LLVM 20.0.0git
DebugInfoMetadata.cpp
Go to the documentation of this file.
1//===- DebugInfoMetadata.cpp - Implement debug info metadata --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the debug info Metadata classes.
10//
11//===----------------------------------------------------------------------===//
12
14#include "LLVMContextImpl.h"
15#include "MetadataImpl.h"
20#include "llvm/IR/Function.h"
22#include "llvm/IR/Type.h"
23#include "llvm/IR/Value.h"
24
25#include <numeric>
26#include <optional>
27
28using namespace llvm;
29
30namespace llvm {
31// Use FS-AFDO discriminator.
33 "enable-fs-discriminator", cl::Hidden,
34 cl::desc("Enable adding flow sensitive discriminators"));
35} // namespace llvm
36
38 return (getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ? 0 : SubclassData32);
39}
40
41const DIExpression::FragmentInfo DebugVariable::DefaultFragment = {
42 std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::min()};
43
45 : Variable(DII->getVariable()),
46 Fragment(DII->getExpression()->getFragmentInfo()),
47 InlinedAt(DII->getDebugLoc().getInlinedAt()) {}
48
50 : Variable(DVR->getVariable()),
51 Fragment(DVR->getExpression()->getFragmentInfo()),
52 InlinedAt(DVR->getDebugLoc().getInlinedAt()) {}
53
55 : DebugVariable(DVI->getVariable(), std::nullopt,
56 DVI->getDebugLoc()->getInlinedAt()) {}
57
58DILocation::DILocation(LLVMContext &C, StorageType Storage, unsigned Line,
59 unsigned Column, ArrayRef<Metadata *> MDs,
60 bool ImplicitCode)
61 : MDNode(C, DILocationKind, Storage, MDs) {
62 assert((MDs.size() == 1 || MDs.size() == 2) &&
63 "Expected a scope and optional inlined-at");
64
65 // Set line and column.
66 assert(Column < (1u << 16) && "Expected 16-bit column");
67
68 SubclassData32 = Line;
69 SubclassData16 = Column;
70
71 setImplicitCode(ImplicitCode);
72}
73
74static void adjustColumn(unsigned &Column) {
75 // Set to unknown on overflow. We only have 16 bits to play with here.
76 if (Column >= (1u << 16))
77 Column = 0;
78}
79
80DILocation *DILocation::getImpl(LLVMContext &Context, unsigned Line,
81 unsigned Column, Metadata *Scope,
82 Metadata *InlinedAt, bool ImplicitCode,
83 StorageType Storage, bool ShouldCreate) {
84 // Fixup column.
86
87 if (Storage == Uniqued) {
88 if (auto *N = getUniqued(Context.pImpl->DILocations,
89 DILocationInfo::KeyTy(Line, Column, Scope,
91 return N;
92 if (!ShouldCreate)
93 return nullptr;
94 } else {
95 assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
96 }
97
99 Ops.push_back(Scope);
100 if (InlinedAt)
101 Ops.push_back(InlinedAt);
102 return storeImpl(new (Ops.size(), Storage) DILocation(
103 Context, Storage, Line, Column, Ops, ImplicitCode),
104 Storage, Context.pImpl->DILocations);
105}
106
108 if (Locs.empty())
109 return nullptr;
110 if (Locs.size() == 1)
111 return Locs[0];
112 auto *Merged = Locs[0];
113 for (DILocation *L : llvm::drop_begin(Locs)) {
114 Merged = getMergedLocation(Merged, L);
115 if (Merged == nullptr)
116 break;
117 }
118 return Merged;
119}
120
122 if (!LocA || !LocB)
123 return nullptr;
124
125 if (LocA == LocB)
126 return LocA;
127
128 LLVMContext &C = LocA->getContext();
129
130 using LocVec = SmallVector<const DILocation *>;
131 LocVec ALocs;
132 LocVec BLocs;
134 4>
135 ALookup;
136
137 // Walk through LocA and its inlined-at locations, populate them in ALocs and
138 // save the index for the subprogram and inlined-at pair, which we use to find
139 // a matching starting location in LocB's chain.
140 for (auto [L, I] = std::make_pair(LocA, 0U); L; L = L->getInlinedAt(), I++) {
141 ALocs.push_back(L);
142 auto Res = ALookup.try_emplace(
143 {L->getScope()->getSubprogram(), L->getInlinedAt()}, I);
144 assert(Res.second && "Multiple <SP, InlinedAt> pairs in a location chain?");
145 (void)Res;
146 }
147
148 LocVec::reverse_iterator ARIt = ALocs.rend();
149 LocVec::reverse_iterator BRIt = BLocs.rend();
150
151 // Populate BLocs and look for a matching starting location, the first
152 // location with the same subprogram and inlined-at location as in LocA's
153 // chain. Since the two locations have the same inlined-at location we do
154 // not need to look at those parts of the chains.
155 for (auto [L, I] = std::make_pair(LocB, 0U); L; L = L->getInlinedAt(), I++) {
156 BLocs.push_back(L);
157
158 if (ARIt != ALocs.rend())
159 // We have already found a matching starting location.
160 continue;
161
162 auto IT = ALookup.find({L->getScope()->getSubprogram(), L->getInlinedAt()});
163 if (IT == ALookup.end())
164 continue;
165
166 // The + 1 is to account for the &*rev_it = &(it - 1) relationship.
167 ARIt = LocVec::reverse_iterator(ALocs.begin() + IT->second + 1);
168 BRIt = LocVec::reverse_iterator(BLocs.begin() + I + 1);
169
170 // If we have found a matching starting location we do not need to add more
171 // locations to BLocs, since we will only look at location pairs preceding
172 // the matching starting location, and adding more elements to BLocs could
173 // invalidate the iterator that we initialized here.
174 break;
175 }
176
177 // Merge the two locations if possible, using the supplied
178 // inlined-at location for the created location.
179 auto MergeLocPair = [&C](const DILocation *L1, const DILocation *L2,
181 if (L1 == L2)
182 return DILocation::get(C, L1->getLine(), L1->getColumn(), L1->getScope(),
183 InlinedAt);
184
185 // If the locations originate from different subprograms we can't produce
186 // a common location.
187 if (L1->getScope()->getSubprogram() != L2->getScope()->getSubprogram())
188 return nullptr;
189
190 // Return the nearest common scope inside a subprogram.
191 auto GetNearestCommonScope = [](DIScope *S1, DIScope *S2) -> DIScope * {
193 for (; S1; S1 = S1->getScope()) {
194 Scopes.insert(S1);
195 if (isa<DISubprogram>(S1))
196 break;
197 }
198
199 for (; S2; S2 = S2->getScope()) {
200 if (Scopes.count(S2))
201 return S2;
202 if (isa<DISubprogram>(S2))
203 break;
204 }
205
206 return nullptr;
207 };
208
209 auto Scope = GetNearestCommonScope(L1->getScope(), L2->getScope());
210 assert(Scope && "No common scope in the same subprogram?");
211
212 bool SameLine = L1->getLine() == L2->getLine();
213 bool SameCol = L1->getColumn() == L2->getColumn();
214 unsigned Line = SameLine ? L1->getLine() : 0;
215 unsigned Col = SameLine && SameCol ? L1->getColumn() : 0;
216
217 return DILocation::get(C, Line, Col, Scope, InlinedAt);
218 };
219
220 DILocation *Result = ARIt != ALocs.rend() ? (*ARIt)->getInlinedAt() : nullptr;
221
222 // If we have found a common starting location, walk up the inlined-at chains
223 // and try to produce common locations.
224 for (; ARIt != ALocs.rend() && BRIt != BLocs.rend(); ++ARIt, ++BRIt) {
225 DILocation *Tmp = MergeLocPair(*ARIt, *BRIt, Result);
226
227 if (!Tmp)
228 // We have walked up to a point in the chains where the two locations
229 // are irreconsilable. At this point Result contains the nearest common
230 // location in the inlined-at chains of LocA and LocB, so we break here.
231 break;
232
233 Result = Tmp;
234 }
235
236 if (Result)
237 return Result;
238
239 // We ended up with LocA and LocB as irreconsilable locations. Produce a
240 // location at 0:0 with one of the locations' scope. The function has
241 // historically picked A's scope, and a nullptr inlined-at location, so that
242 // behavior is mimicked here but I am not sure if this is always the correct
243 // way to handle this.
244 return DILocation::get(C, 0, 0, LocA->getScope(), nullptr);
245}
246
247std::optional<unsigned>
248DILocation::encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI) {
249 std::array<unsigned, 3> Components = {BD, DF, CI};
250 uint64_t RemainingWork = 0U;
251 // We use RemainingWork to figure out if we have no remaining components to
252 // encode. For example: if BD != 0 but DF == 0 && CI == 0, we don't need to
253 // encode anything for the latter 2.
254 // Since any of the input components is at most 32 bits, their sum will be
255 // less than 34 bits, and thus RemainingWork won't overflow.
256 RemainingWork =
257 std::accumulate(Components.begin(), Components.end(), RemainingWork);
258
259 int I = 0;
260 unsigned Ret = 0;
261 unsigned NextBitInsertionIndex = 0;
262 while (RemainingWork > 0) {
263 unsigned C = Components[I++];
264 RemainingWork -= C;
265 unsigned EC = encodeComponent(C);
266 Ret |= (EC << NextBitInsertionIndex);
267 NextBitInsertionIndex += encodingBits(C);
268 }
269
270 // Encoding may be unsuccessful because of overflow. We determine success by
271 // checking equivalence of components before & after encoding. Alternatively,
272 // we could determine Success during encoding, but the current alternative is
273 // simpler.
274 unsigned TBD, TDF, TCI = 0;
275 decodeDiscriminator(Ret, TBD, TDF, TCI);
276 if (TBD == BD && TDF == DF && TCI == CI)
277 return Ret;
278 return std::nullopt;
279}
280
281void DILocation::decodeDiscriminator(unsigned D, unsigned &BD, unsigned &DF,
282 unsigned &CI) {
287}
289
291 return StringSwitch<DIFlags>(Flag)
292#define HANDLE_DI_FLAG(ID, NAME) .Case("DIFlag" #NAME, Flag##NAME)
293#include "llvm/IR/DebugInfoFlags.def"
294 .Default(DINode::FlagZero);
295}
296
298 switch (Flag) {
299#define HANDLE_DI_FLAG(ID, NAME) \
300 case Flag##NAME: \
301 return "DIFlag" #NAME;
302#include "llvm/IR/DebugInfoFlags.def"
303 }
304 return "";
305}
306
308 SmallVectorImpl<DIFlags> &SplitFlags) {
309 // Flags that are packed together need to be specially handled, so
310 // that, for example, we emit "DIFlagPublic" and not
311 // "DIFlagPrivate | DIFlagProtected".
312 if (DIFlags A = Flags & FlagAccessibility) {
313 if (A == FlagPrivate)
314 SplitFlags.push_back(FlagPrivate);
315 else if (A == FlagProtected)
316 SplitFlags.push_back(FlagProtected);
317 else
318 SplitFlags.push_back(FlagPublic);
319 Flags &= ~A;
320 }
321 if (DIFlags R = Flags & FlagPtrToMemberRep) {
322 if (R == FlagSingleInheritance)
323 SplitFlags.push_back(FlagSingleInheritance);
324 else if (R == FlagMultipleInheritance)
325 SplitFlags.push_back(FlagMultipleInheritance);
326 else
327 SplitFlags.push_back(FlagVirtualInheritance);
328 Flags &= ~R;
329 }
330 if ((Flags & FlagIndirectVirtualBase) == FlagIndirectVirtualBase) {
331 Flags &= ~FlagIndirectVirtualBase;
332 SplitFlags.push_back(FlagIndirectVirtualBase);
333 }
334
335#define HANDLE_DI_FLAG(ID, NAME) \
336 if (DIFlags Bit = Flags & Flag##NAME) { \
337 SplitFlags.push_back(Bit); \
338 Flags &= ~Bit; \
339 }
340#include "llvm/IR/DebugInfoFlags.def"
341 return Flags;
342}
343
345 if (auto *T = dyn_cast<DIType>(this))
346 return T->getScope();
347
348 if (auto *SP = dyn_cast<DISubprogram>(this))
349 return SP->getScope();
350
351 if (auto *LB = dyn_cast<DILexicalBlockBase>(this))
352 return LB->getScope();
353
354 if (auto *NS = dyn_cast<DINamespace>(this))
355 return NS->getScope();
356
357 if (auto *CB = dyn_cast<DICommonBlock>(this))
358 return CB->getScope();
359
360 if (auto *M = dyn_cast<DIModule>(this))
361 return M->getScope();
362
363 assert((isa<DIFile>(this) || isa<DICompileUnit>(this)) &&
364 "Unhandled type of scope.");
365 return nullptr;
366}
367
369 if (auto *T = dyn_cast<DIType>(this))
370 return T->getName();
371 if (auto *SP = dyn_cast<DISubprogram>(this))
372 return SP->getName();
373 if (auto *NS = dyn_cast<DINamespace>(this))
374 return NS->getName();
375 if (auto *CB = dyn_cast<DICommonBlock>(this))
376 return CB->getName();
377 if (auto *M = dyn_cast<DIModule>(this))
378 return M->getName();
379 assert((isa<DILexicalBlockBase>(this) || isa<DIFile>(this) ||
380 isa<DICompileUnit>(this)) &&
381 "Unhandled type of scope.");
382 return "";
383}
384
385#ifndef NDEBUG
386static bool isCanonical(const MDString *S) {
387 return !S || !S->getString().empty();
388}
389#endif
390
392GenericDINode *GenericDINode::getImpl(LLVMContext &Context, unsigned Tag,
393 MDString *Header,
394 ArrayRef<Metadata *> DwarfOps,
395 StorageType Storage, bool ShouldCreate) {
396 unsigned Hash = 0;
397 if (Storage == Uniqued) {
398 GenericDINodeInfo::KeyTy Key(Tag, Header, DwarfOps);
399 if (auto *N = getUniqued(Context.pImpl->GenericDINodes, Key))
400 return N;
401 if (!ShouldCreate)
402 return nullptr;
403 Hash = Key.getHash();
404 } else {
405 assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
406 }
407
408 // Use a nullptr for empty headers.
