49#define DEBUG_TYPE "correlated-value-propagation"
52STATISTIC(NumPhiCommon,
"Number of phis deleted via common incoming value");
53STATISTIC(NumSelects,
"Number of selects propagated");
54STATISTIC(NumCmps,
"Number of comparisons propagated");
55STATISTIC(NumReturns,
"Number of return values propagated");
56STATISTIC(NumDeadCases,
"Number of switch cases removed");
58 "Number of sdivs/srems whose width was decreased");
59STATISTIC(NumSDivs,
"Number of sdiv converted to udiv");
61 "Number of udivs/urems whose width was decreased");
62STATISTIC(NumAShrsConverted,
"Number of ashr converted to lshr");
63STATISTIC(NumAShrsRemoved,
"Number of ashr removed");
64STATISTIC(NumSRems,
"Number of srem converted to urem");
65STATISTIC(NumSExt,
"Number of sext converted to zext");
66STATISTIC(NumSIToFP,
"Number of sitofp converted to uitofp");
67STATISTIC(NumSICmps,
"Number of signed icmp preds simplified to unsigned");
70STATISTIC(NumNSW,
"Number of no-signed-wrap deductions");
71STATISTIC(NumNUW,
"Number of no-unsigned-wrap deductions");
72STATISTIC(NumAddNW,
"Number of no-wrap deductions for add");
73STATISTIC(NumAddNSW,
"Number of no-signed-wrap deductions for add");
74STATISTIC(NumAddNUW,
"Number of no-unsigned-wrap deductions for add");
75STATISTIC(NumSubNW,
"Number of no-wrap deductions for sub");
76STATISTIC(NumSubNSW,
"Number of no-signed-wrap deductions for sub");
77STATISTIC(NumSubNUW,
"Number of no-unsigned-wrap deductions for sub");
78STATISTIC(NumMulNW,
"Number of no-wrap deductions for mul");
79STATISTIC(NumMulNSW,
"Number of no-signed-wrap deductions for mul");
80STATISTIC(NumMulNUW,
"Number of no-unsigned-wrap deductions for mul");
81STATISTIC(NumShlNW,
"Number of no-wrap deductions for shl");
82STATISTIC(NumShlNSW,
"Number of no-signed-wrap deductions for shl");
83STATISTIC(NumShlNUW,
"Number of no-unsigned-wrap deductions for shl");
84STATISTIC(NumAbs,
"Number of llvm.abs intrinsics removed");
85STATISTIC(NumOverflows,
"Number of overflow checks removed");
87 "Number of saturating arithmetics converted to normal arithmetics");
88STATISTIC(NumNonNull,
"Number of function pointer arguments marked non-null");
89STATISTIC(NumCmpIntr,
"Number of llvm.[us]cmp intrinsics removed");
90STATISTIC(NumMinMax,
"Number of llvm.[us]{min,max} intrinsics removed");
92 "Number of llvm.s{min,max} intrinsics simplified to unsigned");
94 "Number of bound udiv's/urem's expanded");
95STATISTIC(NumNNeg,
"Number of zext/uitofp non-negative deductions");
103 auto *
C = dyn_cast<CmpInst>(V);
107 Value *Op0 =
C->getOperand(0);
108 Constant *Op1 = dyn_cast<Constant>(
C->getOperand(1));
120 bool Changed =
false;
122 auto *
I = cast<Instruction>(U.getUser());
124 if (
auto *PN = dyn_cast<PHINode>(
I))
130 auto *CI = dyn_cast_or_null<ConstantInt>(
C);
160 Value *CommonValue =
nullptr;
161 for (
unsigned i = 0, e =
P->getNumIncomingValues(); i != e; ++i) {
163 if (
auto *IncomingConstant = dyn_cast<Constant>(
Incoming)) {
164 IncomingConstants.
push_back(std::make_pair(IncomingConstant, i));
165 }
else if (!CommonValue) {
168 }
else if (
Incoming != CommonValue) {
174 if (!CommonValue || IncomingConstants.
