594  "GlobalValue with non default visibility must be dso_local!", &GV);
595 
596  forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
597  if (const Instruction *I = dyn_cast<Instruction>(V)) {
598  if (!I->getParent() || !I->getParent()->getParent())
599  CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
600  I);
601  else if (I->getParent()->getParent()->getParent() != &M)
602  CheckFailed("Global is referenced in a different module!", &GV, &M, I,
603  I->getParent()->getParent(),
604  I->getParent()->getParent()->getParent());
605  return false;
606  } else if (const Function *F = dyn_cast<Function>(V)) {
607  if (F->getParent() != &M)
608  CheckFailed("Global is used by function in a different module", &GV, &M,
609  F, F->getParent());
610  return false;
611  }
612  return true;
613  });
614 }
615 
616 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
617  if (GV.hasInitializer()) {
618  Assert(GV.getInitializer()->getType() == GV.getValueType(),
619  "Global variable initializer type does not match global "
620  "variable type!",
621  &GV);
622  // If the global has common linkage, it must have a zero initializer and
623  // cannot be constant.
624  if (GV.hasCommonLinkage()) {
626  "'common' global must have a zero initializer!", &GV);
627  Assert(!GV.isConstant(), "'common' global may not be marked constant!",
628  &GV);
629  Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
630  }
631  }
632 
633  if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
634  GV.getName() == "llvm.global_dtors")) {
636  "invalid linkage for intrinsic global variable", &GV);
637  // Don't worry about emitting an error for it not being an array,
638  // visitGlobalValue will complain on appending non-array.
639  if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
640  StructType *STy = dyn_cast<StructType>(ATy->getElementType());
641  PointerType *FuncPtrTy =
643  getPointerTo(DL.getProgramAddressSpace());
644  Assert(STy &&
645  (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
646  STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
647  STy->getTypeAtIndex(1) == FuncPtrTy,
648  "wrong type for intrinsic global variable", &GV);
649  Assert(STy->getNumElements() == 3,
650  "the third field of the element type is mandatory, "
651  "specify i8* null to migrate from the obsoleted 2-field form");
652  Type *ETy = STy->getTypeAtIndex(2);
653  Assert(ETy->isPointerTy() &&
654  cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
655  "wrong type for intrinsic global variable", &GV);
656  }
657  }
658 
659  if (GV.hasName() && (GV.getName() == "llvm.used" ||
660  GV.getName() == "llvm.compiler.used")) {
662  "invalid linkage for intrinsic global variable", &GV);
663  Type *GVType = GV.getValueType();
664  if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
665  PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
666  Assert(PTy, "wrong type for intrinsic global variable", &GV);
667  if (GV.hasInitializer()) {
668  const Constant *Init = GV.getInitializer();
669  const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
670  Assert(InitArray, "wrong initalizer for intrinsic global variable",
671  Init);
672  for (Value *Op : InitArray->operands()) {
673  Value *V = Op->stripPointerCastsNoFollowAliases();
674  Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
675  isa<GlobalAlias>(V),
676  "invalid llvm.used member", V);
677  Assert(V->hasName(), "members of llvm.used must be named", V);
678  }
679  }
680  }
681  }
682 
683  // Visit any debug info attachments.
686  for (auto *MD : MDs) {
687  if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
688  visitDIGlobalVariableExpression(*GVE);
689  else
690  AssertDI(false, "!dbg attachment of global variable must be a "
691  "DIGlobalVariableExpression");
692  }
693 
694  if (!GV.hasInitializer()) {
695  visitGlobalValue(GV);
696  return;
697  }
698 
699  // Walk any aggregate initializers looking for bitcasts between address spaces
700  visitConstantExprsRecursively(GV.getInitializer());
701 
702  visitGlobalValue(GV);
703 }
704 
705 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
707  Visited.insert(&GA);
708  visitAliaseeSubExpr(Visited, GA, C);
709 }
710 
711 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
712  const GlobalAlias &GA, const Constant &C) {
713  if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
714  Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
715  &GA);
716 
717  if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
718  Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
719 
720  Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
721  &GA);
722  } else {
723  // Only continue verifying subexpressions of GlobalAliases.
724  // Do not recurse into global initializers.
725  return;
726  }
727  }
728 
729  if (const auto *CE = dyn_cast<ConstantExpr>(&C))
730  visitConstantExprsRecursively(CE);
731 
732  for (const Use &U : C.operands()) {
733  Value *V = &*U;
734  if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
735  visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
736  else if (const auto *C2 = dyn_cast<Constant>(V))
737  visitAliaseeSubExpr(Visited, GA, *C2);
738  }
739 }
740 
741 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
743  "Alias should have private, internal, linkonce, weak, linkonce_odr, "
744  "weak_odr, or external linkage!",
745  &GA);
746  const Constant *Aliasee = GA.getAliasee();
747  Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
748  Assert(GA.getType() == Aliasee->getType(),
749  "Alias and aliasee types should match!", &GA);
750 
751  Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
752  "Aliasee should be either GlobalValue or ConstantExpr", &GA);
753 
754  visitAliaseeSubExpr(GA, *Aliasee);
755 
756  visitGlobalValue(GA);
757 }
758 
759 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
760  // There used to be various other llvm.dbg.* nodes, but we don't support
761  // upgrading them and we want to reserve the namespace for future uses.
762  if (NMD.getName().startswith("llvm.dbg."))
763  AssertDI(NMD.getName() == "llvm.dbg.cu",
764  "unrecognized named metadata node in the llvm.dbg namespace",
765  &NMD);
766  for (const MDNode *MD : NMD.operands()) {
767  if (NMD.getName() == "llvm.dbg.cu")
768  AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
769 
770  if (!MD)
771  continue;
772 
773  visitMDNode(*MD);
774  }
775 }
776 
777 void Verifier::visitMDNode(const MDNode &MD) {
778  // Only visit each node once. Metadata can be mutually recursive, so this
779  // avoids infinite recursion here, as well as being an optimization.
780  if (!MDNodes.insert(&MD).second)
781  return;
782 
783  switch (MD.getMetadataID()) {
784  default:
785  llvm_unreachable("Invalid MDNode subclass");
786  case Metadata::MDTupleKind:
787  break;
788 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
789  case Metadata::CLASS##Kind: \
790  visit##CLASS(cast<CLASS>(MD)); \
791  break;
792 #include "llvm/IR/Metadata.def"
793  }
794 
795  for (const Metadata *Op : MD.operands()) {
796  if (!Op)
797  continue;
798  Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
799  &MD, Op);
800  if (auto *N = dyn_cast<MDNode>(Op)) {
801  visitMDNode(*N);
802  continue;
803  }
804  if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
805  visitValueAsMetadata(*V, nullptr);
806  continue;
807  }
808  }
809 
810  // Check these last, so we diagnose problems in operands first.
811  Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
812  Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
813 }
814 
815 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
816  Assert(MD.getValue(), "Expected valid value", &MD);
817  Assert(!MD.getValue()->getType()->isMetadataTy(),
818  "Unexpected metadata round-trip through values", &MD, MD.getValue());
819 
820  auto *L = dyn_cast<LocalAsMetadata>(&MD);
821  if (!L)
822  return;
823 
824  Assert(F, "function-local metadata used outside a function", L);
825 
826  // If this was an instruction, bb, or argument, verify that it is in the
827  // function that we expect.
828  Function *ActualF = nullptr;
829  if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
830  Assert(I->getParent(), "function-local metadata not in basic block", L, I);
831  ActualF = I->getParent()->getParent();
832  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
833  ActualF = BB->getParent();
834  else if (Argument *A = dyn_cast<Argument>(L->getValue()))
835  ActualF = A->getParent();
836  assert(ActualF && "Unimplemented function local metadata case!");
837 
838  Assert(ActualF == F, "function-local metadata used in wrong function", L);
839 }
840 
841 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
842  Metadata *MD = MDV.getMetadata();
843  if (auto *N = dyn_cast<MDNode>(MD)) {
844  visitMDNode(*N);
845  return;
846  }
847 
848  // Only visit each node once. Metadata can be mutually recursive, so this
849  // avoids infinite recursion here, as well as being an optimization.
850  if (!MDNodes.insert(MD).second)
851  return;
852 
853  if (auto *V = dyn_cast<ValueAsMetadata>(MD))
854  visitValueAsMetadata(*V, F);
855 }
856 
857 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
858 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
859 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
860 
861 void Verifier::visitDILocation(const DILocation &N) {
862  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
863  "location requires a valid scope", &N, N.getRawScope());
864  if (auto *IA = N.getRawInlinedAt())
865  AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
866  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
867  AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
868 }
869 
870 void Verifier::visitGenericDINode(const GenericDINode &N) {
871  AssertDI(N.getTag(), "invalid tag", &N);
872 }
873 
874 void Verifier::visitDIScope(const DIScope &N) {
875  if (auto *F = N.getRawFile())
876  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
877 }
878 
879 void Verifier::visitDISubrange(const DISubrange &N) {
880  AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
881  auto Count = N.getCount();
882  AssertDI(Count, "Count must either be a signed constant or a DIVariable",
883  &N);
884  AssertDI(!Count.is<ConstantInt*>() ||
885  Count.get<ConstantInt*>()->getSExtValue() >= -1,
886  "invalid subrange count", &N);
887 }
888 
889 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
890  AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
891 }
892 
893 void Verifier::visitDIBasicType(const DIBasicType &N) {
894  AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
895  N.getTag() == dwarf::DW_TAG_unspecified_type,
896  "invalid tag", &N);
897  AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
898  "has conflicting flags", &N);
899 }
900 
901 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
902  // Common scope checks.
903  visitDIScope(N);
904 
905  AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
906  N.getTag() == dwarf::DW_TAG_pointer_type ||
907  N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
908  N.getTag() == dwarf::DW_TAG_reference_type ||
909  N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
910  N.getTag() == dwarf::DW_TAG_const_type ||
911  N.getTag() == dwarf::DW_TAG_volatile_type ||
912  N.getTag() == dwarf::DW_TAG_restrict_type ||
913  N.getTag() == dwarf::DW_TAG_atomic_type ||
914  N.getTag() == dwarf::DW_TAG_member ||
915  N.getTag() == dwarf::DW_TAG_inheritance ||
916  N.getTag() == dwarf::DW_TAG_friend,
917  "invalid tag", &N);
918  if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
919  AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
920  N.getRawExtraData());
921  }
922 
923  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
924  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
925  N.getRawBaseType());
926 
927  if (N.getDWARFAddressSpace()) {
928  AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
929  N.getTag() == dwarf::DW_TAG_reference_type ||
930  N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
931  "DWARF address space only applies to pointer or reference types",
932  &N);
933  }
934 }
935 
936 /// Detect mutually exclusive flags.
937 static bool hasConflictingReferenceFlags(unsigned Flags) {
938  return ((Flags & DINode::FlagLValueReference) &&
939  (Flags & DINode::FlagRValueReference)) ||
940  ((Flags & DINode::FlagTypePassByValue) &&
941  (Flags & DINode::FlagTypePassByReference));
942 }
943 
944 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
945  auto *Params = dyn_cast<MDTuple>(&RawParams);
946  AssertDI(Params, "invalid template params", &N, &RawParams);
947  for (Metadata *Op : Params->operands()) {
948  AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
949  &N, Params, Op);
950  }
951 }
952 
953 void Verifier::visitDICompositeType(const DICompositeType &N) {
954  // Common scope checks.
955  visitDIScope(N);
956 
957  AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
958  N.getTag() == dwarf::DW_TAG_structure_type ||
959  N.getTag() == dwarf::DW_TAG_union_type ||
960  N.getTag() == dwarf::DW_TAG_enumeration_type ||
961  N.getTag() == dwarf::DW_TAG_class_type ||
962  N.getTag() == dwarf::DW_TAG_variant_part,
963  "invalid tag", &N);
964 
965  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
966  AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
967  N.getRawBaseType());
968 
969  AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
970  "invalid composite elements", &N, N.getRawElements());
971  AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
972  N.getRawVTableHolder());
974  "invalid reference flags", &N);
975 
976  if (N.isVector()) {
977  const DINodeArray Elements = N.getElements();
978  AssertDI(Elements.size() == 1 &&
979  Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
980  "invalid vector, expected one element of type subrange", &N);
981  }
982 
983  if (auto *Params = N.getRawTemplateParams())
984  visitTemplateParams(N, *Params);
985 
986  if (N.getTag() == dwarf::DW_TAG_class_type ||
987  N.getTag() == dwarf::DW_TAG_union_type) {
988  AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
989  "class/union requires a filename", &N, N.getFile());
990  }
991 
992  if (auto *D = N.getRawDiscriminator()) {
993  AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
994  "discriminator can only appear on variant part");
995  }
996 }
997 
998 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
999  AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1000  if (auto *Types = N.getRawTypeArray()) {
1001  AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1002  for (Metadata *Ty : N.getTypeArray()->operands()) {
1003  AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1004  }
1005  }
1007  "invalid reference flags", &N);
1008 }
1009 
1010 void Verifier::visitDIFile(const DIFile &N) {
1011  AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1012  Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1013  if (Checksum) {
1014  AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1015  "invalid checksum kind", &N);
1016  size_t Size;
1017  switch (Checksum->Kind) {
1018  case DIFile::CSK_MD5:
1019  Size = 32;
1020  break;
1021  case DIFile::CSK_SHA1:
1022  Size = 40;
1023  break;
1024  }
1025  AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1026  AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1027  "invalid checksum", &N);
1028  }
1029 }
1030 
1031 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1032  AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1033  AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1034 
1035  // Don't bother verifying the compilation directory or producer string
1036  // as those could be empty.
1037  AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1038  N.getRawFile());
1039  AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1040  N.getFile());
1041 
1042  verifySourceDebugInfo(N, *N.getFile());
1043 
1045  "invalid emission kind", &N);
1046 
1047  if (auto *Array = N.getRawEnumTypes()) {
1048  AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1049  for (Metadata *Op : N.getEnumTypes()->operands()) {
1050  auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1051  AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1052  "invalid enum type", &N, N.getEnumTypes(), Op);
1053  }
1054  }
1055  if (auto *Array = N.getRawRetainedTypes()) {
1056  AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1057  for (Metadata *Op : N.getRetainedTypes()->operands()) {
1058  AssertDI(Op && (isa<DIType>(Op) ||
1059  (isa<DISubprogram>(Op) &&
1060  !cast<DISubprogram>(Op)->isDefinition())),
1061  "invalid retained type", &N, Op);
1062  }
1063  }
1064  if (auto *Array = N.getRawGlobalVariables()) {
1065  AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1066  for (Metadata *Op : N.getGlobalVariables()->operands()) {
1067  AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1068  "invalid global variable ref", &N, Op);
1069  }
1070  }
1071  if (auto *Array = N.getRawImportedEntities()) {
1072  AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1073  for (Metadata *Op : N.getImportedEntities()->operands()) {
1074  AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1075  &N, Op);
1076  }
1077  }
1078  if (auto *Array = N.getRawMacros()) {
1079  AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1080  for (Metadata *Op : N.getMacros()->operands()) {
1081  AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1082  }
1083  }
1084  CUVisited.insert(&N);
1085 }
1086 
1087 void Verifier::visitDISubprogram(const DISubprogram &N) {
1088  AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1089  AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1090  if (auto *F = N.getRawFile())
1091  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1092  else
1093  AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1094  if (auto *T = N.getRawType())
1095  AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1096  AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1097  N.getRawContainingType());
1098  if (auto *Params = N.getRawTemplateParams())
1099  visitTemplateParams(N, *Params);
1100  if (auto *S = N.getRawDeclaration())
1101  AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1102  "invalid subprogram declaration", &N, S);
1103  if (auto *RawNode = N.getRawRetainedNodes()) {
1104  auto *Node = dyn_cast<MDTuple>(RawNode);
1105  AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1106  for (Metadata *Op : Node->operands()) {
1107  AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1108  "invalid retained nodes, expected DILocalVariable or DILabel",
1109  &N, Node, Op);
1110  }
1111  }
1112  AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1113  "invalid reference flags", &N);
1114 
1115  auto *Unit = N.getRawUnit();
1116  if (N.isDefinition()) {
1117  // Subprogram definitions (not part of the type hierarchy).
1118  AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1119  AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1120  AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1121  if (N.getFile())
1122  verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1123  } else {
1124  // Subprogram declarations (part of the type hierarchy).
1125  AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1126  }
1127 
1128  if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1129  auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1130  AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1131  for (Metadata *Op : ThrownTypes->operands())
1132  AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1133  Op);
1134  }
1135 
1136  if (N.areAllCallsDescribed())
1137  AssertDI(N.isDefinition(),
1138  "DIFlagAllCallsDescribed must be attached to a definition");
1139 }
1140 
1141 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1142  AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1143  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1144  "invalid local scope", &N, N.getRawScope());
1145  if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1146  AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1147 }
1148 
1149 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1150  visitDILexicalBlockBase(N);
1151 
1152  AssertDI(N.getLine() || !N.getColumn(),
1153  "cannot have column info without line info", &N);
1154 }
1155 
1156 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1157  visitDILexicalBlockBase(N);
1158 }
1159 
1160 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1161  AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1162  if (auto *S = N.getRawScope())
1163  AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1164  if (auto *S = N.getRawDecl())
1165  AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1166 }
1167 
1168 void Verifier::visitDINamespace(const DINamespace &N) {
1169  AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1170  if (auto *S = N.getRawScope())
1171  AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1172 }
1173 
1174 void Verifier::visitDIMacro(const DIMacro &N) {
1177  "invalid macinfo type", &N);
1178  AssertDI(!N.getName().empty(), "anonymous macro", &N);
1179  if (!N.getValue().empty()) {
1180  assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1181  }
1182 }
1183 
1184 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1186  "invalid macinfo type", &N);
1187  if (auto *F = N.getRawFile())
1188  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1189 
1190  if (auto *Array = N.getRawElements()) {
1191  AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1192  for (Metadata *Op : N.getElements()->operands()) {
1193  AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1194  }
1195  }
1196 }
1197 
1198 void Verifier::visitDIModule(const DIModule &N) {
1199  AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1200  AssertDI(!N.getName().empty(), "anonymous module", &N);
1201 }
1202 
1203 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1204  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1205 }
1206 
1207 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1208  visitDITemplateParameter(N);
1209 
1210  AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1211  &N);
1212 }
1213 
1214 void Verifier::visitDITemplateValueParameter(
1215  const DITemplateValueParameter &N) {
1216  visitDITemplateParameter(N);
1217 
1218  AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1219  N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1220  N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1221  "invalid tag", &N);
1222 }
1223 
1224 void Verifier::visitDIVariable(const DIVariable &N) {
1225  if (auto *S = N.getRawScope())
1226  AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1227  if (auto *F = N.getRawFile())
1228  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1229 }
1230 
1231 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1232  // Checks common to all variables.
1233  visitDIVariable(N);
1234 
1235  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1236  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1237  AssertDI(N.getType(), "missing global variable type", &N);
1238  if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1239  AssertDI(isa<DIDerivedType>(Member),
1240  "invalid static data member declaration", &N, Member);
1241  }
1242 }
1243 
1244 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1245  // Checks common to all variables.
