51#define DEBUG_TYPE "correlated-value-propagation"
55 cl::desc(
"Enables canonicalization of signed relational predicates to "
56 "unsigned (e.g. sgt => ugt)"));
59STATISTIC(NumPhiCommon,
"Number of phis deleted via common incoming value");
60STATISTIC(NumSelects,
"Number of selects propagated");
61STATISTIC(NumMemAccess,
"Number of memory access targets propagated");
62STATISTIC(NumCmps,
"Number of comparisons propagated");
63STATISTIC(NumReturns,
"Number of return values propagated");
64STATISTIC(NumDeadCases,
"Number of switch cases removed");
66 "Number of sdivs/srems whose width was decreased");
67STATISTIC(NumSDivs,
"Number of sdiv converted to udiv");
69 "Number of udivs/urems whose width was decreased");
70STATISTIC(NumAShrsConverted,
"Number of ashr converted to lshr");
71STATISTIC(NumAShrsRemoved,
"Number of ashr removed");
72STATISTIC(NumSRems,
"Number of srem converted to urem");
73STATISTIC(NumSExt,
"Number of sext converted to zext");
74STATISTIC(NumSICmps,
"Number of signed icmp preds simplified to unsigned");
77STATISTIC(NumNSW,
"Number of no-signed-wrap deductions");
78STATISTIC(NumNUW,
"Number of no-unsigned-wrap deductions");
79STATISTIC(NumAddNW,
"Number of no-wrap deductions for add");
80STATISTIC(NumAddNSW,
"Number of no-signed-wrap deductions for add");
81STATISTIC(NumAddNUW,
"Number of no-unsigned-wrap deductions for add");
82STATISTIC(NumSubNW,
"Number of no-wrap deductions for sub");
83STATISTIC(NumSubNSW,
"Number of no-signed-wrap deductions for sub");
84STATISTIC(NumSubNUW,
"Number of no-unsigned-wrap deductions for sub");
85STATISTIC(NumMulNW,
"Number of no-wrap deductions for mul");
86STATISTIC(NumMulNSW,
"Number of no-signed-wrap deductions for mul");
87STATISTIC(NumMulNUW,
"Number of no-unsigned-wrap deductions for mul");
88STATISTIC(NumShlNW,
"Number of no-wrap deductions for shl");
89STATISTIC(NumShlNSW,
"Number of no-signed-wrap deductions for shl");
90STATISTIC(NumShlNUW,
"Number of no-unsigned-wrap deductions for shl");
91STATISTIC(NumAbs,
"Number of llvm.abs intrinsics removed");
92STATISTIC(NumOverflows,
"Number of overflow checks removed");
94 "Number of saturating arithmetics converted to normal arithmetics");
95STATISTIC(NumNonNull,
"Number of function pointer arguments marked non-null");
96STATISTIC(NumMinMax,
"Number of llvm.[us]{min,max} intrinsics removed");
98 "Number of bound udiv's/urem's expanded");
105 if (!
C)
return false;
108 if (!CI)
return false;
134 Value *CommonValue =
nullptr;
135 for (
unsigned i = 0, e =
P->getNumIncomingValues(); i != e; ++i) {
136 Value *Incoming =
P->getIncomingValue(i);
137 if (
auto *IncomingConstant = dyn_cast<Constant>(Incoming)) {
138 IncomingConstants.
push_back(std::make_pair(IncomingConstant, i));
139 }
else if (!CommonValue) {
141 CommonValue = Incoming;
142 }
else if (Incoming != CommonValue) {
148 if (!CommonValue || IncomingConstants.