409 assert(isCanonical(Header) && "Expected canonical MDString");
410 Metadata *PreOps[] = {Header};
411 return storeImpl(new (DwarfOps.size() + 1, Storage) GenericDINode(
412 Context, Storage, Hash, Tag, PreOps, DwarfOps),
413 Storage, Context.pImpl->GenericDINodes);
414}
415
416void GenericDINode::recalculateHash() {
417 setHash(GenericDINodeInfo::KeyTy::calculateHash(this));
418}
419
420#define UNWRAP_ARGS_IMPL(...) __VA_ARGS__
421#define UNWRAP_ARGS(ARGS) UNWRAP_ARGS_IMPL ARGS
422#define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS) \
423 do { \
424 if (Storage == Uniqued) { \
425 if (auto *N = getUniqued(Context.pImpl->CLASS##s, \
426 CLASS##Info::KeyTy(UNWRAP_ARGS(ARGS)))) \
427 return N; \
428 if (!ShouldCreate) \
429 return nullptr; \
430 } else { \
431 assert(ShouldCreate && \
432 "Expected non-uniqued nodes to always be created"); \
433 } \
434 } while (false)
435#define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS) \
436 return storeImpl(new (std::size(OPS), Storage) \
437 CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \
438 Storage, Context.pImpl->CLASS##s)
439#define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS) \
440 return storeImpl(new (0u, Storage) \
441 CLASS(Context, Storage, UNWRAP_ARGS(ARGS)), \
442 Storage, Context.pImpl->CLASS##s)
443#define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS) \
444 return storeImpl(new (std::size(OPS), Storage) CLASS(Context, Storage, OPS), \
445 Storage, Context.pImpl->CLASS##s)
446#define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS) \
447 return storeImpl(new (NUM_OPS, Storage) \
448 CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \
449 Storage, Context.pImpl->CLASS##s)
450
451DISubrange::DISubrange(LLVMContext &C, StorageType Storage,
453 : DINode(C, DISubrangeKind, Storage, dwarf::DW_TAG_subrange_type, Ops) {}
454DISubrange *DISubrange::getImpl(LLVMContext &Context, int64_t Count, int64_t Lo,
455 StorageType Storage, bool ShouldCreate) {
458 auto *LB = ConstantAsMetadata::get(
460 return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage,
461 ShouldCreate);
462}
463
464DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
465 int64_t Lo, StorageType Storage,
466 bool ShouldCreate) {
467 auto *LB = ConstantAsMetadata::get(
469 return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage,
470 ShouldCreate);
471}
472
473DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
474 Metadata *LB, Metadata *UB, Metadata *Stride,
475 StorageType Storage, bool ShouldCreate) {
476 DEFINE_GETIMPL_LOOKUP(DISubrange, (CountNode, LB, UB, Stride));
477 Metadata *Ops[] = {CountNode, LB, UB, Stride};
479}
480
481DISubrange::BoundType DISubrange::getCount() const {
482 Metadata *CB = getRawCountNode();
483 if (!CB)
484 return BoundType();
485
486 assert((isa<ConstantAsMetadata>(CB) || isa<DIVariable>(CB) ||
487 isa<DIExpression>(CB)) &&
488 "Count must be signed constant or DIVariable or DIExpression");
489
490 if (auto *MD = dyn_cast<ConstantAsMetadata>(CB))
491 return BoundType(cast<ConstantInt>(MD->getValue()));
492
493 if (auto *MD = dyn_cast<DIVariable>(CB))
494 return BoundType(MD);
495
496 if (auto *MD = dyn_cast<DIExpression>(CB))
497 return BoundType(MD);
498
499 return BoundType();
500}
501
502DISubrange::BoundType DISubrange::getLowerBound() const {
503 Metadata *LB = getRawLowerBound();
504 if (!LB)
505 return BoundType();
506
507 assert((isa<ConstantAsMetadata>(LB) || isa<DIVariable>(LB) ||
508 isa<DIExpression>(LB)) &&
509 "LowerBound must be signed constant or DIVariable or DIExpression");
510
511 if (auto *MD = dyn_cast<ConstantAsMetadata>(LB))
512 return BoundType(cast<ConstantInt>(MD->getValue()));
513
514 if (auto *MD = dyn_cast<DIVariable>(LB))
515 return BoundType(MD);
516
517 if (auto *MD = dyn_cast<DIExpression>(LB))
518 return BoundType(MD);
519
520 return BoundType();
521}
522
523DISubrange::BoundType DISubrange::getUpperBound() const {
524 Metadata *UB = getRawUpperBound();
525 if (!UB)
526 return BoundType();
527
528 assert((isa<ConstantAsMetadata>(UB) || isa<DIVariable>(UB) ||
529 isa<DIExpression>(UB)) &&
530 "UpperBound must be signed constant or DIVariable or DIExpression");
531
532 if (auto *MD = dyn_cast<ConstantAsMetadata>(UB))
533 return BoundType(cast<ConstantInt>(MD->getValue()));
534
535 if (auto *MD = dyn_cast<DIVariable>(UB))
536 return BoundType(MD);
537
538 if (auto *MD = dyn_cast<DIExpression>(UB))
539 return BoundType(MD);
540
541 return BoundType();
542}
543
544DISubrange::BoundType DISubrange::getStride() const {
545 Metadata *ST = getRawStride();
546 if (!ST)
547 return BoundType();
548
549 assert((isa<ConstantAsMetadata>(ST) || isa<DIVariable>(ST) ||
550 isa<DIExpression>(ST)) &&
551 "Stride must be signed constant or DIVariable or DIExpression");
552
553 if (auto *MD = dyn_cast<ConstantAsMetadata>(ST))
554 return BoundType(cast<ConstantInt>(MD->getValue()));
555
556 if (auto *MD = dyn_cast<DIVariable>(ST))
557 return BoundType(MD);
558
559 if (auto *MD = dyn_cast<DIExpression>(ST))
560 return BoundType(MD);
561
562 return BoundType();
563}
564DIGenericSubrange::DIGenericSubrange(LLVMContext &C, StorageType Storage,
566 : DINode(C, DIGenericSubrangeKind, Storage, dwarf::DW_TAG_generic_subrange,
567 Ops) {}
568
569DIGenericSubrange *DIGenericSubrange::getImpl(LLVMContext &Context,
570 Metadata *CountNode, Metadata *LB,
571 Metadata *UB, Metadata *Stride,
572 StorageType Storage,
573 bool ShouldCreate) {
574 DEFINE_GETIMPL_LOOKUP(DIGenericSubrange, (CountNode, LB, UB, Stride));
575 Metadata *Ops[] = {CountNode, LB, UB, Stride};
577}
578
581 if (!CB)
582 return BoundType();
583
584 assert((isa<DIVariable>(CB) || isa<DIExpression>(CB)) &&
585 "Count must be signed constant or DIVariable or DIExpression");
586
587 if (auto *MD = dyn_cast<DIVariable>(CB))
588 return BoundType(MD);
589
590 if (auto *MD = dyn_cast<DIExpression>(CB))
591 return BoundType(MD);
592
593 return BoundType();
594}
595
598 if (!LB)
599 return BoundType();
600
601 assert((isa<DIVariable>(LB) || isa<DIExpression>(LB)) &&
602 "LowerBound must be signed constant or DIVariable or DIExpression");
603
604 if (auto *MD = dyn_cast<DIVariable>(LB))
605 return BoundType(MD);
606
607 if (auto *MD = dyn_cast<DIExpression>(LB))
608 return BoundType(MD);
609
610 return BoundType();
611}
612
615 if (!UB)
616 return BoundType();
617
618 assert((isa<DIVariable>(UB) || isa<DIExpression>(UB)) &&
619 "UpperBound must be signed constant or DIVariable or DIExpression");
620
621 if (auto *MD = dyn_cast<DIVariable>(UB))
622 return BoundType(MD);
623
624 if (auto *MD = dyn_cast<DIExpression>(UB))
625 return BoundType(MD);
626
627 return BoundType();
628}
629
631 Metadata *ST = getRawStride();
632 if (!ST)
633 return BoundType();
634
635 assert((isa<DIVariable>(ST) || isa<DIExpression>(ST)) &&
636 "Stride must be signed constant or DIVariable or DIExpression");
637
638 if (auto *MD = dyn_cast<DIVariable>(ST))
639 return BoundType(MD);
640
641 if (auto *MD = dyn_cast<DIExpression>(ST))
642 return BoundType(MD);
643
644 return BoundType();
645}
646
647DIEnumerator::DIEnumerator(LLVMContext &C, StorageType Storage,
648 const APInt &Value, bool IsUnsigned,
650 : DINode(C, DIEnumeratorKind, Storage, dwarf::DW_TAG_enumerator, Ops),
651 Value(Value) {
652 SubclassData32 = IsUnsigned;
653}
654DIEnumerator *DIEnumerator::getImpl(LLVMContext &Context, const APInt &Value,
655 bool IsUnsigned, MDString *Name,
656 StorageType Storage, bool ShouldCreate) {
657 assert(isCanonical(Name) && "Expected canonical MDString");
659 Metadata *Ops[] = {Name};
661}
662
663DIBasicType *DIBasicType::getImpl(LLVMContext &Context, unsigned Tag,
664 MDString *Name, uint64_t SizeInBits,
665 uint32_t AlignInBits, unsigned Encoding,
666 uint32_t NumExtraInhabitants, DIFlags Flags,
667 StorageType Storage, bool ShouldCreate) {
668 assert(isCanonical(Name) && "Expected canonical MDString");
670 Encoding, NumExtraInhabitants, Flags));
671 Metadata *Ops[] = {nullptr, nullptr, Name};
675 Ops);
676}
677
678std::optional<DIBasicType::Signedness> DIBasicType::getSignedness() const {
679 switch (getEncoding()) {
680 case dwarf::DW_ATE_signed:
681 case dwarf::DW_ATE_signed_char:
682 return Signedness::Signed;
683 case dwarf::DW_ATE_unsigned:
684 case dwarf::DW_ATE_unsigned_char:
686 default:
687 return std::nullopt;
688 }
689}
690
691DIStringType *DIStringType::getImpl(LLVMContext &Context, unsigned Tag,
692 MDString *Name, Metadata *StringLength,
693 Metadata *StringLengthExp,
694 Metadata *StringLocationExp,
695 uint64_t SizeInBits, uint32_t AlignInBits,
696 unsigned Encoding, StorageType Storage,
697 bool ShouldCreate) {
698 assert(isCanonical(Name) && "Expected canonical MDString");
702 Metadata *Ops[] = {nullptr, nullptr, Name,
705 Ops);
706}
708 assert(getTag() == dwarf::DW_TAG_ptr_to_member_type);
709 return cast_or_null<DIType>(getExtraData());
710}
712 assert(getTag() == dwarf::DW_TAG_inheritance);
713 if (auto *CM = cast_or_null<ConstantAsMetadata>(getExtraData()))
714 if (auto *CI = dyn_cast_or_null<ConstantInt>(CM->getValue()))
715 return static_cast<uint32_t>(CI->getZExtValue());
716 return 0;
717}
719 assert(getTag() == dwarf::DW_TAG_member && isBitField());
720 if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
721 return C->getValue();
722 return nullptr;
723}
724
726 assert((getTag() == dwarf::DW_TAG_member ||
727 getTag() == dwarf::DW_TAG_variable) &&
729 if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
730 return C->getValue();
731 return nullptr;
732}
734 assert(getTag() == dwarf::DW_TAG_member && !isStaticMember());
735 if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
736 return C->getValue();
737 return nullptr;
738}
739
740DIDerivedType *DIDerivedType::getImpl(
741 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
742 unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
743 uint32_t AlignInBits, uint64_t OffsetInBits,
744 std::optional<unsigned> DWARFAddressSpace,
745 std::optional<PtrAuthData> PtrAuthData, DIFlags Flags, Metadata *ExtraData,
746 Metadata *Annotations, StorageType Storage, bool ShouldCreate) {
747 assert(isCanonical(Name) && "Expected canonical MDString");
750 AlignInBits, OffsetInBits, DWARFAddressSpace,
751 PtrAuthData, Flags, ExtraData, Annotations));
755 DWARFAddressSpace, PtrAuthData, Flags),
756 Ops);
757}
758
759std::optional<DIDerivedType::PtrAuthData>
760DIDerivedType::getPtrAuthData() const {
761 return getTag() == dwarf::DW_TAG_LLVM_ptrauth_type
762 ? std::optional<PtrAuthData>(PtrAuthData(SubclassData32))
763 : std::nullopt;
764}
765
766DICompositeType *DICompositeType::getImpl(
767 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
768 unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
769 uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags,
770 Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder,
771 Metadata *TemplateParams, MDString *Identifier, Metadata *Discriminator,
772 Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
773 Metadata *Rank, Metadata *Annotations, Metadata *Specification,
774 uint32_t NumExtraInhabitants, StorageType Storage, bool ShouldCreate) {
775 assert(isCanonical(Name) && "Expected canonical MDString");
776
777 // Keep this in sync with buildODRType.
784 Metadata *Ops[] = {File, Scope, Name, BaseType,
789 (Tag, Line, RuntimeLang, SizeInBits, AlignInBits,
791 Ops);
792}
793
795 LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
796 Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
797 uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits,
798 Metadata *Specification, uint32_t NumExtraInhabitants, DIFlags Flags,
799 Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder,
800 Metadata *TemplateParams, Metadata *Discriminator, Metadata *DataLocation,
801 Metadata *Associated, Metadata *Allocated, Metadata *Rank,
803 assert(!Identifier.getString().empty() && "Expected valid identifier");
804 if (!Context.isODRUniquingDebugTypes())
805 return nullptr;
806 auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
807 if (!CT)
809 Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
810 AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
814 if (CT->getTag() != Tag)
815 return nullptr;
816
817 // Only mutate CT if it's a forward declaration and the new operands aren't.
