95#include "llvm/IR/IntrinsicsAArch64.h"
96#include "llvm/IR/IntrinsicsAMDGPU.h"
97#include "llvm/IR/IntrinsicsARM.h"
98#include "llvm/IR/IntrinsicsNVPTX.h"
99#include "llvm/IR/IntrinsicsWebAssembly.h"
135 cl::desc(
"Ensure that llvm.experimental.noalias.scope.decl for identical "
136 "scopes are not dominating"));
170 if (isa<Instruction>(V)) {
174 V.printAsOperand(*
OS,
true,
MST);
242 void Write(
const unsigned i) { *
OS << i <<
'\n'; }
248 *
OS <<
A->getAsString() <<
'\n';
268 for (
const T &V : Vs)
272 template <
typename T1,
typename... Ts>
273 void WriteTs(
const T1 &V1,
const Ts &... Vs) {
278 template <
typename... Ts>
void WriteTs() {}
287 *
OS << Message <<
'\n';
295 template <
typename T1,
typename... Ts>
305 *
OS << Message <<
'\n';
311 template <
typename T1,
typename... Ts>
345 Type *LandingPadResultTy;
352 bool HasDebugInfo =
false;
395 SawFrameEscape(
false), TBAAVerifyHelper(this) {
396 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
403 "An instance of this class only works with a specific module!");
415 if (!BB.empty() && BB.back().isTerminator())
419 *
OS <<
"Basic Block in function '" <<
F.getName()
420 <<
"' does not have terminator!\n";
421 BB.printAsOperand(*
OS,
true, MST);
427 auto FailureCB = [
this](
const Twine &Message) {
435 verifySiblingFuncletUnwinds();
438 ConvergenceVerifyHelper.
verify(DT);
440 InstsInThisBlock.
clear();
442 LandingPadResultTy =
nullptr;
443 SawFrameEscape =
false;
444 SiblingFuncletInfo.
clear();
445 verifyNoAliasScopeDecl();
446 NoAliasScopeDecls.
clear();
457 if (
F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
462 verifyFrameRecoverIndices();
464 visitGlobalVariable(GV);
467 visitGlobalAlias(GA);
470 visitGlobalIFunc(GI);
473 visitNamedMDNode(NMD);
476 visitComdat(SMEC.getValue());
480 visitModuleCommandLines();
482 verifyCompileUnits();
484 verifyDeoptimizeCallingConvs();
485 DISubprogramAttachments.
clear();
491 enum class AreDebugLocsAllowed {
No,
Yes };
495 enum class RangeLikeMetadataKind {
510 void visitMDNode(
const MDNode &MD, AreDebugLocsAllowed AllowLocs);
514 void visitComdat(
const Comdat &
C);
515 void visitModuleIdents();
516 void visitModuleCommandLines();
517 void visitModuleFlags();
518 void visitModuleFlag(
const MDNode *
Op,
521 void visitModuleFlagCGProfileEntry(
const MDOperand &MDO);
525 RangeLikeMetadataKind Kind);
530 void visitCallStackMetadata(
MDNode *MD);
535 void visitAnnotationMetadata(
MDNode *Annotation);
536 void visitAliasScopeMetadata(
const MDNode *MD);
537 void visitAliasScopeListMetadata(
const MDNode *MD);
538 void visitAccessGroupMetadata(
const MDNode *MD);
540 template <
class Ty>
bool isValidMetadataArray(
const MDTuple &
N);
541#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
542#include "llvm/IR/Metadata.def"
543 void visitDIScope(
const DIScope &
N);
570 void visitPHINode(
PHINode &PN);
579 void visitVAArgInst(
VAArgInst &VAA) { visitInstruction(VAA); }
617 void verifySwiftErrorCall(
CallBase &Call,
const Value *SwiftErrorVal);
618 void verifySwiftErrorValue(
const Value *SwiftErrorVal);
620 void verifyMustTailCall(
CallInst &CI);
621 bool verifyAttributeCount(
AttributeList Attrs,
unsigned Params);
627 const Value *V,
bool IsIntrinsic,
bool IsInlineAsm);
628 void verifyFunctionMetadata(
ArrayRef<std::pair<unsigned, MDNode *>> MDs);
630 void visitConstantExprsRecursively(
const Constant *EntryC);
633 void verifyInlineAsmCall(
const CallBase &Call);
634 void verifyStatepoint(
const CallBase &Call);
635 void verifyFrameRecoverIndices();
636 void verifySiblingFuncletUnwinds();
640 template <
typename ValueOrMetadata>
641 void verifyFragmentExpression(
const DIVariable &V,
643 ValueOrMetadata *
Desc);
650 void verifyCompileUnits();
654 void verifyDeoptimizeCallingConvs();
656 void verifyAttachedCallBundle(
const CallBase &Call,
660 void verifyNoAliasScopeDecl();
666#define Check(C, ...) \
669 CheckFailed(__VA_ARGS__); \
676#define CheckDI(C, ...) \
679 DebugInfoCheckFailed(__VA_ARGS__); \
687 CheckDI(
I.DebugMarker->MarkedInstr == &
I,
688 "Instruction has invalid DebugMarker", &
I);
689 CheckDI(!isa<PHINode>(&
I) || !
I.hasDbgRecords(),
690 "PHI Node must not have any attached DbgRecords", &
I);
693 "DbgRecord had invalid DebugMarker", &
I, &DR);
696 visitMDNode(*Loc, AreDebugLocsAllowed::Yes);
697 if (
auto *DVR = dyn_cast<DbgVariableRecord>(&DR)) {
701 verifyFragmentExpression(*DVR);
702 verifyNotEntryValue(*DVR);
703 }
else if (
auto *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
711 for (
unsigned i = 0, e =
I.getNumOperands(); i != e; ++i)
712 Check(
I.getOperand(i) !=
nullptr,
"Operand is null", &
I);
725 while (!WorkList.
empty()) {
727 if (!Visited.
insert(Cur).second)
734void Verifier::visitGlobalValue(
const GlobalValue &GV) {
736 "Global is external, but doesn't have external or weak linkage!", &GV);
738 if (
const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) {
742 "huge alignment values are unsupported", GO);
745 if (
const MDNode *Associated =
746 GO->getMetadata(LLVMContext::MD_associated)) {
747 Check(Associated->getNumOperands() == 1,
748 "associated metadata must have one operand", &GV, Associated);
749 const Metadata *
Op = Associated->getOperand(0).get();
750 Check(
Op,
"associated metadata must have a global value", GO, Associated);
752 const auto *VM = dyn_cast_or_null<ValueAsMetadata>(
Op);
753 Check(VM,
"associated metadata must be ValueAsMetadata", GO, Associated);
755 Check(isa<PointerType>(VM->getValue()->getType()),
756 "associated value must be pointer typed", GV, Associated);
759 Check(isa<GlobalObject>(Stripped) || isa<Constant>(Stripped),
760 "associated metadata must point to a GlobalObject", GO, Stripped);
761 Check(Stripped != GO,
762 "global values should not associate to themselves", GO,
768 if (
const MDNode *AbsoluteSymbol =
769 GO->getMetadata(LLVMContext::MD_absolute_symbol)) {
770 verifyRangeLikeMetadata(*GO, AbsoluteSymbol,
771 DL.getIntPtrType(GO->getType()),
772 RangeLikeMetadataKind::AbsoluteSymbol);
777 "Only global variables can have appending linkage!", &GV);
782 "Only global arrays can have appending linkage!", GVar);
786 Check(!GV.
hasComdat(),
"Declaration may not be in a Comdat!", &GV);
790 "dllexport GlobalValue must have default or protected visibility",
795 "dllimport GlobalValue must have default visibility", &GV);
796 Check(!GV.
isDSOLocal(),
"GlobalValue with DLLImport Storage is dso_local!",
802 "Global is marked as dllimport, but not external", &GV);
807 "GlobalValue with local linkage or non-default "
808 "visibility must be dso_local!",
812 Check(!GV.
hasSection(),
"tagged GlobalValue must not be in section.", &GV);
817 if (!
I->getParent() || !
I->getParent()->getParent())
818 CheckFailed(
"Global is referenced by parentless instruction!", &GV, &M,
820 else if (
I->getParent()->getParent()->getParent() != &M)
821 CheckFailed(
"Global is referenced in a different module!", &GV, &M,
I,
822 I->getParent()->getParent(),
823 I->getParent()->getParent()->getParent());
825 }
else if (
const Function *
F = dyn_cast<Function>(V)) {
826 if (
F->getParent() != &M)
827 CheckFailed(
"Global is used by function in a different module", &GV, &M,
840 "Global variable initializer type does not match global "
847 "'common' global must have a zero initializer!", &GV);
850 Check(!GV.
hasComdat(),
"'common' global may not be in a Comdat!", &GV);
855 GV.
getName() ==
"llvm.global_dtors")) {
857 "invalid linkage for intrinsic global variable", &GV);
859 "invalid uses of intrinsic global variable", &GV);
863 if (
ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
864 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
870 "wrong type for intrinsic global variable", &GV);
872 "the third field of the element type is mandatory, "
873 "specify ptr null to migrate from the obsoleted 2-field form");
881 GV.
getName() ==
"llvm.compiler.used")) {
883 "invalid linkage for intrinsic global variable", &GV);
885 "invalid uses of intrinsic global variable", &GV);
887 if (
ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
888 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
889 Check(PTy,
"wrong type for intrinsic global variable", &GV);
893 Check(InitArray,
"wrong initalizer for intrinsic global variable",
897 Check(isa<GlobalVariable>(V) || isa<Function>(V) ||
901 Twine(
"members of ") + GV.
getName() +
" must be named", V);
910 for (
auto *MD : MDs) {
911 if (
auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
912 visitDIGlobalVariableExpression(*GVE);
914 CheckDI(
false,
"!dbg attachment of global variable must be a "
915 "DIGlobalVariableExpression");
925 "Global @" + GV.
getName() +
" has illegal target extension type",
929 visitGlobalValue(GV);
936 visitGlobalValue(GV);
942 visitAliaseeSubExpr(Visited, GA,
C);
948 Check(isa<GlobalValue>(
C) &&
949 cast<GlobalValue>(
C).hasAvailableExternallyLinkage(),
950 "available_externally alias must point to available_externally "
954 if (
const auto *GV = dyn_cast<GlobalValue>(&
C)) {
960 if (
const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
961 Check(Visited.
insert(GA2).second,
"Aliases cannot form a cycle", &GA);
963 Check(!GA2->isInterposable(),
964 "Alias cannot point to an interposable alias", &GA);
972 if (
const auto *CE = dyn_cast<ConstantExpr>(&
C))
973 visitConstantExprsRecursively(CE);
975 for (
const Use &U :
C.operands()) {
977 if (
const auto *GA2 = dyn_cast<GlobalAlias>(V))
978 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
979 else if (
const auto *C2 = dyn_cast<Constant>(V))
980 visitAliaseeSubExpr(Visited, GA, *C2);
984void Verifier::visitGlobalAlias(
const GlobalAlias &GA) {
986 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
987 "weak_odr, external, or available_externally linkage!",
990 Check(Aliasee,
"Aliasee cannot be NULL!", &GA);
992 "Alias and aliasee types should match!", &GA);
994 Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
995 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
997 visitAliaseeSubExpr(GA, *Aliasee);
999 visitGlobalValue(GA);
1002void Verifier::visitGlobalIFunc(
const GlobalIFunc &GI) {
1004 "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
1005 "weak_odr, or external linkage!",
1010 Check(
Resolver,
"IFunc must have a Function resolver", &GI);
1012 "IFunc resolver must be a definition", &GI);
1018 Check(isa<PointerType>(
Resolver->getFunctionType()->getReturnType()),
1019 "IFunc resolver must return a pointer", &GI);
1022 "IFunc resolver has incorrect type", &GI);
1025void Verifier::visitNamedMDNode(
const NamedMDNode &NMD) {
1030 "unrecognized named metadata node in the llvm.dbg namespace", &NMD);
1032 if (NMD.
getName() ==
"llvm.dbg.cu")
1033 CheckDI(MD && isa<DICompileUnit>(MD),
"invalid compile unit", &NMD, MD);
1038 visitMDNode(*MD, AreDebugLocsAllowed::Yes);
1042void Verifier::visitMDNode(
const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
1045 if (!MDNodes.
insert(&MD).second)
1049 "MDNode context does not match Module context!", &MD);
1054 case Metadata::MDTupleKind:
1056#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
1057 case Metadata::CLASS##Kind: \
1058 visit##CLASS(cast<CLASS>(MD)); \
1060#include "llvm/IR/Metadata.def"
1066 Check(!isa<LocalAsMetadata>(
Op),
"Invalid operand for global metadata!",
1068 CheckDI(!isa<DILocation>(
Op) || AllowLocs == AreDebugLocsAllowed::Yes,
1069 "DILocation not allowed within this metadata node", &MD,
Op);
1070 if (
auto *
N = dyn_cast<MDNode>(
Op)) {
1071 visitMDNode(*
N, AllowLocs);
1074 if (
auto *V = dyn_cast<ValueAsMetadata>(
Op)) {
1075 visitValueAsMetadata(*V,
nullptr);
1088 "Unexpected metadata round-trip through values", &MD, MD.
getValue());
1090 auto *
L = dyn_cast<LocalAsMetadata>(&MD);
1094 Check(
F,
"function-local metadata used outside a function", L);
1099 if (
Instruction *
I = dyn_cast<Instruction>(
L->getValue())) {
1100 Check(
I->getParent(),
"function-local metadata not in basic block", L,
I);
1101 ActualF =
I->getParent()->getParent();
1102 }
else if (
BasicBlock *BB = dyn_cast<BasicBlock>(
L->getValue()))
1104 else if (
Argument *
A = dyn_cast<Argument>(
L->getValue()))
1105 ActualF =
A->getParent();
1106 assert(ActualF &&
"Unimplemented function local metadata case!");
1108 Check(ActualF ==
F,
"function-local metadata used in wrong function", L);
1113 visitValueAsMetadata(*VAM,
F);
1118 if (
auto *
N = dyn_cast<MDNode>(MD)) {
1119 visitMDNode(*
N, AreDebugLocsAllowed::No);
1125 if (!MDNodes.
insert(MD).second)
1128 if (
auto *V = dyn_cast<ValueAsMetadata>(MD))
1129 visitValueAsMetadata(*V,
F);
1131 if (
auto *AL = dyn_cast<DIArgList>(MD))
1132 visitDIArgList(*AL,
F);
1139void Verifier::visitDILocation(
const DILocation &
N) {
1140 CheckDI(
N.getRawScope() && isa<DILocalScope>(
N.getRawScope()),
1141 "location requires a valid scope", &
N,
N.getRawScope());
1142 if (
auto *IA =
N.getRawInlinedAt())
1143 CheckDI(isa<DILocation>(IA),
"inlined-at should be a location", &
N, IA);
1144 if (
auto *SP = dyn_cast<DISubprogram>(
N.getRawScope()))
1145 CheckDI(SP->isDefinition(),
"scope points into the type hierarchy", &
N);
1152void Verifier::visitDIScope(
const DIScope &
N) {
1153 if (
auto *
F =
N.getRawFile())
1154 CheckDI(isa<DIFile>(
F),
"invalid file", &
N,
F);
1157void Verifier::visitDISubrange(
const DISubrange &
N) {
1158 CheckDI(
N.getTag() == dwarf::DW_TAG_subrange_type,
"invalid tag", &
N);
1159 CheckDI(!
N.getRawCountNode() || !
N.getRawUpperBound(),
1160 "Subrange can have any one of count or upperBound", &
N);
1161 auto *CBound =
N.getRawCountNode();
1162 CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
1163 isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1164 "Count must be signed constant or DIVariable or DIExpression", &
N);
1165 auto Count =
N.getCount();
1166 CheckDI(!Count || !isa<ConstantInt *>(Count) ||
1167 cast<ConstantInt *>(Count)->getSExtValue() >= -1,
1168 "invalid subrange count", &
N);
1169 auto *LBound =
N.getRawLowerBound();
1170 CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
1171 isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1172 "LowerBound must be signed constant or DIVariable or DIExpression",
1174 auto *UBound =
N.getRawUpperBound();
1175 CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
1176 isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1177 "UpperBound must be signed constant or DIVariable or DIExpression",
1179 auto *Stride =
N.getRawStride();
1180 CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
1181 isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1182 "Stride must be signed constant or DIVariable or DIExpression", &
N);
1186 CheckDI(
N.getTag() == dwarf::DW_TAG_generic_subrange,
"invalid tag", &
N);
1187 CheckDI(!
N.getRawCountNode() || !
N.getRawUpperBound(),
1188 "GenericSubrange can have any one of count or upperBound", &
N);
1189 auto *CBound =
N.getRawCountNode();
1190 CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1191 "Count must be signed constant or DIVariable or DIExpression", &
N);
1192 auto *LBound =
N.getRawLowerBound();
1193 CheckDI(LBound,
"GenericSubrange must contain lowerBound", &
N);
1194 CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1195 "LowerBound must be signed constant or DIVariable or DIExpression",
1197 auto *UBound =
N.getRawUpperBound();
1198 CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1199 "UpperBound must be signed constant or DIVariable or DIExpression",
1201 auto *Stride =
N.getRawStride();
1202 CheckDI(Stride,
"GenericSubrange must contain stride", &
N);
1203 CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1204 "Stride must be signed constant or DIVariable or DIExpression", &
N);
1208 CheckDI(
N.getTag() == dwarf::DW_TAG_enumerator,
"invalid tag", &
N);
1212 CheckDI(
N.getTag() == dwarf::DW_TAG_base_type ||
1213 N.getTag() == dwarf::DW_TAG_unspecified_type ||
1214 N.getTag() == dwarf::DW_TAG_string_type,
1219 CheckDI(
N.getTag() == dwarf::DW_TAG_string_type,
"invalid tag", &
N);
1220 CheckDI(!(
N.isBigEndian() &&
N.isLittleEndian()),
"has conflicting flags",
1228 CheckDI(
N.getTag() == dwarf::DW_TAG_typedef ||
1229 N.getTag() == dwarf::DW_TAG_pointer_type ||
1230 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1231 N.getTag() == dwarf::DW_TAG_reference_type ||
1232 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1233 N.getTag() == dwarf::DW_TAG_const_type ||
1234 N.getTag() == dwarf::DW_TAG_immutable_type ||
1235 N.getTag() == dwarf::DW_TAG_volatile_type ||
1236 N.getTag() == dwarf::DW_TAG_restrict_type ||
1237 N.getTag() == dwarf::DW_TAG_atomic_type ||
1238 N.getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ||
1239 N.getTag() == dwarf::DW_TAG_member ||
1240 (
N.getTag() == dwarf::DW_TAG_variable &&
N.isStaticMember()) ||
1241 N.getTag() == dwarf::DW_TAG_inheritance ||
1242 N.getTag() == dwarf::DW_TAG_friend ||
1243 N.getTag() == dwarf::DW_TAG_set_type ||
1244 N.getTag() == dwarf::DW_TAG_template_alias,
1246 if (
N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1247 CheckDI(
isType(
N.getRawExtraData()),
"invalid pointer to member type", &
N,
1248 N.getRawExtraData());
1251 if (
N.getTag() == dwarf::DW_TAG_set_type) {
1252 if (
auto *
T =
N.getRawBaseType()) {
1253 auto *
Enum = dyn_cast_or_null<DICompositeType>(
T);
1254 auto *
Basic = dyn_cast_or_null<DIBasicType>(
T);
1256 (Enum &&
Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1257 (
Basic && (
Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1258 Basic->getEncoding() == dwarf::DW_ATE_signed ||
1259 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1260 Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1261 Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1262 "invalid set base type", &
N,
T);
1268 N.getRawBaseType());
1270 if (
N.getDWARFAddressSpace()) {
1271 CheckDI(
N.getTag() == dwarf::DW_TAG_pointer_type ||
1272 N.getTag() == dwarf::DW_TAG_reference_type ||
1273 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1274 "DWARF address space only applies to pointer or reference types",
1281 return ((Flags & DINode::FlagLValueReference) &&
1282 (Flags & DINode::FlagRValueReference)) ||
1283 ((Flags & DINode::FlagTypePassByValue) &&
1284 (Flags & DINode::FlagTypePassByReference));
1287void Verifier::visitTemplateParams(
const MDNode &
N,
const Metadata &RawParams) {
1288 auto *Params = dyn_cast<MDTuple>(&RawParams);
1289 CheckDI(Params,
"invalid template params", &
N, &RawParams);
1291 CheckDI(
Op && isa<DITemplateParameter>(
Op),
"invalid template parameter",
1300 CheckDI(
N.getTag() == dwarf::DW_TAG_array_type ||
1301 N.getTag() == dwarf::DW_TAG_structure_type ||
1302 N.getTag() == dwarf::DW_TAG_union_type ||
1303 N.getTag() == dwarf::DW_TAG_enumeration_type ||
1304 N.getTag() == dwarf::DW_TAG_class_type ||
1305 N.getTag() == dwarf::DW_TAG_variant_part ||
1306 N.getTag() == dwarf::DW_TAG_namelist,
1311 N.getRawBaseType());
1313 CheckDI(!
N.getRawElements() || isa<MDTuple>(
N.getRawElements()),
1314 "invalid composite elements", &
N,
N.getRawElements());
1316 N.getRawVTableHolder());
1318 "invalid reference flags", &
N);
1319 unsigned DIBlockByRefStruct = 1 << 4;
1320 CheckDI((
N.getFlags() & DIBlockByRefStruct) == 0,
1321 "DIBlockByRefStruct on DICompositeType is no longer supported", &
N);
1324 const DINodeArray
Elements =
N.getElements();
1326 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1327 "invalid vector, expected one element of type subrange", &
N);
1330 if (
auto *Params =
N.getRawTemplateParams())
1331 visitTemplateParams(
N, *Params);
1333 if (
auto *
D =
N.getRawDiscriminator()) {
1334 CheckDI(isa<DIDerivedType>(
D) &&
N.getTag() == dwarf::DW_TAG_variant_part,
1335 "discriminator can only appear on variant part");
1338 if (
N.getRawDataLocation()) {
1339 CheckDI(
N.getTag() == dwarf::DW_TAG_array_type,
1340 "dataLocation can only appear in array type");
1343 if (
N.getRawAssociated()) {
1344 CheckDI(
N.getTag() == dwarf::DW_TAG_array_type,
1345 "associated can only appear in array type");
1348 if (
N.getRawAllocated()) {
1349 CheckDI(
N.getTag() == dwarf::DW_TAG_array_type,
1350 "allocated can only appear in array type");
1353 if (
N.getRawRank()) {
1354 CheckDI(
N.getTag() == dwarf::DW_TAG_array_type,
1355 "rank can only appear in array type");
1358 if (
N.getTag() == dwarf::DW_TAG_array_type) {
1359 CheckDI(
N.getRawBaseType(),
"array types must have a base type", &
N);
1364 CheckDI(
N.getTag() == dwarf::DW_TAG_subroutine_type,
"invalid tag", &
N);
1365 if (
auto *Types =
N.getRawTypeArray()) {
1366 CheckDI(isa<MDTuple>(Types),
"invalid composite elements", &
N, Types);
1367 for (
Metadata *Ty :
N.getTypeArray()->operands()) {
1368 CheckDI(
isType(Ty),
"invalid subroutine type ref", &
N, Types, Ty);
1372 "invalid reference flags", &
N);
1375void Verifier::visitDIFile(
const DIFile &
N) {
1376 CheckDI(
N.getTag() == dwarf::DW_TAG_file_type,
"invalid tag", &
N);
1377 std::optional<DIFile::ChecksumInfo<StringRef>> Checksum =
N.getChecksum();
1380 "invalid checksum kind", &
N);
1382 switch (Checksum->Kind) {
1393 CheckDI(Checksum->Value.size() ==
Size,
"invalid checksum length", &
N);
1395 "invalid checksum", &
N);
1400 CheckDI(
N.isDistinct(),
"compile units must be distinct", &
N);
1401 CheckDI(
N.getTag() == dwarf::DW_TAG_compile_unit,
"invalid tag", &
N);
1405 CheckDI(
N.getRawFile() && isa<DIFile>(
N.getRawFile()),
"invalid file", &
N,
1407 CheckDI(!
N.getFile()->getFilename().empty(),
"invalid filename", &
N,
1411 "invalid emission kind", &
N);
1413 if (
auto *Array =
N.getRawEnumTypes()) {
1414 CheckDI(isa<MDTuple>(Array),
"invalid enum list", &
N, Array);
1415 for (
Metadata *
Op :
N.getEnumTypes()->operands()) {
1416 auto *
Enum = dyn_cast_or_null<DICompositeType>(
Op);
1417 CheckDI(Enum &&
Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1418 "invalid enum type", &
N,
N.getEnumTypes(),
Op);
1421 if (
auto *Array =
N.getRawRetainedTypes()) {
1422 CheckDI(isa<MDTuple>(Array),
"invalid retained type list", &
N, Array);
1423 for (
Metadata *
Op :
N.getRetainedTypes()->operands()) {
1425 Op && (isa<DIType>(
Op) || (isa<DISubprogram>(
Op) &&
1426 !cast<DISubprogram>(
Op)->isDefinition())),
1427 "invalid retained type", &
N,
Op);
1430 if (
auto *Array =
N.getRawGlobalVariables()) {
1431 CheckDI(isa<MDTuple>(Array),
"invalid global variable list", &
N, Array);
1432 for (
Metadata *
Op :
N.getGlobalVariables()->operands()) {
1433 CheckDI(
Op && (isa<DIGlobalVariableExpression>(
Op)),
1434 "invalid global variable ref", &
N,
Op);
1437 if (
auto *Array =
N.getRawImportedEntities()) {
1438 CheckDI(isa<MDTuple>(Array),
"invalid imported entity list", &
N, Array);
1439 for (
Metadata *
Op :
N.getImportedEntities()->operands()) {
1440 CheckDI(
Op && isa<DIImportedEntity>(
Op),
"invalid imported entity ref",
1444 if (
auto *Array =
N.getRawMacros()) {
1445 CheckDI(isa<MDTuple>(Array),
"invalid macro list", &
N, Array);
1447 CheckDI(
Op && isa<DIMacroNode>(
Op),
"invalid macro ref", &
N,
Op);
1454 CheckDI(
N.getTag() == dwarf::DW_TAG_subprogram,
"invalid tag", &
N);
1456 if (
auto *
F =
N.getRawFile())
1457 CheckDI(isa<DIFile>(
F),
"invalid file", &
N,
F);
1459 CheckDI(
N.getLine() == 0,
"line specified with no file", &
N,
N.getLine());
1460 if (
auto *
T =
N.getRawType())
1461 CheckDI(isa<DISubroutineType>(
T),
"invalid subroutine type", &
N,
T);
1462 CheckDI(
isType(
N.getRawContainingType()),
"invalid containing type", &
N,
1463 N.getRawContainingType());
1464 if (
auto *Params =
N.getRawTemplateParams())
1465 visitTemplateParams(
N, *Params);
1466 if (
auto *S =
N.getRawDeclaration())
1467 CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1468 "invalid subprogram declaration", &
N, S);
1469 if (
auto *RawNode =
N.getRawRetainedNodes()) {
1470 auto *
Node = dyn_cast<MDTuple>(RawNode);
1471 CheckDI(
Node,
"invalid retained nodes list", &
N, RawNode);
1473 CheckDI(
Op && (isa<DILocalVariable>(
Op) || isa<DILabel>(
Op) ||
1474 isa<DIImportedEntity>(
Op)),
1475 "invalid retained nodes, expected DILocalVariable, DILabel or "
1481 "invalid reference flags", &
N);
1483 auto *Unit =
N.getRawUnit();
1484 if (
N.isDefinition()) {
1486 CheckDI(
N.isDistinct(),
"subprogram definitions must be distinct", &
N);
1487 CheckDI(Unit,
"subprogram definitions must have a compile unit", &
N);
1488 CheckDI(isa<DICompileUnit>(Unit),
"invalid unit type", &
N, Unit);
1491 auto *CT = dyn_cast_or_null<DICompositeType>(
N.getRawScope());
1492 if (CT && CT->getRawIdentifier() &&
1493 M.getContext().isODRUniquingDebugTypes())
1495 "definition subprograms cannot be nested within DICompositeType "
1496 "when enabling ODR",
1500 CheckDI(!Unit,
"subprogram declarations must not have a compile unit", &
N);
1502 "subprogram declaration must not have a declaration field");
1505 if (
auto *RawThrownTypes =
N.getRawThrownTypes()) {
1506 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1507 CheckDI(ThrownTypes,
"invalid thrown types list", &
N, RawThrownTypes);
1509 CheckDI(
Op && isa<DIType>(
Op),
"invalid thrown type", &
N, ThrownTypes,
1513 if (
N.areAllCallsDescribed())
1515 "DIFlagAllCallsDescribed must be attached to a definition");
1519 CheckDI(
N.getTag() == dwarf::DW_TAG_lexical_block,
"invalid tag", &
N);
1520 CheckDI(
N.getRawScope() && isa<DILocalScope>(
N.getRawScope()),
1521 "invalid local scope", &
N,
N.getRawScope());
1522 if (
auto *SP = dyn_cast<DISubprogram>(
N.getRawScope()))
1523 CheckDI(SP->isDefinition(),
"scope points into the type hierarchy", &
N);
1527 visitDILexicalBlockBase(
N);
1530 "cannot have column info without line info", &
N);
1534 visitDILexicalBlockBase(
N);
1538 CheckDI(
N.getTag() == dwarf::DW_TAG_common_block,
"invalid tag", &
N);
1539 if (
auto *S =
N.getRawScope())
1540 CheckDI(isa<DIScope>(S),
"invalid scope ref", &
N, S);
1541 if (
auto *S =
N.getRawDecl())
1542 CheckDI(isa<DIGlobalVariable>(S),
"invalid declaration", &
N, S);
1546 CheckDI(
N.getTag() == dwarf::DW_TAG_namespace,
"invalid tag", &
N);
1547 if (
auto *S =
N.getRawScope())
1548 CheckDI(isa<DIScope>(S),
"invalid scope ref", &
N, S);
1551void Verifier::visitDIMacro(
const DIMacro &
N) {
1554 "invalid macinfo type", &
N);
1555 CheckDI(!
N.getName().empty(),
"anonymous macro", &
N);
1556 if (!
