LLVM 22.0.0git
DebugInfoMetadata.cpp
Go to the documentation of this file.
1//===- DebugInfoMetadata.cpp - Implement debug info metadata --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the debug info Metadata classes.
10//
11//===----------------------------------------------------------------------===//
12
14#include "LLVMContextImpl.h"
15#include "MetadataImpl.h"
16#include "llvm/ADT/SetVector.h"
20#include "llvm/IR/Function.h"
22#include "llvm/IR/Type.h"
23#include "llvm/IR/Value.h"
26
27#include <numeric>
28#include <optional>
29
30using namespace llvm;
31
32namespace llvm {
33// Use FS-AFDO discriminator.
35 "enable-fs-discriminator", cl::Hidden,
36 cl::desc("Enable adding flow sensitive discriminators"));
37
38// When true, preserves line and column number by picking one of the merged
39// location info in a deterministic manner to assist sample based PGO.
41 "pick-merged-source-locations", cl::init(false), cl::Hidden,
42 cl::desc("Preserve line and column number when merging locations."));
43} // namespace llvm
44
46 return (getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ? 0 : SubclassData32);
47}
48
49const DIExpression::FragmentInfo DebugVariable::DefaultFragment = {
50 std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::min()};
51
53 : Variable(DVR->getVariable()),
54 Fragment(DVR->getExpression()->getFragmentInfo()),
55 InlinedAt(DVR->getDebugLoc().getInlinedAt()) {}
56
60
61DILocation::DILocation(LLVMContext &C, StorageType Storage, unsigned Line,
62 unsigned Column, uint64_t AtomGroup, uint8_t AtomRank,
63 ArrayRef<Metadata *> MDs, bool ImplicitCode)
64 : MDNode(C, DILocationKind, Storage, MDs), AtomGroup(AtomGroup),
65 AtomRank(AtomRank) {
66 assert(AtomRank <= 7 && "AtomRank number should fit in 3 bits");
67 if (AtomGroup)
68 C.updateDILocationAtomGroupWaterline(AtomGroup + 1);
69
70 assert((MDs.size() == 1 || MDs.size() == 2) &&
71 "Expected a scope and optional inlined-at");
72 // Set line and column.
73 assert(Column < (1u << 16) && "Expected 16-bit column");
74
75 SubclassData32 = Line;
76 SubclassData16 = Column;
77
78 setImplicitCode(ImplicitCode);
79}
80
81static void adjustColumn(unsigned &Column) {
82 // Set to unknown on overflow. We only have 16 bits to play with here.
83 if (Column >= (1u << 16))
84 Column = 0;
85}
86
87DILocation *DILocation::getImpl(LLVMContext &Context, unsigned Line,
88 unsigned Column, Metadata *Scope,
89 Metadata *InlinedAt, bool ImplicitCode,
90 uint64_t AtomGroup, uint8_t AtomRank,
91 StorageType Storage, bool ShouldCreate) {
92 // Fixup column.
94
95 if (Storage == Uniqued) {
96 if (auto *N = getUniqued(Context.pImpl->DILocations,
97 DILocationInfo::KeyTy(Line, Column, Scope,
99 AtomGroup, AtomRank)))
100 return N;
101 if (!ShouldCreate)
102 return nullptr;
103 } else {
104 assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
105 }
106
108 Ops.push_back(Scope);
109 if (InlinedAt)
110 Ops.push_back(InlinedAt);
111 return storeImpl(new (Ops.size(), Storage)
112 DILocation(Context, Storage, Line, Column, AtomGroup,
113 AtomRank, Ops, ImplicitCode),
114 Storage, Context.pImpl->DILocations);
115}
116
118 if (Locs.empty())
119 return nullptr;
120 if (Locs.size() == 1)
121 return Locs[0];
122 auto *Merged = Locs[0];
123 for (DILocation *L : llvm::drop_begin(Locs)) {
124 Merged = getMergedLocation(Merged, L);
125 if (Merged == nullptr)
126 break;
127 }
128 return Merged;
129}
130
132 DIScope *NewParent) {
133 TempMDNode ClonedScope = LBB->clone();
134 cast<DILexicalBlockBase>(*ClonedScope).replaceScope(NewParent);
136 MDNode::replaceWithUniqued(std::move(ClonedScope)));
137}
138
139using LineColumn = std::pair<unsigned /* Line */, unsigned /* Column */>;
140
141/// Returns the location of DILocalScope, if present, or a default value.
143 assert(isa<DILocalScope>(S) && "Expected DILocalScope.");
144
146 return Default;
147 if (auto *LB = dyn_cast<DILexicalBlock>(S))
148 return {LB->getLine(), LB->getColumn()};
149 if (auto *SP = dyn_cast<DISubprogram>(S))
150 return {SP->getLine(), 0u};
151
152 llvm_unreachable("Unhandled type of DILocalScope.");
153}
154
155// Returns the nearest matching scope inside a subprogram.
156template <typename MatcherT>
157static std::pair<DIScope *, LineColumn>
159 MatcherT Matcher;
160
161 DIScope *S1 = L1->getScope();
162 DIScope *S2 = L2->getScope();
163
164 LineColumn Loc1(L1->getLine(), L1->getColumn());
165 for (; S1; S1 = S1->getScope()) {
166 Loc1 = getLocalScopeLocationOr(S1, Loc1);
167 Matcher.insert(S1, Loc1);
169 break;
170 }
171
172 LineColumn Loc2(L2->getLine(), L2->getColumn());
173 for (; S2; S2 = S2->getScope()) {
174 Loc2 = getLocalScopeLocationOr(S2, Loc2);
175
176 if (DIScope *S = Matcher.match(S2, Loc2))
177 return std::make_pair(S, Loc2);
178
179 if (isa<DISubprogram>(S2))
180 break;
181 }
182 return std::make_pair(nullptr, LineColumn(L2->getLine(), L2->getColumn()));
183}
184
185// Matches equal scopes.
188
189 void insert(DIScope *S, LineColumn Loc) { Scopes.insert(S); }
190
192 return Scopes.contains(S) ? S : nullptr;
193 }
194};
195
196// Matches scopes with the same location.
199 8>
201
203 Scopes[{S->getFile(), Loc}].insert(S);
204 }
205
207 auto ScopesAtLoc = Scopes.find({S->getFile(), Loc});
208 // No scope found with the given location.
209 if (ScopesAtLoc == Scopes.end())
210 return nullptr;
211
212 // Prefer S over other scopes with the same location.
213 if (ScopesAtLoc->second.contains(S))
214 return S;
215
216 if (!ScopesAtLoc->second.empty())
217 return *ScopesAtLoc->second.begin();
218
219 llvm_unreachable("Scopes must not have empty entries.");
220 }
221};
222
223DILocation *DILocation::getMergedLocation(DILocation *LocA, DILocation *LocB) {
224 if (LocA == LocB)
225 return LocA;
226
227 // For some use cases (SamplePGO), it is important to retain distinct source
228 // locations. When this flag is set, we choose arbitrarily between A and B,
229 // rather than computing a merged location using line 0, which is typically
230 // not useful for PGO. If one of them is null, then try to return one which is
231 // valid.
233 if (!LocA || !LocB)
234 return LocA ? LocA : LocB;
235
236 auto A = std::make_tuple(LocA->getLine(), LocA->getColumn(),
237 LocA->getDiscriminator(), LocA->getFilename(),
238 LocA->getDirectory());
239 auto B = std::make_tuple(LocB->getLine(), LocB->getColumn(),
240 LocB->getDiscriminator(), LocB->getFilename(),
241 LocB->getDirectory());
242 return A < B ? LocA : LocB;
243 }
244
245 if (!LocA || !LocB)
246 return nullptr;
247
248 LLVMContext &C = LocA->getContext();
249
250 using LocVec = SmallVector<const DILocation *>;
251 LocVec ALocs;
252 LocVec BLocs;
254 4>
255 ALookup;
256
257 // Walk through LocA and its inlined-at locations, populate them in ALocs and
258 // save the index for the subprogram and inlined-at pair, which we use to find
259 // a matching starting location in LocB's chain.
260 for (auto [L, I] = std::make_pair(LocA, 0U); L; L = L->getInlinedAt(), I++) {
261 ALocs.push_back(L);
262 auto Res = ALookup.try_emplace(
263 {L->getScope()->getSubprogram(), L->getInlinedAt()}, I);
264 assert(Res.second && "Multiple <SP, InlinedAt> pairs in a location chain?");
265 (void)Res;
266 }
267
268 LocVec::reverse_iterator ARIt = ALocs.rend();
269 LocVec::reverse_iterator BRIt = BLocs.rend();
270
271 // Populate BLocs and look for a matching starting location, the first
272 // location with the same subprogram and inlined-at location as in LocA's
273 // chain. Since the two locations have the same inlined-at location we do
274 // not need to look at those parts of the chains.
275 for (auto [L, I] = std::make_pair(LocB, 0U); L; L = L->getInlinedAt(), I++) {
276 BLocs.push_back(L);
277
278 if (ARIt != ALocs.rend())
279 // We have already found a matching starting location.
280 continue;
281
282 auto IT = ALookup.find({L->getScope()->getSubprogram(), L->getInlinedAt()});
283 if (IT == ALookup.end())
284 continue;
285
286 // The + 1 is to account for the &*rev_it = &(it - 1) relationship.
287 ARIt = LocVec::reverse_iterator(ALocs.begin() + IT->second + 1);
288 BRIt = LocVec::reverse_iterator(BLocs.begin() + I + 1);
289
290 // If we have found a matching starting location we do not need to add more
291 // locations to BLocs, since we will only look at location pairs preceding
292 // the matching starting location, and adding more elements to BLocs could
293 // invalidate the iterator that we initialized here.
294 break;
295 }
296
297 // Merge the two locations if possible, using the supplied
298 // inlined-at location for the created location.
299 auto *LocAIA = LocA->getInlinedAt();
300 auto *LocBIA = LocB->getInlinedAt();
301 auto MergeLocPair = [&C, LocAIA,
302 LocBIA](const DILocation *L1, const DILocation *L2,
303 DILocation *InlinedAt) -> DILocation * {
304 if (L1 == L2)
305 return DILocation::get(C, L1->getLine(), L1->getColumn(), L1->getScope(),
306 InlinedAt, L1->isImplicitCode(),
307 L1->getAtomGroup(), L1->getAtomRank());
308
309 // If the locations originate from different subprograms we can't produce
310 // a common location.
311 if (L1->getScope()->getSubprogram() != L2->getScope()->getSubprogram())
312 return nullptr;
313
314 // Find nearest common scope inside subprogram.
316 assert(Scope && "No common scope in the same subprogram?");
317
318 // Try using the nearest scope with common location if files are different.
319 if (Scope->getFile() != L1->getFile() || L1->getFile() != L2->getFile()) {
320 auto [CommonLocScope, CommonLoc] =
322
323 // If CommonLocScope is a DILexicalBlockBase, clone it and locate
324 // a new scope inside the nearest common scope to preserve
325 // lexical blocks structure.
326 if (auto *LBB = dyn_cast<DILexicalBlockBase>(CommonLocScope);
327 LBB && LBB != Scope)
328 CommonLocScope = cloneAndReplaceParentScope(LBB, Scope);
329
330 Scope = CommonLocScope;
331
332 // If files are still different, assume that L1 and L2 were "included"
333 // from CommonLoc. Use it as merged location.