empty())
153 if (
auto *CommonInst = dyn_cast<Instruction>(CommonValue))
160 for (
auto &IncomingConstant : IncomingConstants) {
162 BasicBlock *IncomingBB =
P->getIncomingBlock(IncomingConstant.second);
175 P->replaceAllUsesWith(CommonValue);
176 P->eraseFromParent();
191 auto *
SI = dyn_cast<SelectInst>(Incoming);
197 Value *Condition =
SI->getCondition();
201 return SI->getTrueValue();
202 if (
C->isZeroValue())
203 return SI->getFalseValue();
213 if (
auto *
C = dyn_cast<Constant>(
SI->getFalseValue()))
216 return SI->getTrueValue();
220 if (
auto *
C = dyn_cast<Constant>(
SI->getTrueValue()))
223 return SI->getFalseValue();
230 bool Changed =
false;
233 for (
unsigned i = 0, e =
P->getNumIncomingValues(); i < e; ++i) {
234 Value *Incoming =
P->getIncomingValue(i);
235 if (isa<Constant>(Incoming))
continue;
239 P->setIncomingValue(i, V);
245 P->replaceAllUsesWith(V);
246 P->eraseFromParent();
260 Value *Pointer =
nullptr;
262 Pointer = L->getPointerOperand();
264 Pointer = cast<StoreInst>(
I)->getPointerOperand();
266 if (isa<Constant>(Pointer))
return false;
269 if (!
C)
return false;
272 I->replaceUsesOfWith(Pointer,
C);
281 if (Cmp->getType()->isVectorTy() ||
282 !Cmp->getOperand(0)->getType()->isIntegerTy())
285 if (!Cmp->isSigned())
293 if (UnsignedPred == ICmpInst::Predicate::BAD_ICMP_PREDICATE)
297 Cmp->setPredicate(UnsignedPred);
307 Value *Op0 = Cmp->getOperand(0);
308 Value *Op1 = Cmp->getOperand(1);
318 Cmp->replaceAllUsesWith(TorF);
319 Cmp->eraseFromParent();
327 if (
auto *ICmp = dyn_cast<ICmpInst>(Cmp))
348 bool Changed =
false;
351 SuccessorsCount[Succ]++;
357 for (
auto CI =
SI->case_begin(), CE =
SI->case_end(); CI != CE;) {
367 CI =
SI.removeCase(CI);
372 Cond =
SI->getCondition();
376 if (--SuccessorsCount[Succ] == 0)
384 SI->setCondition(Case);
385 NumDeadCases +=
SI->getNumCases();
413 bool NewNSW,
bool NewNUW) {
416 case Instruction::Add:
421 case Instruction::Sub:
426 case Instruction::Mul:
431 case Instruction::Shl:
440 auto *Inst = dyn_cast<Instruction>(V);
447 Inst->setHasNoSignedWrap();
455 Inst->setHasNoUnsignedWrap();
466 bool IsIntMinPoison = cast<ConstantInt>(II->
getArgOperand(1))->isOne();
468 Type *Ty =
X->getType();
474 Result = LVI->
getPredicateAt(CmpInst::Predicate::ICMP_ULE,
X, IntMin, II,
484 Constant *Zero = ConstantInt::getNullValue(Ty);
485 Result = LVI->
getPredicateAt(CmpInst::Predicate::ICMP_SLE,
X, Zero, II,
491 bool Changed =
false;
492 if (!IsIntMinPoison) {
494 Result = LVI->
getPredicateAt(CmpInst::Predicate::ICMP_NE,
X, IntMin, II,
514 if (
auto *BO = dyn_cast<BinaryOperator>(NegX))
555 if (
auto *BO = dyn_cast<BinaryOperator>(NewOp))
563 bool NSW =
SI->isSigned();
564 bool NUW = !
SI->isSigned();
566 Opcode,
SI->getLHS(),
SI->getRHS(),
SI->getName(),
SI);
570 SI->replaceAllUsesWith(BinOp);
571 SI->eraseFromParent();
575 if (
auto *BO = dyn_cast<BinaryOperator>(BinOp))
588 if (
auto *MM = dyn_cast<MinMaxIntrinsic>(&CB)) {
592 if (
auto *WO = dyn_cast<WithOverflowInst>(&CB)) {
593 if (WO->getLHS()->getType()->isIntegerTy() &&
willNotOverflow(WO, LVI)) {
598 if (
auto *
SI = dyn_cast<SaturatingInst>(&CB)) {
604 bool Changed =
false;
614 for (
const Use &ConstU : DeoptBundle->Inputs) {
615 Use &U =
const_cast<Use&
>(ConstU);
617 if (V->getType()->isVectorTy())
continue;
618 if (isa<Constant>(V))
continue;
644 assert(ArgNo == CB.