1246  visitDIVariable(N);
1247 
1248  AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1249  AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1250  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1251  "local variable requires a valid scope", &N, N.getRawScope());
1252  if (auto Ty = N.getType())
1253  AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1254 }
1255 
1256 void Verifier::visitDILabel(const DILabel &N) {
1257  if (auto *S = N.getRawScope())
1258  AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1259  if (auto *F = N.getRawFile())
1260  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1261 
1262  AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1263  AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1264  "label requires a valid scope", &N, N.getRawScope());
1265 }
1266 
1267 void Verifier::visitDIExpression(const DIExpression &N) {
1268  AssertDI(N.isValid(), "invalid expression", &N);
1269 }
1270 
1271 void Verifier::visitDIGlobalVariableExpression(
1272  const DIGlobalVariableExpression &GVE) {
1273  AssertDI(GVE.getVariable(), "missing variable");
1274  if (auto *Var = GVE.getVariable())
1275  visitDIGlobalVariable(*Var);
1276  if (auto *Expr = GVE.getExpression()) {
1277  visitDIExpression(*Expr);
1278  if (auto Fragment = Expr->getFragmentInfo())
1279  verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1280  }
1281 }
1282 
1283 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1284  AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1285  if (auto *T = N.getRawType())
1286  AssertDI(isType(T), "invalid type ref", &N, T);
1287  if (auto *F = N.getRawFile())
1288  AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1289 }
1290 
1291 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1292  AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1293  N.getTag() == dwarf::DW_TAG_imported_declaration,
1294  "invalid tag", &N);
1295  if (auto *S = N.getRawScope())
1296  AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1297  AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1298  N.getRawEntity());
1299 }
1300 
1301 void Verifier::visitComdat(const Comdat &C) {
1302  // The Module is invalid if the GlobalValue has private linkage. Entities
1303  // with private linkage don't have entries in the symbol table.
1304  if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1305  Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1306  GV);
1307 }
1308 
1309 void Verifier::visitModuleIdents(const Module &M) {
1310  const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1311  if (!Idents)
1312  return;
1313 
1314  // llvm.ident takes a list of metadata entry. Each entry has only one string.
1315  // Scan each llvm.ident entry and make sure that this requirement is met.
1316  for (const MDNode *N : Idents->operands()) {
1317  Assert(N->getNumOperands() == 1,
1318  "incorrect number of operands in llvm.ident metadata", N);
1319  Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1320  ("invalid value for llvm.ident metadata entry operand"
1321  "(the operand should be a string)"),
1322  N->getOperand(0));
1323  }
1324 }
1325 
1326 void Verifier::visitModuleCommandLines(const Module &M) {
1327  const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1328  if (!CommandLines)
1329  return;
1330 
1331  // llvm.commandline takes a list of metadata entry. Each entry has only one
1332  // string. Scan each llvm.commandline entry and make sure that this
1333  // requirement is met.
1334  for (const MDNode *N : CommandLines->operands()) {
1335  Assert(N->getNumOperands() == 1,
1336  "incorrect number of operands in llvm.commandline metadata", N);
1337  Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1338  ("invalid value for llvm.commandline metadata entry operand"
1339  "(the operand should be a string)"),
1340  N->getOperand(0));
1341  }
1342 }
1343 
1344 void Verifier::visitModuleFlags(const Module &M) {
1345  const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1346  if (!Flags) return;
1347 
1348  // Scan each flag, and track the flags and requirements.
1350  SmallVector<const MDNode*, 16> Requirements;
1351  for (const MDNode *MDN : Flags->operands())
1352  visitModuleFlag(MDN, SeenIDs, Requirements);
1353 
1354  // Validate that the requirements in the module are valid.
1355  for (const MDNode *Requirement : Requirements) {
1356  const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1357  const Metadata *ReqValue = Requirement->getOperand(1);
1358 
1359  const MDNode *Op = SeenIDs.lookup(Flag);
1360  if (!Op) {
1361  CheckFailed("invalid requirement on flag, flag is not present in module",
1362  Flag);
1363  continue;
1364  }
1365 
1366  if (Op->getOperand(2) != ReqValue) {
1367  CheckFailed(("invalid requirement on flag, "
1368  "flag does not have the required value"),
1369  Flag);
1370  continue;
1371  }
1372  }
1373 }
1374 
1375 void
1376 Verifier::visitModuleFlag(const MDNode *Op,
1378  SmallVectorImpl<const MDNode *> &Requirements) {
1379  // Each module flag should have three arguments, the merge behavior (a
1380  // constant int), the flag ID (an MDString), and the value.
1381  Assert(Op->getNumOperands() == 3,
1382  "incorrect number of operands in module flag", Op);
1384  if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1385  Assert(
1386  mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1387  "invalid behavior operand in module flag (expected constant integer)",
1388  Op->getOperand(0));
1389  Assert(false,
1390  "invalid behavior operand in module flag (unexpected constant)",
1391  Op->getOperand(0));
1392  }
1393  MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1394  Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1395  Op->getOperand(1));
1396 
1397  // Sanity check the values for behaviors with additional requirements.
1398  switch (MFB) {
1399  case Module::Error:
1400  case Module::Warning:
1401  case Module::Override:
1402  // These behavior types accept any value.
1403  break;
1404 
1405  case Module::Max: {
1406  Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1407  "invalid value for 'max' module flag (expected constant integer)",
1408  Op->getOperand(2));
1409  break;
1410  }
1411 
1412  case Module::Require: {
1413  // The value should itself be an MDNode with two operands, a flag ID (an
1414  // MDString), and a value.
1415  MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1416  Assert(Value && Value->getNumOperands() == 2,
1417  "invalid value for 'require' module flag (expected metadata pair)",
1418  Op->getOperand(2));
1419  Assert(isa<MDString>(Value->getOperand(0)),
1420  ("invalid value for 'require' module flag "
1421  "(first value operand should be a string)"),
1422  Value->getOperand(0));
1423 
1424  // Append it to the list of requirements, to check once all module flags are
1425  // scanned.
1426  Requirements.push_back(Value);
1427  break;
1428  }
1429 
1430  case Module::Append:
1431  case Module::AppendUnique: {
1432  // These behavior types require the operand be an MDNode.
1433  Assert(isa<MDNode>(Op->getOperand(2)),
1434  "invalid value for 'append'-type module flag "
1435  "(expected a metadata node)",
1436  Op->getOperand(2));
1437  break;
1438  }
1439  }
1440 
1441  // Unless this is a "requires" flag, check the ID is unique.
1442  if (MFB != Module::Require) {
1443  bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1444  Assert(Inserted,
1445  "module flag identifiers must be unique (or of 'require' type)", ID);
1446  }
1447 
1448  if (ID->getString() == "wchar_size") {
1450  = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1451  Assert(Value, "wchar_size metadata requires constant integer argument");
1452  }
1453 
1454  if (ID->getString() == "Linker Options") {
1455  // If the llvm.linker.options named metadata exists, we assume that the
1456  // bitcode reader has upgraded the module flag. Otherwise the flag might
1457  // have been created by a client directly.
1458  Assert(M.getNamedMetadata("llvm.linker.options"),
1459  "'Linker Options' named metadata no longer supported");
1460  }
1461 
1462  if (ID->getString() == "CG Profile") {
1463  for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1464  visitModuleFlagCGProfileEntry(MDO);
1465  }
1466 }
1467 
1468 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1469  auto CheckFunction = [&](const MDOperand &FuncMDO) {
1470  if (!FuncMDO)
1471  return;
1472  auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1473  Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
1474  FuncMDO);
1475  };
1476  auto Node = dyn_cast_or_null<MDNode>(MDO);
1477  Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1478  CheckFunction(Node->getOperand(0));
1479  CheckFunction(Node->getOperand(1));
1480  auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1481  Assert(Count && Count->getType()->isIntegerTy(),
1482  "expected an integer constant", Node->getOperand(2));
1483 }
1484 
1485 /// Return true if this attribute kind only applies to functions.
1487  switch (Kind) {
1488  case Attribute::NoReturn:
1489  case Attribute::NoCfCheck:
1490  case Attribute::NoUnwind:
1491  case Attribute::NoInline:
1492  case Attribute::AlwaysInline:
1493  case Attribute::OptimizeForSize:
1494  case Attribute::StackProtect:
1495  case Attribute::StackProtectReq:
1496  case Attribute::StackProtectStrong:
1497  case Attribute::SafeStack:
1498  case Attribute::ShadowCallStack:
1499  case Attribute::NoRedZone:
1500  case Attribute::NoImplicitFloat:
1501  case Attribute::Naked:
1502  case Attribute::InlineHint:
1503  case Attribute::StackAlignment:
1504  case Attribute::UWTable:
1505  case Attribute::NonLazyBind:
1506  case Attribute::ReturnsTwice:
1507  case Attribute::SanitizeAddress:
1508  case Attribute::SanitizeHWAddress:
1509  case Attribute::SanitizeThread:
1510  case Attribute::SanitizeMemory:
1511  case Attribute::MinSize:
1512  case Attribute::NoDuplicate:
1513  case Attribute::Builtin:
1514  case Attribute::NoBuiltin:
1515  case Attribute::Cold:
1516  case Attribute::OptForFuzzing:
1517  case Attribute::OptimizeNone:
1518  case Attribute::JumpTable:
1519  case Attribute::Convergent:
1520  case Attribute::ArgMemOnly:
1521  case Attribute::NoRecurse:
1522  case Attribute::InaccessibleMemOnly:
1523  case Attribute::InaccessibleMemOrArgMemOnly:
1524  case Attribute::AllocSize:
1525  case Attribute::SpeculativeLoadHardening:
1526  case Attribute::Speculatable:
1527  case Attribute::StrictFP:
1528  return true;
1529  default:
1530  break;
1531  }
1532  return false;
1533 }
1534 
1535 /// Return true if this is a function attribute that can also appear on
1536 /// arguments.
1538  return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1539  Kind == Attribute::ReadNone;
1540 }
1541 
1542 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1543  const Value *V) {
1544  for (Attribute A : Attrs) {
1545  if (A.isStringAttribute())
1546  continue;
1547 
1548  if (isFuncOnlyAttr(A.getKindAsEnum())) {
1549  if (!IsFunction) {
1550  CheckFailed("Attribute '" + A.getAsString() +
1551  "' only applies to functions!",
1552  V);
1553  return;
1554  }
1555  } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1556  CheckFailed("Attribute '" + A.getAsString() +
1557  "' does not apply to functions!",
1558  V);
1559  return;
1560  }
1561  }
1562 }
1563 
1564 // VerifyParameterAttrs - Check the given attributes for an argument or return
1565 // value of the specified type. The value V is printed in error messages.
1566 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1567  const Value *V) {
1568  if (!Attrs.hasAttributes())
1569  return;
1570 
1571  verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1572 
1573  if (Attrs.hasAttribute(Attribute::ImmArg)) {
1574  Assert(Attrs.getNumAttributes() == 1,
1575  "Attribute 'immarg' is incompatible with other attributes", V);
1576  }
1577 
1578  // Check for mutually incompatible attributes. Only inreg is compatible with
1579  // sret.
1580  unsigned AttrCount = 0;
1581  AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1582  AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1583  AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1584  Attrs.hasAttribute(Attribute::InReg);
1585  AttrCount += Attrs.hasAttribute(Attribute::Nest);
1586  Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1587  "and 'sret' are incompatible!",
1588  V);
1589 
1590  Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1591  Attrs.hasAttribute(Attribute::ReadOnly)),
1592  "Attributes "
1593  "'inalloca and readonly' are incompatible!",
1594  V);
1595 
1596  Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1597  Attrs.hasAttribute(Attribute::Returned)),
1598  "Attributes "
1599  "'sret and returned' are incompatible!",
1600  V);
1601 
1602  Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1603  Attrs.hasAttribute(Attribute::SExt)),
1604  "Attributes "
1605  "'zeroext and signext' are incompatible!",
1606  V);
1607 
1608  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1609  Attrs.hasAttribute(Attribute::ReadOnly)),
1610  "Attributes "
1611  "'readnone and readonly' are incompatible!",
1612  V);
1613 
1614  Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1615  Attrs.hasAttribute(Attribute::WriteOnly)),
1616  "Attributes "
1617  "'readnone and writeonly' are incompatible!",
1618  V);
1619 
1620  Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1621  Attrs.hasAttribute(Attribute::WriteOnly)),
1622  "Attributes "
1623  "'readonly and writeonly' are incompatible!",
1624  V);
1625 
1626  Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1627  Attrs.hasAttribute(Attribute::AlwaysInline)),
1628  "Attributes "
1629  "'noinline and alwaysinline' are incompatible!",
1630  V);
1631 
1632  AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1633  Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1634  "Wrong types for attribute: " +
1635  AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1636  V);
1637 
1638  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1639  SmallPtrSet<Type*, 4> Visited;
1640  if (!PTy->getElementType()->isSized(&Visited)) {
1641  Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1642  !Attrs.hasAttribute(Attribute::InAlloca),
1643  "Attributes 'byval' and 'inalloca' do not support unsized types!",
1644  V);
1645  }
1646  if (!isa<PointerType>(PTy->getElementType()))
1647  Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1648  "Attribute 'swifterror' only applies to parameters "
1649  "with pointer to pointer type!",
1650  V);
1651  } else {
1652  Assert(!Attrs.hasAttribute(Attribute::ByVal),
1653  "Attribute 'byval' only applies to parameters with pointer type!",
1654  V);
1655  Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1656  "Attribute 'swifterror' only applies to parameters "
1657  "with pointer type!",
1658  V);
1659  }
1660 }
1661 
1662 // Check parameter attributes against a function type.
1663 // The value V is printed in error messages.
1664 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1665  const Value *V, bool IsIntrinsic) {
1666  if (Attrs.isEmpty())
1667  return;
1668 
1669  bool SawNest = false;
1670  bool SawReturned = false;
1671  bool SawSRet = false;
1672  bool SawSwiftSelf = false;
1673  bool SawSwiftError = false;
1674 
1675  // Verify return value attributes.
1676  AttributeSet RetAttrs = Attrs.getRetAttributes();
1677  Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1678  !RetAttrs.hasAttribute(Attribute::Nest) &&
1679  !RetAttrs.hasAttribute(Attribute::StructRet) &&
1680  !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1681  !RetAttrs.hasAttribute(Attribute::Returned) &&
1682  !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1683  !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1684  !RetAttrs.hasAttribute(Attribute::SwiftError)),
1685  "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1686  "'returned', 'swiftself', and 'swifterror' do not apply to return "
1687  "values!",
1688  V);
1689  Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1690  !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1691  !RetAttrs.hasAttribute(Attribute::ReadNone)),
1692  "Attribute '" + RetAttrs.getAsString() +
1693  "' does not apply to function returns",
1694  V);
1695  verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1696 
1697  // Verify parameter attributes.
1698  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1699  Type *Ty = FT->getParamType(i);
1700  AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1701 
1702  if (!IsIntrinsic) {
1703  Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1704  "immarg attribute only applies to intrinsics",V);
1705  }
1706 
1707  verifyParameterAttrs(ArgAttrs, Ty, V);
1708 
1709  if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1710  Assert(!SawNest, "More than one parameter has attribute nest!", V);
1711  SawNest = true;
1712  }
1713 
1714  if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1715  Assert(!SawReturned, "More than one parameter has attribute returned!",
1716  V);
1718  "Incompatible argument and return types for 'returned' attribute",
1719  V);
1720  SawReturned = true;
1721  }
1722 
1723  if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1724  Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1725  Assert(i == 0 || i == 1,
1726  "Attribute 'sret' is not on first or second parameter!", V);
1727  SawSRet = true;
1728  }
1729 
1730  if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1731  Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1732  SawSwiftSelf = true;
1733  }
1734 
1735  if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1736  Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1737  V);
1738  SawSwiftError = true;
1739  }
1740 
1741  if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1742  Assert(i == FT->getNumParams() - 1,
1743  "inalloca isn't on the last parameter!", V);
1744  }
1745  }
1746 
1748  return;
1749 
1750  verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1751 
1752  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1753  Attrs.hasFnAttribute(Attribute::ReadOnly)),
1754  "Attributes 'readnone and readonly' are incompatible!", V);
1755 
1756  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1757  Attrs.hasFnAttribute(Attribute::WriteOnly)),
1758  "Attributes 'readnone and writeonly' are incompatible!", V);
1759 
1760  Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1761  Attrs.hasFnAttribute(Attribute::WriteOnly)),
1762  "Attributes 'readonly and writeonly' are incompatible!", V);
1763 
1764  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1765  Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1766  "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1767  "incompatible!",
1768  V);
1769 
1770  Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1771  Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1772  "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1773 
1774  Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1775  Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1776  "Attributes 'noinline and alwaysinline' are incompatible!", V);
1777 
1778  if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1779  Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1780  "Attribute 'optnone' requires 'noinline'!", V);
1781 
1782  Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1783  "Attributes 'optsize and optnone' are incompatible!", V);
1784 
1785  Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1786  "Attributes 'minsize and optnone' are incompatible!", V);
1787  }
1788 
1789  if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1790  const GlobalValue *GV = cast<GlobalValue>(V);
1792  "Attribute 'jumptable' requires 'unnamed_addr'", V);
1793  }
1794 
1795  if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1796  std::pair<unsigned, Optional<unsigned>> Args =
1798 
1799  auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1800  if (ParamNo >= FT->getNumParams()) {
1801  CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1802  return false;
1803  }
1804 
1805  if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1806  CheckFailed("'allocsize' " + Name +
1807  " argument must refer to an integer parameter",
1808  V);
1809  return false;
1810  }
1811 
1812  return true;
1813  };
1814 
1815  if (!CheckParam("element size", Args.first))
1816  return;
1817 
1818  if (Args.second && !CheckParam("number of elements", *Args.second))
1819  return;
1820  }
1821 }
1822 
1823 void Verifier::verifyFunctionMetadata(
1824  ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1825  for (const auto &Pair : MDs) {
1826  if (Pair.first == LLVMContext::MD_prof) {
1827  MDNode *MD = Pair.second;
1828  Assert(MD->getNumOperands() >= 2,
1829  "!prof annotations should have no less than 2 operands", MD);
1830 
1831  // Check first operand.
1832  Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1833  MD);
1834  Assert(isa<MDString>(MD->getOperand(0)),
1835  "expected string with name of the !prof annotation", MD);
1836  MDString *MDS = cast<MDString>(MD->getOperand(0));
1837  StringRef ProfName = MDS->getString();
1838  Assert(ProfName.equals("function_entry_count") ||
1839  ProfName.equals("synthetic_function_entry_count"),
1840  "first operand should be 'function_entry_count'"
1841  " or 'synthetic_function_entry_count'",
1842  MD);
1843 
1844  // Check second operand.