334 if (Scope->getFile() != L1->getFile() || L1->getFile() != L2->getFile())
335 return DILocation::get(C, CommonLoc.first, CommonLoc.second,
336 CommonLocScope, InlinedAt);
337 }
338
339 bool SameLine = L1->getLine() == L2->getLine();
340 bool SameCol = L1->getColumn() == L2->getColumn();
341 unsigned Line = SameLine ? L1->getLine() : 0;
342 unsigned Col = SameLine && SameCol ? L1->getColumn() : 0;
343 bool IsImplicitCode = L1->isImplicitCode() && L2->isImplicitCode();
344
345 // Discard source location atom if the line becomes 0. And there's nothing
346 // further to do if neither location has an atom number.
347 if (!SameLine || !(L1->getAtomGroup() || L2->getAtomGroup()))
348 return DILocation::get(C, Line, Col, Scope, InlinedAt, IsImplicitCode,
349 /*AtomGroup*/ 0, /*AtomRank*/ 0);
350
351 uint64_t Group = 0;
352 uint64_t Rank = 0;
353 // If we're preserving the same matching inlined-at field we can
354 // preserve the atom.
355 if (LocBIA == LocAIA && InlinedAt == LocBIA) {
356 // Deterministically keep the lowest non-zero ranking atom group
357 // number.
358 // FIXME: It would be nice if we could track that an instruction
359 // belongs to two source atoms.
360 bool UseL1Atom = [L1, L2]() {
361 if (L1->getAtomRank() == L2->getAtomRank()) {
362 // Arbitrarily choose the lowest non-zero group number.
363 if (!L1->getAtomGroup() || !L2->getAtomGroup())
364 return !L2->getAtomGroup();
365 return L1->getAtomGroup() < L2->getAtomGroup();
366 }
367 // Choose the lowest non-zero rank.
368 if (!L1->getAtomRank() || !L2->getAtomRank())
369 return !L2->getAtomRank();
370 return L1->getAtomRank() < L2->getAtomRank();
371 }();
372 Group = UseL1Atom ? L1->getAtomGroup() : L2->getAtomGroup();
373 Rank = UseL1Atom ? L1->getAtomRank() : L2->getAtomRank();
374 } else {
375 // If either instruction is part of a source atom, reassign it a new
376 // atom group. This essentially regresses to non-key-instructions
377 // behaviour (now that it's the only instruction in its group it'll
378 // probably get is_stmt applied).
379 Group = C.incNextDILocationAtomGroup();
380 Rank = 1;
381 }
382 return DILocation::get(C, Line, Col, Scope, InlinedAt, IsImplicitCode,
383 Group, Rank);
384 };
385
386 DILocation *Result = ARIt != ALocs.rend() ? (*ARIt)->getInlinedAt() : nullptr;
387
388 // If we have found a common starting location, walk up the inlined-at chains
389 // and try to produce common locations.
390 for (; ARIt != ALocs.rend() && BRIt != BLocs.rend(); ++ARIt, ++BRIt) {
391 DILocation *Tmp = MergeLocPair(*ARIt, *BRIt, Result);
392
393 if (!Tmp)
394 // We have walked up to a point in the chains where the two locations
395 // are irreconsilable. At this point Result contains the nearest common
396 // location in the inlined-at chains of LocA and LocB, so we break here.
397 break;
398
399 Result = Tmp;
400 }
401
402 if (Result)
403 return Result;
404
405 // We ended up with LocA and LocB as irreconsilable locations. Produce a
406 // location at 0:0 with one of the locations' scope. The function has
407 // historically picked A's scope, and a nullptr inlined-at location, so that
408 // behavior is mimicked here but I am not sure if this is always the correct
409 // way to handle this.
410 // Key Instructions: it's fine to drop atom group and rank here, as line 0
411 // is a nonsensical is_stmt location.
412 return DILocation::get(C, 0, 0, LocA->getScope(), nullptr, false,
413 /*AtomGroup*/ 0, /*AtomRank*/ 0);
414}
415
416std::optional<unsigned>
417DILocation::encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI) {
418 std::array<unsigned, 3> Components = {BD, DF, CI};
419 uint64_t RemainingWork = 0U;
420 // We use RemainingWork to figure out if we have no remaining components to
421 // encode. For example: if BD != 0 but DF == 0 && CI == 0, we don't need to
422 // encode anything for the latter 2.
423 // Since any of the input components is at most 32 bits, their sum will be
424 // less than 34 bits, and thus RemainingWork won't overflow.
425 RemainingWork =
426 std::accumulate(Components.begin(), Components.end(), RemainingWork);
427
428 int I = 0;
429 unsigned Ret = 0;
430 unsigned NextBitInsertionIndex = 0;
431 while (RemainingWork > 0) {
432 unsigned C = Components[I++];
433 RemainingWork -= C;
434 unsigned EC = encodeComponent(C);
435 Ret |= (EC << NextBitInsertionIndex);
436 NextBitInsertionIndex += encodingBits(C);
437 }
438
439 // Encoding may be unsuccessful because of overflow. We determine success by
440 // checking equivalence of components before & after encoding. Alternatively,
441 // we could determine Success during encoding, but the current alternative is
442 // simpler.
443 unsigned TBD, TDF, TCI = 0;
444 decodeDiscriminator(Ret, TBD, TDF, TCI);
445 if (TBD == BD && TDF == DF && TCI == CI)
446 return Ret;
447 return std::nullopt;
448}
449
458
460 return StringSwitch<DIFlags>(Flag)
461#define HANDLE_DI_FLAG(ID, NAME) .Case("DIFlag" #NAME, Flag##NAME)
462#include "llvm/IR/DebugInfoFlags.def"
463 .Default(DINode::FlagZero);
464}
465
467 switch (Flag) {
468#define HANDLE_DI_FLAG(ID, NAME) \
469 case Flag##NAME: \
470 return "DIFlag" #NAME;
471#include "llvm/IR/DebugInfoFlags.def"
472 }
473 return "";
474}
475
477 SmallVectorImpl<DIFlags> &SplitFlags) {
478 // Flags that are packed together need to be specially handled, so
479 // that, for example, we emit "DIFlagPublic" and not
480 // "DIFlagPrivate | DIFlagProtected".
481 if (DIFlags A = Flags & FlagAccessibility) {
482 if (A == FlagPrivate)
483 SplitFlags.push_back(FlagPrivate);
484 else if (A == FlagProtected)
485 SplitFlags.push_back(FlagProtected);
486 else
487 SplitFlags.push_back(FlagPublic);
488 Flags &= ~A;
489 }
490 if (DIFlags R = Flags & FlagPtrToMemberRep) {
491 if (R == FlagSingleInheritance)
492 SplitFlags.push_back(FlagSingleInheritance);
493 else if (R == FlagMultipleInheritance)
494 SplitFlags.push_back(FlagMultipleInheritance);
495 else
496 SplitFlags.push_back(FlagVirtualInheritance);
497 Flags &= ~R;
498 }
499 if ((Flags & FlagIndirectVirtualBase) == FlagIndirectVirtualBase) {
500 Flags &= ~FlagIndirectVirtualBase;
501 SplitFlags.push_back(FlagIndirectVirtualBase);
502 }
503
504#define HANDLE_DI_FLAG(ID, NAME) \
505 if (DIFlags Bit = Flags & Flag##NAME) { \
506 SplitFlags.push_back(Bit); \
507 Flags &= ~Bit; \
508 }
509#include "llvm/IR/DebugInfoFlags.def"
510 return Flags;
511}
512
514 if (auto *T = dyn_cast<DIType>(this))
515 return T->getScope();
516
517 if (auto *SP = dyn_cast<DISubprogram>(this))
518 return SP->getScope();
519
520 if (auto *LB = dyn_cast<DILexicalBlockBase>(this))
521 return LB->getScope();
522
523 if (auto *NS = dyn_cast<DINamespace>(this))
524 return NS->getScope();
525
526 if (auto *CB = dyn_cast<DICommonBlock>(this))
527 return CB->getScope();
528
529 if (auto *M = dyn_cast<DIModule>(this))
530 return M->getScope();
531
532 assert((isa<DIFile>(this) || isa<DICompileUnit>(this)) &&
533 "Unhandled type of scope.");
534 return nullptr;
535}
536
538 if (auto *T = dyn_cast<DIType>(this))
539 return T->getName();
540 if (auto *SP = dyn_cast<DISubprogram>(this))
541 return SP->getName();
542 if (auto *NS = dyn_cast<DINamespace>(this))
543 return NS->getName();
544 if (auto *CB = dyn_cast<DICommonBlock>(this))
545 return CB->getName();
546 if (auto *M = dyn_cast<DIModule>(this))
547 return M->getName();
549 isa<DICompileUnit>(this)) &&
550 "Unhandled type of scope.");
551 return "";
552}
553
554#ifndef NDEBUG
555static bool isCanonical(const MDString *S) {
556 return !S || !S->getString().empty();
557}
558#endif
559
561GenericDINode *GenericDINode::getImpl(LLVMContext &Context, unsigned Tag,
562 MDString *Header,
563 ArrayRef<Metadata *> DwarfOps,
564 StorageType Storage, bool ShouldCreate) {
565 unsigned Hash = 0;
566 if (Storage == Uniqued) {
567 GenericDINodeInfo::KeyTy Key(Tag, Header, DwarfOps);
568 if (auto *N = getUniqued(Context.pImpl->GenericDINodes, Key))
569 return N;
570 if (!ShouldCreate)
571 return nullptr;
572 Hash = Key.getHash();
573 } else {
574 assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
575 }
576
577 // Use a nullptr for empty headers.