N.getValue().empty()) {
1557 assert(
N.getValue().data()[0] !=
' ' &&
"Macro value has a space prefix");
1563 "invalid macinfo type", &
N);
1564 if (
auto *
F =
N.getRawFile())
1565 CheckDI(isa<DIFile>(
F),
"invalid file", &
N,
F);
1567 if (
auto *Array =
N.getRawElements()) {
1568 CheckDI(isa<MDTuple>(Array),
"invalid macro list", &
N, Array);
1569 for (
Metadata *
Op :
N.getElements()->operands()) {
1570 CheckDI(
Op && isa<DIMacroNode>(
Op),
"invalid macro ref", &
N,
Op);
1575void Verifier::visitDIModule(
const DIModule &
N) {
1576 CheckDI(
N.getTag() == dwarf::DW_TAG_module,
"invalid tag", &
N);
1577 CheckDI(!
N.getName().empty(),
"anonymous module", &
N);
1585 visitDITemplateParameter(
N);
1587 CheckDI(
N.getTag() == dwarf::DW_TAG_template_type_parameter,
"invalid tag",
1591void Verifier::visitDITemplateValueParameter(
1593 visitDITemplateParameter(
N);
1595 CheckDI(
N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1596 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1597 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1601void Verifier::visitDIVariable(
const DIVariable &
N) {
1602 if (
auto *S =
N.getRawScope())
1603 CheckDI(isa<DIScope>(S),
"invalid scope", &
N, S);
1604 if (
auto *
F =
N.getRawFile())
1605 CheckDI(isa<DIFile>(
F),
"invalid file", &
N,
F);
1612 CheckDI(
N.getTag() == dwarf::DW_TAG_variable,
"invalid tag", &
N);
1615 if (
N.isDefinition())
1616 CheckDI(
N.getType(),
"missing global variable type", &
N);
1617 if (
auto *Member =
N.getRawStaticDataMemberDeclaration()) {
1618 CheckDI(isa<DIDerivedType>(Member),
1619 "invalid static data member declaration", &
N, Member);
1628 CheckDI(
N.getTag() == dwarf::DW_TAG_variable,
"invalid tag", &
N);
1629 CheckDI(
N.getRawScope() && isa<DILocalScope>(
N.getRawScope()),
1630 "local variable requires a valid scope", &
N,
N.getRawScope());
1631 if (
auto Ty =
N.getType())
1632 CheckDI(!isa<DISubroutineType>(Ty),
"invalid type", &
N,
N.getType());
1635void Verifier::visitDIAssignID(
const DIAssignID &
N) {
1636 CheckDI(!
N.getNumOperands(),
"DIAssignID has no arguments", &
N);
1637 CheckDI(
N.isDistinct(),
"DIAssignID must be distinct", &
N);
1640void Verifier::visitDILabel(
const DILabel &
N) {
1641 if (
auto *S =
N.getRawScope())
1642 CheckDI(isa<DIScope>(S),
"invalid scope", &
N, S);
1643 if (
auto *
F =
N.getRawFile())
1644 CheckDI(isa<DIFile>(
F),
"invalid file", &
N,
F);
1646 CheckDI(
N.getTag() == dwarf::DW_TAG_label,
"invalid tag", &
N);
1647 CheckDI(
N.getRawScope() && isa<DILocalScope>(
N.getRawScope()),
1648 "label requires a valid scope", &
N,
N.getRawScope());
1652 CheckDI(
N.isValid(),
"invalid expression", &
N);
1655void Verifier::visitDIGlobalVariableExpression(
1659 visitDIGlobalVariable(*Var);
1661 visitDIExpression(*Expr);
1662 if (
auto Fragment = Expr->getFragmentInfo())
1663 verifyFragmentExpression(*GVE.
getVariable(), *Fragment, &GVE);
1668 CheckDI(
N.getTag() == dwarf::DW_TAG_APPLE_property,
"invalid tag", &
N);
1669 if (
auto *
T =
N.getRawType())
1671 if (
auto *
F =
N.getRawFile())
1672 CheckDI(isa<DIFile>(
F),
"invalid file", &
N,
F);
1676 CheckDI(
N.getTag() == dwarf::DW_TAG_imported_module ||
1677 N.getTag() == dwarf::DW_TAG_imported_declaration,
1679 if (
auto *S =
N.getRawScope())
1680 CheckDI(isa<DIScope>(S),
"invalid scope for imported entity", &
N, S);
1685void Verifier::visitComdat(
const Comdat &
C) {
1688 if (
TT.isOSBinFormatCOFF())
1694void Verifier::visitModuleIdents() {
1695 const NamedMDNode *Idents =
M.getNamedMetadata(
"llvm.ident");
1702 Check(
N->getNumOperands() == 1,
1703 "incorrect number of operands in llvm.ident metadata",
N);
1704 Check(dyn_cast_or_null<MDString>(
N->getOperand(0)),
1705 (
"invalid value for llvm.ident metadata entry operand"
1706 "(the operand should be a string)"),
1711void Verifier::visitModuleCommandLines() {
1712 const NamedMDNode *CommandLines =
M.getNamedMetadata(
"llvm.commandline");
1720 Check(
N->getNumOperands() == 1,
1721 "incorrect number of operands in llvm.commandline metadata",
N);
1722 Check(dyn_cast_or_null<MDString>(
N->getOperand(0)),
1723 (
"invalid value for llvm.commandline metadata entry operand"
1724 "(the operand should be a string)"),
1729void Verifier::visitModuleFlags() {
1739 visitModuleFlag(MDN, SeenIDs, Requirements);
1740 if (MDN->getNumOperands() != 3)
1742 if (
const auto *FlagName = dyn_cast_or_null<MDString>(MDN->getOperand(1))) {
1743 if (FlagName->getString() ==
"aarch64-elf-pauthabi-platform") {
1744 if (
const auto *PAP =
1745 mdconst::dyn_extract_or_null<ConstantInt>(MDN->getOperand(2)))
1746 PAuthABIPlatform = PAP->getZExtValue();
1747 }
else if (FlagName->getString() ==
"aarch64-elf-pauthabi-version") {
1748 if (
const auto *PAV =
1749 mdconst::dyn_extract_or_null<ConstantInt>(MDN->getOperand(2)))
1750 PAuthABIVersion = PAV->getZExtValue();
1755 if ((PAuthABIPlatform ==
uint64_t(-1)) != (PAuthABIVersion ==
uint64_t(-1)))
1756 CheckFailed(
"either both or no 'aarch64-elf-pauthabi-platform' and "
1757 "'aarch64-elf-pauthabi-version' module flags must be present");
1760 for (
const MDNode *Requirement : Requirements) {
1761 const MDString *
Flag = cast<MDString>(Requirement->getOperand(0));
1762 const Metadata *ReqValue = Requirement->getOperand(1);
1766 CheckFailed(
"invalid requirement on flag, flag is not present in module",
1771 if (
Op->getOperand(2) != ReqValue) {
1772 CheckFailed((
"invalid requirement on flag, "
1773 "flag does not have the required value"),
1781Verifier::visitModuleFlag(
const MDNode *
Op,
1787 "incorrect number of operands in module flag",
Op);
1790 Check(mdconst::dyn_extract_or_null<ConstantInt>(
Op->getOperand(0)),
1791 "invalid behavior operand in module flag (expected constant integer)",
1794 "invalid behavior operand in module flag (unexpected constant)",
1797 MDString *
ID = dyn_cast_or_null<MDString>(
Op->getOperand(1));
1798 Check(
ID,
"invalid ID operand in module flag (expected metadata string)",
1810 auto *
V = mdconst::dyn_extract_or_null<ConstantInt>(
Op->getOperand(2));
1811 Check(V &&
V->getValue().isNonNegative(),
1812 "invalid value for 'min' module flag (expected constant non-negative "
1819 Check(mdconst::dyn_extract_or_null<ConstantInt>(
Op->getOperand(2)),
1820 "invalid value for 'max' module flag (expected constant integer)",
1830 "invalid value for 'require' module flag (expected metadata pair)",
1833 (
"invalid value for 'require' module flag "
1834 "(first value operand should be a string)"),
1835 Value->getOperand(0));
1846 Check(isa<MDNode>(
Op->getOperand(2)),
1847 "invalid value for 'append'-type module flag "
1848 "(expected a metadata node)",
1858 "module flag identifiers must be unique (or of 'require' type)",
ID);
1861 if (
ID->getString() ==
"wchar_size") {
1863 = mdconst::dyn_extract_or_null<ConstantInt>(
Op->getOperand(2));
1864 Check(
Value,
"wchar_size metadata requires constant integer argument");
1867 if (
ID->getString() ==
"Linker Options") {
1871 Check(
M.getNamedMetadata(
"llvm.linker.options"),
1872 "'Linker Options' named metadata no longer supported");
1875 if (
ID->getString() ==
"SemanticInterposition") {
1877 mdconst::dyn_extract_or_null<ConstantInt>(
Op->getOperand(2));
1879 "SemanticInterposition metadata requires constant integer argument");
1882 if (
ID->getString() ==
"CG Profile") {
1883 for (
const MDOperand &MDO : cast<MDNode>(
Op->getOperand(2))->operands())
1884 visitModuleFlagCGProfileEntry(MDO);
1888void Verifier::visitModuleFlagCGProfileEntry(
const MDOperand &MDO) {
1889 auto CheckFunction = [&](
const MDOperand &FuncMDO) {
1892 auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1893 Check(
F && isa<Function>(
F->getValue()->stripPointerCasts()),
1894 "expected a Function or null", FuncMDO);
1896 auto Node = dyn_cast_or_null<MDNode>(MDO);
1897 Check(
Node &&
Node->getNumOperands() == 3,
"expected a MDNode triple", MDO);
1898 CheckFunction(
Node->getOperand(0));
1899 CheckFunction(
Node->getOperand(1));
1900 auto Count = dyn_cast_or_null<ConstantAsMetadata>(
Node->getOperand(2));
1901 Check(Count && Count->getType()->isIntegerTy(),
1902 "expected an integer constant",
Node->getOperand(2));
1908 if (
A.isStringAttribute()) {
1909#define GET_ATTR_NAMES
1910#define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1911#define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \
1912 if (A.getKindAsString() == #DISPLAY_NAME) { \
1913 auto V = A.getValueAsString(); \
1914 if (!(V.empty() || V == "true" || V == "false")) \
1915 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \
1919#include "llvm/IR/Attributes.inc"
1924 CheckFailed(
"Attribute '" +
A.getAsString() +
"' should have an Argument",
1935 if (!
Attrs.hasAttributes())
1938 verifyAttributeTypes(Attrs, V);
1941 Check(Attr.isStringAttribute() ||
1943 "Attribute '" + Attr.getAsString() +
"' does not apply to parameters",
1946 if (
Attrs.hasAttribute(Attribute::ImmArg)) {
1948 "Attribute 'immarg' is incompatible with other attributes", V);
1953 unsigned AttrCount = 0;
1954 AttrCount +=
Attrs.hasAttribute(Attribute::ByVal);
1955 AttrCount +=
Attrs.hasAttribute(Attribute::InAlloca);
1956 AttrCount +=
Attrs.hasAttribute(Attribute::Preallocated);
1957 AttrCount +=
Attrs.hasAttribute(Attribute::StructRet) ||
1958 Attrs.hasAttribute(Attribute::InReg);
1959 AttrCount +=
Attrs.hasAttribute(Attribute::Nest);
1960 AttrCount +=
Attrs.hasAttribute(Attribute::ByRef);
1961 Check(AttrCount <= 1,
1962 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1963 "'byref', and 'sret' are incompatible!",
1966 Check(!(
Attrs.hasAttribute(Attribute::InAlloca) &&
1967 Attrs.hasAttribute(Attribute::ReadOnly)),
1969 "'inalloca and readonly' are incompatible!",
1972 Check(!(
Attrs.hasAttribute(Attribute::StructRet) &&
1973 Attrs.hasAttribute(Attribute::Returned)),
1975 "'sret and returned' are incompatible!",
1978 Check(!(
Attrs.hasAttribute(Attribute::ZExt) &&
1979 Attrs.hasAttribute(Attribute::SExt)),
1981 "'zeroext and signext' are incompatible!",
1984 Check(!(
Attrs.hasAttribute(Attribute::ReadNone) &&
1985 Attrs.hasAttribute(Attribute::ReadOnly)),
1987 "'readnone and readonly' are incompatible!",
1990 Check(!(
Attrs.hasAttribute(Attribute::ReadNone) &&
1991 Attrs.hasAttribute(Attribute::WriteOnly)),
1993 "'readnone and writeonly' are incompatible!",
1996 Check(!(
Attrs.hasAttribute(Attribute::ReadOnly) &&
1997 Attrs.hasAttribute(Attribute::WriteOnly)),
1999 "'readonly and writeonly' are incompatible!",
2002 Check(!(
Attrs.hasAttribute(Attribute::NoInline) &&
2003 Attrs.hasAttribute(Attribute::AlwaysInline)),
2005 "'noinline and alwaysinline' are incompatible!",
2008 Check(!(
Attrs.hasAttribute(Attribute::Writable) &&
2009 Attrs.hasAttribute(Attribute::ReadNone)),
2010 "Attributes writable and readnone are incompatible!", V);
2012 Check(!(
Attrs.hasAttribute(Attribute::Writable) &&
2013 Attrs.hasAttribute(Attribute::ReadOnly)),
2014 "Attributes writable and readonly are incompatible!", V);
2018 if (!Attr.isStringAttribute() &&
2019 IncompatibleAttrs.
contains(Attr.getKindAsEnum())) {
2020 CheckFailed(
"Attribute '" + Attr.getAsString() +
2021 "' applied to incompatible type!", V);
2026 if (isa<PointerType>(Ty)) {
2027 if (
Attrs.hasAttribute(Attribute::Alignment)) {
2028 Align AttrAlign =
Attrs.getAlignment().valueOrOne();
2030 "huge alignment values are unsupported", V);
2032 if (
Attrs.hasAttribute(Attribute::ByVal)) {
2036 "Attribute 'byval' does not support unsized types!", V);
2040 "'byval' argument has illegal target extension type", V);
2041 Check(
DL.getTypeAllocSize(ByValTy).getKnownMinValue() < (1ULL << 32),
2042 "huge 'byval' arguments are unsupported", V);
2044 if (
Attrs.hasAttribute(Attribute::ByRef)) {
2046 Check(
Attrs.getByRefType()->isSized(&Visited),
2047 "Attribute 'byref' does not support unsized types!", V);
2048 Check(
DL.getTypeAllocSize(
Attrs.getByRefType()).getKnownMinValue() <
2050 "huge 'byref' arguments are unsupported", V);
2052 if (
Attrs.hasAttribute(Attribute::InAlloca)) {
2054 Check(
Attrs.getInAllocaType()->isSized(&Visited),
2055 "Attribute 'inalloca' does not support unsized types!", V);
2056 Check(
DL.getTypeAllocSize(
Attrs.getInAllocaType()).getKnownMinValue() <
2058 "huge 'inalloca' arguments are unsupported", V);
2060 if (
Attrs.hasAttribute(Attribute::Preallocated)) {
2062 Check(
Attrs.getPreallocatedType()->isSized(&Visited),
2063 "Attribute 'preallocated' does not support unsized types!", V);
2065 DL.getTypeAllocSize(
Attrs.getPreallocatedType()).getKnownMinValue() <
2067 "huge 'preallocated' arguments are unsupported", V);
2071 if (
Attrs.hasAttribute(Attribute::Initializes)) {
2072 auto Inits =
Attrs.getAttribute(Attribute::Initializes).getInitializes();
2073 Check(!Inits.empty(),
"Attribute 'initializes' does not support empty list",
2076 "Attribute 'initializes' does not support unordered ranges", V);
2079 if (
Attrs.hasAttribute(Attribute::NoFPClass)) {
2080 uint64_t Val =
Attrs.getAttribute(Attribute::NoFPClass).getValueAsInt();
2081 Check(Val != 0,
"Attribute 'nofpclass' must have at least one test bit set",
2084 "Invalid value for 'nofpclass' test mask", V);
2086 if (
Attrs.hasAttribute(Attribute::Range)) {
2088 Attrs.getAttribute(Attribute::Range).getValueAsConstantRange();
2090 "Range bit width must match type bit width!", V);
2096 if (
Attrs.hasFnAttr(Attr)) {
2100 CheckFailed(
"\"" + Attr +
"\" takes an unsigned integer: " + S, V);
2107 const Value *V,
bool IsIntrinsic,
2109 if (
Attrs.isEmpty())
2112 if (AttributeListsVisited.
insert(
Attrs.getRawPointer()).second) {
2114 "Attribute list does not match Module context!", &Attrs, V);
2115 for (
const auto &AttrSet : Attrs) {
2116 Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
2117 "Attribute set does not match Module context!", &AttrSet, V);
2118 for (
const auto &
A : AttrSet) {
2119 Check(
A.hasParentContext(Context),
2120 "Attribute does not match Module context!", &
A, V);
2125 bool SawNest =
false;
2126 bool SawReturned =
false;
2127 bool SawSRet =
false;
2128 bool SawSwiftSelf =
false;
2129 bool SawSwiftAsync =
false;
2130 bool SawSwiftError =
false;
2137 "Attribute '" +
RetAttr.getAsString() +
2138 "' does not apply to function return values",
2141 unsigned MaxParameterWidth = 0;
2142 auto GetMaxParameterWidth = [&MaxParameterWidth](
Type *Ty) {
2144 if (
auto *VT = dyn_cast<FixedVectorType>(Ty)) {
2145 unsigned Size = VT->getPrimitiveSizeInBits().getFixedValue();
2146 if (
Size > MaxParameterWidth)
2147 MaxParameterWidth =
Size;
2151 GetMaxParameterWidth(FT->getReturnType());
2152 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
2155 for (
unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2156 Type *Ty = FT->getParamType(i);
2161 "immarg attribute only applies to intrinsics", V);
2164 "Attribute 'elementtype' can only be applied to intrinsics"
2169 verifyParameterAttrs(ArgAttrs, Ty, V);
2170 GetMaxParameterWidth(Ty);
2173 Check(!SawNest,
"More than one parameter has attribute nest!", V);
2178 Check(!SawReturned,
"More than one parameter has attribute returned!", V);
2180 "Incompatible argument and return types for 'returned' attribute",
2186 Check(!SawSRet,
"Cannot have multiple 'sret' parameters!", V);
2187 Check(i == 0 || i == 1,
2188 "Attribute 'sret' is not on first or second parameter!", V);
2193 Check(!SawSwiftSelf,
"Cannot have multiple 'swiftself' parameters!", V);
2194 SawSwiftSelf =
true;
2198 Check(!SawSwiftAsync,
"Cannot have multiple 'swiftasync' parameters!", V);
2199 SawSwiftAsync =
true;
2203 Check(!SawSwiftError,
"Cannot have multiple 'swifterror' parameters!", V);
2204 SawSwiftError =
true;
2208 Check(i == FT->getNumParams() - 1,
2209 "inalloca isn't on the last parameter!", V);
2213 if (!