1845  Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1846  MD);
1847  Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1848  "expected integer argument to function_entry_count", MD);
1849  }
1850  }
1851 }
1852 
1853 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1854  if (!ConstantExprVisited.insert(EntryC).second)
1855  return;
1856 
1858  Stack.push_back(EntryC);
1859 
1860  while (!Stack.empty()) {
1861  const Constant *C = Stack.pop_back_val();
1862 
1863  // Check this constant expression.
1864  if (const auto *CE = dyn_cast<ConstantExpr>(C))
1865  visitConstantExpr(CE);
1866 
1867  if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1868  // Global Values get visited separately, but we do need to make sure
1869  // that the global value is in the correct module
1870  Assert(GV->getParent() == &M, "Referencing global in another module!",
1871  EntryC, &M, GV, GV->getParent());
1872  continue;
1873  }
1874 
1875  // Visit all sub-expressions.
1876  for (const Use &U : C->operands()) {
1877  const auto *OpC = dyn_cast<Constant>(U);
1878  if (!OpC)
1879  continue;
1880  if (!ConstantExprVisited.insert(OpC).second)
1881  continue;
1882  Stack.push_back(OpC);
1883  }
1884  }
1885 }
1886 
1887 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1888  if (CE->getOpcode() == Instruction::BitCast)
1889  Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1890  CE->getType()),
1891  "Invalid bitcast", CE);
1892 
1893  if (CE->getOpcode() == Instruction::IntToPtr ||
1894  CE->getOpcode() == Instruction::PtrToInt) {
1895  auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1896  ? CE->getType()
1897  : CE->getOperand(0)->getType();
1898  StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1899  ? "inttoptr not supported for non-integral pointers"
1900  : "ptrtoint not supported for non-integral pointers";
1901  Assert(
1902  !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1903  Msg);
1904  }
1905 }
1906 
1907 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1908  // There shouldn't be more attribute sets than there are parameters plus the
1909  // function and return value.
1910  return Attrs.getNumAttrSets() <= Params + 2;
1911 }
1912 
1913 /// Verify that statepoint intrinsic is well formed.
1914 void Verifier::verifyStatepoint(const CallBase &Call) {
1915  assert(Call.getCalledFunction() &&
1916  Call.getCalledFunction()->getIntrinsicID() ==
1917  Intrinsic::experimental_gc_statepoint);
1918 
1919  Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
1920  !Call.onlyAccessesArgMemory(),
1921  "gc.statepoint must read and write all memory to preserve "
1922  "reordering restrictions required by safepoint semantics",
1923  Call);
1924 
1925  const int64_t NumPatchBytes =
1926  cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
1927  assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1928  Assert(NumPatchBytes >= 0,
1929  "gc.statepoint number of patchable bytes must be "
1930  "positive",
1931  Call);
1932 
1933  const Value *Target = Call.getArgOperand(2);
1934  auto *PT = dyn_cast<PointerType>(Target->getType());
1935  Assert(PT && PT->getElementType()->isFunctionTy(),
1936  "gc.statepoint callee must be of function pointer type", Call, Target);
1937  FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1938 
1939  const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
1940  Assert(NumCallArgs >= 0,
1941  "gc.statepoint number of arguments to underlying call "
1942  "must be positive",
1943  Call);
1944  const int NumParams = (int)TargetFuncType->getNumParams();
1945  if (TargetFuncType->isVarArg()) {
1946  Assert(NumCallArgs >= NumParams,
1947  "gc.statepoint mismatch in number of vararg call args", Call);
1948 
1949  // TODO: Remove this limitation
1950  Assert(TargetFuncType->getReturnType()->isVoidTy(),
1951  "gc.statepoint doesn't support wrapping non-void "
1952  "vararg functions yet",
1953  Call);
1954  } else
1955  Assert(NumCallArgs == NumParams,
1956  "gc.statepoint mismatch in number of call args", Call);
1957 
1958  const uint64_t Flags
1959  = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
1960  Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1961  "unknown flag used in gc.statepoint flags argument", Call);
1962 
1963  // Verify that the types of the call parameter arguments match
1964  // the type of the wrapped callee.
1965  AttributeList Attrs = Call.getAttributes();
1966  for (int i = 0; i < NumParams; i++) {
1967  Type *ParamType = TargetFuncType->getParamType(i);
1968  Type *ArgType = Call.getArgOperand(5 + i)->getType();
1969  Assert(ArgType == ParamType,
1970  "gc.statepoint call argument does not match wrapped "
1971  "function type",
1972  Call);
1973 
1974  if (TargetFuncType->isVarArg()) {
1975  AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
1976  Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
1977  "Attribute 'sret' cannot be used for vararg call arguments!",
1978  Call);
1979  }
1980  }
1981 
1982  const int EndCallArgsInx = 4 + NumCallArgs;
1983 
1984  const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
1985  Assert(isa<ConstantInt>(NumTransitionArgsV),
1986  "gc.statepoint number of transition arguments "
1987  "must be constant integer",
1988  Call);
1989  const int NumTransitionArgs =
1990  cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1991  Assert(NumTransitionArgs >= 0,
1992  "gc.statepoint number of transition arguments must be positive", Call);
1993  const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1994 
1995  const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
1996  Assert(isa<ConstantInt>(NumDeoptArgsV),
1997  "gc.statepoint number of deoptimization arguments "
1998  "must be constant integer",
1999  Call);
2000  const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2001  Assert(NumDeoptArgs >= 0,
2002  "gc.statepoint number of deoptimization arguments "
2003  "must be positive",
2004  Call);
2005 
2006  const int ExpectedNumArgs =
2007  7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
2008  Assert(ExpectedNumArgs <= (int)Call.arg_size(),
2009  "gc.statepoint too few arguments according to length fields", Call);
2010 
2011  // Check that the only uses of this gc.statepoint are gc.result or
2012  // gc.relocate calls which are tied to this statepoint and thus part
2013  // of the same statepoint sequence
2014  for (const User *U : Call.users()) {
2015  const CallInst *UserCall = dyn_cast<const CallInst>(U);
2016  Assert(UserCall, "illegal use of statepoint token", Call, U);
2017  if (!UserCall)
2018  continue;
2019  Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2020  "gc.result or gc.relocate are the only value uses "
2021  "of a gc.statepoint",
2022  Call, U);
2023  if (isa<GCResultInst>(UserCall)) {
2024  Assert(UserCall->getArgOperand(0) == &Call,
2025  "gc.result connected to wrong gc.statepoint", Call, UserCall);
2026  } else if (isa<GCRelocateInst>(Call)) {
2027  Assert(UserCall->getArgOperand(0) == &Call,
2028  "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2029  }
2030  }
2031 
2032  // Note: It is legal for a single derived pointer to be listed multiple
2033  // times. It's non-optimal, but it is legal. It can also happen after
2034  // insertion if we strip a bitcast away.
2035  // Note: It is really tempting to check that each base is relocated and
2036  // that a derived pointer is never reused as a base pointer. This turns
2037  // out to be problematic since optimizations run after safepoint insertion
2038  // can recognize equality properties that the insertion logic doesn't know
2039  // about. See example statepoint.ll in the verifier subdirectory
2040 }
2041 
2042 void Verifier::verifyFrameRecoverIndices() {
2043  for (auto &Counts : FrameEscapeInfo) {
2044  Function *F = Counts.first;
2045  unsigned EscapedObjectCount = Counts.second.first;
2046  unsigned MaxRecoveredIndex = Counts.second.second;
2047  Assert(MaxRecoveredIndex <= EscapedObjectCount,
2048  "all indices passed to llvm.localrecover must be less than the "
2049  "number of arguments passed to llvm.localescape in the parent "
2050  "function",
2051  F);
2052  }
2053 }
2054 
2056  BasicBlock *UnwindDest;
2057  if (auto *II = dyn_cast<InvokeInst>(Terminator))
2058  UnwindDest = II->getUnwindDest();
2059  else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2060  UnwindDest = CSI->getUnwindDest();
2061  else
2062  UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2063  return UnwindDest->getFirstNonPHI();
2064 }
2065 
2066 void Verifier::verifySiblingFuncletUnwinds() {
2069  for (const auto &Pair : SiblingFuncletInfo) {
2070  Instruction *PredPad = Pair.first;
2071  if (Visited.count(PredPad))
2072  continue;
2073  Active.insert(PredPad);
2074  Instruction *Terminator = Pair.second;
2075  do {
2076  Instruction *SuccPad = getSuccPad(Terminator);
2077  if (Active.count(SuccPad)) {
2078  // Found a cycle; report error
2079  Instruction *CyclePad = SuccPad;
2080  SmallVector<Instruction *, 8> CycleNodes;
2081  do {
2082  CycleNodes.push_back(CyclePad);
2083  Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2084  if (CycleTerminator != CyclePad)
2085  CycleNodes.push_back(CycleTerminator);
2086  CyclePad = getSuccPad(CycleTerminator);
2087  } while (CyclePad != SuccPad);
2088  Assert(false, "EH pads can't handle each other's exceptions",
2089  ArrayRef<Instruction *>(CycleNodes));
2090  }
2091  // Don't re-walk a node we've already checked
2092  if (!Visited.insert(SuccPad).second)
2093  break;
2094  // Walk to this successor if it has a map entry.
2095  PredPad = SuccPad;
2096  auto TermI = SiblingFuncletInfo.find(PredPad);
2097  if (TermI == SiblingFuncletInfo.end())
2098  break;
2099  Terminator = TermI->second;
2100  Active.insert(PredPad);
2101  } while (true);
2102  // Each node only has one successor, so we've walked all the active
2103  // nodes' successors.
2104  Active.clear();
2105  }
2106 }
2107 
2108 // visitFunction - Verify that a function is ok.
2109 //
2110 void Verifier::visitFunction(const Function &F) {
2111  visitGlobalValue(F);
2112 
2113  // Check function arguments.
2114  FunctionType *FT = F.getFunctionType();
2115  unsigned NumArgs = F.arg_size();
2116 
2117  Assert(&Context == &F.getContext(),
2118  "Function context does not match Module context!", &F);
2119 
2120  Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2121  Assert(FT->getNumParams() == NumArgs,
2122  "# formal arguments must match # of arguments for function type!", &F,
2123  FT);
2124  Assert(F.getReturnType()->isFirstClassType() ||
2125  F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2126  "Functions cannot return aggregate values!", &F);
2127 
2128  Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2129  "Invalid struct return type!", &F);
2130 
2131  AttributeList Attrs = F.getAttributes();
2132 
2133  Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2134  "Attribute after last parameter!", &F);
2135 
2136  bool isLLVMdotName = F.getName().size() >= 5 &&
2137  F.getName().substr(0, 5) == "llvm.";
2138 
2139  // Check function attributes.
2140  verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2141 
2142  // On function declarations/definitions, we do not support the builtin
2143  // attribute. We do not check this in VerifyFunctionAttrs since that is
2144  // checking for Attributes that can/can not ever be on functions.
2145  Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2146  "Attribute 'builtin' can only be applied to a callsite.", &F);
2147 
2148  // Check that this function meets the restrictions on this calling convention.
2149  // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2150  // restrictions can be lifted.
2151  switch (F.getCallingConv()) {
2152  default:
2153  case CallingConv::C:
2154  break;
2157  Assert(F.getReturnType()->isVoidTy(),
2158  "Calling convention requires void return type", &F);
2165  Assert(!F.hasStructRetAttr(),
2166  "Calling convention does not allow sret", &F);
2168  case CallingConv::Fast:
2169  case CallingConv::Cold:
2173  Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2174  "perfect forwarding!",
2175  &F);
2176  break;
2177  }
2178 
2179  // Check that the argument values match the function type for this function...
2180  unsigned i = 0;
2181  for (const Argument &Arg : F.args()) {
2182  Assert(Arg.getType() == FT->getParamType(i),
2183  "Argument value does not match function argument type!", &Arg,
2184  FT->getParamType(i));
2185  Assert(Arg.getType()->isFirstClassType(),
2186  "Function arguments must have first-class types!", &Arg);
2187  if (!isLLVMdotName) {
2188  Assert(!Arg.getType()->isMetadataTy(),
2189  "Function takes metadata but isn't an intrinsic", &Arg, &F);
2190  Assert(!Arg.getType()->isTokenTy(),
2191  "Function takes token but isn't an intrinsic", &Arg, &F);
2192  }
2193 
2194  // Check that swifterror argument is only used by loads and stores.
2195  if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2196  verifySwiftErrorValue(&Arg);
2197  }
2198  ++i;
2199  }
2200 
2201  if (!isLLVMdotName)
2202  Assert(!F.getReturnType()->isTokenTy(),
2203  "Functions returns a token but isn't an intrinsic", &F);
2204 
2205  // Get the function metadata attachments.
2207  F.getAllMetadata(MDs);
2208  assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2209  verifyFunctionMetadata(MDs);
2210 
2211  // Check validity of the personality function
2212  if (F.hasPersonalityFn()) {
2213  auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2214  if (Per)
2215  Assert(Per->getParent() == F.getParent(),
2216  "Referencing personality function in another module!",
2217  &F, F.getParent(), Per, Per->getParent());
2218  }
2219 
2220  if (F.isMaterializable()) {
2221  // Function has a body somewhere we can't see.
2222  Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2223  MDs.empty() ? nullptr : MDs.front().second);
2224  } else if (F.isDeclaration()) {
2225  for (const auto &I : MDs) {
2226  AssertDI(I.first != LLVMContext::MD_dbg,
2227  "function declaration may not have a !dbg attachment", &F);
2228  Assert(I.first != LLVMContext::MD_prof,
2229  "function declaration may not have a !prof attachment", &F);
2230 
2231  // Verify the metadata itself.
2232  visitMDNode(*I.second);
2233  }
2234  Assert(!F.hasPersonalityFn(),
2235  "Function declaration shouldn't have a personality routine", &F);
2236  } else {
2237  // Verify that this function (which has a body) is not named "llvm.*". It
2238  // is not legal to define intrinsics.
2239  Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2240 
2241  // Check the entry node
2242  const BasicBlock *Entry = &F.getEntryBlock();
2243  Assert(pred_empty(Entry),
2244  "Entry block to function must not have predecessors!", Entry);
2245 
2246  // The address of the entry block cannot be taken, unless it is dead.
2247  if (Entry->hasAddressTaken()) {
2248  Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2249  "blockaddress may not be used with the entry block!", Entry);
2250  }
2251 
2252  unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2253  // Visit metadata attachments.
2254  for (const auto &I : MDs) {
2255  // Verify that the attachment is legal.
2256  switch (I.first) {
2257  default:
2258  break;
2259  case LLVMContext::MD_dbg: {
2260  ++NumDebugAttachments;
2261  AssertDI(NumDebugAttachments == 1,
2262  "function must have a single !dbg attachment", &F, I.second);
2263  AssertDI(isa<DISubprogram>(I.second),
2264  "function !dbg attachment must be a subprogram", &F, I.second);
2265  auto *SP = cast<DISubprogram>(I.second);
2266  const Function *&AttachedTo = DISubprogramAttachments[SP];
2267  AssertDI(!AttachedTo || AttachedTo == &F,
2268  "DISubprogram attached to more than one function", SP, &F);
2269  AttachedTo = &F;
2270  break;
2271  }
2272  case LLVMContext::MD_prof:
2273  ++NumProfAttachments;
2274  Assert(NumProfAttachments == 1,
2275  "function must have a single !prof attachment", &F, I.second);
2276  break;
2277  }
2278 
2279  // Verify the metadata itself.
2280  visitMDNode(*I.second);
2281  }
2282  }
2283 
2284  // If this function is actually an intrinsic, verify that it is only used in
2285  // direct call/invokes, never having its "address taken".
2286  // Only do this if the module is materialized, otherwise we don't have all the
2287  // uses.
2288  if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2289  const User *U;
2290  if (F.hasAddressTaken(&U))
2291  Assert(false, "Invalid user of intrinsic instruction!", U);
2292  }
2293 
2294  auto *N = F.getSubprogram();
2295  HasDebugInfo = (N != nullptr);
2296  if (!HasDebugInfo)
2297  return;
2298 
2299  // Check that all !dbg attachments lead to back to N (or, at least, another
2300  // subprogram that describes the same function).
2301  //
2302  // FIXME: Check this incrementally while visiting !dbg attachments.
2303  // FIXME: Only check when N is the canonical subprogram for F.
2305  for (auto &BB : F)
2306  for (auto &I : BB) {
2307  // Be careful about using DILocation here since we might be dealing with
2308  // broken code (this is the Verifier after all).
2309  DILocation *DL =
2310  dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2311  if (!DL)
2312  continue;
2313  if (!Seen.insert(DL).second)
2314  continue;
2315 
2316  Metadata *Parent = DL->getRawScope();
2317  AssertDI(Parent && isa<DILocalScope>(Parent),
2318  "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2319  Parent);
2320  DILocalScope *Scope = DL->getInlinedAtScope();
2321  if (Scope && !Seen.insert(Scope).second)
2322  continue;
2323 
2324  DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2325 
2326  // Scope and SP could be the same MDNode and we don't want to skip
2327  // validation in that case
2328  if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2329  continue;
2330 
2331  // FIXME: Once N is canonical, check "SP == &N".
2332  AssertDI(SP->describes(&F),
2333  "!dbg attachment points at wrong subprogram for function", N, &F,
2334  &I, DL, Scope, SP);
2335  }
2336 }
2337 
2338 // verifyBasicBlock - Verify that a basic block is well formed...
2339 //
2340 void Verifier::visitBasicBlock(BasicBlock &BB) {
2341  InstsInThisBlock.clear();
2342 
2343  // Ensure that basic blocks have terminators!
2344  Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2345 
2346  // Check constraints that this basic block imposes on all of the PHI nodes in
2347  // it.
2348  if (isa<PHINode>(BB.front())) {
2351  llvm::sort(Preds);
2352  for (const PHINode &PN : BB.phis()) {
2353  // Ensure that PHI nodes have at least one entry!
2354  Assert(PN.getNumIncomingValues() != 0,
2355  "PHI nodes must have at least one entry. If the block is dead, "
2356  "the PHI should be removed!",
2357  &PN);
2358  Assert(PN.getNumIncomingValues() == Preds.size(),
2359  "PHINode should have one entry for each predecessor of its "
2360  "parent basic block!",
2361  &PN);
2362 
2363  // Get and sort all incoming values in the PHI node...
2364  Values.clear();
2365  Values.reserve(PN.getNumIncomingValues());
2366  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2367  Values.push_back(
2368  std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2369  llvm::sort(Values);
2370 
2371  for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2372  // Check to make sure that if there is more than one entry for a
2373  // particular basic block in this PHI node, that the incoming values are
2374  // all identical.
2375  //
2376  Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2377  Values[i].second == Values[i - 1].second,
2378  "PHI node has multiple entries for the same basic block with "
2379  "different incoming values!",
2380  &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2381 
2382  // Check to make sure that the predecessors and PHI node entries are
2383  // matched up.
2384  Assert(Values[i].first == Preds[i],
2385  "PHI node entries do not match predecessors!", &PN,
2386  Values[i].first, Preds[i]);
2387  }
2388  }
2389  }
2390 
2391  // Check that all instructions have their parent pointers set up correctly.