578 assert(isCanonical(Header) && "Expected canonical MDString");
579 Metadata *PreOps[] = {Header};
580 return storeImpl(new (DwarfOps.size() + 1, Storage) GenericDINode(
581 Context, Storage, Hash, Tag, PreOps, DwarfOps),
582 Storage, Context.pImpl->GenericDINodes);
583}
584
585void GenericDINode::recalculateHash() {
586 setHash(GenericDINodeInfo::KeyTy::calculateHash(this));
587}
588
589#define UNWRAP_ARGS_IMPL(...) __VA_ARGS__
590#define UNWRAP_ARGS(ARGS) UNWRAP_ARGS_IMPL ARGS
591#define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS) \
592 do { \
593 if (Storage == Uniqued) { \
594 if (auto *N = getUniqued(Context.pImpl->CLASS##s, \
595 CLASS##Info::KeyTy(UNWRAP_ARGS(ARGS)))) \
596 return N; \
597 if (!ShouldCreate) \
598 return nullptr; \
599 } else { \
600 assert(ShouldCreate && \
601 "Expected non-uniqued nodes to always be created"); \
602 } \
603 } while (false)
604#define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS) \
605 return storeImpl(new (std::size(OPS), Storage) \
606 CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \
607 Storage, Context.pImpl->CLASS##s)
608#define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS) \
609 return storeImpl(new (0u, Storage) \
610 CLASS(Context, Storage, UNWRAP_ARGS(ARGS)), \
611 Storage, Context.pImpl->CLASS##s)
612#define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS) \
613 return storeImpl(new (std::size(OPS), Storage) CLASS(Context, Storage, OPS), \
614 Storage, Context.pImpl->CLASS##s)
615#define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS) \
616 return storeImpl(new (NUM_OPS, Storage) \
617 CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \
618 Storage, Context.pImpl->CLASS##s)
619
620DISubrange::DISubrange(LLVMContext &C, StorageType Storage,
622 : DINode(C, DISubrangeKind, Storage, dwarf::DW_TAG_subrange_type, Ops) {}
623DISubrange *DISubrange::getImpl(LLVMContext &Context, int64_t Count, int64_t Lo,
624 StorageType Storage, bool ShouldCreate) {
627 auto *LB = ConstantAsMetadata::get(
629 return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage,
630 ShouldCreate);
631}
632
633DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
634 int64_t Lo, StorageType Storage,
635 bool ShouldCreate) {
636 auto *LB = ConstantAsMetadata::get(
638 return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage,
639 ShouldCreate);
640}
641
642DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
643 Metadata *LB, Metadata *UB, Metadata *Stride,
644 StorageType Storage, bool ShouldCreate) {
645 DEFINE_GETIMPL_LOOKUP(DISubrange, (CountNode, LB, UB, Stride));
646 Metadata *Ops[] = {CountNode, LB, UB, Stride};
648}
649
650DISubrange::BoundType DISubrange::getCount() const {
651 Metadata *CB = getRawCountNode();
652 if (!CB)
653 return BoundType();
654
656 isa<DIExpression>(CB)) &&
657 "Count must be signed constant or DIVariable or DIExpression");
658
659 if (auto *MD = dyn_cast<ConstantAsMetadata>(CB))
660 return BoundType(cast<ConstantInt>(MD->getValue()));
661
662 if (auto *MD = dyn_cast<DIVariable>(CB))
663 return BoundType(MD);
664
665 if (auto *MD = dyn_cast<DIExpression>(CB))
666 return BoundType(MD);
667
668 return BoundType();
669}
670
671DISubrange::BoundType DISubrange::getLowerBound() const {
672 Metadata *LB = getRawLowerBound();
673 if (!LB)
674 return BoundType();
675
677 isa<DIExpression>(LB)) &&
678 "LowerBound must be signed constant or DIVariable or DIExpression");
679
680 if (auto *MD = dyn_cast<ConstantAsMetadata>(LB))
681 return BoundType(cast<ConstantInt>(MD->getValue()));
682
683 if (auto *MD = dyn_cast<DIVariable>(LB))
684 return BoundType(MD);
685
686 if (auto *MD = dyn_cast<DIExpression>(LB))
687 return BoundType(MD);
688
689 return BoundType();
690}
691
692DISubrange::BoundType DISubrange::getUpperBound() const {
693 Metadata *UB = getRawUpperBound();
694 if (!UB)
695 return BoundType();
696
698 isa<DIExpression>(UB)) &&
699 "UpperBound must be signed constant or DIVariable or DIExpression");
700
701 if (auto *MD = dyn_cast<ConstantAsMetadata>(UB))
702 return BoundType(cast<ConstantInt>(MD->getValue()));
703
704 if (auto *MD = dyn_cast<DIVariable>(UB))
705 return BoundType(MD);
706
707 if (auto *MD = dyn_cast<DIExpression>(UB))
708 return BoundType(MD);
709
710 return BoundType();
711}
712
713DISubrange::BoundType DISubrange::getStride() const {
714 Metadata *ST = getRawStride();
715 if (!ST)
716 return BoundType();
717
719 isa<DIExpression>(ST)) &&
720 "Stride must be signed constant or DIVariable or DIExpression");
721
722 if (auto *MD = dyn_cast<ConstantAsMetadata>(ST))
723 return BoundType(cast<ConstantInt>(MD->getValue()));
724
725 if (auto *MD = dyn_cast<DIVariable>(ST))
726 return BoundType(MD);
727
728 if (auto *MD = dyn_cast<DIExpression>(ST))
729 return BoundType(MD);
730
731 return BoundType();
732}
733DIGenericSubrange::DIGenericSubrange(LLVMContext &C, StorageType Storage,
735 : DINode(C, DIGenericSubrangeKind, Storage, dwarf::DW_TAG_generic_subrange,
736 Ops) {}
737
738DIGenericSubrange *DIGenericSubrange::getImpl(LLVMContext &Context,
739 Metadata *CountNode, Metadata *LB,
740 Metadata *UB, Metadata *Stride,
741 StorageType Storage,
742 bool ShouldCreate) {
743 DEFINE_GETIMPL_LOOKUP(DIGenericSubrange, (CountNode, LB, UB, Stride));
744 Metadata *Ops[] = {CountNode, LB, UB, Stride};
746}
747
750 if (!CB)
751 return BoundType();
752
754 "Count must be signed constant or DIVariable or DIExpression");
755
756 if (auto *MD = dyn_cast<DIVariable>(CB))
757 return BoundType(MD);
758
759 if (auto *MD = dyn_cast<DIExpression>(CB))
760 return BoundType(MD);
761
762 return BoundType();
763}
764
767 if (!LB)
768 return BoundType();
769
771 "LowerBound must be signed constant or DIVariable or DIExpression");
772
773 if (auto *MD = dyn_cast<DIVariable>(LB))
774 return BoundType(MD);
775
776 if (auto *MD = dyn_cast<DIExpression>(LB))
777 return BoundType(MD);
778
779 return BoundType();
780}
781
784 if (!UB)
785 return BoundType();
786
788 "UpperBound must be signed constant or DIVariable or DIExpression");
789
790 if (auto *MD = dyn_cast<DIVariable>(UB))
791 return BoundType(MD);
792
793 if (auto *MD = dyn_cast<DIExpression>(UB))
794 return BoundType(MD);
795
796 return BoundType();
797}
798
800 Metadata *ST = getRawStride();
801 if (!ST)
802 return BoundType();
803
805 "Stride must be signed constant or DIVariable or DIExpression");
806
807 if (auto *MD = dyn_cast<DIVariable>(ST))
808 return BoundType(MD);
809
810 if (auto *MD = dyn_cast<DIExpression>(ST))
811 return BoundType(MD);
812
813 return BoundType();
814}
815
816DISubrangeType::DISubrangeType(LLVMContext &C, StorageType Storage,
817 unsigned Line, uint32_t AlignInBits,
818 DIFlags Flags, ArrayRef<Metadata *> Ops)
819 : DIType(C, DISubrangeTypeKind, Storage, dwarf::DW_TAG_subrange_type, Line,
820 AlignInBits, 0, Flags, Ops) {}
821
822DISubrangeType *DISubrangeType::getImpl(
823 LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line,
824 Metadata *Scope, Metadata *SizeInBits, uint32_t AlignInBits, DIFlags Flags,
825 Metadata *BaseType, Metadata *LowerBound, Metadata *UpperBound,
826 Metadata *Stride, Metadata *Bias, StorageType Storage, bool ShouldCreate) {
827 assert(isCanonical(Name) && "Expected canonical MDString");
829 AlignInBits, Flags, BaseType,
831 Metadata *Ops[] = {File, Scope, Name, SizeInBits, nullptr,
833 DEFINE_GETIMPL_STORE(DISubrangeType, (Line, AlignInBits, Flags), Ops);
834}
835
837DISubrangeType::convertRawToBound(Metadata *IN) const {
838 if (!IN)
839 return BoundType();
840
843
844 if (auto *MD = dyn_cast<ConstantAsMetadata>(IN))
845 return BoundType(cast<ConstantInt>(MD->getValue()));
846
847 if (auto *MD = dyn_cast<DIVariable>(IN))
848 return BoundType(MD);
849
850 if (auto *MD = dyn_cast<DIExpression>(IN))
851 return BoundType(MD);
852
853 return BoundType();
854}
855
856DIEnumerator::DIEnumerator(LLVMContext &C, StorageType Storage,
857 const APInt &Value, bool IsUnsigned,
859 : DINode(C, DIEnumeratorKind, Storage, dwarf::DW_TAG_enumerator, Ops),
860 Value(Value) {
861 SubclassData32 = IsUnsigned;
862}
863DIEnumerator *DIEnumerator::getImpl(LLVMContext &Context, const APInt &Value,
864 bool IsUnsigned, MDString *Name,
865 StorageType Storage, bool ShouldCreate) {
866 assert(isCanonical(Name) && "Expected canonical MDString");
867 DEFINE_GETIMPL_LOOKUP(DIEnumerator, (Value, IsUnsigned, Name));
868 Metadata *Ops[] = {Name};
869 DEFINE_GETIMPL_STORE(DIEnumerator, (Value, IsUnsigned), Ops);
870}
871
874 uint32_t AlignInBits, unsigned Encoding,
876 uint32_t DataSizeInBits, DIFlags Flags,
877 StorageType Storage, bool ShouldCreate) {
878 assert(isCanonical(Name) && "Expected canonical MDString");
880 (Tag, Name, SizeInBits, AlignInBits, Encoding,
881 NumExtraInhabitants, DataSizeInBits, Flags));
882 Metadata *Ops[] = {nullptr, nullptr, Name, SizeInBits, nullptr};
885 (Tag, AlignInBits, Encoding, NumExtraInhabitants, DataSizeInBits, Flags),
886 Ops);
887}
888
889std::optional<DIBasicType::Signedness> DIBasicType::getSignedness() const {
890 switch (getEncoding()) {
891 case dwarf::DW_ATE_signed:
892 case dwarf::DW_ATE_signed_char:
893 case dwarf::DW_ATE_signed_fixed:
894 return Signedness::Signed;
895 case dwarf::DW_ATE_unsigned:
896 case dwarf::DW_ATE_unsigned_char:
897 case dwarf::DW_ATE_unsigned_fixed:
899 default:
900 return std::nullopt;
901 }
902}
903
905DIFixedPointType::getImpl(LLVMContext &Context, unsigned Tag, MDString *Name,
906 Metadata *SizeInBits, uint32_t AlignInBits,
907 unsigned Encoding, DIFlags Flags, unsigned Kind,
908 int Factor, APInt Numerator, APInt Denominator,
909 StorageType Storage, bool ShouldCreate) {
912 Kind, Factor, Numerator, Denominator));
913 Metadata *Ops[] = {nullptr, nullptr, Name, SizeInBits, nullptr};
916 (Tag, AlignInBits, Encoding, Flags, Kind, Factor, Numerator, Denominator),
917 Ops);
918}
919
921 return getEncoding() == dwarf::DW_ATE_signed_fixed;
922}
923
924std::optional<DIFixedPointType::FixedPointKind>
927 .Case("Binary", FixedPointBinary)
928 .Case("Decimal", FixedPointDecimal)
929 .Case("Rational", FixedPointRational)
930 .Default(std::nullopt);
931}
932
934 switch (V) {
935 case FixedPointBinary:
936 return "Binary";
938 return "Decimal";
940 return "Rational";
941 }
942 return nullptr;
943}
944
945DIStringType *DIStringType::getImpl(LLVMContext &Context, unsigned Tag,
946 MDString *Name, Metadata *StringLength,
947 Metadata *StringLengthExp,
948 Metadata *StringLocationExp,
949 Metadata *SizeInBits, uint32_t AlignInBits,
950 unsigned Encoding, StorageType Storage,
951 bool ShouldCreate) {
952 assert(isCanonical(Name) && "Expected canonical MDString");
956 Metadata *Ops[] = {nullptr, nullptr, Name,
957 SizeInBits, nullptr, StringLength,
960}
962 assert(getTag() == dwarf::DW_TAG_ptr_to_member_type);
964}
965
966// Helper function to extract ConstantAsMetadata from ExtraData,
967// handling extra data MDTuple unwrapping if needed.