Attrs.hasFnAttrs())
2216 verifyAttributeTypes(
Attrs.getFnAttrs(), V);
2220 "Attribute '" +
FnAttr.getAsString() +
2221 "' does not apply to functions!",
2224 Check(!(
Attrs.hasFnAttr(Attribute::NoInline) &&
2225 Attrs.hasFnAttr(Attribute::AlwaysInline)),
2226 "Attributes 'noinline and alwaysinline' are incompatible!", V);
2228 if (
Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2230 "Attribute 'optnone' requires 'noinline'!", V);
2232 Check(!
Attrs.hasFnAttr(Attribute::OptimizeForSize),
2233 "Attributes 'optsize and optnone' are incompatible!", V);
2236 "Attributes 'minsize and optnone' are incompatible!", V);
2238 Check(!
Attrs.hasFnAttr(Attribute::OptimizeForDebugging),
2239 "Attributes 'optdebug and optnone' are incompatible!", V);
2242 Check(!(
Attrs.hasFnAttr(Attribute::SanitizeRealtime) &&
2243 Attrs.hasFnAttr(Attribute::SanitizeRealtimeBlocking)),
2245 "'sanitize_realtime and sanitize_realtime_blocking' are incompatible!",
2248 if (
Attrs.hasFnAttr(Attribute::OptimizeForDebugging)) {
2249 Check(!
Attrs.hasFnAttr(Attribute::OptimizeForSize),
2250 "Attributes 'optsize and optdebug' are incompatible!", V);
2253 "Attributes 'minsize and optdebug' are incompatible!", V);
2256 Check(!
Attrs.hasAttrSomewhere(Attribute::Writable) ||
2258 "Attribute writable and memory without argmem: write are incompatible!",
2261 if (
Attrs.hasFnAttr(
"aarch64_pstate_sm_enabled")) {
2262 Check(!
Attrs.hasFnAttr(
"aarch64_pstate_sm_compatible"),
2263 "Attributes 'aarch64_pstate_sm_enabled and "
2264 "aarch64_pstate_sm_compatible' are incompatible!",
2268 Check((
Attrs.hasFnAttr(
"aarch64_new_za") +
Attrs.hasFnAttr(
"aarch64_in_za") +
2269 Attrs.hasFnAttr(
"aarch64_inout_za") +
2270 Attrs.hasFnAttr(
"aarch64_out_za") +
2271 Attrs.hasFnAttr(
"aarch64_preserves_za") +
2272 Attrs.hasFnAttr(
"aarch64_za_state_agnostic")) <= 1,
2273 "Attributes 'aarch64_new_za', 'aarch64_in_za', 'aarch64_out_za', "
2274 "'aarch64_inout_za', 'aarch64_preserves_za' and "
2275 "'aarch64_za_state_agnostic' are mutually exclusive",
2279 Attrs.hasFnAttr(
"aarch64_in_zt0") +
2280 Attrs.hasFnAttr(
"aarch64_inout_zt0") +
2281 Attrs.hasFnAttr(
"aarch64_out_zt0") +
2282 Attrs.hasFnAttr(
"aarch64_preserves_zt0") +
2283 Attrs.hasFnAttr(
"aarch64_za_state_agnostic")) <= 1,
2284 "Attributes 'aarch64_new_zt0', 'aarch64_in_zt0', 'aarch64_out_zt0', "
2285 "'aarch64_inout_zt0', 'aarch64_preserves_zt0' and "
2286 "'aarch64_za_state_agnostic' are mutually exclusive",
2289 if (
Attrs.hasFnAttr(Attribute::JumpTable)) {
2292 "Attribute 'jumptable' requires 'unnamed_addr'", V);
2295 if (
auto Args =
Attrs.getFnAttrs().getAllocSizeArgs()) {
2297 if (ParamNo >= FT->getNumParams()) {
2298 CheckFailed(
"'allocsize' " +
Name +
" argument is out of bounds", V);
2302 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2303 CheckFailed(
"'allocsize' " +
Name +
2304 " argument must refer to an integer parameter",
2312 if (!CheckParam(
"element size",
Args->first))
2315 if (
Args->second && !CheckParam(
"number of elements", *
Args->second))
2319 if (
Attrs.hasFnAttr(Attribute::AllocKind)) {
2327 "'allockind()' requires exactly one of alloc, realloc, and free");
2331 CheckFailed(
"'allockind(\"free\")' doesn't allow uninitialized, zeroed, "
2332 "or aligned modifiers.");
2334 if ((K & ZeroedUninit) == ZeroedUninit)
2335 CheckFailed(
"'allockind()' can't be both zeroed and uninitialized");
2338 if (
Attrs.hasFnAttr(Attribute::VScaleRange)) {
2339 unsigned VScaleMin =
Attrs.getFnAttrs().getVScaleRangeMin();
2341 CheckFailed(
"'vscale_range' minimum must be greater than 0", V);
2343 CheckFailed(
"'vscale_range' minimum must be power-of-two value", V);
2344 std::optional<unsigned> VScaleMax =
Attrs.getFnAttrs().getVScaleRangeMax();
2345 if (VScaleMax && VScaleMin > VScaleMax)
2346 CheckFailed(
"'vscale_range' minimum cannot be greater than maximum", V);
2348 CheckFailed(
"'vscale_range' maximum must be power-of-two value", V);
2351 if (
Attrs.hasFnAttr(
"frame-pointer")) {
2353 if (
FP !=
"all" &&
FP !=
"non-leaf" &&
FP !=
"none" &&
FP !=
"reserved")
2354 CheckFailed(
"invalid value for 'frame-pointer' attribute: " +
FP, V);
2358 if (MaxParameterWidth >= 512 &&
Attrs.hasFnAttr(
"target-features") &&
2360 StringRef TF =
Attrs.getFnAttr(
"target-features").getValueAsString();
2362 "512-bit vector arguments require 'evex512' for AVX512", V);
2365 checkUnsignedBaseTenFuncAttr(Attrs,
"patchable-function-prefix", V);
2366 checkUnsignedBaseTenFuncAttr(Attrs,
"patchable-function-entry", V);
2367 checkUnsignedBaseTenFuncAttr(Attrs,
"warn-stack-size", V);
2369 if (
auto A =
Attrs.getFnAttr(
"sign-return-address");
A.isValid()) {
2371 if (S !=
"none" && S !=
"all" && S !=
"non-leaf")
2372 CheckFailed(
"invalid value for 'sign-return-address' attribute: " + S, V);
2375 if (
auto A =
Attrs.getFnAttr(
"sign-return-address-key");
A.isValid()) {
2377 if (S !=
"a_key" && S !=
"b_key")
2378 CheckFailed(
"invalid value for 'sign-return-address-key' attribute: " + S,
2380 if (
auto AA =
Attrs.getFnAttr(
"sign-return-address"); !AA.isValid()) {
2382 "'sign-return-address-key' present without `sign-return-address`");
2386 if (
auto A =
Attrs.getFnAttr(
"branch-target-enforcement");
A.isValid()) {
2388 if (S !=
"" && S !=
"true" && S !=
"false")
2390 "invalid value for 'branch-target-enforcement' attribute: " + S, V);
2393 if (
auto A =
Attrs.getFnAttr(
"branch-protection-pauth-lr");
A.isValid()) {
2395 if (S !=
"" && S !=
"true" && S !=
"false")
2397 "invalid value for 'branch-protection-pauth-lr' attribute: " + S, V);
2400 if (
auto A =
Attrs.getFnAttr(
"guarded-control-stack");
A.isValid()) {
2402 if (S !=
"" && S !=
"true" && S !=
"false")
2403 CheckFailed(
"invalid value for 'guarded-control-stack' attribute: " + S,
2407 if (
auto A =
Attrs.getFnAttr(
"vector-function-abi-variant");
A.isValid()) {
2411 CheckFailed(
"invalid name for a VFABI variant: " + S, V);
2414 if (
auto A =
Attrs.getFnAttr(
"denormal-fp-math");
A.isValid()) {
2417 CheckFailed(
"invalid value for 'denormal-fp-math' attribute: " + S, V);
2420 if (
auto A =
Attrs.getFnAttr(
"denormal-fp-math-f32");
A.isValid()) {
2423 CheckFailed(
"invalid value for 'denormal-fp-math-f32' attribute: " + S,
2428void Verifier::verifyFunctionMetadata(
2429 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2430 for (
const auto &Pair : MDs) {
2431 if (Pair.first == LLVMContext::MD_prof) {
2432 MDNode *MD = Pair.second;
2434 "!prof annotations should have no less than 2 operands", MD);
2437 Check(MD->
getOperand(0) !=
nullptr,
"first operand should not be null",
2440 "expected string with name of the !prof annotation", MD);
2443 Check(ProfName ==
"function_entry_count" ||
2444 ProfName ==
"synthetic_function_entry_count",
2445 "first operand should be 'function_entry_count'"
2446 " or 'synthetic_function_entry_count'",
2450 Check(MD->
getOperand(1) !=
nullptr,
"second operand should not be null",
2453 "expected integer argument to function_entry_count", MD);
2454 }
else if (Pair.first == LLVMContext::MD_kcfi_type) {
2455 MDNode *MD = Pair.second;
2457 "!kcfi_type must have exactly one operand", MD);
2458 Check(MD->
getOperand(0) !=
nullptr,
"!kcfi_type operand must not be null",
2461 "expected a constant operand for !kcfi_type", MD);
2463 Check(isa<ConstantInt>(
C) && isa<IntegerType>(
C->getType()),
2464 "expected a constant integer operand for !kcfi_type", MD);
2466 "expected a 32-bit integer constant operand for !kcfi_type", MD);
2471void Verifier::visitConstantExprsRecursively(
const Constant *EntryC) {
2472 if (!ConstantExprVisited.
insert(EntryC).second)
2476 Stack.push_back(EntryC);
2478 while (!
Stack.empty()) {
2482 if (
const auto *CE = dyn_cast<ConstantExpr>(
C))
2483 visitConstantExpr(CE);
2485 if (
const auto *CPA = dyn_cast<ConstantPtrAuth>(
C))
2486 visitConstantPtrAuth(CPA);
2488 if (
const auto *GV = dyn_cast<GlobalValue>(
C)) {
2491 Check(GV->
getParent() == &M,
"Referencing global in another module!",
2497 for (
const Use &U :
C->operands()) {
2498 const auto *OpC = dyn_cast<Constant>(U);
2501 if (!ConstantExprVisited.
insert(OpC).second)
2503 Stack.push_back(OpC);
2508void Verifier::visitConstantExpr(
const ConstantExpr *CE) {
2509 if (
CE->getOpcode() == Instruction::BitCast)
2512 "Invalid bitcast", CE);
2517 "signed ptrauth constant base pointer must have pointer type");
2520 "signed ptrauth constant must have same type as its base pointer");
2523 "signed ptrauth constant key must be i32 constant integer");
2526 "signed ptrauth constant address discriminator must be a pointer");
2529 "signed ptrauth constant discriminator must be i64 constant integer");
2532bool Verifier::verifyAttributeCount(
AttributeList Attrs,
unsigned Params) {
2535 return Attrs.getNumAttrSets() <= Params + 2;
2538void Verifier::verifyInlineAsmCall(
const CallBase &Call) {
2541 unsigned LabelNo = 0;
2552 if (CI.isIndirect) {
2553 const Value *Arg =
Call.getArgOperand(ArgNo);
2555 "Operand for indirect constraint must have pointer type", &Call);
2558 "Operand for indirect constraint must have elementtype attribute",
2561 Check(!
Call.paramHasAttr(ArgNo, Attribute::ElementType),
2562 "Elementtype attribute can only be applied for indirect "
2570 if (
auto *CallBr = dyn_cast<CallBrInst>(&Call)) {
2571 Check(LabelNo == CallBr->getNumIndirectDests(),
2572 "Number of label constraints does not match number of callbr dests",
2575 Check(LabelNo == 0,
"Label constraints can only be used with callbr",
2581void Verifier::verifyStatepoint(
const CallBase &Call) {
2583 Call.getCalledFunction()->getIntrinsicID() ==
2584 Intrinsic::experimental_gc_statepoint);
2586 Check(!
Call.doesNotAccessMemory() && !
Call.onlyReadsMemory() &&
2587 !
Call.onlyAccessesArgMemory(),
2588 "gc.statepoint must read and write all memory to preserve "
2589 "reordering restrictions required by safepoint semantics",
2592 const int64_t NumPatchBytes =
2593 cast<ConstantInt>(
Call.getArgOperand(1))->getSExtValue();
2594 assert(isInt<32>(NumPatchBytes) &&
"NumPatchBytesV is an i32!");
2595 Check(NumPatchBytes >= 0,
2596 "gc.statepoint number of patchable bytes must be "
2600 Type *TargetElemType =
Call.getParamElementType(2);
2601 Check(TargetElemType,
2602 "gc.statepoint callee argument must have elementtype attribute", Call);
2603 FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType);
2604 Check(TargetFuncType,
2605 "gc.statepoint callee elementtype must be function type", Call);
2607 const int NumCallArgs = cast<ConstantInt>(
Call.getArgOperand(3))->getZExtValue();
2608 Check(NumCallArgs >= 0,
2609 "gc.statepoint number of arguments to underlying call "
2612 const int NumParams = (int)TargetFuncType->getNumParams();
2613 if (TargetFuncType->isVarArg()) {
2614 Check(NumCallArgs >= NumParams,
2615 "gc.statepoint mismatch in number of vararg call args", Call);
2618 Check(TargetFuncType->getReturnType()->isVoidTy(),
2619 "gc.statepoint doesn't support wrapping non-void "
2620 "vararg functions yet",
2623 Check(NumCallArgs == NumParams,
2624 "gc.statepoint mismatch in number of call args", Call);
2627 = cast<ConstantInt>(
Call.getArgOperand(4))->getZExtValue();
2629 "unknown flag used in gc.statepoint flags argument", Call);
2634 for (
int i = 0; i < NumParams; i++) {
2635 Type *ParamType = TargetFuncType->getParamType(i);
2636 Type *ArgType =
Call.getArgOperand(5 + i)->getType();
2637 Check(ArgType == ParamType,
2638 "gc.statepoint call argument does not match wrapped "
2642 if (TargetFuncType->isVarArg()) {
2645 "Attribute 'sret' cannot be used for vararg call arguments!", Call);
2649 const int EndCallArgsInx = 4 + NumCallArgs;
2651 const Value *NumTransitionArgsV =
Call.getArgOperand(EndCallArgsInx + 1);
2652 Check(isa<ConstantInt>(NumTransitionArgsV),
2653 "gc.statepoint number of transition arguments "
2654 "must be constant integer",
2656 const int NumTransitionArgs =
2657 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2658 Check(NumTransitionArgs == 0,
2659 "gc.statepoint w/inline transition bundle is deprecated", Call);
2660 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2662 const Value *NumDeoptArgsV =
Call.getArgOperand(EndTransitionArgsInx + 1);
2663 Check(isa<ConstantInt>(NumDeoptArgsV),
2664 "gc.statepoint number of deoptimization arguments "
2665 "must be constant integer",
2667 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2668 Check(NumDeoptArgs == 0,
2669 "gc.statepoint w/inline deopt operands is deprecated", Call);
2671 const int ExpectedNumArgs = 7 + NumCallArgs;
2672 Check(ExpectedNumArgs == (
int)
Call.arg_size(),
2673 "gc.statepoint too many arguments", Call);
2678 for (
const User *U :
Call.users()) {
2679 const CallInst *UserCall = dyn_cast<const CallInst>(U);
2680 Check(UserCall,
"illegal use of statepoint token", Call, U);
2683 Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2684 "gc.result or gc.relocate are the only value uses "
2685 "of a gc.statepoint",
2687 if (isa<GCResultInst>(UserCall)) {
2689 "gc.result connected to wrong gc.statepoint", Call, UserCall);
2690 }
else if (isa<GCRelocateInst>(Call)) {
2692 "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2706void Verifier::verifyFrameRecoverIndices() {
2707 for (
auto &Counts : FrameEscapeInfo) {
2709 unsigned EscapedObjectCount = Counts.second.first;
2710 unsigned MaxRecoveredIndex = Counts.second.second;
2711 Check(MaxRecoveredIndex <= EscapedObjectCount,
2712 "all indices passed to llvm.localrecover must be less than the "
2713 "number of arguments passed to llvm.localescape in the parent "
2721 if (
auto *
II = dyn_cast<InvokeInst>(Terminator))
2722 UnwindDest =
II->getUnwindDest();
2723 else if (
auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2724 UnwindDest = CSI->getUnwindDest();
2726 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2730void Verifier::verifySiblingFuncletUnwinds() {
2733 for (
const auto &Pair : SiblingFuncletInfo) {
2735 if (Visited.
count(PredPad))
2741 if (Active.
count(SuccPad)) {
2747 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2748 if (CycleTerminator != CyclePad)
2751 }
while (CyclePad != SuccPad);
2752 Check(
false,
"EH pads can't handle each other's exceptions",
2756 if (!Visited.
insert(SuccPad).second)
2760 auto TermI = SiblingFuncletInfo.find(PredPad);
2761 if (TermI == SiblingFuncletInfo.end())
2774void Verifier::visitFunction(
const Function &
F) {
2775 visitGlobalValue(
F);
2779 unsigned NumArgs =
F.arg_size();
2781 Check(&Context == &
F.getContext(),
2782 "Function context does not match Module context!", &
F);
2784 Check(!
F.hasCommonLinkage(),
"Functions may not have common linkage", &
F);
2785 Check(FT->getNumParams() == NumArgs,
2786 "# formal arguments must match # of arguments for function type!", &
F,
2788 Check(
F.getReturnType()->isFirstClassType() ||
2789 F.getReturnType()->isVoidTy() ||
F.getReturnType()->isStructTy(),
2790 "Functions cannot return aggregate values!", &
F);
2792 Check(!
F.hasStructRetAttr() ||
F.getReturnType()->isVoidTy(),
2793 "Invalid struct return type!", &
F);
2797 Check(verifyAttributeCount(Attrs, FT->getNumParams()),
2798 "Attribute after last parameter!", &
F);
2800 CheckDI(
F.IsNewDbgInfoFormat ==
F.getParent()->IsNewDbgInfoFormat,
2801 "Function debug format should match parent module", &
F,
2802 F.IsNewDbgInfoFormat,
F.getParent(),
2803 F.getParent()->IsNewDbgInfoFormat);
2805 bool IsIntrinsic =
F.isIntrinsic();
2808 verifyFunctionAttrs(FT, Attrs, &
F, IsIntrinsic,
false);
2814 "Attribute 'builtin' can only be applied to a callsite.", &
F);
2816 Check(!
Attrs.hasAttrSomewhere(Attribute::ElementType),
2817 "Attribute 'elementtype' can only be applied to a callsite.", &
F);
2819 if (
Attrs.hasFnAttr(Attribute::Naked))
2821 Check(Arg.use_empty(),
"cannot use argument of naked function", &Arg);
2826 switch (
F.getCallingConv()) {
2831 Check(
F.arg_empty() ||
Attrs.hasParamAttr(0, Attribute::ByVal),
2832 "Calling convention parameter requires byval", &
F);
2839 Check(
F.getReturnType()->isVoidTy(),
2840 "Calling convention requires void return type", &
F);
2847 Check(!
F.hasStructRetAttr(),
"Calling convention does not allow sret", &
F);
2849 const unsigned StackAS =
DL.getAllocaAddrSpace();
2852 Check(!
Attrs.hasParamAttr(i, Attribute::ByVal),
2853 "Calling convention disallows byval", &
F);
2854 Check(!
Attrs.hasParamAttr(i, Attribute::Preallocated),
2855 "Calling convention disallows preallocated", &
F);
2856 Check(!
Attrs.hasParamAttr(i, Attribute::InAlloca),
2857 "Calling convention disallows inalloca", &
F);
2859 if (
Attrs.hasParamAttr(i, Attribute::ByRef)) {
2862 Check(Arg.getType()->getPointerAddressSpace() != StackAS,
2863 "Calling convention disallows stack byref", &
F);
2877 "Calling convention does not support varargs or "
2878 "perfect forwarding!",
2886 Check(Arg.getType() == FT->getParamType(i),
2887 "Argument value does not match function argument type!", &Arg,
2888 FT->getParamType(i));
2889 Check(Arg.getType()->isFirstClassType(),
2890 "Function arguments must have first-class types!", &Arg);
2892 Check(!Arg.getType()->isMetadataTy(),
2893 "Function takes metadata but isn't an intrinsic", &Arg, &
F);
2894 Check(!Arg.getType()->isTokenTy(),
2895 "Function takes token but isn't an intrinsic", &Arg, &
F);
2896 Check(!Arg.getType()->isX86_AMXTy(),
2897 "Function takes x86_amx but isn't an intrinsic", &Arg, &
F);
2901 if (
Attrs.hasParamAttr(i, Attribute::SwiftError)) {
2902 verifySwiftErrorValue(&Arg);
2908 Check(!
F.getReturnType()->isTokenTy(),
2909 "Function returns a token but isn't an intrinsic", &
F);
2910 Check(!
F.getReturnType()->isX86_AMXTy(),
2911 "Function returns a x86_amx but isn't an intrinsic", &
F);
2916 F.getAllMetadata(MDs);
2917 assert(
F.hasMetadata() != MDs.
empty() &&
"Bit out-of-sync");
2918 verifyFunctionMetadata(MDs);
2921 if (
F.hasPersonalityFn()) {
2922 auto *Per = dyn_cast<Function>(
F.getPersonalityFn()->stripPointerCasts());
2924 Check(Per->getParent() ==
F.getParent(),
2925 "Referencing personality function in another module!", &
F,
2926 F.getParent(), Per, Per->getParent());
2930 BlockEHFuncletColors.
clear();
2932 if (
F.isMaterializable()) {
2934 Check(MDs.
empty(),
"unmaterialized function cannot have metadata", &
F,
2936 }
else if (
F.isDeclaration()) {
2937 for (
const auto &
I : MDs) {
2939 CheckDI(
I.first != LLVMContext::MD_dbg ||
2940 !cast<DISubprogram>(
I.second)->isDistinct(),
2941 "function declaration may only have a unique !dbg attachment",
2943 Check(
I.first != LLVMContext::MD_prof,
2944 "function declaration may not have a !prof attachment", &
F);
2947 visitMDNode(*
I.second, AreDebugLocsAllowed::Yes);
2949 Check(!
F.hasPersonalityFn(),
2950 "Function declaration shouldn't have a personality routine", &
F);
2954 Check(!IsIntrinsic,
"llvm intrinsics cannot be defined!", &
F);
2959 "Entry block to function must not have predecessors!", Entry);
2962 if (
Entry->hasAddressTaken()) {
2964 "blockaddress may not be used with the entry block!", Entry);
2967 unsigned NumDebugAttachments = 0, NumProfAttachments = 0,
2968 NumKCFIAttachments = 0;
2970 for (
const auto &
I : MDs) {
2972 auto AllowLocs = AreDebugLocsAllowed::No;
2976 case LLVMContext::MD_dbg: {
2977 ++NumDebugAttachments;
2978 CheckDI(NumDebugAttachments == 1,
2979 "function must have a single !dbg attachment", &
F,
I.second);
2980 CheckDI(isa<DISubprogram>(
I.second),
2981 "function !dbg attachment must be a subprogram", &
F,
I.second);
2982 CheckDI(cast<DISubprogram>(
I.second)->isDistinct(),
2983 "function definition may only have a distinct !dbg attachment",
2986 auto *SP = cast<DISubprogram>(
I.second);
2987 const Function *&AttachedTo = DISubprogramAttachments[SP];
2988 CheckDI(!AttachedTo || AttachedTo == &
F,
2989 "DISubprogram attached to more than one function", SP, &
F);
2991 AllowLocs = AreDebugLocsAllowed::Yes;
2994 case LLVMContext::MD_prof:
2995 ++NumProfAttachments;
2996 Check(NumProfAttachments == 1,
2997 "function must have a single !prof attachment", &
F,
I.second);
2999 case LLVMContext::MD_kcfi_type:
3000 ++NumKCFIAttachments;
3001 Check(NumKCFIAttachments == 1,
3002 "function must have a single !kcfi_type attachment", &
F,
3008 visitMDNode(*
I.second, AllowLocs);
3016 if (
F.isIntrinsic() &&
F.getParent()->isMaterialized()) {
3018 if (
F.hasAddressTaken(&U,
false,
true,
false,
3020 Check(
false,
"Invalid user of intrinsic instruction!", U);
3024 switch (
F.getIntrinsicID()) {
3025 case Intrinsic::experimental_gc_get_pointer_base: {
3027 Check(FT->getNumParams() == 1,
"wrong number of parameters",
F);
3028 Check(isa<PointerType>(
F.getReturnType()),
3029 "gc.get.pointer.base must return a pointer",
F);
3030 Check(FT->getParamType(0) ==
F.getReturnType(),
3031 "gc.get.pointer.base operand and result must be of the same type",
F);
3034 case Intrinsic::experimental_gc_get_pointer_offset: {
3036 Check(FT->getNumParams() == 1,
"wrong number of parameters",
F);
3037 Check(isa<PointerType>(FT->getParamType(0)),
3038 "gc.get.pointer.offset operand must be a pointer",
F);
3039 Check(
F.getReturnType()->isIntegerTy(),
3040 "gc.get.pointer.offset must return integer",
F);
3045 auto *
N =
F.getSubprogram();
3046 HasDebugInfo = (
N !=
nullptr);
3065 CheckDI(Parent && isa<DILocalScope>(Parent),
3066 "DILocation's scope must be a DILocalScope",
N, &
F, &
I,
DL, Parent);
3069 Check(Scope,
"Failed to find DILocalScope",
DL);
3071 if (!Seen.
insert(Scope).second)
3078 if (SP && ((Scope != SP) && !Seen.
insert(SP).second))
3082 "!dbg attachment points at wrong subprogram for function",
N, &
F,
3086 for (
auto &
I : BB) {
3087 VisitDebugLoc(
I,
I.getDebugLoc().getAsMDNode());
3089 if (
auto MD =
I.getMetadata(LLVMContext::MD_loop))
3091 VisitDebugLoc(
I, dyn_cast_or_null<MDNode>(MD->
getOperand(i)));
3092 if (BrokenDebugInfo)
3099void Verifier::visitBasicBlock(
BasicBlock &BB) {
3100 InstsInThisBlock.
clear();
3101 ConvergenceVerifyHelper.
visit(BB);
3108 if (isa<PHINode>(BB.
front())) {
3113 Check(PN.getNumIncomingValues() == Preds.size(),
3114 "PHINode should have one entry for each predecessor of its "
3115 "parent basic block!",
3120 Values.
reserve(PN.getNumIncomingValues());
3121 for (
unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
3123 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
3126 for (
unsigned i = 0, e = Values.
size(); i != e; ++i) {
3131 Check(i == 0 || Values[i].first != Values[i - 1].first ||
3132 Values[i].second == Values[i - 1].second,
3133 "PHI node has multiple entries for the same basic block with "
3134 "different incoming values!",
3135 &PN, Values[i].first, Values[i].second, Values[i - 1].second);
3139 Check(Values[i].first == Preds[i],
3140 "PHI node entries do not match predecessors!", &PN,
3141 Values[i].first, Preds[i]);
3149 Check(
I.getParent() == &BB,
"Instruction has bogus parent pointer!");
3152 CheckDI(BB.IsNewDbgInfoFormat == BB.getParent()->IsNewDbgInfoFormat,
3153 "BB debug format should match parent function", &BB,
3154 BB.IsNewDbgInfoFormat, BB.getParent(),
3155 BB.getParent()->IsNewDbgInfoFormat);
3158 if (BB.IsNewDbgInfoFormat)
3159 CheckDI(!BB.getTrailingDbgRecords(),
"Basic Block has trailing DbgRecords!",
3165 Check(&
I ==
I.getParent()->getTerminator(),
3166 "Terminator found in the middle of a basic block!",
I.getParent());
3170void Verifier::visitBranchInst(
BranchInst &BI) {
3173 "Branch condition is not 'i1' type!", &BI, BI.