2392  for (auto &I : BB)
2393  {
2394  Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2395  }
2396 }
2397 
2398 void Verifier::visitTerminator(Instruction &I) {
2399  // Ensure that terminators only exist at the end of the basic block.
2400  Assert(&I == I.getParent()->getTerminator(),
2401  "Terminator found in the middle of a basic block!", I.getParent());
2402  visitInstruction(I);
2403 }
2404 
2405 void Verifier::visitBranchInst(BranchInst &BI) {
2406  if (BI.isConditional()) {
2407  Assert(BI.getCondition()->getType()->isIntegerTy(1),
2408  "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2409  }
2410  visitTerminator(BI);
2411 }
2412 
2413 void Verifier::visitReturnInst(ReturnInst &RI) {
2414  Function *F = RI.getParent()->getParent();
2415  unsigned N = RI.getNumOperands();
2416  if (F->getReturnType()->isVoidTy())
2417  Assert(N == 0,
2418  "Found return instr that returns non-void in Function of void "
2419  "return type!",
2420  &RI, F->getReturnType());
2421  else
2422  Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2423  "Function return type does not match operand "
2424  "type of return inst!",
2425  &RI, F->getReturnType());
2426 
2427  // Check to make sure that the return value has necessary properties for
2428  // terminators...
2429  visitTerminator(RI);
2430 }
2431 
2432 void Verifier::visitSwitchInst(SwitchInst &SI) {
2433  // Check to make sure that all of the constants in the switch instruction
2434  // have the same type as the switched-on value.
2435  Type *SwitchTy = SI.getCondition()->getType();
2437  for (auto &Case : SI.cases()) {
2438  Assert(Case.getCaseValue()->getType() == SwitchTy,
2439  "Switch constants must all be same type as switch value!", &SI);
2440  Assert(Constants.insert(Case.getCaseValue()).second,
2441  "Duplicate integer as switch case", &SI, Case.getCaseValue());
2442  }
2443 
2444  visitTerminator(SI);
2445 }
2446 
2447 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2448  Assert(BI.getAddress()->getType()->isPointerTy(),
2449  "Indirectbr operand must have pointer type!", &BI);
2450  for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2451  Assert(BI.getDestination(i)->getType()->isLabelTy(),
2452  "Indirectbr destinations must all have pointer type!", &BI);
2453 
2454  visitTerminator(BI);
2455 }
2456 
2457 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2458  Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2459  &CBI);
2460  Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!",
2461  &CBI);
2462  for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2463  Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2464  "Callbr successors must all have pointer type!", &CBI);
2465  for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2466  Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
2467  "Using an unescaped label as a callbr argument!", &CBI);
2468  if (isa<BasicBlock>(CBI.getOperand(i)))
2469  for (unsigned j = i + 1; j != e; ++j)
2470  Assert(CBI.getOperand(i) != CBI.getOperand(j),
2471  "Duplicate callbr destination!", &CBI);
2472  }
2473 
2474  visitTerminator(CBI);
2475 }
2476 
2477 void Verifier::visitSelectInst(SelectInst &SI) {
2479  SI.getOperand(2)),
2480  "Invalid operands for select instruction!", &SI);
2481 
2482  Assert(SI.getTrueValue()->getType() == SI.getType(),
2483  "Select values must have same type as select instruction!", &SI);
2484  visitInstruction(SI);
2485 }
2486 
2487 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2488 /// a pass, if any exist, it's an error.
2489 ///
2490 void Verifier::visitUserOp1(Instruction &I) {
2491  Assert(false, "User-defined operators should not live outside of a pass!", &I);
2492 }
2493 
2494 void Verifier::visitTruncInst(TruncInst &I) {
2495  // Get the source and destination types
2496  Type *SrcTy = I.getOperand(0)->getType();
2497  Type *DestTy = I.getType();
2498 
2499  // Get the size of the types in bits, we'll need this later
2500  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2501  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2502 
2503  Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2504  Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2505  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2506  "trunc source and destination must both be a vector or neither", &I);
2507  Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2508 
2509  visitInstruction(I);
2510 }
2511 
2512 void Verifier::visitZExtInst(ZExtInst &I) {
2513  // Get the source and destination types
2514  Type *SrcTy = I.getOperand(0)->getType();
2515  Type *DestTy = I.getType();
2516 
2517  // Get the size of the types in bits, we'll need this later
2518  Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2519  Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2520  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2521  "zext source and destination must both be a vector or neither", &I);
2522  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2523  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2524 
2525  Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2526 
2527  visitInstruction(I);
2528 }
2529 
2530 void Verifier::visitSExtInst(SExtInst &I) {
2531  // Get the source and destination types
2532  Type *SrcTy = I.getOperand(0)->getType();
2533  Type *DestTy = I.getType();
2534 
2535  // Get the size of the types in bits, we'll need this later
2536  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2537  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2538 
2539  Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2540  Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2541  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2542  "sext source and destination must both be a vector or neither", &I);
2543  Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2544 
2545  visitInstruction(I);
2546 }
2547 
2548 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2549  // Get the source and destination types
2550  Type *SrcTy = I.getOperand(0)->getType();
2551  Type *DestTy = I.getType();
2552  // Get the size of the types in bits, we'll need this later
2553  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2554  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2555 
2556  Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2557  Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2558  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2559  "fptrunc source and destination must both be a vector or neither", &I);
2560  Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2561 
2562  visitInstruction(I);
2563 }
2564 
2565 void Verifier::visitFPExtInst(FPExtInst &I) {
2566  // Get the source and destination types
2567  Type *SrcTy = I.getOperand(0)->getType();
2568  Type *DestTy = I.getType();
2569 
2570  // Get the size of the types in bits, we'll need this later
2571  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2572  unsigned DestBitSize = DestTy->getScalarSizeInBits();
2573 
2574  Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2575  Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2576  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2577  "fpext source and destination must both be a vector or neither", &I);
2578  Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2579 
2580  visitInstruction(I);
2581 }
2582 
2583 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2584  // Get the source and destination types
2585  Type *SrcTy = I.getOperand(0)->getType();
2586  Type *DestTy = I.getType();
2587 
2588  bool SrcVec = SrcTy->isVectorTy();
2589  bool DstVec = DestTy->isVectorTy();
2590 
2591  Assert(SrcVec == DstVec,
2592  "UIToFP source and dest must both be vector or scalar", &I);
2593  Assert(SrcTy->isIntOrIntVectorTy(),
2594  "UIToFP source must be integer or integer vector", &I);
2595  Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2596  &I);
2597 
2598  if (SrcVec && DstVec)
2599  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2600  cast<VectorType>(DestTy)->getNumElements(),
2601  "UIToFP source and dest vector length mismatch", &I);
2602 
2603  visitInstruction(I);
2604 }
2605 
2606 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2607  // Get the source and destination types
2608  Type *SrcTy = I.getOperand(0)->getType();
2609  Type *DestTy = I.getType();
2610 
2611  bool SrcVec = SrcTy->isVectorTy();
2612  bool DstVec = DestTy->isVectorTy();
2613 
2614  Assert(SrcVec == DstVec,
2615  "SIToFP source and dest must both be vector or scalar", &I);
2616  Assert(SrcTy->isIntOrIntVectorTy(),
2617  "SIToFP source must be integer or integer vector", &I);
2618  Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2619  &I);
2620 
2621  if (SrcVec && DstVec)
2622  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2623  cast<VectorType>(DestTy)->getNumElements(),
2624  "SIToFP source and dest vector length mismatch", &I);
2625 
2626  visitInstruction(I);
2627 }
2628 
2629 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2630  // Get the source and destination types
2631  Type *SrcTy = I.getOperand(0)->getType();
2632  Type *DestTy = I.getType();
2633 
2634  bool SrcVec = SrcTy->isVectorTy();
2635  bool DstVec = DestTy->isVectorTy();
2636 
2637  Assert(SrcVec == DstVec,
2638  "FPToUI source and dest must both be vector or scalar", &I);
2639  Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2640  &I);
2641  Assert(DestTy->isIntOrIntVectorTy(),
2642  "FPToUI result must be integer or integer vector", &I);
2643 
2644  if (SrcVec && DstVec)
2645  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2646  cast<VectorType>(DestTy)->getNumElements(),
2647  "FPToUI source and dest vector length mismatch", &I);
2648 
2649  visitInstruction(I);
2650 }
2651 
2652 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2653  // Get the source and destination types
2654  Type *SrcTy = I.getOperand(0)->getType();
2655  Type *DestTy = I.getType();
2656 
2657  bool SrcVec = SrcTy->isVectorTy();
2658  bool DstVec = DestTy->isVectorTy();
2659 
2660  Assert(SrcVec == DstVec,
2661  "FPToSI source and dest must both be vector or scalar", &I);
2662  Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2663  &I);
2664  Assert(DestTy->isIntOrIntVectorTy(),
2665  "FPToSI result must be integer or integer vector", &I);
2666 
2667  if (SrcVec && DstVec)
2668  Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2669  cast<VectorType>(DestTy)->getNumElements(),
2670  "FPToSI source and dest vector length mismatch", &I);
2671 
2672  visitInstruction(I);
2673 }
2674 
2675 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2676  // Get the source and destination types
2677  Type *SrcTy = I.getOperand(0)->getType();
2678  Type *DestTy = I.getType();
2679 
2680  Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2681 
2682  if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2684  "ptrtoint not supported for non-integral pointers");
2685 
2686  Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2687  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2688  &I);
2689 
2690  if (SrcTy->isVectorTy()) {
2691  VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2692  VectorType *VDest = dyn_cast<VectorType>(DestTy);
2693  Assert(VSrc->getNumElements() == VDest->getNumElements(),
2694  "PtrToInt Vector width mismatch", &I);
2695  }
2696 
2697  visitInstruction(I);
2698 }
2699 
2700 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2701  // Get the source and destination types
2702  Type *SrcTy = I.getOperand(0)->getType();
2703  Type *DestTy = I.getType();
2704 
2705  Assert(SrcTy->isIntOrIntVectorTy(),
2706  "IntToPtr source must be an integral", &I);
2707  Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2708 
2709  if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2711  "inttoptr not supported for non-integral pointers");
2712 
2713  Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2714  &I);
2715  if (SrcTy->isVectorTy()) {
2716  VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2717  VectorType *VDest = dyn_cast<VectorType>(DestTy);
2718  Assert(VSrc->getNumElements() == VDest->getNumElements(),
2719  "IntToPtr Vector width mismatch", &I);
2720  }
2721  visitInstruction(I);
2722 }
2723 
2724 void Verifier::visitBitCastInst(BitCastInst &I) {
2725  Assert(
2726  CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2727  "Invalid bitcast", &I);
2728  visitInstruction(I);
2729 }
2730 
2731 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2732  Type *SrcTy = I.getOperand(0)->getType();
2733  Type *DestTy = I.getType();
2734 
2735  Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2736  &I);
2737  Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2738  &I);
2740  "AddrSpaceCast must be between different address spaces", &I);
2741  if (SrcTy->isVectorTy())
2742  Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2743  "AddrSpaceCast vector pointer number of elements mismatch", &I);
2744  visitInstruction(I);
2745 }
2746 
2747 /// visitPHINode - Ensure that a PHI node is well formed.
2748 ///
2749 void Verifier::visitPHINode(PHINode &PN) {
2750  // Ensure that the PHI nodes are all grouped together at the top of the block.
2751  // This can be tested by checking whether the instruction before this is
2752  // either nonexistent (because this is begin()) or is a PHI node. If not,
2753  // then there is some other instruction before a PHI.
2754  Assert(&PN == &PN.getParent()->front() ||
2755  isa<PHINode>(--BasicBlock::iterator(&PN)),
2756  "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2757 
2758  // Check that a PHI doesn't yield a Token.
2759  Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2760 
2761  // Check that all of the values of the PHI node have the same type as the
2762  // result, and that the incoming blocks are really basic blocks.
2763  for (Value *IncValue : PN.incoming_values()) {
2764  Assert(PN.getType() == IncValue->getType(),
2765  "PHI node operands are not the same type as the result!", &PN);
2766  }
2767 
2768  // All other PHI node constraints are checked in the visitBasicBlock method.
2769 
2770  visitInstruction(PN);
2771 }
2772 
2773 void Verifier::visitCallBase(CallBase &Call) {
2775  "Called function must be a pointer!", Call);
2776  PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType());
2777 
2778  Assert(FPTy->getElementType()->isFunctionTy(),
2779  "Called function is not pointer to function type!", Call);
2780 
2781  Assert(FPTy->getElementType() == Call.getFunctionType(),
2782  "Called function is not the same type as the call!", Call);
2783 
2784  FunctionType *FTy = Call.getFunctionType();
2785 
2786  // Verify that the correct number of arguments are being passed
2787  if (FTy->isVarArg())
2788  Assert(Call.arg_size() >= FTy->getNumParams(),
2789  "Called function requires more parameters than were provided!",
2790  Call);
2791  else
2792  Assert(Call.arg_size() == FTy->getNumParams(),
2793  "Incorrect number of arguments passed to called function!", Call);
2794 
2795  // Verify that all arguments to the call match the function type.
2796  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2797  Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
2798  "Call parameter type does not match function signature!",
2799  Call.getArgOperand(i), FTy->getParamType(i), Call);
2800 
2801  AttributeList Attrs = Call.getAttributes();
2802 
2803  Assert(verifyAttributeCount(Attrs, Call.arg_size()),
2804  "Attribute after last parameter!", Call);
2805 
2806  bool IsIntrinsic = Call.getCalledFunction() &&
2807  Call.getCalledFunction()->getName().startswith("llvm.");
2808 
2809  Function *Callee
2811 
2812  if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2813  // Don't allow speculatable on call sites, unless the underlying function
2814  // declaration is also speculatable.
2815  Assert(Callee && Callee->isSpeculatable(),
2816  "speculatable attribute may not apply to call sites", Call);
2817  }
2818 
2819  // Verify call attributes.
2820  verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
2821 
2822  // Conservatively check the inalloca argument.
2823  // We have a bug if we can find that there is an underlying alloca without
2824  // inalloca.
2825  if (Call.hasInAllocaArgument()) {
2826  Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
2827  if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2828  Assert(AI->isUsedWithInAlloca(),
2829  "inalloca argument for call has mismatched alloca", AI, Call);
2830  }
2831 
2832  // For each argument of the callsite, if it has the swifterror argument,
2833  // make sure the underlying alloca/parameter it comes from has a swifterror as
2834  // well.
2835  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2836  if (Call.paramHasAttr(i, Attribute::SwiftError)) {
2837  Value *SwiftErrorArg = Call.getArgOperand(i);
2838  if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2839  Assert(AI->isSwiftError(),
2840  "swifterror argument for call has mismatched alloca", AI, Call);
2841  continue;
2842  }
2843  auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2844  Assert(ArgI,
2845  "swifterror argument should come from an alloca or parameter",
2846  SwiftErrorArg, Call);
2847  Assert(ArgI->hasSwiftErrorAttr(),
2848  "swifterror argument for call has mismatched parameter", ArgI,
2849  Call);
2850  }
2851 
2852  if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
2853  // Don't allow immarg on call sites, unless the underlying declaration
2854  // also has the matching immarg.
2855  Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
2856  "immarg may not apply only to call sites",
2857  Call.getArgOperand(i), Call);
2858  }
2859 
2860  if (Call.paramHasAttr(i, Attribute::ImmArg)) {
2861  Value *ArgVal = Call.getArgOperand(i);
2862  Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
2863  "immarg operand has non-immediate parameter", ArgVal, Call);
2864  }
2865  }
2866 
2867  if (FTy->isVarArg()) {
2868  // FIXME? is 'nest' even legal here?
2869  bool SawNest = false;
2870  bool SawReturned = false;
2871 
2872  for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2873  if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2874  SawNest = true;
2875  if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2876  SawReturned = true;
2877  }
2878 
2879  // Check attributes on the varargs part.
2880  for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
2881  Type *Ty = Call.getArgOperand(Idx)->getType();
2882  AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2883  verifyParameterAttrs(ArgAttrs, Ty, &Call);
2884 
2885  if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2886  Assert(!SawNest, "More than one parameter has attribute nest!", Call);
2887  SawNest = true;
2888  }
2889 
2890  if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2891  Assert(!SawReturned, "More than one parameter has attribute returned!",
2892  Call);
2893  Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2894  "Incompatible argument and return types for 'returned' "
2895  "attribute",
2896  Call);
2897  SawReturned = true;
2898  }
2899 
2900  // Statepoint intrinsic is vararg but the wrapped function may be not.
2901  // Allow sret here and check the wrapped function in verifyStatepoint.
2902  if (!Call.getCalledFunction() ||
2903  Call.getCalledFunction()->getIntrinsicID() !=
2904  Intrinsic::experimental_gc_statepoint)
2905  Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2906  "Attribute 'sret' cannot be used for vararg call arguments!",
2907  Call);
2908 
2909  if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2910  Assert(Idx == Call.arg_size() - 1,
2911  "inalloca isn't on the last argument!", Call);
2912  }
2913  }
2914 
2915  // Verify that there's no metadata unless it's a direct call to an intrinsic.
2916  if (!IsIntrinsic) {
2917  for (Type *ParamTy : FTy->params()) {
2918  Assert(!ParamTy->isMetadataTy(),
2919  "Function has metadata parameter but isn't an intrinsic", Call);
2920  Assert(!ParamTy->isTokenTy(),
2921  "Function has token parameter but isn't an intrinsic", Call);
2922  }
2923  }
2924 
2925  // Verify that indirect calls don't return tokens.
2926  if (!Call.getCalledFunction())
2927  Assert(!FTy->getReturnType()->isTokenTy(),
2928  "Return type cannot be token for indirect call!");
2929 
2930  if (Function *F = Call.getCalledFunction())
2932  visitIntrinsicCall(ID, Call);
2933 
2934  // Verify that a callsite has at most one "deopt", at most one "funclet" and
2935  // at most one "gc-transition" operand bundle.
2936  bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2937  FoundGCTransitionBundle = false;
2938  for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
2939  OperandBundleUse BU = Call.getOperandBundleAt(i);
2940  uint32_t Tag = BU.getTagID();
2941  if (Tag == LLVMContext::OB_deopt) {
2942  Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
2943  FoundDeoptBundle = true;
2944  } else if (Tag == LLVMContext::OB_gc_transition) {
2945  Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2946  Call);
2947  FoundGCTransitionBundle = true;
2948  } else if (Tag == LLVMContext::OB_funclet) {
2949  Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
2950  FoundFuncletBundle = true;
2951  Assert(BU.Inputs.size() == 1,
2952  "Expected exactly one funclet bundle operand", Call);
2953  Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2954  "Funclet bundle operands should correspond to a FuncletPadInst",
2955  Call);
2956  }
2957  }
2958 
2959  // Verify that each inlinable callsite of a debug-info-bearing function in a
2960  // debug-info-bearing function has a debug location attached to it. Failure to
2961  // do so causes assertion failures when the inliner sets up inline scope info.