818 assert(CT->getRawIdentifier() == &Identifier && "Wrong ODR identifier?");
819 if (!CT->isForwardDecl() || (Flags & DINode::FlagFwdDecl))
820 return CT;
821
822 // Mutate CT in place. Keep this in sync with getImpl.
823 CT->mutate(Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits,
825 Metadata *Ops[] = {File, Scope, Name, BaseType,
829 assert((std::end(Ops) - std::begin(Ops)) == (int)CT->getNumOperands() &&
830 "Mismatched number of operands");
831 for (unsigned I = 0, E = CT->getNumOperands(); I != E; ++I)
832 if (Ops[I] != CT->getOperand(I))
833 CT->setOperand(I, Ops[I]);
834 return CT;
835}
836
837DICompositeType *DICompositeType::getODRType(
838 LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
839 Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
840 uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits,
841 Metadata *Specification, uint32_t NumExtraInhabitants, DIFlags Flags,
842 Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder,
843 Metadata *TemplateParams, Metadata *Discriminator, Metadata *DataLocation,
844 Metadata *Associated, Metadata *Allocated, Metadata *Rank,
846 assert(!Identifier.getString().empty() && "Expected valid identifier");
847 if (!Context.isODRUniquingDebugTypes())
848 return nullptr;
849 auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
850 if (!CT) {
852 Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
856 } else {
857 if (CT->getTag() != Tag)
858 return nullptr;
859 }
860 return CT;
861}
862
864 MDString &Identifier) {
865 assert(!Identifier.getString().empty() && "Expected valid identifier");
866 if (!Context.isODRUniquingDebugTypes())
867 return nullptr;
868 return Context.pImpl->DITypeMap->lookup(&Identifier);
869}
870DISubroutineType::DISubroutineType(LLVMContext &C, StorageType Storage,
871 DIFlags Flags, uint8_t CC,
873 : DIType(C, DISubroutineTypeKind, Storage, dwarf::DW_TAG_subroutine_type, 0,
874 0, 0, 0, 0, Flags, Ops),
875 CC(CC) {}
876
877DISubroutineType *DISubroutineType::getImpl(LLVMContext &Context, DIFlags Flags,
878 uint8_t CC, Metadata *TypeArray,
879 StorageType Storage,
880 bool ShouldCreate) {
882 Metadata *Ops[] = {nullptr, nullptr, nullptr, TypeArray};
884}
885
886DIFile::DIFile(LLVMContext &C, StorageType Storage,
887 std::optional<ChecksumInfo<MDString *>> CS, MDString *Src,
889 : DIScope(C, DIFileKind, Storage, dwarf::DW_TAG_file_type, Ops),
890 Checksum(CS), Source(Src) {}
891
892// FIXME: Implement this string-enum correspondence with a .def file and macros,
893// so that the association is explicit rather than implied.
894static const char *ChecksumKindName[DIFile::CSK_Last] = {
895 "CSK_MD5",
896 "CSK_SHA1",
897 "CSK_SHA256",
898};
899
900StringRef DIFile::getChecksumKindAsString(ChecksumKind CSKind) {
901 assert(CSKind <= DIFile::CSK_Last && "Invalid checksum kind");
902 // The first space was originally the CSK_None variant, which is now
903 // obsolete, but the space is still reserved in ChecksumKind, so we account
904 // for it here.
905 return ChecksumKindName[CSKind - 1];
906}
907
908std::optional<DIFile::ChecksumKind>
911 .Case("CSK_MD5", DIFile::CSK_MD5)
912 .Case("CSK_SHA1", DIFile::CSK_SHA1)
913 .Case("CSK_SHA256", DIFile::CSK_SHA256)
914 .Default(std::nullopt);
915}
916
917DIFile *DIFile::getImpl(LLVMContext &Context, MDString *Filename,
918 MDString *Directory,
919 std::optional<DIFile::ChecksumInfo<MDString *>> CS,
920 MDString *Source, StorageType Storage,
921 bool ShouldCreate) {
922 assert(isCanonical(Filename) && "Expected canonical MDString");
923 assert(isCanonical(Directory) && "Expected canonical MDString");
924 assert((!CS || isCanonical(CS->Value)) && "Expected canonical MDString");
925 // We do *NOT* expect Source to be a canonical MDString because nullptr
926 // means none, so we need something to represent the empty file.
928 Metadata *Ops[] = {Filename, Directory, CS ? CS->Value : nullptr, Source};
929 DEFINE_GETIMPL_STORE(DIFile, (CS, Source), Ops);
930}
931DICompileUnit::DICompileUnit(LLVMContext &C, StorageType Storage,
932 unsigned SourceLanguage, bool IsOptimized,
933 unsigned RuntimeVersion, unsigned EmissionKind,
934 uint64_t DWOId, bool SplitDebugInlining,
935 bool DebugInfoForProfiling, unsigned NameTableKind,
936 bool RangesBaseAddress, ArrayRef<Metadata *> Ops)
937 : DIScope(C, DICompileUnitKind, Storage, dwarf::DW_TAG_compile_unit, Ops),
938 SourceLanguage(SourceLanguage), RuntimeVersion(RuntimeVersion),
940 IsOptimized(IsOptimized), SplitDebugInlining(SplitDebugInlining),
941 DebugInfoForProfiling(DebugInfoForProfiling),
942 RangesBaseAddress(RangesBaseAddress) {
944}
945
946DICompileUnit *DICompileUnit::getImpl(
947 LLVMContext &Context, unsigned SourceLanguage, Metadata *File,
948 MDString *Producer, bool IsOptimized, MDString *Flags,
949 unsigned RuntimeVersion, MDString *SplitDebugFilename,
950 unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes,
951 Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros,
952 uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling,
953 unsigned NameTableKind, bool RangesBaseAddress, MDString *SysRoot,
954 MDString *SDK, StorageType Storage, bool ShouldCreate) {
955 assert(Storage != Uniqued && "Cannot unique DICompileUnit");
956 assert(isCanonical(Producer) && "Expected canonical MDString");
957 assert(isCanonical(Flags) && "Expected canonical MDString");
958 assert(isCanonical(SplitDebugFilename) && "Expected canonical MDString");
959
960 Metadata *Ops[] = {File,
961 Producer,
962 Flags,
964 EnumTypes,
968 Macros,
969 SysRoot,
970 SDK};
971 return storeImpl(new (std::size(Ops), Storage) DICompileUnit(
972 Context, Storage, SourceLanguage, IsOptimized,
973 RuntimeVersion, EmissionKind, DWOId, SplitDebugInlining,
974 DebugInfoForProfiling, NameTableKind, RangesBaseAddress,
975 Ops),
976 Storage);
977}
978
979std::optional<DICompileUnit::DebugEmissionKind>
982 .Case("NoDebug", NoDebug)
983 .Case("FullDebug", FullDebug)
984 .Case("LineTablesOnly", LineTablesOnly)
985 .Case("DebugDirectivesOnly", DebugDirectivesOnly)
986 .Default(std::nullopt);
987}
988
989std::optional<DICompileUnit::DebugNameTableKind>
992 .Case("Default", DebugNameTableKind::Default)
996 .Default(std::nullopt);
997}
998
1000 switch (EK) {
1001 case NoDebug:
1002 return "NoDebug";
1003 case FullDebug:
1004 return "FullDebug";
1005 case LineTablesOnly:
1006 return "LineTablesOnly";
1008 return "DebugDirectivesOnly";
1009 }
1010 return nullptr;
1011}
1012
1014 switch (NTK) {
1016 return nullptr;
1018 return "GNU";
1020 return "Apple";
1022 return "None";
1023 }
1024 return nullptr;
1025}
1026DISubprogram::DISubprogram(LLVMContext &C, StorageType Storage, unsigned Line,
1027 unsigned ScopeLine, unsigned VirtualIndex,
1028 int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags,
1030 : DILocalScope(C, DISubprogramKind, Storage, dwarf::DW_TAG_subprogram, Ops),
1031 Line(Line), ScopeLine(ScopeLine), VirtualIndex(VirtualIndex),
1032 ThisAdjustment(ThisAdjustment), Flags(Flags), SPFlags(SPFlags) {
1033 static_assert(dwarf::DW_VIRTUALITY_max < 4, "Virtuality out of range");
1034}
1036DISubprogram::toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized,
1037 unsigned Virtuality, bool IsMainSubprogram) {
1038 // We're assuming virtuality is the low-order field.
1039 static_assert(int(SPFlagVirtual) == int(dwarf::DW_VIRTUALITY_virtual) &&
1040 int(SPFlagPureVirtual) ==
1041 int(dwarf::DW_VIRTUALITY_pure_virtual),
1042 "Virtuality constant mismatch");
1043 return static_cast<DISPFlags>(
1044 (Virtuality & SPFlagVirtuality) |
1045 (IsLocalToUnit ? SPFlagLocalToUnit : SPFlagZero) |
1046 (IsDefinition ? SPFlagDefinition : SPFlagZero) |
1047 (IsOptimized ? SPFlagOptimized : SPFlagZero) |
1048 (IsMainSubprogram ? SPFlagMainSubprogram : SPFlagZero));
1049}
1050
1052 if (auto *Block = dyn_cast<DILexicalBlockBase>(this))
1053 return Block->getScope()->getSubprogram();
1054 return const_cast<DISubprogram *>(cast<DISubprogram>(this));
1055}
1056
1058 if (auto *File = dyn_cast<DILexicalBlockFile>(this))
1059 return File->getScope()->getNonLexicalBlockFileScope();
1060 return const_cast<DILocalScope *>(this);
1061}
1062
1064 DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx,
1066 SmallVector<DIScope *> ScopeChain;
1067 DIScope *CachedResult = nullptr;
1068
1069 for (DIScope *Scope = &RootScope; !isa<DISubprogram>(Scope);
1070 Scope = Scope->getScope()) {
1071 if (auto It = Cache.find(Scope); It != Cache.end()) {
1072 CachedResult = cast<DIScope>(It->second);
1073 break;
1074 }
1075 ScopeChain.push_back(Scope);
1076 }
1077
1078 // Recreate the scope chain, bottom-up, starting at the new subprogram (or a
1079 // cached result).
1080 DIScope *UpdatedScope = CachedResult ? CachedResult : &NewSP;
1081 for (DIScope *ScopeToUpdate : reverse(ScopeChain)) {
1082 TempMDNode ClonedScope = ScopeToUpdate->clone();
1083 cast<DILexicalBlockBase>(*ClonedScope).replaceScope(UpdatedScope);
1084 UpdatedScope =
1085 cast<DIScope>(MDNode::replaceWithUniqued(std::move(ClonedScope)));
1086 Cache[ScopeToUpdate] = UpdatedScope;
1087 }
1088
1089 return cast<DILocalScope>(UpdatedScope);
1090}
1091
1093 return StringSwitch<DISPFlags>(Flag)
1094#define HANDLE_DISP_FLAG(ID, NAME) .Case("DISPFlag" #NAME, SPFlag##NAME)
1095#include "llvm/IR/DebugInfoFlags.def"
1096 .Default(SPFlagZero);
1097}
1098
1100 switch (Flag) {
1101 // Appease a warning.
1102 case SPFlagVirtuality:
1103 return "";
1104#define HANDLE_DISP_FLAG(ID, NAME) \
1105 case SPFlag##NAME: \
1106 return "DISPFlag" #NAME;
1107#include "llvm/IR/DebugInfoFlags.def"
1108 }
1109 return "";
1110}
1111
1114 SmallVectorImpl<DISPFlags> &SplitFlags) {
1115 // Multi-bit fields can require special handling. In our case, however, the
1116 // only multi-bit field is virtuality, and all its values happen to be
1117 // single-bit values, so the right behavior just falls out.
1118#define HANDLE_DISP_FLAG(ID, NAME) \
1119 if (DISPFlags Bit = Flags & SPFlag##NAME) { \
1120 SplitFlags.push_back(Bit); \
1121 Flags &= ~Bit; \
1122 }
1123#include "llvm/IR/DebugInfoFlags.def"
1124 return Flags;
1125}
1126
1127DISubprogram *DISubprogram::getImpl(
1128 LLVMContext &Context, Metadata *Scope, MDString *Name,
1129 MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type,
1130 unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex,
1131 int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, Metadata *Unit,
1132 Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes,
1133 Metadata *ThrownTypes, Metadata *Annotations, MDString *TargetFuncName,
1134 StorageType Storage, bool ShouldCreate) {
1135 assert(isCanonical(Name) && "Expected canonical MDString");
1136 assert(isCanonical(LinkageName) && "Expected canonical MDString");
1137 assert(isCanonical(TargetFuncName) && "Expected canonical MDString");
1139 (Scope, Name, LinkageName, File, Line, Type, ScopeLine,
1140 ContainingType, VirtualIndex, ThisAdjustment, Flags,
1141 SPFlags, Unit, TemplateParams, Declaration,
1149 if (!TargetFuncName) {
1150 Ops.pop_back();
1151 if (!Annotations) {
1152 Ops.pop_back();
1153 if (!ThrownTypes) {
1154 Ops.pop_back();
1155 if (!TemplateParams) {
1156 Ops.pop_back();
1157 if (!ContainingType)
1158 Ops.pop_back();
1159 }
1160 }
1161 }
1162 }
1165 (Line, ScopeLine, VirtualIndex, ThisAdjustment, Flags, SPFlags), Ops,
1166 Ops.size());
1167}
1168
1169bool DISubprogram::describes(const Function *F) const {
1170 assert(F && "Invalid function");
1171 return F->getSubprogram() == this;
1172}
1174 StorageType Storage,
1176 : DILocalScope(C, ID, Storage, dwarf::DW_TAG_lexical_block, Ops) {}
1177
1178DILexicalBlock *DILexicalBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1179 Metadata *File, unsigned Line,
1180 unsigned Column, StorageType Storage,
1181 bool ShouldCreate) {
1182 // Fixup column.