empty())
179 if (
auto *CommonInst = dyn_cast<Instruction>(CommonValue))
186 for (
auto &IncomingConstant : IncomingConstants) {
188 BasicBlock *IncomingBB =
P->getIncomingBlock(IncomingConstant.second);
201 P->replaceAllUsesWith(CommonValue);
202 P->eraseFromParent();
217 auto *SI = dyn_cast<SelectInst>(
Incoming);
223 Value *Condition = SI->getCondition();
227 return SI->getTrueValue();
228 if (
C->isZeroValue())
229 return SI->getFalseValue();
239 if (
auto *
C = dyn_cast<Constant>(SI->getFalseValue()))
240 if (
auto *Res = dyn_cast_or_null<ConstantInt>(
242 Res && Res->isZero())
243 return SI->getTrueValue();
247 if (
auto *
C = dyn_cast<Constant>(SI->getTrueValue()))
248 if (
auto *Res = dyn_cast_or_null<ConstantInt>(
250 Res && Res->isZero())
251 return SI->getFalseValue();
258 bool Changed =
false;
261 for (
unsigned i = 0, e =
P->getNumIncomingValues(); i < e; ++i) {
263 if (isa<Constant>(
Incoming))
continue;
267 P->setIncomingValue(i, V);
273 P->replaceAllUsesWith(V);
274 P->eraseFromParent();
289 if (!Cmp->getOperand(0)->getType()->isIntOrIntVectorTy())
292 if (!Cmp->isSigned())
303 if (UnsignedPred == ICmpInst::Predicate::BAD_ICMP_PREDICATE)
307 Cmp->setPredicate(UnsignedPred);
317 Value *Op0 = Cmp->getOperand(0);
318 Value *Op1 = Cmp->getOperand(1);
325 Cmp->replaceAllUsesWith(Res);
326 Cmp->eraseFromParent();
334 if (
auto *ICmp = dyn_cast<ICmpInst>(Cmp))
355 bool Changed =
false;
358 SuccessorsCount[Succ]++;
363 unsigned ReachableCaseCount = 0;
365 for (
auto CI = SI->case_begin(), CE = SI->case_end(); CI != CE;) {
367 auto *Res = dyn_cast_or_null<ConstantInt>(
371 if (Res && Res->isZero()) {
375 CI = SI.removeCase(CI);
380 Cond = SI->getCondition();
384 if (--SuccessorsCount[Succ] == 0)
388 if (Res && Res->isOne()) {
392 SI->setCondition(Case);
393 NumDeadCases += SI->getNumCases();
400 ++ReachableCaseCount;
403 BasicBlock *DefaultDest = SI->getDefaultDest();
404 if (ReachableCaseCount > 1 &&
416 SI->setDefaultDest(NewUnreachableBB);
418 if (SuccessorsCount[DefaultDest] == 1)
419 DTU.
applyUpdates({{DominatorTree::Delete, BB, DefaultDest}});
420 DTU.
applyUpdates({{DominatorTree::Insert, BB, NewUnreachableBB}});
448 bool NewNSW,
bool NewNUW) {
451 case Instruction::Add:
456 case Instruction::Sub:
461 case Instruction::Mul:
466 case Instruction::Shl:
475 auto *Inst = dyn_cast<Instruction>(V);
482 Inst->setHasNoSignedWrap();
490 Inst->setHasNoUnsignedWrap();
501 bool IsIntMinPoison = cast<ConstantInt>(
II->getArgOperand(1))->isOne();
504 II->getOperandUse(0), IsIntMinPoison);
509 II->replaceAllUsesWith(
X);
510 II->eraseFromParent();
517 Value *NegX =
B.CreateNeg(
X,
II->getName(),
520 II->replaceAllUsesWith(NegX);
521 II->eraseFromParent();
524 if (
auto *BO = dyn_cast<BinaryOperator>(NegX))
559 if (LHS_CR.
icmp(ICmpInst::ICMP_EQ, RHS_CR)) {
577 if (LHS_CR.
icmp(Pred, RHS_CR)) {
583 if (RHS_CR.
icmp(Pred, LHS_CR)) {
627 if (
auto *BO = dyn_cast<BinaryOperator>(NewOp))
635 bool NSW = SI->isSigned();
636 bool NUW = !SI->isSigned();
638 Opcode, SI->getLHS(), SI->getRHS(), SI->getName(), SI->getIterator());
642 SI->replaceAllUsesWith(BinOp);
643 SI->eraseFromParent();
647 if (
auto *BO = dyn_cast<BinaryOperator>(BinOp))
660 if (
auto *CI = dyn_cast<CmpIntrinsic>(&CB)) {
664 if (
auto *MM = dyn_cast<MinMaxIntrinsic>(&CB)) {
668 if (
auto *WO = dyn_cast<WithOverflowInst>(&CB)) {
673 if (
auto *SI = dyn_cast<SaturatingInst>(&CB)) {
678 bool Changed =
false;
688 for (
const Use &ConstU : DeoptBundle->Inputs) {
689 Use &U =
const_cast<Use&
>(ConstU);
691 if (V->getType()->isVectorTy())
continue;
692 if (isa<Constant>(V))
continue;
711 if (
auto *Res = dyn_cast_or_null<ConstantInt>(LVI->
getPredicateAt(
714 Res && Res->isZero())
719 assert(ArgNo == CB.
