94#include "llvm/IR/IntrinsicsAArch64.h"
95#include "llvm/IR/IntrinsicsAMDGPU.h"
96#include "llvm/IR/IntrinsicsARM.h"
97#include "llvm/IR/IntrinsicsNVPTX.h"
98#include "llvm/IR/IntrinsicsWebAssembly.h"
136 cl::desc(
"Ensure that llvm.experimental.noalias.scope.decl for identical "
137 "scopes are not dominating"));
162 *
OS <<
"; ModuleID = '" << M->getModuleIdentifier() <<
"'\n";
175 V.printAsOperand(*
OS,
true,
MST);
180 void Write(
const DbgRecord *DR) {
214 template <
class T>
void Write(
const MDTupleTypedArrayWrapper<T> &MD) {
218 void Write(
const NamedMDNode *NMD) {
231 void Write(
const Comdat *
C) {
237 void Write(
const APInt *AI) {
243 void Write(
const unsigned i) { *
OS << i <<
'\n'; }
249 *
OS <<
A->getAsString() <<
'\n';
253 void Write(
const AttributeSet *AS) {
260 void Write(
const AttributeList *AL) {
266 void Write(Printable
P) { *
OS <<
P <<
'\n'; }
268 template <
typename T>
void Write(ArrayRef<T> Vs) {
269 for (
const T &V : Vs)
273 template <
typename T1,
typename... Ts>
274 void WriteTs(
const T1 &V1,
const Ts &... Vs) {
279 template <
typename... Ts>
void WriteTs() {}
288 *
OS << Message <<
'\n';
296 template <
typename T1,
typename... Ts>
306 *
OS << Message <<
'\n';
312 template <
typename T1,
typename... Ts>
334 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
337 SmallPtrSet<const Metadata *, 32> MDNodes;
340 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
343 SmallPtrSet<const Metadata *, 2> CUVisited;
346 Type *LandingPadResultTy;
353 bool HasDebugInfo =
false;
357 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
361 MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
365 DenseMap<BasicBlock *, ColorVector> BlockEHFuncletColors;
368 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
374 SmallPtrSet<const void *, 32> AttributeListsVisited;
380 SmallPtrSet<const Value *, 32> GlobalValueVisited;
385 TBAAVerifier TBAAVerifyHelper;
390 void checkAtomicMemAccessSize(
Type *Ty,
const Instruction *
I);
393 explicit Verifier(raw_ostream *OS,
bool ShouldTreatBrokenDebugInfoAsError,
395 : VerifierSupport(OS,
M), LandingPadResultTy(nullptr),
396 SawFrameEscape(
false), TBAAVerifyHelper(this) {
397 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
400 bool hasBrokenDebugInfo()
const {
return BrokenDebugInfo; }
402 bool verify(
const Function &
F) {
403 llvm::TimeTraceScope timeScope(
"Verifier");
405 "An instance of this class only works with a specific module!");
414 DT.recalculate(
const_cast<Function &
>(
F));
416 for (
const BasicBlock &BB :
F) {
417 if (!BB.empty() && BB.back().isTerminator())
421 *OS <<
"Basic Block in function '" <<
F.getName()
422 <<
"' does not have terminator!\n";
423 BB.printAsOperand(*OS,
true, MST);
429 auto FailureCB = [
this](
const Twine &Message) {
430 this->CheckFailed(Message);
432 ConvergenceVerifyHelper.initialize(OS, FailureCB,
F);
437 verifySiblingFuncletUnwinds();
439 if (ConvergenceVerifyHelper.sawTokens())
440 ConvergenceVerifyHelper.verify(DT);
442 InstsInThisBlock.clear();
444 LandingPadResultTy =
nullptr;
445 SawFrameEscape =
false;
446 SiblingFuncletInfo.clear();
447 verifyNoAliasScopeDecl();
448 NoAliasScopeDecls.clear();
458 for (
const Function &
F : M)
459 if (
F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
460 DeoptimizeDeclarations.push_back(&
F);
464 verifyFrameRecoverIndices();
465 for (
const GlobalVariable &GV :
M.globals())
466 visitGlobalVariable(GV);
468 for (
const GlobalAlias &GA :
M.aliases())
469 visitGlobalAlias(GA);
471 for (
const GlobalIFunc &GI :
M.ifuncs())
472 visitGlobalIFunc(GI);
474 for (
const NamedMDNode &NMD :
M.named_metadata())
475 visitNamedMDNode(NMD);
477 for (
const StringMapEntry<Comdat> &SMEC :
M.getComdatSymbolTable())
478 visitComdat(SMEC.getValue());
482 visitModuleCommandLines();
484 verifyCompileUnits();
486 verifyDeoptimizeCallingConvs();
487 DISubprogramAttachments.clear();
493 enum class AreDebugLocsAllowed {
No,
Yes };
497 enum class RangeLikeMetadataKind {
504 void visitGlobalValue(
const GlobalValue &GV);
505 void visitGlobalVariable(
const GlobalVariable &GV);
506 void visitGlobalAlias(
const GlobalAlias &GA);
507 void visitGlobalIFunc(
const GlobalIFunc &GI);
508 void visitAliaseeSubExpr(
const GlobalAlias &
A,
const Constant &
C);
509 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
510 const GlobalAlias &
A,
const Constant &
C);
511 void visitNamedMDNode(
const NamedMDNode &NMD);
512 void visitMDNode(
const MDNode &MD, AreDebugLocsAllowed AllowLocs);
513 void visitMetadataAsValue(
const MetadataAsValue &MD, Function *
F);
514 void visitValueAsMetadata(
const ValueAsMetadata &MD, Function *
F);
515 void visitDIArgList(
const DIArgList &AL, Function *
F);
516 void visitComdat(
const Comdat &
C);
517 void visitModuleIdents();
518 void visitModuleCommandLines();
519 void visitModuleFlags();
520 void visitModuleFlag(
const MDNode *
Op,
521 DenseMap<const MDString *, const MDNode *> &SeenIDs,
522 SmallVectorImpl<const MDNode *> &Requirements);
523 void visitModuleFlagCGProfileEntry(
const MDOperand &MDO);
524 void visitFunction(
const Function &
F);
525 void visitBasicBlock(BasicBlock &BB);
526 void verifyRangeLikeMetadata(
const Value &V,
const MDNode *
Range,
Type *Ty,
527 RangeLikeMetadataKind Kind);
528 void visitRangeMetadata(Instruction &
I, MDNode *
Range,
Type *Ty);
529 void visitNoaliasAddrspaceMetadata(Instruction &
I, MDNode *
Range,
Type *Ty);
530 void visitDereferenceableMetadata(Instruction &
I, MDNode *MD);
531 void visitNofreeMetadata(Instruction &
I, MDNode *MD);
532 void visitProfMetadata(Instruction &
I, MDNode *MD);
533 void visitCallStackMetadata(MDNode *MD);
534 void visitMemProfMetadata(Instruction &
I, MDNode *MD);
535 void visitCallsiteMetadata(Instruction &
I, MDNode *MD);
536 void visitCalleeTypeMetadata(Instruction &
I, MDNode *MD);
537 void visitDIAssignIDMetadata(Instruction &
I, MDNode *MD);
538 void visitMMRAMetadata(Instruction &
I, MDNode *MD);
539 void visitAnnotationMetadata(MDNode *Annotation);
540 void visitAliasScopeMetadata(
const MDNode *MD);
541 void visitAliasScopeListMetadata(
const MDNode *MD);
542 void visitAccessGroupMetadata(
const MDNode *MD);
544 template <
class Ty>
bool isValidMetadataArray(
const MDTuple &
N);
545#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
546#include "llvm/IR/Metadata.def"
547 void visitDIScope(
const DIScope &
N);
571 void checkPtrToAddr(
Type *SrcTy,
Type *DestTy,
const Value &V);
576 void visitPHINode(
PHINode &PN);
585 void visitVAArgInst(
VAArgInst &VAA) { visitInstruction(VAA); }
586 void visitCallInst(CallInst &CI);
587 void visitInvokeInst(InvokeInst &
II);
588 void visitGetElementPtrInst(GetElementPtrInst &
GEP);
589 void visitLoadInst(LoadInst &LI);
590 void visitStoreInst(StoreInst &SI);
591 void verifyDominatesUse(Instruction &
I,
unsigned i);
592 void visitInstruction(Instruction &
I);
593 void visitTerminator(Instruction &
I);
594 void visitBranchInst(BranchInst &BI);
595 void visitReturnInst(ReturnInst &RI);
596 void visitSwitchInst(SwitchInst &SI);
597 void visitIndirectBrInst(IndirectBrInst &BI);
598 void visitCallBrInst(CallBrInst &CBI);
599 void visitSelectInst(SelectInst &SI);
600 void visitUserOp1(Instruction &
I);
601 void visitUserOp2(Instruction &
I) { visitUserOp1(
I); }
603 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
604 void visitVPIntrinsic(VPIntrinsic &VPI);
605 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
606 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
607 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
608 void visitFenceInst(FenceInst &FI);
609 void visitAllocaInst(AllocaInst &AI);
610 void visitExtractValueInst(ExtractValueInst &EVI);
611 void visitInsertValueInst(InsertValueInst &IVI);
612 void visitEHPadPredecessors(Instruction &
I);
613 void visitLandingPadInst(LandingPadInst &LPI);
614 void visitResumeInst(ResumeInst &RI);
615 void visitCatchPadInst(CatchPadInst &CPI);
616 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
617 void visitCleanupPadInst(CleanupPadInst &CPI);
618 void visitFuncletPadInst(FuncletPadInst &FPI);
619 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
620 void visitCleanupReturnInst(CleanupReturnInst &CRI);
622 void verifySwiftErrorCall(CallBase &
Call,
const Value *SwiftErrorVal);
623 void verifySwiftErrorValue(
const Value *SwiftErrorVal);
624 void verifyTailCCMustTailAttrs(
const AttrBuilder &Attrs, StringRef
Context);
625 void verifyMustTailCall(CallInst &CI);
626 bool verifyAttributeCount(AttributeList Attrs,
unsigned Params);
627 void verifyAttributeTypes(AttributeSet Attrs,
const Value *V);
628 void verifyParameterAttrs(AttributeSet Attrs,
Type *Ty,
const Value *V);
629 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
631 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
632 const Value *V,
bool IsIntrinsic,
bool IsInlineAsm);
633 void verifyFunctionMetadata(
ArrayRef<std::pair<unsigned, MDNode *>> MDs);
634 void verifyUnknownProfileMetadata(MDNode *MD);
635 void visitConstantExprsRecursively(
const Constant *EntryC);
636 void visitConstantExpr(
const ConstantExpr *CE);
637 void visitConstantPtrAuth(
const ConstantPtrAuth *CPA);
638 void verifyInlineAsmCall(
const CallBase &
Call);
639 void verifyStatepoint(
const CallBase &
Call);
640 void verifyFrameRecoverIndices();
641 void verifySiblingFuncletUnwinds();
643 void verifyFragmentExpression(
const DbgVariableRecord &
I);
644 template <
typename ValueOrMetadata>
645 void verifyFragmentExpression(
const DIVariable &V,
647 ValueOrMetadata *
Desc);
648 void verifyFnArgs(
const DbgVariableRecord &DVR);
649 void verifyNotEntryValue(
const DbgVariableRecord &
I);
652 void verifyCompileUnits();
656 void verifyDeoptimizeCallingConvs();
658 void verifyAttachedCallBundle(
const CallBase &
Call,
659 const OperandBundleUse &BU);
662 void verifyNoAliasScopeDecl();
668#define Check(C, ...) \
671 CheckFailed(__VA_ARGS__); \
678#define CheckDI(C, ...) \
681 DebugInfoCheckFailed(__VA_ARGS__); \
689 CheckDI(
I.DebugMarker->MarkedInstr == &
I,
690 "Instruction has invalid DebugMarker", &
I);
692 "PHI Node must not have any attached DbgRecords", &
I);
695 "DbgRecord had invalid DebugMarker", &
I, &DR);
698 visitMDNode(*
Loc, AreDebugLocsAllowed::Yes);
703 verifyFragmentExpression(*DVR);
704 verifyNotEntryValue(*DVR);
711void Verifier::visit(Instruction &
I) {
713 for (
unsigned i = 0, e =
I.getNumOperands(); i != e; ++i)
714 Check(
I.getOperand(i) !=
nullptr,
"Operand is null", &
I);
726 while (!WorkList.
empty()) {
728 if (!Visited.
insert(Cur).second)
735void Verifier::visitGlobalValue(
const GlobalValue &GV) {
737 "Global is external, but doesn't have external or weak linkage!", &GV);
740 if (
const MDNode *Associated =
741 GO->getMetadata(LLVMContext::MD_associated)) {
742 Check(Associated->getNumOperands() == 1,
743 "associated metadata must have one operand", &GV, Associated);
744 const Metadata *
Op = Associated->getOperand(0).get();
745 Check(
Op,
"associated metadata must have a global value", GO, Associated);
748 Check(VM,
"associated metadata must be ValueAsMetadata", GO, Associated);
751 "associated value must be pointer typed", GV, Associated);
753 const Value *Stripped = VM->getValue()->stripPointerCastsAndAliases();
755 "associated metadata must point to a GlobalObject", GO, Stripped);
756 Check(Stripped != GO,
757 "global values should not associate to themselves", GO,
763 if (
const MDNode *AbsoluteSymbol =
764 GO->getMetadata(LLVMContext::MD_absolute_symbol)) {
765 verifyRangeLikeMetadata(*GO, AbsoluteSymbol,
766 DL.getIntPtrType(GO->getType()),
767 RangeLikeMetadataKind::AbsoluteSymbol);
772 "Only global variables can have appending linkage!", &GV);
777 "Only global arrays can have appending linkage!", GVar);
781 Check(!GV.
hasComdat(),
"Declaration may not be in a Comdat!", &GV);
785 "dllexport GlobalValue must have default or protected visibility",
790 "dllimport GlobalValue must have default visibility", &GV);
791 Check(!GV.
isDSOLocal(),
"GlobalValue with DLLImport Storage is dso_local!",
797 "Global is marked as dllimport, but not external", &GV);
802 "GlobalValue with local linkage or non-default "
803 "visibility must be dso_local!",
808 if (!
I->getParent() || !
I->getParent()->getParent())
809 CheckFailed(
"Global is referenced by parentless instruction!", &GV, &M,
811 else if (
I->getParent()->getParent()->getParent() != &M)
812 CheckFailed(
"Global is referenced in a different module!", &GV, &M,
I,
813 I->getParent()->getParent(),
814 I->getParent()->getParent()->getParent());
817 if (
F->getParent() != &M)
818 CheckFailed(
"Global is used by function in a different module", &GV, &M,
826void Verifier::visitGlobalVariable(
const GlobalVariable &GV) {
830 Check(
A->value() <= Value::MaximumAlignment,
831 "huge alignment values are unsupported", &GV);
836 "Global variable initializer type does not match global "
840 "Global variable initializer must be sized", &GV);
846 "'common' global must have a zero initializer!", &GV);
849 Check(!GV.
hasComdat(),
"'common' global may not be in a Comdat!", &GV);
854 GV.
getName() ==
"llvm.global_dtors")) {
856 "invalid linkage for intrinsic global variable", &GV);
858 "invalid uses of intrinsic global variable", &GV);
865 PointerType::get(
Context,
DL.getProgramAddressSpace());
869 "wrong type for intrinsic global variable", &GV);
871 "the third field of the element type is mandatory, "
872 "specify ptr null to migrate from the obsoleted 2-field form");
880 GV.
getName() ==
"llvm.compiler.used")) {
882 "invalid linkage for intrinsic global variable", &GV);
884 "invalid uses of intrinsic global variable", &GV);
888 Check(PTy,
"wrong type for intrinsic global variable", &GV);
892 Check(InitArray,
"wrong initalizer for intrinsic global variable",
898 Twine(
"invalid ") + GV.
getName() +
" member", V);
900 Twine(
"members of ") + GV.
getName() +
" must be named", V);
909 for (
auto *MD : MDs) {
911 visitDIGlobalVariableExpression(*GVE);
913 CheckDI(
false,
"!dbg attachment of global variable must be a "
914 "DIGlobalVariableExpression");
924 "Global @" + GV.
getName() +
" has illegal target extension type",
928 visitGlobalValue(GV);
935 visitGlobalValue(GV);
938void Verifier::visitAliaseeSubExpr(
const GlobalAlias &GA,
const Constant &
C) {
939 SmallPtrSet<const GlobalAlias*, 4> Visited;
941 visitAliaseeSubExpr(Visited, GA,
C);
944void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
945 const GlobalAlias &GA,
const Constant &
C) {
949 "available_externally alias must point to available_externally "
960 Check(Visited.
insert(GA2).second,
"Aliases cannot form a cycle", &GA);
962 Check(!GA2->isInterposable(),
963 "Alias cannot point to an interposable alias", &GA);
972 visitConstantExprsRecursively(CE);
974 for (
const Use &U :
C.operands()) {
977 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
979 visitAliaseeSubExpr(Visited, GA, *C2);
983void Verifier::visitGlobalAlias(
const GlobalAlias &GA) {
985 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
986 "weak_odr, external, or available_externally linkage!",
989 Check(Aliasee,
"Aliasee cannot be NULL!", &GA);
991 "Alias and aliasee types should match!", &GA);
994 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
996 visitAliaseeSubExpr(GA, *Aliasee);
998 visitGlobalValue(GA);
1001void Verifier::visitGlobalIFunc(
const GlobalIFunc &GI) {
1002 visitGlobalValue(GI);
1006 for (
const auto &
I : MDs) {
1007 CheckDI(
I.first != LLVMContext::MD_dbg,
1008 "an ifunc may not have a !dbg attachment", &GI);
1009 Check(
I.first != LLVMContext::MD_prof,
1010 "an ifunc may not have a !prof attachment", &GI);
1011 visitMDNode(*
I.second, AreDebugLocsAllowed::No);
1015 "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
1016 "weak_odr, or external linkage!",
1021 Check(Resolver,
"IFunc must have a Function resolver", &GI);
1023 "IFunc resolver must be a definition", &GI);
1030 "IFunc resolver must return a pointer", &GI);
1033 "IFunc resolver has incorrect type", &GI);
1036void Verifier::visitNamedMDNode(
const NamedMDNode &NMD) {
1041 "unrecognized named metadata node in the llvm.dbg namespace", &NMD);
1042 for (
const MDNode *MD : NMD.
operands()) {
1043 if (NMD.
getName() ==
"llvm.dbg.cu")
1049 visitMDNode(*MD, AreDebugLocsAllowed::Yes);
1053void Verifier::visitMDNode(
const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
1056 if (!MDNodes.
insert(&MD).second)
1060 "MDNode context does not match Module context!", &MD);
1065 case Metadata::MDTupleKind:
1067#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
1068 case Metadata::CLASS##Kind: \
1069 visit##CLASS(cast<CLASS>(MD)); \
1071#include "llvm/IR/Metadata.def"
1080 "DILocation not allowed within this metadata node", &MD,
Op);
1082 visitMDNode(*
N, AllowLocs);
1086 visitValueAsMetadata(*V,
nullptr);
1098 "Expected second operand to be an integer constant of type i32 or "
1108void Verifier::visitValueAsMetadata(
const ValueAsMetadata &MD, Function *
F) {
1111 "Unexpected metadata round-trip through values", &MD, MD.
getValue());
1117 Check(
F,
"function-local metadata used outside a function", L);
1123 Check(
I->getParent(),
"function-local metadata not in basic block", L,
I);
1129 assert(ActualF &&
"Unimplemented function local metadata case!");
1131 Check(ActualF ==
F,
"function-local metadata used in wrong function", L);
1134void Verifier::visitDIArgList(
const DIArgList &AL, Function *
F) {
1135 for (
const ValueAsMetadata *VAM :
AL.getArgs())
1136 visitValueAsMetadata(*VAM,
F);
1139void Verifier::visitMetadataAsValue(
const MetadataAsValue &MDV, Function *
F) {
1142 visitMDNode(*
N, AreDebugLocsAllowed::No);
1148 if (!MDNodes.
insert(MD).second)
1152 visitValueAsMetadata(*V,
F);
1155 visitDIArgList(*AL,
F);
1162void Verifier::visitDILocation(
const DILocation &
N) {
1164 "location requires a valid scope", &
N,
N.getRawScope());
1165 if (
auto *IA =
N.getRawInlinedAt())
1168 CheckDI(
SP->isDefinition(),
"scope points into the type hierarchy", &
N);
1171void Verifier::visitGenericDINode(
const GenericDINode &
N) {
1175void Verifier::visitDIScope(
const DIScope &
N) {
1176 if (
auto *
F =
N.getRawFile())
1180void Verifier::visitDISubrangeType(
const DISubrangeType &
N) {
1181 CheckDI(
N.getTag() == dwarf::DW_TAG_subrange_type,
"invalid tag", &
N);
1184 auto *LBound =
N.getRawLowerBound();
1187 "LowerBound must be signed constant or DIVariable or DIExpression",
1189 auto *UBound =
N.getRawUpperBound();
1192 "UpperBound must be signed constant or DIVariable or DIExpression",
1194 auto *Stride =
N.getRawStride();
1197 "Stride must be signed constant or DIVariable or DIExpression", &
N);
1198 auto *Bias =
N.getRawBias();
1201 "Bias must be signed constant or DIVariable or DIExpression", &
N);
1203 auto *
Size =
N.getRawSizeInBits();
1205 "SizeInBits must be a constant");
1208void Verifier::visitDISubrange(
const DISubrange &
N) {
1209 CheckDI(
N.getTag() == dwarf::DW_TAG_subrange_type,
"invalid tag", &
N);
1210 CheckDI(!
N.getRawCountNode() || !
N.getRawUpperBound(),
1211 "Subrange can have any one of count or upperBound", &
N);
1212 auto *CBound =
N.getRawCountNode();
1215 "Count must be signed constant or DIVariable or DIExpression", &
N);
1216 auto Count =
N.getCount();
1219 "invalid subrange count", &
N);
1220 auto *LBound =
N.getRawLowerBound();
1223 "LowerBound must be signed constant or DIVariable or DIExpression",
1225 auto *UBound =
N.getRawUpperBound();
1228 "UpperBound must be signed constant or DIVariable or DIExpression",
1230 auto *Stride =
N.getRawStride();
1233 "Stride must be signed constant or DIVariable or DIExpression", &
N);
1236void Verifier::visitDIGenericSubrange(
const DIGenericSubrange &
N) {
1237 CheckDI(
N.getTag() == dwarf::DW_TAG_generic_subrange,
"invalid tag", &
N);
1238 CheckDI(!
N.getRawCountNode() || !