969 Metadata *ED = ExtraData;
970 if (auto *Tuple = dyn_cast_or_null<MDTuple>(ED)) {
971 if (Tuple->getNumOperands() != 1)
972 return nullptr;
973 ED = Tuple->getOperand(0);
974 }
976}
977
979 assert(getTag() == dwarf::DW_TAG_inheritance);
980 if (auto *CM = extractConstantMetadata(getExtraData()))
981 if (auto *CI = dyn_cast_or_null<ConstantInt>(CM->getValue()))
982 return static_cast<uint32_t>(CI->getZExtValue());
983 return 0;
984}
986 assert(getTag() == dwarf::DW_TAG_member && isBitField());
988 return C->getValue();
989 return nullptr;
990}
991
993 assert((getTag() == dwarf::DW_TAG_member ||
994 getTag() == dwarf::DW_TAG_variable) &&
997 return C->getValue();
998 return nullptr;
999}
1001 assert(getTag() == dwarf::DW_TAG_member && !isStaticMember());
1002 if (auto *C = extractConstantMetadata(getExtraData()))
1003 return C->getValue();
1004 return nullptr;
1005}
1006
1007DIDerivedType *DIDerivedType::getImpl(
1008 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
1009 unsigned Line, Metadata *Scope, Metadata *BaseType, Metadata *SizeInBits,
1010 uint32_t AlignInBits, Metadata *OffsetInBits,
1011 std::optional<unsigned> DWARFAddressSpace,
1012 std::optional<PtrAuthData> PtrAuthData, DIFlags Flags, Metadata *ExtraData,
1013 Metadata *Annotations, StorageType Storage, bool ShouldCreate) {
1014 assert(isCanonical(Name) && "Expected canonical MDString");
1016 (Tag, Name, File, Line, Scope, BaseType, SizeInBits,
1018 PtrAuthData, Flags, ExtraData, Annotations));
1019 Metadata *Ops[] = {File, Scope, Name, SizeInBits,
1020 OffsetInBits, BaseType, ExtraData, Annotations};
1023 (Tag, Line, AlignInBits, DWARFAddressSpace, PtrAuthData, Flags), Ops);
1024}
1025
1026std::optional<DIDerivedType::PtrAuthData>
1027DIDerivedType::getPtrAuthData() const {
1028 return getTag() == dwarf::DW_TAG_LLVM_ptrauth_type
1029 ? std::make_optional<PtrAuthData>(SubclassData32)
1030 : std::nullopt;
1031}
1032
1033DICompositeType *DICompositeType::getImpl(
1034 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
1035 unsigned Line, Metadata *Scope, Metadata *BaseType, Metadata *SizeInBits,
1036 uint32_t AlignInBits, Metadata *OffsetInBits, DIFlags Flags,
1037 Metadata *Elements, unsigned RuntimeLang, std::optional<uint32_t> EnumKind,
1038 Metadata *VTableHolder, Metadata *TemplateParams, MDString *Identifier,
1039 Metadata *Discriminator, Metadata *DataLocation, Metadata *Associated,
1040 Metadata *Allocated, Metadata *Rank, Metadata *Annotations,
1041 Metadata *Specification, uint32_t NumExtraInhabitants, Metadata *BitStride,
1042 StorageType Storage, bool ShouldCreate) {
1043 assert(isCanonical(Name) && "Expected canonical MDString");
1044
1045 // Keep this in sync with buildODRType.
1047 DICompositeType,
1057 DEFINE_GETIMPL_STORE(DICompositeType,
1058 (Tag, Line, RuntimeLang, AlignInBits,
1059 NumExtraInhabitants, EnumKind, Flags),
1060 Ops);
1061}
1062
1064 LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
1068 Metadata *Elements, unsigned RuntimeLang, std::optional<uint32_t> EnumKind,
1072 assert(!Identifier.getString().empty() && "Expected valid identifier");
1073 if (!Context.isODRUniquingDebugTypes())
1074 return nullptr;
1075 auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
1076 if (!CT)
1077 return CT = DICompositeType::getDistinct(
1078 Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
1079 AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
1083 if (CT->getTag() != Tag)
1084 return nullptr;
1085
1086 // Only mutate CT if it's a forward declaration and the new operands aren't.
1087 assert(CT->getRawIdentifier() == &Identifier && "Wrong ODR identifier?");
1088 if (!CT->isForwardDecl() || (Flags & DINode::FlagFwdDecl))
1089 return CT;
1090
1091 // Mutate CT in place. Keep this in sync with getImpl.
1092 CT->mutate(Tag, Line, RuntimeLang, AlignInBits, NumExtraInhabitants, EnumKind,
1093 Flags);
1099 assert((std::end(Ops) - std::begin(Ops)) == (int)CT->getNumOperands() &&
1100 "Mismatched number of operands");
1101 for (unsigned I = 0, E = CT->getNumOperands(); I != E; ++I)
1102 if (Ops[I] != CT->getOperand(I))
1103 CT->setOperand(I, Ops[I]);
1104 return CT;
1105}
1106
1107DICompositeType *DICompositeType::getODRType(
1108 LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
1109 Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
1110 Metadata *SizeInBits, uint32_t AlignInBits, Metadata *OffsetInBits,
1111 Metadata *Specification, uint32_t NumExtraInhabitants, DIFlags Flags,
1112 Metadata *Elements, unsigned RuntimeLang, std::optional<uint32_t> EnumKind,
1113 Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator,
1114 Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
1115 Metadata *Rank, Metadata *Annotations, Metadata *BitStride) {
1116 assert(!Identifier.getString().empty() && "Expected valid identifier");
1117 if (!Context.isODRUniquingDebugTypes())
1118 return nullptr;
1119 auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
1120 if (!CT) {
1122 Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
1127 } else {
1128 if (CT->getTag() != Tag)
1129 return nullptr;
1130 }
1131 return CT;
1132}
1133
1136 assert(!Identifier.getString().empty() && "Expected valid identifier");
1137 if (!Context.isODRUniquingDebugTypes())
1138 return nullptr;
1139 return Context.pImpl->DITypeMap->lookup(&Identifier);
1140}
1141DISubroutineType::DISubroutineType(LLVMContext &C, StorageType Storage,
1142 DIFlags Flags, uint8_t CC,
1144 : DIType(C, DISubroutineTypeKind, Storage, dwarf::DW_TAG_subroutine_type, 0,
1145 0, 0, Flags, Ops),
1146 CC(CC) {}
1147
1148DISubroutineType *DISubroutineType::getImpl(LLVMContext &Context, DIFlags Flags,
1149 uint8_t CC, Metadata *TypeArray,
1150 StorageType Storage,
1151 bool ShouldCreate) {
1153 Metadata *Ops[] = {nullptr, nullptr, nullptr, nullptr, nullptr, TypeArray};
1154 DEFINE_GETIMPL_STORE(DISubroutineType, (Flags, CC), Ops);
1155}
1156
1157DIFile::DIFile(LLVMContext &C, StorageType Storage,
1158 std::optional<ChecksumInfo<MDString *>> CS, MDString *Src,
1160 : DIScope(C, DIFileKind, Storage, dwarf::DW_TAG_file_type, Ops),
1161 Checksum(CS), Source(Src) {}
1162
1163// FIXME: Implement this string-enum correspondence with a .def file and macros,
1164// so that the association is explicit rather than implied.
1165static const char *ChecksumKindName[DIFile::CSK_Last] = {
1166 "CSK_MD5",
1167 "CSK_SHA1",
1168 "CSK_SHA256",
1169};
1170
1171StringRef DIFile::getChecksumKindAsString(ChecksumKind CSKind) {
1172 assert(CSKind <= DIFile::CSK_Last && "Invalid checksum kind");
1173 // The first space was originally the CSK_None variant, which is now
1174 // obsolete, but the space is still reserved in ChecksumKind, so we account
1175 // for it here.
1176 return ChecksumKindName[CSKind - 1];
1177}
1178
1179std::optional<DIFile::ChecksumKind>
1182 .Case("CSK_MD5", DIFile::CSK_MD5)
1183 .Case("CSK_SHA1", DIFile::CSK_SHA1)
1184 .Case("CSK_SHA256", DIFile::CSK_SHA256)
1185 .Default(std::nullopt);
1186}
1187
1188DIFile *DIFile::getImpl(LLVMContext &Context, MDString *Filename,
1189 MDString *Directory,
1190 std::optional<DIFile::ChecksumInfo<MDString *>> CS,
1191 MDString *Source, StorageType Storage,
1192 bool ShouldCreate) {
1193 assert(isCanonical(Filename) && "Expected canonical MDString");
1194 assert(isCanonical(Directory) && "Expected canonical MDString");
1195 assert((!CS || isCanonical(CS->Value)) && "Expected canonical MDString");
1196 // We do *NOT* expect Source to be a canonical MDString because nullptr
1197 // means none, so we need something to represent the empty file.
1199 Metadata *Ops[] = {Filename, Directory, CS ? CS->Value : nullptr, Source};
1201}
1202DICompileUnit::DICompileUnit(LLVMContext &C, StorageType Storage,
1204 bool IsOptimized, unsigned RuntimeVersion,
1205 unsigned EmissionKind, uint64_t DWOId,
1206 bool SplitDebugInlining,
1207 bool DebugInfoForProfiling, unsigned NameTableKind,
1208 bool RangesBaseAddress, ArrayRef<Metadata *> Ops)
1209 : DIScope(C, DICompileUnitKind, Storage, dwarf::DW_TAG_compile_unit, Ops),
1210 SourceLanguage(SourceLanguage), RuntimeVersion(RuntimeVersion),
1212 IsOptimized(IsOptimized), SplitDebugInlining(SplitDebugInlining),
1213 DebugInfoForProfiling(DebugInfoForProfiling),
1214 RangesBaseAddress(RangesBaseAddress) {
1216}
1217
1218DICompileUnit *DICompileUnit::getImpl(
1220 MDString *Producer, bool IsOptimized, MDString *Flags,
1221 unsigned RuntimeVersion, MDString *SplitDebugFilename,
1222 unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes,
1223 Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros,
1224 uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling,
1225 unsigned NameTableKind, bool RangesBaseAddress, MDString *SysRoot,
1226 MDString *SDK, StorageType Storage, bool ShouldCreate) {
1227 assert(Storage != Uniqued && "Cannot unique DICompileUnit");
1228 assert(isCanonical(Producer) && "Expected canonical MDString");
1229 assert(isCanonical(Flags) && "Expected canonical MDString");
1230 assert(isCanonical(SplitDebugFilename) && "Expected canonical MDString");
1231
1232 Metadata *Ops[] = {File,
1233 Producer,
1234 Flags,
1236 EnumTypes,
1240 Macros,
1241 SysRoot,
1242 SDK};
1243 return storeImpl(new (std::size(Ops), Storage) DICompileUnit(
1244 Context, Storage, SourceLanguage, IsOptimized,
1245 RuntimeVersion, EmissionKind, DWOId, SplitDebugInlining,
1246 DebugInfoForProfiling, NameTableKind, RangesBaseAddress,
1247 Ops),
1248 Storage);
1249}
1250
1251std::optional<DICompileUnit::DebugEmissionKind>
1254 .Case("NoDebug", NoDebug)
1255 .Case("FullDebug", FullDebug)
1256 .Case("LineTablesOnly", LineTablesOnly)
1257 .Case("DebugDirectivesOnly", DebugDirectivesOnly)
1258 .Default(std::nullopt);
1259}
1260
1261std::optional<DICompileUnit::DebugNameTableKind>
1270
1272 switch (EK) {
1273 case NoDebug:
1274 return "NoDebug";
1275 case FullDebug:
1276 return "FullDebug";
1277 case LineTablesOnly:
1278 return "LineTablesOnly";
1280 return "DebugDirectivesOnly";
1281 }
1282 return nullptr;
1283}
1284
1286 switch (NTK) {
1288 return nullptr;
1290 return "GNU";
1292 return "Apple";
1294 return "None";
1295 }
1296 return nullptr;
1297}
1298DISubprogram::DISubprogram(LLVMContext &C, StorageType Storage, unsigned Line,
1299 unsigned ScopeLine, unsigned VirtualIndex,
1300 int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags,
1301 bool UsesKeyInstructions, ArrayRef<Metadata *> Ops)
1302 : DILocalScope(C, DISubprogramKind, Storage, dwarf::DW_TAG_subprogram, Ops),
1303 Line(Line), ScopeLine(ScopeLine), VirtualIndex(VirtualIndex),
1304 ThisAdjustment(ThisAdjustment), Flags(Flags), SPFlags(SPFlags) {
1305 static_assert(dwarf::DW_VIRTUALITY_max < 4, "Virtuality out of range");
1306 SubclassData1 = UsesKeyInstructions;
1307}
1309DISubprogram::toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized,
1310 unsigned Virtuality, bool IsMainSubprogram) {
1311 // We're assuming virtuality is the low-order field.