1183 adjustColumn(Column);
1184
1185 assert(Scope && "Expected scope");
1187 Metadata *Ops[] = {File, Scope};
1188 DEFINE_GETIMPL_STORE(DILexicalBlock, (Line, Column), Ops);
1189}
1190
1191DILexicalBlockFile *DILexicalBlockFile::getImpl(LLVMContext &Context,
1192 Metadata *Scope, Metadata *File,
1193 unsigned Discriminator,
1194 StorageType Storage,
1195 bool ShouldCreate) {
1196 assert(Scope && "Expected scope");
1198 Metadata *Ops[] = {File, Scope};
1200}
1201
1202DINamespace::DINamespace(LLVMContext &Context, StorageType Storage,
1203 bool ExportSymbols, ArrayRef<Metadata *> Ops)
1204 : DIScope(Context, DINamespaceKind, Storage, dwarf::DW_TAG_namespace, Ops) {
1205 SubclassData1 = ExportSymbols;
1206}
1207DINamespace *DINamespace::getImpl(LLVMContext &Context, Metadata *Scope,
1208 MDString *Name, bool ExportSymbols,
1209 StorageType Storage, bool ShouldCreate) {
1210 assert(isCanonical(Name) && "Expected canonical MDString");
1212 // The nullptr is for DIScope's File operand. This should be refactored.
1213 Metadata *Ops[] = {nullptr, Scope, Name};
1215}
1216
1217DICommonBlock::DICommonBlock(LLVMContext &Context, StorageType Storage,
1218 unsigned LineNo, ArrayRef<Metadata *> Ops)
1219 : DIScope(Context, DICommonBlockKind, Storage, dwarf::DW_TAG_common_block,
1220 Ops) {
1221 SubclassData32 = LineNo;
1222}
1223DICommonBlock *DICommonBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1224 Metadata *Decl, MDString *Name,
1225 Metadata *File, unsigned LineNo,
1226 StorageType Storage, bool ShouldCreate) {
1227 assert(isCanonical(Name) && "Expected canonical MDString");
1229 // The nullptr is for DIScope's File operand. This should be refactored.
1230 Metadata *Ops[] = {Scope, Decl, Name, File};
1232}
1233
1234DIModule::DIModule(LLVMContext &Context, StorageType Storage, unsigned LineNo,
1235 bool IsDecl, ArrayRef<Metadata *> Ops)
1236 : DIScope(Context, DIModuleKind, Storage, dwarf::DW_TAG_module, Ops) {
1237 SubclassData1 = IsDecl;
1238 SubclassData32 = LineNo;
1239}
1240DIModule *DIModule::getImpl(LLVMContext &Context, Metadata *File,
1241 Metadata *Scope, MDString *Name,
1242 MDString *ConfigurationMacros,
1243 MDString *IncludePath, MDString *APINotesFile,
1244 unsigned LineNo, bool IsDecl, StorageType Storage,
1245 bool ShouldCreate) {
1246 assert(isCanonical(Name) && "Expected canonical MDString");
1248 IncludePath, APINotesFile, LineNo, IsDecl));
1251 DEFINE_GETIMPL_STORE(DIModule, (LineNo, IsDecl), Ops);
1252}
1253DITemplateTypeParameter::DITemplateTypeParameter(LLVMContext &Context,
1254 StorageType Storage,
1255 bool IsDefault,
1257 : DITemplateParameter(Context, DITemplateTypeParameterKind, Storage,
1258 dwarf::DW_TAG_template_type_parameter, IsDefault,
1259 Ops) {}
1260
1262DITemplateTypeParameter::getImpl(LLVMContext &Context, MDString *Name,
1263 Metadata *Type, bool isDefault,
1264 StorageType Storage, bool ShouldCreate) {
1265 assert(isCanonical(Name) && "Expected canonical MDString");
1267 Metadata *Ops[] = {Name, Type};
1269}
1270
1271DITemplateValueParameter *DITemplateValueParameter::getImpl(
1272 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *Type,
1273 bool isDefault, Metadata *Value, StorageType Storage, bool ShouldCreate) {
1274 assert(isCanonical(Name) && "Expected canonical MDString");
1276 (Tag, Name, Type, isDefault, Value));
1277 Metadata *Ops[] = {Name, Type, Value};
1279}
1280
1282DIGlobalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1283 MDString *LinkageName, Metadata *File, unsigned Line,
1284 Metadata *Type, bool IsLocalToUnit, bool IsDefinition,
1285 Metadata *StaticDataMemberDeclaration,
1286 Metadata *TemplateParams, uint32_t AlignInBits,
1287 Metadata *Annotations, StorageType Storage,
1288 bool ShouldCreate) {
1289 assert(isCanonical(Name) && "Expected canonical MDString");
1290 assert(isCanonical(LinkageName) && "Expected canonical MDString");
1293 (Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition,
1295 Metadata *Ops[] = {Scope,
1296 Name,
1297 File,
1298 Type,
1299 Name,
1303 Annotations};
1305 (Line, IsLocalToUnit, IsDefinition, AlignInBits), Ops);
1306}
1307
1309DILocalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1310 Metadata *File, unsigned Line, Metadata *Type,
1311 unsigned Arg, DIFlags Flags, uint32_t AlignInBits,
1312 Metadata *Annotations, StorageType Storage,
1313 bool ShouldCreate) {
1314 // 64K ought to be enough for any frontend.
1315 assert(Arg <= UINT16_MAX && "Expected argument number to fit in 16-bits");
1316
1317 assert(Scope && "Expected scope");
1318 assert(isCanonical(Name) && "Expected canonical MDString");
1320 Flags, AlignInBits, Annotations));
1321 Metadata *Ops[] = {Scope, Name, File, Type, Annotations};
1323}
1324
1326 signed Line, ArrayRef<Metadata *> Ops,
1327 uint32_t AlignInBits)
1328 : DINode(C, ID, Storage, dwarf::DW_TAG_variable, Ops), Line(Line) {
1329 SubclassData32 = AlignInBits;
1330}
1331std::optional<uint64_t> DIVariable::getSizeInBits() const {
1332 // This is used by the Verifier so be mindful of broken types.
1333 const Metadata *RawType = getRawType();
1334 while (RawType) {
1335 // Try to get the size directly.
1336 if (auto *T = dyn_cast<DIType>(RawType))
1337 if (uint64_t Size = T->getSizeInBits())
1338 return Size;
1339
1340 if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
1341 // Look at the base type.
1342 RawType = DT->getRawBaseType();
1343 continue;
1344 }
1345
1346 // Missing type or size.
1347 break;
1348 }
1349
1350 // Fail gracefully.
1351 return std::nullopt;
1352}
1353
1354DILabel::DILabel(LLVMContext &C, StorageType Storage, unsigned Line,
1356 : DINode(C, DILabelKind, Storage, dwarf::DW_TAG_label, Ops) {
1357 SubclassData32 = Line;
1358}
1359DILabel *DILabel::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1360 Metadata *File, unsigned Line, StorageType Storage,
1361 bool ShouldCreate) {
1362 assert(Scope && "Expected scope");
1363 assert(isCanonical(Name) && "Expected canonical MDString");
1365 Metadata *Ops[] = {Scope, Name, File};
1367}
1368
1369DIExpression *DIExpression::getImpl(LLVMContext &Context,
1370 ArrayRef<uint64_t> Elements,
1371 StorageType Storage, bool ShouldCreate) {
1374}
1376 if (auto singleLocElts = getSingleLocationExpressionElements()) {
1377 return singleLocElts->size() > 0 &&
1378 (*singleLocElts)[0] == dwarf::DW_OP_LLVM_entry_value;
1379 }
1380 return false;
1381}
1383 if (auto singleLocElts = getSingleLocationExpressionElements())
1384 return singleLocElts->size() > 0 &&
1385 (*singleLocElts)[0] == dwarf::DW_OP_deref;
1386 return false;
1387}
1389 if (auto singleLocElts = getSingleLocationExpressionElements())
1390 return singleLocElts->size() == 1 &&
1391 (*singleLocElts)[0] == dwarf::DW_OP_deref;
1392 return false;
1393}
1394
1395DIAssignID *DIAssignID::getImpl(LLVMContext &Context, StorageType Storage,
1396 bool ShouldCreate) {
1397 // Uniqued DIAssignID are not supported as the instance address *is* the ID.
1398 assert(Storage != StorageType::Uniqued && "uniqued DIAssignID unsupported");
1399 return storeImpl(new (0u, Storage) DIAssignID(Context, Storage), Storage);
1400}
1401
1403 uint64_t Op = getOp();
1404
1405 if (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31)
1406 return 2;
1407
1408 switch (Op) {
1413 case dwarf::DW_OP_bregx:
1414 return 3;
1415 case dwarf::DW_OP_constu:
1416 case dwarf::DW_OP_consts:
1417 case dwarf::DW_OP_deref_size:
1418 case dwarf::DW_OP_plus_uconst:
1422 case dwarf::DW_OP_regx:
1423 return 2;
1424 default:
1425 return 1;
1426 }
1427}
1428
1430 for (auto I = expr_op_begin(), E = expr_op_end(); I != E; ++I) {
1431 // Check that there's space for the operand.
1432 if (I->get() + I->getSize() > E->get())
1433 return false;
1434
1435 uint64_t Op = I->getOp();
1436 if ((Op >= dwarf::DW_OP_reg0 && Op <= dwarf::DW_OP_reg31) ||
1437 (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31))
1438 return true;
1439
1440 // Check that the operand is valid.
1441 switch (Op) {
1442 default:
1443 return false;
1445 // A fragment operator must appear at the end.
1446 return I->get() + I->getSize() == E->get();
1447 case dwarf::DW_OP_stack_value: {
1448 // Must be the last one or followed by a DW_OP_LLVM_fragment.
1449 if (I->get() + I->getSize() == E->get())
1450 break;
1451 auto J = I;
1452 if ((++J)->getOp() != dwarf::DW_OP_LLVM_fragment)
1453 return false;
1454 break;
1455 }
1456 case dwarf::DW_OP_swap: {
1457 // Must be more than one implicit element on the stack.
1458
1459 // FIXME: A better way to implement this would be to add a local variable
1460 // that keeps track of the stack depth and introduce something like a
1461 // DW_LLVM_OP_implicit_location as a placeholder for the location this
1462 // DIExpression is attached to, or else pass the number of implicit stack
1463 // elements into isValid.
1464 if (getNumElements() == 1)
1465 return false;
1466 break;
1467 }
1469 // An entry value operator must appear at the beginning or immediately
1470 // following `DW_OP_LLVM_arg 0`, and the number of operations it cover can
1471 // currently only be 1, because we support only entry values of a simple
1472 // register location. One reason for this is that we currently can't
1473 // calculate the size of the resulting DWARF block for other expressions.
1474 auto FirstOp = expr_op_begin();
1475 if (FirstOp->getOp() == dwarf::DW_OP_LLVM_arg && FirstOp->getArg(0) == 0)
1476 ++FirstOp;
1477 return I->get() == FirstOp->get() && I->getArg(0) == 1;
1478 }
1485 case dwarf::DW_OP_constu:
1486 case dwarf::DW_OP_plus_uconst:
1487 case dwarf::DW_OP_plus:
1488 case dwarf::DW_OP_minus:
1489 case dwarf::DW_OP_mul:
1490 case dwarf::DW_OP_div:
1491 case dwarf::DW_OP_mod:
1492 case dwarf::DW_OP_or:
1493 case dwarf::DW_OP_and:
1494 case dwarf::DW_OP_xor:
1495 case dwarf::DW_OP_shl:
1496 case dwarf::DW_OP_shr:
1497 case dwarf::DW_OP_shra:
1498 case dwarf::DW_OP_deref:
1499 case dwarf::DW_OP_deref_size:
1500 case dwarf::DW_OP_xderef:
1501 case dwarf::DW_OP_lit0:
1502 case dwarf::DW_OP_not:
1503 case dwarf::DW_OP_dup:
1504 case dwarf::DW_OP_regx:
1505 case dwarf::DW_OP_bregx:
1506 case dwarf::DW_OP_push_object_address:
1507 case dwarf::DW_OP_over:
1508 case dwarf::DW_OP_consts:
1509 case dwarf::DW_OP_eq:
1510 case dwarf::DW_OP_ne:
1511 case dwarf::DW_OP_gt:
1512 case dwarf::DW_OP_ge:
1513 case dwarf::DW_OP_lt:
1514 case dwarf::DW_OP_le:
1515 break;
1516 }
1517 }
1518 return true;
1519}
1520
1522 if (!isValid())
1523 return false;
1524
1525 if (getNumElements() == 0)
1526 return false;
1527
1528 for (const auto &It : expr_ops()) {
1529 switch (It.getOp()) {
1530 default:
1531 break;
1532 case dwarf::DW_OP_stack_value:
1533 return true;
1534 }
1535 }
1536
1537 return false;
1538}
1539
1541 if (!isValid())
1542 return false;
1543
1544 if (getNumElements() == 0)
1545 return false;
1546
1547 // If there are any elements other than fragment or tag_offset, then some
1548 // kind of complex computation occurs.
1549 for (const auto &It : expr_ops()) {
1550 switch (It.getOp()) {
1554 continue;
1555 default:
1556 return true;
1557 }
1558 }
1559
1560 return false;
1561}
1562
1564 if (!isValid())
1565 return false;
1566
1567 if (getNumElements() == 0)
1568 return true;
1569
1570 auto ExprOpBegin = expr_ops().begin();
1571 auto ExprOpEnd = expr_ops().end();
1572 if (ExprOpBegin->getOp() == dwarf::DW_OP_LLVM_arg) {
1573 if (ExprOpBegin->getArg(0) != 0)
1574 return false;
1575 ++ExprOpBegin;
1576 }
1577
1578 return !std::any_of(ExprOpBegin, ExprOpEnd, [](auto Op) {
1579 return Op.getOp() == dwarf::DW_OP_LLVM_arg;
1580 });
1581}
1582
1583std::optional<ArrayRef<uint64_t>>
1585 // Check for `isValid` covered by `isSingleLocationExpression`.