N.getRawUpperBound(),
1239 "GenericSubrange can have any one of count or upperBound", &
N);
1240 auto *CBound =
N.getRawCountNode();
1242 "Count must be signed constant or DIVariable or DIExpression", &
N);
1243 auto *LBound =
N.getRawLowerBound();
1244 CheckDI(LBound,
"GenericSubrange must contain lowerBound", &
N);
1246 "LowerBound must be signed constant or DIVariable or DIExpression",
1248 auto *UBound =
N.getRawUpperBound();
1250 "UpperBound must be signed constant or DIVariable or DIExpression",
1252 auto *Stride =
N.getRawStride();
1253 CheckDI(Stride,
"GenericSubrange must contain stride", &
N);
1255 "Stride must be signed constant or DIVariable or DIExpression", &
N);
1258void Verifier::visitDIEnumerator(
const DIEnumerator &
N) {
1259 CheckDI(
N.getTag() == dwarf::DW_TAG_enumerator,
"invalid tag", &
N);
1262void Verifier::visitDIBasicType(
const DIBasicType &
N) {
1263 CheckDI(
N.getTag() == dwarf::DW_TAG_base_type ||
1264 N.getTag() == dwarf::DW_TAG_unspecified_type ||
1265 N.getTag() == dwarf::DW_TAG_string_type,
1268 auto *
Size =
N.getRawSizeInBits();
1270 "SizeInBits must be a constant");
1273void Verifier::visitDIFixedPointType(
const DIFixedPointType &
N) {
1274 visitDIBasicType(
N);
1276 CheckDI(
N.getTag() == dwarf::DW_TAG_base_type,
"invalid tag", &
N);
1277 CheckDI(
N.getEncoding() == dwarf::DW_ATE_signed_fixed ||
1278 N.getEncoding() == dwarf::DW_ATE_unsigned_fixed,
1279 "invalid encoding", &
N);
1283 "invalid kind", &
N);
1285 N.getFactorRaw() == 0,
1286 "factor should be 0 for rationals", &
N);
1288 (
N.getNumeratorRaw() == 0 &&
N.getDenominatorRaw() == 0),
1289 "numerator and denominator should be 0 for non-rationals", &
N);
1292void Verifier::visitDIStringType(
const DIStringType &
N) {
1293 CheckDI(
N.getTag() == dwarf::DW_TAG_string_type,
"invalid tag", &
N);
1294 CheckDI(!(
N.isBigEndian() &&
N.isLittleEndian()),
"has conflicting flags",
1298void Verifier::visitDIDerivedType(
const DIDerivedType &
N) {
1302 CheckDI(
N.getTag() == dwarf::DW_TAG_typedef ||
1303 N.getTag() == dwarf::DW_TAG_pointer_type ||
1304 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1305 N.getTag() == dwarf::DW_TAG_reference_type ||
1306 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1307 N.getTag() == dwarf::DW_TAG_const_type ||
1308 N.getTag() == dwarf::DW_TAG_immutable_type ||
1309 N.getTag() == dwarf::DW_TAG_volatile_type ||
1310 N.getTag() == dwarf::DW_TAG_restrict_type ||
1311 N.getTag() == dwarf::DW_TAG_atomic_type ||
1312 N.getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ||
1313 N.getTag() == dwarf::DW_TAG_member ||
1314 (
N.getTag() == dwarf::DW_TAG_variable &&
N.isStaticMember()) ||
1315 N.getTag() == dwarf::DW_TAG_inheritance ||
1316 N.getTag() == dwarf::DW_TAG_friend ||
1317 N.getTag() == dwarf::DW_TAG_set_type ||
1318 N.getTag() == dwarf::DW_TAG_template_alias,
1320 if (
N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1321 CheckDI(
isType(
N.getRawExtraData()),
"invalid pointer to member type", &
N,
1322 N.getRawExtraData());
1325 if (
N.getTag() == dwarf::DW_TAG_set_type) {
1326 if (
auto *
T =
N.getRawBaseType()) {
1331 (Enum &&
Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1332 (Subrange &&
Subrange->getTag() == dwarf::DW_TAG_subrange_type) ||
1333 (
Basic && (
Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1334 Basic->getEncoding() == dwarf::DW_ATE_signed ||
1335 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1336 Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1337 Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1338 "invalid set base type", &
N,
T);
1344 N.getRawBaseType());
1346 if (
N.getDWARFAddressSpace()) {
1347 CheckDI(
N.getTag() == dwarf::DW_TAG_pointer_type ||
1348 N.getTag() == dwarf::DW_TAG_reference_type ||
1349 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1350 "DWARF address space only applies to pointer or reference types",
1354 auto *
Size =
N.getRawSizeInBits();
1357 "SizeInBits must be a constant or DIVariable or DIExpression");
1362 return ((Flags & DINode::FlagLValueReference) &&
1363 (Flags & DINode::FlagRValueReference)) ||
1364 ((Flags & DINode::FlagTypePassByValue) &&
1365 (Flags & DINode::FlagTypePassByReference));
1368void Verifier::visitTemplateParams(
const MDNode &
N,
const Metadata &RawParams) {
1370 CheckDI(Params,
"invalid template params", &
N, &RawParams);
1377void Verifier::visitDICompositeType(
const DICompositeType &
N) {
1381 CheckDI(
N.getTag() == dwarf::DW_TAG_array_type ||
1382 N.getTag() == dwarf::DW_TAG_structure_type ||
1383 N.getTag() == dwarf::DW_TAG_union_type ||
1384 N.getTag() == dwarf::DW_TAG_enumeration_type ||
1385 N.getTag() == dwarf::DW_TAG_class_type ||
1386 N.getTag() == dwarf::DW_TAG_variant_part ||
1387 N.getTag() == dwarf::DW_TAG_variant ||
1388 N.getTag() == dwarf::DW_TAG_namelist,
1393 N.getRawBaseType());
1396 "invalid composite elements", &
N,
N.getRawElements());
1398 N.getRawVTableHolder());
1400 "invalid reference flags", &
N);
1401 unsigned DIBlockByRefStruct = 1 << 4;
1402 CheckDI((
N.getFlags() & DIBlockByRefStruct) == 0,
1403 "DIBlockByRefStruct on DICompositeType is no longer supported", &
N);
1405 "DISubprogram contains null entry in `elements` field", &
N);
1408 const DINodeArray
Elements =
N.getElements();
1410 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1411 "invalid vector, expected one element of type subrange", &
N);
1414 if (
auto *Params =
N.getRawTemplateParams())
1415 visitTemplateParams(
N, *Params);
1417 if (
auto *
D =
N.getRawDiscriminator()) {
1419 "discriminator can only appear on variant part");
1422 if (
N.getRawDataLocation()) {
1423 CheckDI(
N.getTag() == dwarf::DW_TAG_array_type,
1424 "dataLocation can only appear in array type");
1427 if (
N.getRawAssociated()) {
1428 CheckDI(
N.getTag() == dwarf::DW_TAG_array_type,
1429 "associated can only appear in array type");
1432 if (
N.getRawAllocated()) {
1433 CheckDI(
N.getTag() == dwarf::DW_TAG_array_type,
1434 "allocated can only appear in array type");
1437 if (
N.getRawRank()) {
1438 CheckDI(
N.getTag() == dwarf::DW_TAG_array_type,
1439 "rank can only appear in array type");
1442 if (
N.getTag() == dwarf::DW_TAG_array_type) {
1443 CheckDI(
N.getRawBaseType(),
"array types must have a base type", &
N);
1446 auto *
Size =
N.getRawSizeInBits();
1449 "SizeInBits must be a constant or DIVariable or DIExpression");
1452void Verifier::visitDISubroutineType(
const DISubroutineType &
N) {
1453 CheckDI(
N.getTag() == dwarf::DW_TAG_subroutine_type,
"invalid tag", &
N);
1454 if (
auto *Types =
N.getRawTypeArray()) {
1456 for (
Metadata *Ty :
N.getTypeArray()->operands()) {
1457 CheckDI(
isType(Ty),
"invalid subroutine type ref", &
N, Types, Ty);
1461 "invalid reference flags", &
N);
1464void Verifier::visitDIFile(
const DIFile &
N) {
1465 CheckDI(
N.getTag() == dwarf::DW_TAG_file_type,
"invalid tag", &
N);
1466 std::optional<DIFile::ChecksumInfo<StringRef>> Checksum =
N.getChecksum();
1468 CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1469 "invalid checksum kind", &
N);
1471 switch (Checksum->Kind) {
1482 CheckDI(Checksum->Value.size() ==
Size,
"invalid checksum length", &
N);
1484 "invalid checksum", &
N);
1488void Verifier::visitDICompileUnit(
const DICompileUnit &
N) {
1489 CheckDI(
N.isDistinct(),
"compile units must be distinct", &
N);
1490 CheckDI(
N.getTag() == dwarf::DW_TAG_compile_unit,
"invalid tag", &
N);
1496 CheckDI(!
N.getFile()->getFilename().empty(),
"invalid filename", &
N,
1500 "invalid emission kind", &
N);
1502 if (
auto *Array =
N.getRawEnumTypes()) {
1504 for (
Metadata *
Op :
N.getEnumTypes()->operands()) {
1506 CheckDI(Enum &&
Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1507 "invalid enum type", &
N,
N.getEnumTypes(),
Op);
1510 if (
auto *Array =
N.getRawRetainedTypes()) {
1512 for (
Metadata *
Op :
N.getRetainedTypes()->operands()) {
1516 "invalid retained type", &
N,
Op);
1519 if (
auto *Array =
N.getRawGlobalVariables()) {
1521 for (
Metadata *
Op :
N.getGlobalVariables()->operands()) {
1523 "invalid global variable ref", &
N,
Op);
1526 if (
auto *Array =
N.getRawImportedEntities()) {
1528 for (
Metadata *
Op :
N.getImportedEntities()->operands()) {
1533 if (
auto *Array =
N.getRawMacros()) {
1542void Verifier::visitDISubprogram(
const DISubprogram &
N) {
1543 CheckDI(
N.getTag() == dwarf::DW_TAG_subprogram,
"invalid tag", &
N);
1545 if (
auto *
F =
N.getRawFile())
1548 CheckDI(
N.getLine() == 0,
"line specified with no file", &
N,
N.getLine());
1549 if (
auto *
T =
N.getRawType())
1551 CheckDI(
isType(
N.getRawContainingType()),
"invalid containing type", &
N,
1552 N.getRawContainingType());
1553 if (
auto *Params =
N.getRawTemplateParams())
1554 visitTemplateParams(
N, *Params);
1555 if (
auto *S =
N.getRawDeclaration())
1557 "invalid subprogram declaration", &
N, S);
1558 if (
auto *RawNode =
N.getRawRetainedNodes()) {
1560 CheckDI(Node,
"invalid retained nodes list", &
N, RawNode);
1564 "invalid retained nodes, expected DILocalVariable, DILabel or "
1570 "invalid reference flags", &
N);
1572 auto *
Unit =
N.getRawUnit();
1573 if (
N.isDefinition()) {
1575 CheckDI(
N.isDistinct(),
"subprogram definitions must be distinct", &
N);
1576 CheckDI(Unit,
"subprogram definitions must have a compile unit", &
N);
1581 if (CT && CT->getRawIdentifier() &&
1582 M.getContext().isODRUniquingDebugTypes())
1584 "definition subprograms cannot be nested within DICompositeType "
1585 "when enabling ODR",
1589 CheckDI(!Unit,
"subprogram declarations must not have a compile unit", &
N);
1591 "subprogram declaration must not have a declaration field");
1594 if (
auto *RawThrownTypes =
N.getRawThrownTypes()) {
1596 CheckDI(ThrownTypes,
"invalid thrown types list", &
N, RawThrownTypes);
1602 if (
N.areAllCallsDescribed())
1604 "DIFlagAllCallsDescribed must be attached to a definition");
1607void Verifier::visitDILexicalBlockBase(
const DILexicalBlockBase &
N) {
1608 CheckDI(
N.getTag() == dwarf::DW_TAG_lexical_block,
"invalid tag", &
N);
1610 "invalid local scope", &
N,
N.getRawScope());
1612 CheckDI(
SP->isDefinition(),
"scope points into the type hierarchy", &
N);
1615void Verifier::visitDILexicalBlock(
const DILexicalBlock &
N) {
1616 visitDILexicalBlockBase(
N);
1619 "cannot have column info without line info", &
N);
1622void Verifier::visitDILexicalBlockFile(
const DILexicalBlockFile &
N) {
1623 visitDILexicalBlockBase(
N);
1626void Verifier::visitDICommonBlock(
const DICommonBlock &
N) {
1627 CheckDI(
N.getTag() == dwarf::DW_TAG_common_block,
"invalid tag", &
N);
1628 if (
auto *S =
N.getRawScope())
1630 if (
auto *S =
N.getRawDecl())
1634void Verifier::visitDINamespace(
const DINamespace &
N) {
1635 CheckDI(
N.getTag() == dwarf::DW_TAG_namespace,
"invalid tag", &
N);
1636 if (
auto *S =
N.getRawScope())
1640void Verifier::visitDIMacro(
const DIMacro &
N) {
1643 "invalid macinfo type", &
N);
1644 CheckDI(!
N.getName().empty(),
"anonymous macro", &
N);
1645 if (!
N.getValue().empty()) {
1646 assert(
N.getValue().data()[0] !=
' ' &&
"Macro value has a space prefix");
1650void Verifier::visitDIMacroFile(
const DIMacroFile &
N) {
1652 "invalid macinfo type", &
N);
1653 if (
auto *
F =
N.getRawFile())
1656 if (
auto *Array =
N.getRawElements()) {
1658 for (
Metadata *
Op :
N.getElements()->operands()) {
1664void Verifier::visitDIModule(
const DIModule &
N) {
1665 CheckDI(
N.getTag() == dwarf::DW_TAG_module,
"invalid tag", &
N);
1666 CheckDI(!
N.getName().empty(),
"anonymous module", &
N);
1669void Verifier::visitDITemplateParameter(
const DITemplateParameter &
N) {
1673void Verifier::visitDITemplateTypeParameter(
const DITemplateTypeParameter &
N) {
1674 visitDITemplateParameter(
N);
1676 CheckDI(
N.getTag() == dwarf::DW_TAG_template_type_parameter,
"invalid tag",
1680void Verifier::visitDITemplateValueParameter(
1681 const DITemplateValueParameter &
N) {
1682 visitDITemplateParameter(
N);
1684 CheckDI(
N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1685 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1686 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1690void Verifier::visitDIVariable(
const DIVariable &
N) {
1691 if (
auto *S =
N.getRawScope())
1693 if (
auto *
F =
N.getRawFile())
1697void Verifier::visitDIGlobalVariable(
const DIGlobalVariable &
N) {
1701 CheckDI(
N.getTag() == dwarf::DW_TAG_variable,
"invalid tag", &
N);
1704 if (
N.isDefinition())
1705 CheckDI(
N.getType(),
"missing global variable type", &
N);
1706 if (
auto *Member =
N.getRawStaticDataMemberDeclaration()) {
1708 "invalid static data member declaration", &
N, Member);
1712void Verifier::visitDILocalVariable(
const DILocalVariable &
N) {
1717 CheckDI(
N.getTag() == dwarf::DW_TAG_variable,
"invalid tag", &
N);
1719 "local variable requires a valid scope", &
N,
N.getRawScope());
1720 if (
auto Ty =
N.getType())
1724void Verifier::visitDIAssignID(
const DIAssignID &
N) {
1725 CheckDI(!
N.getNumOperands(),
"DIAssignID has no arguments", &
N);
1726 CheckDI(
N.isDistinct(),
"DIAssignID must be distinct", &
N);
1729void Verifier::visitDILabel(
const DILabel &
N) {
1730 if (
auto *S =
N.getRawScope())
1732 if (
auto *
F =
N.getRawFile())
1735 CheckDI(
N.getTag() == dwarf::DW_TAG_label,
"invalid tag", &
N);
1737 "label requires a valid scope", &
N,
N.getRawScope());
1740void Verifier::visitDIExpression(
const DIExpression &
N) {
1741 CheckDI(
N.isValid(),
"invalid expression", &
N);
1744void Verifier::visitDIGlobalVariableExpression(
1745 const DIGlobalVariableExpression &GVE) {
1748 visitDIGlobalVariable(*Var);
1750 visitDIExpression(*Expr);
1751 if (
auto Fragment = Expr->getFragmentInfo())
1752 verifyFragmentExpression(*GVE.
getVariable(), *Fragment, &GVE);
1756void Verifier::visitDIObjCProperty(
const DIObjCProperty &
N) {
1757 CheckDI(
N.getTag() == dwarf::DW_TAG_APPLE_property,
"invalid tag", &
N);
1758 if (
auto *
T =
N.getRawType())
1760 if (
auto *
F =
N.getRawFile())
1764void Verifier::visitDIImportedEntity(
const DIImportedEntity &
N) {
1765 CheckDI(
N.getTag() == dwarf::DW_TAG_imported_module ||
1766 N.getTag() == dwarf::DW_TAG_imported_declaration,
1768 if (
auto *S =
N.getRawScope())
1774void Verifier::visitComdat(
const Comdat &
C) {
1777 if (
TT.isOSBinFormatCOFF())
1778 if (
const GlobalValue *GV =
M.getNamedValue(
C.getName()))
1783void Verifier::visitModuleIdents() {
1784 const NamedMDNode *Idents =
M.getNamedMetadata(
"llvm.ident");
1790 for (
const MDNode *
N : Idents->
operands()) {
1791 Check(
N->getNumOperands() == 1,
1792 "incorrect number of operands in llvm.ident metadata",
N);
1794 (
"invalid value for llvm.ident metadata entry operand"
1795 "(the operand should be a string)"),
1800void Verifier::visitModuleCommandLines() {
1801 const NamedMDNode *CommandLines =
M.getNamedMetadata(
"llvm.commandline");
1808 for (
const MDNode *
N : CommandLines->
operands()) {
1809 Check(
N->getNumOperands() == 1,
1810 "incorrect number of operands in llvm.commandline metadata",
N);
1812 (
"invalid value for llvm.commandline metadata entry operand"
1813 "(the operand should be a string)"),
1818void Verifier::visitModuleFlags() {
1819 const NamedMDNode *
Flags =
M.getModuleFlagsMetadata();
1823 DenseMap<const MDString*, const MDNode*> SeenIDs;
1825 uint64_t PAuthABIPlatform = -1;
1826 uint64_t PAuthABIVersion = -1;
1827 for (
const MDNode *MDN :
Flags->operands()) {
1828 visitModuleFlag(MDN, SeenIDs, Requirements);
1829 if (MDN->getNumOperands() != 3)
1832 if (FlagName->getString() ==
"aarch64-elf-pauthabi-platform") {
1833 if (
const auto *PAP =
1835 PAuthABIPlatform = PAP->getZExtValue();
1836 }
else if (FlagName->getString() ==
"aarch64-elf-pauthabi-version") {
1837 if (
const auto *PAV =
1839 PAuthABIVersion = PAV->getZExtValue();
1844 if ((PAuthABIPlatform == uint64_t(-1)) != (PAuthABIVersion == uint64_t(-1)))
1845 CheckFailed(
"either both or no 'aarch64-elf-pauthabi-platform' and "
1846 "'aarch64-elf-pauthabi-version' module flags must be present");
1849 for (
const MDNode *Requirement : Requirements) {
1851 const Metadata *ReqValue = Requirement->getOperand(1);
1853 const MDNode *
Op = SeenIDs.
lookup(Flag);
1855 CheckFailed(
"invalid requirement on flag, flag is not present in module",
1860 if (
Op->getOperand(2) != ReqValue) {
1861 CheckFailed((
"invalid requirement on flag, "
1862 "flag does not have the required value"),
1870Verifier::visitModuleFlag(
const MDNode *
Op,
1871 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1872 SmallVectorImpl<const MDNode *> &Requirements) {
1876 "incorrect number of operands in module flag",
Op);
1877 Module::ModFlagBehavior MFB;
1878 if (!Module::isValidModFlagBehavior(
Op->getOperand(0), MFB)) {
1880 "invalid behavior operand in module flag (expected constant integer)",
1883 "invalid behavior operand in module flag (unexpected constant)",
1887 Check(
ID,
"invalid ID operand in module flag (expected metadata string)",
1893 case Module::Warning:
1894 case Module::Override:
1900 Check(V &&
V->getValue().isNonNegative(),
1901 "invalid value for 'min' module flag (expected constant non-negative "
1909 "invalid value for 'max' module flag (expected constant integer)",
1914 case Module::Require: {
1919 "invalid value for 'require' module flag (expected metadata pair)",
1922 (
"invalid value for 'require' module flag "
1923 "(first value operand should be a string)"),
1924 Value->getOperand(0));
1932 case Module::Append:
1933 case Module::AppendUnique: {
1936 "invalid value for 'append'-type module flag "
1937 "(expected a metadata node)",
1944 if (MFB != Module::Require) {
1947 "module flag identifiers must be unique (or of 'require' type)",
ID);
1950 if (
ID->getString() ==
"wchar_size") {
1953 Check(
Value,
"wchar_size metadata requires constant integer argument");
1956 if (
ID->getString() ==
"Linker Options") {
1960 Check(
M.getNamedMetadata(
"llvm.linker.options"),
1961 "'Linker Options' named metadata no longer supported");
1964 if (
ID->getString() ==
"SemanticInterposition") {
1965 ConstantInt *
Value =
1968 "SemanticInterposition metadata requires constant integer argument");
1971 if (
ID->getString() ==
"CG Profile") {
1972 for (
const MDOperand &MDO :
cast<MDNode>(
Op->getOperand(2))->operands())
1973 visitModuleFlagCGProfileEntry(MDO);
1977void Verifier::visitModuleFlagCGProfileEntry(
const MDOperand &MDO) {
1978 auto CheckFunction = [&](
const MDOperand &FuncMDO) {
1983 "expected a Function or null", FuncMDO);
1986 Check(Node &&
Node->getNumOperands() == 3,
"expected a MDNode triple", MDO);
1987 CheckFunction(
Node->getOperand(0));
1988 CheckFunction(
Node->getOperand(1));
1991 "expected an integer constant",
Node->getOperand(2));
1994void Verifier::verifyAttributeTypes(AttributeSet Attrs,
const Value *V) {
1997 if (
A.isStringAttribute()) {
1998#define GET_ATTR_NAMES
1999#define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
2000#define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \
2001 if (A.getKindAsString() == #DISPLAY_NAME) { \
2002 auto V = A.getValueAsString(); \
2003 if (!(V.empty() || V == "true" || V == "false")) \
2004 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \
2008#include "llvm/IR/Attributes.inc"
2012 if (
A.isIntAttribute() != Attribute::isIntAttrKind(
A.getKindAsEnum())) {
2013 CheckFailed(
"Attribute '" +
A.getAsString() +
"' should have an Argument",
2022void Verifier::verifyParameterAttrs(AttributeSet Attrs,
Type *Ty,
2024 if (!
Attrs.hasAttributes())
2027 verifyAttributeTypes(Attrs, V);
2030 Check(Attr.isStringAttribute() ||
2031 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
2032 "Attribute '" + Attr.getAsString() +
"' does not apply to parameters",
2035 if (
Attrs.hasAttribute(Attribute::ImmArg)) {
2036 unsigned AttrCount =
2037 Attrs.getNumAttributes() -
Attrs.hasAttribute(Attribute::Range);
2038 Check(AttrCount == 1,
2039 "Attribute 'immarg' is incompatible with other attributes except the "
2040 "'range' attribute",
2046 unsigned AttrCount = 0;
2047 AttrCount +=
Attrs.hasAttribute(Attribute::ByVal);
2048 AttrCount +=
Attrs.hasAttribute(Attribute::InAlloca);
2049 AttrCount +=
Attrs.hasAttribute(Attribute::Preallocated);
2050 AttrCount +=
Attrs.hasAttribute(Attribute::StructRet) ||
2051 Attrs.hasAttribute(Attribute::InReg);
2052 AttrCount +=
Attrs.hasAttribute(Attribute::Nest);
2053 AttrCount +=
Attrs.hasAttribute(Attribute::ByRef);
2054 Check(AttrCount <= 1,
2055 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
2056 "'byref', and 'sret' are incompatible!",
2059 Check(!(
Attrs.hasAttribute(Attribute::InAlloca) &&
2060 Attrs.hasAttribute(Attribute::ReadOnly)),
2062 "'inalloca and readonly' are incompatible!",
2065 Check(!(
Attrs.hasAttribute(Attribute::StructRet) &&
2066 Attrs.hasAttribute(Attribute::Returned)),
2068 "'sret and returned' are incompatible!",
2071 Check(!(
Attrs.hasAttribute(Attribute::ZExt) &&
2072 Attrs.hasAttribute(Attribute::SExt)),
2074 "'zeroext and signext' are incompatible!",
2077 Check(!(
Attrs.hasAttribute(Attribute::ReadNone) &&
2078 Attrs.hasAttribute(Attribute::ReadOnly)),
2080 "'readnone and readonly' are incompatible!",
2083 Check(!(
Attrs.hasAttribute(Attribute::ReadNone) &&
2084 Attrs.hasAttribute(Attribute::WriteOnly)),
2086 "'readnone and writeonly' are incompatible!",
2089 Check(!(
Attrs.hasAttribute(Attribute::ReadOnly) &&
2090 Attrs.hasAttribute(Attribute::WriteOnly)),
2092 "'readonly and writeonly' are incompatible!",
2095 Check(!(
Attrs.hasAttribute(Attribute::NoInline) &&
2096 Attrs.hasAttribute(Attribute::AlwaysInline)),
2098 "'noinline and alwaysinline' are incompatible!",
2101 Check(!(
Attrs.hasAttribute(Attribute::Writable) &&
2102 Attrs.hasAttribute(Attribute::ReadNone)),
2103 "Attributes writable and readnone are incompatible!", V);
2105 Check(!(
Attrs.hasAttribute(Attribute::Writable) &&
2106 Attrs.hasAttribute(Attribute::ReadOnly)),
2107 "Attributes writable and readonly are incompatible!", V);
2109 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty, Attrs);
2111 if (!Attr.isStringAttribute() &&
2112 IncompatibleAttrs.
contains(Attr.getKindAsEnum())) {
2113 CheckFailed(
"Attribute '" + Attr.getAsString() +
2114 "' applied to incompatible type!", V);
2120 if (
Attrs.hasAttribute(Attribute::Alignment)) {
2121 Align AttrAlign =
Attrs.getAlignment().valueOrOne();
2122 Check(AttrAlign.
value() <= Value::MaximumAlignment,
2123 "huge alignment values are unsupported", V);
2125 if (
Attrs.hasAttribute(Attribute::ByVal)) {
2127 SmallPtrSet<Type *, 4> Visited;
2129 "Attribute 'byval' does not support unsized types!", V);
2133 "'byval' argument has illegal target extension type", V);
2134 Check(
DL.getTypeAllocSize(ByValTy).getKnownMinValue() < (1ULL << 32),
2135 "huge 'byval' arguments are unsupported", V);
2137 if (
Attrs.hasAttribute(Attribute::ByRef)) {
2138 SmallPtrSet<Type *, 4> Visited;
2139 Check(
Attrs.getByRefType()->isSized(&Visited),
2140 "Attribute 'byref' does not support unsized types!", V);
2141 Check(
DL.getTypeAllocSize(
Attrs.getByRefType()).getKnownMinValue() <
2143 "huge 'byref' arguments are unsupported", V);
2145 if (
Attrs.hasAttribute(Attribute::InAlloca)) {
2146 SmallPtrSet<Type *, 4> Visited;
2147 Check(
Attrs.getInAllocaType()->isSized(&Visited),
2148 "Attribute 'inalloca' does not support unsized types!", V);
2149 Check(
DL.getTypeAllocSize(
Attrs.getInAllocaType()).getKnownMinValue() <
2151 "huge 'inalloca' arguments are unsupported", V);
2153 if (
Attrs.hasAttribute(Attribute::Preallocated)) {
2154 SmallPtrSet<Type *, 4> Visited;
2155 Check(
Attrs.getPreallocatedType()->isSized(&Visited),
2156 "Attribute 'preallocated' does not support unsized types!", V);
2158 DL.getTypeAllocSize(
Attrs.getPreallocatedType()).getKnownMinValue() <
2160 "huge 'preallocated' arguments are unsupported", V);
2164 if (
Attrs.hasAttribute(Attribute::Initializes)) {
2165 auto Inits =
Attrs.getAttribute(Attribute::Initializes).getInitializes();
2166 Check(!Inits.empty(),
"Attribute 'initializes' does not support empty list",
2169 "Attribute 'initializes' does not support unordered ranges", V);
2172 if (
Attrs.hasAttribute(Attribute::NoFPClass)) {
2173 uint64_t Val =
Attrs.getAttribute(Attribute::NoFPClass).getValueAsInt();
2174 Check(Val != 0,
"Attribute 'nofpclass' must have at least one test bit set",
2177 "Invalid value for 'nofpclass' test mask", V);
2179 if (
Attrs.hasAttribute(Attribute::Range)) {
2180 const ConstantRange &CR =
2181 Attrs.getAttribute(Attribute::Range).getValueAsConstantRange();
2183 "Range bit width must match type bit width!", V);
2187void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
2189 if (
Attrs.hasFnAttr(Attr)) {
2190 StringRef S =
Attrs.getFnAttr(Attr).getValueAsString();
2193 CheckFailed(
"\"" + Attr +
"\" takes an unsigned integer: " + S, V);
2199void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
2200 const Value *V,
bool IsIntrinsic,
2202 if (
Attrs.isEmpty())
2205 if (AttributeListsVisited.
insert(
Attrs.getRawPointer()).second) {
2207 "Attribute list does not match Module context!", &Attrs, V);
2208 for (
const auto &AttrSet : Attrs) {
2209 Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(
Context),
2210 "Attribute set does not match Module context!", &AttrSet, V);
2211 for (
const auto &
A : AttrSet) {
2213 "Attribute does not match Module context!", &
A, V);
2218 bool SawNest =
false;
2219 bool SawReturned =
false;
2220 bool SawSRet =
false;
2221 bool SawSwiftSelf =
false;
2222 bool SawSwiftAsync =
false;
2223 bool SawSwiftError =
false;
2226 AttributeSet RetAttrs =
Attrs.getRetAttrs();
2229 Attribute::canUseAsRetAttr(
RetAttr.getKindAsEnum()),
2230 "Attribute '" +
RetAttr.getAsString() +
2231 "' does not apply to function return values",
2234 unsigned MaxParameterWidth = 0;
2235 auto GetMaxParameterWidth = [&MaxParameterWidth](
Type *Ty) {
2238 unsigned Size = VT->getPrimitiveSizeInBits().getFixedValue();
2239 if (
Size > MaxParameterWidth)
2240 MaxParameterWidth =
Size;
2244 GetMaxParameterWidth(FT->getReturnType());
2245 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
2248 for (
unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2249 Type *Ty = FT->getParamType(i);
2250 AttributeSet ArgAttrs =
Attrs.getParamAttrs(i);
2254 "immarg attribute only applies to intrinsics", V);
2257 "Attribute 'elementtype' can only be applied to intrinsics"
2262 verifyParameterAttrs(ArgAttrs, Ty, V);
2263 GetMaxParameterWidth(Ty);
2266 Check(!SawNest,
"More than one parameter has attribute nest!", V);
2271 Check(!SawReturned,
"More than one parameter has attribute returned!", V);
2273 "Incompatible argument and return types for 'returned' attribute",
2279 Check(!SawSRet,
"Cannot have multiple 'sret' parameters!", V);
2280 Check(i == 0 || i == 1,
2281 "Attribute 'sret' is not on first or second parameter!", V);
2286 Check(!SawSwiftSelf,
"Cannot have multiple 'swiftself' parameters!", V);
2287 SawSwiftSelf =
true;
2291 Check(!SawSwiftAsync,
"Cannot have multiple 'swiftasync' parameters!", V);
2292 SawSwiftAsync =
true;
2296 Check(!SawSwiftError,
"Cannot have multiple 'swifterror' parameters!", V);
2297 SawSwiftError =
true;
2301 Check(i == FT->getNumParams() - 1,
2302 "inalloca isn't on the last parameter!", V);
2306 if (!