1312 static_assert(int(SPFlagVirtual) == int(dwarf::DW_VIRTUALITY_virtual) &&
1313 int(SPFlagPureVirtual) ==
1314 int(dwarf::DW_VIRTUALITY_pure_virtual),
1315 "Virtuality constant mismatch");
1316 return static_cast<DISPFlags>(
1317 (Virtuality & SPFlagVirtuality) |
1318 (IsLocalToUnit ? SPFlagLocalToUnit : SPFlagZero) |
1319 (IsDefinition ? SPFlagDefinition : SPFlagZero) |
1320 (IsOptimized ? SPFlagOptimized : SPFlagZero) |
1321 (IsMainSubprogram ? SPFlagMainSubprogram : SPFlagZero));
1322}
1323
1325 if (auto *Block = dyn_cast<DILexicalBlockBase>(this))
1326 return Block->getScope()->getSubprogram();
1327 return const_cast<DISubprogram *>(cast<DISubprogram>(this));
1328}
1329
1331 if (auto *File = dyn_cast<DILexicalBlockFile>(this))
1332 return File->getScope()->getNonLexicalBlockFileScope();
1333 return const_cast<DILocalScope *>(this);
1334}
1335
1337 DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx,
1339 SmallVector<DIScope *> ScopeChain;
1340 DIScope *CachedResult = nullptr;
1341
1342 for (DIScope *Scope = &RootScope; !isa<DISubprogram>(Scope);
1343 Scope = Scope->getScope()) {
1344 if (auto It = Cache.find(Scope); It != Cache.end()) {
1345 CachedResult = cast<DIScope>(It->second);
1346 break;
1347 }
1348 ScopeChain.push_back(Scope);
1349 }
1350
1351 // Recreate the scope chain, bottom-up, starting at the new subprogram (or a
1352 // cached result).
1353 DIScope *UpdatedScope = CachedResult ? CachedResult : &NewSP;
1354 for (DIScope *ScopeToUpdate : reverse(ScopeChain)) {
1355 UpdatedScope = cloneAndReplaceParentScope(
1356 cast<DILexicalBlockBase>(ScopeToUpdate), UpdatedScope);
1357 Cache[ScopeToUpdate] = UpdatedScope;
1358 }
1359
1360 return cast<DILocalScope>(UpdatedScope);
1361}
1362
1364 return StringSwitch<DISPFlags>(Flag)
1365#define HANDLE_DISP_FLAG(ID, NAME) .Case("DISPFlag" #NAME, SPFlag##NAME)
1366#include "llvm/IR/DebugInfoFlags.def"
1367 .Default(SPFlagZero);
1368}
1369
1371 switch (Flag) {
1372 // Appease a warning.
1373 case SPFlagVirtuality:
1374 return "";
1375#define HANDLE_DISP_FLAG(ID, NAME) \
1376 case SPFlag##NAME: \
1377 return "DISPFlag" #NAME;
1378#include "llvm/IR/DebugInfoFlags.def"
1379 }
1380 return "";
1381}
1382
1385 SmallVectorImpl<DISPFlags> &SplitFlags) {
1386 // Multi-bit fields can require special handling. In our case, however, the
1387 // only multi-bit field is virtuality, and all its values happen to be
1388 // single-bit values, so the right behavior just falls out.
1389#define HANDLE_DISP_FLAG(ID, NAME) \
1390 if (DISPFlags Bit = Flags & SPFlag##NAME) { \
1391 SplitFlags.push_back(Bit); \
1392 Flags &= ~Bit; \
1393 }
1394#include "llvm/IR/DebugInfoFlags.def"
1395 return Flags;
1396}
1397
1398DISubprogram *DISubprogram::getImpl(
1399 LLVMContext &Context, Metadata *Scope, MDString *Name,
1400 MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type,
1401 unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex,
1402 int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, Metadata *Unit,
1403 Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes,
1404 Metadata *ThrownTypes, Metadata *Annotations, MDString *TargetFuncName,
1405 bool UsesKeyInstructions, StorageType Storage, bool ShouldCreate) {
1406 assert(isCanonical(Name) && "Expected canonical MDString");
1407 assert(isCanonical(LinkageName) && "Expected canonical MDString");
1408 assert(isCanonical(TargetFuncName) && "Expected canonical MDString");
1410 (Scope, Name, LinkageName, File, Line, Type, ScopeLine,
1416 File, Scope, Name, LinkageName,
1420 if (!TargetFuncName) {
1421 Ops.pop_back();
1422 if (!Annotations) {
1423 Ops.pop_back();
1424 if (!ThrownTypes) {
1425 Ops.pop_back();
1426 if (!TemplateParams) {
1427 Ops.pop_back();
1428 if (!ContainingType)
1429 Ops.pop_back();
1430 }
1431 }
1432 }
1433 }
1434 DEFINE_GETIMPL_STORE_N(DISubprogram,
1435 (Line, ScopeLine, VirtualIndex, ThisAdjustment, Flags,
1436 SPFlags, UsesKeyInstructions),
1437 Ops, Ops.size());
1438}
1439
1441 assert(F && "Invalid function");
1442 return F->getSubprogram() == this;
1443}
1444
1446 return visitRetainedNode<DIScope *>(
1447 N, [](const DILocalVariable *LV) { return LV->getScope(); },
1448 [](const DILabel *L) { return L->getScope(); },
1449 [](const DIImportedEntity *IE) { return IE->getScope(); },
1450 [](const Metadata *N) { return nullptr; });
1451}
1452
1453const DILocalScope *DISubprogram::getRetainedNodeScope(const MDNode *N) {
1455}
1456
1461
1462DILexicalBlock *DILexicalBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1463 Metadata *File, unsigned Line,
1464 unsigned Column, StorageType Storage,
1465 bool ShouldCreate) {
1466 // Fixup column.
1468
1469 assert(Scope && "Expected scope");
1471 Metadata *Ops[] = {File, Scope};
1473}
1474
1475DILexicalBlockFile *DILexicalBlockFile::getImpl(LLVMContext &Context,
1476 Metadata *Scope, Metadata *File,
1477 unsigned Discriminator,
1478 StorageType Storage,
1479 bool ShouldCreate) {
1480 assert(Scope && "Expected scope");
1481 DEFINE_GETIMPL_LOOKUP(DILexicalBlockFile, (Scope, File, Discriminator));
1482 Metadata *Ops[] = {File, Scope};
1483 DEFINE_GETIMPL_STORE(DILexicalBlockFile, (Discriminator), Ops);
1484}
1485
1486DINamespace::DINamespace(LLVMContext &Context, StorageType Storage,
1487 bool ExportSymbols, ArrayRef<Metadata *> Ops)
1488 : DIScope(Context, DINamespaceKind, Storage, dwarf::DW_TAG_namespace, Ops) {
1489 SubclassData1 = ExportSymbols;
1490}
1491DINamespace *DINamespace::getImpl(LLVMContext &Context, Metadata *Scope,
1492 MDString *Name, bool ExportSymbols,
1493 StorageType Storage, bool ShouldCreate) {
1494 assert(isCanonical(Name) && "Expected canonical MDString");
1496 // The nullptr is for DIScope's File operand. This should be refactored.
1497 Metadata *Ops[] = {nullptr, Scope, Name};
1498 DEFINE_GETIMPL_STORE(DINamespace, (ExportSymbols), Ops);
1499}
1500
1501DICommonBlock::DICommonBlock(LLVMContext &Context, StorageType Storage,
1502 unsigned LineNo, ArrayRef<Metadata *> Ops)
1503 : DIScope(Context, DICommonBlockKind, Storage, dwarf::DW_TAG_common_block,
1504 Ops) {
1505 SubclassData32 = LineNo;
1506}
1507DICommonBlock *DICommonBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1508 Metadata *Decl, MDString *Name,
1509 Metadata *File, unsigned LineNo,
1510 StorageType Storage, bool ShouldCreate) {
1511 assert(isCanonical(Name) && "Expected canonical MDString");
1512 DEFINE_GETIMPL_LOOKUP(DICommonBlock, (Scope, Decl, Name, File, LineNo));
1513 // The nullptr is for DIScope's File operand. This should be refactored.