getCondition());
3178void Verifier::visitReturnInst(
ReturnInst &RI) {
3181 if (
F->getReturnType()->isVoidTy())
3183 "Found return instr that returns non-void in Function of void "
3185 &RI,
F->getReturnType());
3188 "Function return type does not match operand "
3189 "type of return inst!",
3190 &RI,
F->getReturnType());
3197void Verifier::visitSwitchInst(
SwitchInst &SI) {
3198 Check(
SI.getType()->isVoidTy(),
"Switch must have void result type!", &SI);
3201 Type *SwitchTy =
SI.getCondition()->getType();
3203 for (
auto &Case :
SI.cases()) {
3204 Check(isa<ConstantInt>(
SI.getOperand(Case.getCaseIndex() * 2 + 2)),
3205 "Case value is not a constant integer.", &SI);
3206 Check(Case.getCaseValue()->getType() == SwitchTy,
3207 "Switch constants must all be same type as switch value!", &SI);
3209 "Duplicate integer as switch case", &SI, Case.getCaseValue());
3217 "Indirectbr operand must have pointer type!", &BI);
3220 "Indirectbr destinations must all have pointer type!", &BI);
3225void Verifier::visitCallBrInst(
CallBrInst &CBI) {
3226 Check(CBI.
isInlineAsm(),
"Callbr is currently only used for asm-goto!", &CBI);
3228 Check(!
IA->canThrow(),
"Unwinding from Callbr is not allowed");
3230 verifyInlineAsmCall(CBI);
3234void Verifier::visitSelectInst(
SelectInst &SI) {
3237 "Invalid operands for select instruction!", &SI);
3239 Check(
SI.getTrueValue()->getType() ==
SI.getType(),
3240 "Select values must have same type as select instruction!", &SI);
3248 Check(
false,
"User-defined operators should not live outside of a pass!", &
I);
3253 Type *SrcTy =
I.getOperand(0)->getType();
3254 Type *DestTy =
I.getType();
3263 "trunc source and destination must both be a vector or neither", &
I);
3264 Check(SrcBitSize > DestBitSize,
"DestTy too big for Trunc", &
I);
3269void Verifier::visitZExtInst(
ZExtInst &
I) {
3271 Type *SrcTy =
I.getOperand(0)->getType();
3272 Type *DestTy =
I.getType();
3278 "zext source and destination must both be a vector or neither", &
I);
3282 Check(SrcBitSize < DestBitSize,
"Type too small for ZExt", &
I);
3287void Verifier::visitSExtInst(
SExtInst &
I) {
3289 Type *SrcTy =
I.getOperand(0)->getType();
3290 Type *DestTy =
I.getType();
3299 "sext source and destination must both be a vector or neither", &
I);
3300 Check(SrcBitSize < DestBitSize,
"Type too small for SExt", &
I);
3307 Type *SrcTy =
I.getOperand(0)->getType();
3308 Type *DestTy =
I.getType();
3316 "fptrunc source and destination must both be a vector or neither", &
I);
3317 Check(SrcBitSize > DestBitSize,
"DestTy too big for FPTrunc", &
I);
3324 Type *SrcTy =
I.getOperand(0)->getType();
3325 Type *DestTy =
I.getType();
3334 "fpext source and destination must both be a vector or neither", &
I);
3335 Check(SrcBitSize < DestBitSize,
"DestTy too small for FPExt", &
I);
3342 Type *SrcTy =
I.getOperand(0)->getType();
3343 Type *DestTy =
I.getType();
3348 Check(SrcVec == DstVec,
3349 "UIToFP source and dest must both be vector or scalar", &
I);
3351 "UIToFP source must be integer or integer vector", &
I);
3355 if (SrcVec && DstVec)
3356 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3357 cast<VectorType>(DestTy)->getElementCount(),
3358 "UIToFP source and dest vector length mismatch", &
I);
3365 Type *SrcTy =
I.getOperand(0)->getType();
3366 Type *DestTy =
I.getType();
3371 Check(SrcVec == DstVec,
3372 "SIToFP source and dest must both be vector or scalar", &
I);
3374 "SIToFP source must be integer or integer vector", &
I);
3378 if (SrcVec && DstVec)
3379 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3380 cast<VectorType>(DestTy)->getElementCount(),
3381 "SIToFP source and dest vector length mismatch", &
I);
3388 Type *SrcTy =
I.getOperand(0)->getType();
3389 Type *DestTy =
I.getType();
3394 Check(SrcVec == DstVec,
3395 "FPToUI source and dest must both be vector or scalar", &
I);
3398 "FPToUI result must be integer or integer vector", &
I);
3400 if (SrcVec && DstVec)
3401 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3402 cast<VectorType>(DestTy)->getElementCount(),
3403 "FPToUI source and dest vector length mismatch", &
I);
3410 Type *SrcTy =
I.getOperand(0)->getType();
3411 Type *DestTy =
I.getType();
3416 Check(SrcVec == DstVec,
3417 "FPToSI source and dest must both be vector or scalar", &
I);
3420 "FPToSI result must be integer or integer vector", &
I);
3422 if (SrcVec && DstVec)
3423 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3424 cast<VectorType>(DestTy)->getElementCount(),
3425 "FPToSI source and dest vector length mismatch", &
I);
3432 Type *SrcTy =
I.getOperand(0)->getType();
3433 Type *DestTy =
I.getType();
3442 auto *VSrc = cast<VectorType>(SrcTy);
3443 auto *VDest = cast<VectorType>(DestTy);
3444 Check(VSrc->getElementCount() == VDest->getElementCount(),
3445 "PtrToInt Vector width mismatch", &
I);
3453 Type *SrcTy =
I.getOperand(0)->getType();
3454 Type *DestTy =
I.getType();
3462 auto *VSrc = cast<VectorType>(SrcTy);
3463 auto *VDest = cast<VectorType>(DestTy);
3464 Check(VSrc->getElementCount() == VDest->getElementCount(),
3465 "IntToPtr Vector width mismatch", &
I);
3473 "Invalid bitcast", &
I);
3478 Type *SrcTy =
I.getOperand(0)->getType();
3479 Type *DestTy =
I.getType();
3486 "AddrSpaceCast must be between different address spaces", &
I);
3487 if (
auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3488 Check(SrcVTy->getElementCount() ==
3489 cast<VectorType>(DestTy)->getElementCount(),
3490 "AddrSpaceCast vector pointer number of elements mismatch", &
I);
3496void Verifier::visitPHINode(
PHINode &PN) {
3503 "PHI nodes not grouped at top of basic block!", &PN, PN.
getParent());
3512 "PHI node operands are not the same type as the result!", &PN);
3520void Verifier::visitCallBase(
CallBase &Call) {
3521 Check(
Call.getCalledOperand()->getType()->isPointerTy(),
3522 "Called function must be a pointer!", Call);
3526 if (FTy->isVarArg())
3527 Check(
Call.arg_size() >= FTy->getNumParams(),
3528 "Called function requires more parameters than were provided!", Call);
3530 Check(
Call.arg_size() == FTy->getNumParams(),
3531 "Incorrect number of arguments passed to called function!", Call);
3534 for (
unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3535 Check(
Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3536 "Call parameter type does not match function signature!",
3537 Call.getArgOperand(i), FTy->getParamType(i), Call);
3541 Check(verifyAttributeCount(Attrs,
Call.arg_size()),
3542 "Attribute after last parameter!", Call);
3545 dyn_cast<Function>(
Call.getCalledOperand()->stripPointerCasts());
3549 "Intrinsic called with incompatible signature", Call);
3553 auto CC =
Call.getCallingConv();
3556 "Direct calls to amdgpu_cs_chain/amdgpu_cs_chain_preserve functions "
3557 "not allowed. Please use the @llvm.amdgpu.cs.chain intrinsic instead.",
3564 auto VerifyTypeAlign = [&](
Type *Ty,
const Twine &Message) {
3567 Align ABIAlign =
DL.getABITypeAlign(Ty);
3569 "Incorrect alignment of " + Message +
" to called function!", Call);
3573 VerifyTypeAlign(FTy->getReturnType(),
"return type");
3574 for (
unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3575 Type *Ty = FTy->getParamType(i);
3576 VerifyTypeAlign(Ty,
"argument passed");
3580 if (
Attrs.hasFnAttr(Attribute::Speculatable)) {
3584 "speculatable attribute may not apply to call sites", Call);
3587 if (
Attrs.hasFnAttr(Attribute::Preallocated)) {
3588 Check(
Call.getCalledFunction()->getIntrinsicID() ==
3589 Intrinsic::call_preallocated_arg,
3590 "preallocated as a call site attribute can only be on "
3591 "llvm.call.preallocated.arg");
3595 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic,
Call.isInlineAsm());
3600 if (
Call.hasInAllocaArgument()) {
3601 Value *InAllocaArg =
Call.getArgOperand(FTy->getNumParams() - 1);
3603 Check(AI->isUsedWithInAlloca(),
3604 "inalloca argument for call has mismatched alloca", AI, Call);
3610 for (
unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3611 if (
Call.paramHasAttr(i, Attribute::SwiftError)) {
3612 Value *SwiftErrorArg =
Call.getArgOperand(i);
3614 Check(AI->isSwiftError(),
3615 "swifterror argument for call has mismatched alloca", AI, Call);
3618 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3619 Check(ArgI,
"swifterror argument should come from an alloca or parameter",
3620 SwiftErrorArg, Call);
3621 Check(ArgI->hasSwiftErrorAttr(),
3622 "swifterror argument for call has mismatched parameter", ArgI,
3626 if (
Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3629 Check(Callee &&
Callee->hasParamAttribute(i, Attribute::ImmArg),
3630 "immarg may not apply only to call sites",
Call.getArgOperand(i),
3634 if (
Call.paramHasAttr(i, Attribute::ImmArg)) {
3636 Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3637 "immarg operand has non-immediate parameter", ArgVal, Call);
3640 if (
Call.paramHasAttr(i, Attribute::Preallocated)) {
3644 bool isMustTail =
Call.isMustTailCall();
3645 Check(hasOB != isMustTail,
3646 "preallocated operand either requires a preallocated bundle or "
3647 "the call to be musttail (but not both)",
3652 if (FTy->isVarArg()) {
3654 bool SawNest =
false;
3655 bool SawReturned =
false;
3657 for (
unsigned Idx = 0;
Idx < FTy->getNumParams(); ++
Idx) {
3658 if (
Attrs.hasParamAttr(
Idx, Attribute::Nest))
3660 if (
Attrs.hasParamAttr(
Idx, Attribute::Returned))
3665 for (
unsigned Idx = FTy->getNumParams();
Idx <
Call.arg_size(); ++
Idx) {
3668 verifyParameterAttrs(ArgAttrs, Ty, &Call);
3671 Check(!SawNest,
"More than one parameter has attribute nest!", Call);
3676 Check(!SawReturned,
"More than one parameter has attribute returned!",
3679 "Incompatible argument and return types for 'returned' "
3687 if (!
Call.getCalledFunction() ||
3688 Call.getCalledFunction()->getIntrinsicID() !=
3689 Intrinsic::experimental_gc_statepoint)
3691 "Attribute 'sret' cannot be used for vararg call arguments!",
3696 "inalloca isn't on the last argument!", Call);
3702 for (
Type *ParamTy : FTy->params()) {
3703 Check(!ParamTy->isMetadataTy(),
3704 "Function has metadata parameter but isn't an intrinsic", Call);
3705 Check(!ParamTy->isTokenTy(),
3706 "Function has token parameter but isn't an intrinsic", Call);
3711 if (!
Call.getCalledFunction()) {
3712 Check(!FTy->getReturnType()->isTokenTy(),
3713 "Return type cannot be token for indirect call!");
3714 Check(!FTy->getReturnType()->isX86_AMXTy(),
3715 "Return type cannot be x86_amx for indirect call!");
3720 visitIntrinsicCall(
ID, Call);
3725 bool FoundDeoptBundle =
false, FoundFuncletBundle =
false,
3726 FoundGCTransitionBundle =
false, FoundCFGuardTargetBundle =
false,
3727 FoundPreallocatedBundle =
false, FoundGCLiveBundle =
false,
3728 FoundPtrauthBundle =
false, FoundKCFIBundle =
false,
3729 FoundAttachedCallBundle =
false;
3730 for (
unsigned i = 0, e =
Call.getNumOperandBundles(); i < e; ++i) {
3734 Check(!FoundDeoptBundle,
"Multiple deopt operand bundles", Call);
3735 FoundDeoptBundle =
true;
3737 Check(!FoundGCTransitionBundle,
"Multiple gc-transition operand bundles",
3739 FoundGCTransitionBundle =
true;
3741 Check(!FoundFuncletBundle,
"Multiple funclet operand bundles", Call);
3742 FoundFuncletBundle =
true;
3744 "Expected exactly one funclet bundle operand", Call);
3746 "Funclet bundle operands should correspond to a FuncletPadInst",
3749 Check(!FoundCFGuardTargetBundle,
"Multiple CFGuardTarget operand bundles",
3751 FoundCFGuardTargetBundle =
true;
3753 "Expected exactly one cfguardtarget bundle operand", Call);
3755 Check(!FoundPtrauthBundle,
"Multiple ptrauth operand bundles", Call);
3756 FoundPtrauthBundle =
true;
3758 "Expected exactly two ptrauth bundle operands", Call);
3760 BU.
Inputs[0]->getType()->isIntegerTy(32),
3761 "Ptrauth bundle key operand must be an i32 constant", Call);
3763 "Ptrauth bundle discriminator operand must be an i64", Call);
3765 Check(!FoundKCFIBundle,
"Multiple kcfi operand bundles", Call);
3766 FoundKCFIBundle =
true;
3767 Check(BU.
Inputs.size() == 1,
"Expected exactly one kcfi bundle operand",
3770 BU.
Inputs[0]->getType()->isIntegerTy(32),
3771 "Kcfi bundle operand must be an i32 constant", Call);
3773 Check(!FoundPreallocatedBundle,
"Multiple preallocated operand bundles",
3775 FoundPreallocatedBundle =
true;
3777 "Expected exactly one preallocated bundle operand", Call);
3778 auto Input = dyn_cast<IntrinsicInst>(BU.
Inputs.front());
3780 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3781 "\"preallocated\" argument must be a token from "
3782 "llvm.call.preallocated.setup",
3785 Check(!FoundGCLiveBundle,
"Multiple gc-live operand bundles", Call);
3786 FoundGCLiveBundle =
true;
3788 Check(!FoundAttachedCallBundle,
3789 "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3790 FoundAttachedCallBundle =
true;
3791 verifyAttachedCallBundle(Call, BU);
3796 Check(!(
Call.getCalledFunction() && FoundPtrauthBundle),
3797 "Direct call cannot have a ptrauth bundle", Call);
3804 if (
Call.getFunction()->getSubprogram() &&
Call.getCalledFunction() &&
3805 !
Call.getCalledFunction()->isInterposable() &&
3806 !
Call.getCalledFunction()->isDeclaration() &&
3807 Call.getCalledFunction()->getSubprogram())
3809 "inlinable function call in a function with "
3810 "debug info must have a !dbg location",
3813 if (
Call.isInlineAsm())
3814 verifyInlineAsmCall(Call);
3816 ConvergenceVerifyHelper.
visit(Call);
3821void Verifier::verifyTailCCMustTailAttrs(
const AttrBuilder &Attrs,
3824 Twine(
"inalloca attribute not allowed in ") + Context);
3826 Twine(
"inreg attribute not allowed in ") + Context);
3827 Check(!
Attrs.contains(Attribute::SwiftError),
3828 Twine(
"swifterror attribute not allowed in ") + Context);
3829 Check(!
Attrs.contains(Attribute::Preallocated),
3830 Twine(
"preallocated attribute not allowed in ") + Context);
3832 Twine(
"byref attribute not allowed in ") + Context);
3844 return PL->getAddressSpace() == PR->getAddressSpace();
3849 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3850 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf,
3851 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated,
3854 for (
auto AK : ABIAttrs) {
3855 Attribute Attr = Attrs.getParamAttrs(
I).getAttribute(AK);
3857 Copy.addAttribute(Attr);
3861 if (Attrs.hasParamAttr(
I, Attribute::Alignment) &&
3862 (Attrs.hasParamAttr(
I, Attribute::ByVal) ||
3863 Attrs.hasParamAttr(
I, Attribute::ByRef)))
3864 Copy.addAlignmentAttr(Attrs.getParamAlignment(
I));
3868void Verifier::verifyMustTailCall(
CallInst &CI) {
3874 Check(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3875 "cannot guarantee tail call due to mismatched varargs", &CI);
3877 "cannot guarantee tail call due to mismatched return types", &CI);
3881 "cannot guarantee tail call due to mismatched calling conv", &CI);
3887 Value *RetVal = &CI;
3891 if (
BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3893 "bitcast following musttail call must use the call", BI);
3900 Check(Ret,
"musttail call must precede a ret with an optional bitcast", &CI);
3901 Check(!
Ret->getReturnValue() ||
Ret->getReturnValue() == RetVal ||
3902 isa<UndefValue>(
Ret->getReturnValue()),
3903 "musttail call result must be returned", Ret);
3914 for (
unsigned I = 0, E = CallerTy->getNumParams();
I != E; ++
I) {
3917 verifyTailCCMustTailAttrs(ABIAttrs, Context);
3919 for (
unsigned I = 0, E = CalleeTy->getNumParams();
I != E; ++
I) {
3922 verifyTailCCMustTailAttrs(ABIAttrs, Context);
3925 Check(!CallerTy->isVarArg(),
Twine(
"cannot guarantee ") + CCName +
3926 " tail call for varargs function");
3934 Check(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3935 "cannot guarantee tail call due to mismatched parameter counts", &CI);
3936 for (
unsigned I = 0, E = CallerTy->getNumParams();
I != E; ++
I) {
3939 "cannot guarantee tail call due to mismatched parameter types", &CI);
3945 for (
unsigned I = 0, E = CallerTy->getNumParams();
I != E; ++
I) {
3948 Check(CallerABIAttrs == CalleeABIAttrs,
3949 "cannot guarantee tail call due to mismatched ABI impacting "
3950 "function attributes",
3955void Verifier::visitCallInst(
CallInst &CI) {
3959 verifyMustTailCall(CI);
3968 II.getUnwindDest()->isEHPad(),
3969 "The unwind destination does not have an exception handling instruction!",
3978 Check(
U.getType() ==
U.getOperand(0)->getType(),
3979 "Unary operators must have same type for"
3980 "operands and result!",
3983 switch (
U.getOpcode()) {
3986 case Instruction::FNeg:
3987 Check(
U.getType()->isFPOrFPVectorTy(),
3988 "FNeg operator only works with float types!", &U);
4001 Check(
B.getOperand(0)->getType() ==
B.getOperand(1)->getType(),
4002 "Both operands to a binary operator are not of the same type!", &
B);
4004 switch (
B.getOpcode()) {
4007 case Instruction::Add:
4008 case Instruction::Sub:
4009 case Instruction::Mul:
4010 case Instruction::SDiv:
4011 case Instruction::UDiv:
4012 case Instruction::SRem:
4013 case Instruction::URem:
4014 Check(
B.getType()->isIntOrIntVectorTy(),
4015 "Integer arithmetic operators only work with integral types!", &
B);
4016 Check(
B.getType() ==
B.getOperand(0)->getType(),
4017 "Integer arithmetic operators must have same type "
4018 "for operands and result!",
4023 case Instruction::FAdd:
4024 case Instruction::FSub:
4025 case Instruction::FMul:
4026 case Instruction::FDiv:
4027 case Instruction::FRem:
4028 Check(
B.getType()->isFPOrFPVectorTy(),
4029 "Floating-point arithmetic operators only work with "
4030 "floating-point types!",
4032 Check(
B.getType() ==
B.getOperand(0)->getType(),
4033 "Floating-point arithmetic operators must have same type "
4034 "for operands and result!",
4038 case Instruction::And:
4039 case Instruction::Or:
4040 case Instruction::Xor:
4041 Check(
B.getType()->isIntOrIntVectorTy(),
4042 "Logical operators only work with integral types!", &
B);
4043 Check(
B.getType() ==
B.getOperand(0)->getType(),
4044 "Logical operators must have same type for operands and result!", &
B);
4046 case Instruction::Shl:
4047 case Instruction::LShr:
4048 case Instruction::AShr:
4049 Check(
B.getType()->isIntOrIntVectorTy(),
4050 "Shifts only work with integral types!", &
B);
4051 Check(
B.getType() ==
B.getOperand(0)->getType(),
4052 "Shift return type must be same as operands!", &
B);
4061void Verifier::visitICmpInst(
ICmpInst &IC) {
4065 Check(Op0Ty == Op1Ty,
4066 "Both operands to ICmp instruction are not of the same type!", &IC);
4069 "Invalid operand types for ICmp instruction", &IC);
4076void Verifier::visitFCmpInst(
FCmpInst &FC) {
4078 Type *Op0Ty =
FC.getOperand(0)->getType();
4079 Type *Op1Ty =
FC.getOperand(1)->getType();
4080 Check(Op0Ty == Op1Ty,
4081 "Both operands to FCmp instruction are not of the same type!", &FC);
4086 Check(
FC.isFPPredicate(),
"Invalid predicate in FCmp instruction!", &FC);
4093 "Invalid extractelement operands!", &EI);
4100 "Invalid insertelement operands!", &IE);
4107 "Invalid shufflevector operands!", &SV);
4112 Type *TargetTy =
GEP.getPointerOperandType()->getScalarType();
4114 Check(isa<PointerType>(TargetTy),
4115 "GEP base pointer is not a vector or a vector of pointers", &
GEP);
4116 Check(
GEP.getSourceElementType()->isSized(),
"GEP into unsized type!", &
GEP);
4118 if (
auto *STy = dyn_cast<StructType>(
GEP.getSourceElementType())) {
4120 "getelementptr cannot target structure that contains scalable vector"
4127 all_of(Idxs, [](
Value *V) {
return V->getType()->isIntOrIntVectorTy(); }),
4128 "GEP indexes must be integers", &
GEP);
4131 Check(ElTy,
"Invalid indices for GEP pointer type!", &
GEP);
4133 PointerType *PtrTy = dyn_cast<PointerType>(
GEP.getType()->getScalarType());
4135 Check(PtrTy &&
GEP.getResultElementType() == ElTy,
4136 "GEP is not of right type for indices!", &
GEP, ElTy);
4138 if (
auto *GEPVTy = dyn_cast<VectorType>(
GEP.getType())) {
4141 if (
GEP.getPointerOperandType()->isVectorTy())
4144 cast<VectorType>(
GEP.getPointerOperandType())->getElementCount(),
4145 "Vector GEP result width doesn't match operand's", &
GEP);
4147 Type *IndexTy =
Idx->getType();
4148 if (
auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
4150 Check(IndexWidth == GEPWidth,
"Invalid GEP index vector width", &
GEP);
4153 "All GEP indices should be of integer type");
4157 Check(
GEP.getAddressSpace() == PtrTy->getAddressSpace(),
4158 "GEP address space doesn't match type", &
GEP);
4164 return A.getUpper() ==
B.getLower() ||
A.getLower() ==
B.getUpper();
4170 Type *Ty, RangeLikeMetadataKind Kind) {
4171 unsigned NumOperands =
Range->getNumOperands();
4172 Check(NumOperands % 2 == 0,
"Unfinished range!",
Range);
4173 unsigned NumRanges = NumOperands / 2;
4174 Check(NumRanges >= 1,
"It should have at least one range!",
Range);
4177 for (
unsigned i = 0; i < NumRanges; ++i) {
4179 mdconst::dyn_extract<ConstantInt>(
Range->getOperand(2 * i));
4180 Check(
Low,
"The lower limit must be an integer!",
Low);
4182 mdconst::dyn_extract<ConstantInt>(
Range->getOperand(2 * i + 1));
4185 Check(
High->getType() ==
Low->getType(),
"Range pair types must match!",
4188 if (Kind == RangeLikeMetadataKind::NoaliasAddrspace) {
4190 "noalias.addrspace type must be i32!", &
I);
4193 "Range types must match instruction type!", &
I);
4202 "The upper and lower limits cannot be the same value", &
I);
4205 Check(!CurRange.isEmptySet() &&
4206 (Kind == RangeLikeMetadataKind::AbsoluteSymbol ||
4207 !CurRange.isFullSet()),
4208 "Range must not be empty!",
Range);
4210 Check(CurRange.intersectWith(LastRange).isEmptySet(),
4211 "Intervals are overlapping",
Range);
4212 Check(LowV.
sgt(LastRange.getLower()),
"Intervals are not in order",
4219 if (NumRanges > 2) {
4221 mdconst::dyn_extract<ConstantInt>(
Range->getOperand(0))->getValue();
4223 mdconst::dyn_extract<ConstantInt>(
Range->getOperand(1))->getValue();
4225 Check(FirstRange.intersectWith(LastRange).isEmptySet(),
4226 "Intervals are overlapping",
Range);
4234 "precondition violation");
4235 verifyRangeLikeMetadata(
I,
Range, Ty, RangeLikeMetadataKind::Range);
4241 "precondition violation");
4242 verifyRangeLikeMetadata(
I,
Range, Ty,
4243 RangeLikeMetadataKind::NoaliasAddrspace);
4247 unsigned Size =
DL.getTypeSizeInBits(Ty);
4248 Check(
Size >= 8,
"atomic memory access' size must be byte-sized", Ty,
I);
4250 "atomic memory access' operand must have a power-of-two size", Ty,
I);
4253void Verifier::visitLoadInst(
LoadInst &LI) {
4255 Check(PTy,
"Load operand must be a pointer.", &LI);
4259 "huge alignment values are unsupported", &LI);
4261 Check(ElTy->
isSized(),
"loading unsized types is not allowed", &LI);
4265 "Load cannot have Release ordering", &LI);
4267 "atomic load operand must have integer, pointer, or floating point "
4270 checkAtomicMemAccessSize(ElTy, &LI);
4273 "Non-atomic load cannot have SynchronizationScope specified", &LI);
4279void Verifier::visitStoreInst(
StoreInst &SI) {
4280 PointerType *PTy = dyn_cast<PointerType>(
SI.getOperand(1)->getType());
4281 Check(PTy,
"Store operand must be a pointer.", &SI);
4282 Type *ElTy =
SI.getOperand(0)->getType();
4285 "huge alignment values are unsupported", &SI);
4287 Check(ElTy->
isSized(),
"storing unsized types is not allowed", &SI);
4288 if (
SI.isAtomic()) {
4291 "Store cannot have Acquire ordering", &SI);
4293 "atomic store operand must have integer, pointer, or floating point "
4296 checkAtomicMemAccessSize(ElTy, &SI);
4299 "Non-atomic store cannot have SynchronizationScope specified", &SI);
4305void Verifier::verifySwiftErrorCall(
CallBase &Call,
4306 const Value *SwiftErrorVal) {
4308 if (
I.value() == SwiftErrorVal) {
4309 Check(
Call.paramHasAttr(
I.index(), Attribute::SwiftError),
4310 "swifterror value when used in a callsite should be marked "
4311 "with swifterror attribute",
4312 SwiftErrorVal, Call);
4317void Verifier::verifySwiftErrorValue(
const Value *SwiftErrorVal) {
4320 for (
const User *U : SwiftErrorVal->
users()) {
4321 Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
4323 "swifterror value can only be loaded and stored from, or "
4324 "as a swifterror argument!",
4327 if (
auto StoreI = dyn_cast<StoreInst>(U))
4328 Check(StoreI->getOperand(1) == SwiftErrorVal,
4329 "swifterror value should be the second operand when used "
4332 if (
auto *Call = dyn_cast<CallBase>(U))
4333 verifySwiftErrorCall(*
const_cast<CallBase *
>(Call), SwiftErrorVal);
4337void Verifier::visitAllocaInst(
AllocaInst &AI) {
4340 Check(Ty->
isSized(&Visited),
"Cannot allocate unsized type", &AI);
4344 "Alloca has illegal target extension type", &AI);
4346 "Alloca array size must have integer type", &AI);
4349 "huge alignment values are unsupported", &AI);
4355 "swifterror alloca must not be array allocation", &AI);
4356 verifySwiftErrorValue(&AI);
4365 "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
4366 checkAtomicMemAccessSize(ElTy, &CXI);
4372 "atomicrmw instructions cannot be unordered.", &RMWI);
4379 " operand must have integer or floating point type!",
4384 " operand must have floating-point or fixed vector of floating-point "
4390 " operand must have integer type!",
4393 checkAtomicMemAccessSize(ElTy, &RMWI);
4395 "Invalid binary operation!", &RMWI);
4399void Verifier::visitFenceInst(
FenceInst &FI) {
4405 "fence instructions may only have acquire, release, acq_rel, or "
4406 "seq_cst ordering.",
4414 "Invalid ExtractValueInst operands!", &EVI);
4423 "Invalid InsertValueInst operands!", &IVI);
4429 if (
auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
4430 return FPI->getParentPad();
4432 return cast<CatchSwitchInst>(EHPad)->getParentPad();
4441 Check(BB != &
F->getEntryBlock(),
"EH pad cannot be in entry block.", &
I);
4443 if (
auto *LPI = dyn_cast<LandingPadInst>(&
I)) {
4448 const auto *
II = dyn_cast<InvokeInst>(PredBB->getTerminator());
4449 Check(
II &&
II->getUnwindDest() == BB &&
II->getNormalDest() != BB,
4450 "Block containing LandingPadInst must be jumped to "
4451 "only by the unwind edge of an invoke.",
4456 if (
auto *CPI = dyn_cast<CatchPadInst>(&
I)) {
4459 "Block containg CatchPadInst must be jumped to "
4460 "only by its catchswitch.",
4462 Check(BB != CPI->getCatchSwitch()->getUnwindDest(),
4463 "Catchswitch cannot unwind to one of its catchpads",
4464 CPI->getCatchSwitch(), CPI);
4475 if (
auto *
II = dyn_cast<InvokeInst>(TI)) {
4476 Check(
II->getUnwindDest() == BB &&
II->getNormalDest() != BB,
4477 "EH pad must be jumped to via an unwind edge", ToPad,
II);
4479 dyn_cast<Function>(
II->getCalledOperand()->stripPointerCasts());
4480 if (CalledFn && CalledFn->isIntrinsic() &&
II->doesNotThrow() &&
4484 FromPad = Bundle->Inputs[0];
4487 }
else if (
auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4488 FromPad = CRI->getOperand(0);
4489 Check(FromPad != ToPadParent,
"A cleanupret must exit its cleanup", CRI);
4490 }
else if (
auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4493 Check(
false,
"EH pad must be jumped to via an unwind edge", ToPad, TI);
4499 Check(FromPad != ToPad,
4500 "EH pad cannot handle exceptions raised within it", FromPad, TI);
4501 if (FromPad == ToPadParent) {
4505 Check(!isa<ConstantTokenNone>(FromPad),
4506 "A single unwind edge may only enter one EH pad", TI);