2962  if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
2963  Call.getCalledFunction()->getSubprogram())
2964  AssertDI(Call.getDebugLoc(),
2965  "inlinable function call in a function with "
2966  "debug info must have a !dbg location",
2967  Call);
2968 
2969  visitInstruction(Call);
2970 }
2971 
2972 /// Two types are "congruent" if they are identical, or if they are both pointer
2973 /// types with different pointee types and the same address space.
2974 static bool isTypeCongruent(Type *L, Type *R) {
2975  if (L == R)
2976  return true;
2979  if (!PL || !PR)
2980  return false;
2981  return PL->getAddressSpace() == PR->getAddressSpace();
2982 }
2983 
2985  static const Attribute::AttrKind ABIAttrs[] = {
2986  Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2987  Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2988  Attribute::SwiftError};
2989  AttrBuilder Copy;
2990  for (auto AK : ABIAttrs) {
2991  if (Attrs.hasParamAttribute(I, AK))
2992  Copy.addAttribute(AK);
2993  }
2994  if (Attrs.hasParamAttribute(I, Attribute::Alignment))
2995  Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
2996  return Copy;
2997 }
2998 
2999 void Verifier::verifyMustTailCall(CallInst &CI) {
3000  Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3001 
3002  // - The caller and callee prototypes must match. Pointer types of
3003  // parameters or return types may differ in pointee type, but not
3004  // address space.
3005  Function *F = CI.getParent()->getParent();
3006  FunctionType *CallerTy = F->getFunctionType();
3007  FunctionType *CalleeTy = CI.getFunctionType();
3008  if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3009  Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3010  "cannot guarantee tail call due to mismatched parameter counts",
3011  &CI);
3012  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3013  Assert(
3014  isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3015  "cannot guarantee tail call due to mismatched parameter types", &CI);
3016  }
3017  }
3018  Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3019  "cannot guarantee tail call due to mismatched varargs", &CI);
3020  Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3021  "cannot guarantee tail call due to mismatched return types", &CI);
3022 
3023  // - The calling conventions of the caller and callee must match.
3024  Assert(F->getCallingConv() == CI.getCallingConv(),
3025  "cannot guarantee tail call due to mismatched calling conv", &CI);
3026 
3027  // - All ABI-impacting function attributes, such as sret, byval, inreg,
3028  // returned, and inalloca, must match.
3029  AttributeList CallerAttrs = F->getAttributes();
3030  AttributeList CalleeAttrs = CI.getAttributes();
3031  for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3032  AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3033  AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3034  Assert(CallerABIAttrs == CalleeABIAttrs,
3035  "cannot guarantee tail call due to mismatched ABI impacting "
3036  "function attributes",
3037  &CI, CI.getOperand(I));
3038  }
3039 
3040  // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3041  // or a pointer bitcast followed by a ret instruction.
3042  // - The ret instruction must return the (possibly bitcasted) value
3043  // produced by the call or void.
3044  Value *RetVal = &CI;
3045  Instruction *Next = CI.getNextNode();
3046 
3047  // Handle the optional bitcast.
3048  if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3049  Assert(BI->getOperand(0) == RetVal,
3050  "bitcast following musttail call must use the call", BI);
3051  RetVal = BI;
3052  Next = BI->getNextNode();
3053  }
3054 
3055  // Check the return.
3056  ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3057  Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3058  &CI);
3059  Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
3060  "musttail call result must be returned", Ret);
3061 }
3062 
3063 void Verifier::visitCallInst(CallInst &CI) {
3064  visitCallBase(CI);
3065 
3066  if (CI.isMustTailCall())
3067  verifyMustTailCall(CI);
3068 }
3069 
3070 void Verifier::visitInvokeInst(InvokeInst &II) {
3071  visitCallBase(II);
3072 
3073  // Verify that the first non-PHI instruction of the unwind destination is an
3074  // exception handling instruction.
3075  Assert(
3076  II.getUnwindDest()->isEHPad(),
3077  "The unwind destination does not have an exception handling instruction!",
3078  &II);
3079 
3080  visitTerminator(II);
3081 }
3082 
3083 /// visitUnaryOperator - Check the argument to the unary operator.
3084 ///
3085 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3086  Assert(U.getType() == U.getOperand(0)->getType(),
3087  "Unary operators must have same type for"
3088  "operands and result!",
3089  &U);
3090 
3091  switch (U.getOpcode()) {
3092  // Check that floating-point arithmetic operators are only used with
3093  // floating-point operands.
3094  case Instruction::FNeg:
3096  "FNeg operator only works with float types!", &U);
3097  break;
3098  default:
3099  llvm_unreachable("Unknown UnaryOperator opcode!");
3100  }
3101 
3102  visitInstruction(U);
3103 }
3104 
3105 /// visitBinaryOperator - Check that both arguments to the binary operator are
3106 /// of the same type!
3107 ///
3108 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3109  Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3110  "Both operands to a binary operator are not of the same type!", &B);
3111 
3112  switch (B.getOpcode()) {
3113  // Check that integer arithmetic operators are only used with
3114  // integral operands.
3115  case Instruction::Add:
3116  case Instruction::Sub:
3117  case Instruction::Mul:
3118  case Instruction::SDiv:
3119  case Instruction::UDiv:
3120  case Instruction::SRem:
3121  case Instruction::URem:
3123  "Integer arithmetic operators only work with integral types!", &B);
3124  Assert(B.getType() == B.getOperand(0)->getType(),
3125  "Integer arithmetic operators must have same type "
3126  "for operands and result!",
3127  &B);
3128  break;
3129  // Check that floating-point arithmetic operators are only used with
3130  // floating-point operands.
3131  case Instruction::FAdd:
3132  case Instruction::FSub:
3133  case Instruction::FMul:
3134  case Instruction::FDiv:
3135  case Instruction::FRem:
3137  "Floating-point arithmetic operators only work with "
3138  "floating-point types!",
3139  &B);
3140  Assert(B.getType() == B.getOperand(0)->getType(),
3141  "Floating-point arithmetic operators must have same type "
3142  "for operands and result!",
3143  &B);
3144  break;
3145  // Check that logical operators are only used with integral operands.
3146  case Instruction::And:
3147  case Instruction::Or:
3148  case Instruction::Xor:
3150  "Logical operators only work with integral types!", &B);
3151  Assert(B.getType() == B.getOperand(0)->getType(),
3152  "Logical operators must have same type for operands and result!",
3153  &B);
3154  break;
3155  case Instruction::Shl:
3156  case Instruction::LShr:
3157  case Instruction::AShr:
3159  "Shifts only work with integral types!", &B);
3160  Assert(B.getType() == B.getOperand(0)->getType(),
3161  "Shift return type must be same as operands!", &B);
3162  break;
3163  default:
3164  llvm_unreachable("Unknown BinaryOperator opcode!");
3165  }
3166 
3167  visitInstruction(B);
3168 }
3169 
3170 void Verifier::visitICmpInst(ICmpInst &IC) {
3171  // Check that the operands are the same type
3172  Type *Op0Ty = IC.getOperand(0)->getType();
3173  Type *Op1Ty = IC.getOperand(1)->getType();
3174  Assert(Op0Ty == Op1Ty,
3175  "Both operands to ICmp instruction are not of the same type!", &IC);
3176  // Check that the operands are the right type
3177  Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3178  "Invalid operand types for ICmp instruction", &IC);
3179  // Check that the predicate is valid.
3180  Assert(IC.isIntPredicate(),
3181  "Invalid predicate in ICmp instruction!", &IC);
3182 
3183  visitInstruction(IC);
3184 }
3185 
3186 void Verifier::visitFCmpInst(FCmpInst &FC) {
3187  // Check that the operands are the same type
3188  Type *Op0Ty = FC.getOperand(0)->getType();
3189  Type *Op1Ty = FC.getOperand(1)->getType();
3190  Assert(Op0Ty == Op1Ty,
3191  "Both operands to FCmp instruction are not of the same type!", &FC);
3192  // Check that the operands are the right type
3193  Assert(Op0Ty->isFPOrFPVectorTy(),
3194  "Invalid operand types for FCmp instruction", &FC);
3195  // Check that the predicate is valid.
3196  Assert(FC.isFPPredicate(),
3197  "Invalid predicate in FCmp instruction!", &FC);
3198 
3199  visitInstruction(FC);
3200 }
3201 
3202 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3203  Assert(
3205  "Invalid extractelement operands!", &EI);
3206  visitInstruction(EI);
3207 }
3208 
3209 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3211  IE.getOperand(2)),
3212  "Invalid insertelement operands!", &IE);
3213  visitInstruction(IE);
3214 }
3215 
3216 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3218  SV.getOperand(2)),
3219  "Invalid shufflevector operands!", &SV);
3220  visitInstruction(SV);
3221 }
3222 
3223 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3224  Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3225 
3226  Assert(isa<PointerType>(TargetTy),
3227  "GEP base pointer is not a vector or a vector of pointers", &GEP);
3228  Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3229 
3230  SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3231  Assert(all_of(
3232  Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3233  "GEP indexes must be integers", &GEP);
3234  Type *ElTy =
3236  Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3237 
3238  Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3239  GEP.getResultElementType() == ElTy,
3240  "GEP is not of right type for indices!", &GEP, ElTy);
3241 
3242  if (GEP.getType()->isVectorTy()) {
3243  // Additional checks for vector GEPs.
3244  unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3245  if (GEP.getPointerOperandType()->isVectorTy())
3246  Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3247  "Vector GEP result width doesn't match operand's", &GEP);
3248  for (Value *Idx : Idxs) {
3249  Type *IndexTy = Idx->getType();
3250  if (IndexTy->isVectorTy()) {
3251  unsigned IndexWidth = IndexTy->getVectorNumElements();
3252  Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3253  }
3254  Assert(IndexTy->isIntOrIntVectorTy(),
3255  "All GEP indices should be of integer type");
3256  }
3257  }
3258 
3259  if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3260  Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3261  "GEP address space doesn't match type", &GEP);
3262  }
3263 
3264  visitInstruction(GEP);
3265 }
3266 
3267 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3268  return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3269 }
3270 
3271 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3272  assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3273  "precondition violation");
3274 
3275  unsigned NumOperands = Range->getNumOperands();
3276  Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3277  unsigned NumRanges = NumOperands / 2;
3278  Assert(NumRanges >= 1, "It should have at least one range!", Range);
3279 
3280  ConstantRange LastRange(1, true); // Dummy initial value
3281  for (unsigned i = 0; i < NumRanges; ++i) {
3282  ConstantInt *Low =
3283  mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3284  Assert(Low, "The lower limit must be an integer!", Low);
3285  ConstantInt *High =
3286  mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3287  Assert(High, "The upper limit must be an integer!", High);
3288  Assert(High->getType() == Low->getType() && High->getType() == Ty,
3289  "Range types must match instruction type!", &I);
3290 
3291  APInt HighV = High->getValue();
3292  APInt LowV = Low->getValue();
3293  ConstantRange CurRange(LowV, HighV);
3294  Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3295  "Range must not be empty!", Range);
3296  if (i != 0) {
3297  Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3298  "Intervals are overlapping", Range);
3299  Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3300  Range);
3301  Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3302  Range);
3303  }
3304  LastRange = ConstantRange(LowV, HighV);
3305  }
3306  if (NumRanges > 2) {
3307  APInt FirstLow =
3308  mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3309  APInt FirstHigh =
3310  mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3311  ConstantRange FirstRange(FirstLow, FirstHigh);
3312  Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3313  "Intervals are overlapping", Range);
3314  Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3315  Range);
3316  }
3317 }
3318 
3319 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3320  unsigned Size = DL.getTypeSizeInBits(Ty);
3321  Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3322  Assert(!(Size & (Size - 1)),
3323  "atomic memory access' operand must have a power-of-two size", Ty, I);
3324 }
3325 
3326 void Verifier::visitLoadInst(LoadInst &LI) {
3328  Assert(PTy, "Load operand must be a pointer.", &LI);
3329  Type *ElTy = LI.getType();
3331  "huge alignment values are unsupported", &LI);
3332  Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3333  if (LI.isAtomic()) {
3336  "Load cannot have Release ordering", &LI);
3337  Assert(LI.getAlignment() != 0,
3338  "Atomic load must specify explicit alignment", &LI);
3339  Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3340  "atomic load operand must have integer, pointer, or floating point "
3341  "type!",
3342  ElTy, &LI);
3343  checkAtomicMemAccessSize(ElTy, &LI);
3344  } else {
3346  "Non-atomic load cannot have SynchronizationScope specified", &LI);
3347  }
3348 
3349  visitInstruction(LI);
3350 }
3351 
3352 void Verifier::visitStoreInst(StoreInst &SI) {
3354  Assert(PTy, "Store operand must be a pointer.", &SI);
3355  Type *ElTy = PTy->getElementType();
3356  Assert(ElTy == SI.getOperand(0)->getType(),
3357  "Stored value type does not match pointer operand type!", &SI, ElTy);
3359  "huge alignment values are unsupported", &SI);
3360  Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3361  if (SI.isAtomic()) {
3364  "Store cannot have Acquire ordering", &SI);
3365  Assert(SI.getAlignment() != 0,
3366  "Atomic store must specify explicit alignment", &SI);
3367  Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3368  "atomic store operand must have integer, pointer, or floating point "
3369  "type!",
3370  ElTy, &SI);
3371  checkAtomicMemAccessSize(ElTy, &SI);
3372  } else {
3374  "Non-atomic store cannot have SynchronizationScope specified", &SI);
3375  }
3376  visitInstruction(SI);
3377 }
3378 
3379 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3380 void Verifier::verifySwiftErrorCall(CallBase &Call,
3381  const Value *SwiftErrorVal) {
3382  unsigned Idx = 0;
3383  for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
3384  if (*I == SwiftErrorVal) {
3385  Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),
3386  "swifterror value when used in a callsite should be marked "
3387  "with swifterror attribute",
3388  SwiftErrorVal, Call);
3389  }
3390  }
3391 }
3392 
3393 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3394  // Check that swifterror value is only used by loads, stores, or as
3395  // a swifterror argument.
3396  for (const User *U : SwiftErrorVal->users()) {
3397  Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3398  isa<InvokeInst>(U),
3399  "swifterror value can only be loaded and stored from, or "
3400  "as a swifterror argument!",
3401  SwiftErrorVal, U);
3402  // If it is used by a store, check it is the second operand.
3403  if (auto StoreI = dyn_cast<StoreInst>(U))
3404  Assert(StoreI->getOperand(1) == SwiftErrorVal,
3405  "swifterror value should be the second operand when used "
3406  "by stores", SwiftErrorVal, U);
3407  if (auto *Call = dyn_cast<CallBase>(U))
3408  verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3409  }
3410 }
3411 
3412 void Verifier::visitAllocaInst(AllocaInst &AI) {
3413  SmallPtrSet<Type*, 4> Visited;
3414  PointerType *PTy = AI.getType();
3415  // TODO: Relax this restriction?
3417  "Allocation instruction pointer not in the stack address space!",
3418  &AI);
3419  Assert(AI.getAllocatedType()->isSized(&Visited),
3420  "Cannot allocate unsized type", &AI);
3422  "Alloca array size must have integer type", &AI);
3424  "huge alignment values are unsupported", &AI);
3425 
3426  if (AI.isSwiftError()) {
3427  verifySwiftErrorValue(&AI);
3428  }
3429 
3430  visitInstruction(AI);
3431 }
3432 
3433 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3434 
3435  // FIXME: more conditions???
3437  "cmpxchg instructions must be atomic.", &CXI);
3439  "cmpxchg instructions must be atomic.", &CXI);
3441  "cmpxchg instructions cannot be unordered.", &CXI);
3443  "cmpxchg instructions cannot be unordered.", &CXI);
3445  "cmpxchg instructions failure argument shall be no stronger than the "
3446  "success argument",
3447  &CXI);
3450  "cmpxchg failure ordering cannot include release semantics", &CXI);
3451 
3452  PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3453  Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3454  Type *ElTy = PTy->getElementType();
3455  Assert(ElTy->isIntOrPtrTy(),
3456  "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3457  checkAtomicMemAccessSize(ElTy, &CXI);
3458  Assert(ElTy == CXI.getOperand(1)->getType(),
3459  "Expected value type does not match pointer operand type!", &CXI,
3460  ElTy);
3461  Assert(ElTy == CXI.getOperand(2)->getType(),
3462  "Stored value type does not match pointer operand type!", &CXI, ElTy);
3463  visitInstruction(CXI);
3464 }
3465 
3466 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3468  "atomicrmw instructions must be atomic.", &RMWI);
3470  "atomicrmw instructions cannot be unordered.", &RMWI);
3471  auto Op = RMWI.getOperation();
3472  PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3473  Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3474  Type *ElTy = PTy->getElementType();
3475  if (Op == AtomicRMWInst::Xchg) {
3476  Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3478  " operand must have integer or floating point type!",
3479  &RMWI, ElTy);
3480  } else if (AtomicRMWInst::isFPOperation(Op)) {
3481  Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3483  " operand must have floating point type!",
3484  &RMWI, ElTy);
3485  } else {
3486  Assert(ElTy->isIntegerTy(), "atomicrmw " +
3488  " operand must have integer type!",
3489  &RMWI, ElTy);
3490  }
3491  checkAtomicMemAccessSize(ElTy, &RMWI);
3492  Assert(ElTy == RMWI.getOperand(1)->getType(),
3493  "Argument value type does not match pointer operand type!", &RMWI,
3494  ElTy);
3496  "Invalid binary operation!", &RMWI);
3497  visitInstruction(RMWI);
3498 }
3499 
3500 void Verifier::visitFenceInst(FenceInst &FI) {
3501  const AtomicOrdering Ordering = FI.getOrdering();
3502  Assert(Ordering == AtomicOrdering::Acquire ||
3503  Ordering == AtomicOrdering::Release ||
3504  Ordering == AtomicOrdering::AcquireRelease ||
3506  "fence instructions may only have acquire, release, acq_rel, or "
3507  "seq_cst ordering.",
3508  &FI);
3509  visitInstruction(FI);
3510 }
3511 
3512 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3514  EVI.getIndices()) == EVI.getType(),
3515  "Invalid ExtractValueInst operands!", &EVI);
3516 
3517  visitInstruction(EVI);
3518 }
3519 
3520 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3522  IVI.getIndices()) ==
3523  IVI.getOperand(1)->getType(),
3524  "Invalid InsertValueInst operands!", &IVI);
3525 
3526  visitInstruction(IVI);
3527 }
3528 
3529 static Value *getParentPad(Value *EHPad) {
3530  if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3531  return FPI->getParentPad();
3532 
3533  return cast<CatchSwitchInst>(EHPad)->getParentPad();
3534 }
3535 
3536 void Verifier::visitEHPadPredecessors(Instruction &I) {
3537  assert(I.isEHPad());
3538 
3539  BasicBlock *BB = I.getParent();
3540  Function *F = BB->getParent();
3541 
3542  Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3543 
3544  if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3545  // The landingpad instruction defines its parent as a landing pad block. The
3546  // landing pad block may be branched to only by the unwind edge of an
3547  // invoke.