arg_size() &&
"Call arguments not processed correctly.");
724 NumNonNull += ArgNos.
size();
748 assert(Instr->getOpcode() == Instruction::SDiv ||
749 Instr->getOpcode() == Instruction::SRem);
753 unsigned OrigWidth = Instr->getType()->getScalarSizeInBits();
757 unsigned MinSignedBits =
767 unsigned NewWidth = std::max<unsigned>(
PowerOf2Ceil(MinSignedBits), 8);
771 if (NewWidth >= OrigWidth)
774 ++NumSDivSRemsNarrowed;
776 auto *TruncTy = Instr->getType()->getWithNewBitWidth(NewWidth);
777 auto *
LHS =
B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
778 Instr->getName() +
".lhs.trunc");
779 auto *
RHS =
B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
780 Instr->getName() +
".rhs.trunc");
781 auto *BO =
B.CreateBinOp(Instr->getOpcode(),
LHS,
RHS, Instr->getName());
782 auto *Sext =
B.CreateSExt(BO, Instr->getType(), Instr->getName() +
".sext");
783 if (
auto *BinOp = dyn_cast<BinaryOperator>(BO))
784 if (BinOp->getOpcode() == Instruction::SDiv)
785 BinOp->setIsExact(Instr->isExact());
787 Instr->replaceAllUsesWith(Sext);
788 Instr->eraseFromParent();
794 Type *Ty = Instr->getType();
795 assert(Instr->getOpcode() == Instruction::UDiv ||
796 Instr->getOpcode() == Instruction::URem);
797 bool IsRem = Instr->getOpcode() == Instruction::URem;
799 Value *
X = Instr->getOperand(0);
800 Value *
Y = Instr->getOperand(1);
804 if (XCR.
icmp(ICmpInst::ICMP_ULT, YCR)) {
806 Instr->eraseFromParent();
807 ++NumUDivURemsNarrowedExpanded;
835 if (!XCR.
icmp(ICmpInst::ICMP_ULT,
842 if (XCR.
icmp(ICmpInst::ICMP_UGE, YCR)) {
845 ExpandedOp =
B.CreateNUWSub(
X,
Y);
847 ExpandedOp = ConstantInt::get(Instr->getType(), 1);
853 FrozenX =
B.CreateFreeze(
X,
X->getName() +
".frozen");
856 FrozenY =
B.CreateFreeze(
Y,
Y->getName() +
".frozen");
857 auto *AdjX =
B.CreateNUWSub(FrozenX, FrozenY, Instr->getName() +
".urem");
858 auto *Cmp =
B.CreateICmp(ICmpInst::ICMP_ULT, FrozenX, FrozenY,
859 Instr->getName() +
".cmp");
860 ExpandedOp =
B.CreateSelect(Cmp, FrozenX, AdjX);
863 B.CreateICmp(ICmpInst::ICMP_UGE,
X,
Y, Instr->getName() +
".cmp");
864 ExpandedOp =
B.CreateZExt(Cmp, Ty, Instr->getName() +
".udiv");
867 Instr->replaceAllUsesWith(ExpandedOp);
868 Instr->eraseFromParent();
869 ++NumUDivURemsNarrowedExpanded;
877 assert(Instr->getOpcode() == Instruction::UDiv ||
878 Instr->getOpcode() == Instruction::URem);
887 unsigned NewWidth = std::max<unsigned>(
PowerOf2Ceil(MaxActiveBits), 8);
891 if (NewWidth >= Instr->getType()->getScalarSizeInBits())
894 ++NumUDivURemsNarrowed;
896 auto *TruncTy = Instr->getType()->getWithNewBitWidth(NewWidth);
897 auto *
LHS =
B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
898 Instr->getName() +
".lhs.trunc");
899 auto *
RHS =
B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
900 Instr->getName() +
".rhs.trunc");
901 auto *BO =
B.CreateBinOp(Instr->getOpcode(),
LHS,
RHS, Instr->getName());
902 auto *Zext =
B.CreateZExt(BO, Instr->getType(), Instr->getName() +
".zext");
903 if (
auto *BinOp = dyn_cast<BinaryOperator>(BO))
904 if (BinOp->getOpcode() == Instruction::UDiv)
905 BinOp->setIsExact(Instr->isExact());
907 Instr->replaceAllUsesWith(Zext);
908 Instr->eraseFromParent();
913 assert(Instr->getOpcode() == Instruction::UDiv ||
914 Instr->getOpcode() == Instruction::URem);
949 for (Operand &
Op : Ops) {
958 auto *URem = BinaryOperator::CreateURem(Ops[0].V, Ops[1].V, SDI->
getName(),
1010 for (Operand &
Op : Ops) {
1019 auto *UDiv = BinaryOperator::CreateUDiv(Ops[0].V, Ops[1].V, SDI->
getName(),
1022 UDiv->setIsExact(SDI->
isExact());
1027 if (Ops[0].