arg_size() &&
"Call arguments not processed correctly.");
649 NumNonNull += ArgNos.
size();
674 Instr->
getOpcode() == Instruction::SRem);
683 unsigned MinSignedBits =
693 unsigned NewWidth = std::max<unsigned>(
PowerOf2Ceil(MinSignedBits), 8);
697 if (NewWidth >= OrigWidth)
700 ++NumSDivSRemsNarrowed;
704 Instr->
getName() +
".lhs.trunc");
706 Instr->
getName() +
".rhs.trunc");
708 auto *Sext =
B.CreateSExt(BO, Instr->
getType(), Instr->
getName() +
".sext");
709 if (
auto *BinOp = dyn_cast<BinaryOperator>(BO))
710 if (BinOp->getOpcode() == Instruction::SDiv)
711 BinOp->setIsExact(Instr->
isExact());
722 Instr->
getOpcode() == Instruction::URem);
724 bool IsRem = Instr->
getOpcode() == Instruction::URem;
731 if (XCR.
icmp(ICmpInst::ICMP_ULT, YCR)) {
734 ++NumUDivURemsNarrowedExpanded;
762 if (!XCR.
icmp(ICmpInst::ICMP_ULT,
772 Value *FrozenX =
B.CreateFreeze(
X,
X->getName() +
".frozen");
773 auto *AdjX =
B.CreateNUWSub(FrozenX,
Y, Instr->
getName() +
".urem");
775 B.CreateICmp(ICmpInst::ICMP_ULT, FrozenX,
Y, Instr->
getName() +
".cmp");
776 ExpandedOp =
B.CreateSelect(Cmp, FrozenX, AdjX);
779 B.CreateICmp(ICmpInst::ICMP_UGE,
X,
Y, Instr->
getName() +
".cmp");
780 ExpandedOp =
B.CreateZExt(Cmp, Ty, Instr->
getName() +
".udiv");
785 ++NumUDivURemsNarrowedExpanded;
794 Instr->
getOpcode() == Instruction::URem);
804 unsigned NewWidth = std::max<unsigned>(
PowerOf2Ceil(MaxActiveBits), 8);
811 ++NumUDivURemsNarrowed;
815 Instr->
getName() +
".lhs.trunc");
817 Instr->
getName() +
".rhs.trunc");
819 auto *Zext =
B.CreateZExt(BO, Instr->
getType(), Instr->
getName() +
".zext");
820 if (
auto *BinOp = dyn_cast<BinaryOperator>(BO))
821 if (BinOp->getOpcode() == Instruction::UDiv)
822 BinOp->setIsExact(Instr->
isExact());
831 Instr->
getOpcode() == Instruction::URem);
867 for (Operand &Op : Ops) {
877 BinaryOperator::CreateURem(Ops[0].V, Ops[1].V, SDI->
getName(), SDI);
920 for (Operand &Op : Ops) {
930 BinaryOperator::CreateUDiv(Ops[0].V, Ops[1].V, SDI->
getName(), SDI);
932 UDiv->setIsExact(SDI->
isExact());
937 if (Ops[0].
D != Ops[1].
D)
951 Instr->
getOpcode() == Instruction::SRem);
957 if (Instr->
getOpcode() == Instruction::SDiv)
961 if (Instr->
getOpcode() == Instruction::SRem) {
977 if (NegOneOrZero.
contains(LRange)) {
993 BO->setIsExact(SDI->
isExact());
1010 ZExt->takeName(SDI);
1036 bool Changed =
false;
1037 bool NewNUW =
false, NewNSW =
false;
1040 Opcode, RRange, OBO::NoUnsignedWrap);
1041 NewNUW = NUWRange.
contains(LRange);
1046 Opcode, RRange, OBO::NoSignedWrap);
1047 NewNSW = NSWRange.
contains(LRange);
1064 if (!