Attrs.hasFnAttrs())
2309 verifyAttributeTypes(
Attrs.getFnAttrs(), V);
2312 Attribute::canUseAsFnAttr(
FnAttr.getKindAsEnum()),
2313 "Attribute '" +
FnAttr.getAsString() +
2314 "' does not apply to functions!",
2317 Check(!(
Attrs.hasFnAttr(Attribute::NoInline) &&
2318 Attrs.hasFnAttr(Attribute::AlwaysInline)),
2319 "Attributes 'noinline and alwaysinline' are incompatible!", V);
2321 if (
Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2323 "Attribute 'optnone' requires 'noinline'!", V);
2325 Check(!
Attrs.hasFnAttr(Attribute::OptimizeForSize),
2326 "Attributes 'optsize and optnone' are incompatible!", V);
2329 "Attributes 'minsize and optnone' are incompatible!", V);
2331 Check(!
Attrs.hasFnAttr(Attribute::OptimizeForDebugging),
2332 "Attributes 'optdebug and optnone' are incompatible!", V);
2335 Check(!(
Attrs.hasFnAttr(Attribute::SanitizeRealtime) &&
2336 Attrs.hasFnAttr(Attribute::SanitizeRealtimeBlocking)),
2338 "'sanitize_realtime and sanitize_realtime_blocking' are incompatible!",
2341 if (
Attrs.hasFnAttr(Attribute::OptimizeForDebugging)) {
2342 Check(!
Attrs.hasFnAttr(Attribute::OptimizeForSize),
2343 "Attributes 'optsize and optdebug' are incompatible!", V);
2346 "Attributes 'minsize and optdebug' are incompatible!", V);
2349 Check(!
Attrs.hasAttrSomewhere(Attribute::Writable) ||
2350 isModSet(
Attrs.getMemoryEffects().getModRef(IRMemLocation::ArgMem)),
2351 "Attribute writable and memory without argmem: write are incompatible!",
2354 if (
Attrs.hasFnAttr(
"aarch64_pstate_sm_enabled")) {
2355 Check(!
Attrs.hasFnAttr(
"aarch64_pstate_sm_compatible"),
2356 "Attributes 'aarch64_pstate_sm_enabled and "
2357 "aarch64_pstate_sm_compatible' are incompatible!",
2361 Check((
Attrs.hasFnAttr(
"aarch64_new_za") +
Attrs.hasFnAttr(
"aarch64_in_za") +
2362 Attrs.hasFnAttr(
"aarch64_inout_za") +
2363 Attrs.hasFnAttr(
"aarch64_out_za") +
2364 Attrs.hasFnAttr(
"aarch64_preserves_za") +
2365 Attrs.hasFnAttr(
"aarch64_za_state_agnostic")) <= 1,
2366 "Attributes 'aarch64_new_za', 'aarch64_in_za', 'aarch64_out_za', "
2367 "'aarch64_inout_za', 'aarch64_preserves_za' and "
2368 "'aarch64_za_state_agnostic' are mutually exclusive",
2372 Attrs.hasFnAttr(
"aarch64_in_zt0") +
2373 Attrs.hasFnAttr(
"aarch64_inout_zt0") +
2374 Attrs.hasFnAttr(
"aarch64_out_zt0") +
2375 Attrs.hasFnAttr(
"aarch64_preserves_zt0") +
2376 Attrs.hasFnAttr(
"aarch64_za_state_agnostic")) <= 1,
2377 "Attributes 'aarch64_new_zt0', 'aarch64_in_zt0', 'aarch64_out_zt0', "
2378 "'aarch64_inout_zt0', 'aarch64_preserves_zt0' and "
2379 "'aarch64_za_state_agnostic' are mutually exclusive",
2382 if (
Attrs.hasFnAttr(Attribute::JumpTable)) {
2385 "Attribute 'jumptable' requires 'unnamed_addr'", V);
2388 if (
auto Args =
Attrs.getFnAttrs().getAllocSizeArgs()) {
2389 auto CheckParam = [&](StringRef
Name,
unsigned ParamNo) {
2390 if (ParamNo >= FT->getNumParams()) {
2391 CheckFailed(
"'allocsize' " + Name +
" argument is out of bounds", V);
2395 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2396 CheckFailed(
"'allocsize' " + Name +
2397 " argument must refer to an integer parameter",
2405 if (!CheckParam(
"element size",
Args->first))
2408 if (
Args->second && !CheckParam(
"number of elements", *
Args->second))
2412 if (
Attrs.hasFnAttr(Attribute::AllocKind)) {
2415 K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free);
2417 {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free},
2420 "'allockind()' requires exactly one of alloc, realloc, and free");
2421 if ((
Type == AllocFnKind::Free) &&
2422 ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed |
2423 AllocFnKind::Aligned)) != AllocFnKind::Unknown))
2424 CheckFailed(
"'allockind(\"free\")' doesn't allow uninitialized, zeroed, "
2425 "or aligned modifiers.");
2426 AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed;
2427 if ((K & ZeroedUninit) == ZeroedUninit)
2428 CheckFailed(
"'allockind()' can't be both zeroed and uninitialized");
2432 StringRef S =
A.getValueAsString();
2433 Check(!S.
empty(),
"'alloc-variant-zeroed' must not be empty");
2441 "'alloc-variant-zeroed' must name a function belonging to the "
2442 "same 'alloc-family'");
2445 (
Variant->getFnAttribute(Attribute::AllocKind).getAllocKind() &
2446 AllocFnKind::Zeroed) != AllocFnKind::Unknown,
2447 "'alloc-variant-zeroed' must name a function with "
2448 "'allockind(\"zeroed\")'");
2451 "'alloc-variant-zeroed' must name a function with the same "
2456 if (
Attrs.hasFnAttr(Attribute::VScaleRange)) {
2457 unsigned VScaleMin =
Attrs.getFnAttrs().getVScaleRangeMin();
2459 CheckFailed(
"'vscale_range' minimum must be greater than 0", V);
2461 CheckFailed(
"'vscale_range' minimum must be power-of-two value", V);
2462 std::optional<unsigned> VScaleMax =
Attrs.getFnAttrs().getVScaleRangeMax();
2463 if (VScaleMax && VScaleMin > VScaleMax)
2464 CheckFailed(
"'vscale_range' minimum cannot be greater than maximum", V);
2466 CheckFailed(
"'vscale_range' maximum must be power-of-two value", V);
2469 if (
Attribute FPAttr =
Attrs.getFnAttr(
"frame-pointer"); FPAttr.isValid()) {
2470 StringRef
FP = FPAttr.getValueAsString();
2471 if (
FP !=
"all" &&
FP !=
"non-leaf" &&
FP !=
"none" &&
FP !=
"reserved")
2472 CheckFailed(
"invalid value for 'frame-pointer' attribute: " +
FP, V);
2475 checkUnsignedBaseTenFuncAttr(Attrs,
"patchable-function-prefix", V);
2476 checkUnsignedBaseTenFuncAttr(Attrs,
"patchable-function-entry", V);
2477 if (
Attrs.hasFnAttr(
"patchable-function-entry-section"))
2478 Check(!
Attrs.getFnAttr(
"patchable-function-entry-section")
2481 "\"patchable-function-entry-section\" must not be empty");
2482 checkUnsignedBaseTenFuncAttr(Attrs,
"warn-stack-size", V);
2484 if (
auto A =
Attrs.getFnAttr(
"sign-return-address");
A.isValid()) {
2485 StringRef S =
A.getValueAsString();
2486 if (S !=
"none" && S !=
"all" && S !=
"non-leaf")
2487 CheckFailed(
"invalid value for 'sign-return-address' attribute: " + S, V);
2490 if (
auto A =
Attrs.getFnAttr(
"sign-return-address-key");
A.isValid()) {
2491 StringRef S =
A.getValueAsString();
2492 if (S !=
"a_key" && S !=
"b_key")
2493 CheckFailed(
"invalid value for 'sign-return-address-key' attribute: " + S,
2495 if (
auto AA =
Attrs.getFnAttr(
"sign-return-address"); !AA.isValid()) {
2497 "'sign-return-address-key' present without `sign-return-address`");
2501 if (
auto A =
Attrs.getFnAttr(
"branch-target-enforcement");
A.isValid()) {
2502 StringRef S =
A.getValueAsString();
2503 if (S !=
"" && S !=
"true" && S !=
"false")
2505 "invalid value for 'branch-target-enforcement' attribute: " + S, V);
2508 if (
auto A =
Attrs.getFnAttr(
"branch-protection-pauth-lr");
A.isValid()) {
2509 StringRef S =
A.getValueAsString();
2510 if (S !=
"" && S !=
"true" && S !=
"false")
2512 "invalid value for 'branch-protection-pauth-lr' attribute: " + S, V);
2515 if (
auto A =
Attrs.getFnAttr(
"guarded-control-stack");
A.isValid()) {
2516 StringRef S =
A.getValueAsString();
2517 if (S !=
"" && S !=
"true" && S !=
"false")
2518 CheckFailed(
"invalid value for 'guarded-control-stack' attribute: " + S,
2522 if (
auto A =
Attrs.getFnAttr(
"vector-function-abi-variant");
A.isValid()) {
2523 StringRef S =
A.getValueAsString();
2526 CheckFailed(
"invalid name for a VFABI variant: " + S, V);
2529 if (
auto A =
Attrs.getFnAttr(
"denormal-fp-math");
A.isValid()) {
2530 StringRef S =
A.getValueAsString();
2532 CheckFailed(
"invalid value for 'denormal-fp-math' attribute: " + S, V);
2535 if (
auto A =
Attrs.getFnAttr(
"denormal-fp-math-f32");
A.isValid()) {
2536 StringRef S =
A.getValueAsString();
2538 CheckFailed(
"invalid value for 'denormal-fp-math-f32' attribute: " + S,
2542void Verifier::verifyUnknownProfileMetadata(MDNode *MD) {
2544 "'unknown' !prof should have a single additional operand", MD);
2547 "'unknown' !prof should have an additional operand of type "
2550 "the 'unknown' !prof operand should not be an empty string");
2553void Verifier::verifyFunctionMetadata(
2554 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2555 for (
const auto &Pair : MDs) {
2556 if (Pair.first == LLVMContext::MD_prof) {
2557 MDNode *MD = Pair.second;
2559 "!prof annotations should have no less than 2 operands", MD);
2564 verifyUnknownProfileMetadata(MD);
2569 Check(MD->
getOperand(0) !=
nullptr,
"first operand should not be null",
2572 "expected string with name of the !prof annotation", MD);
2577 "first operand should be 'function_entry_count'"
2578 " or 'synthetic_function_entry_count'",
2582 Check(MD->
getOperand(1) !=
nullptr,
"second operand should not be null",
2585 "expected integer argument to function_entry_count", MD);
2586 }
else if (Pair.first == LLVMContext::MD_kcfi_type) {
2587 MDNode *MD = Pair.second;
2589 "!kcfi_type must have exactly one operand", MD);
2590 Check(MD->
getOperand(0) !=
nullptr,
"!kcfi_type operand must not be null",
2593 "expected a constant operand for !kcfi_type", MD);
2596 "expected a constant integer operand for !kcfi_type", MD);
2598 "expected a 32-bit integer constant operand for !kcfi_type", MD);
2603void Verifier::visitConstantExprsRecursively(
const Constant *EntryC) {
2604 if (!ConstantExprVisited.
insert(EntryC).second)
2608 Stack.push_back(EntryC);
2610 while (!
Stack.empty()) {
2615 visitConstantExpr(CE);
2618 visitConstantPtrAuth(CPA);
2623 Check(GV->
getParent() == &M,
"Referencing global in another module!",
2629 for (
const Use &U :
C->operands()) {
2633 if (!ConstantExprVisited.
insert(OpC).second)
2635 Stack.push_back(OpC);
2640void Verifier::visitConstantExpr(
const ConstantExpr *CE) {
2641 if (
CE->getOpcode() == Instruction::BitCast)
2644 "Invalid bitcast", CE);
2645 else if (
CE->getOpcode() == Instruction::PtrToAddr)
2646 checkPtrToAddr(
CE->getOperand(0)->getType(),
CE->getType(), *CE);
2649void Verifier::visitConstantPtrAuth(
const ConstantPtrAuth *CPA) {
2651 "signed ptrauth constant base pointer must have pointer type");
2654 "signed ptrauth constant must have same type as its base pointer");
2657 "signed ptrauth constant key must be i32 constant integer");
2660 "signed ptrauth constant address discriminator must be a pointer");
2663 "signed ptrauth constant discriminator must be i64 constant integer");
2666bool Verifier::verifyAttributeCount(AttributeList Attrs,
unsigned Params) {
2669 return Attrs.getNumAttrSets() <= Params + 2;
2672void Verifier::verifyInlineAsmCall(
const CallBase &
Call) {
2675 unsigned LabelNo = 0;
2676 for (
const InlineAsm::ConstraintInfo &CI :
IA->ParseConstraints()) {
2686 if (CI.isIndirect) {
2689 "Operand for indirect constraint must have pointer type", &
Call);
2692 "Operand for indirect constraint must have elementtype attribute",
2696 "Elementtype attribute can only be applied for indirect "
2705 Check(LabelNo == CallBr->getNumIndirectDests(),
2706 "Number of label constraints does not match number of callbr dests",
2709 Check(LabelNo == 0,
"Label constraints can only be used with callbr",
2715void Verifier::verifyStatepoint(
const CallBase &
Call) {
2720 "gc.statepoint must read and write all memory to preserve "
2721 "reordering restrictions required by safepoint semantics",
2724 const int64_t NumPatchBytes =
2727 Check(NumPatchBytes >= 0,
2728 "gc.statepoint number of patchable bytes must be "
2733 Check(TargetElemType,
2734 "gc.statepoint callee argument must have elementtype attribute",
Call);
2736 Check(TargetFuncType,
2737 "gc.statepoint callee elementtype must be function type",
Call);
2740 Check(NumCallArgs >= 0,
2741 "gc.statepoint number of arguments to underlying call "
2744 const int NumParams = (int)TargetFuncType->getNumParams();
2745 if (TargetFuncType->isVarArg()) {
2746 Check(NumCallArgs >= NumParams,
2747 "gc.statepoint mismatch in number of vararg call args",
Call);
2750 Check(TargetFuncType->getReturnType()->isVoidTy(),
2751 "gc.statepoint doesn't support wrapping non-void "
2752 "vararg functions yet",
2755 Check(NumCallArgs == NumParams,
2756 "gc.statepoint mismatch in number of call args",
Call);
2758 const uint64_t
Flags
2760 Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2761 "unknown flag used in gc.statepoint flags argument",
Call);
2766 for (
int i = 0; i < NumParams; i++) {
2767 Type *ParamType = TargetFuncType->getParamType(i);
2769 Check(ArgType == ParamType,
2770 "gc.statepoint call argument does not match wrapped "
2774 if (TargetFuncType->isVarArg()) {
2775 AttributeSet ArgAttrs =
Attrs.getParamAttrs(5 + i);
2777 "Attribute 'sret' cannot be used for vararg call arguments!",
Call);
2781 const int EndCallArgsInx = 4 + NumCallArgs;
2785 "gc.statepoint number of transition arguments "
2786 "must be constant integer",
2788 const int NumTransitionArgs =
2790 Check(NumTransitionArgs == 0,
2791 "gc.statepoint w/inline transition bundle is deprecated",
Call);
2792 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2796 "gc.statepoint number of deoptimization arguments "
2797 "must be constant integer",
2800 Check(NumDeoptArgs == 0,
2801 "gc.statepoint w/inline deopt operands is deprecated",
Call);
2803 const int ExpectedNumArgs = 7 + NumCallArgs;
2805 "gc.statepoint too many arguments",
Call);
2812 Check(UserCall,
"illegal use of statepoint token",
Call, U);
2816 "gc.result or gc.relocate are the only value uses "
2817 "of a gc.statepoint",
2821 "gc.result connected to wrong gc.statepoint",
Call, UserCall);
2824 "gc.relocate connected to wrong gc.statepoint",
Call, UserCall);
2838void Verifier::verifyFrameRecoverIndices() {
2839 for (
auto &Counts : FrameEscapeInfo) {
2841 unsigned EscapedObjectCount = Counts.second.first;
2842 unsigned MaxRecoveredIndex = Counts.second.second;
2843 Check(MaxRecoveredIndex <= EscapedObjectCount,
2844 "all indices passed to llvm.localrecover must be less than the "
2845 "number of arguments passed to llvm.localescape in the parent "
2854 UnwindDest =
II->getUnwindDest();
2856 UnwindDest = CSI->getUnwindDest();
2862void Verifier::verifySiblingFuncletUnwinds() {
2863 llvm::TimeTraceScope timeScope(
"Verifier verify sibling funclet unwinds");
2864 SmallPtrSet<Instruction *, 8> Visited;
2865 SmallPtrSet<Instruction *, 8>
Active;
2866 for (
const auto &Pair : SiblingFuncletInfo) {
2868 if (Visited.
count(PredPad))
2874 if (
Active.count(SuccPad)) {
2877 SmallVector<Instruction *, 8> CycleNodes;
2880 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2881 if (CycleTerminator != CyclePad)
2884 }
while (CyclePad != SuccPad);
2885 Check(
false,
"EH pads can't handle each other's exceptions",
2889 if (!Visited.
insert(SuccPad).second)
2893 auto TermI = SiblingFuncletInfo.find(PredPad);
2894 if (TermI == SiblingFuncletInfo.end())
2907void Verifier::visitFunction(
const Function &
F) {
2908 visitGlobalValue(
F);
2911 FunctionType *FT =
F.getFunctionType();
2912 unsigned NumArgs =
F.arg_size();
2915 "Function context does not match Module context!", &
F);
2917 Check(!
F.hasCommonLinkage(),
"Functions may not have common linkage", &
F);
2918 Check(FT->getNumParams() == NumArgs,
2919 "# formal arguments must match # of arguments for function type!", &
F,
2921 Check(
F.getReturnType()->isFirstClassType() ||
2922 F.getReturnType()->isVoidTy() ||
F.getReturnType()->isStructTy(),
2923 "Functions cannot return aggregate values!", &
F);
2925 Check(!
F.hasStructRetAttr() ||
F.getReturnType()->isVoidTy(),
2926 "Invalid struct return type!", &
F);
2928 if (MaybeAlign
A =
F.getAlign()) {
2929 Check(
A->value() <= Value::MaximumAlignment,
2930 "huge alignment values are unsupported", &
F);
2933 AttributeList
Attrs =
F.getAttributes();
2935 Check(verifyAttributeCount(Attrs, FT->getNumParams()),
2936 "Attribute after last parameter!", &
F);
2938 bool IsIntrinsic =
F.isIntrinsic();
2941 verifyFunctionAttrs(FT, Attrs, &
F, IsIntrinsic,
false);
2947 "Attribute 'builtin' can only be applied to a callsite.", &
F);
2949 Check(!
Attrs.hasAttrSomewhere(Attribute::ElementType),
2950 "Attribute 'elementtype' can only be applied to a callsite.", &
F);
2953 "Attribute 'aarch64_zt0_undef' can only be applied to a callsite.");
2955 if (
Attrs.hasFnAttr(Attribute::Naked))
2956 for (
const Argument &Arg :
F.args())
2957 Check(Arg.use_empty(),
"cannot use argument of naked function", &Arg);
2962 switch (
F.getCallingConv()) {
2964 case CallingConv::C:
2966 case CallingConv::X86_INTR: {
2967 Check(
F.arg_empty() ||
Attrs.hasParamAttr(0, Attribute::ByVal),
2968 "Calling convention parameter requires byval", &
F);
2971 case CallingConv::AMDGPU_KERNEL:
2972 case CallingConv::SPIR_KERNEL:
2973 case CallingConv::AMDGPU_CS_Chain:
2974 case CallingConv::AMDGPU_CS_ChainPreserve:
2975 Check(
F.getReturnType()->isVoidTy(),
2976 "Calling convention requires void return type", &
F);
2978 case CallingConv::AMDGPU_VS:
2979 case CallingConv::AMDGPU_HS:
2980 case CallingConv::AMDGPU_GS:
2981 case CallingConv::AMDGPU_PS:
2982 case CallingConv::AMDGPU_CS:
2983 Check(!
F.hasStructRetAttr(),
"Calling convention does not allow sret", &
F);
2984 if (
F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2985 const unsigned StackAS =
DL.getAllocaAddrSpace();
2987 for (
const Argument &Arg :
F.args()) {
2988 Check(!
Attrs.hasParamAttr(i, Attribute::ByVal),
2989 "Calling convention disallows byval", &
F);
2990 Check(!
Attrs.hasParamAttr(i, Attribute::Preallocated),
2991 "Calling convention disallows preallocated", &
F);
2992 Check(!
Attrs.hasParamAttr(i, Attribute::InAlloca),
2993 "Calling convention disallows inalloca", &
F);
2995 if (
Attrs.hasParamAttr(i, Attribute::ByRef)) {
2998 Check(Arg.getType()->getPointerAddressSpace() != StackAS,
2999 "Calling convention disallows stack byref", &
F);
3007 case CallingConv::Fast:
3008 case CallingConv::Cold:
3009 case CallingConv::Intel_OCL_BI:
3010 case CallingConv::PTX_Kernel:
3011 case CallingConv::PTX_Device:
3013 "Calling convention does not support varargs or "
3014 "perfect forwarding!",
3017 case CallingConv::AMDGPU_Gfx_WholeWave:
3018 Check(!
F.arg_empty() &&
F.arg_begin()->getType()->isIntegerTy(1),
3019 "Calling convention requires first argument to be i1", &
F);
3020 Check(!
F.arg_begin()->hasInRegAttr(),
3021 "Calling convention requires first argument to not be inreg", &
F);
3023 "Calling convention does not support varargs or "
3024 "perfect forwarding!",
3031 for (
const Argument &Arg :
F.args()) {
3032 Check(Arg.getType() == FT->getParamType(i),
3033 "Argument value does not match function argument type!", &Arg,
3034 FT->getParamType(i));
3035 Check(Arg.getType()->isFirstClassType(),
3036 "Function arguments must have first-class types!", &Arg);
3038 Check(!Arg.getType()->isMetadataTy(),
3039 "Function takes metadata but isn't an intrinsic", &Arg, &
F);
3040 Check(!Arg.getType()->isTokenLikeTy(),
3041 "Function takes token but isn't an intrinsic", &Arg, &
F);
3042 Check(!Arg.getType()->isX86_AMXTy(),
3043 "Function takes x86_amx but isn't an intrinsic", &Arg, &
F);
3047 if (
Attrs.hasParamAttr(i, Attribute::SwiftError)) {
3048 verifySwiftErrorValue(&Arg);
3054 Check(!
F.getReturnType()->isTokenLikeTy(),
3055 "Function returns a token but isn't an intrinsic", &
F);
3056 Check(!
F.getReturnType()->isX86_AMXTy(),
3057 "Function returns a x86_amx but isn't an intrinsic", &
F);
3062 F.getAllMetadata(MDs);
3063 assert(
F.hasMetadata() != MDs.