D != Ops[1].
D) {
1043 assert(Instr->getOpcode() == Instruction::SDiv ||
1044 Instr->getOpcode() == Instruction::SRem);
1050 if (Instr->getOpcode() == Instruction::SDiv)
1054 if (Instr->getOpcode() == Instruction::SRem) {
1068 if (NegOneOrZero.
contains(LRange)) {
1079 ++NumAShrsConverted;
1084 BO->setIsExact(SDI->
isExact());
1100 ZExt->takeName(SDI);
1113 const Use &
Base =
I->getOperandUse(0);
1141 UIToFP->takeName(SIToFP);
1143 UIToFP->setNonNeg();
1164 bool Changed =
false;
1165 bool NewNUW =
false, NewNSW =
false;
1168 Opcode, RRange, OBO::NoUnsignedWrap);
1169 NewNUW = NUWRange.
contains(LRange);
1174 Opcode, RRange, OBO::NoSignedWrap);
1175 NewNSW = NSWRange.
contains(LRange);
1209 bool FnChanged =
false;
1216 bool BBChanged =
false;
1218 switch (
II.getOpcode()) {
1219 case Instruction::Select:
1222 case Instruction::PHI:
1223 BBChanged |=
processPHI(cast<PHINode>(&
II), LVI, DT, SQ);
1225 case Instruction::ICmp:
1226 case Instruction::FCmp:
1229 case Instruction::Call:
1230 case Instruction::Invoke:
1233 case Instruction::SRem:
1234 case Instruction::SDiv:
1237 case Instruction::UDiv:
1238 case Instruction::URem:
1241 case Instruction::AShr:
1244 case Instruction::SExt:
1247 case Instruction::ZExt:
1250 case Instruction::UIToFP:
1253 case Instruction::SIToFP:
1256 case Instruction::Add:
1257 case Instruction::Sub:
1258 case Instruction::Mul:
1259 case Instruction::Shl:
1262 case Instruction::And:
1263 BBChanged |=
processAnd(cast<BinaryOperator>(&
II), LVI);
1269 switch (Term->getOpcode()) {
1270 case Instruction::Switch:
1271 BBChanged |=
processSwitch(cast<SwitchInst>(Term), LVI, DT);
1273 case Instruction::Ret: {
1274 auto *RI = cast<ReturnInst>(Term);
1278 auto *RetVal = RI->getReturnValue();
1280 if (isa<Constant>(RetVal))
break;
1283 RI->replaceUsesOfWith(RetVal,
C);
1289 FnChanged |= BBChanged;
1306#if defined(EXPENSIVE_CHECKS)
1307 assert(DT->verify(DominatorTree::VerificationLevel::Full));
1309 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
This file contains the simple types necessary to represent the attributes associated with functions a...
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file builds on the ADT/GraphTraits.h file to build generic depth first graph iterator.
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static bool runImpl(Function &F, const TargetLowering &TLI)
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
This header defines various interfaces for pass management in LLVM.
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
bool isNonPositive() const
Determine if this APInt Value is non-positive (<= 0).
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
APInt sext(unsigned width) const
Sign extend to a new width.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
A container for analyses that lazily runs them and caches their results.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
AttributeList addParamAttribute(LLVMContext &C, unsigned ArgNo, Attribute::AttrKind Kind) const
Add an argument attribute to the list.
static Attribute get(LLVMContext &Context, AttrKind Kind, uint64_t Val=0)
Return a uniquified Attribute object.
LLVM Basic Block Representation.
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
const Function * getParent() const
Return the enclosing method, or null if none.
const Instruction * getFirstNonPHIOrDbg(bool SkipPseudoOp=true) const
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic,...
LLVMContext & getContext() const
Get the context in which this basic block lives.
void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs=false)
Update PHI nodes in this BasicBlock before removal of predecessor Pred.
This class represents an intrinsic that is based on a binary operation.
unsigned getNoWrapKind() const
Returns one of OBO::NoSignedWrap or OBO::NoUnsignedWrap.
bool isSigned() const
Whether the intrinsic is signed or unsigned.
Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
static BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
void setAttributes(AttributeList A)
Set the parameter attributes for this call.
Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
AttributeList getAttributes() const
Return the parameter attributes for this call.
static CastInst * CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt or BitCast cast instruction.
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
This class represents a ucmp/scmp intrinsic.
static CmpInst::Predicate getGTPredicate(Intrinsic::ID ID)
static CmpInst::Predicate getLTPredicate(Intrinsic::ID ID)
This is the shared class of boolean and integer constants.
static ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static ConstantInt * getFalse(LLVMContext &Context)
static ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
This class represents a range of values.
unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
static CmpInst::Predicate getEquivalentPredWithFlippedSignedness(CmpInst::Predicate Pred, const ConstantRange &CR1, const ConstantRange &CR2)
If the comparison between constant ranges this and Other is insensitive to the signedness of the comp...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
bool isAllNegative() const
Return true if all values in this range are negative.
bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other? NOTE: false does not mean that inverse pr...
bool isSizeLargerThan(uint64_t MaxSize) const
Compare set size of this range with Value.
ConstantRange abs(bool IntMinIsPoison=false) const
Calculate absolute value range.
bool isAllNonNegative() const
Return true if all values in this range are non-negative.
ConstantRange sdiv(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a signed division of a value in th...
bool contains(const APInt &Val) const
Return true if the specified value is in the set.
APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
static bool areInsensitiveToSignednessOfICmpPredicate(const ConstantRange &CR1, const ConstantRange &CR2)
Return true iff CR1 ult CR2 is equivalent to CR1 slt CR2.
static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, const ConstantRange &Other, unsigned NoWrapKind)
Produce the largest range containing all X such that "X BinOp Y" is guaranteed not to wrap (overflow)...
unsigned getMinSignedBits() const
Compute the maximal number of bits needed to represent every value in this signed range.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
static Constant * get(StructType *T, ArrayRef< Constant * > V)
This is an important base class in LLVM.
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
This class represents an Operation in the Expression.
Analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
void applyUpdatesPermissive(ArrayRef< typename DomTreeT::UpdateType > Updates)
Submit updates to all available trees.
void applyUpdates(ArrayRef< typename DomTreeT::UpdateType > Updates)
Submit updates to all available trees.
This instruction compares its operands according to the predicate given to the constructor.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
Analysis to compute lazy value information.
This pass computes, caches, and vends lazy value constraint information.
ConstantRange getConstantRangeAtUse(const Use &U, bool UndefAllowed)
Return the ConstantRange constraint that is known to hold for the value at a specific use-site.
Constant * getPredicateOnEdge(CmpInst::Predicate Pred, Value *V, Constant *C, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI=nullptr)
Determine whether the specified value comparison with a constant is known to be true or false on the ...
Constant * getConstantOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI=nullptr)
Determine whether the specified value is known to be a constant on the specified edge.
Constant * getConstant(Value *V, Instruction *CxtI)
Determine whether the specified value is known to be a constant at the specified instruction.
Constant * getPredicateAt(CmpInst::Predicate Pred, Value *V, Constant *C, Instruction *CxtI, bool UseBlockValue)
Determine whether the specified value comparison with a constant is known to be true or false at the ...
This class represents min/max intrinsics.
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
static bool isSigned(Intrinsic::ID ID)
Whether the intrinsic is signed or unsigned.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Instruction that can have a nneg flag (zext/uitofp).
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
void abandon()
Mark an analysis as abandoned.
void preserve()
Mark an analysis as preserved.
This class represents a sign extension of integer types.
This class represents a cast from signed integer to floating point.
Represents a saturating add/sub intrinsic.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getCondition() const
const Value * getTrueValue() const
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Class to represent struct types.
A wrapper class to simplify modification of SwitchInst cases along with their prof branch_weights met...
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
This class represents a cast unsigned integer to floating point.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
const Use & getOperandUse(unsigned i) const
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
LLVMContext & getContext() const
All values hold a context through their type.
iterator_range< use_iterator > uses()
StringRef getName() const
Return a constant reference to the value's name.
void takeName(Value *V)
Transfer the name from V to this value.
Represents an op.with.overflow intrinsic.
This class represents zero extension of integer types.
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
bool match(Val *V, const Pattern &P)
This is an optimization pass for GlobalISel generic memory operations.
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions=false, const TargetLibraryInfo *TLI=nullptr, DomTreeUpdater *DTU=nullptr)
If a terminator instruction is predicated on a constant value, convert it into an unconditional branc...
auto successors(const MachineBasicBlock *BB)
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
iterator_range< df_iterator< T > > depth_first(const T &G)
bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
const SimplifyQuery getBestSimplifyQuery(Pass &, Function &)
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...