1587 return std::nullopt;
1588
1589 // An empty expression is already non-variadic.
1590 if (!getNumElements())
1591 return ArrayRef<uint64_t>();
1592
1593 // If Expr does not have a leading DW_OP_LLVM_arg then we don't need to do
1594 // anything.
1596 return getElements().drop_front(2);
1597 return getElements();
1598}
1599
1600const DIExpression *
1602 SmallVector<uint64_t, 3> UndefOps;
1603 if (auto FragmentInfo = Expr->getFragmentInfo()) {
1606 }
1607 return DIExpression::get(Expr->getContext(), UndefOps);
1608}
1609
1610const DIExpression *
1612 if (any_of(Expr->expr_ops(), [](auto ExprOp) {
1613 return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1614 }))
1615 return Expr;
1616 SmallVector<uint64_t> NewOps;
1617 NewOps.reserve(Expr->getNumElements() + 2);
1618 NewOps.append({dwarf::DW_OP_LLVM_arg, 0});
1619 NewOps.append(Expr->elements_begin(), Expr->elements_end());
1620 return DIExpression::get(Expr->getContext(), NewOps);
1621}
1622
1623std::optional<const DIExpression *>
1625 if (!Expr)
1626 return std::nullopt;
1627
1628 if (auto Elts = Expr->getSingleLocationExpressionElements())
1629 return DIExpression::get(Expr->getContext(), *Elts);
1630
1631 return std::nullopt;
1632}
1633
1635 const DIExpression *Expr,
1636 bool IsIndirect) {
1637 // If Expr is not already variadic, insert the implied `DW_OP_LLVM_arg 0`
1638 // to the existing expression ops.
1639 if (none_of(Expr->expr_ops(), [](auto ExprOp) {
1640 return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1641 }))
1642 Ops.append({dwarf::DW_OP_LLVM_arg, 0});
1643 // If Expr is not indirect, we only need to insert the expression elements and
1644 // we're done.
1645 if (!IsIndirect) {
1646 Ops.append(Expr->elements_begin(), Expr->elements_end());
1647 return;
1648 }
1649 // If Expr is indirect, insert the implied DW_OP_deref at the end of the
1650 // expression but before DW_OP_{stack_value, LLVM_fragment} if they are
1651 // present.
1652 for (auto Op : Expr->expr_ops()) {
1653 if (Op.getOp() == dwarf::DW_OP_stack_value ||
1654 Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1655 Ops.push_back(dwarf::DW_OP_deref);
1656 IsIndirect = false;
1657 }
1658 Op.appendToVector(Ops);
1659 }
1660 if (IsIndirect)
1661 Ops.push_back(dwarf::DW_OP_deref);
1662}
1663
1665 bool FirstIndirect,
1666 const DIExpression *SecondExpr,
1667 bool SecondIndirect) {
1668 SmallVector<uint64_t> FirstOps;
1669 DIExpression::canonicalizeExpressionOps(FirstOps, FirstExpr, FirstIndirect);
1670 SmallVector<uint64_t> SecondOps;
1671 DIExpression::canonicalizeExpressionOps(SecondOps, SecondExpr,
1672 SecondIndirect);
1673 return FirstOps == SecondOps;
1674}
1675
1676std::optional<DIExpression::FragmentInfo>
1678 for (auto I = Start; I != End; ++I)
1679 if (I->getOp() == dwarf::DW_OP_LLVM_fragment) {
1680 DIExpression::FragmentInfo Info = {I->getArg(1), I->getArg(0)};
1681 return Info;
1682 }
1683 return std::nullopt;
1684}
1685
1686std::optional<uint64_t> DIExpression::getActiveBits(DIVariable *Var) {
1687 std::optional<uint64_t> InitialActiveBits = Var->getSizeInBits();
1688 std::optional<uint64_t> ActiveBits = InitialActiveBits;
1689 for (auto Op : expr_ops()) {
1690 switch (Op.getOp()) {
1691 default:
1692 // We assume the worst case for anything we don't currently handle and
1693 // revert to the initial active bits.
1694 ActiveBits = InitialActiveBits;
1695 break;
1698 // We can't handle an extract whose sign doesn't match that of the
1699 // variable.
1700 std::optional<DIBasicType::Signedness> VarSign = Var->getSignedness();
1701 bool VarSigned = (VarSign == DIBasicType::Signedness::Signed);
1702 bool OpSigned = (Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_sext);
1703 if (!VarSign || VarSigned != OpSigned) {
1704 ActiveBits = InitialActiveBits;
1705 break;
1706 }
1707 [[fallthrough]];
1708 }
1710 // Extract or fragment narrows the active bits
1711 if (ActiveBits)
1712 ActiveBits = std::min(*ActiveBits, Op.getArg(1));
1713 else
1714 ActiveBits = Op.getArg(1);
1715 break;
1716 }
1717 }
1718 return ActiveBits;
1719}
1720
1722 int64_t Offset) {
1723 if (Offset > 0) {
1724 Ops.push_back(dwarf::DW_OP_plus_uconst);
1725 Ops.push_back(Offset);
1726 } else if (Offset < 0) {
1727 Ops.push_back(dwarf::DW_OP_constu);
1728 // Avoid UB when encountering LLONG_MIN, because in 2's complement
1729 // abs(LLONG_MIN) is LLONG_MAX+1.
1730 uint64_t AbsMinusOne = -(Offset+1);
1731 Ops.push_back(AbsMinusOne + 1);
1732 Ops.push_back(dwarf::DW_OP_minus);
1733 }
1734}
1735
1737 auto SingleLocEltsOpt = getSingleLocationExpressionElements();
1738 if (!SingleLocEltsOpt)
1739 return false;
1740 auto SingleLocElts = *SingleLocEltsOpt;
1741
1742 if (SingleLocElts.size() == 0) {
1743 Offset = 0;
1744 return true;
1745 }
1746
1747 if (SingleLocElts.size() == 2 &&
1748 SingleLocElts[0] == dwarf::DW_OP_plus_uconst) {
1749 Offset = SingleLocElts[1];
1750 return true;
1751 }
1752
1753 if (SingleLocElts.size() == 3 && SingleLocElts[0] == dwarf::DW_OP_constu) {
1754 if (SingleLocElts[2] == dwarf::DW_OP_plus) {
1755 Offset = SingleLocElts[1];
1756 return true;
1757 }
1758 if (SingleLocElts[2] == dwarf::DW_OP_minus) {
1759 Offset = -SingleLocElts[1];
1760 return true;
1761 }
1762 }
1763
1764 return false;
1765}
1766
1768 int64_t &OffsetInBytes, SmallVectorImpl<uint64_t> &RemainingOps) const {
1769 OffsetInBytes = 0;
1770 RemainingOps.clear();
1771
1772 auto SingleLocEltsOpt = getSingleLocationExpressionElements();
1773 if (!SingleLocEltsOpt)
1774 return false;
1775
1776 auto ExprOpEnd = expr_op_iterator(SingleLocEltsOpt->end());
1777 auto ExprOpIt = expr_op_iterator(SingleLocEltsOpt->begin());
1778 while (ExprOpIt != ExprOpEnd) {
1779 uint64_t Op = ExprOpIt->getOp();
1780 if (Op == dwarf::DW_OP_deref || Op == dwarf::DW_OP_deref_size ||
1781 Op == dwarf::DW_OP_deref_type || Op == dwarf::DW_OP_LLVM_fragment ||
1784 break;
1785 } else if (Op == dwarf::DW_OP_plus_uconst) {
1786 OffsetInBytes += ExprOpIt->getArg(0);
1787 } else if (Op == dwarf::DW_OP_constu) {
1788 uint64_t Value = ExprOpIt->getArg(0);
1789 ++ExprOpIt;
1790 if (ExprOpIt->getOp() == dwarf::DW_OP_plus)
1791 OffsetInBytes += Value;
1792 else if (ExprOpIt->getOp() == dwarf::DW_OP_minus)
1793 OffsetInBytes -= Value;
1794 else
1795 return false;
1796 } else {
1797 // Not a const plus/minus operation or deref.
1798 return false;
1799 }
1800 ++ExprOpIt;
1801 }
1802 RemainingOps.append(ExprOpIt.getBase(), ExprOpEnd.getBase());
1803 return true;
1804}
1805
1808 for (auto ExprOp : expr_ops())
1809 if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
1810 SeenOps.insert(ExprOp.getArg(0));
1811 for (uint64_t Idx = 0; Idx < N; ++Idx)
1812 if (!SeenOps.contains(Idx))
1813 return false;
1814 return true;
1815}
1816
1818 unsigned &AddrClass) {
1819 // FIXME: This seems fragile. Nothing that verifies that these elements
1820 // actually map to ops and not operands.
1821 auto SingleLocEltsOpt = Expr->getSingleLocationExpressionElements();
1822 if (!SingleLocEltsOpt)
1823 return nullptr;
1824 auto SingleLocElts = *SingleLocEltsOpt;
1825
1826 const unsigned PatternSize = 4;
1827 if (SingleLocElts.size() >= PatternSize &&
1828 SingleLocElts[PatternSize - 4] == dwarf::DW_OP_constu &&
1829 SingleLocElts[PatternSize - 2] == dwarf::DW_OP_swap &&
1830 SingleLocElts[PatternSize - 1] == dwarf::DW_OP_xderef) {
1831 AddrClass = SingleLocElts[PatternSize - 3];
1832
1833 if (SingleLocElts.size() == PatternSize)
1834 return nullptr;
1835 return DIExpression::get(
1836 Expr->getContext(),
1837 ArrayRef(&*SingleLocElts.begin(), SingleLocElts.size() - PatternSize));
1838 }
1839 return Expr;
1840}
1841
1843 int64_t Offset) {
1845 if (Flags & DIExpression::DerefBefore)
1846 Ops.push_back(dwarf::DW_OP_deref);
1847
1848 appendOffset(Ops, Offset);
1849 if (Flags & DIExpression::DerefAfter)
1850 Ops.push_back(dwarf::DW_OP_deref);
1851
1852 bool StackValue = Flags & DIExpression::StackValue;
1853 bool EntryValue = Flags & DIExpression::EntryValue;
1854
1855 return prependOpcodes(Expr, Ops, StackValue, EntryValue);
1856}
1857
1860 unsigned ArgNo, bool StackValue) {
1861 assert(Expr && "Can't add ops to this expression");
1862
1863 // Handle non-variadic intrinsics by prepending the opcodes.
1864 if (!any_of(Expr->expr_ops(),
1865 [](auto Op) { return Op.getOp() == dwarf::DW_OP_LLVM_arg; })) {
1866 assert(ArgNo == 0 &&
1867 "Location Index must be 0 for a non-variadic expression.");
1868 SmallVector<uint64_t, 8> NewOps(Ops);
1869 return DIExpression::prependOpcodes(Expr, NewOps, StackValue);
1870 }
1871
1873 for (auto Op : Expr->expr_ops()) {
1874 // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
1875 if (StackValue) {
1876 if (Op.getOp() == dwarf::DW_OP_stack_value)
1877 StackValue = false;
1878 else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1879 NewOps.push_back(dwarf::DW_OP_stack_value);
1880 StackValue = false;
1881 }
1882 }
1883 Op.appendToVector(NewOps);
1884 if (Op.getOp() == dwarf::DW_OP_LLVM_arg && Op.getArg(0) == ArgNo)
1885 NewOps.insert(NewOps.end(), Ops.begin(), Ops.end());
1886 }
1887 if (StackValue)
1888 NewOps.push_back(dwarf::DW_OP_stack_value);
1889
1890 return DIExpression::get(Expr->getContext(), NewOps);
1891}
1892
1894 uint64_t OldArg, uint64_t NewArg) {
1895 assert(Expr && "Can't replace args in this expression");
1896
1898
1899 for (auto Op : Expr->expr_ops()) {
1900 if (Op.getOp() != dwarf::DW_OP_LLVM_arg || Op.getArg(0) < OldArg) {
1901 Op.appendToVector(NewOps);
1902 continue;
1903 }
1905 uint64_t Arg = Op.getArg(0) == OldArg ? NewArg : Op.getArg(0);
1906 // OldArg has been deleted from the Op list, so decrement all indices
1907 // greater than it.
1908 if (Arg > OldArg)
1909 --Arg;
1910 NewOps.push_back(Arg);
1911 }
1912 return DIExpression::get(Expr->getContext(), NewOps);
1913}
1914
1917 bool StackValue, bool EntryValue) {
1918 assert(Expr && "Can't prepend ops to this expression");
1919
1920 if (EntryValue) {
1922 // Use a block size of 1 for the target register operand. The
1923 // DWARF backend currently cannot emit entry values with a block
1924 // size > 1.
1925 Ops.push_back(1);
1926 }
1927
1928 // If there are no ops to prepend, do not even add the DW_OP_stack_value.
1929 if (Ops.empty())
1930 StackValue = false;
1931 for (auto Op : Expr->expr_ops()) {
1932 // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
1933 if (StackValue) {
1934 if (Op.getOp() == dwarf::DW_OP_stack_value)
1935 StackValue = false;
1936 else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1937 Ops.push_back(dwarf::DW_OP_stack_value);
1938 StackValue = false;
1939 }
1940 }
1941 Op.appendToVector(Ops);
1942 }
1943 if (StackValue)
1944 Ops.push_back(dwarf::DW_OP_stack_value);
1945 return DIExpression::get(Expr->getContext(), Ops);
1946}
1947
1949 ArrayRef<uint64_t> Ops) {
1950 assert(Expr && !Ops.empty() && "Can't append ops to this expression");
1951
1952 // Copy Expr's current op list.
1954 for (auto Op : Expr->expr_ops()) {
1955 // Append new opcodes before DW_OP_{stack_value, LLVM_fragment}.
1956 if (Op.getOp() == dwarf::DW_OP_stack_value ||
1957 Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1958 NewOps.append(Ops.begin(), Ops.end());
1959
1960 // Ensure that the new opcodes are only appended once.