empty() &&
"Bit out-of-sync");
3064 verifyFunctionMetadata(MDs);
3067 if (
F.hasPersonalityFn()) {
3070 Check(Per->getParent() ==
F.getParent(),
3071 "Referencing personality function in another module!", &
F,
3072 F.getParent(), Per, Per->getParent());
3076 BlockEHFuncletColors.
clear();
3078 if (
F.isMaterializable()) {
3080 Check(MDs.
empty(),
"unmaterialized function cannot have metadata", &
F,
3082 }
else if (
F.isDeclaration()) {
3083 for (
const auto &
I : MDs) {
3085 CheckDI(
I.first != LLVMContext::MD_dbg ||
3087 "function declaration may only have a unique !dbg attachment",
3089 Check(
I.first != LLVMContext::MD_prof,
3090 "function declaration may not have a !prof attachment", &
F);
3093 visitMDNode(*
I.second, AreDebugLocsAllowed::Yes);
3095 Check(!
F.hasPersonalityFn(),
3096 "Function declaration shouldn't have a personality routine", &
F);
3100 Check(!IsIntrinsic,
"llvm intrinsics cannot be defined!", &
F);
3105 "Entry block to function must not have predecessors!", Entry);
3108 if (
Entry->hasAddressTaken()) {
3110 "blockaddress may not be used with the entry block!", Entry);
3113 unsigned NumDebugAttachments = 0, NumProfAttachments = 0,
3114 NumKCFIAttachments = 0;
3116 for (
const auto &
I : MDs) {
3118 auto AllowLocs = AreDebugLocsAllowed::No;
3122 case LLVMContext::MD_dbg: {
3123 ++NumDebugAttachments;
3124 CheckDI(NumDebugAttachments == 1,
3125 "function must have a single !dbg attachment", &
F,
I.second);
3127 "function !dbg attachment must be a subprogram", &
F,
I.second);
3129 "function definition may only have a distinct !dbg attachment",
3133 const Function *&AttachedTo = DISubprogramAttachments[
SP];
3134 CheckDI(!AttachedTo || AttachedTo == &
F,
3135 "DISubprogram attached to more than one function", SP, &
F);
3137 AllowLocs = AreDebugLocsAllowed::Yes;
3140 case LLVMContext::MD_prof:
3141 ++NumProfAttachments;
3142 Check(NumProfAttachments == 1,
3143 "function must have a single !prof attachment", &
F,
I.second);
3145 case LLVMContext::MD_kcfi_type:
3146 ++NumKCFIAttachments;
3147 Check(NumKCFIAttachments == 1,
3148 "function must have a single !kcfi_type attachment", &
F,
3154 visitMDNode(*
I.second, AllowLocs);
3162 if (
F.isIntrinsic() &&
F.getParent()->isMaterialized()) {
3164 if (
F.hasAddressTaken(&U,
false,
true,
false,
3166 Check(
false,
"Invalid user of intrinsic instruction!", U);
3170 switch (
F.getIntrinsicID()) {
3171 case Intrinsic::experimental_gc_get_pointer_base: {
3172 FunctionType *FT =
F.getFunctionType();
3173 Check(FT->getNumParams() == 1,
"wrong number of parameters",
F);
3175 "gc.get.pointer.base must return a pointer",
F);
3176 Check(FT->getParamType(0) ==
F.getReturnType(),
3177 "gc.get.pointer.base operand and result must be of the same type",
F);
3180 case Intrinsic::experimental_gc_get_pointer_offset: {
3181 FunctionType *FT =
F.getFunctionType();
3182 Check(FT->getNumParams() == 1,
"wrong number of parameters",
F);
3184 "gc.get.pointer.offset operand must be a pointer",
F);
3185 Check(
F.getReturnType()->isIntegerTy(),
3186 "gc.get.pointer.offset must return integer",
F);
3191 auto *
N =
F.getSubprogram();
3192 HasDebugInfo = (
N !=
nullptr);
3200 SmallPtrSet<const MDNode *, 32> Seen;
3212 "DILocation's scope must be a DILocalScope",
N, &
F, &
I,
DL, Parent);
3214 DILocalScope *
Scope =
DL->getInlinedAtScope();
3215 Check(Scope,
"Failed to find DILocalScope",
DL);
3217 if (!Seen.
insert(Scope).second)
3220 DISubprogram *
SP =
Scope->getSubprogram();
3224 if ((Scope != SP) && !Seen.
insert(SP).second)
3228 "!dbg attachment points at wrong subprogram for function",
N, &
F,
3232 for (
auto &
I : BB) {
3233 VisitDebugLoc(
I,
I.getDebugLoc().getAsMDNode());
3235 if (
auto MD =
I.getMetadata(LLVMContext::MD_loop))
3238 if (BrokenDebugInfo)
3245void Verifier::visitBasicBlock(BasicBlock &BB) {
3246 InstsInThisBlock.
clear();
3247 ConvergenceVerifyHelper.
visit(BB);
3258 for (
const PHINode &PN : BB.
phis()) {
3259 Check(PN.getNumIncomingValues() == Preds.size(),
3260 "PHINode should have one entry for each predecessor of its "
3261 "parent basic block!",
3266 Values.
reserve(PN.getNumIncomingValues());
3267 for (
unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
3269 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
3272 for (
unsigned i = 0, e = Values.
size(); i != e; ++i) {
3277 Check(i == 0 || Values[i].first != Values[i - 1].first ||
3278 Values[i].second == Values[i - 1].second,
3279 "PHI node has multiple entries for the same basic block with "
3280 "different incoming values!",
3281 &PN, Values[i].first, Values[i].second, Values[i - 1].second);
3285 Check(Values[i].first == Preds[i],
3286 "PHI node entries do not match predecessors!", &PN,
3287 Values[i].first, Preds[i]);
3295 Check(
I.getParent() == &BB,
"Instruction has bogus parent pointer!");
3299 CheckDI(!BB.getTrailingDbgRecords(),
"Basic Block has trailing DbgRecords!",
3303void Verifier::visitTerminator(Instruction &
I) {
3305 Check(&
I ==
I.getParent()->getTerminator(),
3306 "Terminator found in the middle of a basic block!",
I.getParent());
3307 visitInstruction(
I);
3310void Verifier::visitBranchInst(BranchInst &BI) {
3313 "Branch condition is not 'i1' type!", &BI, BI.
getCondition());
3315 visitTerminator(BI);
3318void Verifier::visitReturnInst(ReturnInst &RI) {
3321 if (
F->getReturnType()->isVoidTy())
3323 "Found return instr that returns non-void in Function of void "
3325 &RI,
F->getReturnType());
3328 "Function return type does not match operand "
3329 "type of return inst!",
3330 &RI,
F->getReturnType());
3334 visitTerminator(RI);
3337void Verifier::visitSwitchInst(SwitchInst &SI) {
3338 Check(
SI.getType()->isVoidTy(),
"Switch must have void result type!", &SI);
3341 Type *SwitchTy =
SI.getCondition()->getType();
3342 SmallPtrSet<ConstantInt*, 32>
Constants;
3343 for (
auto &Case :
SI.cases()) {
3345 "Case value is not a constant integer.", &SI);
3346 Check(Case.getCaseValue()->getType() == SwitchTy,
3347 "Switch constants must all be same type as switch value!", &SI);
3349 "Duplicate integer as switch case", &SI, Case.getCaseValue());
3352 visitTerminator(SI);
3355void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
3357 "Indirectbr operand must have pointer type!", &BI);
3360 "Indirectbr destinations must all have pointer type!", &BI);
3362 visitTerminator(BI);
3365void Verifier::visitCallBrInst(CallBrInst &CBI) {
3366 Check(CBI.
isInlineAsm(),
"Callbr is currently only used for asm-goto!", &CBI);
3368 Check(!
IA->canThrow(),
"Unwinding from Callbr is not allowed");
3370 verifyInlineAsmCall(CBI);
3371 visitTerminator(CBI);
3374void Verifier::visitSelectInst(SelectInst &SI) {
3377 "Invalid operands for select instruction!", &SI);
3379 Check(
SI.getTrueValue()->getType() ==
SI.getType(),
3380 "Select values must have same type as select instruction!", &SI);
3381 visitInstruction(SI);
3387void Verifier::visitUserOp1(Instruction &
I) {
3388 Check(
false,
"User-defined operators should not live outside of a pass!", &
I);
3391void Verifier::visitTruncInst(TruncInst &
I) {
3393 Type *SrcTy =
I.getOperand(0)->getType();
3394 Type *DestTy =
I.getType();
3403 "trunc source and destination must both be a vector or neither", &
I);
3404 Check(SrcBitSize > DestBitSize,
"DestTy too big for Trunc", &
I);
3406 visitInstruction(
I);
3409void Verifier::visitZExtInst(ZExtInst &
I) {
3411 Type *SrcTy =
I.getOperand(0)->getType();
3412 Type *DestTy =
I.getType();
3418 "zext source and destination must both be a vector or neither", &
I);
3422 Check(SrcBitSize < DestBitSize,
"Type too small for ZExt", &
I);
3424 visitInstruction(
I);
3427void Verifier::visitSExtInst(SExtInst &
I) {
3429 Type *SrcTy =
I.getOperand(0)->getType();
3430 Type *DestTy =
I.getType();
3439 "sext source and destination must both be a vector or neither", &
I);
3440 Check(SrcBitSize < DestBitSize,
"Type too small for SExt", &
I);
3442 visitInstruction(
I);
3445void Verifier::visitFPTruncInst(FPTruncInst &
I) {
3447 Type *SrcTy =
I.getOperand(0)->getType();
3448 Type *DestTy =
I.getType();
3456 "fptrunc source and destination must both be a vector or neither", &
I);
3457 Check(SrcBitSize > DestBitSize,
"DestTy too big for FPTrunc", &
I);
3459 visitInstruction(
I);
3462void Verifier::visitFPExtInst(FPExtInst &
I) {
3464 Type *SrcTy =
I.getOperand(0)->getType();
3465 Type *DestTy =
I.getType();
3474 "fpext source and destination must both be a vector or neither", &
I);
3475 Check(SrcBitSize < DestBitSize,
"DestTy too small for FPExt", &
I);
3477 visitInstruction(
I);
3480void Verifier::visitUIToFPInst(UIToFPInst &
I) {
3482 Type *SrcTy =
I.getOperand(0)->getType();
3483 Type *DestTy =
I.getType();
3488 Check(SrcVec == DstVec,
3489 "UIToFP source and dest must both be vector or scalar", &
I);
3491 "UIToFP source must be integer or integer vector", &
I);
3495 if (SrcVec && DstVec)
3498 "UIToFP source and dest vector length mismatch", &
I);
3500 visitInstruction(
I);
3503void Verifier::visitSIToFPInst(SIToFPInst &
I) {
3505 Type *SrcTy =
I.getOperand(0)->getType();
3506 Type *DestTy =
I.getType();
3511 Check(SrcVec == DstVec,
3512 "SIToFP source and dest must both be vector or scalar", &
I);
3514 "SIToFP source must be integer or integer vector", &
I);
3518 if (SrcVec && DstVec)
3521 "SIToFP source and dest vector length mismatch", &
I);
3523 visitInstruction(
I);
3526void Verifier::visitFPToUIInst(FPToUIInst &
I) {
3528 Type *SrcTy =
I.getOperand(0)->getType();
3529 Type *DestTy =
I.getType();
3534 Check(SrcVec == DstVec,
3535 "FPToUI source and dest must both be vector or scalar", &
I);
3538 "FPToUI result must be integer or integer vector", &
I);
3540 if (SrcVec && DstVec)
3543 "FPToUI source and dest vector length mismatch", &
I);
3545 visitInstruction(
I);
3548void Verifier::visitFPToSIInst(FPToSIInst &
I) {
3550 Type *SrcTy =
I.getOperand(0)->getType();
3551 Type *DestTy =
I.getType();
3556 Check(SrcVec == DstVec,
3557 "FPToSI source and dest must both be vector or scalar", &
I);
3560 "FPToSI result must be integer or integer vector", &
I);
3562 if (SrcVec && DstVec)
3565 "FPToSI source and dest vector length mismatch", &
I);
3567 visitInstruction(
I);
3570void Verifier::checkPtrToAddr(
Type *SrcTy,
Type *DestTy,
const Value &V) {
3579 Check(VSrc->getElementCount() == VDest->getElementCount(),
3580 "PtrToAddr vector length mismatch", V);
3583 Type *AddrTy =
DL.getAddressType(SrcTy);
3584 Check(AddrTy == DestTy,
"PtrToAddr result must be address width", V);
3587void Verifier::visitPtrToAddrInst(PtrToAddrInst &
I) {
3588 checkPtrToAddr(
I.getOperand(0)->getType(),
I.getType(),
I);
3589 visitInstruction(
I);
3592void Verifier::visitPtrToIntInst(PtrToIntInst &
I) {
3594 Type *SrcTy =
I.getOperand(0)->getType();
3595 Type *DestTy =
I.getType();
3606 Check(VSrc->getElementCount() == VDest->getElementCount(),
3607 "PtrToInt Vector length mismatch", &
I);
3610 visitInstruction(
I);
3613void Verifier::visitIntToPtrInst(IntToPtrInst &
I) {
3615 Type *SrcTy =
I.getOperand(0)->getType();
3616 Type *DestTy =
I.getType();
3626 Check(VSrc->getElementCount() == VDest->getElementCount(),
3627 "IntToPtr Vector length mismatch", &
I);
3629 visitInstruction(
I);
3632void Verifier::visitBitCastInst(BitCastInst &
I) {
3635 "Invalid bitcast", &
I);
3636 visitInstruction(
I);
3639void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &
I) {
3640 Type *SrcTy =
I.getOperand(0)->getType();
3641 Type *DestTy =
I.getType();
3648 "AddrSpaceCast must be between different address spaces", &
I);
3650 Check(SrcVTy->getElementCount() ==
3652 "AddrSpaceCast vector pointer number of elements mismatch", &
I);
3653 visitInstruction(
I);
3658void Verifier::visitPHINode(PHINode &PN) {
3665 "PHI nodes not grouped at top of basic block!", &PN, PN.
getParent());
3674 "PHI node operands are not the same type as the result!", &PN);
3679 visitInstruction(PN);
3682void Verifier::visitCallBase(CallBase &
Call) {
3684 "Called function must be a pointer!",
Call);
3688 if (FTy->isVarArg())
3690 "Called function requires more parameters than were provided!",
Call);
3693 "Incorrect number of arguments passed to called function!",
Call);
3696 for (
unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3698 "Call parameter type does not match function signature!",
3704 "Attribute after last parameter!",
Call);
3711 "Intrinsic called with incompatible signature",
Call);
3715 "calling convention does not permit calls",
Call);
3721 auto VerifyTypeAlign = [&](
Type *Ty,
const Twine &Message) {
3724 Align ABIAlign =
DL.getABITypeAlign(Ty);
3725 Check(ABIAlign.
value() <= Value::MaximumAlignment,
3726 "Incorrect alignment of " + Message +
" to called function!",
Call);
3730 VerifyTypeAlign(FTy->getReturnType(),
"return type");
3731 for (
unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3732 Type *Ty = FTy->getParamType(i);
3733 VerifyTypeAlign(Ty,
"argument passed");
3737 if (
Attrs.hasFnAttr(Attribute::Speculatable)) {
3741 "speculatable attribute may not apply to call sites",
Call);
3744 if (
Attrs.hasFnAttr(Attribute::Preallocated)) {
3746 "preallocated as a call site attribute can only be on "
3747 "llvm.call.preallocated.arg");
3759 Check(AI->isUsedWithInAlloca(),
3760 "inalloca argument for call has mismatched alloca", AI,
Call);
3766 for (
unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3770 Check(AI->isSwiftError(),
3771 "swifterror argument for call has mismatched alloca", AI,
Call);
3775 Check(ArgI,
"swifterror argument should come from an alloca or parameter",
3776 SwiftErrorArg,
Call);
3777 Check(ArgI->hasSwiftErrorAttr(),
3778 "swifterror argument for call has mismatched parameter", ArgI,
3782 if (
Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3785 Check(Callee &&
Callee->hasParamAttribute(i, Attribute::ImmArg),
3793 "immarg operand has non-immediate parameter", ArgVal,
Call);
3799 const ConstantRange &CR =
3802 "immarg value " + Twine(CI->getValue().getSExtValue()) +
3815 Check(hasOB != isMustTail,
3816 "preallocated operand either requires a preallocated bundle or "
3817 "the call to be musttail (but not both)",
3822 if (FTy->isVarArg()) {
3824 bool SawNest =
false;
3825 bool SawReturned =
false;
3827 for (
unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3828 if (
Attrs.hasParamAttr(Idx, Attribute::Nest))
3830 if (
Attrs.hasParamAttr(Idx, Attribute::Returned))
3835 for (
unsigned Idx = FTy->getNumParams(); Idx <
Call.
arg_size(); ++Idx) {
3837 AttributeSet ArgAttrs =
Attrs.getParamAttrs(Idx);
3838 verifyParameterAttrs(ArgAttrs, Ty, &
Call);
3841 Check(!SawNest,
"More than one parameter has attribute nest!",
Call);
3846 Check(!SawReturned,
"More than one parameter has attribute returned!",
3849 "Incompatible argument and return types for 'returned' "
3859 "Attribute 'sret' cannot be used for vararg call arguments!",
3864 "inalloca isn't on the last argument!",
Call);
3870 for (
Type *ParamTy : FTy->params()) {
3871 Check(!ParamTy->isMetadataTy(),
3872 "Function has metadata parameter but isn't an intrinsic",
Call);
3873 Check(!ParamTy->isTokenLikeTy(),
3874 "Function has token parameter but isn't an intrinsic",
Call);
3880 Check(!FTy->getReturnType()->isTokenLikeTy(),
3881 "Return type cannot be token for indirect call!");
3882 Check(!FTy->getReturnType()->isX86_AMXTy(),
3883 "Return type cannot be x86_amx for indirect call!");
3887 visitIntrinsicCall(
ID,
Call);
3892 bool FoundDeoptBundle =
false, FoundFuncletBundle =
false,
3893 FoundGCTransitionBundle =
false, FoundCFGuardTargetBundle =
false,
3894 FoundPreallocatedBundle =
false, FoundGCLiveBundle =
false,
3895 FoundPtrauthBundle =
false, FoundKCFIBundle =
false,
3896 FoundAttachedCallBundle =
false;
3901 Check(!FoundDeoptBundle,
"Multiple deopt operand bundles",
Call);
3902 FoundDeoptBundle =
true;
3904 Check(!FoundGCTransitionBundle,
"Multiple gc-transition operand bundles",
3906 FoundGCTransitionBundle =
true;
3908 Check(!FoundFuncletBundle,
"Multiple funclet operand bundles",
Call);
3909 FoundFuncletBundle =
true;
3911 "Expected exactly one funclet bundle operand",
Call);
3913 "Funclet bundle operands should correspond to a FuncletPadInst",
3916 Check(!FoundCFGuardTargetBundle,
"Multiple CFGuardTarget operand bundles",
3918 FoundCFGuardTargetBundle =
true;
3920 "Expected exactly one cfguardtarget bundle operand",
Call);
3922 Check(!FoundPtrauthBundle,
"Multiple ptrauth operand bundles",
Call);
3923 FoundPtrauthBundle =
true;
3925 "Expected exactly two ptrauth bundle operands",
Call);
3927 BU.
Inputs[0]->getType()->isIntegerTy(32),
3928 "Ptrauth bundle key operand must be an i32 constant",
Call);
3930 "Ptrauth bundle discriminator operand must be an i64",
Call);
3932 Check(!FoundKCFIBundle,
"Multiple kcfi operand bundles",
Call);
3933 FoundKCFIBundle =
true;
3934 Check(BU.
Inputs.size() == 1,
"Expected exactly one kcfi bundle operand",
3937 BU.
Inputs[0]->getType()->isIntegerTy(32),
3938 "Kcfi bundle operand must be an i32 constant",
Call);
3940 Check(!FoundPreallocatedBundle,
"Multiple preallocated operand bundles",
3942 FoundPreallocatedBundle =
true;
3944 "Expected exactly one preallocated bundle operand",
Call);
3947 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3948 "\"preallocated\" argument must be a token from "
3949 "llvm.call.preallocated.setup",
3952 Check(!FoundGCLiveBundle,
"Multiple gc-live operand bundles",
Call);
3953 FoundGCLiveBundle =
true;
3955 Check(!FoundAttachedCallBundle,
3956 "Multiple \"clang.arc.attachedcall\" operand bundles",
Call);
3957 FoundAttachedCallBundle =
true;
3958 verifyAttachedCallBundle(
Call, BU);
3964 "Direct call cannot have a ptrauth bundle",
Call);
3976 "inlinable function call in a function with "
3977 "debug info must have a !dbg location",
3981 verifyInlineAsmCall(
Call);
3985 visitInstruction(
Call);
3988void Verifier::verifyTailCCMustTailAttrs(
const AttrBuilder &Attrs,
3991 Twine(
"inalloca attribute not allowed in ") +
Context);
3993 Twine(
"inreg attribute not allowed in ") +
Context);
3994 Check(!
Attrs.contains(Attribute::SwiftError),
3995 Twine(
"swifterror attribute not allowed in ") +
Context);
3996 Check(!
Attrs.contains(Attribute::Preallocated),
3997 Twine(
"preallocated attribute not allowed in ") +
Context);
3999 Twine(
"byref attribute not allowed in ") +
Context);
4011 return PL->getAddressSpace() == PR->getAddressSpace();
4016 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
4017 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf,
4018 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated,
4020 AttrBuilder Copy(
C);
4021 for (
auto AK : ABIAttrs) {
4022 Attribute Attr = Attrs.getParamAttrs(
I).getAttribute(AK);
4024 Copy.addAttribute(Attr);
4028 if (Attrs.hasParamAttr(
I, Attribute::Alignment) &&
4029 (Attrs.hasParamAttr(
I, Attribute::ByVal) ||
4030 Attrs.hasParamAttr(
I, Attribute::ByRef)))
4031 Copy.addAlignmentAttr(Attrs.getParamAlignment(
I));
4035void Verifier::verifyMustTailCall(CallInst &CI) {
4039 FunctionType *CallerTy =
F->getFunctionType();
4041 Check(CallerTy->isVarArg() == CalleeTy->isVarArg(),
4042 "cannot guarantee tail call due to mismatched varargs", &CI);
4044 "cannot guarantee tail call due to mismatched return types", &CI);
4048 "cannot guarantee tail call due to mismatched calling conv", &CI);
4054 Value *RetVal = &CI;
4060 "bitcast following musttail call must use the call", BI);
4067 Check(Ret,
"musttail call must precede a ret with an optional bitcast", &CI);
4068 Check(!
Ret->getReturnValue() ||
Ret->getReturnValue() == RetVal ||
4070 "musttail call result must be returned", Ret);
4072 AttributeList CallerAttrs =
F->getAttributes();
4077 CI.
getCallingConv() == CallingConv::Tail ?