1514 Metadata *Ops[] = {Scope, Decl, Name, File};
1515 DEFINE_GETIMPL_STORE(DICommonBlock, (LineNo), Ops);
1516}
1517
1518DIModule::DIModule(LLVMContext &Context, StorageType Storage, unsigned LineNo,
1519 bool IsDecl, ArrayRef<Metadata *> Ops)
1520 : DIScope(Context, DIModuleKind, Storage, dwarf::DW_TAG_module, Ops) {
1521 SubclassData1 = IsDecl;
1522 SubclassData32 = LineNo;
1523}
1524DIModule *DIModule::getImpl(LLVMContext &Context, Metadata *File,
1525 Metadata *Scope, MDString *Name,
1526 MDString *ConfigurationMacros,
1527 MDString *IncludePath, MDString *APINotesFile,
1528 unsigned LineNo, bool IsDecl, StorageType Storage,
1529 bool ShouldCreate) {
1530 assert(isCanonical(Name) && "Expected canonical MDString");
1532 IncludePath, APINotesFile, LineNo, IsDecl));
1535 DEFINE_GETIMPL_STORE(DIModule, (LineNo, IsDecl), Ops);
1536}
1537DITemplateTypeParameter::DITemplateTypeParameter(LLVMContext &Context,
1538 StorageType Storage,
1539 bool IsDefault,
1541 : DITemplateParameter(Context, DITemplateTypeParameterKind, Storage,
1542 dwarf::DW_TAG_template_type_parameter, IsDefault,
1543 Ops) {}
1544
1546DITemplateTypeParameter::getImpl(LLVMContext &Context, MDString *Name,
1547 Metadata *Type, bool isDefault,
1548 StorageType Storage, bool ShouldCreate) {
1549 assert(isCanonical(Name) && "Expected canonical MDString");
1550 DEFINE_GETIMPL_LOOKUP(DITemplateTypeParameter, (Name, Type, isDefault));
1551 Metadata *Ops[] = {Name, Type};
1552 DEFINE_GETIMPL_STORE(DITemplateTypeParameter, (isDefault), Ops);
1553}
1554
1555DITemplateValueParameter *DITemplateValueParameter::getImpl(
1556 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *Type,
1557 bool isDefault, Metadata *Value, StorageType Storage, bool ShouldCreate) {
1558 assert(isCanonical(Name) && "Expected canonical MDString");
1559 DEFINE_GETIMPL_LOOKUP(DITemplateValueParameter,
1560 (Tag, Name, Type, isDefault, Value));
1561 Metadata *Ops[] = {Name, Type, Value};
1562 DEFINE_GETIMPL_STORE(DITemplateValueParameter, (Tag, isDefault), Ops);
1563}
1564
1566DIGlobalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1567 MDString *LinkageName, Metadata *File, unsigned Line,
1568 Metadata *Type, bool IsLocalToUnit, bool IsDefinition,
1569 Metadata *StaticDataMemberDeclaration,
1570 Metadata *TemplateParams, uint32_t AlignInBits,
1571 Metadata *Annotations, StorageType Storage,
1572 bool ShouldCreate) {
1573 assert(isCanonical(Name) && "Expected canonical MDString");
1574 assert(isCanonical(LinkageName) && "Expected canonical MDString");
1576 DIGlobalVariable,
1577 (Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition,
1579 Metadata *Ops[] = {Scope,
1580 Name,
1581 File,
1582 Type,
1583 Name,
1587 Annotations};
1588 DEFINE_GETIMPL_STORE(DIGlobalVariable,
1589 (Line, IsLocalToUnit, IsDefinition, AlignInBits), Ops);
1590}
1591
1593DILocalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1594 Metadata *File, unsigned Line, Metadata *Type,
1595 unsigned Arg, DIFlags Flags, uint32_t AlignInBits,
1596 Metadata *Annotations, StorageType Storage,
1597 bool ShouldCreate) {
1598 // 64K ought to be enough for any frontend.
1599 assert(Arg <= UINT16_MAX && "Expected argument number to fit in 16-bits");
1600
1601 assert(Scope && "Expected scope");
1602 assert(isCanonical(Name) && "Expected canonical MDString");
1603 DEFINE_GETIMPL_LOOKUP(DILocalVariable, (Scope, Name, File, Line, Type, Arg,
1604 Flags, AlignInBits, Annotations));
1606 DEFINE_GETIMPL_STORE(DILocalVariable, (Line, Arg, Flags, AlignInBits), Ops);
1607}
1608
1610 signed Line, ArrayRef<Metadata *> Ops,
1611 uint32_t AlignInBits)
1612 : DINode(C, ID, Storage, dwarf::DW_TAG_variable, Ops), Line(Line) {
1613 SubclassData32 = AlignInBits;
1614}
1615std::optional<uint64_t> DIVariable::getSizeInBits() const {
1616 // This is used by the Verifier so be mindful of broken types.
1617 const Metadata *RawType = getRawType();
1618 while (RawType) {
1619 // Try to get the size directly.
1620 if (auto *T = dyn_cast<DIType>(RawType))
1621 if (uint64_t Size = T->getSizeInBits())
1622 return Size;
1623
1624 if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
1625 // Look at the base type.
1626 RawType = DT->getRawBaseType();
1627 continue;
1628 }
1629
1630 // Missing type or size.
1631 break;
1632 }
1633
1634 // Fail gracefully.
1635 return std::nullopt;
1636}
1637
1638DILabel::DILabel(LLVMContext &C, StorageType Storage, unsigned Line,
1639 unsigned Column, bool IsArtificial,
1640 std::optional<unsigned> CoroSuspendIdx,
1642 : DINode(C, DILabelKind, Storage, dwarf::DW_TAG_label, Ops) {
1643 this->SubclassData32 = Line;
1644 this->Column = Column;
1645 this->IsArtificial = IsArtificial;
1646 this->CoroSuspendIdx = CoroSuspendIdx;
1647}
1648DILabel *DILabel::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1649 Metadata *File, unsigned Line, unsigned Column,
1650 bool IsArtificial,
1651 std::optional<unsigned> CoroSuspendIdx,
1652 StorageType Storage, bool ShouldCreate) {
1653 assert(Scope && "Expected scope");
1654 assert(isCanonical(Name) && "Expected canonical MDString");
1656 DILabel, (Scope, Name, File, Line, Column, IsArtificial, CoroSuspendIdx));
1657 Metadata *Ops[] = {Scope, Name, File};
1658 DEFINE_GETIMPL_STORE(DILabel, (Line, Column, IsArtificial, CoroSuspendIdx),
1659 Ops);
1660}
1661
1662DIExpression *DIExpression::getImpl(LLVMContext &Context,
1663 ArrayRef<uint64_t> Elements,
1664 StorageType Storage, bool ShouldCreate) {
1665 DEFINE_GETIMPL_LOOKUP(DIExpression, (Elements));
1666 DEFINE_GETIMPL_STORE_NO_OPS(DIExpression, (Elements));
1667}
1669 if (auto singleLocElts = getSingleLocationExpressionElements()) {
1670 return singleLocElts->size() > 0 &&
1671 (*singleLocElts)[0] == dwarf::DW_OP_LLVM_entry_value;
1672 }
1673 return false;
1674}
1676 if (auto singleLocElts = getSingleLocationExpressionElements())
1677 return singleLocElts->size() > 0 &&
1678 (*singleLocElts)[0] == dwarf::DW_OP_deref;
1679 return false;
1680}
1682 if (auto singleLocElts = getSingleLocationExpressionElements())
1683 return singleLocElts->size() == 1 &&
1684 (*singleLocElts)[0] == dwarf::DW_OP_deref;
1685 return false;
1686}
1687
1688DIAssignID *DIAssignID::getImpl(LLVMContext &Context, StorageType Storage,
1689 bool ShouldCreate) {
1690 // Uniqued DIAssignID are not supported as the instance address *is* the ID.
1691 assert(Storage != StorageType::Uniqued && "uniqued DIAssignID unsupported");
1692 return storeImpl(new (0u, Storage) DIAssignID(Context, Storage), Storage);
1693}
1694
1696 uint64_t Op = getOp();
1697
1698 if (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31)
1699 return 2;
1700
1701 switch (Op) {
1706 case dwarf::DW_OP_bregx:
1707 return 3;
1708 case dwarf::DW_OP_constu:
1709 case dwarf::DW_OP_consts:
1710 case dwarf::DW_OP_deref_size:
1711 case dwarf::DW_OP_plus_uconst:
1715 case dwarf::DW_OP_regx:
1716 return 2;
1717 default:
1718 return 1;
1719 }
1720}
1721
1723 for (auto I = expr_op_begin(), E = expr_op_end(); I != E; ++I) {
1724 // Check that there's space for the operand.
1725 if (I->get() + I->getSize() > E->get())
1726 return false;
1727
1728 uint64_t Op = I->getOp();
1729 if ((Op >= dwarf::DW_OP_reg0 && Op <= dwarf::DW_OP_reg31) ||
1730 (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31))
1731 return true;
1732
1733 // Check that the operand is valid.
1734 switch (Op) {
1735 default:
1736 return false;
1738 // A fragment operator must appear at the end.
1739 return I->get() + I->getSize() == E->get();
1740 case dwarf::DW_OP_stack_value: {
1741 // Must be the last one or followed by a DW_OP_LLVM_fragment.
1742 if (I->get() + I->getSize() == E->get())
1743 break;
1744 auto J = I;
1745 if ((++J)->getOp() != dwarf::DW_OP_LLVM_fragment)
1746 return false;
1747 break;
1748 }
1749 case dwarf::DW_OP_swap: {
1750 // Must be more than one implicit element on the stack.
1751
1752 // FIXME: A better way to implement this would be to add a local variable
1753 // that keeps track of the stack depth and introduce something like a
1754 // DW_LLVM_OP_implicit_location as a placeholder for the location this
1755 // DIExpression is attached to, or else pass the number of implicit stack
1756 // elements into isValid.
1757 if (getNumElements() == 1)
1758 return false;
1759 break;
1760 }
1762 // An entry value operator must appear at the beginning or immediately
1763 // following `DW_OP_LLVM_arg 0`, and the number of operations it cover can
1764 // currently only be 1, because we support only entry values of a simple
1765 // register location. One reason for this is that we currently can't
1766 // calculate the size of the resulting DWARF block for other expressions.
1767 auto FirstOp = expr_op_begin();
1768 if (FirstOp->getOp() == dwarf::DW_OP_LLVM_arg && FirstOp->getArg(0) == 0)
1769 ++FirstOp;
1770 return I->get() == FirstOp->get() && I->getArg(0) == 1;
1771 }
1778 case dwarf::DW_OP_constu:
1779 case dwarf::DW_OP_plus_uconst:
1780 case dwarf::DW_OP_plus:
1781 case dwarf::DW_OP_minus:
1782 case dwarf::DW_OP_mul:
1783 case dwarf::DW_OP_div:
1784 case dwarf::DW_OP_mod:
1785 case dwarf::DW_OP_or:
1786 case dwarf::DW_OP_and:
1787 case dwarf::DW_OP_xor:
1788 case dwarf::DW_OP_shl:
1789 case dwarf::DW_OP_shr:
1790 case dwarf::DW_OP_shra:
1791 case dwarf::DW_OP_deref:
1792 case dwarf::DW_OP_deref_size:
1793 case dwarf::DW_OP_xderef:
1794 case dwarf::DW_OP_lit0:
1795 case dwarf::DW_OP_not:
1796 case dwarf::DW_OP_dup:
1797 case dwarf::DW_OP_regx:
1798 case dwarf::DW_OP_bregx:
1799 case dwarf::DW_OP_push_object_address:
1800 case dwarf::DW_OP_over:
1801 case dwarf::DW_OP_rot:
1802 case dwarf::DW_OP_consts:
1803 case dwarf::DW_OP_eq:
1804 case dwarf::DW_OP_ne:
1805 case dwarf::DW_OP_gt:
1806 case dwarf::DW_OP_ge:
1807 case dwarf::DW_OP_lt:
1808 case dwarf::DW_OP_le:
1809 case dwarf::DW_OP_neg:
1810 case dwarf::DW_OP_abs:
1811 break;
1812 }
1813 }
1814 return true;
1815}
1816
1818 if (!isValid())
1819 return false;
1820
1821 if (getNumElements() == 0)
1822 return false;
1823
1824 for (const auto &It : expr_ops()) {
1825 switch (It.getOp()) {
1826 default:
1827 break;
1828 case dwarf::DW_OP_stack_value:
1829 return true;
1830 }
1831 }
1832
1833 return false;
1834}
1835
1837 if (!isValid())
1838 return false;
1839
1840 if (getNumElements() == 0)
1841 return false;
1842
1843 // If there are any elements other than fragment or tag_offset, then some
1844 // kind of complex computation occurs.