RHS || !
RHS->getValue().isMask())
1087 auto *
C = dyn_cast<CmpInst>(V);
1088 if (!
C)
return nullptr;
1090 Value *Op0 =
C->getOperand(0);
1091 Constant *Op1 = dyn_cast<Constant>(
C->getOperand(1));
1092 if (!Op1)
return nullptr;
1095 C->getPredicate(), Op0, Op1, At,
false);
1106 bool FnChanged =
false;
1113 bool BBChanged =
false;
1115 switch (II.getOpcode()) {
1116 case Instruction::Select:
1119 case Instruction::PHI:
1120 BBChanged |=
processPHI(cast<PHINode>(&II), LVI, DT, SQ);
1122 case Instruction::ICmp:
1123 case Instruction::FCmp:
1124 BBChanged |=
processCmp(cast<CmpInst>(&II), LVI);
1126 case Instruction::Load:
1127 case Instruction::Store:
1130 case Instruction::Call:
1131 case Instruction::Invoke:
1134 case Instruction::SRem:
1135 case Instruction::SDiv:
1138 case Instruction::UDiv:
1139 case Instruction::URem:
1142 case Instruction::AShr:
1143 BBChanged |=
processAShr(cast<BinaryOperator>(&II), LVI);
1145 case Instruction::SExt:
1146 BBChanged |=
processSExt(cast<SExtInst>(&II), LVI);
1148 case Instruction::Add:
1149 case Instruction::Sub:
1150 case Instruction::Mul:
1151 case Instruction::Shl:
1152 BBChanged |=
processBinOp(cast<BinaryOperator>(&II), LVI);
1154 case Instruction::And:
1155 BBChanged |=
processAnd(cast<BinaryOperator>(&II), LVI);
1161 switch (Term->getOpcode()) {
1162 case Instruction::Switch:
1163 BBChanged |=
processSwitch(cast<SwitchInst>(Term), LVI, DT);
1165 case Instruction::Ret: {
1166 auto *RI = cast<ReturnInst>(Term);
1170 auto *RetVal = RI->getReturnValue();
1172 if (isa<Constant>(RetVal))
break;
1175 RI->replaceUsesOfWith(RetVal,
C);
1181 FnChanged |= BBChanged;
This file contains the simple types necessary to represent the attributes associated with functions a...
SmallVector< MachineOperand, 4 > Cond
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file builds on the ADT/GraphTraits.h file to build generic depth first graph iterator.
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static bool runImpl(Function &F, const TargetLowering &TLI)
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
This header defines various interfaces for pass management in LLVM.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
APInt sext(unsigned width) const
Sign extend to a new width.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
A container for analyses that lazily runs them and caches their results.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
AttributeList addParamAttribute(LLVMContext &C, unsigned ArgNo, Attribute::AttrKind Kind) const
Add an argument attribute to the list.
static Attribute get(LLVMContext &Context, AttrKind Kind, uint64_t Val=0)
Return a uniquified Attribute object.
LLVM Basic Block Representation.
void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs=false)
Update PHI nodes in this BasicBlock before removal of predecessor Pred.
This class represents an intrinsic that is based on a binary operation.
unsigned getNoWrapKind() const
Returns one of OBO::NoSignedWrap or OBO::NoUnsignedWrap.
bool isSigned() const
Whether the intrinsic is signed or unsigned.
Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), Instruction *InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", Instruction *InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
void setAttributes(AttributeList A)
Set the parameter attributes for this call.
Value * getArgOperand(unsigned i) const
void setArgOperand(unsigned i, Value *v)
Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
AttributeList getAttributes() const
Return the parameter attributes for this call.
static CastInst * CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Create a ZExt or BitCast cast instruction.