"tailcc" :
"swifttailcc";
4081 for (
unsigned I = 0,
E = CallerTy->getNumParams();
I !=
E; ++
I) {
4083 SmallString<32>
Context{CCName, StringRef(
" musttail caller")};
4084 verifyTailCCMustTailAttrs(ABIAttrs,
Context);
4086 for (
unsigned I = 0,
E = CalleeTy->getNumParams();
I !=
E; ++
I) {
4088 SmallString<32>
Context{CCName, StringRef(
" musttail callee")};
4089 verifyTailCCMustTailAttrs(ABIAttrs,
Context);
4092 Check(!CallerTy->isVarArg(), Twine(
"cannot guarantee ") + CCName +
4093 " tail call for varargs function");
4101 Check(CallerTy->getNumParams() == CalleeTy->getNumParams(),
4102 "cannot guarantee tail call due to mismatched parameter counts", &CI);
4103 for (
unsigned I = 0,
E = CallerTy->getNumParams();
I !=
E; ++
I) {
4106 "cannot guarantee tail call due to mismatched parameter types", &CI);
4112 for (
unsigned I = 0,
E = CallerTy->getNumParams();
I !=
E; ++
I) {
4115 Check(CallerABIAttrs == CalleeABIAttrs,
4116 "cannot guarantee tail call due to mismatched ABI impacting "
4117 "function attributes",
4122void Verifier::visitCallInst(CallInst &CI) {
4126 verifyMustTailCall(CI);
4129void Verifier::visitInvokeInst(InvokeInst &
II) {
4135 II.getUnwindDest()->isEHPad(),
4136 "The unwind destination does not have an exception handling instruction!",
4139 visitTerminator(
II);
4144void Verifier::visitUnaryOperator(UnaryOperator &U) {
4145 Check(
U.getType() ==
U.getOperand(0)->getType(),
4146 "Unary operators must have same type for"
4147 "operands and result!",
4150 switch (
U.getOpcode()) {
4153 case Instruction::FNeg:
4154 Check(
U.getType()->isFPOrFPVectorTy(),
4155 "FNeg operator only works with float types!", &U);
4161 visitInstruction(U);
4167void Verifier::visitBinaryOperator(BinaryOperator &
B) {
4168 Check(
B.getOperand(0)->getType() ==
B.getOperand(1)->getType(),
4169 "Both operands to a binary operator are not of the same type!", &
B);
4171 switch (
B.getOpcode()) {
4174 case Instruction::Add:
4175 case Instruction::Sub:
4176 case Instruction::Mul:
4177 case Instruction::SDiv:
4178 case Instruction::UDiv:
4179 case Instruction::SRem:
4180 case Instruction::URem:
4181 Check(
B.getType()->isIntOrIntVectorTy(),
4182 "Integer arithmetic operators only work with integral types!", &
B);
4183 Check(
B.getType() ==
B.getOperand(0)->getType(),
4184 "Integer arithmetic operators must have same type "
4185 "for operands and result!",
4190 case Instruction::FAdd:
4191 case Instruction::FSub:
4192 case Instruction::FMul:
4193 case Instruction::FDiv:
4194 case Instruction::FRem:
4195 Check(
B.getType()->isFPOrFPVectorTy(),
4196 "Floating-point arithmetic operators only work with "
4197 "floating-point types!",
4199 Check(
B.getType() ==
B.getOperand(0)->getType(),
4200 "Floating-point arithmetic operators must have same type "
4201 "for operands and result!",
4205 case Instruction::And:
4206 case Instruction::Or:
4207 case Instruction::Xor:
4208 Check(
B.getType()->isIntOrIntVectorTy(),
4209 "Logical operators only work with integral types!", &
B);
4210 Check(
B.getType() ==
B.getOperand(0)->getType(),
4211 "Logical operators must have same type for operands and result!", &
B);
4213 case Instruction::Shl:
4214 case Instruction::LShr:
4215 case Instruction::AShr:
4216 Check(
B.getType()->isIntOrIntVectorTy(),
4217 "Shifts only work with integral types!", &
B);
4218 Check(
B.getType() ==
B.getOperand(0)->getType(),
4219 "Shift return type must be same as operands!", &
B);
4225 visitInstruction(
B);
4228void Verifier::visitICmpInst(ICmpInst &IC) {
4232 Check(Op0Ty == Op1Ty,
4233 "Both operands to ICmp instruction are not of the same type!", &IC);
4236 "Invalid operand types for ICmp instruction", &IC);
4240 visitInstruction(IC);
4243void Verifier::visitFCmpInst(FCmpInst &FC) {
4245 Type *Op0Ty =
FC.getOperand(0)->getType();
4246 Type *Op1Ty =
FC.getOperand(1)->getType();
4247 Check(Op0Ty == Op1Ty,
4248 "Both operands to FCmp instruction are not of the same type!", &FC);
4253 Check(
FC.isFPPredicate(),
"Invalid predicate in FCmp instruction!", &FC);
4255 visitInstruction(FC);
4258void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
4260 "Invalid extractelement operands!", &EI);
4261 visitInstruction(EI);
4264void Verifier::visitInsertElementInst(InsertElementInst &IE) {
4267 "Invalid insertelement operands!", &IE);
4268 visitInstruction(IE);
4271void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
4274 "Invalid shufflevector operands!", &SV);
4275 visitInstruction(SV);
4278void Verifier::visitGetElementPtrInst(GetElementPtrInst &
GEP) {
4279 Type *TargetTy =
GEP.getPointerOperandType()->getScalarType();
4282 "GEP base pointer is not a vector or a vector of pointers", &
GEP);
4283 Check(
GEP.getSourceElementType()->isSized(),
"GEP into unsized type!", &
GEP);
4287 "getelementptr cannot target structure that contains scalable vector"
4292 SmallVector<Value *, 16> Idxs(
GEP.indices());
4294 all_of(Idxs, [](
Value *V) {
return V->getType()->isIntOrIntVectorTy(); }),
4295 "GEP indexes must be integers", &
GEP);
4298 Check(ElTy,
"Invalid indices for GEP pointer type!", &
GEP);
4302 Check(PtrTy &&
GEP.getResultElementType() == ElTy,
4303 "GEP is not of right type for indices!", &
GEP, ElTy);
4307 ElementCount GEPWidth = GEPVTy->getElementCount();
4308 if (
GEP.getPointerOperandType()->isVectorTy())
4312 "Vector GEP result width doesn't match operand's", &
GEP);
4313 for (
Value *Idx : Idxs) {
4314 Type *IndexTy = Idx->getType();
4316 ElementCount IndexWidth = IndexVTy->getElementCount();
4317 Check(IndexWidth == GEPWidth,
"Invalid GEP index vector width", &
GEP);
4320 "All GEP indices should be of integer type");
4324 Check(
GEP.getAddressSpace() == PtrTy->getAddressSpace(),
4325 "GEP address space doesn't match type", &
GEP);
4327 visitInstruction(
GEP);
4331 return A.getUpper() ==
B.getLower() ||
A.getLower() ==
B.getUpper();
4336void Verifier::verifyRangeLikeMetadata(
const Value &
I,
const MDNode *
Range,
4337 Type *Ty, RangeLikeMetadataKind Kind) {
4338 unsigned NumOperands =
Range->getNumOperands();
4339 Check(NumOperands % 2 == 0,
"Unfinished range!",
Range);
4340 unsigned NumRanges = NumOperands / 2;
4341 Check(NumRanges >= 1,
"It should have at least one range!",
Range);
4343 ConstantRange LastRange(1,
true);
4344 for (
unsigned i = 0; i < NumRanges; ++i) {
4347 Check(
Low,
"The lower limit must be an integer!",
Low);
4352 Check(
High->getType() ==
Low->getType(),
"Range pair types must match!",
4355 if (Kind == RangeLikeMetadataKind::NoaliasAddrspace) {
4357 "noalias.addrspace type must be i32!", &
I);
4360 "Range types must match instruction type!", &
I);
4363 APInt HighV =
High->getValue();
4364 APInt LowV =
Low->getValue();
4369 "The upper and lower limits cannot be the same value", &
I);
4371 ConstantRange CurRange(LowV, HighV);
4372 Check(!CurRange.isEmptySet() &&
4373 (Kind == RangeLikeMetadataKind::AbsoluteSymbol ||
4374 !CurRange.isFullSet()),
4375 "Range must not be empty!",
Range);
4377 Check(CurRange.intersectWith(LastRange).isEmptySet(),
4378 "Intervals are overlapping",
Range);
4379 Check(LowV.
sgt(LastRange.getLower()),
"Intervals are not in order",
4384 LastRange = ConstantRange(LowV, HighV);
4386 if (NumRanges > 2) {
4391 ConstantRange FirstRange(FirstLow, FirstHigh);
4392 Check(FirstRange.intersectWith(LastRange).isEmptySet(),
4393 "Intervals are overlapping",
Range);
4399void Verifier::visitRangeMetadata(Instruction &
I, MDNode *
Range,
Type *Ty) {
4401 "precondition violation");
4402 verifyRangeLikeMetadata(
I,
Range, Ty, RangeLikeMetadataKind::Range);
4405void Verifier::visitNoaliasAddrspaceMetadata(Instruction &
I, MDNode *
Range,
4408 "precondition violation");
4409 verifyRangeLikeMetadata(
I,
Range, Ty,
4410 RangeLikeMetadataKind::NoaliasAddrspace);
4413void Verifier::checkAtomicMemAccessSize(
Type *Ty,
const Instruction *
I) {
4414 unsigned Size =
DL.getTypeSizeInBits(Ty);
4415 Check(
Size >= 8,
"atomic memory access' size must be byte-sized", Ty,
I);
4417 "atomic memory access' operand must have a power-of-two size", Ty,
I);
4420void Verifier::visitLoadInst(LoadInst &LI) {
4422 Check(PTy,
"Load operand must be a pointer.", &LI);
4425 Check(
A->value() <= Value::MaximumAlignment,
4426 "huge alignment values are unsupported", &LI);
4428 Check(ElTy->
isSized(),
"loading unsized types is not allowed", &LI);
4431 LI.
getOrdering() != AtomicOrdering::AcquireRelease,
4432 "Load cannot have Release ordering", &LI);
4434 "atomic load operand must have integer, pointer, or floating point "
4437 checkAtomicMemAccessSize(ElTy, &LI);
4440 "Non-atomic load cannot have SynchronizationScope specified", &LI);
4443 visitInstruction(LI);
4446void Verifier::visitStoreInst(StoreInst &SI) {
4448 Check(PTy,
"Store operand must be a pointer.", &SI);
4449 Type *ElTy =
SI.getOperand(0)->getType();
4450 if (MaybeAlign
A =
SI.getAlign()) {
4451 Check(
A->value() <= Value::MaximumAlignment,
4452 "huge alignment values are unsupported", &SI);
4454 Check(ElTy->
isSized(),
"storing unsized types is not allowed", &SI);
4455 if (
SI.isAtomic()) {
4456 Check(
SI.getOrdering() != AtomicOrdering::Acquire &&
4457 SI.getOrdering() != AtomicOrdering::AcquireRelease,
4458 "Store cannot have Acquire ordering", &SI);
4460 "atomic store operand must have integer, pointer, or floating point "
4463 checkAtomicMemAccessSize(ElTy, &SI);
4466 "Non-atomic store cannot have SynchronizationScope specified", &SI);
4468 visitInstruction(SI);
4472void Verifier::verifySwiftErrorCall(CallBase &
Call,
4473 const Value *SwiftErrorVal) {
4475 if (
I.value() == SwiftErrorVal) {
4477 "swifterror value when used in a callsite should be marked "
4478 "with swifterror attribute",
4479 SwiftErrorVal,
Call);
4484void Verifier::verifySwiftErrorValue(
const Value *SwiftErrorVal) {
4487 for (
const User *U : SwiftErrorVal->
users()) {
4490 "swifterror value can only be loaded and stored from, or "
4491 "as a swifterror argument!",
4495 Check(StoreI->getOperand(1) == SwiftErrorVal,
4496 "swifterror value should be the second operand when used "
4500 verifySwiftErrorCall(*
const_cast<CallBase *
>(
Call), SwiftErrorVal);
4504void Verifier::visitAllocaInst(AllocaInst &AI) {
4506 SmallPtrSet<Type*, 4> Visited;
4507 Check(Ty->
isSized(&Visited),
"Cannot allocate unsized type", &AI);
4511 "Alloca has illegal target extension type", &AI);
4513 "Alloca array size must have integer type", &AI);
4515 Check(
A->value() <= Value::MaximumAlignment,
4516 "huge alignment values are unsupported", &AI);
4522 "swifterror alloca must not be array allocation", &AI);
4523 verifySwiftErrorValue(&AI);
4526 if (
TT.isAMDGPU()) {
4528 "alloca on amdgpu must be in addrspace(5)", &AI);
4531 visitInstruction(AI);
4534void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
4537 "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
4538 checkAtomicMemAccessSize(ElTy, &CXI);
4539 visitInstruction(CXI);
4542void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
4544 "atomicrmw instructions cannot be unordered.", &RMWI);
4551 " operand must have integer or floating point type!",
4556 " operand must have floating-point or fixed vector of floating-point "
4562 " operand must have integer type!",
4565 checkAtomicMemAccessSize(ElTy, &RMWI);
4567 "Invalid binary operation!", &RMWI);
4568 visitInstruction(RMWI);
4571void Verifier::visitFenceInst(FenceInst &FI) {
4573 Check(Ordering == AtomicOrdering::Acquire ||
4574 Ordering == AtomicOrdering::Release ||
4575 Ordering == AtomicOrdering::AcquireRelease ||
4576 Ordering == AtomicOrdering::SequentiallyConsistent,
4577 "fence instructions may only have acquire, release, acq_rel, or "
4578 "seq_cst ordering.",
4580 visitInstruction(FI);
4583void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
4586 "Invalid ExtractValueInst operands!", &EVI);
4588 visitInstruction(EVI);
4591void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
4595 "Invalid InsertValueInst operands!", &IVI);
4597 visitInstruction(IVI);
4602 return FPI->getParentPad();
4607void Verifier::visitEHPadPredecessors(Instruction &
I) {
4613 Check(BB != &
F->getEntryBlock(),
"EH pad cannot be in entry block.", &
I);
4621 Check(
II &&
II->getUnwindDest() == BB &&
II->getNormalDest() != BB,
4622 "Block containing LandingPadInst must be jumped to "
4623 "only by the unwind edge of an invoke.",
4631 "Block containg CatchPadInst must be jumped to "
4632 "only by its catchswitch.",
4634 Check(BB != CPI->getCatchSwitch()->getUnwindDest(),
4635 "Catchswitch cannot unwind to one of its catchpads",
4636 CPI->getCatchSwitch(), CPI);
4648 Check(
II->getUnwindDest() == BB &&
II->getNormalDest() != BB,
4649 "EH pad must be jumped to via an unwind edge", ToPad,
II);
4652 if (CalledFn && CalledFn->isIntrinsic() &&
II->doesNotThrow() &&
4656 FromPad = Bundle->Inputs[0];
4660 FromPad = CRI->getOperand(0);
4661 Check(FromPad != ToPadParent,
"A cleanupret must exit its cleanup", CRI);
4665 Check(
false,
"EH pad must be jumped to via an unwind edge", ToPad, TI);
4669 SmallPtrSet<Value *, 8> Seen;
4671 Check(FromPad != ToPad,
4672 "EH pad cannot handle exceptions raised within it", FromPad, TI);
4673 if (FromPad == ToPadParent) {
4678 "A single unwind edge may only enter one EH pad", TI);
4679 Check(Seen.
insert(FromPad).second,
"EH pad jumps through a cycle of pads",
4685 "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
4690void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
4694 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4696 visitEHPadPredecessors(LPI);
4698 if (!LandingPadResultTy)
4699 LandingPadResultTy = LPI.
getType();
4702 "The landingpad instruction should have a consistent result type "
4703 "inside a function.",
4707 Check(
F->hasPersonalityFn(),
4708 "LandingPadInst needs to be in a function with a personality.", &LPI);
4713 "LandingPadInst not the first non-PHI instruction in the block.", &LPI);
4719 "Catch operand does not have pointer type!", &LPI);
4721 Check(LPI.
isFilter(i),
"Clause is neither catch nor filter!", &LPI);
4723 "Filter operand is not an array of constants!", &LPI);
4727 visitInstruction(LPI);
4730void Verifier::visitResumeInst(ResumeInst &RI) {
4732 "ResumeInst needs to be in a function with a personality.", &RI);
4734 if (!LandingPadResultTy)
4738 "The resume instruction should have a consistent result type "
4739 "inside a function.",
4742 visitTerminator(RI);
4745void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4749 Check(
F->hasPersonalityFn(),
4750 "CatchPadInst needs to be in a function with a personality.", &CPI);
4753 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4759 "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4761 visitEHPadPredecessors(CPI);
4762 visitFuncletPadInst(CPI);
4765void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4767 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4770 visitTerminator(CatchReturn);
4773void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4777 Check(
F->hasPersonalityFn(),
4778 "CleanupPadInst needs to be in a function with a personality.", &CPI);
4783 "CleanupPadInst not the first non-PHI instruction in the block.", &CPI);
4787 "CleanupPadInst has an invalid parent.", &CPI);
4789 visitEHPadPredecessors(CPI);
4790 visitFuncletPadInst(CPI);
4793void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4794 User *FirstUser =
nullptr;
4795 Value *FirstUnwindPad =
nullptr;
4797 SmallPtrSet<FuncletPadInst *, 8> Seen;
4799 while (!Worklist.empty()) {
4800 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4802 "FuncletPadInst must not be nested within itself", CurrentPad);
4803 Value *UnresolvedAncestorPad =
nullptr;
4804 for (User *U : CurrentPad->
users()) {
4807 UnwindDest = CRI->getUnwindDest();
4813 if (CSI->unwindsToCaller())
4815 UnwindDest = CSI->getUnwindDest();
4817 UnwindDest =
II->getUnwindDest();
4827 Worklist.push_back(CPI);
4842 if (UnwindParent == CurrentPad)
4848 Value *ExitedPad = CurrentPad;
4851 if (ExitedPad == &FPI) {
4856 UnresolvedAncestorPad = &FPI;
4860 if (ExitedParent == UnwindParent) {
4864 UnresolvedAncestorPad = ExitedParent;
4867 ExitedPad = ExitedParent;
4873 UnresolvedAncestorPad = &FPI;
4880 Check(UnwindPad == FirstUnwindPad,
4881 "Unwind edges out of a funclet "
4882 "pad must have the same unwind "
4884 &FPI, U, FirstUser);
4887 FirstUnwindPad = UnwindPad;
4896 if (CurrentPad != &FPI)
4899 if (UnresolvedAncestorPad) {
4900 if (CurrentPad == UnresolvedAncestorPad) {
4904 assert(CurrentPad == &FPI);
4912 Value *ResolvedPad = CurrentPad;
4913 while (!Worklist.empty()) {
4914 Value *UnclePad = Worklist.back();
4918 while (ResolvedPad != AncestorPad) {
4920 if (ResolvedParent == UnresolvedAncestorPad) {
4923 ResolvedPad = ResolvedParent;
4927 if (ResolvedPad != AncestorPad)
4930 Worklist.pop_back();
4935 if (FirstUnwindPad) {
4937 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4938 Value *SwitchUnwindPad;
4939 if (SwitchUnwindDest)
4943 Check(SwitchUnwindPad == FirstUnwindPad,
4944 "Unwind edges out of a catch must have the same unwind dest as "
4945 "the parent catchswitch",
4946 &FPI, FirstUser, CatchSwitch);
4950 visitInstruction(FPI);
4953void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4957 Check(
F->hasPersonalityFn(),
4958 "CatchSwitchInst needs to be in a function with a personality.",
4964 "CatchSwitchInst not the first non-PHI instruction in the block.",
4969 "CatchSwitchInst has an invalid parent.", ParentPad);
4974 "CatchSwitchInst must unwind to an EH block which is not a "
4980 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4984 "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4986 for (BasicBlock *Handler : CatchSwitch.
handlers()) {
4988 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4991 visitEHPadPredecessors(CatchSwitch);
4992 visitTerminator(CatchSwitch);
4995void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4997 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
5003 "CleanupReturnInst must unwind to an EH block which is not a "
5008 visitTerminator(CRI);
5011void Verifier::verifyDominatesUse(Instruction &
I,
unsigned i) {
5017 if (
II->getNormalDest() ==
II->getUnwindDest())
5031 const Use &
U =
I.getOperandUse(i);
5032 Check(DT.dominates(
Op, U),
"Instruction does not dominate all uses!",
Op, &
I);
5035void Verifier::visitDereferenceableMetadata(Instruction&
I, MDNode* MD) {
5036 Check(
I.getType()->isPointerTy(),
5037 "dereferenceable, dereferenceable_or_null "
5038 "apply only to pointer types",
5041 "dereferenceable, dereferenceable_or_null apply only to load"
5042 " and inttoptr instructions, use attributes for calls or invokes",
5045 "dereferenceable, dereferenceable_or_null "
5046 "take one operand!",
5051 "dereferenceable_or_null metadata value must be an i64!",
5055void Verifier::visitNofreeMetadata(Instruction &
I, MDNode *MD) {
5056 Check(
I.getType()->isPointerTy(),
"nofree applies only to pointer types", &
I);
5062void Verifier::visitProfMetadata(Instruction &
I, MDNode *MD) {
5063 auto GetBranchingTerminatorNumOperands = [&]() {
5064 unsigned ExpectedNumOperands = 0;
5068 ExpectedNumOperands =
SI->getNumSuccessors();
5070 ExpectedNumOperands = 1;
5072 ExpectedNumOperands = IBI->getNumDestinations();
5074 ExpectedNumOperands = 2;
5077 return ExpectedNumOperands;
5080 "!prof annotations should have at least 1 operand", MD);
5082 Check(MD->
getOperand(0) !=
nullptr,
"first operand should not be null", MD);
5084 "expected string with name of the !prof annotation", MD);
5090 "'unknown' !prof should only appear on instructions on which "
5091 "'branch_weights' would",
5093 verifyUnknownProfileMetadata(MD);
5098 "!prof annotations should have no less than 2 operands", MD);
5104 Check(NumBranchWeights == 1 || NumBranchWeights == 2,
5105 "Wrong number of InvokeInst branch_weights operands", MD);
5107 const unsigned ExpectedNumOperands = GetBranchingTerminatorNumOperands();
5108 if (ExpectedNumOperands == 0)
5109 CheckFailed(
"!prof branch_weights are not allowed for this instruction",
5112 Check(NumBranchWeights == ExpectedNumOperands,
"Wrong number of operands",
5118 Check(MDO,
"second operand should not be null", MD);
5120 "!prof brunch_weights operand is not a const int");
5125 Check(KindInt,
"VP !prof missing kind argument", MD);
5128 Check(Kind >= InstrProfValueKind::IPVK_First &&
5129 Kind <= InstrProfValueKind::IPVK_Last,
5130 "Invalid VP !prof kind", MD);
5132 "VP !prof should have an even number "
5133 "of arguments after 'VP'",
5135 if (Kind == InstrProfValueKind::IPVK_IndirectCallTarget ||
5136 Kind == InstrProfValueKind::IPVK_MemOPSize)
5138 "VP !prof indirect call or memop size expected to be applied to "
5139 "CallBase instructions only",
5142 CheckFailed(
"expected either branch_weights or VP profile name", MD);
5146void Verifier::visitDIAssignIDMetadata(Instruction &
I, MDNode *MD) {
5147 assert(
I.hasMetadata(LLVMContext::MD_DIAssignID));
5152 bool ExpectedInstTy =
5154 CheckDI(ExpectedInstTy,
"!DIAssignID attached to unexpected instruction kind",
5159 for (
auto *User : AsValue->users()) {
5161 "!DIAssignID should only be used by llvm.dbg.assign intrinsics",
5165 CheckDI(DAI->getFunction() ==
I.getFunction(),
5166 "dbg.assign not in same function as inst", DAI, &
I);
5169 for (DbgVariableRecord *DVR :
5172 "!DIAssignID should only be used by Assign DVRs.", MD, DVR);
5173 CheckDI(DVR->getFunction() ==
I.getFunction(),
5174 "DVRAssign not in same function as inst", DVR, &
I);
5178void Verifier::visitMMRAMetadata(Instruction &
I, MDNode *MD) {
5180 "!mmra metadata attached to unexpected instruction kind",
I, MD);
5191 for (
const MDOperand &MDOp : MD->
operands())
5193 "!mmra metadata tuple operand is not an MMRA tag",
I, MDOp.get());
5196void Verifier::visitCallStackMetadata(MDNode *MD) {
5200 "call stack metadata should have at least 1 operand", MD);
5204 "call stack metadata operand should be constant integer",
Op);
5207void Verifier::visitMemProfMetadata(Instruction &
I, MDNode *MD) {
5210 "!memprof annotations should have at least 1 metadata operand "
5215 for (
auto &MIBOp : MD->
operands()) {
5221 "Each !memprof MemInfoBlock should have at least 2 operands", MIB);
5225 "!memprof MemInfoBlock first operand should not be null", MIB);
5227 "!memprof MemInfoBlock first operand should be an MDNode", MIB);
5229 visitCallStackMetadata(StackMD);
5236 "!memprof MemInfoBlock second operand should be an MDString",
5245 Check(OpNode,
"Not all !memprof MemInfoBlock operands 2 to N are MDNode",
5248 "Not all !memprof MemInfoBlock operands 2 to N are MDNode with 2 "
5253 [](
const MDOperand &
Op) {
5254 return mdconst::hasa<ConstantInt>(Op);
5256 "Not all !memprof MemInfoBlock operands 2 to N are MDNode with "
5257 "ConstantInt operands",
5263void Verifier::visitCallsiteMetadata(Instruction &
I, MDNode *MD) {
5267 visitCallStackMetadata(MD);
5276void Verifier::visitCalleeTypeMetadata(Instruction &
I, MDNode *MD) {
5281 "The callee_type metadata must be a list of type metadata nodes",
Op);
5283 Check(TypeMD->getNumOperands() == 2,
5284 "Well-formed generalized type metadata must contain exactly two "
5289 "The first operand of type metadata for functions must be zero",
Op);
5290 Check(TypeMD->hasGeneralizedMDString(),
5291 "Only generalized type metadata can be part of the callee_type "
5297void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
5300 "annotation must have at least one operand");
5302 bool TupleOfStrings =
5308 "operands must be a string or a tuple of strings");
5312void Verifier::visitAliasScopeMetadata(
const MDNode *MD) {
5317 "first scope operand must be self-referential or string", MD);
5320 "third scope operand must be string (if used)", MD);
5323 Check(
Domain !=
nullptr,
"second scope operand must be MDNode", MD);
5325 unsigned NumDomainOps =
Domain->getNumOperands();
5326 Check(NumDomainOps >= 1 && NumDomainOps <= 2,
5327 "domain must have one or two operands",
Domain);
5330 "first domain operand must be self-referential or string",
Domain);
5331 if (NumDomainOps == 2)
5333 "second domain operand must be string (if used)",
Domain);
5336void Verifier::visitAliasScopeListMetadata(
const MDNode *MD) {
5339 Check(OpMD !=
nullptr,
"scope list must consist of MDNodes", MD);
5340 visitAliasScopeMetadata(OpMD);
5344void Verifier::visitAccessGroupMetadata(
const MDNode *MD) {
5345 auto IsValidAccessScope = [](
const MDNode *MD) {
5350 if (IsValidAccessScope(MD))
5356 Check(OpMD !=
nullptr,
"Access scope list must consist of MDNodes", MD);
5357 Check(IsValidAccessScope(OpMD),
5358 "Access scope list contains invalid access scope", MD);
5364void Verifier::visitInstruction(Instruction &
I) {
5366 Check(BB,
"Instruction not embedded in basic block!", &
I);
5369 for (User *U :
I.users()) {
5370 Check(U != (User *)&
I || !DT.isReachableFromEntry(BB),
5371 "Only PHI nodes may reference their own value!", &
I);
5376 Check(!
I.getType()->isVoidTy() || !
I.hasName(),
5377 "Instruction has a name, but provides a void value!", &
I);
5381 Check(
I.getType()->isVoidTy() ||
I.getType()->isFirstClassType(),
5382 "Instruction returns a non-scalar type!", &
I);
5387 "Invalid use of metadata!", &
I);
5392 for (Use &U :
I.uses()) {
5395 "Instruction referencing"
5396 " instruction not embedded in a basic block!",
5399 CheckFailed(
"Use of instruction is not an instruction!", U);
5408 for (
unsigned i = 0, e =
I.getNumOperands(); i != e; ++i) {
5409 Check(
I.getOperand(i) !=
nullptr,
"Instruction has null operand!", &
I);
5413 if (!