1845 for (const auto &It : expr_ops()) {
1846 switch (It.getOp()) {
1850 continue;
1851 default:
1852 return true;
1853 }
1854 }
1855
1856 return false;
1857}
1858
1860 if (!isValid())
1861 return false;
1862
1863 if (getNumElements() == 0)
1864 return true;
1865
1866 auto ExprOpBegin = expr_ops().begin();
1867 auto ExprOpEnd = expr_ops().end();
1868 if (ExprOpBegin->getOp() == dwarf::DW_OP_LLVM_arg) {
1869 if (ExprOpBegin->getArg(0) != 0)
1870 return false;
1871 ++ExprOpBegin;
1872 }
1873
1874 return !std::any_of(ExprOpBegin, ExprOpEnd, [](auto Op) {
1875 return Op.getOp() == dwarf::DW_OP_LLVM_arg;
1876 });
1877}
1878
1879std::optional<ArrayRef<uint64_t>>
1881 // Check for `isValid` covered by `isSingleLocationExpression`.
1883 return std::nullopt;
1884
1885 // An empty expression is already non-variadic.
1886 if (!getNumElements())
1887 return ArrayRef<uint64_t>();
1888
1889 // If Expr does not have a leading DW_OP_LLVM_arg then we don't need to do
1890 // anything.
1892 return getElements().drop_front(2);
1893 return getElements();
1894}
1895
1896const DIExpression *
1898 SmallVector<uint64_t, 3> UndefOps;
1899 if (auto FragmentInfo = Expr->getFragmentInfo()) {
1900 UndefOps.append({dwarf::DW_OP_LLVM_fragment, FragmentInfo->OffsetInBits,
1901 FragmentInfo->SizeInBits});
1902 }
1903 return DIExpression::get(Expr->getContext(), UndefOps);
1904}
1905
1906const DIExpression *
1908 if (any_of(Expr->expr_ops(), [](auto ExprOp) {
1909 return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1910 }))
1911 return Expr;
1912 SmallVector<uint64_t> NewOps;
1913 NewOps.reserve(Expr->getNumElements() + 2);
1914 NewOps.append({dwarf::DW_OP_LLVM_arg, 0});
1915 NewOps.append(Expr->elements_begin(), Expr->elements_end());
1916 return DIExpression::get(Expr->getContext(), NewOps);
1917}
1918
1919std::optional<const DIExpression *>
1921 if (!Expr)
1922 return std::nullopt;
1923
1924 if (auto Elts = Expr->getSingleLocationExpressionElements())
1925 return DIExpression::get(Expr->getContext(), *Elts);
1926
1927 return std::nullopt;
1928}
1929
1931 const DIExpression *Expr,
1932 bool IsIndirect) {
1933 // If Expr is not already variadic, insert the implied `DW_OP_LLVM_arg 0`
1934 // to the existing expression ops.
1935 if (none_of(Expr->expr_ops(), [](auto ExprOp) {
1936 return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1937 }))
1938 Ops.append({dwarf::DW_OP_LLVM_arg, 0});
1939 // If Expr is not indirect, we only need to insert the expression elements and
1940 // we're done.
1941 if (!IsIndirect) {
1942 Ops.append(Expr->elements_begin(), Expr->elements_end());
1943 return;
1944 }
1945 // If Expr is indirect, insert the implied DW_OP_deref at the end of the
1946 // expression but before DW_OP_{stack_value, LLVM_fragment} if they are
1947 // present.
1948 for (auto Op : Expr->expr_ops()) {
1949 if (Op.getOp() == dwarf::DW_OP_stack_value ||
1950 Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1951 Ops.push_back(dwarf::DW_OP_deref);
1952 IsIndirect = false;
1953 }
1954 Op.appendToVector(Ops);
1955 }
1956 if (IsIndirect)
1957 Ops.push_back(dwarf::DW_OP_deref);
1958}
1959
1960bool DIExpression::isEqualExpression(const DIExpression *FirstExpr,
1961 bool FirstIndirect,
1962 const DIExpression *SecondExpr,
1963 bool SecondIndirect) {
1964 SmallVector<uint64_t> FirstOps;
1965 DIExpression::canonicalizeExpressionOps(FirstOps, FirstExpr, FirstIndirect);
1966 SmallVector<uint64_t> SecondOps;
1967 DIExpression::canonicalizeExpressionOps(SecondOps, SecondExpr,
1968 SecondIndirect);
1969 return FirstOps == SecondOps;
1970}
1971
1972std::optional<DIExpression::FragmentInfo>
1974 for (auto I = Start; I != End; ++I)
1975 if (I->getOp() == dwarf::DW_OP_LLVM_fragment) {
1976 DIExpression::FragmentInfo Info = {I->getArg(1), I->getArg(0)};
1977 return Info;
1978 }
1979 return std::nullopt;
1980}
1981
1982std::optional<uint64_t> DIExpression::getActiveBits(DIVariable *Var) {
1983 std::optional<uint64_t> InitialActiveBits = Var->getSizeInBits();
1984 std::optional<uint64_t> ActiveBits = InitialActiveBits;
1985 for (auto Op : expr_ops()) {
1986 switch (Op.getOp()) {
1987 default:
1988 // We assume the worst case for anything we don't currently handle and
1989 // revert to the initial active bits.
1990 ActiveBits = InitialActiveBits;
1991 break;
1994 // We can't handle an extract whose sign doesn't match that of the
1995 // variable.
1996 std::optional<DIBasicType::Signedness> VarSign = Var->getSignedness();
1997 bool VarSigned = (VarSign == DIBasicType::Signedness::Signed);
1998 bool OpSigned = (Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_sext);
1999 if (!VarSign || VarSigned != OpSigned) {
2000 ActiveBits = InitialActiveBits;
2001 break;
2002 }
2003 [[fallthrough]];
2004 }
2006 // Extract or fragment narrows the active bits
2007 if (ActiveBits)
2008 ActiveBits = std::min(*ActiveBits, Op.getArg(1));
2009 else
2010 ActiveBits = Op.getArg(1);
2011 break;
2012 }
2013 }
2014 return ActiveBits;
2015}
2016
2018 int64_t Offset) {
2019 if (Offset > 0) {
2020 Ops.push_back(dwarf::DW_OP_plus_uconst);
2021 Ops.push_back(Offset);
2022 } else if (Offset < 0) {
2023 Ops.push_back(dwarf::DW_OP_constu);
2024 // Avoid UB when encountering LLONG_MIN, because in 2's complement
2025 // abs(LLONG_MIN) is LLONG_MAX+1.
2026 uint64_t AbsMinusOne = -(Offset+1);
2027 Ops.push_back(AbsMinusOne + 1);
2028 Ops.push_back(dwarf::DW_OP_minus);
2029 }
2030}
2031
2033 auto SingleLocEltsOpt = getSingleLocationExpressionElements();
2034 if (!SingleLocEltsOpt)
2035 return false;
2036 auto SingleLocElts = *SingleLocEltsOpt;
2037
2038 if (SingleLocElts.size() == 0) {
2039 Offset = 0;
2040 return true;
2041 }
2042
2043 if (SingleLocElts.size() == 2 &&
2044 SingleLocElts[0] == dwarf::DW_OP_plus_uconst) {
2045 Offset = SingleLocElts[1];
2046 return true;
2047 }
2048
2049 if (SingleLocElts.size() == 3 && SingleLocElts[0] == dwarf::DW_OP_constu) {
2050 if (SingleLocElts[2] == dwarf::DW_OP_plus) {
2051 Offset = SingleLocElts[1];
2052 return true;
2053 }
2054 if (SingleLocElts[2] == dwarf::DW_OP_minus) {
2055 Offset = -SingleLocElts[1];
2056 return true;
2057 }
2058 }
2059
2060 return false;
2061}
2062
2064 int64_t &OffsetInBytes, SmallVectorImpl<uint64_t> &RemainingOps) const {
2065 OffsetInBytes = 0;
2066 RemainingOps.clear();
2067
2068 auto SingleLocEltsOpt = getSingleLocationExpressionElements();
2069 if (!SingleLocEltsOpt)
2070 return false;
2071
2072 auto ExprOpEnd = expr_op_iterator(SingleLocEltsOpt->end());
2073 auto ExprOpIt = expr_op_iterator(SingleLocEltsOpt->begin());
2074 while (ExprOpIt != ExprOpEnd) {
2075 uint64_t Op = ExprOpIt->getOp();
2076 if (Op == dwarf::DW_OP_deref || Op == dwarf::DW_OP_deref_size ||
2077 Op == dwarf::DW_OP_deref_type || Op == dwarf::DW_OP_LLVM_fragment ||
2080 break;
2081 } else if (Op == dwarf::DW_OP_plus_uconst) {
2082 OffsetInBytes += ExprOpIt->getArg(0);
2083 } else if (Op == dwarf::DW_OP_constu) {
2084 uint64_t Value = ExprOpIt->getArg(0);
2085 ++ExprOpIt;
2086 if (ExprOpIt->getOp() == dwarf::DW_OP_plus)
2087 OffsetInBytes += Value;
2088 else if (ExprOpIt->getOp() == dwarf::DW_OP_minus)
2089 OffsetInBytes -= Value;
2090 else
2091 return false;
2092 } else {
2093 // Not a const plus/minus operation or deref.
2094 return false;
2095 }
2096 ++ExprOpIt;
2097 }
2098 RemainingOps.append(ExprOpIt.getBase(), ExprOpEnd.getBase());
2099 return true;
2100}
2101
2104 for (auto ExprOp : expr_ops())
2105 if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
2106 SeenOps.insert(ExprOp.getArg(0));
2107 for (uint64_t Idx = 0; Idx < N; ++Idx)
2108 if (!SeenOps.contains(Idx))
2109 return false;
2110 return true;
2111}
2112
2113const DIExpression *DIExpression::extractAddressClass(const DIExpression *Expr,
2114 unsigned &AddrClass) {
2115 // FIXME: This seems fragile. Nothing that verifies that these elements
2116 // actually map to ops and not operands.
2117 auto SingleLocEltsOpt = Expr->getSingleLocationExpressionElements();
2118 if (!SingleLocEltsOpt)
2119 return nullptr;
2120 auto SingleLocElts = *SingleLocEltsOpt;
2121
2122 const unsigned PatternSize = 4;
2123 if (SingleLocElts.size() >= PatternSize &&
2124 SingleLocElts[PatternSize - 4] == dwarf::DW_OP_constu &&
2125 SingleLocElts[PatternSize - 2] == dwarf::DW_OP_swap &&
2126 SingleLocElts[PatternSize - 1] == dwarf::DW_OP_xderef) {
2127 AddrClass = SingleLocElts[PatternSize - 3];
2128
2129 if (SingleLocElts.size() == PatternSize)
2130 return nullptr;
2131 return DIExpression::get(
2132 Expr->getContext(),
2133 ArrayRef(&*SingleLocElts.begin(), SingleLocElts.size() - PatternSize));
2134 }
2135 return Expr;
2136}
2137
2138DIExpression *DIExpression::prepend(const DIExpression *Expr, uint8_t Flags,
2139 int64_t Offset) {
2141 if (Flags & DIExpression::DerefBefore)
2142 Ops.push_back(dwarf::DW_OP_deref);
2143
2145 if (Flags & DIExpression::DerefAfter)
2146 Ops.push_back(dwarf::DW_OP_deref);
2147
2148 bool StackValue = Flags & DIExpression::StackValue;
2149 bool EntryValue = Flags & DIExpression::EntryValue;
2150
2151 return prependOpcodes(Expr, Ops, StackValue, EntryValue);
2152}
2153
2154DIExpression *DIExpression::appendOpsToArg(const DIExpression *Expr,
2156 unsigned ArgNo, bool StackValue) {
2157 assert(Expr && "Can't add ops to this expression");
2158
2159 // Handle non-variadic intrinsics by prepending the opcodes.