4507 Check(Seen.
insert(FromPad).second,
"EH pad jumps through a cycle of pads",
4512 Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad),
4513 "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
4522 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4524 visitEHPadPredecessors(LPI);
4526 if (!LandingPadResultTy)
4527 LandingPadResultTy = LPI.
getType();
4530 "The landingpad instruction should have a consistent result type "
4531 "inside a function.",
4535 Check(
F->hasPersonalityFn(),
4536 "LandingPadInst needs to be in a function with a personality.", &LPI);
4541 "LandingPadInst not the first non-PHI instruction in the block.", &LPI);
4547 "Catch operand does not have pointer type!", &LPI);
4549 Check(LPI.
isFilter(i),
"Clause is neither catch nor filter!", &LPI);
4551 "Filter operand is not an array of constants!", &LPI);
4558void Verifier::visitResumeInst(
ResumeInst &RI) {
4560 "ResumeInst needs to be in a function with a personality.", &RI);
4562 if (!LandingPadResultTy)
4566 "The resume instruction should have a consistent result type "
4567 "inside a function.",
4577 Check(
F->hasPersonalityFn(),
4578 "CatchPadInst needs to be in a function with a personality.", &CPI);
4581 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4587 "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4589 visitEHPadPredecessors(CPI);
4595 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4605 Check(
F->hasPersonalityFn(),
4606 "CleanupPadInst needs to be in a function with a personality.", &CPI);
4611 "CleanupPadInst not the first non-PHI instruction in the block.", &CPI);
4614 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4615 "CleanupPadInst has an invalid parent.", &CPI);
4617 visitEHPadPredecessors(CPI);
4622 User *FirstUser =
nullptr;
4623 Value *FirstUnwindPad =
nullptr;
4627 while (!Worklist.empty()) {
4630 "FuncletPadInst must not be nested within itself", CurrentPad);
4631 Value *UnresolvedAncestorPad =
nullptr;
4634 if (
auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4635 UnwindDest = CRI->getUnwindDest();
4636 }
else if (
auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4641 if (CSI->unwindsToCaller())
4643 UnwindDest = CSI->getUnwindDest();
4644 }
else if (
auto *
II = dyn_cast<InvokeInst>(U)) {
4645 UnwindDest =
II->getUnwindDest();
4646 }
else if (isa<CallInst>(U)) {
4651 }
else if (
auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4655 Worklist.push_back(CPI);
4658 Check(isa<CatchReturnInst>(U),
"Bogus funclet pad use", U);
4666 if (!cast<Instruction>(UnwindPad)->isEHPad())
4670 if (UnwindParent == CurrentPad)
4676 Value *ExitedPad = CurrentPad;
4679 if (ExitedPad == &FPI) {
4684 UnresolvedAncestorPad = &FPI;
4688 if (ExitedParent == UnwindParent) {
4692 UnresolvedAncestorPad = ExitedParent;
4695 ExitedPad = ExitedParent;
4696 }
while (!isa<ConstantTokenNone>(ExitedPad));
4701 UnresolvedAncestorPad = &FPI;
4708 Check(UnwindPad == FirstUnwindPad,
4709 "Unwind edges out of a funclet "
4710 "pad must have the same unwind "
4712 &FPI, U, FirstUser);
4715 FirstUnwindPad = UnwindPad;
4717 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4719 SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4724 if (CurrentPad != &FPI)
4727 if (UnresolvedAncestorPad) {
4728 if (CurrentPad == UnresolvedAncestorPad) {
4732 assert(CurrentPad == &FPI);
4740 Value *ResolvedPad = CurrentPad;
4741 while (!Worklist.empty()) {
4742 Value *UnclePad = Worklist.back();
4746 while (ResolvedPad != AncestorPad) {
4748 if (ResolvedParent == UnresolvedAncestorPad) {
4751 ResolvedPad = ResolvedParent;
4755 if (ResolvedPad != AncestorPad)
4758 Worklist.pop_back();
4763 if (FirstUnwindPad) {
4764 if (
auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.
getParentPad())) {
4765 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4766 Value *SwitchUnwindPad;
4767 if (SwitchUnwindDest)
4771 Check(SwitchUnwindPad == FirstUnwindPad,
4772 "Unwind edges out of a catch must have the same unwind dest as "
4773 "the parent catchswitch",
4774 &FPI, FirstUser, CatchSwitch);
4785 Check(
F->hasPersonalityFn(),
4786 "CatchSwitchInst needs to be in a function with a personality.",
4792 "CatchSwitchInst not the first non-PHI instruction in the block.",
4796 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4797 "CatchSwitchInst has an invalid parent.", ParentPad);
4801 Check(
I->isEHPad() && !isa<LandingPadInst>(
I),
4802 "CatchSwitchInst must unwind to an EH block which is not a "
4808 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4812 "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4815 Check(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4816 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4819 visitEHPadPredecessors(CatchSwitch);
4825 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4830 Check(
I->isEHPad() && !isa<LandingPadInst>(
I),
4831 "CleanupReturnInst must unwind to an EH block which is not a "
4839void Verifier::verifyDominatesUse(
Instruction &
I,
unsigned i) {
4845 if (
II->getNormalDest() ==
II->getUnwindDest())
4856 if (!isa<PHINode>(
I) && InstsInThisBlock.
count(
Op))
4859 const Use &
U =
I.getOperandUse(i);
4864 Check(
I.getType()->isPointerTy(),
4865 "dereferenceable, dereferenceable_or_null "
4866 "apply only to pointer types",
4868 Check((isa<LoadInst>(
I) || isa<IntToPtrInst>(
I)),
4869 "dereferenceable, dereferenceable_or_null apply only to load"
4870 " and inttoptr instructions, use attributes for calls or invokes",
4873 "dereferenceable, dereferenceable_or_null "
4874 "take one operand!",
4879 "dereferenceable_or_null metadata value must be an i64!",
4885 "!prof annotations should have no less than 2 operands", MD);
4888 Check(MD->
getOperand(0) !=
nullptr,
"first operand should not be null", MD);
4890 "expected string with name of the !prof annotation", MD);
4895 if (ProfName ==
"branch_weights") {
4897 if (isa<InvokeInst>(&
I)) {
4898 Check(NumBranchWeights == 1 || NumBranchWeights == 2,
4899 "Wrong number of InvokeInst branch_weights operands", MD);
4901 unsigned ExpectedNumOperands = 0;
4904 else if (
SwitchInst *SI = dyn_cast<SwitchInst>(&
I))
4905 ExpectedNumOperands =
SI->getNumSuccessors();
4906 else if (isa<CallInst>(&
I))
4907 ExpectedNumOperands = 1;
4909 ExpectedNumOperands = IBI->getNumDestinations();
4910 else if (isa<SelectInst>(&
I))
4911 ExpectedNumOperands = 2;
4912 else if (
CallBrInst *CI = dyn_cast<CallBrInst>(&
I))
4915 CheckFailed(
"!prof branch_weights are not allowed for this instruction",
4918 Check(NumBranchWeights == ExpectedNumOperands,
"Wrong number of operands",
4924 Check(MDO,
"second operand should not be null", MD);
4925 Check(mdconst::dyn_extract<ConstantInt>(MDO),
4926 "!prof brunch_weights operand is not a const int");
4932 assert(
I.hasMetadata(LLVMContext::MD_DIAssignID));
4933 bool ExpectedInstTy =
4934 isa<AllocaInst>(
I) || isa<StoreInst>(
I) || isa<MemIntrinsic>(
I);
4935 CheckDI(ExpectedInstTy,
"!DIAssignID attached to unexpected instruction kind",
4942 "!DIAssignID should only be used by llvm.dbg.assign intrinsics",
4945 if (
auto *DAI = dyn_cast<DbgAssignIntrinsic>(
User))
4946 CheckDI(DAI->getFunction() ==
I.getFunction(),
4947 "dbg.assign not in same function as inst", DAI, &
I);
4951 cast<DIAssignID>(MD)->getAllDbgVariableRecordUsers()) {
4953 "!DIAssignID should only be used by Assign DVRs.", MD, DVR);
4954 CheckDI(DVR->getFunction() ==
I.getFunction(),
4955 "DVRAssign not in same function as inst", DVR, &
I);
4961 "!mmra metadata attached to unexpected instruction kind",
I, MD);
4971 Check(isa<MDTuple>(MD),
"!mmra expected to be a metadata tuple",
I, MD);
4974 "!mmra metadata tuple operand is not an MMRA tag",
I, MDOp.get());
4977void Verifier::visitCallStackMetadata(
MDNode *MD) {
4981 "call stack metadata should have at least 1 operand", MD);
4984 Check(mdconst::dyn_extract_or_null<ConstantInt>(
Op),
4985 "call stack metadata operand should be constant integer",
Op);
4989 Check(isa<CallBase>(
I),
"!memprof metadata should only exist on calls", &
I);
4991 "!memprof annotations should have at least 1 metadata operand "
4996 for (
auto &MIBOp : MD->
operands()) {
4997 MDNode *MIB = dyn_cast<MDNode>(MIBOp);
5002 "Each !memprof MemInfoBlock should have at least 2 operands", MIB);
5006 "!memprof MemInfoBlock first operand should not be null", MIB);
5008 "!memprof MemInfoBlock first operand should be an MDNode", MIB);
5010 visitCallStackMetadata(StackMD);
5017 "!memprof MemInfoBlock second operand should be an MDString",
5026 Check(OpNode,
"Not all !memprof MemInfoBlock operands 2 to N are MDNode",
5029 "Not all !memprof MemInfoBlock operands 2 to N are MDNode with 2 "
5035 return mdconst::hasa<ConstantInt>(Op);
5037 "Not all !memprof MemInfoBlock operands 2 to N are MDNode with "
5038 "ConstantInt operands",
5045 Check(isa<CallBase>(
I),
"!callsite metadata should only exist on calls", &
I);
5048 visitCallStackMetadata(MD);
5051void Verifier::visitAnnotationMetadata(
MDNode *Annotation) {
5052 Check(isa<MDTuple>(Annotation),
"annotation must be a tuple");
5054 "annotation must have at least one operand");
5056 bool TupleOfStrings =
5057 isa<MDTuple>(
Op.get()) &&
5058 all_of(cast<MDTuple>(
Op)->operands(), [](
auto &Annotation) {
5061 Check(isa<MDString>(
Op.get()) || TupleOfStrings,
5062 "operands must be a string or a tuple of strings");
5066void Verifier::visitAliasScopeMetadata(
const MDNode *MD) {
5068 Check(NumOps >= 2 && NumOps <= 3,
"scope must have two or three operands",
5071 "first scope operand must be self-referential or string", MD);
5074 "third scope operand must be string (if used)", MD);
5077 Check(
Domain !=
nullptr,
"second scope operand must be MDNode", MD);
5079 unsigned NumDomainOps =
Domain->getNumOperands();
5080 Check(NumDomainOps >= 1 && NumDomainOps <= 2,
5081 "domain must have one or two operands",
Domain);
5083 isa<MDString>(
Domain->getOperand(0)),
5084 "first domain operand must be self-referential or string",
Domain);
5085 if (NumDomainOps == 2)
5087 "second domain operand must be string (if used)",
Domain);
5090void Verifier::visitAliasScopeListMetadata(
const MDNode *MD) {
5092 const MDNode *OpMD = dyn_cast<MDNode>(
Op);
5093 Check(OpMD !=
nullptr,
"scope list must consist of MDNodes", MD);
5094 visitAliasScopeMetadata(OpMD);
5098void Verifier::visitAccessGroupMetadata(
const MDNode *MD) {
5099 auto IsValidAccessScope = [](
const MDNode *MD) {
5104 if (IsValidAccessScope(MD))
5109 const MDNode *OpMD = dyn_cast<MDNode>(
Op);
5110 Check(OpMD !=
nullptr,
"Access scope list must consist of MDNodes", MD);
5111 Check(IsValidAccessScope(OpMD),
5112 "Access scope list contains invalid access scope", MD);
5120 Check(BB,
"Instruction not embedded in basic block!", &
I);
5122 if (!isa<PHINode>(
I)) {
5123 for (
User *U :
I.users()) {
5125 "Only PHI nodes may reference their own value!", &
I);
5130 Check(!
I.getType()->isVoidTy() || !
I.hasName(),
5131 "Instruction has a name, but provides a void value!", &
I);
5135 Check(
I.getType()->isVoidTy() ||
I.getType()->isFirstClassType(),
5136 "Instruction returns a non-scalar type!", &
I);
5140 Check(!
I.getType()->isMetadataTy() || isa<CallInst>(
I) || isa<InvokeInst>(
I),
5141 "Invalid use of metadata!", &
I);
5146 for (
Use &U :
I.uses()) {
5147 if (
Instruction *Used = dyn_cast<Instruction>(
U.getUser()))
5149 "Instruction referencing"
5150 " instruction not embedded in a basic block!",
5153 CheckFailed(
"Use of instruction is not an instruction!", U);
5160 const CallBase *CBI = dyn_cast<CallBase>(&
I);
5162 for (
unsigned i = 0, e =
I.getNumOperands(); i != e; ++i) {
5163 Check(
I.getOperand(i) !=
nullptr,
"Instruction has null operand!", &
I);
5167 if (!
I.getOperand(i)->getType()->isFirstClassType()) {
5168 Check(
false,
"Instruction operands must be first-class values!", &
I);
5171 if (
Function *
F = dyn_cast<Function>(
I.getOperand(i))) {
5176 return CBI && CBI->isOperandBundleOfType(
5184 Check((!
F->isIntrinsic() ||
5185 (CBI && &CBI->getCalledOperandUse() == &
I.getOperandUse(i)) ||
5186 IsAttachedCallOperand(
F, CBI, i)),
5187 "Cannot take the address of an intrinsic!", &
I);
5188 Check(!
F->isIntrinsic() || isa<CallInst>(
I) ||
5189 F->getIntrinsicID() == Intrinsic::donothing ||
5190 F->getIntrinsicID() == Intrinsic::seh_try_begin ||
5191 F->getIntrinsicID() == Intrinsic::seh_try_end ||
5192 F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
5193 F->getIntrinsicID() == Intrinsic::seh_scope_end ||
5194 F->getIntrinsicID() == Intrinsic::coro_resume ||
5195 F->getIntrinsicID() == Intrinsic::coro_destroy ||
5196 F->getIntrinsicID() == Intrinsic::coro_await_suspend_void ||
5197 F->getIntrinsicID() == Intrinsic::coro_await_suspend_bool ||
5198 F->getIntrinsicID() == Intrinsic::coro_await_suspend_handle ||
5199 F->getIntrinsicID() ==
5200 Intrinsic::experimental_patchpoint_void ||
5201 F->getIntrinsicID() == Intrinsic::experimental_patchpoint ||
5202 F->getIntrinsicID() == Intrinsic::fake_use ||
5203 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
5204 F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
5205 IsAttachedCallOperand(
F, CBI, i),
5206 "Cannot invoke an intrinsic other than donothing, patchpoint, "
5207 "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
5209 Check(
F->getParent() == &M,
"Referencing function in another module!", &
I,
5210 &M,
F,
F->getParent());
5211 }
else if (
BasicBlock *OpBB = dyn_cast<BasicBlock>(
I.getOperand(i))) {
5213 "Referring to a basic block in another function!", &
I);
5214 }
else if (
Argument *OpArg = dyn_cast<Argument>(
I.getOperand(i))) {
5216 "Referring to an argument in another function!", &
I);
5217 }
else if (
GlobalValue *GV = dyn_cast<GlobalValue>(
I.getOperand(i))) {
5218 Check(GV->
getParent() == &M,
"Referencing global in another module!", &
I,
5220 }
else if (
Instruction *OpInst = dyn_cast<Instruction>(
I.getOperand(i))) {
5222 "Referring to an instruction in another function!", &
I);
5223 verifyDominatesUse(
I, i);
5224 }
else if (isa<InlineAsm>(
I.getOperand(i))) {
5225 Check(CBI && &CBI->getCalledOperandUse() == &
I.getOperandUse(i),
5226 "Cannot take the address of an inline asm!", &
I);
5227 }
else if (
auto *CPA = dyn_cast<ConstantPtrAuth>(
I.getOperand(i))) {
5228 visitConstantExprsRecursively(CPA);
5229 }
else if (
ConstantExpr *CE = dyn_cast<ConstantExpr>(
I.getOperand(i))) {
5230 if (
CE->getType()->isPtrOrPtrVectorTy()) {
5233 visitConstantExprsRecursively(CE);
5238 if (
MDNode *MD =
I.getMetadata(LLVMContext::MD_fpmath)) {
5239 Check(
I.getType()->isFPOrFPVectorTy(),
5240 "fpmath requires a floating point result!", &
I);
5243 mdconst::dyn_extract_or_null<ConstantFP>(MD->
getOperand(0))) {
5244 const APFloat &Accuracy = CFP0->getValueAPF();
5246 "fpmath accuracy must have float type", &
I);
5248 "fpmath accuracy not a positive number!", &
I);
5250 Check(
false,
"invalid fpmath accuracy!", &
I);
5254 if (
MDNode *
Range =
I.getMetadata(LLVMContext::MD_range)) {
5255 Check(isa<LoadInst>(
I) || isa<CallInst>(
I) || isa<InvokeInst>(
I),
5256 "Ranges are only for loads, calls and invokes!", &
I);
5257 visitRangeMetadata(
I,
Range,
I.getType());
5260 if (
MDNode *
Range =
I.getMetadata(LLVMContext::MD_noalias_addrspace)) {
5261 Check(isa<LoadInst>(
I) || isa<StoreInst>(
I) || isa<AtomicRMWInst>(
I) ||
5262 isa<AtomicCmpXchgInst>(
I) || isa<CallInst>(
I),
5263 "noalias.addrspace are only for memory operations!", &
I);
5264 visitNoaliasAddrspaceMetadata(
I,
Range,
I.getType());
5267 if (
I.hasMetadata(LLVMContext::MD_invariant_group)) {
5268 Check(isa<LoadInst>(
I) || isa<StoreInst>(
I),
5269 "invariant.group metadata is only for loads and stores", &
I);
5272 if (
MDNode *MD =
I.getMetadata(LLVMContext::MD_nonnull)) {
5273 Check(
I.getType()->isPointerTy(),
"nonnull applies only to pointer types",
5276 "nonnull applies only to load instructions, use attributes"
5277 " for calls or invokes",
5282 if (
MDNode *MD =
I.getMetadata(LLVMContext::MD_dereferenceable))
5283 visitDereferenceableMetadata(
I, MD);
5285 if (
MDNode *MD =
I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
5286 visitDereferenceableMetadata(
I, MD);
5288 if (
MDNode *TBAA =
I.getMetadata(LLVMContext::MD_tbaa))
5291 if (
MDNode *MD =
I.getMetadata(LLVMContext::MD_noalias))
5292 visitAliasScopeListMetadata(MD);
5293 if (
MDNode *MD =
I.getMetadata(LLVMContext::MD_alias_scope))
5294 visitAliasScopeListMetadata(MD);
5296 if (
MDNode *MD =
I.getMetadata(LLVMContext::MD_access_group))
5297 visitAccessGroupMetadata(MD);
5299 if (
MDNode *AlignMD =
I.getMetadata(LLVMContext::MD_align)) {
5300 Check(
I.getType()->isPointerTy(),
"align applies only to pointer types",
5303 "align applies only to load instructions, "
5304 "use attributes for calls or invokes",
5306 Check(AlignMD->getNumOperands() == 1,
"align takes one operand!", &
I);
5307 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
5309 "align metadata value must be an i64!", &
I);
5314 "alignment is larger that implementation defined limit", &
I);
5317 if (
MDNode *MD =
I.getMetadata(LLVMContext::MD_prof))
5318 visitProfMetadata(
I, MD);
5320 if (
MDNode *MD =
I.getMetadata(LLVMContext::MD_memprof))
5321 visitMemProfMetadata(
I, MD);
5323 if (
MDNode *MD =
I.getMetadata(LLVMContext::MD_callsite))
5324 visitCallsiteMetadata(
I, MD);
5326 if (
MDNode *MD =
I.getMetadata(LLVMContext::MD_DIAssignID))
5327 visitDIAssignIDMetadata(
I, MD);
5329 if (
MDNode *MMRA =
I.getMetadata(LLVMContext::MD_mmra))
5330 visitMMRAMetadata(
I, MMRA);
5332 if (
MDNode *Annotation =
I.getMetadata(LLVMContext::MD_annotation))
5333 visitAnnotationMetadata(Annotation);
5335 if (
MDNode *
N =
I.getDebugLoc().getAsMDNode()) {
5336 CheckDI(isa<DILocation>(
N),
"invalid !dbg metadata attachment", &
I,
N);
5337 visitMDNode(*
N, AreDebugLocsAllowed::Yes);
5340 if (
auto *DII = dyn_cast<DbgVariableIntrinsic>(&
I)) {
5341 verifyFragmentExpression(*DII);
5342 verifyNotEntryValue(*DII);
5346 I.getAllMetadata(MDs);
5347 for (
auto Attachment : MDs) {
5348 unsigned Kind = Attachment.first;
5350 (
Kind == LLVMContext::MD_dbg ||
Kind == LLVMContext::MD_loop)
5351 ? AreDebugLocsAllowed::Yes
5352 : AreDebugLocsAllowed::No;
5353 visitMDNode(*Attachment.second, AllowLocs);
5362 Check(
IF->isDeclaration(),
"Intrinsic functions should never be defined!",
5368 bool IsVarArg = IFTy->isVarArg();
5379 "Intrinsic has incorrect return type!", IF);
5381 "Intrinsic has incorrect argument type!", IF);
5386 "Intrinsic was not defined with variable arguments!", IF);
5389 "Callsite was not defined with variable arguments!", IF);
5398 const std::string ExpectedName =
5400 Check(ExpectedName ==
IF->getName(),
5401 "Intrinsic name not mangled correctly for type arguments! "
5409 if (
auto *MD = dyn_cast<MetadataAsValue>(V))
5410 visitMetadataAsValue(*MD,
Call.getCaller());
5411 if (
auto *Const = dyn_cast<Constant>(V))
5413 "const x86_amx is not allowed in argument!");
5419 case Intrinsic::assume: {
5420 for (
auto &Elem :
Call.bundle_op_infos()) {
5421 unsigned ArgCount = Elem.End - Elem.Begin;
5424 if (Elem.Tag->getKey() ==
"separate_storage") {
5425 Check(ArgCount == 2,
5426 "separate_storage assumptions should have 2 arguments", Call);
5427 Check(
Call.getOperand(Elem.Begin)->getType()->isPointerTy() &&
5428 Call.getOperand(Elem.Begin + 1)->getType()->isPointerTy(),
5429 "arguments to separate_storage assumptions should be pointers",
5433 Check(Elem.Tag->getKey() ==
"ignore" ||
5435 "tags must be valid attribute names", Call);
5438 if (Kind == Attribute::Alignment) {
5439 Check(ArgCount <= 3 && ArgCount >= 2,
5440 "alignment assumptions should have 2 or 3 arguments", Call);
5441 Check(
Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
5442 "first argument should be a pointer", Call);
5443 Check(
Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
5444 "second argument should be an integer", Call);
5446 Check(
Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
5447 "third argument should be an integer if present", Call);
5450 Check(ArgCount <= 2,
"too many arguments", Call);
5454 Check(ArgCount == 2,
"this attribute should have 2 arguments", Call);
5455 Check(isa<ConstantInt>(
Call.getOperand(Elem.Begin + 1)),
5456 "the second argument should be a constant integral value", Call);
5458 Check((ArgCount) == 1,
"this attribute should have one argument", Call);
5460 Check((ArgCount) == 0,
"this attribute has no argument", Call);
5465 case Intrinsic::ucmp:
5466 case Intrinsic::scmp: {
5467 Type *SrcTy =
Call.getOperand(0)->getType();
5471 "result type must be at least 2 bits wide", Call);
5473 bool IsDestTypeVector = DestTy->
isVectorTy();
5475 "ucmp/scmp argument and result types must both be either vector or "
5478 if (IsDestTypeVector) {
5479 auto SrcVecLen = cast<VectorType>(SrcTy)->getElementCount();
5480 auto DestVecLen = cast<VectorType>(DestTy)->getElementCount();
5481 Check(SrcVecLen == DestVecLen,
5482 "return type and arguments must have the same number of "
5488 case Intrinsic::coro_id: {
5489 auto *InfoArg =
Call.getArgOperand(3)->stripPointerCasts();
5490 if (isa<ConstantPointerNull>(InfoArg))
5492 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
5494 "info argument of llvm.coro.id must refer to an initialized "
5497 Check(isa<ConstantStruct>(
Init) || isa<ConstantArray>(
Init),
5498 "info argument of llvm.coro.id must refer to either a struct or "
5502 case Intrinsic::is_fpclass: {
5505 "unsupported bits for llvm.is.fpclass test mask");
5508 case Intrinsic::fptrunc_round: {
5511 auto *MAV = dyn_cast<MetadataAsValue>(
Call.getOperand(1));
5513 MD = MAV->getMetadata();
5515 Check(MD !=
nullptr,
"missing rounding mode argument", Call);
5517 Check(isa<MDString>(MD),
5518 (
"invalid value for llvm.fptrunc.round metadata operand"
5519 " (the operand should be a string)"),
5522 std::optional<RoundingMode> RoundMode =
5525 "unsupported rounding mode argument", Call);
5528#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
5529#include "llvm/IR/VPIntrinsics.def"
5530#undef BEGIN_REGISTER_VP_INTRINSIC
5531 visitVPIntrinsic(cast<VPIntrinsic>(Call));
5533#define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \
5534 case Intrinsic::INTRINSIC:
5535#include "llvm/IR/ConstrainedOps.def"
5537 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
5539 case Intrinsic::dbg_declare:
5540 Check(isa<MetadataAsValue>(
Call.getArgOperand(0)),
5541 "invalid llvm.dbg.declare intrinsic call 1", Call);
5542 visitDbgIntrinsic(
"declare", cast<DbgVariableIntrinsic>(Call));
5544 case Intrinsic::dbg_value:
5545 visitDbgIntrinsic(
"value", cast<DbgVariableIntrinsic>(Call));
5547 case Intrinsic::dbg_assign:
5548 visitDbgIntrinsic(
"assign", cast<DbgVariableIntrinsic>(Call));
5550 case Intrinsic::dbg_label:
5551 visitDbgLabelIntrinsic(
"label", cast<DbgLabelInst>(Call));
5553 case Intrinsic::memcpy:
5554 case Intrinsic::memcpy_inline:
5555 case Intrinsic::memmove:
5556 case Intrinsic::memset:
5557 case Intrinsic::memset_inline:
5558 case Intrinsic::experimental_memset_pattern: {
5561 case Intrinsic::memcpy_element_unordered_atomic:
5562 case Intrinsic::memmove_element_unordered_atomic:
5563 case Intrinsic::memset_element_unordered_atomic: {
5564 const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
5567 cast<ConstantInt>(AMI->getRawElementSizeInBytes());
5570 "element size of the element-wise atomic memory intrinsic "
5571 "must be a power of 2",
5574 auto IsValidAlignment = [&](
MaybeAlign Alignment) {
5575 return Alignment && ElementSizeVal.