I.getOperand(i)->getType()->isFirstClassType()) {
5414 Check(
false,
"Instruction operands must be first-class values!", &
I);
5420 auto IsAttachedCallOperand = [](
Function *
F,
const CallBase *CBI,
5422 return CBI && CBI->isOperandBundleOfType(
5430 Check((!
F->isIntrinsic() ||
5431 (CBI && &CBI->getCalledOperandUse() == &
I.getOperandUse(i)) ||
5432 IsAttachedCallOperand(
F, CBI, i)),
5433 "Cannot take the address of an intrinsic!", &
I);
5435 F->getIntrinsicID() == Intrinsic::donothing ||
5436 F->getIntrinsicID() == Intrinsic::seh_try_begin ||
5437 F->getIntrinsicID() == Intrinsic::seh_try_end ||
5438 F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
5439 F->getIntrinsicID() == Intrinsic::seh_scope_end ||
5440 F->getIntrinsicID() == Intrinsic::coro_resume ||
5441 F->getIntrinsicID() == Intrinsic::coro_destroy ||
5442 F->getIntrinsicID() == Intrinsic::coro_await_suspend_void ||
5443 F->getIntrinsicID() == Intrinsic::coro_await_suspend_bool ||
5444 F->getIntrinsicID() == Intrinsic::coro_await_suspend_handle ||
5445 F->getIntrinsicID() ==
5446 Intrinsic::experimental_patchpoint_void ||
5447 F->getIntrinsicID() == Intrinsic::experimental_patchpoint ||
5448 F->getIntrinsicID() == Intrinsic::fake_use ||
5449 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
5450 F->getIntrinsicID() == Intrinsic::wasm_throw ||
5451 F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
5452 IsAttachedCallOperand(
F, CBI, i),
5453 "Cannot invoke an intrinsic other than donothing, patchpoint, "
5454 "statepoint, coro_resume, coro_destroy, clang.arc.attachedcall or "
5457 Check(
F->getParent() == &M,
"Referencing function in another module!", &
I,
5458 &M,
F,
F->getParent());
5461 "Referring to a basic block in another function!", &
I);
5464 "Referring to an argument in another function!", &
I);
5466 Check(GV->
getParent() == &M,
"Referencing global in another module!", &
I,
5470 "Referring to an instruction in another function!", &
I);
5471 verifyDominatesUse(
I, i);
5473 Check(CBI && &CBI->getCalledOperandUse() == &
I.getOperandUse(i),
5474 "Cannot take the address of an inline asm!", &
I);
5476 visitConstantExprsRecursively(CPA);
5478 if (
CE->getType()->isPtrOrPtrVectorTy()) {
5481 visitConstantExprsRecursively(CE);
5486 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_fpmath)) {
5487 Check(
I.getType()->isFPOrFPVectorTy(),
5488 "fpmath requires a floating point result!", &
I);
5490 if (ConstantFP *CFP0 =
5492 const APFloat &Accuracy = CFP0->getValueAPF();
5494 "fpmath accuracy must have float type", &
I);
5496 "fpmath accuracy not a positive number!", &
I);
5498 Check(
false,
"invalid fpmath accuracy!", &
I);
5502 if (MDNode *
Range =
I.getMetadata(LLVMContext::MD_range)) {
5504 "Ranges are only for loads, calls and invokes!", &
I);
5505 visitRangeMetadata(
I,
Range,
I.getType());
5508 if (MDNode *
Range =
I.getMetadata(LLVMContext::MD_noalias_addrspace)) {
5511 "noalias.addrspace are only for memory operations!", &
I);
5512 visitNoaliasAddrspaceMetadata(
I,
Range,
I.getType());
5515 if (
I.hasMetadata(LLVMContext::MD_invariant_group)) {
5517 "invariant.group metadata is only for loads and stores", &
I);
5520 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_nonnull)) {
5521 Check(
I.getType()->isPointerTy(),
"nonnull applies only to pointer types",
5524 "nonnull applies only to load instructions, use attributes"
5525 " for calls or invokes",
5530 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_dereferenceable))
5531 visitDereferenceableMetadata(
I, MD);
5533 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
5534 visitDereferenceableMetadata(
I, MD);
5536 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_nofree))
5537 visitNofreeMetadata(
I, MD);
5539 if (MDNode *TBAA =
I.getMetadata(LLVMContext::MD_tbaa))
5542 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_noalias))
5543 visitAliasScopeListMetadata(MD);
5544 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_alias_scope))
5545 visitAliasScopeListMetadata(MD);
5547 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_access_group))
5548 visitAccessGroupMetadata(MD);
5550 if (MDNode *AlignMD =
I.getMetadata(LLVMContext::MD_align)) {
5551 Check(
I.getType()->isPointerTy(),
"align applies only to pointer types",
5554 "align applies only to load instructions, "
5555 "use attributes for calls or invokes",
5557 Check(AlignMD->getNumOperands() == 1,
"align takes one operand!", &
I);
5560 "align metadata value must be an i64!", &
I);
5564 Check(Align <= Value::MaximumAlignment,
5565 "alignment is larger that implementation defined limit", &
I);
5568 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_prof))
5569 visitProfMetadata(
I, MD);
5571 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_memprof))
5572 visitMemProfMetadata(
I, MD);
5574 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_callsite))
5575 visitCallsiteMetadata(
I, MD);
5577 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_callee_type))
5578 visitCalleeTypeMetadata(
I, MD);
5580 if (MDNode *MD =
I.getMetadata(LLVMContext::MD_DIAssignID))
5581 visitDIAssignIDMetadata(
I, MD);
5583 if (MDNode *MMRA =
I.getMetadata(LLVMContext::MD_mmra))
5584 visitMMRAMetadata(
I, MMRA);
5586 if (MDNode *Annotation =
I.getMetadata(LLVMContext::MD_annotation))
5587 visitAnnotationMetadata(Annotation);
5589 if (MDNode *
N =
I.getDebugLoc().getAsMDNode()) {
5591 visitMDNode(*
N, AreDebugLocsAllowed::Yes);
5594 if (
DL->getAtomGroup()) {
5595 CheckDI(
DL->getScope()->getSubprogram()->getKeyInstructionsEnabled(),
5596 "DbgLoc uses atomGroup but DISubprogram doesn't have Key "
5597 "Instructions enabled",
5598 DL,
DL->getScope()->getSubprogram());
5604 I.getAllMetadata(MDs);
5605 for (
auto Attachment : MDs) {
5606 unsigned Kind = Attachment.first;
5608 (
Kind == LLVMContext::MD_dbg ||
Kind == LLVMContext::MD_loop)
5609 ? AreDebugLocsAllowed::Yes
5610 : AreDebugLocsAllowed::
No;
5611 visitMDNode(*Attachment.second, AllowLocs);
5620 Check(
IF->isDeclaration(),
"Intrinsic functions should never be defined!",
5625 FunctionType *IFTy =
IF->getFunctionType();
5626 bool IsVarArg = IFTy->isVarArg();
5637 "Intrinsic has incorrect return type!", IF);
5639 "Intrinsic has incorrect argument type!", IF);
5644 "Intrinsic was not defined with variable arguments!", IF);
5647 "Callsite was not defined with variable arguments!", IF);
5656 const std::string ExpectedName =
5658 Check(ExpectedName ==
IF->getName(),
5659 "Intrinsic name not mangled correctly for type arguments! "
5671 "const x86_amx is not allowed in argument!");
5677 case Intrinsic::assume: {
5679 unsigned ArgCount = Elem.End - Elem.Begin;
5682 if (Elem.Tag->getKey() ==
"separate_storage") {
5683 Check(ArgCount == 2,
5684 "separate_storage assumptions should have 2 arguments",
Call);
5687 "arguments to separate_storage assumptions should be pointers",
5691 Check(Elem.Tag->getKey() ==
"ignore" ||
5692 Attribute::isExistingAttribute(Elem.Tag->getKey()),
5693 "tags must be valid attribute names",
Call);
5694 Attribute::AttrKind
Kind =
5695 Attribute::getAttrKindFromName(Elem.Tag->getKey());
5696 if (Kind == Attribute::Alignment) {
5697 Check(ArgCount <= 3 && ArgCount >= 2,
5698 "alignment assumptions should have 2 or 3 arguments",
Call);
5700 "first argument should be a pointer",
Call);
5702 "second argument should be an integer",
Call);
5705 "third argument should be an integer if present",
Call);
5708 if (Kind == Attribute::Dereferenceable) {
5709 Check(ArgCount == 2,
5710 "dereferenceable assumptions should have 2 arguments",
Call);
5712 "first argument should be a pointer",
Call);
5714 "second argument should be an integer",
Call);
5717 Check(ArgCount <= 2,
"too many arguments",
Call);
5718 if (Kind == Attribute::None)
5720 if (Attribute::isIntAttrKind(Kind)) {
5721 Check(ArgCount == 2,
"this attribute should have 2 arguments",
Call);
5723 "the second argument should be a constant integral value",
Call);
5724 }
else if (Attribute::canUseAsParamAttr(Kind)) {
5725 Check((ArgCount) == 1,
"this attribute should have one argument",
Call);
5726 }
else if (Attribute::canUseAsFnAttr(Kind)) {
5727 Check((ArgCount) == 0,
"this attribute has no argument",
Call);
5732 case Intrinsic::ucmp:
5733 case Intrinsic::scmp: {
5738 "result type must be at least 2 bits wide",
Call);
5740 bool IsDestTypeVector = DestTy->
isVectorTy();
5742 "ucmp/scmp argument and result types must both be either vector or "
5745 if (IsDestTypeVector) {
5748 Check(SrcVecLen == DestVecLen,
5749 "return type and arguments must have the same number of "
5755 case Intrinsic::coro_id: {
5761 "info argument of llvm.coro.id must refer to an initialized "
5765 "info argument of llvm.coro.id must refer to either a struct or "
5769 case Intrinsic::is_fpclass: {
5772 "unsupported bits for llvm.is.fpclass test mask");
5775 case Intrinsic::fptrunc_round: {
5780 MD = MAV->getMetadata();
5782 Check(MD !=
nullptr,
"missing rounding mode argument",
Call);
5785 (
"invalid value for llvm.fptrunc.round metadata operand"
5786 " (the operand should be a string)"),
5789 std::optional<RoundingMode> RoundMode =
5791 Check(RoundMode && *RoundMode != RoundingMode::Dynamic,
5792 "unsupported rounding mode argument",
Call);
5795#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
5796#include "llvm/IR/VPIntrinsics.def"
5797#undef BEGIN_REGISTER_VP_INTRINSIC
5800#define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \
5801 case Intrinsic::INTRINSIC:
5802#include "llvm/IR/ConstrainedOps.def"
5806 case Intrinsic::dbg_declare:
5807 case Intrinsic::dbg_value:
5808 case Intrinsic::dbg_assign:
5809 case Intrinsic::dbg_label:
5816 case Intrinsic::memcpy:
5817 case Intrinsic::memcpy_inline:
5818 case Intrinsic::memmove:
5819 case Intrinsic::memset:
5820 case Intrinsic::memset_inline:
5822 case Intrinsic::experimental_memset_pattern: {
5824 Check(Memset->getValue()->getType()->isSized(),
5825 "unsized types cannot be used as memset patterns",
Call);
5828 case Intrinsic::memcpy_element_unordered_atomic:
5829 case Intrinsic::memmove_element_unordered_atomic:
5830 case Intrinsic::memset_element_unordered_atomic: {
5833 ConstantInt *ElementSizeCI =
5835 const APInt &ElementSizeVal = ElementSizeCI->
getValue();
5837 "element size of the element-wise atomic memory intrinsic "
5838 "must be a power of 2",
5841 auto IsValidAlignment = [&](MaybeAlign Alignment) {
5842 return Alignment && ElementSizeVal.
ule(Alignment->value());
5844 Check(IsValidAlignment(AMI->getDestAlign()),
5845 "incorrect alignment of the destination argument",
Call);
5847 Check(IsValidAlignment(AMT->getSourceAlign()),
5848 "incorrect alignment of the source argument",
Call);
5852 case Intrinsic::call_preallocated_setup: {
5854 Check(NumArgs !=
nullptr,
5855 "llvm.call.preallocated.setup argument must be a constant");
5856 bool FoundCall =
false;
5859 Check(UseCall !=
nullptr,
5860 "Uses of llvm.call.preallocated.setup must be calls");
5862 if (IID == Intrinsic::call_preallocated_arg) {
5864 Check(AllocArgIndex !=
nullptr,
5865 "llvm.call.preallocated.alloc arg index must be a constant");
5866 auto AllocArgIndexInt = AllocArgIndex->getValue();
5867 Check(AllocArgIndexInt.sge(0) &&
5868 AllocArgIndexInt.slt(NumArgs->getValue()),
5869 "llvm.call.preallocated.alloc arg index must be between 0 and "
5871 "llvm.call.preallocated.setup's argument count");
5872 }
else if (IID == Intrinsic::call_preallocated_teardown) {
5875 Check(!FoundCall,
"Can have at most one call corresponding to a "
5876 "llvm.call.preallocated.setup");
5878 size_t NumPreallocatedArgs = 0;
5879 for (
unsigned i = 0; i < UseCall->arg_size(); i++) {
5880 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
5881 ++NumPreallocatedArgs;
5884 Check(NumPreallocatedArgs != 0,
5885 "cannot use preallocated intrinsics on a call without "
5886 "preallocated arguments");
5887 Check(NumArgs->equalsInt(NumPreallocatedArgs),
5888 "llvm.call.preallocated.setup arg size must be equal to number "
5889 "of preallocated arguments "
5899 auto PreallocatedBundle =
5901 Check(PreallocatedBundle,
5902 "Use of llvm.call.preallocated.setup outside intrinsics "
5903 "must be in \"preallocated\" operand bundle");
5904 Check(PreallocatedBundle->Inputs.front().get() == &
Call,
5905 "preallocated bundle must have token from corresponding "
5906 "llvm.call.preallocated.setup");
5911 case Intrinsic::call_preallocated_arg: {
5914 Token->getIntrinsicID() == Intrinsic::call_preallocated_setup,
5915 "llvm.call.preallocated.arg token argument must be a "
5916 "llvm.call.preallocated.setup");
5918 "llvm.call.preallocated.arg must be called with a \"preallocated\" "
5919 "call site attribute");
5922 case Intrinsic::call_preallocated_teardown: {
5925 Token->getIntrinsicID() == Intrinsic::call_preallocated_setup,
5926 "llvm.call.preallocated.teardown token argument must be a "
5927 "llvm.call.preallocated.setup");
5930 case Intrinsic::gcroot:
5931 case Intrinsic::gcwrite:
5932 case Intrinsic::gcread:
5933 if (
ID == Intrinsic::gcroot) {
5936 Check(AI,
"llvm.gcroot parameter #1 must be an alloca.",
Call);
5938 "llvm.gcroot parameter #2 must be a constant.",
Call);
5941 "llvm.gcroot parameter #1 must either be a pointer alloca, "
5942 "or argument #2 must be a non-null constant.",
5948 "Enclosing function does not use GC.",
Call);
5950 case Intrinsic::init_trampoline:
5952 "llvm.init_trampoline parameter #2 must resolve to a function.",
5955 case Intrinsic::prefetch:
5957 "rw argument to llvm.prefetch must be 0-1",
Call);
5959 "locality argument to llvm.prefetch must be 0-3",
Call);
5961 "cache type argument to llvm.prefetch must be 0-1",
Call);
5963 case Intrinsic::stackprotector:
5965 "llvm.stackprotector parameter #2 must resolve to an alloca.",
Call);
5967 case Intrinsic::localescape: {
5971 Check(!SawFrameEscape,
"multiple calls to llvm.localescape in one function",
5978 "llvm.localescape only accepts static allocas",
Call);
5981 SawFrameEscape =
true;
5984 case Intrinsic::localrecover: {
5988 "llvm.localrecover first "
5989 "argument must be function defined in this module",
5992 auto &
Entry = FrameEscapeInfo[Fn];
5993 Entry.second = unsigned(
5994 std::max(uint64_t(
Entry.second), IdxArg->getLimitedValue(~0U) + 1));
5998 case Intrinsic::experimental_gc_statepoint:
6000 Check(!CI->isInlineAsm(),
6001 "gc.statepoint support for inline assembly unimplemented", CI);
6003 "Enclosing function does not use GC.",
Call);
6005 verifyStatepoint(
Call);
6007 case Intrinsic::experimental_gc_result: {
6009 "Enclosing function does not use GC.",
Call);
6017 Check(StatepointCall && StatepointCall->getIntrinsicID() ==
6018 Intrinsic::experimental_gc_statepoint,
6019 "gc.result operand #1 must be from a statepoint",
Call,
6023 auto *TargetFuncType =
6026 "gc.result result type does not match wrapped callee",
Call);
6029 case Intrinsic::experimental_gc_relocate: {
6033 "gc.relocate must return a pointer or a vector of pointers",
Call);
6038 if (LandingPadInst *LandingPad =
6042 LandingPad->getParent()->getUniquePredecessor();
6046 Check(InvokeBB,
"safepoints should have unique landingpads",
6047 LandingPad->getParent());
6051 "gc relocate should be linked to a statepoint", InvokeBB);
6058 "gc relocate is incorrectly tied to the statepoint",
Call, Token);
6067 "gc.relocate operand #2 must be integer offset",
Call);
6071 "gc.relocate operand #3 must be integer offset",
Call);
6081 Check(BaseIndex < Opt->Inputs.size(),
6082 "gc.relocate: statepoint base index out of bounds",
Call);
6083 Check(DerivedIndex < Opt->Inputs.size(),
6084 "gc.relocate: statepoint derived index out of bounds",
Call);
6097 "gc.relocate: relocated value must be a pointer",
Call);
6098 Check(DerivedType->isPtrOrPtrVectorTy(),
6099 "gc.relocate: relocated value must be a pointer",
Call);
6101 Check(ResultType->isVectorTy() == DerivedType->isVectorTy(),
6102 "gc.relocate: vector relocates to vector and pointer to pointer",
6105 ResultType->getPointerAddressSpace() ==
6106 DerivedType->getPointerAddressSpace(),
6107 "gc.relocate: relocating a pointer shouldn't change its address space",
6111 Check(GC,
"gc.relocate: calling function must have GCStrategy",
6114 auto isGCPtr = [&
GC](
Type *PTy) {
6115 return GC->isGCManagedPointer(PTy->getScalarType()).value_or(
true);
6117 Check(isGCPtr(ResultType),
"gc.relocate: must return gc pointer",
Call);
6119 "gc.relocate: relocated value must be a gc pointer",
Call);
6120 Check(isGCPtr(DerivedType),
6121 "gc.relocate: relocated value must be a gc pointer",
Call);
6125 case Intrinsic::experimental_patchpoint: {
6128 "patchpoint: invalid return type used with anyregcc",
Call);
6132 case Intrinsic::eh_exceptioncode:
6133 case Intrinsic::eh_exceptionpointer: {
6135 "eh.exceptionpointer argument must be a catchpad",
Call);
6138 case Intrinsic::get_active_lane_mask: {
6140 "get_active_lane_mask: must return a "
6144 Check(ElemTy->isIntegerTy(1),
6145 "get_active_lane_mask: element type is not "
6150 case Intrinsic::experimental_get_vector_length: {
6153 "get_vector_length: VF must be positive",
Call);
6156 case Intrinsic::masked_load: {
6163 Check(
Mask->getType()->isVectorTy(),
"masked_load: mask must be vector",
6166 "masked_load: alignment must be a power of 2",
Call);
6168 "masked_load: pass through and return type must match",
Call);
6171 "masked_load: vector mask must be same length as return",
Call);
6174 case Intrinsic::masked_store: {
6178 Check(
Mask->getType()->isVectorTy(),
"masked_store: mask must be vector",
6181 "masked_store: alignment must be a power of 2",
Call);
6184 "masked_store: vector mask must be same length as value",
Call);
6188 case Intrinsic::masked_gather: {
6189 const APInt &Alignment =
6192 "masked_gather: alignment must be 0 or a power of 2",
Call);
6195 case Intrinsic::masked_scatter: {
6196 const APInt &Alignment =
6199 "masked_scatter: alignment must be 0 or a power of 2",
Call);
6203 case Intrinsic::experimental_guard: {
6206 "experimental_guard must have exactly one "
6207 "\"deopt\" operand bundle");
6211 case Intrinsic::experimental_deoptimize: {
6215 "experimental_deoptimize must have exactly one "
6216 "\"deopt\" operand bundle");
6218 "experimental_deoptimize return type must match caller return type");
6223 "calls to experimental_deoptimize must be followed by a return");
6227 "calls to experimental_deoptimize must be followed by a return "
6228 "of the value computed by experimental_deoptimize");
6233 case Intrinsic::vastart: {
6235 "va_start called in a non-varargs function");
6238 case Intrinsic::get_dynamic_area_offset: {
6240 Check(IntTy &&
DL.getPointerSizeInBits(
DL.getAllocaAddrSpace()) ==
6241 IntTy->getBitWidth(),
6242 "get_dynamic_area_offset result type must be scalar integer matching "
6243 "alloca address space width",
6247 case Intrinsic::vector_reduce_and:
6248 case Intrinsic::vector_reduce_or:
6249 case Intrinsic::vector_reduce_xor:
6250 case Intrinsic::vector_reduce_add:
6251 case Intrinsic::vector_reduce_mul:
6252 case Intrinsic::vector_reduce_smax:
6253 case Intrinsic::vector_reduce_smin:
6254 case Intrinsic::vector_reduce_umax:
6255 case Intrinsic::vector_reduce_umin: {
6258 "Intrinsic has incorrect argument type!");
6261 case Intrinsic::vector_reduce_fmax:
6262 case Intrinsic::vector_reduce_fmin: {
6265 "Intrinsic has incorrect argument type!");
6268 case Intrinsic::vector_reduce_fadd:
6269 case Intrinsic::vector_reduce_fmul: {
6274 "Intrinsic has incorrect argument type!");
6277 case Intrinsic::smul_fix:
6278 case Intrinsic::smul_fix_sat:
6279 case Intrinsic::umul_fix:
6280 case Intrinsic::umul_fix_sat:
6281 case Intrinsic::sdiv_fix:
6282 case Intrinsic::sdiv_fix_sat:
6283 case Intrinsic::udiv_fix:
6284 case Intrinsic::udiv_fix_sat: {
6288 "first operand of [us][mul|div]_fix[_sat] must be an int type or "
6291 "second operand of [us][mul|div]_fix[_sat] must be an int type or "
6295 Check(Op3->getType()->isIntegerTy(),
6296 "third operand of [us][mul|div]_fix[_sat] must be an int type");
6297 Check(Op3->getBitWidth() <= 32,
6298 "third operand of [us][mul|div]_fix[_sat] must fit within 32 bits");
6300 if (
ID == Intrinsic::smul_fix ||
ID == Intrinsic::smul_fix_sat ||
6301 ID == Intrinsic::sdiv_fix ||
ID == Intrinsic::sdiv_fix_sat) {
6303 "the scale of s[mul|div]_fix[_sat] must be less than the width of "
6307 "the scale of u[mul|div]_fix[_sat] must be less than or equal "
6308 "to the width of the operands");
6312 case Intrinsic::lrint:
6313 case Intrinsic::llrint:
6314 case Intrinsic::lround:
6315 case Intrinsic::llround: {
6321 ExpectedName +
": argument must be floating-point or vector "
6322 "of floating-points, and result must be integer or "
6323 "vector of integers",
6326 ExpectedName +
": argument and result disagree on vector use", &
Call);
6328 Check(VTy->getElementCount() == RTy->getElementCount(),
6329 ExpectedName +
": argument must be same length as result", &
Call);
6333 case Intrinsic::bswap: {
6336 Check(
Size % 16 == 0,
"bswap must be an even number of bytes", &
Call);
6339 case Intrinsic::invariant_start: {
6341 Check(InvariantSize &&
6343 "invariant_start parameter must be -1, 0 or a positive number",
6347 case Intrinsic::matrix_multiply:
6348 case Intrinsic::matrix_transpose:
6349 case Intrinsic::matrix_column_major_load:
6350 case Intrinsic::matrix_column_major_store: {
6352 ConstantInt *Stride =
nullptr;
6353 ConstantInt *NumRows;
6354 ConstantInt *NumColumns;
6356 Type *Op0ElemTy =
nullptr;
6357 Type *Op1ElemTy =
nullptr;
6359 case Intrinsic::matrix_multiply: {
6364 ->getNumElements() ==
6366 "First argument of a matrix operation does not match specified "
6369 ->getNumElements() ==
6371 "Second argument of a matrix operation does not match specified "
6381 case Intrinsic::matrix_transpose:
6388 case Intrinsic::matrix_column_major_load: {
6395 case Intrinsic::matrix_column_major_store: {
6408 Check(ResultTy->getElementType()->isIntegerTy() ||
6409 ResultTy->getElementType()->isFloatingPointTy(),
6410 "Result type must be an integer or floating-point type!", IF);
6413 Check(ResultTy->getElementType() == Op0ElemTy,
6414 "Vector element type mismatch of the result and first operand "
6419 Check(ResultTy->getElementType() == Op1ElemTy,
6420 "Vector element type mismatch of the result and second operand "
6426 "Result of a matrix operation does not fit in the returned vector!");
6430 "Stride must be greater or equal than the number of rows!", IF);
6434 case Intrinsic::vector_splice: {
6437 int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
6440 if (
Attrs.hasFnAttr(Attribute::VScaleRange))
6441 KnownMinNumElements *=
Attrs.getFnAttrs().getVScaleRangeMin();
6443 Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
6444 (Idx >= 0 && Idx < KnownMinNumElements),
6445 "The splice index exceeds the range [-VL, VL-1] where VL is the "
6446 "known minimum number of elements in the vector. For scalable "
6447 "vectors the minimum number of elements is determined from "
6452 case Intrinsic::stepvector: {
6454 Check(VecTy && VecTy->getScalarType()->isIntegerTy() &&
6455 VecTy->getScalarSizeInBits() >= 8,
6456 "stepvector only supported for vectors of integers "
6457 "with a bitwidth of at least 8.",
6461 case Intrinsic::experimental_vector_match: {
6470 Check(Op1Ty && Op2Ty && MaskTy,
"Operands must be vectors.", &
Call);
6472 "Second operand must be a fixed length vector.", &
Call);
6473 Check(Op1Ty->getElementType()->isIntegerTy(),
6474 "First operand must be a vector of integers.", &
Call);
6475 Check(Op1Ty->getElementType() == Op2Ty->getElementType(),
6476 "First two operands must have the same element type.", &
Call);
6477 Check(Op1Ty->getElementCount() == MaskTy->getElementCount(),
6478 "First operand and mask must have the same number of elements.",
6480 Check(MaskTy->getElementType()->isIntegerTy(1),
6481 "Mask must be a vector of i1's.", &
Call);
6486 case Intrinsic::vector_insert: {
6495 ElementCount VecEC = VecTy->getElementCount();
6496 ElementCount SubVecEC = SubVecTy->getElementCount();
6497 Check(VecTy->getElementType() == SubVecTy->getElementType(),
6498 "vector_insert parameters must have the same element "
6502 "vector_insert index must be a constant multiple of "
6503 "the subvector's known minimum vector length.");
6511 "subvector operand of vector_insert would overrun the "
6512 "vector being inserted into.");
6516 case Intrinsic::vector_extract: {
6524 ElementCount VecEC = VecTy->getElementCount();
6525 ElementCount ResultEC = ResultTy->getElementCount();
6527 Check(ResultTy->getElementType() == VecTy->getElementType(),
6528 "vector_extract result must have the same element "
6529 "type as the input vector.",
6532 "vector_extract index must be a constant multiple of "
6533 "the result type's known minimum vector length.");
6541 "vector_extract would overrun.");
6545 case Intrinsic::vector_partial_reduce_add: {
6549 unsigned VecWidth = VecTy->getElementCount().getKnownMinValue();
6550 unsigned AccWidth = AccTy->getElementCount().getKnownMinValue();
6552 Check((VecWidth % AccWidth) == 0,
6553 "Invalid vector widths for partial "
6554 "reduction. The width of the input vector "
6555 "must be a positive integer multiple of "
6556 "the width of the accumulator vector.");
6559 case Intrinsic::experimental_noalias_scope_decl: {
6563 case Intrinsic::preserve_array_access_index:
6564 case Intrinsic::preserve_struct_access_index:
6565 case Intrinsic::aarch64_ldaxr:
6566 case Intrinsic::aarch64_ldxr:
6567 case Intrinsic::arm_ldaex:
6568 case Intrinsic::arm_ldrex: {
6570 Check(ElemTy,
"Intrinsic requires elementtype attribute on first argument.",
6574 case Intrinsic::aarch64_stlxr:
6575 case Intrinsic::aarch64_stxr:
6576 case Intrinsic::arm_stlex:
6577 case Intrinsic::arm_strex: {
6580 "Intrinsic requires elementtype attribute on second argument.",
6584 case Intrinsic::aarch64_prefetch: {
6586 "write argument to llvm.aarch64.prefetch must be 0 or 1",
Call);
6588 "target argument to llvm.aarch64.prefetch must be 0-3",
Call);
6590 "stream argument to llvm.aarch64.prefetch must be 0 or 1",
Call);
6592 "isdata argument to llvm.aarch64.prefetch must be 0 or 1",
Call);
6595 case Intrinsic::callbr_landingpad: {
6597 Check(CBR,
"intrinstic requires callbr operand", &
Call);
6604 CheckFailed(
"Intrinsic in block must have 1 unique predecessor", &
Call);
6608 CheckFailed(
"Intrinsic must have corresponding callbr in predecessor",
6613 "Intrinsic's corresponding callbr must have intrinsic's parent basic "
6614 "block in indirect destination list",
6617 Check(&
First == &
Call,
"No other instructions may proceed intrinsic",
6621 case Intrinsic::amdgcn_cs_chain: {
6624 case CallingConv::AMDGPU_CS:
6625 case CallingConv::AMDGPU_CS_Chain:
6626 case CallingConv::AMDGPU_CS_ChainPreserve:
6629 CheckFailed(
"Intrinsic can only be used from functions with the "
6630 "amdgpu_cs, amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6631 "calling conventions",
6637 "SGPR arguments must have the `inreg` attribute", &
Call);
6639 "VGPR arguments must not have the `inreg` attribute", &
Call);
6644 Intrinsic::amdgcn_unreachable;
6646 "llvm.amdgcn.cs.chain must be followed by unreachable", &
Call);
6649 case Intrinsic::amdgcn_init_exec_from_input: {
6652 "only inreg arguments to the parent function are valid as inputs to "
6657 case Intrinsic::amdgcn_set_inactive_chain_arg: {
6660 case CallingConv::AMDGPU_CS_Chain:
6661 case CallingConv::AMDGPU_CS_ChainPreserve:
6664 CheckFailed(
"Intrinsic can only be used from functions with the "
6665 "amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6666 "calling conventions",
6671 unsigned InactiveIdx = 1;
6673 "Value for inactive lanes must not have the `inreg` attribute",
6676 "Value for inactive lanes must be a function argument", &
Call);
6678 "Value for inactive lanes must be a VGPR function argument", &
Call);
6681 case Intrinsic::amdgcn_call_whole_wave: {
6683 Check(
F,
"Indirect whole wave calls are not allowed", &
Call);
6685 CallingConv::ID CC =
F->getCallingConv();