3548  for (BasicBlock *PredBB : predecessors(BB)) {
3549  const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3550  Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3551  "Block containing LandingPadInst must be jumped to "
3552  "only by the unwind edge of an invoke.",
3553  LPI);
3554  }
3555  return;
3556  }
3557  if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3558  if (!pred_empty(BB))
3559  Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3560  "Block containg CatchPadInst must be jumped to "
3561  "only by its catchswitch.",
3562  CPI);
3563  Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3564  "Catchswitch cannot unwind to one of its catchpads",
3565  CPI->getCatchSwitch(), CPI);
3566  return;
3567  }
3568 
3569  // Verify that each pred has a legal terminator with a legal to/from EH
3570  // pad relationship.
3571  Instruction *ToPad = &I;
3572  Value *ToPadParent = getParentPad(ToPad);
3573  for (BasicBlock *PredBB : predecessors(BB)) {
3574  Instruction *TI = PredBB->getTerminator();
3575  Value *FromPad;
3576  if (auto *II = dyn_cast<InvokeInst>(TI)) {
3577  Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3578  "EH pad must be jumped to via an unwind edge", ToPad, II);
3579  if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3580  FromPad = Bundle->Inputs[0];
3581  else
3582  FromPad = ConstantTokenNone::get(II->getContext());
3583  } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3584  FromPad = CRI->getOperand(0);
3585  Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3586  } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3587  FromPad = CSI;
3588  } else {
3589  Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3590  }
3591 
3592  // The edge may exit from zero or more nested pads.
3593  SmallSet<Value *, 8> Seen;
3594  for (;; FromPad = getParentPad(FromPad)) {
3595  Assert(FromPad != ToPad,
3596  "EH pad cannot handle exceptions raised within it", FromPad, TI);
3597  if (FromPad == ToPadParent) {
3598  // This is a legal unwind edge.
3599  break;
3600  }
3601  Assert(!isa<ConstantTokenNone>(FromPad),
3602  "A single unwind edge may only enter one EH pad", TI);
3603  Assert(Seen.insert(FromPad).second,
3604  "EH pad jumps through a cycle of pads", FromPad);
3605  }
3606  }
3607 }
3608 
3609 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3610  // The landingpad instruction is ill-formed if it doesn't have any clauses and
3611  // isn't a cleanup.
3612  Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3613  "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3614 
3615  visitEHPadPredecessors(LPI);
3616 
3617  if (!LandingPadResultTy)
3618  LandingPadResultTy = LPI.getType();
3619  else
3620  Assert(LandingPadResultTy == LPI.getType(),
3621  "The landingpad instruction should have a consistent result type "
3622  "inside a function.",
3623  &LPI);
3624 
3625  Function *F = LPI.getParent()->getParent();
3626  Assert(F->hasPersonalityFn(),
3627  "LandingPadInst needs to be in a function with a personality.", &LPI);
3628 
3629  // The landingpad instruction must be the first non-PHI instruction in the
3630  // block.
3631  Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3632  "LandingPadInst not the first non-PHI instruction in the block.",
3633  &LPI);
3634 
3635  for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3636  Constant *Clause = LPI.getClause(i);
3637  if (LPI.isCatch(i)) {
3638  Assert(isa<PointerType>(Clause->getType()),
3639  "Catch operand does not have pointer type!", &LPI);
3640  } else {
3641  Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3642  Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3643  "Filter operand is not an array of constants!", &LPI);
3644  }
3645  }
3646 
3647  visitInstruction(LPI);
3648 }
3649 
3650 void Verifier::visitResumeInst(ResumeInst &RI) {
3652  "ResumeInst needs to be in a function with a personality.", &RI);
3653 
3654  if (!LandingPadResultTy)
3655  LandingPadResultTy = RI.getValue()->getType();
3656  else
3657  Assert(LandingPadResultTy == RI.getValue()->getType(),
3658  "The resume instruction should have a consistent result type "
3659  "inside a function.",
3660  &RI);
3661 
3662  visitTerminator(RI);
3663 }
3664 
3665 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3666  BasicBlock *BB = CPI.getParent();
3667 
3668  Function *F = BB->getParent();
3669  Assert(F->hasPersonalityFn(),
3670  "CatchPadInst needs to be in a function with a personality.", &CPI);
3671 
3672  Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3673  "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3674  CPI.getParentPad());
3675 
3676  // The catchpad instruction must be the first non-PHI instruction in the
3677  // block.
3678  Assert(BB->getFirstNonPHI() == &CPI,
3679  "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3680 
3681  visitEHPadPredecessors(CPI);
3682  visitFuncletPadInst(CPI);
3683 }
3684 
3685 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3686  Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3687  "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3688  CatchReturn.getOperand(0));
3689 
3690  visitTerminator(CatchReturn);
3691 }
3692 
3693 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3694  BasicBlock *BB = CPI.getParent();
3695 
3696  Function *F = BB->getParent();
3697  Assert(F->hasPersonalityFn(),
3698  "CleanupPadInst needs to be in a function with a personality.", &CPI);
3699 
3700  // The cleanuppad instruction must be the first non-PHI instruction in the
3701  // block.
3702  Assert(BB->getFirstNonPHI() == &CPI,
3703  "CleanupPadInst not the first non-PHI instruction in the block.",
3704  &CPI);
3705 
3706  auto *ParentPad = CPI.getParentPad();
3707  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3708  "CleanupPadInst has an invalid parent.", &CPI);
3709 
3710  visitEHPadPredecessors(CPI);
3711  visitFuncletPadInst(CPI);
3712 }
3713 
3714 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3715  User *FirstUser = nullptr;
3716  Value *FirstUnwindPad = nullptr;
3717  SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3719 
3720  while (!Worklist.empty()) {
3721  FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3722  Assert(Seen.insert(CurrentPad).second,
3723  "FuncletPadInst must not be nested within itself", CurrentPad);
3724  Value *UnresolvedAncestorPad = nullptr;
3725  for (User *U : CurrentPad->users()) {
3726  BasicBlock *UnwindDest;
3727  if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3728  UnwindDest = CRI->getUnwindDest();
3729  } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3730  // We allow catchswitch unwind to caller to nest
3731  // within an outer pad that unwinds somewhere else,
3732  // because catchswitch doesn't have a nounwind variant.
3733  // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3734  if (CSI->unwindsToCaller())
3735  continue;
3736  UnwindDest = CSI->getUnwindDest();
3737  } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3738  UnwindDest = II->getUnwindDest();
3739  } else if (isa<CallInst>(U)) {
3740  // Calls which don't unwind may be found inside funclet
3741  // pads that unwind somewhere else. We don't *require*
3742  // such calls to be annotated nounwind.
3743  continue;
3744  } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3745  // The unwind dest for a cleanup can only be found by
3746  // recursive search. Add it to the worklist, and we'll
3747  // search for its first use that determines where it unwinds.
3748  Worklist.push_back(CPI);
3749  continue;
3750  } else {
3751  Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3752  continue;
3753  }
3754 
3755  Value *UnwindPad;
3756  bool ExitsFPI;
3757  if (UnwindDest) {
3758  UnwindPad = UnwindDest->getFirstNonPHI();
3759  if (!cast<Instruction>(UnwindPad)->isEHPad())
3760  continue;
3761  Value *UnwindParent = getParentPad(UnwindPad);
3762  // Ignore unwind edges that don't exit CurrentPad.
3763  if (UnwindParent == CurrentPad)
3764  continue;
3765  // Determine whether the original funclet pad is exited,
3766  // and if we are scanning nested pads determine how many
3767  // of them are exited so we can stop searching their
3768  // children.
3769  Value *ExitedPad = CurrentPad;
3770  ExitsFPI = false;
3771  do {
3772  if (ExitedPad == &FPI) {
3773  ExitsFPI = true;
3774  // Now we can resolve any ancestors of CurrentPad up to
3775  // FPI, but not including FPI since we need to make sure
3776  // to check all direct users of FPI for consistency.
3777  UnresolvedAncestorPad = &FPI;
3778  break;
3779  }
3780  Value *ExitedParent = getParentPad(ExitedPad);
3781  if (ExitedParent == UnwindParent) {
3782  // ExitedPad is the ancestor-most pad which this unwind
3783  // edge exits, so we can resolve up to it, meaning that
3784  // ExitedParent is the first ancestor still unresolved.
3785  UnresolvedAncestorPad = ExitedParent;
3786  break;
3787  }
3788  ExitedPad = ExitedParent;
3789  } while (!isa<ConstantTokenNone>(ExitedPad));
3790  } else {
3791  // Unwinding to caller exits all pads.
3792  UnwindPad = ConstantTokenNone::get(FPI.getContext());
3793  ExitsFPI = true;
3794  UnresolvedAncestorPad = &FPI;
3795  }
3796 
3797  if (ExitsFPI) {
3798  // This unwind edge exits FPI. Make sure it agrees with other
3799  // such edges.
3800  if (FirstUser) {
3801  Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3802  "pad must have the same unwind "
3803  "dest",
3804  &FPI, U, FirstUser);
3805  } else {
3806  FirstUser = U;
3807  FirstUnwindPad = UnwindPad;
3808  // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3809  if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3810  getParentPad(UnwindPad) == getParentPad(&FPI))
3811  SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
3812  }
3813  }
3814  // Make sure we visit all uses of FPI, but for nested pads stop as
3815  // soon as we know where they unwind to.
3816  if (CurrentPad != &FPI)
3817  break;
3818  }
3819  if (UnresolvedAncestorPad) {
3820  if (CurrentPad == UnresolvedAncestorPad) {
3821  // When CurrentPad is FPI itself, we don't mark it as resolved even if
3822  // we've found an unwind edge that exits it, because we need to verify
3823  // all direct uses of FPI.
3824  assert(CurrentPad == &FPI);
3825  continue;
3826  }
3827  // Pop off the worklist any nested pads that we've found an unwind
3828  // destination for. The pads on the worklist are the uncles,
3829  // great-uncles, etc. of CurrentPad. We've found an unwind destination
3830  // for all ancestors of CurrentPad up to but not including
3831  // UnresolvedAncestorPad.
3832  Value *ResolvedPad = CurrentPad;
3833  while (!Worklist.empty()) {
3834  Value *UnclePad = Worklist.back();
3835  Value *AncestorPad = getParentPad(UnclePad);
3836  // Walk ResolvedPad up the ancestor list until we either find the
3837  // uncle's parent or the last resolved ancestor.
3838  while (ResolvedPad != AncestorPad) {
3839  Value *ResolvedParent = getParentPad(ResolvedPad);
3840  if (ResolvedParent == UnresolvedAncestorPad) {
3841  break;
3842  }
3843  ResolvedPad = ResolvedParent;
3844  }
3845  // If the resolved ancestor search didn't find the uncle's parent,
3846  // then the uncle is not yet resolved.
3847  if (ResolvedPad != AncestorPad)
3848  break;
3849  // This uncle is resolved, so pop it from the worklist.
3850  Worklist.pop_back();
3851  }
3852  }
3853  }
3854 
3855  if (FirstUnwindPad) {
3856  if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3857  BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3858  Value *SwitchUnwindPad;
3859  if (SwitchUnwindDest)
3860  SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3861  else
3862  SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3863  Assert(SwitchUnwindPad == FirstUnwindPad,
3864  "Unwind edges out of a catch must have the same unwind dest as "
3865  "the parent catchswitch",
3866  &FPI, FirstUser, CatchSwitch);
3867  }
3868  }
3869 
3870  visitInstruction(FPI);
3871 }
3872 
3873 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3874  BasicBlock *BB = CatchSwitch.getParent();
3875 
3876  Function *F = BB->getParent();
3877  Assert(F->hasPersonalityFn(),
3878  "CatchSwitchInst needs to be in a function with a personality.",
3879  &CatchSwitch);
3880 
3881  // The catchswitch instruction must be the first non-PHI instruction in the
3882  // block.
3883  Assert(BB->getFirstNonPHI() == &CatchSwitch,
3884  "CatchSwitchInst not the first non-PHI instruction in the block.",
3885  &CatchSwitch);
3886 
3887  auto *ParentPad = CatchSwitch.getParentPad();
3888  Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3889  "CatchSwitchInst has an invalid parent.", ParentPad);
3890 
3891  if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3892  Instruction *I = UnwindDest->getFirstNonPHI();
3893  Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3894  "CatchSwitchInst must unwind to an EH block which is not a "
3895  "landingpad.",
3896  &CatchSwitch);
3897 
3898  // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3899  if (getParentPad(I) == ParentPad)
3900  SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3901  }
3902 
3903  Assert(CatchSwitch.getNumHandlers() != 0,
3904  "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3905 
3906  for (BasicBlock *Handler : CatchSwitch.handlers()) {
3907  Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3908  "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3909  }
3910 
3911  visitEHPadPredecessors(CatchSwitch);
3912  visitTerminator(CatchSwitch);
3913 }
3914 
3915 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3916  Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3917  "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3918  CRI.getOperand(0));
3919 
3920  if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3921  Instruction *I = UnwindDest->getFirstNonPHI();
3922  Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3923  "CleanupReturnInst must unwind to an EH block which is not a "
3924  "landingpad.",
3925  &CRI);
3926  }
3927 
3928  visitTerminator(CRI);
3929 }
3930 
3931 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3932  Instruction *Op = cast<Instruction>(I.getOperand(i));
3933  // If the we have an invalid invoke, don't try to compute the dominance.
3934  // We already reject it in the invoke specific checks and the dominance
3935  // computation doesn't handle multiple edges.
3936  if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3937  if (II->getNormalDest() == II->getUnwindDest())
3938  return;
3939  }
3940 
3941  // Quick check whether the def has already been encountered in the same block.
3942  // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
3943  // uses are defined to happen on the incoming edge, not at the instruction.
3944  //
3945  // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3946  // wrapping an SSA value, assert that we've already encountered it. See
3947  // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3948  if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3949  return;
3950 
3951  const Use &U = I.getOperandUse(i);
3952  Assert(DT.dominates(Op, U),
3953  "Instruction does not dominate all uses!", Op, &I);
3954 }
3955 
3956 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3957  Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3958  "apply only to pointer types", &I);
3959  Assert(isa<LoadInst>(I),
3960  "dereferenceable, dereferenceable_or_null apply only to load"
3961  " instructions, use attributes for calls or invokes", &I);
3962  Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3963  "take one operand!", &I);
3964  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3965  Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3966  "dereferenceable_or_null metadata value must be an i64!", &I);
3967 }
3968 
3969 /// verifyInstruction - Verify that an instruction is well formed.
3970 ///
3971 void Verifier::visitInstruction(Instruction &I) {
3972  BasicBlock *BB = I.getParent();
3973  Assert(BB, "Instruction not embedded in basic block!", &I);
3974 
3975  if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3976  for (User *U : I.users()) {
3977  Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3978  "Only PHI nodes may reference their own value!", &I);
3979  }
3980  }
3981 
3982  // Check that void typed values don't have names
3983  Assert(!I.getType()->isVoidTy() || !I.hasName(),
3984  "Instruction has a name, but provides a void value!", &I);
3985 
3986  // Check that the return value of the instruction is either void or a legal
3987  // value type.
3988  Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3989  "Instruction returns a non-scalar type!", &I);
3990 
3991  // Check that the instruction doesn't produce metadata. Calls are already
3992  // checked against the callee type.
3993  Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3994  "Invalid use of metadata!", &I);
3995 
3996  // Check that all uses of the instruction, if they are instructions
3997  // themselves, actually have parent basic blocks. If the use is not an
3998  // instruction, it is an error!
3999  for (Use &U : I.uses()) {
4000  if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4001  Assert(Used->getParent() != nullptr,
4002  "Instruction referencing"
4003  " instruction not embedded in a basic block!",
4004  &I, Used);
4005  else {
4006  CheckFailed("Use of instruction is not an instruction!", U);
4007  return;
4008  }
4009  }
4010 
4011  // Get a pointer to the call base of the instruction if it is some form of
4012  // call.
4013  const CallBase *CBI = dyn_cast<CallBase>(&I);
4014 
4015  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4016  Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4017 
4018  // Check to make sure that only first-class-values are operands to
4019  // instructions.
4020  if (!I.getOperand(i)->getType()->isFirstClassType()) {
4021  Assert(false, "Instruction operands must be first-class values!", &I);
4022  }
4023 
4024  if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4025  // Check to make sure that the "address of" an intrinsic function is never
4026  // taken.
4027  Assert(!F->isIntrinsic() ||
4028  (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
4029  "Cannot take the address of an intrinsic!", &I);
4030  Assert(
4031  !F->isIntrinsic() || isa<CallInst>(I) ||
4032  F->getIntrinsicID() == Intrinsic::donothing ||
4033  F->getIntrinsicID() == Intrinsic::coro_resume ||
4034  F->getIntrinsicID() == Intrinsic::coro_destroy ||
4035  F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4036  F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4037  F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4038  F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch,
4039  "Cannot invoke an intrinsic other than donothing, patchpoint, "
4040  "statepoint, coro_resume or coro_destroy",
4041  &I);
4042  Assert(F->getParent() == &M, "Referencing function in another module!",
4043  &I, &M, F, F->getParent());
4044  } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4045  Assert(OpBB->getParent() == BB->getParent(),
4046  "Referring to a basic block in another function!", &I);
4047  } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4048  Assert(OpArg->getParent() == BB->getParent(),
4049  "Referring to an argument in another function!", &I);
4050  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4051  Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4052  &M, GV, GV->getParent());
4053  } else if (isa<Instruction>(I.getOperand(i))) {
4054  verifyDominatesUse(I, i);
4055  } else if (isa<InlineAsm>(I.getOperand(i))) {
4056  Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4057  "Cannot take the address of an inline asm!", &I);
4058  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4059  if (CE->getType()->isPtrOrPtrVectorTy() ||
4061  // If we have a ConstantExpr pointer, we need to see if it came from an
4062  // illegal bitcast. If the datalayout string specifies non-integral
4063  // address spaces then we also need to check for illegal ptrtoint and
4064  // inttoptr expressions.
4065  visitConstantExprsRecursively(CE);
4066  }
4067  }
4068  }
4069 
4070  if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4072  "fpmath requires a floating point result!", &I);
4073  Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4074  if (ConstantFP *CFP0 =
4075  mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4076  const APFloat &Accuracy = CFP0->getValueAPF();
4077  Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4078  "fpmath accuracy must have float type", &I);
4079  Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4080  "fpmath accuracy not a positive number!", &I);
4081  } else {
4082  Assert(false, "invalid fpmath accuracy!", &I);
4083  }
4084  }
4085 
4086  if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4087  Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4088  "Ranges are only for loads, calls and invokes!", &I);
4089  visitRangeMetadata(I, Range, I.getType());
4090  }
4091 
4093  Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4094  &I);
4095  Assert(isa<LoadInst>(I),
4096  "nonnull applies only to load instructions, use attributes"
4097  " for calls or invokes",
4098  &I);
4099  }
4100 
4102  visitDereferenceableMetadata(I, MD);
4103 
4105  visitDereferenceableMetadata(I, MD);
4106 
4107  if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4108  TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4109 
4110  if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4111  Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4112  &I);
4113  Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4114  "use attributes for calls or invokes", &I);
4115  Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4116  ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4117  Assert(CI && CI->getType()->isIntegerTy(64),
4118  "align metadata value must be an i64!", &I);
4119  uint64_t Align = CI->getZExtValue();
4120  Assert(isPowerOf2_64(Align),
4121  "align metadata value must be a power of 2!", &I);
4123  "alignment is larger that implementation defined limit", &I);
4124  }
4125 
4126  if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4127  AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4128  visitMDNode(*N);
4129  }
4130 
4131  if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I))
4132  verifyFragmentExpression(*DII);
4133 
4134  InstsInThisBlock.insert(&I);
4135 }
4136 
4137 /// Allow intrinsics to be verified in different ways.