ule(Alignment->value());
5577 Check(IsValidAlignment(AMI->getDestAlign()),
5578 "incorrect alignment of the destination argument", Call);
5579 if (
const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
5580 Check(IsValidAlignment(AMT->getSourceAlign()),
5581 "incorrect alignment of the source argument", Call);
5585 case Intrinsic::call_preallocated_setup: {
5586 auto *NumArgs = dyn_cast<ConstantInt>(
Call.getArgOperand(0));
5587 Check(NumArgs !=
nullptr,
5588 "llvm.call.preallocated.setup argument must be a constant");
5589 bool FoundCall =
false;
5591 auto *UseCall = dyn_cast<CallBase>(U);
5592 Check(UseCall !=
nullptr,
5593 "Uses of llvm.call.preallocated.setup must be calls");
5594 const Function *Fn = UseCall->getCalledFunction();
5595 if (Fn && Fn->
getIntrinsicID() == Intrinsic::call_preallocated_arg) {
5596 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
5597 Check(AllocArgIndex !=
nullptr,
5598 "llvm.call.preallocated.alloc arg index must be a constant");
5599 auto AllocArgIndexInt = AllocArgIndex->getValue();
5600 Check(AllocArgIndexInt.sge(0) &&
5601 AllocArgIndexInt.slt(NumArgs->getValue()),
5602 "llvm.call.preallocated.alloc arg index must be between 0 and "
5604 "llvm.call.preallocated.setup's argument count");
5606 Intrinsic::call_preallocated_teardown) {
5609 Check(!FoundCall,
"Can have at most one call corresponding to a "
5610 "llvm.call.preallocated.setup");
5612 size_t NumPreallocatedArgs = 0;
5613 for (
unsigned i = 0; i < UseCall->arg_size(); i++) {
5614 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
5615 ++NumPreallocatedArgs;
5618 Check(NumPreallocatedArgs != 0,
5619 "cannot use preallocated intrinsics on a call without "
5620 "preallocated arguments");
5621 Check(NumArgs->equalsInt(NumPreallocatedArgs),
5622 "llvm.call.preallocated.setup arg size must be equal to number "
5623 "of preallocated arguments "
5633 auto PreallocatedBundle =
5635 Check(PreallocatedBundle,
5636 "Use of llvm.call.preallocated.setup outside intrinsics "
5637 "must be in \"preallocated\" operand bundle");
5638 Check(PreallocatedBundle->Inputs.front().get() == &Call,
5639 "preallocated bundle must have token from corresponding "
5640 "llvm.call.preallocated.setup");
5645 case Intrinsic::call_preallocated_arg: {
5646 auto *Token = dyn_cast<CallBase>(
Call.getArgOperand(0));
5647 Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5648 Intrinsic::call_preallocated_setup,
5649 "llvm.call.preallocated.arg token argument must be a "
5650 "llvm.call.preallocated.setup");
5651 Check(
Call.hasFnAttr(Attribute::Preallocated),
5652 "llvm.call.preallocated.arg must be called with a \"preallocated\" "
5653 "call site attribute");
5656 case Intrinsic::call_preallocated_teardown: {
5657 auto *Token = dyn_cast<CallBase>(
Call.getArgOperand(0));
5658 Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5659 Intrinsic::call_preallocated_setup,
5660 "llvm.call.preallocated.teardown token argument must be a "
5661 "llvm.call.preallocated.setup");
5664 case Intrinsic::gcroot:
5665 case Intrinsic::gcwrite:
5666 case Intrinsic::gcread:
5667 if (
ID == Intrinsic::gcroot) {
5669 dyn_cast<AllocaInst>(
Call.getArgOperand(0)->stripPointerCasts());
5670 Check(AI,
"llvm.gcroot parameter #1 must be an alloca.", Call);
5671 Check(isa<Constant>(
Call.getArgOperand(1)),
5672 "llvm.gcroot parameter #2 must be a constant.", Call);
5674 Check(!isa<ConstantPointerNull>(
Call.getArgOperand(1)),
5675 "llvm.gcroot parameter #1 must either be a pointer alloca, "
5676 "or argument #2 must be a non-null constant.",
5681 Check(
Call.getParent()->getParent()->hasGC(),
5682 "Enclosing function does not use GC.", Call);
5684 case Intrinsic::init_trampoline:
5685 Check(isa<Function>(
Call.getArgOperand(1)->stripPointerCasts()),
5686 "llvm.init_trampoline parameter #2 must resolve to a function.",
5689 case Intrinsic::prefetch:
5690 Check(cast<ConstantInt>(
Call.getArgOperand(1))->getZExtValue() < 2,
5691 "rw argument to llvm.prefetch must be 0-1", Call);
5692 Check(cast<ConstantInt>(
Call.getArgOperand(2))->getZExtValue() < 4,
5693 "locality argument to llvm.prefetch must be 0-3", Call);
5694 Check(cast<ConstantInt>(
Call.getArgOperand(3))->getZExtValue() < 2,
5695 "cache type argument to llvm.prefetch must be 0-1", Call);
5697 case Intrinsic::stackprotector:
5698 Check(isa<AllocaInst>(
Call.getArgOperand(1)->stripPointerCasts()),
5699 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
5701 case Intrinsic::localescape: {
5705 Check(!SawFrameEscape,
"multiple calls to llvm.localescape in one function",
5708 if (isa<ConstantPointerNull>(Arg))
5710 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
5712 "llvm.localescape only accepts static allocas", Call);
5715 SawFrameEscape =
true;
5718 case Intrinsic::localrecover: {
5719 Value *FnArg =
Call.getArgOperand(0)->stripPointerCasts();
5720 Function *Fn = dyn_cast<Function>(FnArg);
5722 "llvm.localrecover first "
5723 "argument must be function defined in this module",
5725 auto *IdxArg = cast<ConstantInt>(
Call.getArgOperand(2));
5726 auto &
Entry = FrameEscapeInfo[Fn];
5728 std::max(
uint64_t(
Entry.second), IdxArg->getLimitedValue(~0U) + 1));
5732 case Intrinsic::experimental_gc_statepoint:
5733 if (
auto *CI = dyn_cast<CallInst>(&Call))
5734 Check(!CI->isInlineAsm(),
5735 "gc.statepoint support for inline assembly unimplemented", CI);
5736 Check(
Call.getParent()->getParent()->hasGC(),
5737 "Enclosing function does not use GC.", Call);
5739 verifyStatepoint(Call);
5741 case Intrinsic::experimental_gc_result: {
5742 Check(
Call.getParent()->getParent()->hasGC(),
5743 "Enclosing function does not use GC.", Call);
5745 auto *Statepoint =
Call.getArgOperand(0);
5746 if (isa<UndefValue>(Statepoint))
5750 const auto *StatepointCall = dyn_cast<CallBase>(Statepoint);
5752 StatepointCall ? StatepointCall->getCalledFunction() :
nullptr;
5755 Intrinsic::experimental_gc_statepoint,
5756 "gc.result operand #1 must be from a statepoint", Call,
5757 Call.getArgOperand(0));
5760 auto *TargetFuncType =
5761 cast<FunctionType>(StatepointCall->getParamElementType(2));
5762 Check(
Call.getType() == TargetFuncType->getReturnType(),
5763 "gc.result result type does not match wrapped callee", Call);
5766 case Intrinsic::experimental_gc_relocate: {
5767 Check(
Call.arg_size() == 3,
"wrong number of arguments", Call);
5769 Check(isa<PointerType>(
Call.getType()->getScalarType()),
5770 "gc.relocate must return a pointer or a vector of pointers", Call);
5776 dyn_cast<LandingPadInst>(
Call.getArgOperand(0))) {
5779 LandingPad->
getParent()->getUniquePredecessor();
5783 Check(InvokeBB,
"safepoints should have unique landingpads",
5784 LandingPad->getParent());
5788 "gc relocate should be linked to a statepoint", InvokeBB);
5793 auto *Token =
Call.getArgOperand(0);
5794 Check(isa<GCStatepointInst>(Token) || isa<UndefValue>(Token),
5795 "gc relocate is incorrectly tied to the statepoint", Call, Token);
5799 const Value &StatepointCall = *cast<GCRelocateInst>(Call).getStatepoint();
5804 "gc.relocate operand #2 must be integer offset", Call);
5807 Check(isa<ConstantInt>(Derived),
5808 "gc.relocate operand #3 must be integer offset", Call);
5810 const uint64_t BaseIndex = cast<ConstantInt>(
Base)->getZExtValue();
5811 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
5814 if (isa<UndefValue>(StatepointCall))
5816 if (
auto Opt = cast<GCStatepointInst>(StatepointCall)
5818 Check(BaseIndex < Opt->Inputs.size(),
5819 "gc.relocate: statepoint base index out of bounds", Call);
5820 Check(DerivedIndex < Opt->Inputs.size(),
5821 "gc.relocate: statepoint derived index out of bounds", Call);
5829 auto *ResultType =
Call.getType();
5834 "gc.relocate: relocated value must be a pointer", Call);
5835 Check(DerivedType->isPtrOrPtrVectorTy(),
5836 "gc.relocate: relocated value must be a pointer", Call);
5838 Check(ResultType->isVectorTy() == DerivedType->isVectorTy(),
5839 "gc.relocate: vector relocates to vector and pointer to pointer",
5842 ResultType->getPointerAddressSpace() ==
5843 DerivedType->getPointerAddressSpace(),
5844 "gc.relocate: relocating a pointer shouldn't change its address space",
5848 Check(GC,
"gc.relocate: calling function must have GCStrategy",
5849 Call.getFunction());
5851 auto isGCPtr = [&
GC](
Type *PTy) {
5852 return GC->isGCManagedPointer(PTy->getScalarType()).value_or(
true);
5854 Check(isGCPtr(ResultType),
"gc.relocate: must return gc pointer", Call);
5856 "gc.relocate: relocated value must be a gc pointer", Call);
5857 Check(isGCPtr(DerivedType),
5858 "gc.relocate: relocated value must be a gc pointer", Call);
5862 case Intrinsic::experimental_patchpoint: {
5864 Check(
Call.getType()->isSingleValueType(),
5865 "patchpoint: invalid return type used with anyregcc", Call);
5869 case Intrinsic::eh_exceptioncode:
5870 case Intrinsic::eh_exceptionpointer: {
5871 Check(isa<CatchPadInst>(
Call.getArgOperand(0)),
5872 "eh.exceptionpointer argument must be a catchpad", Call);
5875 case Intrinsic::get_active_lane_mask: {
5877 "get_active_lane_mask: must return a "
5880 auto *ElemTy =
Call.getType()->getScalarType();
5881 Check(ElemTy->isIntegerTy(1),
5882 "get_active_lane_mask: element type is not "
5887 case Intrinsic::experimental_get_vector_length: {
5890 "get_vector_length: VF must be positive", Call);
5893 case Intrinsic::masked_load: {
5894 Check(
Call.getType()->isVectorTy(),
"masked_load: must return a vector",
5899 Value *PassThru =
Call.getArgOperand(3);
5900 Check(
Mask->getType()->isVectorTy(),
"masked_load: mask must be vector",
5903 "masked_load: alignment must be a power of 2", Call);
5905 "masked_load: pass through and return type must match", Call);
5906 Check(cast<VectorType>(
Mask->getType())->getElementCount() ==
5907 cast<VectorType>(
Call.getType())->getElementCount(),
5908 "masked_load: vector mask must be same length as return", Call);
5911 case Intrinsic::masked_store: {
5915 Check(
Mask->getType()->isVectorTy(),
"masked_store: mask must be vector",
5918 "masked_store: alignment must be a power of 2", Call);
5919 Check(cast<VectorType>(
Mask->getType())->getElementCount() ==
5920 cast<VectorType>(Val->
getType())->getElementCount(),
5921 "masked_store: vector mask must be same length as value", Call);
5925 case Intrinsic::masked_gather: {
5926 const APInt &Alignment =
5929 "masked_gather: alignment must be 0 or a power of 2", Call);
5932 case Intrinsic::masked_scatter: {
5933 const APInt &Alignment =
5934 cast<ConstantInt>(
Call.getArgOperand(2))->getValue();
5936 "masked_scatter: alignment must be 0 or a power of 2", Call);
5940 case Intrinsic::experimental_guard: {
5941 Check(isa<CallInst>(Call),
"experimental_guard cannot be invoked", Call);
5943 "experimental_guard must have exactly one "
5944 "\"deopt\" operand bundle");
5948 case Intrinsic::experimental_deoptimize: {
5949 Check(isa<CallInst>(Call),
"experimental_deoptimize cannot be invoked",
5952 "experimental_deoptimize must have exactly one "
5953 "\"deopt\" operand bundle");
5954 Check(
Call.getType() ==
Call.getFunction()->getReturnType(),
5955 "experimental_deoptimize return type must match caller return type");
5957 if (isa<CallInst>(Call)) {
5958 auto *RI = dyn_cast<ReturnInst>(
Call.getNextNode());
5960 "calls to experimental_deoptimize must be followed by a return");
5962 if (!
Call.getType()->isVoidTy() && RI)
5963 Check(RI->getReturnValue() == &Call,
5964 "calls to experimental_deoptimize must be followed by a return "
5965 "of the value computed by experimental_deoptimize");
5970 case Intrinsic::vastart: {
5972 "va_start called in a non-varargs function");
5975 case Intrinsic::vector_reduce_and:
5976 case Intrinsic::vector_reduce_or:
5977 case Intrinsic::vector_reduce_xor:
5978 case Intrinsic::vector_reduce_add:
5979 case Intrinsic::vector_reduce_mul:
5980 case Intrinsic::vector_reduce_smax:
5981 case Intrinsic::vector_reduce_smin:
5982 case Intrinsic::vector_reduce_umax:
5983 case Intrinsic::vector_reduce_umin: {
5984 Type *ArgTy =
Call.getArgOperand(0)->getType();
5986 "Intrinsic has incorrect argument type!");
5989 case Intrinsic::vector_reduce_fmax:
5990 case Intrinsic::vector_reduce_fmin: {
5991 Type *ArgTy =
Call.getArgOperand(0)->getType();
5993 "Intrinsic has incorrect argument type!");
5996 case Intrinsic::vector_reduce_fadd:
5997 case Intrinsic::vector_reduce_fmul: {
6000 Type *ArgTy =
Call.getArgOperand(1)->getType();
6002 "Intrinsic has incorrect argument type!");
6005 case Intrinsic::smul_fix:
6006 case Intrinsic::smul_fix_sat:
6007 case Intrinsic::umul_fix:
6008 case Intrinsic::umul_fix_sat:
6009 case Intrinsic::sdiv_fix:
6010 case Intrinsic::sdiv_fix_sat:
6011 case Intrinsic::udiv_fix:
6012 case Intrinsic::udiv_fix_sat: {
6016 "first operand of [us][mul|div]_fix[_sat] must be an int type or "
6019 "second operand of [us][mul|div]_fix[_sat] must be an int type or "
6022 auto *Op3 = cast<ConstantInt>(
Call.getArgOperand(2));
6023 Check(Op3->getType()->isIntegerTy(),
6024 "third operand of [us][mul|div]_fix[_sat] must be an int type");
6025 Check(Op3->getBitWidth() <= 32,
6026 "third operand of [us][mul|div]_fix[_sat] must fit within 32 bits");
6028 if (
ID == Intrinsic::smul_fix ||
ID == Intrinsic::smul_fix_sat ||
6029 ID == Intrinsic::sdiv_fix ||
ID == Intrinsic::sdiv_fix_sat) {
6031 "the scale of s[mul|div]_fix[_sat] must be less than the width of "
6035 "the scale of u[mul|div]_fix[_sat] must be less than or equal "
6036 "to the width of the operands");
6040 case Intrinsic::lrint:
6041 case Intrinsic::llrint:
6042 case Intrinsic::lround:
6043 case Intrinsic::llround: {
6044 Type *ValTy =
Call.getArgOperand(0)->getType();
6046 auto *VTy = dyn_cast<VectorType>(ValTy);
6047 auto *RTy = dyn_cast<VectorType>(ResultTy);
6049 ExpectedName +
": argument must be floating-point or vector "
6050 "of floating-points, and result must be integer or "
6051 "vector of integers",
6054 ExpectedName +
": argument and result disagree on vector use", &Call);
6056 Check(VTy->getElementCount() == RTy->getElementCount(),
6057 ExpectedName +
": argument must be same length as result", &Call);
6061 case Intrinsic::bswap: {
6064 Check(
Size % 16 == 0,
"bswap must be an even number of bytes", &Call);
6067 case Intrinsic::invariant_start: {
6068 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(
Call.getArgOperand(0));
6069 Check(InvariantSize &&
6071 "invariant_start parameter must be -1, 0 or a positive number",
6075 case Intrinsic::matrix_multiply:
6076 case Intrinsic::matrix_transpose:
6077 case Intrinsic::matrix_column_major_load:
6078 case Intrinsic::matrix_column_major_store: {
6084 Type *Op0ElemTy =
nullptr;
6085 Type *Op1ElemTy =
nullptr;
6087 case Intrinsic::matrix_multiply: {
6088 NumRows = cast<ConstantInt>(
Call.getArgOperand(2));
6090 NumColumns = cast<ConstantInt>(
Call.getArgOperand(4));
6091 Check(cast<FixedVectorType>(
Call.getArgOperand(0)->getType())
6092 ->getNumElements() ==
6094 "First argument of a matrix operation does not match specified "
6096 Check(cast<FixedVectorType>(
Call.getArgOperand(1)->getType())
6097 ->getNumElements() ==
6099 "Second argument of a matrix operation does not match specified "
6102 ResultTy = cast<VectorType>(
Call.getType());
6104 cast<VectorType>(
Call.getArgOperand(0)->getType())->getElementType();
6106 cast<VectorType>(
Call.getArgOperand(1)->getType())->getElementType();
6109 case Intrinsic::matrix_transpose:
6110 NumRows = cast<ConstantInt>(
Call.getArgOperand(1));
6111 NumColumns = cast<ConstantInt>(
Call.getArgOperand(2));
6112 ResultTy = cast<VectorType>(
Call.getType());
6114 cast<VectorType>(
Call.getArgOperand(0)->getType())->getElementType();
6116 case Intrinsic::matrix_column_major_load: {
6117 Stride = dyn_cast<ConstantInt>(
Call.getArgOperand(1));
6118 NumRows = cast<ConstantInt>(
Call.getArgOperand(3));
6119 NumColumns = cast<ConstantInt>(
Call.getArgOperand(4));
6120 ResultTy = cast<VectorType>(
Call.getType());
6123 case Intrinsic::matrix_column_major_store: {
6124 Stride = dyn_cast<ConstantInt>(
Call.getArgOperand(2));
6125 NumRows = cast<ConstantInt>(
Call.getArgOperand(4));
6126 NumColumns = cast<ConstantInt>(
Call.getArgOperand(5));
6127 ResultTy = cast<VectorType>(
Call.getArgOperand(0)->getType());
6129 cast<VectorType>(
Call.getArgOperand(0)->getType())->getElementType();
6136 Check(ResultTy->getElementType()->isIntegerTy() ||
6137 ResultTy->getElementType()->isFloatingPointTy(),
6138 "Result type must be an integer or floating-point type!", IF);
6141 Check(ResultTy->getElementType() == Op0ElemTy,
6142 "Vector element type mismatch of the result and first operand "
6147 Check(ResultTy->getElementType() == Op1ElemTy,
6148 "Vector element type mismatch of the result and second operand "
6154 "Result of a matrix operation does not fit in the returned vector!");
6158 "Stride must be greater or equal than the number of rows!", IF);
6162 case Intrinsic::vector_splice: {
6164 int64_t
Idx = cast<ConstantInt>(
Call.getArgOperand(2))->getSExtValue();
6165 int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
6166 if (
Call.getParent() &&
Call.getParent()->getParent()) {
6168 if (
Attrs.hasFnAttr(Attribute::VScaleRange))
6169 KnownMinNumElements *=
Attrs.getFnAttrs().getVScaleRangeMin();
6171 Check((
Idx < 0 && std::abs(
Idx) <= KnownMinNumElements) ||
6172 (
Idx >= 0 &&
Idx < KnownMinNumElements),
6173 "The splice index exceeds the range [-VL, VL-1] where VL is the "
6174 "known minimum number of elements in the vector. For scalable "
6175 "vectors the minimum number of elements is determined from "
6180 case Intrinsic::stepvector: {
6182 Check(VecTy && VecTy->getScalarType()->isIntegerTy() &&
6183 VecTy->getScalarSizeInBits() >= 8,
6184 "stepvector only supported for vectors of integers "
6185 "with a bitwidth of at least 8.",
6189 case Intrinsic::experimental_vector_match: {
6198 Check(Op1Ty && Op2Ty && MaskTy,
"Operands must be vectors.", &Call);
6199 Check(isa<FixedVectorType>(Op2Ty),
6200 "Second operand must be a fixed length vector.", &Call);
6201 Check(Op1Ty->getElementType()->isIntegerTy(),
6202 "First operand must be a vector of integers.", &Call);
6203 Check(Op1Ty->getElementType() == Op2Ty->getElementType(),
6204 "First two operands must have the same element type.", &Call);
6205 Check(Op1Ty->getElementCount() == MaskTy->getElementCount(),
6206 "First operand and mask must have the same number of elements.",
6208 Check(MaskTy->getElementType()->isIntegerTy(1),
6209 "Mask must be a vector of i1's.", &Call);
6210 Check(
Call.getType() == MaskTy,
"Return type must match the mask type.",
6214 case Intrinsic::vector_insert: {
6218 unsigned IdxN = cast<ConstantInt>(
Idx)->getZExtValue();
6225 Check(VecTy->getElementType() == SubVecTy->getElementType(),
6226 "vector_insert parameters must have the same element "
6230 "vector_insert index must be a constant multiple of "
6231 "the subvector's known minimum vector length.");
6239 "subvector operand of vector_insert would overrun the "
6240 "vector being inserted into.");
6244 case Intrinsic::vector_extract: {
6247 unsigned IdxN = cast<ConstantInt>(
Idx)->getZExtValue();
6255 Check(ResultTy->getElementType() == VecTy->getElementType(),
6256 "vector_extract result must have the same element "
6257 "type as the input vector.",
6260 "vector_extract index must be a constant multiple of "
6261 "the result type's known minimum vector length.");
6269 "vector_extract would overrun.");
6273 case Intrinsic::experimental_vector_partial_reduce_add: {
6274 VectorType *AccTy = cast<VectorType>(
Call.getArgOperand(0)->getType());
6275 VectorType *VecTy = cast<VectorType>(
Call.getArgOperand(1)->getType());
6277 unsigned VecWidth = VecTy->getElementCount().getKnownMinValue();
6278 unsigned AccWidth = AccTy->getElementCount().getKnownMinValue();
6280 Check((VecWidth % AccWidth) == 0,
6281 "Invalid vector widths for partial "
6282 "reduction. The width of the input vector "
6283 "must be a positive integer multiple of "
6284 "the width of the accumulator vector.");
6287 case Intrinsic::experimental_noalias_scope_decl: {
6288 NoAliasScopeDecls.
push_back(cast<IntrinsicInst>(&Call));
6291 case Intrinsic::preserve_array_access_index:
6292 case Intrinsic::preserve_struct_access_index:
6293 case Intrinsic::aarch64_ldaxr:
6294 case Intrinsic::aarch64_ldxr:
6295 case Intrinsic::arm_ldaex:
6296 case Intrinsic::arm_ldrex: {
6297 Type *ElemTy =
Call.getParamElementType(0);
6298 Check(ElemTy,
"Intrinsic requires elementtype attribute on first argument.",
6302 case Intrinsic::aarch64_stlxr:
6303 case Intrinsic::aarch64_stxr:
6304 case Intrinsic::arm_stlex:
6305 case Intrinsic::arm_strex: {
6306 Type *ElemTy =
Call.getAttributes().getParamElementType(1);
6308 "Intrinsic requires elementtype attribute on second argument.",
6312 case Intrinsic::aarch64_prefetch: {
6313 Check(cast<ConstantInt>(
Call.getArgOperand(1))->getZExtValue() < 2,
6314 "write argument to llvm.aarch64.prefetch must be 0 or 1", Call);
6315 Check(cast<ConstantInt>(
Call.getArgOperand(2))->getZExtValue() < 4,
6316 "target argument to llvm.aarch64.prefetch must be 0-3", Call);
6317 Check(cast<ConstantInt>(
Call.getArgOperand(3))->getZExtValue() < 2,
6318 "stream argument to llvm.aarch64.prefetch must be 0 or 1", Call);
6319 Check(cast<ConstantInt>(
Call.getArgOperand(4))->getZExtValue() < 2,
6320 "isdata argument to llvm.aarch64.prefetch must be 0 or 1", Call);
6323 case Intrinsic::callbr_landingpad: {
6324 const auto *CBR = dyn_cast<CallBrInst>(
Call.getOperand(0));
6325 Check(CBR,
"intrinstic requires callbr operand", &Call);
6332 CheckFailed(
"Intrinsic in block must have 1 unique predecessor", &Call);
6336 CheckFailed(
"Intrinsic must have corresponding callbr in predecessor",
6341 "Intrinsic's corresponding callbr must have intrinsic's parent basic "
6342 "block in indirect destination list",
6345 Check(&
First == &Call,
"No other instructions may proceed intrinsic",
6349 case Intrinsic::amdgcn_cs_chain: {
6350 auto CallerCC =
Call.getCaller()->getCallingConv();
6357 CheckFailed(
"Intrinsic can only be used from functions with the "
6358 "amdgpu_cs, amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6359 "calling conventions",
6364 Check(
Call.paramHasAttr(2, Attribute::InReg),
6365 "SGPR arguments must have the `inreg` attribute", &Call);