6686 Check(CC == CallingConv::AMDGPU_Gfx_WholeWave,
6687 "Callee must have the amdgpu_gfx_whole_wave calling convention",
6690 Check(!
F->isVarArg(),
"Variadic whole wave calls are not allowed", &
Call);
6693 "Call argument count must match callee argument count", &
Call);
6697 Check(
F->arg_begin()->getType()->isIntegerTy(1),
6698 "Callee must have i1 as its first argument", &
Call);
6699 for (
auto [CallArg, FuncArg] :
6701 Check(CallArg->getType() == FuncArg.getType(),
6702 "Argument types must match", &
Call);
6706 FuncArg.hasInRegAttr(),
6707 "Argument inreg attributes must match", &
Call);
6711 case Intrinsic::amdgcn_s_prefetch_data: {
6715 "llvm.amdgcn.s.prefetch.data only supports global or constant memory");
6718 case Intrinsic::amdgcn_mfma_scale_f32_16x16x128_f8f6f4:
6719 case Intrinsic::amdgcn_mfma_scale_f32_32x32x64_f8f6f4: {
6725 Check(CBSZ <= 4,
"invalid value for cbsz format",
Call,
6727 Check(BLGP <= 4,
"invalid value for blgp format",
Call,
6731 auto getFormatNumRegs = [](
unsigned FormatVal) {
6732 switch (FormatVal) {
6746 auto isValidSrcASrcBVector = [](FixedVectorType *Ty) {
6747 if (!Ty || !Ty->getElementType()->
isIntegerTy(32))
6749 unsigned NumElts = Ty->getNumElements();
6750 return NumElts == 4 || NumElts == 6 || NumElts == 8;
6755 Check(isValidSrcASrcBVector(Src0Ty),
6756 "operand 0 must be 4, 6 or 8 element i32 vector", &
Call, Src0);
6757 Check(isValidSrcASrcBVector(Src1Ty),
6758 "operand 1 must be 4, 6 or 8 element i32 vector", &
Call, Src1);
6761 Check(Src0Ty->getNumElements() >= getFormatNumRegs(CBSZ),
6763 Check(Src1Ty->getNumElements() >= getFormatNumRegs(BLGP),
6767 case Intrinsic::amdgcn_wmma_f32_16x16x128_f8f6f4:
6768 case Intrinsic::amdgcn_wmma_scale_f32_16x16x128_f8f6f4:
6769 case Intrinsic::amdgcn_wmma_scale16_f32_16x16x128_f8f6f4: {
6775 Check(FmtA <= 4,
"invalid value for matrix format",
Call,
6777 Check(FmtB <= 4,
"invalid value for matrix format",
Call,
6781 auto getFormatNumRegs = [](
unsigned FormatVal) {
6782 switch (FormatVal) {
6796 auto isValidSrcASrcBVector = [](FixedVectorType *Ty) {
6797 if (!Ty || !Ty->getElementType()->
isIntegerTy(32))
6799 unsigned NumElts = Ty->getNumElements();
6800 return NumElts == 16 || NumElts == 12 || NumElts == 8;
6805 Check(isValidSrcASrcBVector(Src0Ty),
6806 "operand 1 must be 8, 12 or 16 element i32 vector", &
Call, Src0);
6807 Check(isValidSrcASrcBVector(Src1Ty),
6808 "operand 3 must be 8, 12 or 16 element i32 vector", &
Call, Src1);
6811 Check(Src0Ty->getNumElements() >= getFormatNumRegs(FmtA),
6813 Check(Src1Ty->getNumElements() >= getFormatNumRegs(FmtB),
6817 case Intrinsic::amdgcn_cooperative_atomic_load_32x4B:
6818 case Intrinsic::amdgcn_cooperative_atomic_load_16x8B:
6819 case Intrinsic::amdgcn_cooperative_atomic_load_8x16B:
6820 case Intrinsic::amdgcn_cooperative_atomic_store_32x4B:
6821 case Intrinsic::amdgcn_cooperative_atomic_store_16x8B:
6822 case Intrinsic::amdgcn_cooperative_atomic_store_8x16B: {
6827 "cooperative atomic intrinsics require a generic or global pointer",
6834 "cooperative atomic intrinsics require that the last argument is a "
6839 case Intrinsic::nvvm_setmaxnreg_inc_sync_aligned_u32:
6840 case Intrinsic::nvvm_setmaxnreg_dec_sync_aligned_u32: {
6843 Check(RegCount % 8 == 0,
6844 "reg_count argument to nvvm.setmaxnreg must be in multiples of 8");
6847 case Intrinsic::experimental_convergence_entry:
6848 case Intrinsic::experimental_convergence_anchor:
6850 case Intrinsic::experimental_convergence_loop:
6852 case Intrinsic::ptrmask: {
6856 "llvm.ptrmask intrinsic first argument must be pointer or vector "
6861 "llvm.ptrmask intrinsic arguments must be both scalars or both vectors",
6866 "llvm.ptrmask intrinsic arguments must have the same number of "
6870 "llvm.ptrmask intrinsic second argument bitwidth must match "
6871 "pointer index type size of first argument",
6875 case Intrinsic::thread_pointer: {
6877 DL.getDefaultGlobalsAddressSpace(),
6878 "llvm.thread.pointer intrinsic return type must be for the globals "
6883 case Intrinsic::threadlocal_address: {
6886 "llvm.threadlocal.address first argument must be a GlobalValue");
6888 "llvm.threadlocal.address operand isThreadLocal() must be true");
6891 case Intrinsic::lifetime_start:
6892 case Intrinsic::lifetime_end: {
6895 "llvm.lifetime.start/end can only be used on alloca or poison",
6904 if (
F->hasPersonalityFn() &&
6908 if (BlockEHFuncletColors.
empty())
6912 bool InEHFunclet =
false;
6916 for (BasicBlock *ColorFirstBB : CV)
6917 if (
auto It = ColorFirstBB->getFirstNonPHIIt();
6918 It != ColorFirstBB->end())
6923 bool HasToken =
false;
6930 Check(HasToken,
"Missing funclet token on intrinsic call", &
Call);
6954void Verifier::visit(DbgLabelRecord &DLR) {
6956 "invalid #dbg_label intrinsic variable", &DLR, DLR.
getRawLabel());
6969 CheckDI(Loc,
"#dbg_label record requires a !dbg attachment", &DLR, BB,
F);
6973 if (!LabelSP || !LocSP)
6977 "mismatched subprogram between #dbg_label label and !dbg attachment",
6978 &DLR, BB,
F, Label,
Label->getScope()->getSubprogram(), Loc,
6979 Loc->getScope()->getSubprogram());
6982void Verifier::visit(DbgVariableRecord &DVR) {
6986 CheckDI(DVR.
getType() == DbgVariableRecord::LocationType::Value ||
6987 DVR.
getType() == DbgVariableRecord::LocationType::Declare ||
6988 DVR.
getType() == DbgVariableRecord::LocationType::Assign,
6989 "invalid #dbg record type", &DVR, DVR.
getType(), BB,
F);
6997 "invalid #dbg record address/value", &DVR, MD, BB,
F);
6999 visitValueAsMetadata(*VAM,
F);
7002 Type *Ty = VAM->getValue()->getType();
7004 "location of #dbg_declare must be a pointer or int", &DVR, MD, BB,
7008 visitDIArgList(*AL,
F);
7022 "invalid #dbg_assign DIAssignID", &DVR, DVR.
getRawAssignID(), BB,
7025 AreDebugLocsAllowed::No);
7034 "invalid #dbg_assign address", &DVR, DVR.
getRawAddress(), BB,
F);
7036 visitValueAsMetadata(*VAM,
F);
7039 "invalid #dbg_assign address expression", &DVR,
7046 "inst not in same function as #dbg_assign",
I, &DVR, BB,
F);
7056 &DVR, DLNode, BB,
F);
7062 if (!VarSP || !LocSP)
7066 "mismatched subprogram between #dbg record variable and DILocation",
7068 Loc->getScope()->getSubprogram(), BB,
F);
7073void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) {
7077 Check(RetTy->getElementCount() == ValTy->getElementCount(),
7078 "VP cast intrinsic first argument and result vector lengths must be "
7082 switch (VPCast->getIntrinsicID()) {
7085 case Intrinsic::vp_trunc:
7087 "llvm.vp.trunc intrinsic first argument and result element type "
7091 "llvm.vp.trunc intrinsic the bit size of first argument must be "
7092 "larger than the bit size of the return type",
7095 case Intrinsic::vp_zext:
7096 case Intrinsic::vp_sext:
7098 "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result "
7099 "element type must be integer",
7102 "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first "
7103 "argument must be smaller than the bit size of the return type",
7106 case Intrinsic::vp_fptoui:
7107 case Intrinsic::vp_fptosi:
7108 case Intrinsic::vp_lrint:
7109 case Intrinsic::vp_llrint:
7112 "llvm.vp.fptoui, llvm.vp.fptosi, llvm.vp.lrint or llvm.vp.llrint" "intrinsic first argument element "
7113 "type must be floating-point and result element type must be integer",
7116 case Intrinsic::vp_uitofp:
7117 case Intrinsic::vp_sitofp:
7120 "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element "
7121 "type must be integer and result element type must be floating-point",
7124 case Intrinsic::vp_fptrunc:
7126 "llvm.vp.fptrunc intrinsic first argument and result element type "
7127 "must be floating-point",
7130 "llvm.vp.fptrunc intrinsic the bit size of first argument must be "
7131 "larger than the bit size of the return type",
7134 case Intrinsic::vp_fpext:
7136 "llvm.vp.fpext intrinsic first argument and result element type "
7137 "must be floating-point",
7140 "llvm.vp.fpext intrinsic the bit size of first argument must be "
7141 "smaller than the bit size of the return type",
7144 case Intrinsic::vp_ptrtoint:
7146 "llvm.vp.ptrtoint intrinsic first argument element type must be "
7147 "pointer and result element type must be integer",
7150 case Intrinsic::vp_inttoptr:
7152 "llvm.vp.inttoptr intrinsic first argument element type must be "
7153 "integer and result element type must be pointer",
7160 case Intrinsic::vp_fcmp: {
7163 "invalid predicate for VP FP comparison intrinsic", &VPI);
7166 case Intrinsic::vp_icmp: {
7169 "invalid predicate for VP integer comparison intrinsic", &VPI);
7172 case Intrinsic::vp_is_fpclass: {
7175 "unsupported bits for llvm.vp.is.fpclass test mask");
7178 case Intrinsic::experimental_vp_splice: {
7181 int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
7183 AttributeList
Attrs = VPI.
getParent()->getParent()->getAttributes();
7184 if (
Attrs.hasFnAttr(Attribute::VScaleRange))
7185 KnownMinNumElements *=
Attrs.getFnAttrs().getVScaleRangeMin();
7187 Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
7188 (Idx >= 0 && Idx < KnownMinNumElements),
7189 "The splice index exceeds the range [-VL, VL-1] where VL is the "
7190 "known minimum number of elements in the vector. For scalable "
7191 "vectors the minimum number of elements is determined from "
7199void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
7201 bool HasRoundingMD =
7205 NumOperands += (1 + HasRoundingMD);
7211 "invalid arguments for constrained FP intrinsic", &FPI);
7214 case Intrinsic::experimental_constrained_lrint:
7215 case Intrinsic::experimental_constrained_llrint: {
7219 "Intrinsic does not support vectors", &FPI);
7223 case Intrinsic::experimental_constrained_lround:
7224 case Intrinsic::experimental_constrained_llround: {
7228 "Intrinsic does not support vectors", &FPI);
7232 case Intrinsic::experimental_constrained_fcmp:
7233 case Intrinsic::experimental_constrained_fcmps: {
7236 "invalid predicate for constrained FP comparison intrinsic", &FPI);
7240 case Intrinsic::experimental_constrained_fptosi:
7241 case Intrinsic::experimental_constrained_fptoui: {
7245 "Intrinsic first argument must be floating point", &FPI);
7252 "Intrinsic first argument and result disagree on vector use", &FPI);
7254 "Intrinsic result must be an integer", &FPI);
7257 "Intrinsic first argument and result vector lengths must be equal",
7263 case Intrinsic::experimental_constrained_sitofp:
7264 case Intrinsic::experimental_constrained_uitofp: {
7268 "Intrinsic first argument must be integer", &FPI);
7275 "Intrinsic first argument and result disagree on vector use", &FPI);
7277 "Intrinsic result must be a floating point", &FPI);
7280 "Intrinsic first argument and result vector lengths must be equal",
7286 case Intrinsic::experimental_constrained_fptrunc:
7287 case Intrinsic::experimental_constrained_fpext: {
7293 "Intrinsic first argument must be FP or FP vector", &FPI);
7295 "Intrinsic result must be FP or FP vector", &FPI);
7297 "Intrinsic first argument and result disagree on vector use", &FPI);
7301 "Intrinsic first argument and result vector lengths must be equal",
7304 if (FPI.
getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
7306 "Intrinsic first argument's type must be larger than result type",
7310 "Intrinsic first argument's type must be smaller than result type",
7326 "invalid exception behavior argument", &FPI);
7327 if (HasRoundingMD) {
7333void Verifier::verifyFragmentExpression(
const DbgVariableRecord &DVR) {
7338 if (!V || !
E || !
E->isValid())
7342 auto Fragment =
E->getFragmentInfo();
7352 if (
V->isArtificial())
7355 verifyFragmentExpression(*V, *Fragment, &DVR);
7358template <
typename ValueOrMetadata>
7359void Verifier::verifyFragmentExpression(
const DIVariable &V,
7361 ValueOrMetadata *
Desc) {
7364 auto VarSize =
V.getSizeInBits();
7370 CheckDI(FragSize + FragOffset <= *VarSize,
7371 "fragment is larger than or outside of variable",
Desc, &V);
7372 CheckDI(FragSize != *VarSize,
"fragment covers entire variable",
Desc, &V);
7375void Verifier::verifyFnArgs(
const DbgVariableRecord &DVR) {
7387 CheckDI(Var,
"#dbg record without variable");
7389 unsigned ArgNo = Var->
getArg();
7395 if (DebugFnArgs.
size() < ArgNo)
7396 DebugFnArgs.
resize(ArgNo,
nullptr);
7398 auto *Prev = DebugFnArgs[ArgNo - 1];
7399 DebugFnArgs[ArgNo - 1] = Var;
7400 CheckDI(!Prev || (Prev == Var),
"conflicting debug info for argument", &DVR,
7404void Verifier::verifyNotEntryValue(
const DbgVariableRecord &DVR) {
7408 if (!
E || !
E->isValid())
7418 ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync))
7423 "Entry values are only allowed in MIR unless they target a "
7424 "swiftasync Argument",
7428void Verifier::verifyCompileUnits() {
7432 if (
M.getContext().isODRUniquingDebugTypes())
7434 auto *CUs =
M.getNamedMetadata(
"llvm.dbg.cu");
7435 SmallPtrSet<const Metadata *, 2> Listed;
7438 for (
const auto *CU : CUVisited)
7439 CheckDI(Listed.
count(CU),
"DICompileUnit not listed in llvm.dbg.cu", CU);
7443void Verifier::verifyDeoptimizeCallingConvs() {
7444 if (DeoptimizeDeclarations.
empty())
7448 for (
const auto *
F :
ArrayRef(DeoptimizeDeclarations).slice(1)) {
7449 Check(
First->getCallingConv() ==
F->getCallingConv(),
7450 "All llvm.experimental.deoptimize declarations must have the same "
7451 "calling convention",
7456void Verifier::verifyAttachedCallBundle(
const CallBase &
Call,
7457 const OperandBundleUse &BU) {
7460 Check((FTy->getReturnType()->isPointerTy() ||
7462 "a call with operand bundle \"clang.arc.attachedcall\" must call a "
7463 "function returning a pointer or a non-returning function that has a "
7468 "operand bundle \"clang.arc.attachedcall\" requires one function as "
7476 Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
7477 IID == Intrinsic::objc_claimAutoreleasedReturnValue ||
7478 IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
7479 "invalid function argument",
Call);
7481 StringRef FnName = Fn->
getName();
7482 Check((FnName ==
"objc_retainAutoreleasedReturnValue" ||
7483 FnName ==
"objc_claimAutoreleasedReturnValue" ||
7484 FnName ==
"objc_unsafeClaimAutoreleasedReturnValue"),
7485 "invalid function argument",
Call);
7489void Verifier::verifyNoAliasScopeDecl() {
7490 if (NoAliasScopeDecls.
empty())
7494 for (
auto *
II : NoAliasScopeDecls) {
7495 assert(
II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
7496 "Not a llvm.experimental.noalias.scope.decl ?");
7499 Check(ScopeListMV !=
nullptr,
7500 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
7505 Check(ScopeListMD !=
nullptr,
"!id.scope.list must point to an MDNode",
II);
7506 Check(ScopeListMD->getNumOperands() == 1,
7507 "!id.scope.list must point to a list with a single scope",
II);
7508 visitAliasScopeListMetadata(ScopeListMD);
7518 auto GetScope = [](IntrinsicInst *
II) {
7521 return &
cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
7526 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
7527 return GetScope(Lhs) < GetScope(Rhs);
7534 auto ItCurrent = NoAliasScopeDecls.begin();
7535 while (ItCurrent != NoAliasScopeDecls.end()) {
7536 auto CurScope = GetScope(*ItCurrent);
7537 auto ItNext = ItCurrent;
7540 }
while (ItNext != NoAliasScopeDecls.end() &&
7541 GetScope(*ItNext) == CurScope);
7546 if (ItNext - ItCurrent < 32)
7550 Check(!DT.dominates(
I, J),
7551 "llvm.experimental.noalias.scope.decl dominates another one "
7552 "with the same scope",
7566 Verifier V(OS,
true, *f.getParent());
7570 return !V.verify(
F);
7574 bool *BrokenDebugInfo) {
7576 Verifier V(OS, !BrokenDebugInfo, M);
7578 bool Broken =
false;
7580 Broken |= !V.verify(
F);
7582 Broken |= !V.verify();
7583 if (BrokenDebugInfo)
7584 *BrokenDebugInfo = V.hasBrokenDebugInfo();
7595 std::unique_ptr<Verifier> V;
7596 bool FatalErrors =
true;
7601 explicit VerifierLegacyPass(
bool FatalErrors)
7603 FatalErrors(FatalErrors) {
7607 bool doInitialization(
Module &M)
override {
7608 V = std::make_unique<Verifier>(
7614 if (!