1961 Ops = {};
1962 }
1963 Op.appendToVector(NewOps);
1964 }
1965 NewOps.append(Ops.begin(), Ops.end());
1966 auto *result =
1967 DIExpression::get(Expr->getContext(), NewOps)->foldConstantMath();
1968 assert(result->isValid() && "concatenated expression is not valid");
1969 return result;
1970}
1971
1973 ArrayRef<uint64_t> Ops) {
1974 assert(Expr && !Ops.empty() && "Can't append ops to this expression");
1975 assert(std::none_of(expr_op_iterator(Ops.begin()),
1976 expr_op_iterator(Ops.end()),
1977 [](auto Op) {
1978 return Op.getOp() == dwarf::DW_OP_stack_value ||
1979 Op.getOp() == dwarf::DW_OP_LLVM_fragment;
1980 }) &&
1981 "Can't append this op");
1982
1983 // Append a DW_OP_deref after Expr's current op list if it's non-empty and
1984 // has no DW_OP_stack_value.
1985 //
1986 // Match .* DW_OP_stack_value (DW_OP_LLVM_fragment A B)?.
1987 std::optional<FragmentInfo> FI = Expr->getFragmentInfo();
1988 unsigned DropUntilStackValue = FI ? 3 : 0;
1989 ArrayRef<uint64_t> ExprOpsBeforeFragment =
1990 Expr->getElements().drop_back(DropUntilStackValue);
1991 bool NeedsDeref = (Expr->getNumElements() > DropUntilStackValue) &&
1992 (ExprOpsBeforeFragment.back() != dwarf::DW_OP_stack_value);
1993 bool NeedsStackValue = NeedsDeref || ExprOpsBeforeFragment.empty();
1994
1995 // Append a DW_OP_deref after Expr's current op list if needed, then append
1996 // the new ops, and finally ensure that a single DW_OP_stack_value is present.
1998 if (NeedsDeref)
1999 NewOps.push_back(dwarf::DW_OP_deref);
2000 NewOps.append(Ops.begin(), Ops.end());
2001 if (NeedsStackValue)
2002 NewOps.push_back(dwarf::DW_OP_stack_value);
2003 return DIExpression::append(Expr, NewOps);
2004}
2005
2006std::optional<DIExpression *> DIExpression::createFragmentExpression(
2007 const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits) {
2009 // Track whether it's safe to split the value at the top of the DWARF stack,
2010 // assuming that it'll be used as an implicit location value.
2011 bool CanSplitValue = true;
2012 // Track whether we need to add a fragment expression to the end of Expr.
2013 bool EmitFragment = true;
2014 // Copy over the expression, but leave off any trailing DW_OP_LLVM_fragment.
2015 if (Expr) {
2016 for (auto Op : Expr->expr_ops()) {
2017 switch (Op.getOp()) {
2018 default:
2019 break;
2020 case dwarf::DW_OP_shr:
2021 case dwarf::DW_OP_shra:
2022 case dwarf::DW_OP_shl:
2023 case dwarf::DW_OP_plus:
2024 case dwarf::DW_OP_plus_uconst:
2025 case dwarf::DW_OP_minus:
2026 // We can't safely split arithmetic or shift operations into multiple
2027 // fragments because we can't express carry-over between fragments.
2028 //
2029 // FIXME: We *could* preserve the lowest fragment of a constant offset
2030 // operation if the offset fits into SizeInBits.
2031 CanSplitValue = false;
2032 break;
2033 case dwarf::DW_OP_deref:
2034 case dwarf::DW_OP_deref_size:
2035 case dwarf::DW_OP_deref_type:
2036 case dwarf::DW_OP_xderef:
2037 case dwarf::DW_OP_xderef_size:
2038 case dwarf::DW_OP_xderef_type:
2039 // Preceeding arithmetic operations have been applied to compute an
2040 // address. It's okay to split the value loaded from that address.
2041 CanSplitValue = true;
2042 break;
2043 case dwarf::DW_OP_stack_value:
2044 // Bail if this expression computes a value that cannot be split.
2045 if (!CanSplitValue)
2046 return std::nullopt;
2047 break;
2049 // If we've decided we don't need a fragment then give up if we see that
2050 // there's already a fragment expression.
2051 // FIXME: We could probably do better here
2052 if (!EmitFragment)
2053 return std::nullopt;
2054 // Make the new offset point into the existing fragment.
2055 uint64_t FragmentOffsetInBits = Op.getArg(0);
2056 uint64_t FragmentSizeInBits = Op.getArg(1);
2057 (void)FragmentSizeInBits;
2058 assert((OffsetInBits + SizeInBits <= FragmentSizeInBits) &&
2059 "new fragment outside of original fragment");
2060 OffsetInBits += FragmentOffsetInBits;
2061 continue;
2062 }
2065 // If we're extracting bits from inside of the fragment that we're
2066 // creating then we don't have a fragment after all, and just need to
2067 // adjust the offset that we're extracting from.
2068 uint64_t ExtractOffsetInBits = Op.getArg(0);
2069 uint64_t ExtractSizeInBits = Op.getArg(1);
2070 if (ExtractOffsetInBits >= OffsetInBits &&
2071 ExtractOffsetInBits + ExtractSizeInBits <=
2072 OffsetInBits + SizeInBits) {
2073 Ops.push_back(Op.getOp());
2074 Ops.push_back(ExtractOffsetInBits - OffsetInBits);
2075 Ops.push_back(ExtractSizeInBits);
2076 EmitFragment = false;
2077 continue;
2078 }
2079 // If the extracted bits aren't fully contained within the fragment then
2080 // give up.
2081 // FIXME: We could probably do better here
2082 return std::nullopt;
2083 }
2084 }
2085 Op.appendToVector(Ops);
2086 }
2087 }
2088 assert((!Expr->isImplicit() || CanSplitValue) && "Expr can't be split");
2089 assert(Expr && "Unknown DIExpression");
2090 if (EmitFragment) {
2092 Ops.push_back(OffsetInBits);
2093 Ops.push_back(SizeInBits);
2094 }
2095 return DIExpression::get(Expr->getContext(), Ops);
2096}
2097
2098/// See declaration for more info.
2100 const DataLayout &DL, const Value *SliceStart, uint64_t SliceOffsetInBits,
2101 uint64_t SliceSizeInBits, const Value *DbgPtr, int64_t DbgPtrOffsetInBits,
2102 int64_t DbgExtractOffsetInBits, DIExpression::FragmentInfo VarFrag,
2103 std::optional<DIExpression::FragmentInfo> &Result,
2104 int64_t &OffsetFromLocationInBits) {
2105
2106 if (VarFrag.SizeInBits == 0)
2107 return false; // Variable size is unknown.
2108
2109 // Difference between mem slice start and the dbg location start.
2110 // 0 4 8 12 16 ...
2111 // | |
2112 // dbg location start
2113 // |
2114 // mem slice start
2115 // Here MemStartRelToDbgStartInBits is 8. Note this can be negative.
2116 int64_t MemStartRelToDbgStartInBits;
2117 {
2118 auto MemOffsetFromDbgInBytes = SliceStart->getPointerOffsetFrom(DbgPtr, DL);
2119 if (!MemOffsetFromDbgInBytes)
2120 return false; // Can't calculate difference in addresses.
2121 // Difference between the pointers.
2122 MemStartRelToDbgStartInBits = *MemOffsetFromDbgInBytes * 8;
2123 // Add the difference of the offsets.
2124 MemStartRelToDbgStartInBits +=
2125 SliceOffsetInBits - (DbgPtrOffsetInBits + DbgExtractOffsetInBits);
2126 }
2127
2128 // Out-param. Invert offset to get offset from debug location.
2129 OffsetFromLocationInBits = -MemStartRelToDbgStartInBits;
2130
2131 // Check if the variable fragment sits outside (before) this memory slice.
2132 int64_t MemEndRelToDbgStart = MemStartRelToDbgStartInBits + SliceSizeInBits;
2133 if (MemEndRelToDbgStart < 0) {
2134 Result = {0, 0}; // Out-param.
2135 return true;
2136 }
2137
2138 // Work towards creating SliceOfVariable which is the bits of the variable
2139 // that the memory region covers.
2140 // 0 4 8 12 16 ...
2141 // | |
2142 // dbg location start with VarFrag offset=32
2143 // |
2144 // mem slice start: SliceOfVariable offset=40
2145 int64_t MemStartRelToVarInBits =
2146 MemStartRelToDbgStartInBits + VarFrag.OffsetInBits;
2147 int64_t MemEndRelToVarInBits = MemStartRelToVarInBits + SliceSizeInBits;
2148 // If the memory region starts before the debug location the fragment
2149 // offset would be negative, which we can't encode. Limit those to 0. This
2150 // is fine because those bits necessarily don't overlap with the existing
2151 // variable fragment.
2152 int64_t MemFragStart = std::max<int64_t>(0, MemStartRelToVarInBits);
2153 int64_t MemFragSize =
2154 std::max<int64_t>(0, MemEndRelToVarInBits - MemFragStart);
2155 DIExpression::FragmentInfo SliceOfVariable(MemFragSize, MemFragStart);
2156
2157 // Intersect the memory region fragment with the variable location fragment.
2158 DIExpression::FragmentInfo TrimmedSliceOfVariable =
2159 DIExpression::FragmentInfo::intersect(SliceOfVariable, VarFrag);
2160 if (TrimmedSliceOfVariable == VarFrag)
2161 Result = std::nullopt; // Out-param.
2162 else
2163 Result = TrimmedSliceOfVariable; // Out-param.
2164 return true;
2165}
2166
2167std::pair<DIExpression *, const ConstantInt *>
2169 // Copy the APInt so we can modify it.
2170 APInt NewInt = CI->getValue();
2172
2173 // Fold operators only at the beginning of the expression.
2174 bool First = true;
2175 bool Changed = false;
2176 for (auto Op : expr_ops()) {
2177 switch (Op.getOp()) {
2178 default:
2179 // We fold only the leading part of the expression; if we get to a part
2180 // that we're going to copy unchanged, and haven't done any folding,
2181 // then the entire expression is unchanged and we can return early.
2182 if (!Changed)
2183 return {this, CI};
2184 First = false;
2185 break;
2187 if (!First)
2188 break;
2189 Changed = true;
2190 if (Op.getArg(1) == dwarf::DW_ATE_signed)
2191 NewInt = NewInt.sextOrTrunc(Op.getArg(0));
2192 else {
2193 assert(Op.getArg(1) == dwarf::DW_ATE_unsigned && "Unexpected operand");
2194 NewInt = NewInt.zextOrTrunc(Op.getArg(0));
2195 }
2196 continue;
2197 }
2198 Op.appendToVector(Ops);
2199 }
2200 if (!Changed)
2201 return {this, CI};
2202 return {DIExpression::get(getContext(), Ops),
2203 ConstantInt::get(getContext(), NewInt)};
2204}
2205
2207 uint64_t Result = 0;
2208 for (auto ExprOp : expr_ops())
2209 if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
2210 Result = std::max(Result, ExprOp.getArg(0) + 1);
2211 assert(hasAllLocationOps(Result) &&
2212 "Expression is missing one or more location operands.");
2213 return Result;
2214}
2215
2216std::optional<DIExpression::SignedOrUnsignedConstant>
2218
2219 // Recognize signed and unsigned constants.
2220 // An signed constants can be represented as DW_OP_consts C DW_OP_stack_value
2221 // (DW_OP_LLVM_fragment of Len).
2222 // An unsigned constant can be represented as
2223 // DW_OP_constu C DW_OP_stack_value (DW_OP_LLVM_fragment of Len).
2224
2225 if ((getNumElements() != 2 && getNumElements() != 3 &&
2226 getNumElements() != 6) ||
2227 (getElement(0) != dwarf::DW_OP_consts &&
2228 getElement(0) != dwarf::DW_OP_constu))
2229 return std::nullopt;
2230
2231 if (getNumElements() == 2 && getElement(0) == dwarf::DW_OP_consts)
2233
2234 if ((getNumElements() == 3 && getElement(2) != dwarf::DW_OP_stack_value) ||
2235 (getNumElements() == 6 && (getElement(2) != dwarf::DW_OP_stack_value ||
2237 return std::nullopt;
2238 return getElement(0) == dwarf::DW_OP_constu
2241}
2242
2243DIExpression::ExtOps DIExpression::getExtOps(unsigned FromSize, unsigned ToSize,
2244 bool Signed) {
2245 dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned;
2247 dwarf::DW_OP_LLVM_convert, ToSize, TK}};
2248 return Ops;
2249}
2250
2252 unsigned FromSize, unsigned ToSize,
2253 bool Signed) {
2254 return appendToStack(Expr, getExtOps(FromSize, ToSize, Signed));
2255}
2256
2258DIGlobalVariableExpression::getImpl(LLVMContext &Context, Metadata *Variable,
2260 bool ShouldCreate) {
2262 Metadata *Ops[] = {Variable, Expression};
2264}
2265DIObjCProperty::DIObjCProperty(LLVMContext &C, StorageType Storage,
2266 unsigned Line, unsigned Attributes,
2268 : DINode(C, DIObjCPropertyKind, Storage, dwarf::DW_TAG_APPLE_property, Ops),
2270
2271DIObjCProperty *DIObjCProperty::getImpl(
2272 LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line,
2273 MDString *GetterName, MDString *SetterName, unsigned Attributes,
2274 Metadata *Type, StorageType Storage, bool ShouldCreate) {
2275 assert(isCanonical(Name) && "Expected canonical MDString");
2276 assert(isCanonical(GetterName) && "Expected canonical MDString");
2277 assert(isCanonical(SetterName) && "Expected canonical MDString");
2279 SetterName, Attributes, Type));
2280 Metadata *Ops[] = {Name, File, GetterName, SetterName, Type};
2281 DEFINE_GETIMPL_STORE(DIObjCProperty, (Line, Attributes), Ops);
2282}
2283
2284DIImportedEntity *DIImportedEntity::getImpl(LLVMContext &Context, unsigned Tag,
2285 Metadata *Scope, Metadata *Entity,
2286 Metadata *File, unsigned Line,
2287 MDString *Name, Metadata *Elements,
2288 StorageType Storage,
2289 bool ShouldCreate) {
2290 assert(isCanonical(Name) && "Expected canonical MDString");
2292 (Tag, Scope, Entity, File, Line, Name, Elements));
2293 Metadata *Ops[] = {Scope, Entity, Name, File, Elements};
2295}
2296
2297DIMacro *DIMacro::getImpl(LLVMContext &Context, unsigned MIType, unsigned Line,
2298 MDString *Name, MDString *Value, StorageType Storage,
2299 bool ShouldCreate) {
2300 assert(isCanonical(Name) && "Expected canonical MDString");
2302 Metadata *Ops[] = {Name, Value};
2304}
2305
2306DIMacroFile *DIMacroFile::getImpl(LLVMContext &Context, unsigned MIType,
2307 unsigned Line, Metadata *File,
2308 Metadata *Elements, StorageType Storage,
2309 bool ShouldCreate) {
2311 Metadata *Ops[] = {File, Elements};
2313}
2314
2317 auto ExistingIt = Context.pImpl->DIArgLists.find_as(DIArgListKeyInfo(Args));
2318 if (ExistingIt != Context.pImpl->DIArgLists.end())
2319 return *ExistingIt;
2320 DIArgList *NewArgList = new DIArgList(Context, Args);
2321 Context.pImpl->DIArgLists.insert(NewArgList);
2322 return NewArgList;
2323}
2324
2326 ValueAsMetadata **OldVMPtr = static_cast<ValueAsMetadata **>(Ref);
2327 assert((!New || isa<ValueAsMetadata>(New)) &&
2328 "DIArgList must be passed a ValueAsMetadata");
2329 untrack();
2330 // We need to update the set storage once the Args are updated since they
2331 // form the key to the DIArgLists store.