6366 Check(!
Call.paramHasAttr(3, Attribute::InReg),
6367 "VGPR arguments must not have the `inreg` attribute", &Call);
6370 case Intrinsic::amdgcn_set_inactive_chain_arg: {
6371 auto CallerCC =
Call.getCaller()->getCallingConv();
6377 CheckFailed(
"Intrinsic can only be used from functions with the "
6378 "amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6379 "calling conventions",
6384 unsigned InactiveIdx = 1;
6385 Check(!
Call.paramHasAttr(InactiveIdx, Attribute::InReg),
6386 "Value for inactive lanes must not have the `inreg` attribute",
6388 Check(isa<Argument>(
Call.getArgOperand(InactiveIdx)),
6389 "Value for inactive lanes must be a function argument", &Call);
6390 Check(!cast<Argument>(
Call.getArgOperand(InactiveIdx))->hasInRegAttr(),
6391 "Value for inactive lanes must be a VGPR function argument", &Call);
6394 case Intrinsic::amdgcn_s_prefetch_data: {
6397 Call.getArgOperand(0)->getType()->getPointerAddressSpace()),
6398 "llvm.amdgcn.s.prefetch.data only supports global or constant memory");
6401 case Intrinsic::amdgcn_mfma_scale_f32_16x16x128_f8f6f4:
6402 case Intrinsic::amdgcn_mfma_scale_f32_32x32x64_f8f6f4: {
6406 uint64_t CBSZ = cast<ConstantInt>(
Call.getArgOperand(3))->getZExtValue();
6407 uint64_t BLGP = cast<ConstantInt>(
Call.getArgOperand(4))->getZExtValue();
6408 Check(CBSZ <= 4,
"invalid value for cbsz format", Call,
6409 Call.getArgOperand(3));
6410 Check(BLGP <= 4,
"invalid value for blgp format", Call,
6411 Call.getArgOperand(4));
6414 auto getFormatNumRegs = [](
unsigned FormatVal) {
6415 switch (FormatVal) {
6430 if (!Ty || !Ty->getElementType()->
isIntegerTy(32))
6432 unsigned NumElts = Ty->getNumElements();
6433 return NumElts == 4 || NumElts == 6 || NumElts == 8;
6436 auto *Src0Ty = dyn_cast<FixedVectorType>(Src0->
getType());
6437 auto *Src1Ty = dyn_cast<FixedVectorType>(Src1->
getType());
6438 Check(isValidSrcASrcBVector(Src0Ty),
6439 "operand 0 must be 4, 6 or 8 element i32 vector", &Call, Src0);
6440 Check(isValidSrcASrcBVector(Src1Ty),
6441 "operand 1 must be 4, 6 or 8 element i32 vector", &Call, Src1);
6444 Check(Src0Ty->getNumElements() >= getFormatNumRegs(CBSZ),
6445 "invalid vector type for format", &Call, Src0,
Call.getArgOperand(3));
6446 Check(Src1Ty->getNumElements() >= getFormatNumRegs(BLGP),
6447 "invalid vector type for format", &Call, Src1,
Call.getArgOperand(5));
6450 case Intrinsic::nvvm_setmaxnreg_inc_sync_aligned_u32:
6451 case Intrinsic::nvvm_setmaxnreg_dec_sync_aligned_u32: {
6453 unsigned RegCount = cast<ConstantInt>(V)->getZExtValue();
6454 Check(RegCount % 8 == 0,
6455 "reg_count argument to nvvm.setmaxnreg must be in multiples of 8");
6456 Check((RegCount >= 24 && RegCount <= 256),
6457 "reg_count argument to nvvm.setmaxnreg must be within [24, 256]");
6460 case Intrinsic::experimental_convergence_entry:
6461 case Intrinsic::experimental_convergence_anchor:
6463 case Intrinsic::experimental_convergence_loop:
6465 case Intrinsic::ptrmask: {
6466 Type *Ty0 =
Call.getArgOperand(0)->getType();
6467 Type *Ty1 =
Call.getArgOperand(1)->getType();
6469 "llvm.ptrmask intrinsic first argument must be pointer or vector "
6474 "llvm.ptrmask intrinsic arguments must be both scalars or both vectors",
6477 Check(cast<VectorType>(Ty0)->getElementCount() ==
6478 cast<VectorType>(Ty1)->getElementCount(),
6479 "llvm.ptrmask intrinsic arguments must have the same number of "
6483 "llvm.ptrmask intrinsic second argument bitwidth must match "
6484 "pointer index type size of first argument",
6488 case Intrinsic::threadlocal_address: {
6489 const Value &Arg0 = *
Call.getArgOperand(0);
6490 Check(isa<GlobalValue>(Arg0),
6491 "llvm.threadlocal.address first argument must be a GlobalValue");
6492 Check(cast<GlobalValue>(Arg0).isThreadLocal(),
6493 "llvm.threadlocal.address operand isThreadLocal() must be true");
6496 case Intrinsic::nvvm_fence_proxy_tensormap_generic_acquire_cta:
6497 case Intrinsic::nvvm_fence_proxy_tensormap_generic_acquire_cluster:
6498 case Intrinsic::nvvm_fence_proxy_tensormap_generic_acquire_gpu:
6499 case Intrinsic::nvvm_fence_proxy_tensormap_generic_acquire_sys: {
6500 unsigned size = cast<ConstantInt>(
Call.getArgOperand(1))->getZExtValue();
6501 Check(size == 128,
" The only supported value for size operand is 128");
6509 if (
F->hasPersonalityFn() &&
6513 if (BlockEHFuncletColors.
empty())
6517 bool InEHFunclet =
false;
6522 if (dyn_cast_or_null<FuncletPadInst>(ColorFirstBB->getFirstNonPHI()))
6526 bool HasToken =
false;
6527 for (
unsigned I = 0, E =
Call.getNumOperandBundles();
I != E; ++
I)
6533 Check(HasToken,
"Missing funclet token on intrinsic call", &Call);
6546 if (
auto *SP = dyn_cast<DISubprogram>(LocalScope))
6549 if (
auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
6553 assert(!isa<DILocalScope>(LocalScope) &&
"Unknown type of local scope");
6559 "invalid #dbg_label intrinsic variable", &DLR, DLR.
getRawLabel());
6563 if (!isa<DILocation>(
N))
6572 CheckDI(Loc,
"#dbg_label record requires a !dbg attachment", &DLR, BB,
F);
6576 if (!LabelSP || !LocSP)
6580 "mismatched subprogram between #dbg_label label and !dbg attachment",
6581 &DLR, BB,
F, Label,
Label->getScope()->getSubprogram(), Loc,
6582 Loc->getScope()->getSubprogram());
6592 "invalid #dbg record type", &DVR, DVR.
getType());
6598 CheckDI(MD && (isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
6599 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands())),
6600 "invalid #dbg record address/value", &DVR, MD);
6601 if (
auto *VAM = dyn_cast<ValueAsMetadata>(MD))
6602 visitValueAsMetadata(*VAM,
F);
6603 else if (
auto *AL = dyn_cast<DIArgList>(MD))
6604 visitDIArgList(*AL,
F);
6618 AreDebugLocsAllowed::No);
6625 isa<ValueAsMetadata>(RawAddr) ||
6626 (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()),
6628 if (
auto *VAM = dyn_cast<ValueAsMetadata>(RawAddr))
6629 visitValueAsMetadata(*VAM,
F);
6632 "invalid #dbg_assign address expression", &DVR,
6639 "inst not in same function as #dbg_assign",
I, &DVR);
6648 CheckDI(isa_and_nonnull<DILocation>(DLNode),
"invalid #dbg record DILocation",
6655 if (!VarSP || !LocSP)
6659 "mismatched subprogram between #dbg record variable and DILocation",
6661 Loc->getScope()->getSubprogram());
6666void Verifier::visitVPIntrinsic(
VPIntrinsic &VPI) {
6667 if (
auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) {
6668 auto *
RetTy = cast<VectorType>(VPCast->getType());
6669 auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType());
6670 Check(
RetTy->getElementCount() == ValTy->getElementCount(),
6671 "VP cast intrinsic first argument and result vector lengths must be "
6675 switch (VPCast->getIntrinsicID()) {
6678 case Intrinsic::vp_trunc:
6680 "llvm.vp.trunc intrinsic first argument and result element type "
6684 "llvm.vp.trunc intrinsic the bit size of first argument must be "
6685 "larger than the bit size of the return type",
6688 case Intrinsic::vp_zext:
6689 case Intrinsic::vp_sext:
6691 "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result "
6692 "element type must be integer",
6695 "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first "
6696 "argument must be smaller than the bit size of the return type",
6699 case Intrinsic::vp_fptoui:
6700 case Intrinsic::vp_fptosi:
6701 case Intrinsic::vp_lrint:
6702 case Intrinsic::vp_llrint:
6705 "llvm.vp.fptoui, llvm.vp.fptosi, llvm.vp.lrint or llvm.vp.llrint" "intrinsic first argument element "
6706 "type must be floating-point and result element type must be integer",
6709 case Intrinsic::vp_uitofp:
6710 case Intrinsic::vp_sitofp:
6713 "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element "
6714 "type must be integer and result element type must be floating-point",
6717 case Intrinsic::vp_fptrunc:
6719 "llvm.vp.fptrunc intrinsic first argument and result element type "
6720 "must be floating-point",
6723 "llvm.vp.fptrunc intrinsic the bit size of first argument must be "
6724 "larger than the bit size of the return type",
6727 case Intrinsic::vp_fpext:
6729 "llvm.vp.fpext intrinsic first argument and result element type "
6730 "must be floating-point",
6733 "llvm.vp.fpext intrinsic the bit size of first argument must be "
6734 "smaller than the bit size of the return type",
6737 case Intrinsic::vp_ptrtoint:
6739 "llvm.vp.ptrtoint intrinsic first argument element type must be "
6740 "pointer and result element type must be integer",
6743 case Intrinsic::vp_inttoptr:
6745 "llvm.vp.inttoptr intrinsic first argument element type must be "
6746 "integer and result element type must be pointer",
6752 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
6754 "invalid predicate for VP FP comparison intrinsic", &VPI);
6757 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
6759 "invalid predicate for VP integer comparison intrinsic", &VPI);
6762 auto TestMask = cast<ConstantInt>(VPI.
getOperand(1));
6764 "unsupported bits for llvm.vp.is.fpclass test mask");
6770 bool HasRoundingMD =
6774 NumOperands += (1 + HasRoundingMD);
6777 if (isa<ConstrainedFPCmpIntrinsic>(FPI))
6780 "invalid arguments for constrained FP intrinsic", &FPI);
6783 case Intrinsic::experimental_constrained_lrint:
6784 case Intrinsic::experimental_constrained_llrint: {
6788 "Intrinsic does not support vectors", &FPI);
6792 case Intrinsic::experimental_constrained_lround:
6793 case Intrinsic::experimental_constrained_llround: {
6797 "Intrinsic does not support vectors", &FPI);
6801 case Intrinsic::experimental_constrained_fcmp:
6802 case Intrinsic::experimental_constrained_fcmps: {
6803 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
6805 "invalid predicate for constrained FP comparison intrinsic", &FPI);
6809 case Intrinsic::experimental_constrained_fptosi:
6810 case Intrinsic::experimental_constrained_fptoui: {
6814 "Intrinsic first argument must be floating point", &FPI);
6815 if (
auto *OperandT = dyn_cast<VectorType>(Operand->
getType())) {
6816 SrcEC = cast<VectorType>(OperandT)->getElementCount();
6821 "Intrinsic first argument and result disagree on vector use", &FPI);
6823 "Intrinsic result must be an integer", &FPI);
6824 if (
auto *OperandT = dyn_cast<VectorType>(Operand->
getType())) {
6825 Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
6826 "Intrinsic first argument and result vector lengths must be equal",
6832 case Intrinsic::experimental_constrained_sitofp:
6833 case Intrinsic::experimental_constrained_uitofp: {
6837 "Intrinsic first argument must be integer", &FPI);
6838 if (
auto *OperandT = dyn_cast<VectorType>(Operand->
getType())) {
6839 SrcEC = cast<VectorType>(OperandT)->getElementCount();
6844 "Intrinsic first argument and result disagree on vector use", &FPI);
6846 "Intrinsic result must be a floating point", &FPI);
6847 if (
auto *OperandT = dyn_cast<VectorType>(Operand->
getType())) {
6848 Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
6849 "Intrinsic first argument and result vector lengths must be equal",
6855 case Intrinsic::experimental_constrained_fptrunc:
6856 case Intrinsic::experimental_constrained_fpext: {
6862 "Intrinsic first argument must be FP or FP vector", &FPI);
6864 "Intrinsic result must be FP or FP vector", &FPI);
6866 "Intrinsic first argument and result disagree on vector use", &FPI);
6868 Check(cast<VectorType>(OperandTy)->getElementCount() ==
6869 cast<VectorType>(ResultTy)->getElementCount(),
6870 "Intrinsic first argument and result vector lengths must be equal",
6873 if (FPI.
getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
6875 "Intrinsic first argument's type must be larger than result type",
6879 "Intrinsic first argument's type must be smaller than result type",
6895 "invalid exception behavior argument", &FPI);
6896 if (HasRoundingMD) {
6904 CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
6905 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
6906 "invalid llvm.dbg." + Kind +
" intrinsic address/value", &DII, MD);
6908 "invalid llvm.dbg." + Kind +
" intrinsic variable", &DII,
6911 "invalid llvm.dbg." + Kind +
" intrinsic expression", &DII,
6914 if (
auto *DAI = dyn_cast<DbgAssignIntrinsic>(&DII)) {
6915 CheckDI(isa<DIAssignID>(DAI->getRawAssignID()),
6916 "invalid llvm.dbg.assign intrinsic DIAssignID", &DII,
6917 DAI->getRawAssignID());
6918 const auto *RawAddr = DAI->getRawAddress();
6920 isa<ValueAsMetadata>(RawAddr) ||
6921 (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()),
6922 "invalid llvm.dbg.assign intrinsic address", &DII,
6923 DAI->getRawAddress());
6924 CheckDI(isa<DIExpression>(DAI->getRawAddressExpression()),
6925 "invalid llvm.dbg.assign intrinsic address expression", &DII,
6926 DAI->getRawAddressExpression());
6929 CheckDI(DAI->getFunction() ==
I->getFunction(),
6930 "inst not in same function as dbg.assign",
I, DAI);
6935 if (!isa<DILocation>(
N))
6944 CheckDI(Loc,
"llvm.dbg." + Kind +
" intrinsic requires a !dbg attachment",
6949 if (!VarSP || !LocSP)
6953 "mismatched subprogram between llvm.dbg." + Kind +
6954 " variable and !dbg attachment",
6956 Loc->getScope()->getSubprogram());
6966 "invalid llvm.dbg." + Kind +
" intrinsic variable", &DLI,
6971 if (!isa<DILocation>(
N))
6980 Check(Loc,
"llvm.dbg." + Kind +
" intrinsic requires a !dbg attachment", &DLI,
6985 if (!LabelSP || !LocSP)
6989 "mismatched subprogram between llvm.dbg." + Kind +
6990 " label and !dbg attachment",
6991 &DLI, BB,
F, Label,
Label->getScope()->getSubprogram(), Loc,
6992 Loc->getScope()->getSubprogram());
6997 DIExpression *E = dyn_cast_or_null<DIExpression>(
I.getRawExpression());
7000 if (!V || !E || !E->
isValid())
7014 if (
V->isArtificial())
7017 verifyFragmentExpression(*V, *Fragment, &
I);
7024 if (!V || !E || !E->
isValid())
7038 if (
V->isArtificial())
7041 verifyFragmentExpression(*V, *Fragment, &DVR);
7044template <
typename ValueOrMetadata>
7045void Verifier::verifyFragmentExpression(
const DIVariable &V,
7047 ValueOrMetadata *
Desc) {
7050 auto VarSize =
V.getSizeInBits();
7056 CheckDI(FragSize + FragOffset <= *VarSize,
7057 "fragment is larger than or outside of variable",
Desc, &V);
7058 CheckDI(FragSize != *VarSize,
"fragment covers entire variable",
Desc, &V);
7069 if (
I.getDebugLoc()->getInlinedAt())
7073 CheckDI(Var,
"dbg intrinsic without variable");
7075 unsigned ArgNo = Var->
getArg();
7081 if (DebugFnArgs.
size() < ArgNo)
7082 DebugFnArgs.
resize(ArgNo,
nullptr);
7084 auto *Prev = DebugFnArgs[ArgNo - 1];
7085 DebugFnArgs[ArgNo - 1] = Var;
7086 CheckDI(!Prev || (Prev == Var),
"conflicting debug info for argument", &
I,
7101 CheckDI(Var,
"#dbg record without variable");
7103 unsigned ArgNo = Var->
getArg();
7109 if (DebugFnArgs.
size() < ArgNo)
7110 DebugFnArgs.
resize(ArgNo,
nullptr);
7112 auto *Prev = DebugFnArgs[ArgNo - 1];
7113 DebugFnArgs[ArgNo - 1] = Var;
7114 CheckDI(!Prev || (Prev == Var),
"conflicting debug info for argument", &DVR,
7119 DIExpression *E = dyn_cast_or_null<DIExpression>(
I.getRawExpression());
7125 if (isa<ValueAsMetadata>(
I.getRawLocation())) {
7126 Value *VarValue =
I.getVariableLocationOp(0);
7127 if (isa<UndefValue>(VarValue) || isa<PoisonValue>(VarValue))
7131 if (
auto *ArgLoc = dyn_cast_or_null<Argument>(VarValue);
7132 ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync))
7137 "Entry values are only allowed in MIR unless they target a "
7138 "swiftasync Argument",
7150 if (isa<UndefValue>(VarValue) || isa<PoisonValue>(VarValue))
7154 if (
auto *ArgLoc = dyn_cast_or_null<Argument>(VarValue);
7155 ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync))
7160 "Entry values are only allowed in MIR unless they target a "
7161 "swiftasync Argument",
7165void Verifier::verifyCompileUnits() {
7169 if (
M.getContext().isODRUniquingDebugTypes())
7171 auto *CUs =
M.getNamedMetadata(
"llvm.dbg.cu");
7174 Listed.
insert(CUs->op_begin(), CUs->op_end());
7175 for (
const auto *
CU : CUVisited)
7180void Verifier::verifyDeoptimizeCallingConvs() {
7181 if (DeoptimizeDeclarations.
empty())
7185 for (
const auto *
F :
ArrayRef(DeoptimizeDeclarations).slice(1)) {
7186 Check(
First->getCallingConv() ==
F->getCallingConv(),
7187 "All llvm.experimental.deoptimize declarations must have the same "
7188 "calling convention",
7193void Verifier::verifyAttachedCallBundle(
const CallBase &Call,
7197 Check((FTy->getReturnType()->isPointerTy() ||
7198 (
Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
7199 "a call with operand bundle \"clang.arc.attachedcall\" must call a "
7200 "function returning a pointer or a non-returning function that has a "
7205 "operand bundle \"clang.arc.attachedcall\" requires one function as "
7209 auto *Fn = cast<Function>(BU.
Inputs.front());
7213 Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
7214 IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
7215 "invalid function argument", Call);
7218 Check((FnName ==
"objc_retainAutoreleasedReturnValue" ||
7219 FnName ==
"objc_unsafeClaimAutoreleasedReturnValue"),
7220 "invalid function argument", Call);
7224void Verifier::verifyNoAliasScopeDecl() {
7225 if (NoAliasScopeDecls.
empty())
7229 for (
auto *
II : NoAliasScopeDecls) {
7230 assert(
II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
7231 "Not a llvm.experimental.noalias.scope.decl ?");
7232 const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
7234 Check(ScopeListMV !=
nullptr,
7235 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
7239 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
7240 Check(ScopeListMD !=
nullptr,
"!id.scope.list must point to an MDNode",
II);
7241 Check(ScopeListMD->getNumOperands() == 1,
7242 "!id.scope.list must point to a list with a single scope",
II);
7243 visitAliasScopeListMetadata(ScopeListMD);
7254 const auto *ScopeListMV = cast<MetadataAsValue>(
7256 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
7262 return GetScope(Lhs) < GetScope(Rhs);
7269 auto ItCurrent = NoAliasScopeDecls.begin();
7270 while (ItCurrent != NoAliasScopeDecls.end()) {
7271 auto CurScope = GetScope(*ItCurrent);
7272 auto ItNext = ItCurrent;
7275 }
while (ItNext != NoAliasScopeDecls.end() &&
7276 GetScope(*ItNext) == CurScope);
7281 if (ItNext - ItCurrent < 32)
7286 "llvm.experimental.noalias.scope.decl dominates another one "
7287 "with the same scope",
7305 return !V.verify(
F);
7309 bool *BrokenDebugInfo) {
7313 bool Broken =
false;
7315 Broken |= !V.verify(
F);
7317 Broken |= !V.verify();
7318 if (BrokenDebugInfo)
7319 *BrokenDebugInfo = V.hasBrokenDebugInfo();
7330 std::unique_ptr<Verifier> V;
7331 bool FatalErrors =
true;
7336 explicit VerifierLegacyPass(
bool FatalErrors)
7338 FatalErrors(FatalErrors) {
7342 bool doInitialization(
Module &M)
override {
7343 V = std::make_unique<Verifier>(
7349 if (!
V->verify(
F) && FatalErrors) {
7350 errs() <<
"in function " <<
F.getName() <<
'\n';
7356 bool doFinalization(
Module &M)
override {
7357 bool HasErrors =
false;
7359 if (
F.isDeclaration())
7360 HasErrors |= !
V->verify(
F);
7362 HasErrors |= !
V->verify();
7363 if (FatalErrors && (HasErrors ||
V->hasBrokenDebugInfo()))
7376template <
typename...
Tys>
void TBAAVerifier::CheckFailed(Tys &&... Args) {
7381#define CheckTBAA(C, ...) \
7384 CheckFailed(__VA_ARGS__); \
7392TBAAVerifier::TBAABaseNodeSummary
7396 CheckFailed(
"Base nodes must have at least two operands", &
I, BaseNode);
7400 auto Itr = TBAABaseNodes.find(BaseNode);
7401 if (Itr != TBAABaseNodes.end())
7404 auto Result = verifyTBAABaseNodeImpl(
I, BaseNode, IsNewFormat);
7405 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
7407 assert(InsertResult.second &&
"We just checked!");
7411TBAAVerifier::TBAABaseNodeSummary
7414 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {
true, ~0
u};
7418 return isValidScalarTBAANode(BaseNode)
7419 ? TBAAVerifier::TBAABaseNodeSummary({
false, 0})
7425 CheckFailed(
"Access tag nodes must have the number of operands that is a "
7426 "multiple of 3!", BaseNode);
7431 CheckFailed(
"Struct tag nodes must have an odd number of operands!",
7439 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
7441 if (!TypeSizeNode) {
7442 CheckFailed(
"Type size nodes must be constants!", &
I, BaseNode);
7448 if (!IsNewFormat && !isa<MDString>(BaseNode->
getOperand(0))) {
7449 CheckFailed(
"Struct tag nodes have a string as their first operand",
7456 std::optional<APInt> PrevOffset;
7461 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
7462 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
7464 Idx += NumOpsPerField) {
7467 if (!isa<MDNode>(FieldTy)) {
7468 CheckFailed(
"Incorrect field entry in struct type node!", &
I, BaseNode);
7473 auto *OffsetEntryCI =
7474 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
7475 if (!OffsetEntryCI) {
7476 CheckFailed(
"Offset entries must be constants!", &
I, BaseNode);
7482 BitWidth = OffsetEntryCI->getBitWidth();
7484 if (OffsetEntryCI->getBitWidth() !=
BitWidth) {
7486 "Bitwidth between the offsets and struct type entries must match", &
I,
7498 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
7501 CheckFailed(
"Offsets must be increasing!", &
I, BaseNode);
7505 PrevOffset = OffsetEntryCI->getValue();
7508 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
7510 if (!MemberSizeNode) {
7511 CheckFailed(
"Member size entries must be constants!", &
I, BaseNode);
7518 return Failed ? InvalidNode
7519 : TBAAVerifier::TBAABaseNodeSummary(
false,
BitWidth);
7540 auto *Parent = dyn_cast_or_null<MDNode>(MD->
getOperand(1));
7541 return Parent && Visited.
insert(Parent).second &&
7545bool TBAAVerifier::isValidScalarTBAANode(
const MDNode *MD) {
7546 auto ResultIt = TBAAScalarNodes.find(MD);
7547 if (ResultIt != TBAAScalarNodes.end())
7548 return ResultIt->second;
7552 auto InsertResult = TBAAScalarNodes.insert({MD,
Result});
7554 assert(InsertResult.second &&
"Just checked!");
7573 return cast<MDNode>(BaseNode->
getOperand(1));
7575 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
7576 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
7578 Idx += NumOpsPerField) {
7579 auto *OffsetEntryCI =
7580 mdconst::extract<ConstantInt>(BaseNode->
getOperand(
Idx + 1));
7581 if (OffsetEntryCI->getValue().ugt(
Offset)) {
7582 if (
Idx == FirstFieldOpNo) {
7583 CheckFailed(
"Could not find TBAA parent in struct type node", &
I,
7588 unsigned PrevIdx =
Idx - NumOpsPerField;
7589 auto *PrevOffsetEntryCI =
7590 mdconst::extract<ConstantInt>(BaseNode->
getOperand(PrevIdx + 1));
7591 Offset -= PrevOffsetEntryCI->getValue();
7592 return cast<MDNode>(BaseNode->
getOperand(PrevIdx));
7597 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
7599 Offset -= LastOffsetEntryCI->getValue();
7600 return cast<MDNode>(BaseNode->
getOperand(LastIdx));
7604 if (!