V->verify(
F) && FatalErrors) {
7615 errs() <<
"in function " <<
F.getName() <<
'\n';
7621 bool doFinalization(
Module &M)
override {
7622 bool HasErrors =
false;
7623 for (Function &
F : M)
7624 if (
F.isDeclaration())
7625 HasErrors |= !
V->verify(
F);
7627 HasErrors |= !
V->verify();
7628 if (FatalErrors && (HasErrors ||
V->hasBrokenDebugInfo()))
7633 void getAnalysisUsage(AnalysisUsage &AU)
const override {
7641template <
typename... Tys>
void TBAAVerifier::CheckFailed(Tys &&... Args) {
7643 return Diagnostic->CheckFailed(
Args...);
7646#define CheckTBAA(C, ...) \
7649 CheckFailed(__VA_ARGS__); \
7657TBAAVerifier::TBAABaseNodeSummary
7661 CheckFailed(
"Base nodes must have at least two operands", &
I, BaseNode);
7665 auto Itr = TBAABaseNodes.find(BaseNode);
7666 if (Itr != TBAABaseNodes.end())
7669 auto Result = verifyTBAABaseNodeImpl(
I, BaseNode, IsNewFormat);
7670 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
7672 assert(InsertResult.second &&
"We just checked!");
7676TBAAVerifier::TBAABaseNodeSummary
7677TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &
I,
const MDNode *BaseNode,
7679 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {
true, ~0
u};
7683 return isValidScalarTBAANode(BaseNode)
7684 ? TBAAVerifier::TBAABaseNodeSummary({
false, 0})
7690 CheckFailed(
"Access tag nodes must have the number of operands that is a "
7691 "multiple of 3!", BaseNode);
7696 CheckFailed(
"Struct tag nodes must have an odd number of operands!",
7706 if (!TypeSizeNode) {
7707 CheckFailed(
"Type size nodes must be constants!", &
I, BaseNode);
7714 CheckFailed(
"Struct tag nodes have a string as their first operand",
7721 std::optional<APInt> PrevOffset;
7726 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
7727 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
7728 for (
unsigned Idx = FirstFieldOpNo; Idx < BaseNode->
getNumOperands();
7729 Idx += NumOpsPerField) {
7730 const MDOperand &FieldTy = BaseNode->
getOperand(Idx);
7731 const MDOperand &FieldOffset = BaseNode->
getOperand(Idx + 1);
7733 CheckFailed(
"Incorrect field entry in struct type node!", &
I, BaseNode);
7738 auto *OffsetEntryCI =
7740 if (!OffsetEntryCI) {
7741 CheckFailed(
"Offset entries must be constants!", &
I, BaseNode);
7747 BitWidth = OffsetEntryCI->getBitWidth();
7749 if (OffsetEntryCI->getBitWidth() !=
BitWidth) {
7751 "Bitwidth between the offsets and struct type entries must match", &
I,
7763 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
7766 CheckFailed(
"Offsets must be increasing!", &
I, BaseNode);
7770 PrevOffset = OffsetEntryCI->getValue();
7775 if (!MemberSizeNode) {
7776 CheckFailed(
"Member size entries must be constants!", &
I, BaseNode);
7783 return Failed ? InvalidNode
7784 : TBAAVerifier::TBAABaseNodeSummary(
false,
BitWidth);
7806 return Parent && Visited.
insert(Parent).second &&
7810bool TBAAVerifier::isValidScalarTBAANode(
const MDNode *MD) {
7811 auto ResultIt = TBAAScalarNodes.find(MD);
7812 if (ResultIt != TBAAScalarNodes.end())
7813 return ResultIt->second;
7815 SmallPtrSet<const MDNode *, 4> Visited;
7817 auto InsertResult = TBAAScalarNodes.insert({MD,
Result});
7819 assert(InsertResult.second &&
"Just checked!");
7828MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &
I,
7829 const MDNode *BaseNode,
7840 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
7841 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
7842 for (
unsigned Idx = FirstFieldOpNo; Idx < BaseNode->
getNumOperands();
7843 Idx += NumOpsPerField) {
7844 auto *OffsetEntryCI =
7846 if (OffsetEntryCI->getValue().ugt(
Offset)) {
7847 if (Idx == FirstFieldOpNo) {
7848 CheckFailed(
"Could not find TBAA parent in struct type node", &
I,
7853 unsigned PrevIdx = Idx - NumOpsPerField;
7854 auto *PrevOffsetEntryCI =
7856 Offset -= PrevOffsetEntryCI->getValue();
7864 Offset -= LastOffsetEntryCI->getValue();
7869 if (!
Type ||
Type->getNumOperands() < 3)
7884 "This instruction shall not have a TBAA access tag!", &
I);
7886 bool IsStructPathTBAA =
7890 "Old-style TBAA is no longer allowed, use struct-path TBAA instead",
7900 "Access tag metadata must have either 4 or 5 operands", &
I, MD);
7903 "Struct tag metadata must have either 3 or 4 operands", &
I, MD);
7910 CheckTBAA(AccessSizeNode,
"Access size field must be a constant", &
I, MD);
7914 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
7919 "Immutability tag on struct tag metadata must be a constant", &
I,
7922 IsImmutableCI->isZero() || IsImmutableCI->isOne(),
7923 "Immutability part of the struct tag metadata must be either 0 or 1",
7928 "Malformed struct tag metadata: base and access-type "
7929 "should be non-null and point to Metadata nodes",
7930 &
I, MD, BaseNode, AccessType);
7933 CheckTBAA(isValidScalarTBAANode(AccessType),
7934 "Access type node must be a valid scalar type", &
I, MD,
7939 CheckTBAA(OffsetCI,
"Offset must be constant integer", &
I, MD);
7942 bool SeenAccessTypeInPath =
false;
7947 BaseNode = getFieldNodeFromTBAABaseNode(
I, BaseNode,
Offset,
7949 if (!StructPath.
insert(BaseNode).second) {
7950 CheckFailed(
"Cycle detected in struct path", &
I, MD);
7955 unsigned BaseNodeBitWidth;
7956 std::tie(
Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(
I, BaseNode,
7964 SeenAccessTypeInPath |= BaseNode == AccessType;
7966 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
7967 CheckTBAA(
Offset == 0,
"Offset not zero at the point of scalar access",
7971 (BaseNodeBitWidth == 0 &&
Offset == 0) ||
7972 (IsNewFormat && BaseNodeBitWidth == ~0u),
7973 "Access bit-width not the same as description bit-width", &
I, MD,
7974 BaseNodeBitWidth,
Offset.getBitWidth());
7976 if (IsNewFormat && SeenAccessTypeInPath)
7980 CheckTBAA(SeenAccessTypeInPath,
"Did not see access type in access path!", &
I,
7985char VerifierLegacyPass::ID = 0;
7986INITIALIZE_PASS(VerifierLegacyPass,
"verify",
"Module Verifier",
false,
false)
7989 return new VerifierLegacyPass(FatalErrors);
8007 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
8015 if (res.IRBroken && FatalErrors)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU address space definition.
ArrayRef< TableEntry > TableRef
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis false
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file declares the LLVM IR specialization of the GenericConvergenceVerifier template.
static DISubprogram * getSubprogram(bool IsDistinct, Ts &&...Args)
This file defines the DenseMap class.
This file contains constants used for implementing Dwarf debug support.
static bool runOnFunction(Function &F, bool PostInlining)
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This header defines various interfaces for pass management in LLVM.
This defines the Use class.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
Machine Check Debug Module
This file implements a map that provides insertion order iteration.
This file provides utility for Memory Model Relaxation Annotations (MMRAs).
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
This file contains the declarations for profiling metadata utility functions.
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static unsigned getNumElements(Type *Ty)
void visit(MachineFunction &MF, MachineBasicBlock &Start, std::function< void(MachineBasicBlock *)> op)
verify safepoint Safepoint IR Verifier
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
static bool IsScalarTBAANodeImpl(const MDNode *MD, SmallPtrSetImpl< const MDNode * > &Visited)
static bool isType(const Metadata *MD)
static Instruction * getSuccPad(Instruction *Terminator)
static bool isNewFormatTBAATypeNode(llvm::MDNode *Type)
#define CheckDI(C,...)
We know that a debug info condition should be true, if not print an error message.
static void forEachUser(const Value *User, SmallPtrSet< const Value *, 32 > &Visited, llvm::function_ref< bool(const Value *)> Callback)
static bool isDINode(const Metadata *MD)
static bool isScope(const Metadata *MD)
static cl::opt< bool > VerifyNoAliasScopeDomination("verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " "scopes are not dominating"))
static bool isTypeCongruent(Type *L, Type *R)
Two types are "congruent" if they are identical, or if they are both pointer types with different poi...
static bool isConstantIntMetadataOperand(const Metadata *MD)
static bool IsRootTBAANode(const MDNode *MD)
static Value * getParentPad(Value *EHPad)
static bool hasConflictingReferenceFlags(unsigned Flags)
Detect mutually exclusive flags.
static AttrBuilder getParameterABIAttributes(LLVMContext &C, unsigned I, AttributeList Attrs)
static const char PassName[]
bool isFiniteNonZero() const
const fltSemantics & getSemantics() const
Class for arbitrary precision integers.
bool sgt(const APInt &RHS) const
Signed greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
bool isMinValue() const
Determine if this is the smallest unsigned value.
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
int64_t getSExtValue() const
Get sign extended value.
bool isMaxValue() const
Determine if this is the largest unsigned value.
This class represents a conversion between pointers from one address space to another.
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
LLVM_ABI bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
unsigned getAddressSpace() const
Return the address space for the allocation.
LLVM_ABI bool isArrayAllocation() const
Return true if there is an allocation size parameter to the allocation instruction that is not 1.
const Value * getArraySize() const
Get the number of elements allocated.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
void setPreservesAll()
Set by analyses that do not transform their input at all.
LLVM_ABI bool hasInRegAttr() const
Return true if this argument has the inreg attribute.
bool empty() const
empty - Check if the array is empty.
static bool isFPOperation(BinOp Op)
BinOp getOperation() const
static LLVM_ABI StringRef getOperationName(BinOp Op)
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
bool contains(Attribute::AttrKind A) const
Return true if the builder has the specified attribute.
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Return true if the attribute exists in this set.
LLVM_ABI std::string getAsString(bool InAttrGrp=false) const
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI const ConstantRange & getValueAsConstantRange() const
Return the attribute's value as a ConstantRange.
LLVM_ABI StringRef getValueAsString() const
Return the attribute's value as a string.
AttrKind
This enumeration lists the attributes that can be associated with parameters, function results,...
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
const Instruction & front() const
LLVM_ABI const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
This class represents a no-op cast from one type to another.
static LLVM_ABI BlockAddress * lookup(const BasicBlock *BB)
Lookup an existing BlockAddress constant for the given BasicBlock.
bool isConditional() const
Value * getCondition() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
bool isInlineAsm() const
Check if this call is an inline asm statement.
bool hasInAllocaArgument() const
Determine if there are is an inalloca argument.
OperandBundleUse getOperandBundleAt(unsigned Index) const
Return the operand bundle at a specific index.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
bool doesNotAccessMemory(unsigned OpNo) const
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
unsigned getNumOperandBundles() const
Return the number of operand bundles associated with this User.
CallingConv::ID getCallingConv() const
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
Attribute getParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Get the attribute of a given kind from a given arg.
iterator_range< bundle_op_iterator > bundle_op_infos()
Return the range [bundle_op_info_begin, bundle_op_info_end).
unsigned countOperandBundlesOfType(StringRef Name) const
Return the number of operand bundles with the tag Name attached to this instruction.
bool onlyReadsMemory(unsigned OpNo) const
Value * getCalledOperand() const
Type * getParamElementType(unsigned ArgNo) const
Extract the elementtype type for a parameter.
Value * getArgOperand(unsigned i) const
FunctionType * getFunctionType() const
LLVM_ABI Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
bool doesNotReturn() const
Determine if the call cannot return.
LLVM_ABI bool onlyAccessesArgMemory() const
Determine if the call can access memmory only using pointers based on its arguments.
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
LLVM_ABI Function * getCaller()
Helper to get the caller (the parent function).
bool isMustTailCall() const
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
unsigned getNumHandlers() const
return the number of 'handlers' in this catchswitch instruction, except the default handler
Value * getParentPad() const
BasicBlock * getUnwindDest() const
handler_range handlers()
iteration adapter for range-for loops.
BasicBlock * getUnwindDest() const
bool isFPPredicate() const
bool isIntPredicate() const
static bool isIntPredicate(Predicate P)
bool isMinusOne() const
This function will return true iff every bit in this constant is set to true.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
Constant * getAddrDiscriminator() const
The address discriminator if any, or the null constant.
Constant * getPointer() const
The pointer that is signed in this ptrauth signed pointer.
ConstantInt * getKey() const
The Key ID, an i32 constant.
ConstantInt * getDiscriminator() const
The integer discriminator, an i64 constant, or 0.
static LLVM_ABI bool isOrderedRanges(ArrayRef< ConstantRange > RangesRef)
This class represents a range of values.
const APInt & getLower() const
Return the lower value for this range.
const APInt & getUpper() const
Return the upper value for this range.
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
static LLVM_ABI ConstantTokenNone * get(LLVMContext &Context)
Return the ConstantTokenNone.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI std::optional< RoundingMode > getRoundingMode() const
LLVM_ABI unsigned getNonMetadataArgCount() const
DbgVariableFragmentInfo FragmentInfo
@ FixedPointBinary
Scale factor 2^Factor.
@ FixedPointDecimal
Scale factor 10^Factor.
@ FixedPointRational
Arbitrary rational scale factor.
DIGlobalVariable * getVariable() const
DIExpression * getExpression() const
LLVM_ABI DISubprogram * getSubprogram() const
Get the subprogram for this scope.
DILocalScope * getScope() const
Get the local scope for this variable.
Metadata * getRawScope() const
Base class for scope-like contexts.
Subprogram description. Uses SubclassData1.
Base class for template parameters.
Base class for variables.
Metadata * getRawType() const
Metadata * getRawScope() const
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
Records a position in IR for a source label (DILabel).
MDNode * getRawLabel() const
DILabel * getLabel() const
Base class for non-instruction debug metadata records that have positions within IR.
LLVM_ABI Function * getFunction()
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
DebugLoc getDebugLoc() const
LLVM_ABI const BasicBlock * getParent() const
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LocationType getType() const
MDNode * getRawExpression() const
MDNode * getRawAddressExpression() const
DIExpression * getExpression() const
Metadata * getRawAssignID() const
LLVM_ABI Value * getVariableLocationOp(unsigned OpIdx) const
MDNode * getRawVariable() const
DILocalVariable * getVariable() const
Metadata * getRawLocation() const
Returns the metadata operand for the first location description.
bool isDbgDeclare() const
Metadata * getRawAddress() const
@ End
Marks the end of the concrete types.
@ Any
To indicate all LocationTypes in searches.
DIExpression * getAddressExpression() const
MDNode * getAsMDNode() const
Return this as a bar MDNode.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
This instruction compares its operands according to the predicate given to the constructor.
This class represents an extension of floating point types.
This class represents a cast from floating point to signed integer.
This class represents a cast from floating point to unsigned integer.
This class represents a truncation of floating point types.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
Value * getParentPad() const
Convenience accessors.
FunctionPass class - This class is used to implement most global optimizations.
Type * getReturnType() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
DISubprogram * getSubprogram() const
Get the attached subprogram.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
bool hasPersonalityFn() const
Check whether this function has a personality function.
const Function & getFunction() const
const std::string & getGC() const
Type * getReturnType() const
Returns the type of the ret val.
bool isVarArg() const
isVarArg - Return true if this function takes a variable number of arguments.
LLVM_ABI Value * getBasePtr() const
LLVM_ABI Value * getDerivedPtr() const
void visit(const BlockT &BB)
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
static bool isValidLinkage(LinkageTypes L)
const Constant * getAliasee() const
LLVM_ABI const Function * getResolverFunction() const
static bool isValidLinkage(LinkageTypes L)
const Constant * getResolver() const
LLVM_ABI void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
Appends all metadata attached to this value to MDs, sorting by KindID.
MDNode * getMetadata(unsigned KindID) const
Get the current metadata attachments for the given kind, if any.
bool hasExternalLinkage() const
bool isImplicitDSOLocal() const
LLVM_ABI bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
bool hasValidDeclarationLinkage() const
LinkageTypes getLinkage() const
bool hasDefaultVisibility() const
bool hasPrivateLinkage() const
bool hasHiddenVisibility() const
bool hasExternalWeakLinkage() const
bool hasDLLImportStorageClass() const
bool hasDLLExportStorageClass() const
bool isDeclarationForLinker() const
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
LLVM_ABI bool isInterposable() const
Return true if this global's definition can be substituted with an arbitrary definition at link time ...
bool hasCommonLinkage() const
bool hasGlobalUnnamedAddr() const
bool hasAppendingLinkage() const
bool hasAvailableExternallyLinkage() const
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool hasInitializer() const
Definitions have initializers, declarations don't.
MaybeAlign getAlign() const
Returns the alignment of the given variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
This instruction compares its operands according to the predicate given to the constructor.
BasicBlock * getDestination(unsigned i)
Return the specified destination.
unsigned getNumDestinations() const
return the number of possible destinations in this indirectbr instruction.
unsigned getNumSuccessors() const
This instruction inserts a single (scalar) element into a VectorType value.
static LLVM_ABI bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx)
Return true if an insertelement instruction can be formed with the specified operands.
Value * getAggregateOperand()
ArrayRef< unsigned > getIndices() const
Base class for instruction visitors.
void visit(Iterator Start, Iterator End)
LLVM_ABI unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI bool isAtomic() const LLVM_READONLY
Return true if this instruction has an AtomicOrdering of unordered or higher.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
This class represents a cast from an integer to a pointer.
static LLVM_ABI bool mayLowerToFunctionCall(Intrinsic::ID IID)
Check if the intrinsic might lower into a regular function call in the course of IR transformations.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
@ OB_clang_arc_attachedcall
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
unsigned getNumClauses() const
Get the number of clauses for this landing pad.
bool isCatch(unsigned Idx) const
Return 'true' if the clause and index Idx is a catch clause.
bool isFilter(unsigned Idx) const
Return 'true' if the clause and index Idx is a filter clause.
Constant * getClause(unsigned Idx) const
Get the value of the clause at index Idx.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this load instruction.
Align getAlign() const
Return the alignment of the access that is being performed.
const MDOperand & getOperand(unsigned I) const
ArrayRef< MDOperand > operands() const
unsigned getNumOperands() const
Return number of MDNode operands.
bool isResolved() const
Check if node is fully resolved.
LLVMContext & getContext() const
bool equalsStr(StringRef Str) const
LLVM_ABI StringRef getString() const
Manage lifetime of a slot tracker for printing IR.
A Module instance is used to store all the information related to an LLVM module.
LLVM_ABI StringRef getName() const
LLVM_ABI void print(raw_ostream &ROS, bool IsForDebug=false) const
iterator_range< op_iterator > operands()
op_range incoming_values()
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
This class represents a cast from a pointer to an address (non-capturing ptrtoint).
This class represents a cast from a pointer to an integer.
Value * getValue() const
Convenience accessor.
This class represents a sign extension of integer types.
This class represents a cast from signed integer to floating point.
static LLVM_ABI const char * areInvalidOperands(Value *Cond, Value *True, Value *False)
Return a string if the specified operands are invalid for a select operation, otherwise return null.
This instruction constructs a fixed permutation of two input vectors.
static LLVM_ABI bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask)
Return true if a shufflevector instruction can be formed with the specified operands.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
void insert_range(Range &&R)
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
void reserve(size_type N)
iterator insert(iterator I, T &&Elt)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
bool getAsInteger(unsigned Radix, T &Result) const
Parse the current string as an integer of the specified radix.
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
constexpr bool empty() const
empty - Check if the string is empty.
static constexpr size_t npos
unsigned getNumElements() const
Random access to the elements.
LLVM_ABI Type * getTypeAtIndex(const Value *V) const
Given an index value into the type, return the type of the element.
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Returns true if this struct contains a scalable vector.
LLVM_ABI bool visitTBAAMetadata(Instruction &I, const MDNode *MD)
Visit an instruction and return true if it is valid, return false if an invalid TBAA is attached.
Triple - Helper class for working with autoconf configuration names.
This class represents a truncation of integer types.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
LLVM_ABI bool containsNonGlobalTargetExtType(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this type is or contains a target extension type that disallows being used as a global...
bool isArrayTy() const
True if this is an instance of ArrayType.
LLVM_ABI bool containsNonLocalTargetExtType(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this type is or contains a target extension type that disallows being used as a local.
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
bool isLabelTy() const
Return true if this is 'label'.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
bool isTokenLikeTy() const
Returns true if this is 'token' or a token-like target type.s.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
bool isSingleValueType() const
Return true if the type is a valid type for a register in codegen.
LLVM_ABI bool canLosslesslyBitCastTo(Type *Ty) const
Return true if this type could be converted with a lossless BitCast to type 'Ty'.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
bool isVoidTy() const
Return true if this is 'void'.
bool isMetadataTy() const
Return true if this is 'metadata'.
This class represents a cast unsigned integer to floating point.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
LLVM Value Representation.
iterator_range< user_iterator > materialized_users()
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripInBoundsOffsets(function_ref< void(const Value *)> Func=[](const Value *) {}) const
Strip off pointer casts and inbounds GEPs.
iterator_range< user_iterator > users()
bool materialized_use_empty() const
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Check a module for errors, and report separate error states for IR and debug info errors.
LLVM_ABI Result run(Module &M, ModuleAnalysisManager &)
LLVM_ABI PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM)
This class represents zero extension of integer types.
constexpr bool isNonZero() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
This class implements an extremely fast bulk output stream that can only output to a stream.
This file contains the declaration of the Comdat class, which represents a single COMDAT in LLVM.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ FLAT_ADDRESS
Address space for flat memory.
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
@ PRIVATE_ADDRESS
Address space for private memory.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
bool isFlatGlobalAddrSpace(unsigned AS)
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI MatchIntrinsicTypesResult matchIntrinsicSignature(FunctionType *FTy, ArrayRef< IITDescriptor > &Infos, SmallVectorImpl< Type * > &ArgTys)
Match the specified function type with the type constraints specified by the .td file.
LLVM_ABI void getIntrinsicInfoTableEntries(ID id, SmallVectorImpl< IITDescriptor > &T)
Return the IIT table descriptor for the specified intrinsic into an array of IITDescriptors.
MatchIntrinsicTypesResult
@ MatchIntrinsicTypes_NoMatchRet
@ MatchIntrinsicTypes_NoMatchArg
LLVM_ABI bool hasConstrainedFPRoundingModeOperand(ID QID)
Returns true if the intrinsic ID is for one of the "ConstrainedFloating-Point Intrinsics" that take r...
LLVM_ABI StringRef getName(ID id)
Return the LLVM name for an intrinsic, such as "llvm.ppc.altivec.lvx".
static const int NoAliasScopeDeclScopeArg
LLVM_ABI bool matchIntrinsicVarArg(bool isVarArg, ArrayRef< IITDescriptor > &Infos)
Verify if the intrinsic has variable arguments.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
Flag
These should be considered private to the implementation of the MCInstrDesc class.
@ System
Synchronized with respect to all concurrently executing threads.
LLVM_ABI std::optional< VFInfo > tryDemangleForVFABI(StringRef MangledName, const FunctionType *FTy)
Function to construct a VFInfo out of a mangled names in the following format:
@ CE
Windows NT (Windows on ARM)
LLVM_ABI AssignmentInstRange getAssignmentInsts(DIAssignID *ID)
Return a range of instructions (typically just one) that have ID as an attachment.
initializer< Ty > init(const Ty &Val)
Scope
Defines the scope in which this symbol should be visible: Default – Visible in the public interface o...
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > dyn_extract_or_null(Y &&MD)
Extract a Value from Metadata, if any, allowing null.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > dyn_extract(Y &&MD)
Extract a Value from Metadata, if any.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
@ User
could "use" a pointer
NodeAddr< UseNode * > Use
NodeAddr< NodeBase * > Node
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool canInstructionHaveMMRAs(const Instruction &I)
detail::zippy< detail::zip_first, T, U, Args... > zip_equal(T &&t, U &&u, Args &&...args)
zip iterator that assumes that all iteratees have the same length.
LLVM_ABI unsigned getBranchWeightOffset(const MDNode *ProfileData)
Return the offset to the first branch weight data.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
testing::Matcher< const detail::ErrorHolder & > Failed()
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI DenseMap< BasicBlock *, ColorVector > colorEHFunclets(Function &F)
If an EH funclet personality is in use (see isFuncletEHPersonality), this will recompute which blocks...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
bool isa_and_nonnull(const Y &Val)
bool isScopedEHPersonality(EHPersonality Pers)
Returns true if this personality uses scope-style EH IR instructions: catchswitch,...
auto dyn_cast_or_null(const Y &Val)
GenericConvergenceVerifier< SSAContext > ConvergenceVerifier
LLVM_ABI void initializeVerifierLegacyPassPass(PassRegistry &)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isModSet(const ModRefInfo MRI)
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
FunctionAddr VTableAddr Count
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isValueProfileMD(const MDNode *ProfileData)
Checks if an MDNode contains value profiling Metadata.
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
LLVM_ABI unsigned getNumBranchWeights(const MDNode &ProfileData)
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI FunctionPass * createVerifierPass(bool FatalErrors=true)
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
TinyPtrVector< BasicBlock * > ColorVector
LLVM_ABI const char * LLVMLoopEstimatedTripCount
Profile-based loop metadata that should be accessed only by using llvm::getLoopEstimatedTripCount and...
DenormalMode parseDenormalFPAttribute(StringRef Str)
Returns the denormal mode to use for inputs and outputs.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI std::optional< RoundingMode > convertStrToRoundingMode(StringRef)
Returns a valid RoundingMode enumerator when given a string that is valid as input in constrained int...
LLVM_ABI std::unique_ptr< GCStrategy > getGCStrategy(const StringRef Name)
Lookup the GCStrategy object associated with the given gc name.
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool pred_empty(const BasicBlock *BB)
bool isHexDigit(char C)
Checks if character C is a hexadecimal numeric character.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
constexpr bool isCallableCC(CallingConv::ID CC)
LLVM_ABI bool verifyModule(const Module &M, raw_ostream *OS=nullptr, bool *BrokenDebugInfo=nullptr)
Check a module for errors.
AnalysisManager< Module > ModuleAnalysisManager
Convenience typedef for the Module analysis manager.
uint64_t value() const
This is a hole in the type system and should not be abused.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI const char * SyntheticFunctionEntryCount
static LLVM_ABI const char * BranchWeights
static LLVM_ABI const char * FunctionEntryCount
static LLVM_ABI const char * UnknownBranchWeightsMarker
static LLVM_ABI const char * ValueProfile
uint32_t getTagID() const
Return the tag of this operand bundle as an integer.
void DebugInfoCheckFailed(const Twine &Message)
A debug info check failed.
VerifierSupport(raw_ostream *OS, const Module &M)
bool Broken
Track the brokenness of the module while recursively visiting.
void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs)
A check failed (with values to print).
bool BrokenDebugInfo
Broken debug info can be "recovered" from by stripping the debug info.
bool TreatBrokenDebugInfoAsError
Whether to treat broken debug info as an error.
void CheckFailed(const Twine &Message)
A check failed, so printout out the condition and the message.
void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs)
A debug info check failed (with values to print).