4138 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4139  Function *IF = Call.getCalledFunction();
4140  Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4141  IF);
4142 
4143  // Verify that the intrinsic prototype lines up with what the .td files
4144  // describe.
4145  FunctionType *IFTy = IF->getFunctionType();
4146  bool IsVarArg = IFTy->isVarArg();
4147 
4149  getIntrinsicInfoTableEntries(ID, Table);
4151 
4152  SmallVector<Type *, 4> ArgTys;
4153  Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),
4154  TableRef, ArgTys),
4155  "Intrinsic has incorrect return type!", IF);
4156  for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
4157  Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),
4158  TableRef, ArgTys),
4159  "Intrinsic has incorrect argument type!", IF);
4160 
4161  // Verify if the intrinsic call matches the vararg property.
4162  if (IsVarArg)
4163  Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4164  "Intrinsic was not defined with variable arguments!", IF);
4165  else
4166  Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4167  "Callsite was not defined with variable arguments!", IF);
4168 
4169  // All descriptors should be absorbed by now.
4170  Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4171 
4172  // Now that we have the intrinsic ID and the actual argument types (and we
4173  // know they are legal for the intrinsic!) get the intrinsic name through the
4174  // usual means. This allows us to verify the mangling of argument types into
4175  // the name.
4176  const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4177  Assert(ExpectedName == IF->getName(),
4178  "Intrinsic name not mangled correctly for type arguments! "
4179  "Should be: " +
4180  ExpectedName,
4181  IF);
4182 
4183  // If the intrinsic takes MDNode arguments, verify that they are either global
4184  // or are local to *this* function.
4185  for (Value *V : Call.args())
4186  if (auto *MD = dyn_cast<MetadataAsValue>(V))
4187  visitMetadataAsValue(*MD, Call.getCaller());
4188 
4189  switch (ID) {
4190  default:
4191  break;
4192  case Intrinsic::coro_id: {
4193  auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4194  if (isa<ConstantPointerNull>(InfoArg))
4195  break;
4196  auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4197  Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4198  "info argument of llvm.coro.begin must refer to an initialized "
4199  "constant");
4200  Constant *Init = GV->getInitializer();
4201  Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4202  "info argument of llvm.coro.begin must refer to either a struct or "
4203  "an array");
4204  break;
4205  }
4206  case Intrinsic::experimental_constrained_fadd:
4207  case Intrinsic::experimental_constrained_fsub:
4208  case Intrinsic::experimental_constrained_fmul:
4209  case Intrinsic::experimental_constrained_fdiv:
4210  case Intrinsic::experimental_constrained_frem:
4211  case Intrinsic::experimental_constrained_fma:
4212  case Intrinsic::experimental_constrained_fptrunc:
4213  case Intrinsic::experimental_constrained_fpext:
4214  case Intrinsic::experimental_constrained_sqrt:
4215  case Intrinsic::experimental_constrained_pow:
4216  case Intrinsic::experimental_constrained_powi:
4217  case Intrinsic::experimental_constrained_sin:
4218  case Intrinsic::experimental_constrained_cos:
4219  case Intrinsic::experimental_constrained_exp:
4220  case Intrinsic::experimental_constrained_exp2:
4221  case Intrinsic::experimental_constrained_log:
4222  case Intrinsic::experimental_constrained_log10:
4223  case Intrinsic::experimental_constrained_log2:
4224  case Intrinsic::experimental_constrained_rint:
4225  case Intrinsic::experimental_constrained_nearbyint:
4226  case Intrinsic::experimental_constrained_maxnum:
4227  case Intrinsic::experimental_constrained_minnum:
4228  case Intrinsic::experimental_constrained_ceil:
4229  case Intrinsic::experimental_constrained_floor:
4230  case Intrinsic::experimental_constrained_round:
4231  case Intrinsic::experimental_constrained_trunc:
4232  visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4233  break;
4234  case Intrinsic::dbg_declare: // llvm.dbg.declare
4235  Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4236  "invalid llvm.dbg.declare intrinsic call 1", Call);
4237  visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4238  break;
4239  case Intrinsic::dbg_addr: // llvm.dbg.addr
4240  visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4241  break;
4242  case Intrinsic::dbg_value: // llvm.dbg.value
4243  visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4244  break;
4245  case Intrinsic::dbg_label: // llvm.dbg.label
4246  visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4247  break;
4248  case Intrinsic::memcpy:
4249  case Intrinsic::memmove:
4250  case Intrinsic::memset: {
4251  const auto *MI = cast<MemIntrinsic>(&Call);
4252  auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4253  return Alignment == 0 || isPowerOf2_32(Alignment);
4254  };
4255  Assert(IsValidAlignment(MI->getDestAlignment()),
4256  "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4257  Call);
4258  if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4259  Assert(IsValidAlignment(MTI->getSourceAlignment()),
4260  "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4261  Call);
4262  }
4263 
4264  break;
4265  }
4266  case Intrinsic::memcpy_element_unordered_atomic:
4267  case Intrinsic::memmove_element_unordered_atomic:
4268  case Intrinsic::memset_element_unordered_atomic: {
4269  const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4270 
4271  ConstantInt *ElementSizeCI =
4272  cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4273  const APInt &ElementSizeVal = ElementSizeCI->getValue();
4274  Assert(ElementSizeVal.isPowerOf2(),
4275  "element size of the element-wise atomic memory intrinsic "
4276  "must be a power of 2",
4277  Call);
4278 
4279  if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4280  uint64_t Length = LengthCI->getZExtValue();
4281  uint64_t ElementSize = AMI->getElementSizeInBytes();
4282  Assert((Length % ElementSize) == 0,
4283  "constant length must be a multiple of the element size in the "
4284  "element-wise atomic memory intrinsic",
4285  Call);
4286  }
4287 
4288  auto IsValidAlignment = [&](uint64_t Alignment) {
4289  return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4290  };
4291  uint64_t DstAlignment = AMI->getDestAlignment();
4292  Assert(IsValidAlignment(DstAlignment),
4293  "incorrect alignment of the destination argument", Call);
4294  if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4295  uint64_t SrcAlignment = AMT->getSourceAlignment();
4296  Assert(IsValidAlignment(SrcAlignment),
4297  "incorrect alignment of the source argument", Call);
4298  }
4299  break;
4300  }
4301  case Intrinsic::gcroot:
4302  case Intrinsic::gcwrite:
4303  case Intrinsic::gcread:
4304  if (ID == Intrinsic::gcroot) {
4305  AllocaInst *AI =
4307  Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4308  Assert(isa<Constant>(Call.getArgOperand(1)),
4309  "llvm.gcroot parameter #2 must be a constant.", Call);
4310  if (!AI->getAllocatedType()->isPointerTy()) {
4311  Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4312  "llvm.gcroot parameter #1 must either be a pointer alloca, "
4313  "or argument #2 must be a non-null constant.",
4314  Call);
4315  }
4316  }
4317 
4318  Assert(Call.getParent()->getParent()->hasGC(),
4319  "Enclosing function does not use GC.", Call);
4320  break;
4321  case Intrinsic::init_trampoline:
4322  Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4323  "llvm.init_trampoline parameter #2 must resolve to a function.",
4324  Call);
4325  break;
4326  case Intrinsic::prefetch:
4327  Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4328  cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4329  "invalid arguments to llvm.prefetch", Call);
4330  break;
4331  case Intrinsic::stackprotector:
4332  Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4333  "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4334  break;
4335  case Intrinsic::localescape: {
4336  BasicBlock *BB = Call.getParent();
4337  Assert(BB == &BB->getParent()->front(),
4338  "llvm.localescape used outside of entry block", Call);
4339  Assert(!SawFrameEscape,
4340  "multiple calls to llvm.localescape in one function", Call);
4341  for (Value *Arg : Call.args()) {
4342  if (isa<ConstantPointerNull>(Arg))
4343  continue; // Null values are allowed as placeholders.
4344  auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4345  Assert(AI && AI->isStaticAlloca(),
4346  "llvm.localescape only accepts static allocas", Call);
4347  }
4348  FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
4349  SawFrameEscape = true;
4350  break;
4351  }
4352  case Intrinsic::localrecover: {
4353  Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4354  Function *Fn = dyn_cast<Function>(FnArg);
4355  Assert(Fn && !Fn->isDeclaration(),
4356  "llvm.localrecover first "
4357  "argument must be function defined in this module",
4358  Call);
4359  auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4360  auto &Entry = FrameEscapeInfo[Fn];
4361  Entry.second = unsigned(
4362  std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4363  break;
4364  }
4365 
4366  case Intrinsic::experimental_gc_statepoint:
4367  if (auto *CI = dyn_cast<CallInst>(&Call))
4368  Assert(!CI->isInlineAsm(),
4369  "gc.statepoint support for inline assembly unimplemented", CI);
4370  Assert(Call.getParent()->getParent()->hasGC(),
4371  "Enclosing function does not use GC.", Call);
4372 
4373  verifyStatepoint(Call);
4374  break;
4375  case Intrinsic::experimental_gc_result: {
4376  Assert(Call.getParent()->getParent()->hasGC(),
4377  "Enclosing function does not use GC.", Call);
4378  // Are we tied to a statepoint properly?
4379  const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4380  const Function *StatepointFn =
4381  StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4382  Assert(StatepointFn && StatepointFn->isDeclaration() &&
4383  StatepointFn->getIntrinsicID() ==
4384  Intrinsic::experimental_gc_statepoint,
4385  "gc.result operand #1 must be from a statepoint", Call,
4386  Call.getArgOperand(0));
4387 
4388  // Assert that result type matches wrapped callee.
4389  const Value *Target = StatepointCall->getArgOperand(2);
4390  auto *PT = cast<PointerType>(Target->getType());
4391  auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4392  Assert(Call.getType() == TargetFuncType->getReturnType(),
4393  "gc.result result type does not match wrapped callee", Call);
4394  break;
4395  }
4396  case Intrinsic::experimental_gc_relocate: {
4397  Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);
4398 
4399  Assert(isa<PointerType>(Call.getType()->getScalarType()),
4400  "gc.relocate must return a pointer or a vector of pointers", Call);
4401 
4402  // Check that this relocate is correctly tied to the statepoint
4403 
4404  // This is case for relocate on the unwinding path of an invoke statepoint
4405  if (LandingPadInst *LandingPad =
4406  dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4407 
4408  const BasicBlock *InvokeBB =
4409  LandingPad->getParent()->getUniquePredecessor();
4410 
4411  // Landingpad relocates should have only one predecessor with invoke
4412  // statepoint terminator
4413  Assert(InvokeBB, "safepoints should have unique landingpads",
4414  LandingPad->getParent());
4415  Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4416  InvokeBB);
4417  Assert(isStatepoint(InvokeBB->getTerminator()),
4418  "gc relocate should be linked to a statepoint", InvokeBB);
4419  } else {
4420  // In all other cases relocate should be tied to the statepoint directly.
4421  // This covers relocates on a normal return path of invoke statepoint and
4422  // relocates of a call statepoint.
4423  auto Token = Call.getArgOperand(0);
4424  Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4425  "gc relocate is incorrectly tied to the statepoint", Call, Token);
4426  }
4427 
4428  // Verify rest of the relocate arguments.
4429  const CallBase &StatepointCall =
4430  *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint());
4431 
4432  // Both the base and derived must be piped through the safepoint.
4433  Value *Base = Call.getArgOperand(1);
4434  Assert(isa<ConstantInt>(Base),
4435  "gc.relocate operand #2 must be integer offset", Call);
4436 
4437  Value *Derived = Call.getArgOperand(2);
4438  Assert(isa<ConstantInt>(Derived),
4439  "gc.relocate operand #3 must be integer offset", Call);
4440 
4441  const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4442  const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4443  // Check the bounds
4444  Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(),
4445  "gc.relocate: statepoint base index out of bounds", Call);
4446  Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(),
4447  "gc.relocate: statepoint derived index out of bounds", Call);
4448 
4449  // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4450  // section of the statepoint's argument.
4451  Assert(StatepointCall.arg_size() > 0,
4452  "gc.statepoint: insufficient arguments");
4453  Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)),
4454  "gc.statement: number of call arguments must be constant integer");
4455  const unsigned NumCallArgs =
4456  cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue();
4457  Assert(StatepointCall.arg_size() > NumCallArgs + 5,
4458  "gc.statepoint: mismatch in number of call arguments");
4459  Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)),
4460  "gc.statepoint: number of transition arguments must be "
4461  "a constant integer");
4462  const int NumTransitionArgs =
4463  cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5))
4464  ->getZExtValue();
4465  const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4466  Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)),
4467  "gc.statepoint: number of deoptimization arguments must be "
4468  "a constant integer");
4469  const int NumDeoptArgs =
4470  cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart))
4471  ->getZExtValue();
4472  const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4473  const int GCParamArgsEnd = StatepointCall.arg_size();
4474  Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4475  "gc.relocate: statepoint base index doesn't fall within the "
4476  "'gc parameters' section of the statepoint call",
4477  Call);
4478  Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4479  "gc.relocate: statepoint derived index doesn't fall within the "
4480  "'gc parameters' section of the statepoint call",
4481  Call);
4482 
4483  // Relocated value must be either a pointer type or vector-of-pointer type,
4484  // but gc_relocate does not need to return the same pointer type as the
4485  // relocated pointer. It can be casted to the correct type later if it's
4486  // desired. However, they must have the same address space and 'vectorness'
4487  GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
4489  "gc.relocate: relocated value must be a gc pointer", Call);
4490 
4491  auto ResultType = Call.getType();
4492  auto DerivedType = Relocate.getDerivedPtr()->getType();
4493  Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4494  "gc.relocate: vector relocates to vector and pointer to pointer",
4495  Call);
4496  Assert(
4497  ResultType->getPointerAddressSpace() ==
4498  DerivedType->getPointerAddressSpace(),
4499  "gc.relocate: relocating a pointer shouldn't change its address space",
4500  Call);
4501  break;
4502  }
4503  case Intrinsic::eh_exceptioncode:
4504  case Intrinsic::eh_exceptionpointer: {
4505  Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
4506  "eh.exceptionpointer argument must be a catchpad", Call);
4507  break;
4508  }
4509  case Intrinsic::masked_load: {
4510  Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
4511  Call);
4512 
4513  Value *Ptr = Call.getArgOperand(0);
4514  ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
4515  Value *Mask = Call.getArgOperand(2);
4516  Value *PassThru = Call.getArgOperand(3);
4517  Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
4518  Call);
4519  Assert(Alignment->getValue().isPowerOf2(),
4520  "masked_load: alignment must be a power of 2", Call);
4521 
4522  // DataTy is the overloaded type
4523  Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4524  Assert(DataTy == Call.getType(),
4525  "masked_load: return must match pointer type", Call);
4526  Assert(PassThru->getType() == DataTy,
4527  "masked_load: pass through and data type must match", Call);
4528  Assert(Mask->getType()->getVectorNumElements() ==
4529  DataTy->getVectorNumElements(),
4530  "masked_load: vector mask must be same length as data", Call);
4531  break;
4532  }
4533  case Intrinsic::masked_store: {
4534  Value *Val = Call.getArgOperand(0);
4535  Value *Ptr = Call.getArgOperand(1);
4536  ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
4537  Value *Mask = Call.getArgOperand(3);
4538  Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
4539  Call);
4540  Assert(Alignment->getValue().isPowerOf2(),
4541  "masked_store: alignment must be a power of 2", Call);
4542 
4543  // DataTy is the overloaded type
4544  Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4545  Assert(DataTy == Val->getType(),
4546  "masked_store: storee must match pointer type", Call);
4547  Assert(Mask->getType()->getVectorNumElements() ==
4548  DataTy->getVectorNumElements(),
4549  "masked_store: vector mask must be same length as data", Call);
4550  break;
4551  }
4552 
4553  case Intrinsic::experimental_guard: {
4554  Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
4556  "experimental_guard must have exactly one "
4557  "\"deopt\" operand bundle");
4558  break;
4559  }
4560 
4561  case Intrinsic::experimental_deoptimize: {
4562  Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
4563  Call);
4565  "experimental_deoptimize must have exactly one "
4566  "\"deopt\" operand bundle");
4567  Assert(Call.getType() == Call.getFunction()->getReturnType(),
4568  "experimental_deoptimize return type must match caller return type");
4569 
4570  if (isa<CallInst>(Call)) {
4571  auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
4572  Assert(RI,
4573  "calls to experimental_deoptimize must be followed by a return");
4574 
4575  if (!Call.getType()->isVoidTy() && RI)
4576  Assert(RI->getReturnValue() == &Call,
4577  "calls to experimental_deoptimize must be followed by a return "
4578  "of the value computed by experimental_deoptimize");
4579  }
4580 
4581  break;
4582  }
4583  case Intrinsic::sadd_sat:
4584  case Intrinsic::uadd_sat:
4585  case Intrinsic::ssub_sat:
4586  case Intrinsic::usub_sat: {
4587  Value *Op1 = Call.getArgOperand(0);
4588  Value *Op2 = Call.getArgOperand(1);
4589  Assert(Op1->getType()->isIntOrIntVectorTy(),
4590  "first operand of [us][add|sub]_sat must be an int type or vector "
4591  "of ints");
4592  Assert(Op2->getType()->isIntOrIntVectorTy(),
4593  "second operand of [us][add|sub]_sat must be an int type or vector "
4594  "of ints");
4595  break;
4596  }
4597  case Intrinsic::smul_fix:
4598  case Intrinsic::smul_fix_sat:
4599  case Intrinsic::umul_fix: {
4600  Value *Op1 = Call.getArgOperand(0);
4601  Value *Op2 = Call.getArgOperand(1);
4602  Assert(Op1->getType()->isIntOrIntVectorTy(),
4603  "first operand of [us]mul_fix[_sat] must be an int type or vector "
4604  "of ints");
4605  Assert(Op2->getType()->isIntOrIntVectorTy(),
4606  "second operand of [us]mul_fix_[sat] must be an int type or vector "
4607  "of ints");
4608 
4609  auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
4610  Assert(Op3->getType()->getBitWidth() <= 32,
4611  "third argument of [us]mul_fix[_sat] must fit within 32 bits");
4612 
4613  if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat) {
4614  Assert(
4615  Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
4616  "the scale of smul_fix[_sat] must be less than the width of the operands");
4617  } else {
4618  Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
4619  "the scale of umul_fix[_sat] must be less than or equal to the width of "
4620  "the operands");
4621  }
4622  break;
4623  }
4624  case Intrinsic::lround:
4625  case Intrinsic::llround: {
4626  Type *ValTy = Call.getArgOperand(0)->getType();
4627  Type *ResultTy = Call.getType();
4628  Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4629  "Intrinsic does not support vectors", &Call);
4630  break;
4631  }
4632  };
4633 }
4634 
4635 /// Carefully grab the subprogram from a local scope.