2332 getContext().pImpl->DIArgLists.erase(this);
2333 ValueAsMetadata *NewVM = cast_or_null<ValueAsMetadata>(New);
2334 for (ValueAsMetadata *&VM : Args) {
2335 if (&VM == OldVMPtr) {
2336 if (NewVM)
2337 VM = NewVM;
2338 else
2339 VM = ValueAsMetadata::get(PoisonValue::get(VM->getValue()->getType()));
2340 }
2341 }
2342 // We've changed the contents of this DIArgList, and the set storage may
2343 // already contain a DIArgList with our new set of args; if it does, then we
2344 // must RAUW this with the existing DIArgList, otherwise we simply insert this
2345 // back into the set storage.
2346 DIArgList *ExistingArgList = getUniqued(getContext().pImpl->DIArgLists, this);
2347 if (ExistingArgList) {
2348 replaceAllUsesWith(ExistingArgList);
2349 // Clear this here so we don't try to untrack in the destructor.
2350 Args.clear();
2351 delete this;
2352 return;
2353 }
2354 getContext().pImpl->DIArgLists.insert(this);
2355 track();
2356}
2357void DIArgList::track() {
2358 for (ValueAsMetadata *&VAM : Args)
2359 if (VAM)
2360 MetadataTracking::track(&VAM, *VAM, *this);
2361}
2362void DIArgList::untrack() {
2363 for (ValueAsMetadata *&VAM : Args)
2364 if (VAM)
2365 MetadataTracking::untrack(&VAM, *VAM);
2366}
2367void DIArgList::dropAllReferences(bool Untrack) {
2368 if (Untrack)
2369 untrack();
2370 Args.clear();
2371 ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
2372}
static const LLT S1
AMDGPU Kernel Attributes
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
static DISubprogram * getSubprogram(bool IsDistinct, Ts &&...Args)
Definition: DIBuilder.cpp:852
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
static const char * ChecksumKindName[DIFile::CSK_Last]
#define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS)
static void adjustColumn(unsigned &Column)
#define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS)
static bool isCanonical(const MDString *S)
#define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS)
#define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS)
#define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS)
static RegisterPass< DebugifyFunctionPass > DF("debugify-function", "Attach debug info to a function")
static unsigned encodingBits(unsigned C)
Definition: Discriminator.h:49
static unsigned encodeComponent(unsigned C)
Definition: Discriminator.h:45
static unsigned getNextComponentInDiscriminator(unsigned D)
Returns the next component stored in discriminator.
Definition: Discriminator.h:38
static unsigned getUnsignedFromPrefixEncoding(unsigned U)
Reverse transformation as getPrefixEncodingFromUnsigned.
Definition: Discriminator.h:30
This file contains constants used for implementing Dwarf debug support.
std::string Name
uint64_t Size
bool End
Definition: ELF_riscv.cpp:480
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
Return the first found DebugLoc that has a DILocation, given a range of instructions.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallPtrSet class.
This file implements the StringSwitch template, which mimics a switch() statement whose cases are str...
support::ulittle16_t & Lo
Definition: aarch32.cpp:204
Class for arbitrary precision integers.
Definition: APInt.h:78
APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition: APInt.cpp:1007
APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition: APInt.cpp:1015
Annotations lets you mark points and ranges inside source code, for tests:
Definition: Annotations.h:53
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
const T & back() const
back - Get the last element.
Definition: ArrayRef.h:177
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
Definition: ArrayRef.h:207
iterator end() const
Definition: ArrayRef.h:157
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
ArrayRef< T > drop_back(size_t N=1) const
Drop the last N elements of the array.
Definition: ArrayRef.h:213
iterator begin() const
Definition: ArrayRef.h:156
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:163
static ConstantAsMetadata * get(Constant *C)
Definition: Metadata.h:528
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition: Constants.h:126
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:148
This is an important base class in LLVM.
Definition: Constant.h:42
List of ValueAsMetadata, to be used as an argument to a dbg.value intrinsic.
void handleChangedOperand(void *Ref, Metadata *New)
static DIArgList * get(LLVMContext &Context, ArrayRef< ValueAsMetadata * > Args)
Assignment ID.
Basic type, like 'int' or 'float'.
unsigned StringRef uint64_t FlagZero unsigned StringRef uint64_t uint32_t unsigned DIFlags Flags
unsigned StringRef uint64_t SizeInBits
std::optional< Signedness > getSignedness() const
Return the signedness of this type, or std::nullopt if this type is neither signed nor unsigned.
unsigned getEncoding() const
unsigned StringRef uint64_t FlagZero unsigned StringRef uint64_t uint32_t unsigned DIFlags Flags unsigned StringRef uint64_t uint32_t unsigned uint32_t NumExtraInhabitants
unsigned StringRef Name
unsigned StringRef uint64_t FlagZero unsigned StringRef uint64_t uint32_t AlignInBits
Debug common block.
Metadata Metadata * Decl
Metadata Metadata MDString Metadata unsigned LineNo
Metadata Metadata MDString * Name
Metadata Metadata MDString Metadata * File
static const char * nameTableKindString(DebugNameTableKind PK)
static const char * emissionKindString(DebugEmissionKind EK)
DebugEmissionKind getEmissionKind() const
unsigned Metadata * File
unsigned Metadata MDString bool MDString unsigned MDString unsigned Metadata Metadata Metadata Metadata Metadata * Macros
unsigned Metadata MDString bool MDString * Flags
unsigned Metadata MDString bool MDString unsigned MDString unsigned Metadata * EnumTypes
unsigned Metadata MDString bool MDString unsigned MDString unsigned Metadata Metadata * RetainedTypes
DebugNameTableKind getNameTableKind() const
unsigned Metadata MDString bool MDString unsigned MDString unsigned Metadata Metadata Metadata * GlobalVariables
unsigned Metadata MDString bool MDString unsigned MDString unsigned Metadata Metadata Metadata Metadata Metadata uint64_t bool bool unsigned bool MDString MDString * SDK
unsigned Metadata MDString * Producer
unsigned Metadata MDString bool MDString unsigned MDString unsigned Metadata Metadata Metadata Metadata Metadata uint64_t bool bool unsigned bool MDString * SysRoot
unsigned Metadata MDString bool MDString unsigned MDString * SplitDebugFilename
unsigned Metadata MDString bool MDString unsigned MDString unsigned Metadata Metadata Metadata Metadata * ImportedEntities
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t AlignInBits
unsigned MDString Metadata unsigned Line
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata * Elements
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned Metadata Metadata MDString Metadata Metadata Metadata Metadata Metadata Metadata Metadata * Specification
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned Metadata Metadata * TemplateParams
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned Metadata Metadata MDString Metadata Metadata Metadata Metadata Metadata Metadata Metadata uint32_t NumExtraInhabitants
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned Metadata Metadata MDString Metadata Metadata Metadata Metadata Metadata * Rank
static DICompositeType * getODRTypeIfExists(LLVMContext &Context, MDString &Identifier)
unsigned MDString * Name
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t OffsetInBits
unsigned MDString Metadata unsigned Metadata * Scope
unsigned MDString Metadata * File
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned Metadata Metadata MDString Metadata Metadata Metadata Metadata * Allocated
unsigned MDString Metadata unsigned Metadata Metadata * BaseType
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Flags
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned Metadata Metadata MDString Metadata * Discriminator
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned Metadata Metadata MDString Metadata Metadata Metadata Metadata Metadata Metadata * Annotations
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned Metadata Metadata MDString Metadata Metadata * DataLocation
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned Metadata Metadata MDString * Identifier
unsigned MDString Metadata unsigned Metadata Metadata uint64_t SizeInBits
static DICompositeType * buildODRType(LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits, Metadata *Specification, uint32_t NumExtraInhabitants, DIFlags Flags, Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator, Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, Metadata *Rank, Metadata *Annotations)
Build a DICompositeType with the given ODR identifier.
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned Metadata Metadata MDString Metadata Metadata Metadata * Associated
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned Metadata * VTableHolder
unsigned StringRef DIFile unsigned DIScope DIType * BaseType
unsigned StringRef DIFile unsigned DIScope DIType uint64_t uint32_t uint64_t std::optional< unsigned > std::optional< PtrAuthData > DIFlags Metadata * ExtraData
unsigned StringRef DIFile unsigned DIScope DIType uint64_t SizeInBits
Metadata * getExtraData() const
Get extra data associated with this derived type.
unsigned StringRef DIFile * File
unsigned StringRef DIFile unsigned DIScope DIType uint64_t uint32_t uint64_t OffsetInBits
unsigned StringRef DIFile unsigned DIScope DIType uint64_t uint32_t AlignInBits
unsigned StringRef DIFile unsigned DIScope * Scope
DIType * getClassType() const
Get casted version of extra data.
Constant * getConstant() const
Constant * getStorageOffsetInBits() const
Constant * getDiscriminantValue() const
unsigned StringRef Name
uint32_t getVBPtrOffset() const
unsigned StringRef DIFile unsigned DIScope DIType uint64_t uint32_t uint64_t std::optional< unsigned > std::optional< PtrAuthData > DIFlags Flags
unsigned StringRef DIFile unsigned Line
Enumeration value.
int64_t bool MDString * Name
unsigned getSize() const
Return the size of the operand.
uint64_t getOp() const
Get the operand code.
An iterator for expression operands.
DWARF expression.
element_iterator elements_end() const
bool isEntryValue() const
Check if the expression consists of exactly one entry value operand.
iterator_range< expr_op_iterator > expr_ops() const
static DIExpression * append(const DIExpression *Expr, ArrayRef< uint64_t > Ops)
Append the opcodes Ops to DIExpr.
std::array< uint64_t, 6 > ExtOps
unsigned getNumElements() const
static ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
expr_op_iterator expr_op_begin() const
Visit the elements via ExprOperand wrappers.
bool extractIfOffset(int64_t &Offset) const
If this is a constant offset, extract it.
static void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
bool startsWithDeref() const
Return whether the first element a DW_OP_deref.
static bool isEqualExpression(const DIExpression *FirstExpr, bool FirstIndirect, const DIExpression *SecondExpr, bool SecondIndirect)
Determines whether two debug values should produce equivalent DWARF expressions, using their DIExpres...
expr_op_iterator expr_op_end() const
bool isImplicit() const
Return whether this is an implicit location description.
static bool calculateFragmentIntersect(const DataLayout &DL, const Value *SliceStart, uint64_t SliceOffsetInBits, uint64_t SliceSizeInBits, const Value *DbgPtr, int64_t DbgPtrOffsetInBits, int64_t DbgExtractOffsetInBits, DIExpression::FragmentInfo VarFrag, std::optional< DIExpression::FragmentInfo > &Result, int64_t &OffsetFromLocationInBits)
Computes a fragment, bit-extract operation if needed, and new constant offset to describe a part of a...
element_iterator elements_begin() const
bool hasAllLocationOps(unsigned N) const
Returns true iff this DIExpression contains at least one instance of DW_OP_LLVM_arg,...
std::optional< FragmentInfo > getFragmentInfo() const
Retrieve the details of this fragment expression.
static DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
bool isComplex() const
Return whether the location is computed on the expression stack, meaning it cannot be a simple regist...
static std::optional< FragmentInfo > getFragmentInfo(expr_op_iterator Start, expr_op_iterator End)
Retrieve the details of this fragment expression.
static std::optional< const DIExpression * > convertToNonVariadicExpression(const DIExpression *Expr)
If Expr is a valid single-location expression, i.e.
std::pair< DIExpression *, const ConstantInt * > constantFold(const ConstantInt *CI)
Try to shorten an expression with an initial constant operand.
bool isDeref() const
Return whether there is exactly one operator and it is a DW_OP_deref;.
static const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
uint64_t getNumLocationOperands() const
Return the number of unique location operands referred to (via DW_OP_LLVM_arg) in this expression; th...