This class is the base class for the comparison instructions.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_ULT
unsigned less than
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
This is the shared class of boolean and integer constants.
bool isOne() const
This is just a convenience method to make client code smaller for a common case.
static ConstantInt * getTrue(LLVMContext &Context)
static Constant * get(Type *Ty, uint64_t V, bool IsSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
static ConstantInt * getFalse(LLVMContext &Context)
static ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
This class represents a range of values.
unsigned getActiveBits() const
Compute the maximal number of active bits needed to represent every value in this range.
ConstantRange umul_sat(const ConstantRange &Other) const
Perform an unsigned saturating multiplication of two constant ranges.
static CmpInst::Predicate getEquivalentPredWithFlippedSignedness(CmpInst::Predicate Pred, const ConstantRange &CR1, const ConstantRange &CR2)
If the comparison between constant ranges this and Other is insensitive to the signedness of the comp...
bool isAllNegative() const
Return true if all values in this range are negative.
bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other? NOTE: false does not mean that inverse pr...
ConstantRange abs(bool IntMinIsPoison=false) const
Calculate absolute value range.
bool isAllNonNegative() const
Return true if all values in this range are non-negative.
bool contains(const APInt &Val) const
Return true if the specified value is in the set.
APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, const ConstantRange &Other, unsigned NoWrapKind)
Produce the largest range containing all X such that "X BinOp Y" is guaranteed not to wrap (overflow)...
unsigned getMinSignedBits() const
Compute the maximal number of bits needed to represent every value in this signed range.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
static Constant * get(StructType *T, ArrayRef< Constant * > V)
This is an important base class in LLVM.
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
void applyUpdatesPermissive(ArrayRef< DominatorTree::UpdateType > Updates)
Submit updates to all available trees.
Analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction compares its operands according to the predicate given to the constructor.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
Analysis to compute lazy value information.
This pass computes, caches, and vends lazy value constraint information.
ConstantRange getConstantRangeAtUse(const Use &U, bool UndefAllowed=true)
Return the ConstantRange constraint that is known to hold for the value at a specific use-site.
Tristate
This is used to return true/false/dunno results.
Constant * getConstantOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI=nullptr)
Determine whether the specified value is known to be a constant on the specified edge.
Tristate getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI=nullptr)
Determine whether the specified value comparison with a constant is known to be true or false on the ...
Tristate getPredicateAt(unsigned Pred, Value *V, Constant *C, Instruction *CxtI, bool UseBlockValue)
Determine whether the specified value comparison with a constant is known to be true or false at the ...
Constant * getConstant(Value *V, Instruction *CxtI)
Determine whether the specified value is known to be a constant at the specified instruction.
ConstantRange getConstantRange(Value *V, Instruction *CxtI, bool UndefAllowed=true)
Return the ConstantRange constraint that is known to hold for the specified value at the specified in...
An instruction for reading from memory.
This class represents min/max intrinsics.
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
void abandon()
Mark an analysis as abandoned.
void preserve()
Mark an analysis as preserved.
This class represents a sign extension of integer types.
Represents a saturating add/sub intrinsic.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getCondition() const
const Value * getTrueValue() const
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Class to represent struct types.
A wrapper class to simplify modification of SwitchInst cases along with their prof branch_weights met...
The instances of the Type class are immutable: once they are created, they are never changed.
unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
A Use represents the edge between a Value definition and its users.
const Use & getOperandUse(unsigned i) const
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
LLVMContext & getContext() const
All values hold a context through their type.
StringRef getName() const
Return a constant reference to the value's name.
void takeName(Value *V)
Transfer the name from V to this value.
Represents an op.with.overflow intrinsic.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions=false, const TargetLibraryInfo *TLI=nullptr, DomTreeUpdater *DTU=nullptr)
If a terminator instruction is predicated on a constant value, convert it into an unconditional branc...
auto successors(const MachineBasicBlock *BB)
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q, OptimizationRemarkEmitter *ORE=nullptr)
See if we can compute a simplified version of this instruction.
iterator_range< df_iterator< T > > depth_first(const T &G)
bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
const SimplifyQuery getBestSimplifyQuery(Pass &, Function &)