4636 ///
4637 /// This carefully grabs the subprogram from a local scope, avoiding the
4638 /// built-in assertions that would typically fire.
4639 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4640  if (!LocalScope)
4641  return nullptr;
4642 
4643  if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4644  return SP;
4645 
4646  if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4647  return getSubprogram(LB->getRawScope());
4648 
4649  // Just return null; broken scope chains are checked elsewhere.
4650  assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4651  return nullptr;
4652 }
4653 
4654 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4655  unsigned NumOperands = FPI.getNumArgOperands();
4656  bool HasExceptionMD = false;
4657  bool HasRoundingMD = false;
4658  switch (FPI.getIntrinsicID()) {
4659  case Intrinsic::experimental_constrained_sqrt:
4660  case Intrinsic::experimental_constrained_sin:
4661  case Intrinsic::experimental_constrained_cos:
4662  case Intrinsic::experimental_constrained_exp:
4663  case Intrinsic::experimental_constrained_exp2:
4664  case Intrinsic::experimental_constrained_log:
4665  case Intrinsic::experimental_constrained_log10:
4666  case Intrinsic::experimental_constrained_log2:
4667  case Intrinsic::experimental_constrained_rint:
4668  case Intrinsic::experimental_constrained_nearbyint:
4669  case Intrinsic::experimental_constrained_ceil:
4670  case Intrinsic::experimental_constrained_floor:
4671  case Intrinsic::experimental_constrained_round:
4672  case Intrinsic::experimental_constrained_trunc:
4673  Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic",
4674  &FPI);
4675  HasExceptionMD = true;
4676  HasRoundingMD = true;
4677  break;
4678 
4679  case Intrinsic::experimental_constrained_fma:
4680  Assert((NumOperands == 5), "invalid arguments for constrained FP intrinsic",
4681  &FPI);
4682  HasExceptionMD = true;
4683  HasRoundingMD = true;
4684  break;
4685 
4686  case Intrinsic::experimental_constrained_fadd:
4687  case Intrinsic::experimental_constrained_fsub:
4688  case Intrinsic::experimental_constrained_fmul:
4689  case Intrinsic::experimental_constrained_fdiv:
4690  case Intrinsic::experimental_constrained_frem:
4691  case Intrinsic::experimental_constrained_pow:
4692  case Intrinsic::experimental_constrained_powi:
4693  case Intrinsic::experimental_constrained_maxnum:
4694  case Intrinsic::experimental_constrained_minnum:
4695  Assert((NumOperands == 4), "invalid arguments for constrained FP intrinsic",
4696  &FPI);
4697  HasExceptionMD = true;
4698  HasRoundingMD = true;
4699  break;
4700 
4701  case Intrinsic::experimental_constrained_fptrunc:
4702  case Intrinsic::experimental_constrained_fpext: {
4703  if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4704  Assert((NumOperands == 3),
4705  "invalid arguments for constrained FP intrinsic", &FPI);
4706  HasRoundingMD = true;
4707  } else {
4708  Assert((NumOperands == 2),
4709  "invalid arguments for constrained FP intrinsic", &FPI);
4710  }
4711  HasExceptionMD = true;
4712 
4713  Value *Operand = FPI.getArgOperand(0);
4714  Type *OperandTy = Operand->getType();
4715  Value *Result = &FPI;
4716  Type *ResultTy = Result->getType();
4717  Assert(OperandTy->isFPOrFPVectorTy(),
4718  "Intrinsic first argument must be FP or FP vector", &FPI);
4719  Assert(ResultTy->isFPOrFPVectorTy(),
4720  "Intrinsic result must be FP or FP vector", &FPI);
4721  Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
4722  "Intrinsic first argument and result disagree on vector use", &FPI);
4723  if (OperandTy->isVectorTy()) {
4724  auto *OperandVecTy = cast<VectorType>(OperandTy);
4725  auto *ResultVecTy = cast<VectorType>(ResultTy);
4726  Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(),
4727  "Intrinsic first argument and result vector lengths must be equal",
4728  &FPI);
4729  }
4730  if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4731  Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
4732  "Intrinsic first argument's type must be larger than result type",
4733  &FPI);
4734  } else {
4735  Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
4736  "Intrinsic first argument's type must be smaller than result type",
4737  &FPI);
4738  }
4739  }
4740  break;
4741 
4742  default:
4743  llvm_unreachable("Invalid constrained FP intrinsic!");
4744  }
4745 
4746  // If a non-metadata argument is passed in a metadata slot then the
4747  // error will be caught earlier when the incorrect argument doesn't
4748  // match the specification in the intrinsic call table. Thus, no
4749  // argument type check is needed here.
4750 
4751  if (HasExceptionMD) {
4753  "invalid exception behavior argument", &FPI);
4754  }
4755  if (HasRoundingMD) {
4757  "invalid rounding mode argument", &FPI);
4758  }
4759 }
4760 
4761 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
4762  auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4763  AssertDI(isa<ValueAsMetadata>(MD) ||
4764  (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4765  "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4766  AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4767  "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4768  DII.getRawVariable());
4769  AssertDI(isa<DIExpression>(DII.getRawExpression()),
4770  "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4771  DII.getRawExpression());
4772 
4773  // Ignore broken !dbg attachments; they're checked elsewhere.
4774  if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4775  if (!isa<DILocation>(N))
4776  return;
4777 
4778  BasicBlock *BB = DII.getParent();
4779  Function *F = BB ? BB->getParent() : nullptr;
4780 
4781  // The scopes for variables and !dbg attachments must agree.
4782  DILocalVariable *Var = DII.getVariable();
4783  DILocation *Loc = DII.getDebugLoc();
4784  AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4785  &DII, BB, F);
4786 
4787  DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4788  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4789  if (!VarSP || !LocSP)
4790  return; // Broken scope chains are checked elsewhere.
4791 
4792  AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4793  " variable and !dbg attachment",
4794  &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4795  Loc->getScope()->getSubprogram());
4796 
4797  // This check is redundant with one in visitLocalVariable().
4798  AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
4799  Var->getRawType());
4800  if (auto *Type = dyn_cast_or_null<DIType>(Var->getRawType()))
4801  if (Type->isBlockByrefStruct())
4803  "BlockByRef variable without complex expression", Var, &DII);
4804 
4805  verifyFnArgs(DII);
4806 }
4807 
4808 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
4809  AssertDI(isa<DILabel>(DLI.getRawLabel()),
4810  "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
4811  DLI.getRawLabel());
4812 
4813  // Ignore broken !dbg attachments; they're checked elsewhere.
4814  if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
4815  if (!isa<DILocation>(N))
4816  return;
4817 
4818  BasicBlock *BB = DLI.getParent();
4819  Function *F = BB ? BB->getParent() : nullptr;
4820 
4821  // The scopes for variables and !dbg attachments must agree.
4822  DILabel *Label = DLI.getLabel();
4823  DILocation *Loc = DLI.getDebugLoc();
4824  Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4825  &DLI, BB, F);
4826 
4827  DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
4828  DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4829  if (!LabelSP || !LocSP)
4830  return;
4831 
4832  AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4833  " label and !dbg attachment",
4834  &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
4835  Loc->getScope()->getSubprogram());
4836 }
4837 
4838 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
4839  DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4840  DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4841 
4842  // We don't know whether this intrinsic verified correctly.
4843  if (!V || !E || !E->isValid())
4844  return;
4845 
4846  // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4847  auto Fragment = E->getFragmentInfo();
4848  if (!Fragment)
4849  return;
4850 
4851  // The frontend helps out GDB by emitting the members of local anonymous
4852  // unions as artificial local variables with shared storage. When SROA splits
4853  // the storage for artificial local variables that are smaller than the entire
4854  // union, the overhang piece will be outside of the allotted space for the
4855  // variable and this check fails.
4856  // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4857  if (V->isArtificial())
4858  return;
4859 
4860  verifyFragmentExpression(*V, *Fragment, &I);
4861 }
4862 
4863 template <typename ValueOrMetadata>
4864 void Verifier::verifyFragmentExpression(const DIVariable &V,
4865  DIExpression::FragmentInfo Fragment,
4866  ValueOrMetadata *Desc) {
4867  // If there's no size, the type is broken, but that should be checked
4868  // elsewhere.
4869  auto VarSize = V.getSizeInBits();
4870  if (!VarSize)
4871  return;
4872 
4873  unsigned FragSize = Fragment.SizeInBits;
4874  unsigned FragOffset = Fragment.OffsetInBits;
4875  AssertDI(FragSize + FragOffset <= *VarSize,
4876  "fragment is larger than or outside of variable", Desc, &V);
4877  AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
4878 }
4879 
4880 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
4881  // This function does not take the scope of noninlined function arguments into
4882  // account. Don't run it if current function is nodebug, because it may
4883  // contain inlined debug intrinsics.
4884  if (!HasDebugInfo)
4885  return;
4886 
4887  // For performance reasons only check non-inlined ones.
4888  if (I.getDebugLoc()->getInlinedAt())
4889  return;
4890 
4891  DILocalVariable *Var = I.getVariable();
4892  AssertDI(Var, "dbg intrinsic without variable");
4893 
4894  unsigned ArgNo = Var->getArg();
4895  if (!ArgNo)
4896  return;
4897 
4898  // Verify there are no duplicate function argument debug info entries.
4899  // These will cause hard-to-debug assertions in the DWARF backend.
4900  if (DebugFnArgs.size() < ArgNo)
4901  DebugFnArgs.resize(ArgNo, nullptr);
4902 
4903  auto *Prev = DebugFnArgs[ArgNo - 1];
4904  DebugFnArgs[ArgNo - 1] = Var;
4905  AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
4906  Prev, Var);
4907 }
4908 
4909 void Verifier::verifyCompileUnits() {
4910  // When more than one Module is imported into the same context, such as during
4911  // an LTO build before linking the modules, ODR type uniquing may cause types
4912  // to point to a different CU. This check does not make sense in this case.
4914  return;
4915  auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4917  if (CUs)
4918  Listed.insert(CUs->op_begin(), CUs->op_end());
4919  for (auto *CU : CUVisited)
4920  AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
4921  CUVisited.clear();
4922 }
4923 
4924 void Verifier::verifyDeoptimizeCallingConvs() {
4925  if (DeoptimizeDeclarations.empty())
4926  return;
4927 
4928  const Function *First = DeoptimizeDeclarations[0];
4929  for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4930  Assert(First->getCallingConv() == F->getCallingConv(),
4931  "All llvm.experimental.deoptimize declarations must have the same "
4932  "calling convention",
4933  First, F);
4934  }
4935 }
4936 
4937 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
4938  bool HasSource = F.getSource().hasValue();
4939  if (!HasSourceDebugInfo.count(&U))
4940  HasSourceDebugInfo[&U] = HasSource;
4941  AssertDI(HasSource == HasSourceDebugInfo[&U],
4942  "inconsistent use of embedded source");
4943 }
4944 
4945 //===----------------------------------------------------------------------===//
4946 // Implement the public interfaces to this file...
4947 //===----------------------------------------------------------------------===//
4948 
4950  Function &F = const_cast<Function &>(f);
4951 
4952  // Don't use a raw_null_ostream. Printing IR is expensive.
4953  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4954 
4955  // Note that this function's return value is inverted from what you would
4956  // expect of a function called "verify".
4957  return !V.verify(F);
4958 }
4959 
4961  bool *BrokenDebugInfo) {
4962  // Don't use a raw_null_ostream. Printing IR is expensive.
4963  Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4964 
4965  bool Broken = false;
4966  for (const Function &F : M)
4967  Broken |= !V.verify(F);
4968 
4969  Broken |= !V.verify();
4970  if (BrokenDebugInfo)
4971  *BrokenDebugInfo = V.hasBrokenDebugInfo();
4972  // Note that this function's return value is inverted from what you would
4973  // expect of a function called "verify".
4974  return Broken;
4975 }
4976 
4977 namespace {
4978 
4979 struct VerifierLegacyPass : public FunctionPass {
4980  static char ID;
4981 
4982  std::unique_ptr<Verifier> V;
4983  bool FatalErrors = true;
4984 
4985  VerifierLegacyPass() : FunctionPass(ID) {
4987  }
4988  explicit VerifierLegacyPass(bool FatalErrors)
4989  : FunctionPass(ID),
4990  FatalErrors(FatalErrors) {
4992  }
4993 
4994  bool doInitialization(Module &M) override {
4995  V = llvm::make_unique<Verifier>(
4996  &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
4997  return false;
4998  }
4999 
5000  bool runOnFunction(Function &F) override {
5001  if (!V->verify(F) && FatalErrors) {
5002  errs() << "in function " << F.getName() << '\n';
5003  report_fatal_error("Broken function found, compilation aborted!");
5004  }
5005  return false;
5006  }
5007 
5008  bool doFinalization(Module &M) override {
5009  bool HasErrors = false;
5010  for (Function &F : M)
5011  if (F.isDeclaration())
5012  HasErrors |= !V->verify(F);
5013 
5014  HasErrors |= !V->verify();
5015  if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5016  report_fatal_error("Broken module found, compilation aborted!");
5017  return false;
5018  }
5019 
5020  void getAnalysisUsage(AnalysisUsage &AU) const override {
5021  AU.setPreservesAll();
5022  }
5023 };
5024 
5025 } // end anonymous namespace
5026 
5027 /// Helper to issue failure from the TBAA verification
5028 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5029  if (Diagnostic)
5030  return Diagnostic->CheckFailed(Args...);
5031 }
5032 
5033 #define AssertTBAA(C, ...) \
5034  do { \
5035  if (!(C)) { \
5036  CheckFailed(__VA_ARGS__); \
5037  return false; \
5038  } \
5039  } while (false)
5040 
5041 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
5042 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
5043 /// struct-type node describing an aggregate data structure (like a struct).
5044 TBAAVerifier::TBAABaseNodeSummary
5045 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
5046  bool IsNewFormat) {
5047  if (BaseNode->getNumOperands() < 2) {
5048  CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
5049  return {true, ~0u};
5050  }
5051 
5052  auto Itr = TBAABaseNodes.find(BaseNode);
5053  if (Itr != TBAABaseNodes.end())
5054  return Itr->second;
5055 
5056  auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5057  auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5058  (void)InsertResult;
5059  assert(InsertResult.second && "We just checked!");
5060  return Result;
5061 }
5062 
5063 TBAAVerifier::TBAABaseNodeSummary
5064 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5065  bool IsNewFormat) {
5066  const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5067 
5068  if (BaseNode->getNumOperands() == 2) {
5069  // Scalar nodes can only be accessed at offset 0.
5070  return isValidScalarTBAANode(BaseNode)
5071  ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5072  : InvalidNode;
5073  }
5074 
5075  if (IsNewFormat) {
5076  if (BaseNode->getNumOperands() % 3 != 0) {
5077  CheckFailed("Access tag nodes must have the number of operands that is a "
5078  "multiple of 3!", BaseNode);
5079  return InvalidNode;
5080  }
5081  } else {
5082  if (BaseNode->getNumOperands() % 2 != 1) {
5083  CheckFailed("Struct tag nodes must have an odd number of operands!",
5084  BaseNode);
5085  return InvalidNode;
5086  }
5087  }
5088 
5089  // Check the type size field.
5090  if (IsNewFormat) {
5091  auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5092  BaseNode->getOperand(1));
5093  if (!TypeSizeNode) {
5094  CheckFailed("Type size nodes must be constants!", &I, BaseNode);
5095  return InvalidNode;
5096  }
5097  }
5098 
5099  // Check the type name field. In the new format it can be anything.
5100  if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
5101  CheckFailed("Struct tag nodes have a string as their first operand",
5102  BaseNode);
5103  return InvalidNode;
5104  }
5105 
5106  bool Failed = false;
5107 
5108  Optional<APInt> PrevOffset;
5109  unsigned BitWidth = ~0u;
5110 
5111  // We've already checked that BaseNode is not a degenerate root node with one
5112  // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5113  unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5114  unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5115  for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5116  Idx += NumOpsPerField) {
5117  const MDOperand &FieldTy = BaseNode->getOperand(Idx);
5118  const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
5119  if (!isa<MDNode>(FieldTy)) {
5120  CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
5121  Failed = true;
5122  continue;
5123  }
5124 
5125  auto *OffsetEntryCI =
5126  mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
5127  if (!OffsetEntryCI) {
5128  CheckFailed("Offset entries must be constants!", &I, BaseNode);
5129  Failed = true;
5130  continue;
5131  }
5132 
5133  if (BitWidth == ~0u)
5134  BitWidth = OffsetEntryCI->getBitWidth();
5135 
5136  if (OffsetEntryCI->getBitWidth() != BitWidth) {
5137  CheckFailed(
5138  "Bitwidth between the offsets and struct type entries must match", &I,
5139  BaseNode);
5140  Failed = true;
5141  continue;
5142  }
5143 
5144  // NB! As far as I can tell, we generate a non-strictly increasing offset
5145  // sequence only from structs that have zero size bit fields. When
5146  // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5147  // pick the field lexically the latest in struct type metadata node. This
5148  // mirrors the actual behavior of the alias analysis implementation.
5149  bool IsAscending =
5150  !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
5151 
5152  if (!IsAscending) {
5153  CheckFailed("Offsets must be increasing!", &I, BaseNode);
5154  Failed = true;
5155  }
5156 
5157  PrevOffset = OffsetEntryCI->getValue();
5158 
5159  if (IsNewFormat) {
5160  auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5161  BaseNode->getOperand(Idx + 2));
5162  if (!MemberSizeNode) {
5163  CheckFailed("Member size entries must be constants!", &I, BaseNode);
5164  Failed = true;
5165  continue;
5166  }
5167  }
5168  }
5169 
5170  return Failed ? InvalidNode
5171  : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
5172 }
5173 
5174 static bool IsRootTBAANode(const MDNode *MD) {
5175  return MD->getNumOperands() < 2;
5176 }
5177 
5178 static bool IsScalarTBAANodeImpl(const MDNode *MD,
5180  if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
5181  return false;
5182 
5183  if (!isa<MDString>(MD->getOperand(0)))
5184  return false;
5185 
5186  if (MD->getNumOperands() == 3) {
5187  auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
5188  if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
5189  return false;
5190  }
5191 
5192  auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5193  return Parent && Visited.insert(Parent).second &&
5194  (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
5195 }
5196 
5197 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
5198  auto ResultIt = TBAAScalarNodes.find(MD);
5199  if (ResultIt != TBAAScalarNodes.end())
5200  return ResultIt->second;
5201 
5203  bool Result = IsScalarTBAANodeImpl(MD, Visited);
5204  auto InsertResult = TBAAScalarNodes.insert({MD, Result});
5205  (void)InsertResult;
5206  assert(InsertResult.second && "Just checked!");
5207 
5208  return Result;
5209 }
5210 
5211 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
5212