ArrayRef< uint64_t > getElements() const
static DIExpression * replaceArg(const DIExpression *Expr, uint64_t OldArg, uint64_t NewArg)
Create a copy of Expr with each instance of DW_OP_LLVM_arg, \p OldArg replaced with DW_OP_LLVM_arg,...
std::optional< uint64_t > getActiveBits(DIVariable *Var)
Return the number of bits that have an active value, i.e.
static void canonicalizeExpressionOps(SmallVectorImpl< uint64_t > &Ops, const DIExpression *Expr, bool IsIndirect)
Inserts the elements of Expr into Ops modified to a canonical form, which uses DW_OP_LLVM_arg (i....
uint64_t getElement(unsigned I) const
static std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
static const DIExpression * convertToUndefExpression(const DIExpression *Expr)
Removes all elements from Expr that do not apply to an undef debug value, which includes every operat...
static DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
static DIExpression * appendToStack(const DIExpression *Expr, ArrayRef< uint64_t > Ops)
Convert DIExpr into a stack value if it isn't one already by appending DW_OP_deref if needed,...
static DIExpression * appendExt(const DIExpression *Expr, unsigned FromSize, unsigned ToSize, bool Signed)
Append a zero- or sign-extension to Expr.
std::optional< ArrayRef< uint64_t > > getSingleLocationExpressionElements() const
Returns a reference to the elements contained in this expression, skipping past the leading DW_OP_LLV...
bool isSingleLocationExpression() const
Return whether the evaluated expression makes use of a single location at the start of the expression...
bool extractLeadingOffset(int64_t &OffsetInBytes, SmallVectorImpl< uint64_t > &RemainingOps) const
Assuming that the expression operates on an address, extract a constant offset and the successive ops...
std::optional< SignedOrUnsignedConstant > isConstant() const
Determine whether this represents a constant value, if so.
static const DIExpression * extractAddressClass(const DIExpression *Expr, unsigned &AddrClass)
Checks if the last 4 elements of the expression are DW_OP_constu <DWARF Address Space> DW_OP_swap DW_...
static DIExpression * prependOpcodes(const DIExpression *Expr, SmallVectorImpl< uint64_t > &Ops, bool StackValue=false, bool EntryValue=false)
Prepend DIExpr with the given opcodes and optionally turn it into a stack value.
MDString MDString * Directory
MDString * Filename
static std::optional< ChecksumKind > getChecksumKind(StringRef CSKindStr)
MDString MDString std::optional< ChecksumInfo< MDString * > > CS
Metadata * getRawLowerBound() const
Metadata * getRawCountNode() const
Metadata * getRawStride() const
BoundType getLowerBound() const
Metadata * getRawUpperBound() const
BoundType getUpperBound() const
PointerUnion< DIVariable *, DIExpression * > BoundType
A pair of DIGlobalVariable and DIExpression.
Metadata MDString MDString Metadata unsigned Metadata bool bool Metadata Metadata * TemplateParams
Metadata MDString MDString Metadata unsigned Line
Metadata MDString MDString Metadata unsigned Metadata * Type
Metadata MDString * Name
Metadata MDString MDString Metadata unsigned Metadata bool bool Metadata * StaticDataMemberDeclaration
Metadata MDString MDString * LinkageName
Metadata MDString MDString Metadata * File
Metadata MDString MDString Metadata unsigned Metadata bool bool Metadata Metadata uint32_t AlignInBits
An imported module (C++ using directive or similar).
unsigned Metadata Metadata * Entity
unsigned Metadata Metadata Metadata unsigned Line
unsigned Metadata Metadata Metadata unsigned MDString * Name
unsigned Metadata Metadata Metadata * File
unsigned Metadata * Scope
Metadata MDString Metadata unsigned Line
Metadata MDString * Name
Metadata MDString Metadata * File
DILexicalBlockBase(LLVMContext &C, unsigned ID, StorageType Storage, ArrayRef< Metadata * > Ops)
Metadata Metadata unsigned Discriminator
Metadata Metadata * File
Debug lexical block.
Metadata Metadata unsigned Line
Metadata Metadata * File
A scope for locals.
DISubprogram * getSubprogram() const
Get the subprogram for this scope.
DILocalScope * getNonLexicalBlockFileScope() const
Get the first non DILexicalBlockFile scope of this scope.
static DILocalScope * cloneScopeForSubprogram(DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx, DenseMap< const MDNode *, MDNode * > &Cache)
Traverses the scope chain rooted at RootScope until it hits a Subprogram, recreating the chain with "...
Metadata MDString Metadata unsigned Metadata * Type
Metadata MDString Metadata * File
Metadata MDString * Name
Metadata MDString Metadata unsigned Line
Metadata MDString Metadata unsigned Metadata unsigned DIFlags uint32_t AlignInBits
Debug location.
unsigned unsigned DILocalScope * Scope
static DILocation * getMergedLocations(ArrayRef< DILocation * > Locs)
Try to combine the vector of locations passed as input in a single one.
static std::optional< unsigned > encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI)
Raw encoding of the discriminator.
unsigned unsigned DILocalScope DILocation bool ImplicitCode
static void decodeDiscriminator(unsigned D, unsigned &BD, unsigned &DF, unsigned &CI)
Raw decoder for values in an encoded discriminator D.
static DILocation * getMergedLocation(DILocation *LocA, DILocation *LocB)
When two instructions are combined into a single instruction we also need to combine the original loc...
unsigned unsigned Column
unsigned unsigned DILocalScope DILocation * InlinedAt
unsigned unsigned Metadata * File
unsigned unsigned Line
unsigned unsigned Metadata Metadata * Elements
unsigned unsigned MDString * Name
unsigned unsigned Line
Represents a module in the programming language, for example, a Clang module, or a Fortran module.
Metadata Metadata * Scope
Metadata Metadata MDString * Name
Metadata Metadata MDString MDString MDString MDString * APINotesFile
Metadata Metadata MDString MDString MDString * IncludePath
Metadata Metadata MDString MDString * ConfigurationMacros
Metadata Metadata MDString MDString MDString MDString unsigned LineNo
Debug lexical block.
Metadata MDString bool ExportSymbols
Metadata MDString * Name
Tagged DWARF-like metadata node.
dwarf::Tag getTag() const
static DIFlags getFlag(StringRef Flag)
static DIFlags splitFlags(DIFlags Flags, SmallVectorImpl< DIFlags > &SplitFlags)
Split up a flags bitfield.
static StringRef getFlagString(DIFlags Flag)
DIFlags
Debug info flags.
MDString Metadata * File
MDString Metadata unsigned MDString * GetterName
MDString Metadata unsigned MDString MDString * SetterName
Base class for scope-like contexts.
StringRef getName() const
DIScope * getScope() const
String type, Fortran CHARACTER(n)
unsigned MDString * Name
unsigned MDString Metadata Metadata Metadata uint64_t SizeInBits
unsigned MDString Metadata Metadata Metadata uint64_t uint32_t AlignInBits
unsigned MDString Metadata Metadata Metadata * StringLocationExp
unsigned MDString Metadata Metadata * StringLengthExp
unsigned MDString Metadata * StringLength
Subprogram description.
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags Metadata * Unit
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags Metadata Metadata Metadata Metadata Metadata Metadata * Annotations
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata * ContainingType
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags Metadata Metadata * TemplateParams
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags Metadata Metadata Metadata * Declaration
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags Metadata Metadata Metadata Metadata Metadata Metadata MDString * TargetFuncName
static DISPFlags toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized, unsigned Virtuality=SPFlagNonvirtual, bool IsMainSubprogram=false)
Metadata MDString * Name
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags Metadata Metadata Metadata Metadata Metadata * ThrownTypes
static DISPFlags getFlag(StringRef Flag)
Metadata MDString MDString Metadata * File
static DISPFlags splitFlags(DISPFlags Flags, SmallVectorImpl< DISPFlags > &SplitFlags)
Split up a flags bitfield for easier printing.
Metadata MDString MDString * LinkageName
static StringRef getFlagString(DISPFlags Flag)
Metadata MDString MDString Metadata unsigned Metadata * Type
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags Metadata Metadata Metadata Metadata * RetainedNodes
DISPFlags
Debug info subprogram flags.
Array subrange.
BoundType getUpperBound() const
BoundType getStride() const
BoundType getLowerBound() const
BoundType getCount() const
Type array for a subprogram.
DIFlags uint8_t Metadata * TypeArray
Base class for template parameters.
unsigned MDString Metadata * Type
Base class for types.
bool isBitField() const
bool isStaticMember() const
uint32_t getAlignInBits() const
Base class for variables.
std::optional< DIBasicType::Signedness > getSignedness() const
Return the signedness of this variable's type, or std::nullopt if this type is neither signed nor uns...
std::optional< uint64_t > getSizeInBits() const
Determines the size of the variable's type.
Metadata * getRawType() const
DIVariable(LLVMContext &C, unsigned ID, StorageType Storage, signed Line, ArrayRef< Metadata * > Ops, uint32_t AlignInBits=0)
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
This is the common base class for debug info intrinsics for variables.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
DebugVariableAggregate(const DbgVariableIntrinsic *DVI)
Identifies a unique instance of a variable.
DebugVariable(const DbgVariableIntrinsic *DII)
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:156
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition: DenseMap.h:226
iterator end()
Definition: DenseMap.h:84
Class representing an expression and its matching format.
Generic tagged DWARF-like metadata node.
dwarf::Tag getTag() const
unsigned MDString * Header
unsigned MDString ArrayRef< Metadata * > DwarfOps
DenseSet< DIArgList *, DIArgListInfo > DIArgLists
std::optional< DenseMap< const MDString *, DICompositeType * > > DITypeMap
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
bool isODRUniquingDebugTypes() const
Whether there is a string map for uniquing debug info identifiers across the context.
LLVMContextImpl *const pImpl
Definition: LLVMContext.h:69
Metadata node.
Definition: Metadata.h:1069
friend class DIAssignID
Definition: Metadata.h:1072
static MDTuple * getDistinct(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1551
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1543
TempMDNode clone() const
Create a (temporary) clone of this.
Definition: Metadata.cpp:667
static T * storeImpl(T *N, StorageType Storage, StoreT &Store)
Definition: MetadataImpl.h:42
LLVMContext & getContext() const
Definition: Metadata.h:1233
static std::enable_if_t< std::is_base_of< MDNode, T >::value, T * > replaceWithUniqued(std::unique_ptr< T, TempMDNodeDeleter > N)
Replace a temporary node with a uniqued one.
Definition: Metadata.h:1301
A single uniqued string.
Definition: Metadata.h:720
StringRef getString() const
Definition: Metadata.cpp:616
static void untrack(Metadata *&MD)
Stop tracking a reference to metadata.
Definition: Metadata.h:349
static bool track(Metadata *&MD)
Track the reference to metadata.
Definition: Metadata.h:315
Root of the metadata hierarchy.
Definition: Metadata.h:62
StorageType
Active type of storage.
Definition: Metadata.h:70
unsigned short SubclassData16
Definition: Metadata.h:76
unsigned SubclassData32
Definition: Metadata.h:77
unsigned char Storage
Storage flag for non-uniqued, otherwise unowned, metadata.
Definition: Metadata.h:73
unsigned char SubclassData1
Definition: Metadata.h:75
A discriminated union of two or more pointer types, with the discriminator in the low bit of the poin...
Definition: PointerUnion.h:118
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1878
void replaceAllUsesWith(Metadata *MD)
Replace all uses of this with MD.
Definition: Metadata.cpp:367
LLVMContext & getContext() const
Definition: Metadata.h:400
void resolveAllUses(bool ResolveUsers=true)
Resolve all uses of this.
Definition: Metadata.cpp:420
Implements a dense probed hash-table based set with some number of buckets stored inline.
Definition: DenseSet.h:298
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void reserve(size_type N)
Definition: SmallVector.h:663
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:683
iterator insert(iterator I, T &&Elt)
Definition: SmallVector.h:805
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
constexpr bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:147
A switch()-like statement whose cases are string literals.
Definition: StringSwitch.h:44
StringSwitch & Case(StringLiteral S, T Value)
Definition: StringSwitch.h:69
R Default(T Value)
Definition: StringSwitch.h:182
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static IntegerType * getInt64Ty(LLVMContext &C)
Value wrapper in the Metadata hierarchy.
Definition: Metadata.h:450
static ValueAsMetadata * get(Value *V)
Definition: Metadata.cpp:501
LLVM Value Representation.
Definition: Value.h:74
std::optional< int64_t > getPointerOffsetFrom(const Value *Other, const DataLayout &DL) const
If this ptr is provably equal to Other plus a constant offset, return that offset in bytes.
Definition: Value.cpp:1028
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:213
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition: DenseSet.h:193
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ DW_OP_LLVM_entry_value
Only used in LLVM metadata.
Definition: Dwarf.h:145
@ DW_OP_LLVM_implicit_pointer
Only used in LLVM metadata.
Definition: Dwarf.h:146
@ DW_OP_LLVM_extract_bits_zext
Only used in LLVM metadata.
Definition: Dwarf.h:149
@ DW_OP_LLVM_tag_offset
Only used in LLVM metadata.
Definition: Dwarf.h:144
@ DW_OP_LLVM_fragment
Only used in LLVM metadata.
Definition: Dwarf.h:142
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
Definition: Dwarf.h:147
@ DW_OP_LLVM_convert
Only used in LLVM metadata.
Definition: Dwarf.h:143
@ DW_OP_LLVM_extract_bits_sext
Only used in LLVM metadata.
Definition: Dwarf.h:148
@ DW_VIRTUALITY_max
Definition: Dwarf.h:198
@ NameTableKind
Definition: LLToken.h:487
@ EmissionKind
Definition: LLToken.h:486
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
@ Offset
Definition: DWP.cpp:480
static T * getUniqued(DenseSet< T *, InfoT > &Store, const typename InfoT::KeyTy &Key)
Definition: MetadataImpl.h:22
cl::opt< bool > EnableFSDiscriminator
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1746
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:420
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1753
@ Ref
The access may reference the value stored in memory.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
#define N
A single checksum, represented by a Kind and a Value (a string).
static DbgVariableFragmentInfo intersect(DbgVariableFragmentInfo A, DbgVariableFragmentInfo B)
Returns a zero-sized fragment if A and B don't intersect.