Type ||
Type->getNumOperands() < 3)
7609 return isa_and_nonnull<MDNode>(
Type->getOperand(0));
7616 CheckTBAA(isa<LoadInst>(
I) || isa<StoreInst>(
I) || isa<CallInst>(
I) ||
7617 isa<VAArgInst>(
I) || isa<AtomicRMWInst>(
I) ||
7618 isa<AtomicCmpXchgInst>(
I),
7619 "This instruction shall not have a TBAA access tag!", &
I);
7621 bool IsStructPathTBAA =
7625 "Old-style TBAA is no longer allowed, use struct-path TBAA instead",
7635 "Access tag metadata must have either 4 or 5 operands", &
I, MD);
7638 "Struct tag metadata must have either 3 or 4 operands", &
I, MD);
7643 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
7645 CheckTBAA(AccessSizeNode,
"Access size field must be a constant", &
I, MD);
7649 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
7651 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
7654 "Immutability tag on struct tag metadata must be a constant", &
I,
7657 IsImmutableCI->isZero() || IsImmutableCI->isOne(),
7658 "Immutability part of the struct tag metadata must be either 0 or 1",
7663 "Malformed struct tag metadata: base and access-type "
7664 "should be non-null and point to Metadata nodes",
7665 &
I, MD, BaseNode, AccessType);
7668 CheckTBAA(isValidScalarTBAANode(AccessType),
7669 "Access type node must be a valid scalar type", &
I, MD,
7673 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->
getOperand(2));
7674 CheckTBAA(OffsetCI,
"Offset must be constant integer", &
I, MD);
7677 bool SeenAccessTypeInPath =
false;
7682 BaseNode = getFieldNodeFromTBAABaseNode(
I, BaseNode,
Offset,
7684 if (!StructPath.
insert(BaseNode).second) {
7685 CheckFailed(
"Cycle detected in struct path", &
I, MD);
7690 unsigned BaseNodeBitWidth;
7691 std::tie(
Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(
I, BaseNode,
7699 SeenAccessTypeInPath |= BaseNode == AccessType;
7701 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
7702 CheckTBAA(
Offset == 0,
"Offset not zero at the point of scalar access",
7706 (BaseNodeBitWidth == 0 &&
Offset == 0) ||
7707 (IsNewFormat && BaseNodeBitWidth == ~0u),
7708 "Access bit-width not the same as description bit-width", &
I, MD,
7709 BaseNodeBitWidth,
Offset.getBitWidth());
7711 if (IsNewFormat && SeenAccessTypeInPath)
7715 CheckTBAA(SeenAccessTypeInPath,
"Did not see access type in access path!", &
I,
7720char VerifierLegacyPass::ID = 0;
7721INITIALIZE_PASS(VerifierLegacyPass,
"verify",
"Module Verifier",
false,
false)
7724 return new VerifierLegacyPass(FatalErrors);
7742 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
7750 if (res.IRBroken && FatalErrors)
AMDGPU address space definition.
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file declares the LLVM IR specialization of the GenericConvergenceVerifier template.
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file defines the DenseMap class.
This file contains constants used for implementing Dwarf debug support.
static bool runOnFunction(Function &F, bool PostInlining)
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This header defines various interfaces for pass management in LLVM.
This defines the Use class.
This file implements a map that provides insertion order iteration.
This file provides utility for Memory Model Relaxation Annotations (MMRAs).
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
This file contains the declarations for profiling metadata utility functions.
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static unsigned getNumElements(Type *Ty)
void visit(MachineFunction &MF, MachineBasicBlock &Start, std::function< void(MachineBasicBlock *)> op)
verify safepoint Safepoint IR Verifier
This file defines the SmallPtrSet class.
This file defines the SmallSet class.
This file defines the SmallVector class.
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
static bool IsScalarTBAANodeImpl(const MDNode *MD, SmallPtrSetImpl< const MDNode * > &Visited)
static bool isType(const Metadata *MD)
static Instruction * getSuccPad(Instruction *Terminator)
#define Check(C,...)
We know that cond should be true, if not print an error message.
static bool isNewFormatTBAATypeNode(llvm::MDNode *Type)
#define CheckDI(C,...)
We know that a debug info condition should be true, if not print an error message.
static void forEachUser(const Value *User, SmallPtrSet< const Value *, 32 > &Visited, llvm::function_ref< bool(const Value *)> Callback)
static bool isDINode(const Metadata *MD)
static bool isScope(const Metadata *MD)
static cl::opt< bool > VerifyNoAliasScopeDomination("verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " "scopes are not dominating"))
static DISubprogram * getSubprogram(Metadata *LocalScope)
Carefully grab the subprogram from a local scope.
static bool isTypeCongruent(Type *L, Type *R)
Two types are "congruent" if they are identical, or if they are both pointer types with different poi...
static bool IsRootTBAANode(const MDNode *MD)
static bool isContiguous(const ConstantRange &A, const ConstantRange &B)
static Value * getParentPad(Value *EHPad)
static bool hasConflictingReferenceFlags(unsigned Flags)
Detect mutually exclusive flags.
static AttrBuilder getParameterABIAttributes(LLVMContext &C, unsigned I, AttributeList Attrs)
bool isFiniteNonZero() const
const fltSemantics & getSemantics() const
Class for arbitrary precision integers.
bool sgt(const APInt &RHS) const
Signed greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
bool isMinValue() const
Determine if this is the smallest unsigned value.
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
bool isMaxValue() const
Determine if this is the largest unsigned value.
This class represents a conversion between pointers from one address space to another.
an instruction to allocate memory on the stack
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
bool isArrayAllocation() const
Return true if there is an allocation size parameter to the allocation instruction that is not 1.
const Value * getArraySize() const
Get the number of elements allocated.
A container for analyses that lazily runs them and caches their results.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
void setPreservesAll()
Set by analyses that do not transform their input at all.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
bool empty() const
empty - Check if the array is empty.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
static bool isFPOperation(BinOp Op)
BinOp getOperation() const
static StringRef getOperationName(BinOp Op)
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
bool contains(Attribute::AttrKind A) const
Return true if the builder has the specified attribute.
bool hasAttribute(Attribute::AttrKind Kind) const
Return true if the attribute exists in this set.
std::string getAsString(bool InAttrGrp=false) const
static Attribute::AttrKind getAttrKindFromName(StringRef AttrName)
static bool canUseAsRetAttr(AttrKind Kind)
static bool isExistingAttribute(StringRef Name)
Return true if the provided string matches the IR name of an attribute.
static bool canUseAsFnAttr(AttrKind Kind)
AttrKind
This enumeration lists the attributes that can be associated with parameters, function results,...
@ None
No attributes have been set.
static bool isIntAttrKind(AttrKind Kind)
static bool canUseAsParamAttr(AttrKind Kind)
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
const Instruction * getFirstNonPHI() const
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
const Instruction & front() const
bool isEntryBlock() const
Return true if this is the entry block of the containing function.
const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
const Function * getParent() const
Return the enclosing method, or null if none.
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
This class represents a no-op cast from one type to another.
static BlockAddress * lookup(const BasicBlock *BB)
Lookup an existing BlockAddress constant for the given BasicBlock.
Conditional or Unconditional Branch instruction.
bool isConditional() const
Value * getCondition() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
bool isInlineAsm() const
Check if this call is an inline asm statement.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
CallingConv::ID getCallingConv() const
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
FunctionType * getFunctionType() const
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
This class represents a function call, abstracting a target machine's calling convention.
bool isMustTailCall() const
static bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
unsigned getNumHandlers() const
return the number of 'handlers' in this catchswitch instruction, except the default handler
Value * getParentPad() const
BasicBlock * getUnwindDest() const
handler_range handlers()
iteration adapter for range-for loops.
BasicBlock * getUnwindDest() const
bool isFPPredicate() const
bool isIntPredicate() const
static bool isIntPredicate(Predicate P)
ConstantArray - Constant Array Declarations.
A constant value that is initialized with an expression using other constant values.
ConstantFP - Floating Point Values [float, double].
This is the shared class of boolean and integer constants.
bool isMinusOne() const
This function will return true iff every bit in this constant is set to true.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
A signed pointer, in the ptrauth sense.
Constant * getAddrDiscriminator() const
The address discriminator if any, or the null constant.
Constant * getPointer() const
The pointer that is signed in this ptrauth signed pointer.
ConstantInt * getKey() const
The Key ID, an i32 constant.
ConstantInt * getDiscriminator() const
The integer discriminator, an i64 constant, or 0.
static bool isOrderedRanges(ArrayRef< ConstantRange > RangesRef)
This class represents a range of values.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
static ConstantTokenNone * get(LLVMContext &Context)
Return the ConstantTokenNone.
This is an important base class in LLVM.
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
This is the common base class for constrained floating point intrinsics.
std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
std::optional< RoundingMode > getRoundingMode() const
unsigned getNonMetadataArgCount() const
List of ValueAsMetadata, to be used as an argument to a dbg.value intrinsic.
Basic type, like 'int' or 'float'.
bool isEntryValue() const
Check if the expression consists of exactly one entry value operand.
static std::optional< FragmentInfo > getFragmentInfo(expr_op_iterator Start, expr_op_iterator End)
Retrieve the details of this fragment expression.
A pair of DIGlobalVariable and DIExpression.
DIGlobalVariable * getVariable() const
DIExpression * getExpression() const
An imported module (C++ using directive or similar).
DISubprogram * getSubprogram() const
Get the subprogram for this scope.
DILocalScope * getScope() const
Get the local scope for this variable.
Metadata * getRawScope() const
Represents a module in the programming language, for example, a Clang module, or a Fortran module.
Base class for scope-like contexts.
String type, Fortran CHARACTER(n)
Type array for a subprogram.
Base class for template parameters.
Base class for variables.
Metadata * getRawType() const
Metadata * getRawScope() const
This class represents an Operation in the Expression.
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
This represents the llvm.dbg.label instruction.
Metadata * getRawLabel() const
DILabel * getLabel() const
Records a position in IR for a source label (DILabel).
MDNode * getRawLabel() const
DILabel * getLabel() const
Base class for non-instruction debug metadata records that have positions within IR.
void print(raw_ostream &O, bool IsForDebug=false) const
DebugLoc getDebugLoc() const
const BasicBlock * getParent() const
This is the common base class for debug info intrinsics for variables.
Metadata * getRawLocation() const
DILocalVariable * getVariable() const
Metadata * getRawVariable() const
Metadata * getRawExpression() const
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LocationType getType() const
MDNode * getRawExpression() const
MDNode * getRawAddressExpression() const
DIExpression * getExpression() const
Metadata * getRawAssignID() const
Value * getVariableLocationOp(unsigned OpIdx) const
MDNode * getRawVariable() const
DILocalVariable * getVariable() const
Metadata * getRawLocation() const
Returns the metadata operand for the first location description.
Metadata * getRawAddress() const
@ End
Marks the end of the concrete types.
@ Any
To indicate all LocationTypes in searches.
DIExpression * getAddressExpression() const
MDNode * getAsMDNode() const
Return this as a bar MDNode.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
void recalculate(ParentType &Func)
recalculate - compute a dominator tree for the given function
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction compares its operands according to the predicate given to the constructor.
This class represents an extension of floating point types.
This class represents a cast from floating point to signed integer.
This class represents a cast from floating point to unsigned integer.
This class represents a truncation of floating point types.
An instruction for ordering other memory operations.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
Class to represent fixed width SIMD vectors.
Value * getParentPad() const
Convenience accessors.
FunctionPass class - This class is used to implement most global optimizations.
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
bool hasPersonalityFn() const
Check whether this function has a personality function.
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
const std::string & getGC() const
Represents calls to the gc.relocate intrinsic.
Value * getBasePtr() const
Value * getDerivedPtr() const
void initialize(raw_ostream *OS, function_ref< void(const Twine &Message)> FailureCB, const FunctionT &F)
void verify(const DominatorTreeT &DT)
void visit(const BlockT &BB)
Generic tagged DWARF-like metadata node.
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
static bool isValidLinkage(LinkageTypes L)
const Constant * getAliasee() const
const Function * getResolverFunction() const
static bool isValidLinkage(LinkageTypes L)
const Constant * getResolver() const
MDNode * getMetadata(unsigned KindID) const
Get the current metadata attachments for the given kind, if any.
bool hasExternalLinkage() const
bool isImplicitDSOLocal() const
bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
bool hasValidDeclarationLinkage() const
LinkageTypes getLinkage() const
bool hasDefaultVisibility() const
bool hasPrivateLinkage() const
bool hasHiddenVisibility() const
bool hasExternalWeakLinkage() const
bool hasDLLImportStorageClass() const
bool hasDLLExportStorageClass() const
bool isDeclarationForLinker() const
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
bool hasCommonLinkage() const
bool hasGlobalUnnamedAddr() const
bool hasAppendingLinkage() const
bool hasAvailableExternallyLinkage() const
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool hasInitializer() const
Definitions have initializers, declarations don't.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
This instruction compares its operands according to the predicate given to the constructor.
Indirect Branch Instruction.
BasicBlock * getDestination(unsigned i)
Return the specified destination.
unsigned getNumDestinations() const
return the number of possible destinations in this indirectbr instruction.
unsigned getNumSuccessors() const
This instruction inserts a single (scalar) element into a VectorType value.
static bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx)
Return true if an insertelement instruction can be formed with the specified operands.
This instruction inserts a struct field of array element value into an aggregate value.
Value * getAggregateOperand()
ArrayRef< unsigned > getIndices() const
Base class for instruction visitors.
RetTy visitTerminator(Instruction &I)
RetTy visitCallBase(CallBase &I)
void visitFunction(Function &F)
void visitBasicBlock(BasicBlock &BB)
void visit(Iterator Start, Iterator End)
RetTy visitFuncletPadInst(FuncletPadInst &I)
void visitInstruction(Instruction &I)
unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
bool isAtomic() const LLVM_READONLY
Return true if this instruction has an AtomicOrdering of unordered or higher.
const Function * getFunction() const
Return the function this instruction belongs to.
This class represents a cast from an integer to a pointer.
A wrapper class for inspecting calls to intrinsic functions.
static bool mayLowerToFunctionCall(Intrinsic::ID IID)
Check if the intrinsic might lower into a regular function call in the course of IR transformations.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
@ OB_clang_arc_attachedcall
The landingpad instruction holds all of the information necessary to generate correct exception handl...
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
unsigned getNumClauses() const
Get the number of clauses for this landing pad.
bool isCatch(unsigned Idx) const
Return 'true' if the clause and index Idx is a catch clause.
bool isFilter(unsigned Idx) const
Return 'true' if the clause and index Idx is a filter clause.
Constant * getClause(unsigned Idx) const
Get the value of the clause at index Idx.
An instruction for reading from memory.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this load instruction.
Align getAlign() const
Return the alignment of the access that is being performed.
const MDOperand & getOperand(unsigned I) const
ArrayRef< MDOperand > operands() const
unsigned getNumOperands() const
Return number of MDNode operands.
bool isResolved() const
Check if node is fully resolved.
LLVMContext & getContext() const
Tracking metadata reference owned by Metadata.
StringRef getString() const
Typed, array-like tuple of metadata.
This class implements a map that also provides access to all stored values in a deterministic order.
Manage lifetime of a slot tracker for printing IR.
A Module instance is used to store all the information related to an LLVM module.
ModFlagBehavior
This enumeration defines the supported behaviors of module flags.
@ AppendUnique
Appends the two values, which are required to be metadata nodes.
@ Override
Uses the specified value, regardless of the behavior or value of the other module.
@ Warning
Emits a warning if two values disagree.
@ Error
Emits an error if two values disagree, otherwise the resulting value is that of the operands.
@ Min
Takes the min of the two values, which are required to be integers.
@ Append
Appends the two values, which are required to be metadata nodes.
@ Max
Takes the max of the two values, which are required to be integers.
@ Require
Adds a requirement that another module flag be present and have a specified value after linking is pe...
const std::string & getModuleIdentifier() const
Get the module identifier which is, essentially, the name of the module.
static bool isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB)
Checks if Metadata represents a valid ModFlagBehavior, and stores the converted result in MFB.
StringRef getName() const
void print(raw_ostream &ROS, bool IsForDebug=false) const
iterator_range< op_iterator > operands()
op_range incoming_values()
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Simple wrapper around std::function<void(raw_ostream&)>.
This class represents a cast from a pointer to an integer.
Interface for looking up the initializer for a variable name, used by Init::resolveReferences.
Resume the propagation of an exception.
Value * getValue() const
Convenience accessor.
Return a value (possibly void), from a function.
This class represents a sign extension of integer types.
This class represents a cast from signed integer to floating point.
This class represents the LLVM 'select' instruction.
static const char * areInvalidOperands(Value *Cond, Value *True, Value *False)
Return a string if the specified operands are invalid for a select operation, otherwise return null.
This instruction constructs a fixed permutation of two input vectors.
static bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask)
Return true if a shufflevector instruction can be formed with the specified operands.
static void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void reserve(size_type N)
iterator insert(iterator I, T &&Elt)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringMapEntry - This is used to represent one value that is inserted into a StringMap.
StringRef - Represent a constant reference to a string, i.e.
bool getAsInteger(unsigned Radix, T &Result) const
Parse the current string as an integer of the specified radix.
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
bool contains(StringRef Other) const
Return true if the given string is a substring of *this, and false otherwise.
static constexpr size_t npos
Class to represent struct types.
unsigned getNumElements() const
Random access to the elements.
Type * getTypeAtIndex(const Value *V) const
Given an index value into the type, return the type of the element.
bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Returns true if this struct contains a scalable vector.
Verify that the TBAA Metadatas are valid.
bool visitTBAAMetadata(Instruction &I, const MDNode *MD)
Visit an instruction and return true if it is valid, return false if an invalid TBAA is attached.
TinyPtrVector - This class is specialized for cases where there are normally 0 or 1 element in a vect...
Triple - Helper class for working with autoconf configuration names.
This class represents a truncation of integer types.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool containsNonLocalTargetExtType(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this type is or contains a target extension type that disallows being used as a local.
bool isArrayTy() const
True if this is an instance of ArrayType.
bool isLabelTy() const
Return true if this is 'label'.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
bool containsNonGlobalTargetExtType(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this type is or contains a target extension type that disallows being used as a global...
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool canLosslesslyBitCastTo(Type *Ty) const
Return true if this type could be converted with a lossless BitCast to type 'Ty'.
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isTokenTy() const
Return true if this is 'token'.
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isMetadataTy() const
Return true if this is 'metadata'.
This class represents a cast unsigned integer to floating point.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
iterator_range< user_iterator > materialized_users()
Type * getType() const
All values are typed, get the type of this value.
static constexpr uint64_t MaximumAlignment
const Value * stripPointerCastsAndAliases() const
Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
const Value * stripInBoundsOffsets(function_ref< void(const Value *)> Func=[](const Value *) {}) const
Strip off pointer casts and inbounds GEPs.
iterator_range< user_iterator > users()
bool materialized_use_empty() const
LLVMContext & getContext() const
All values hold a context through their type.
StringRef getName() const
Return a constant reference to the value's name.
Check a module for errors, and report separate error states for IR and debug info errors.
Result run(Module &M, ModuleAnalysisManager &)
PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM)
This class represents zero extension of integer types.
constexpr bool isNonZero() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
This class implements an extremely fast bulk output stream that can only output to a stream.
This file contains the declaration of the Comdat class, which represents a single COMDAT in LLVM.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
bool isFlatGlobalAddrSpace(unsigned AS)
AttributeMask typeIncompatible(Type *Ty, AttributeSet AS, AttributeSafetyKind ASK=ASK_ALL)
Which attributes cannot be applied to a type.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ AMDGPU_CS
Used for Mesa/AMDPAL compute shaders.
@ AMDGPU_VS
Used for Mesa vertex shaders, or AMDPAL last shader stage before rasterization (vertex shader if tess...
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
@ AnyReg
OBSOLETED - Used for stack based JavaScript calls.
@ AMDGPU_CS_ChainPreserve
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_HS
Used for Mesa/AMDPAL hull shaders (= tessellation control shaders).
@ AMDGPU_GS
Used for Mesa/AMDPAL geometry shaders.
@ X86_INTR
x86 hardware interrupt context.
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ AMDGPU_PS
Used for Mesa/AMDPAL pixel shaders.
@ Cold
Attempts to make code in the caller as efficient as possible under the assumption that the call is no...
@ PTX_Device
Call to a PTX device function.
@ SPIR_KERNEL
Used for SPIR kernel functions.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ Intel_OCL_BI
Used for Intel OpenCL built-ins.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ PTX_Kernel
Call to a PTX kernel. Passes all arguments in parameter space.
@ SwiftTail
This follows the Swift calling convention in how arguments are passed but guarantees tail calls will ...
@ C
The default llvm calling convention, compatible with C.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
ID ArrayRef< Type * > Tys
MatchIntrinsicTypesResult matchIntrinsicSignature(FunctionType *FTy, ArrayRef< IITDescriptor > &Infos, SmallVectorImpl< Type * > &ArgTys)
Match the specified function type with the type constraints specified by the .td file.
void getIntrinsicInfoTableEntries(ID id, SmallVectorImpl< IITDescriptor > &T)
Return the IIT table descriptor for the specified intrinsic into an array of IITDescriptors.
MatchIntrinsicTypesResult
@ MatchIntrinsicTypes_NoMatchRet
@ MatchIntrinsicTypes_NoMatchArg
bool hasConstrainedFPRoundingModeOperand(ID QID)
Returns true if the intrinsic ID is for one of the "Constrained Floating-Point Intrinsics" that take ...
StringRef getName(ID id)
Return the LLVM name for an intrinsic, such as "llvm.ppc.altivec.lvx".
static const int NoAliasScopeDeclScopeArg
bool matchIntrinsicVarArg(bool isVarArg, ArrayRef< IITDescriptor > &Infos)
Verify if the intrinsic has variable arguments.
Flag
These should be considered private to the implementation of the MCInstrDesc class.
@ System
Synchronized with respect to all concurrently executing threads.
std::optional< VFInfo > tryDemangleForVFABI(StringRef MangledName, const FunctionType *FTy)
Function to construct a VFInfo out of a mangled names in the following format:
@ CE
Windows NT (Windows on ARM)
AssignmentInstRange getAssignmentInsts(DIAssignID *ID)
Return a range of instructions (typically just one) that have ID as an attachment.
initializer< Ty > init(const Ty &Val)
Scope
Defines the scope in which this symbol should be visible: Default – Visible in the public interface o...
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
bool canInstructionHaveMMRAs(const Instruction &I)
unsigned getBranchWeightOffset(const MDNode *ProfileData)
Return the offset to the first branch weight data.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
testing::Matcher< const detail::ErrorHolder & > Failed()
void initializeVerifierLegacyPassPass(PassRegistry &)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
DenseMap< BasicBlock *, ColorVector > colorEHFunclets(Function &F)
If an EH funclet personality is in use (see isFuncletEHPersonality), this will recompute which blocks...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
bool isScopedEHPersonality(EHPersonality Pers)
Returns true if this personality uses scope-style EH IR instructions: catchswitch,...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isModSet(const ModRefInfo MRI)
void sort(IteratorTy Start, IteratorTy End)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
unsigned getNumBranchWeights(const MDNode &ProfileData)
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ ArgMem
Access to memory via argument pointers.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
FunctionPass * createVerifierPass(bool FatalErrors=true)
@ Dynamic
Denotes mode unknown at compile time.
@ MaskAll
A bitmask that includes all valid flags.
constexpr unsigned BitWidth
DenormalMode parseDenormalFPAttribute(StringRef Str)
Returns the denormal mode to use for inputs and outputs.
std::optional< RoundingMode > convertStrToRoundingMode(StringRef)
Returns a valid RoundingMode enumerator when given a string that is valid as input in constrained int...
std::unique_ptr< GCStrategy > getGCStrategy(const StringRef Name)
Lookup the GCStrategy object associated with the given gc name.
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool pred_empty(const BasicBlock *BB)
bool verifyModule(const Module &M, raw_ostream *OS=nullptr, bool *BrokenDebugInfo=nullptr)
Check a module for errors.
static const fltSemantics & IEEEsingle() LLVM_READNONE
This struct is a compact representation of a valid (non-zero power of two) alignment.
uint64_t value() const
This is a hole in the type system and should not be abused.
A special type used by analysis passes to provide an address that identifies that particular analysis...
Description of the encoding of one expression Op.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
A lightweight accessor for an operand bundle meant to be passed around by value.
uint32_t getTagID() const
Return the tag of this operand bundle as an integer.
void DebugInfoCheckFailed(const Twine &Message)
A debug info check failed.
VerifierSupport(raw_ostream *OS, const Module &M)
bool Broken
Track the brokenness of the module while recursively visiting.
void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs)
A check failed (with values to print).
bool BrokenDebugInfo
Broken debug info can be "recovered" from by stripping the debug info.
bool TreatBrokenDebugInfoAsError
Whether to treat broken debug info as an error.
void CheckFailed(const Twine &Message)
A check failed, so printout out the condition and the message.
void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs)
A debug info check failed (with values to print).