2160 if (!any_of(Expr->expr_ops(),
2161 [](auto Op) { return Op.getOp() == dwarf::DW_OP_LLVM_arg; })) {
2162 assert(ArgNo == 0 &&
2163 "Location Index must be 0 for a non-variadic expression.");
2165 return DIExpression::prependOpcodes(Expr, NewOps, StackValue);
2166 }
2167
2169 for (auto Op : Expr->expr_ops()) {
2170 // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
2171 if (StackValue) {
2172 if (Op.getOp() == dwarf::DW_OP_stack_value)
2173 StackValue = false;
2174 else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
2175 NewOps.push_back(dwarf::DW_OP_stack_value);
2176 StackValue = false;
2177 }
2178 }
2179 Op.appendToVector(NewOps);
2180 if (Op.getOp() == dwarf::DW_OP_LLVM_arg && Op.getArg(0) == ArgNo)
2181 llvm::append_range(NewOps, Ops);
2182 }
2183 if (StackValue)
2184 NewOps.push_back(dwarf::DW_OP_stack_value);
2185
2186 return DIExpression::get(Expr->getContext(), NewOps);
2187}
2188
2189DIExpression *DIExpression::replaceArg(const DIExpression *Expr,
2190 uint64_t OldArg, uint64_t NewArg) {
2191 assert(Expr && "Can't replace args in this expression");
2192
2194
2195 for (auto Op : Expr->expr_ops()) {
2196 if (Op.getOp() != dwarf::DW_OP_LLVM_arg || Op.getArg(0) < OldArg) {
2197 Op.appendToVector(NewOps);
2198 continue;
2199 }
2201 uint64_t Arg = Op.getArg(0) == OldArg ? NewArg : Op.getArg(0);
2202 // OldArg has been deleted from the Op list, so decrement all indices
2203 // greater than it.
2204 if (Arg > OldArg)
2205 --Arg;
2206 NewOps.push_back(Arg);
2207 }
2208 return DIExpression::get(Expr->getContext(), NewOps);
2209}
2210
2211DIExpression *DIExpression::prependOpcodes(const DIExpression *Expr,
2213 bool StackValue, bool EntryValue) {
2214 assert(Expr && "Can't prepend ops to this expression");
2215
2216 if (EntryValue) {
2218 // Use a block size of 1 for the target register operand. The
2219 // DWARF backend currently cannot emit entry values with a block
2220 // size > 1.
2221 Ops.push_back(1);
2222 }
2223
2224 // If there are no ops to prepend, do not even add the DW_OP_stack_value.
2225 if (Ops.empty())
2226 StackValue = false;
2227 for (auto Op : Expr->expr_ops()) {
2228 // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
2229 if (StackValue) {
2230 if (Op.getOp() == dwarf::DW_OP_stack_value)
2231 StackValue = false;
2232 else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
2233 Ops.push_back(dwarf::DW_OP_stack_value);
2234 StackValue = false;
2235 }
2236 }
2237 Op.appendToVector(Ops);
2238 }
2239 if (StackValue)
2240 Ops.push_back(dwarf::DW_OP_stack_value);
2241 return DIExpression::get(Expr->getContext(), Ops);
2242}
2243
2244DIExpression *DIExpression::append(const DIExpression *Expr,
2246 assert(Expr && !Ops.empty() && "Can't append ops to this expression");
2247
2248 // Copy Expr's current op list.
2250 for (auto Op : Expr->expr_ops()) {
2251 // Append new opcodes before DW_OP_{stack_value, LLVM_fragment}.
2252 if (Op.getOp() == dwarf::DW_OP_stack_value ||
2253 Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
2254 NewOps.append(Ops.begin(), Ops.end());
2255
2256 // Ensure that the new opcodes are only appended once.
2257 Ops = {};
2258 }
2259 Op.appendToVector(NewOps);
2260 }
2261 NewOps.append(Ops.begin(), Ops.end());
2262 auto *result =
2263 DIExpression::get(Expr->getContext(), NewOps)->foldConstantMath();
2264 assert(result->isValid() && "concatenated expression is not valid");
2265 return result;
2266}
2267
2268DIExpression *DIExpression::appendToStack(const DIExpression *Expr,
2270 assert(Expr && !Ops.empty() && "Can't append ops to this expression");
2271 assert(std::none_of(expr_op_iterator(Ops.begin()),
2272 expr_op_iterator(Ops.end()),
2273 [](auto Op) {
2274 return Op.getOp() == dwarf::DW_OP_stack_value ||
2275 Op.getOp() == dwarf::DW_OP_LLVM_fragment;
2276 }) &&
2277 "Can't append this op");
2278
2279 // Append a DW_OP_deref after Expr's current op list if it's non-empty and
2280 // has no DW_OP_stack_value.
2281 //
2282 // Match .* DW_OP_stack_value (DW_OP_LLVM_fragment A B)?.
2283 std::optional<FragmentInfo> FI = Expr->getFragmentInfo();
2284 unsigned DropUntilStackValue = FI ? 3 : 0;
2285 ArrayRef<uint64_t> ExprOpsBeforeFragment =
2286 Expr->getElements().drop_back(DropUntilStackValue);
2287 bool NeedsDeref = (Expr->getNumElements() > DropUntilStackValue) &&
2288 (ExprOpsBeforeFragment.back() != dwarf::DW_OP_stack_value);
2289 bool NeedsStackValue = NeedsDeref || ExprOpsBeforeFragment.empty();
2290
2291 // Append a DW_OP_deref after Expr's current op list if needed, then append
2292 // the new ops, and finally ensure that a single DW_OP_stack_value is present.
2294 if (NeedsDeref)
2295 NewOps.push_back(dwarf::DW_OP_deref);
2296 NewOps.append(Ops.begin(), Ops.end());
2297 if (NeedsStackValue)
2298 NewOps.push_back(dwarf::DW_OP_stack_value);
2299 return DIExpression::append(Expr, NewOps);
2300}
2301
2302std::optional<DIExpression *> DIExpression::createFragmentExpression(
2303 const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits) {
2305 // Track whether it's safe to split the value at the top of the DWARF stack,
2306 // assuming that it'll be used as an implicit location value.
2307 bool CanSplitValue = true;
2308 // Track whether we need to add a fragment expression to the end of Expr.
2309 bool EmitFragment = true;
2310 // Copy over the expression, but leave off any trailing DW_OP_LLVM_fragment.
2311 if (Expr) {
2312 for (auto Op : Expr->expr_ops()) {
2313 switch (Op.getOp()) {
2314 default:
2315 break;
2316 case dwarf::DW_OP_shr:
2317 case dwarf::DW_OP_shra:
2318 case dwarf::DW_OP_shl:
2319 case dwarf::DW_OP_plus:
2320 case dwarf::DW_OP_plus_uconst:
2321 case dwarf::DW_OP_minus:
2322 // We can't safely split arithmetic or shift operations into multiple
2323 // fragments because we can't express carry-over between fragments.
2324 //
2325 // FIXME: We *could* preserve the lowest fragment of a constant offset
2326 // operation if the offset fits into SizeInBits.
2327 CanSplitValue = false;
2328 break;
2329 case dwarf::DW_OP_deref:
2330 case dwarf::DW_OP_deref_size:
2331 case dwarf::DW_OP_deref_type:
2332 case dwarf::DW_OP_xderef:
2333 case dwarf::DW_OP_xderef_size:
2334 case dwarf::DW_OP_xderef_type:
2335 // Preceeding arithmetic operations have been applied to compute an
2336 // address. It's okay to split the value loaded from that address.
2337 CanSplitValue = true;
2338 break;
2339 case dwarf::DW_OP_stack_value:
2340 // Bail if this expression computes a value that cannot be split.
2341 if (!CanSplitValue)
2342 return std::nullopt;
2343 break;
2345 // If we've decided we don't need a fragment then give up if we see that
2346 // there's already a fragment expression.
2347 // FIXME: We could probably do better here
2348 if (!EmitFragment)
2349 return std::nullopt;
2350 // Make the new offset point into the existing fragment.
2351 uint64_t FragmentOffsetInBits = Op.getArg(0);
2352 uint64_t FragmentSizeInBits = Op.getArg(1);
2353 (void)FragmentSizeInBits;
2354 assert((OffsetInBits + SizeInBits <= FragmentSizeInBits) &&
2355 "new fragment outside of original fragment");
2356 OffsetInBits += FragmentOffsetInBits;
2357 continue;
2358 }
2361 // If we're extracting bits from inside of the fragment that we're
2362 // creating then we don't have a fragment after all, and just need to
2363 // adjust the offset that we're extracting from.
2364 uint64_t ExtractOffsetInBits = Op.getArg(0);
2365 uint64_t ExtractSizeInBits = Op.getArg(1);
2366 if (ExtractOffsetInBits >= OffsetInBits &&
2367 ExtractOffsetInBits + ExtractSizeInBits <=
2368 OffsetInBits + SizeInBits) {
2369 Ops.push_back(Op.getOp());
2370 Ops.push_back(ExtractOffsetInBits - OffsetInBits);
2371 Ops.push_back(ExtractSizeInBits);
2372 EmitFragment = false;
2373 continue;
2374 }
2375 // If the extracted bits aren't fully contained within the fragment then
2376 // give up.
2377 // FIXME: We could probably do better here
2378 return std::nullopt;
2379 }
2380 }
2381 Op.appendToVector(Ops);
2382 }
2383 }
2384 assert((!Expr->isImplicit() || CanSplitValue) && "Expr can't be split");
2385 assert(Expr && "Unknown DIExpression");
2386 if (EmitFragment) {
2388 Ops.push_back(OffsetInBits);
2389 Ops.push_back(SizeInBits);
2390 }
2391 return DIExpression::get(Expr->getContext(), Ops);
2392}
2393
2394/// See declaration for more info.
2396 const DataLayout &DL, const Value *SliceStart, uint64_t SliceOffsetInBits,
2397 uint64_t SliceSizeInBits, const Value *DbgPtr, int64_t DbgPtrOffsetInBits,
2398 int64_t DbgExtractOffsetInBits, DIExpression::FragmentInfo VarFrag,
2399 std::optional<DIExpression::FragmentInfo> &Result,
2400 int64_t &OffsetFromLocationInBits) {
2401
2402 if (VarFrag.SizeInBits == 0)
2403 return false; // Variable size is unknown.
2404
2405 // Difference between mem slice start and the dbg location start.
2406 // 0 4 8 12 16 ...
2407 // | |
2408 // dbg location start
2409 // |
2410 // mem slice start
2411 // Here MemStartRelToDbgStartInBits is 8. Note this can be negative.
2412 int64_t MemStartRelToDbgStartInBits;
2413 {
2414 auto MemOffsetFromDbgInBytes = SliceStart->getPointerOffsetFrom(DbgPtr, DL);
2415 if (!MemOffsetFromDbgInBytes)
2416 return false; // Can't calculate difference in addresses.
2417 // Difference between the pointers.
2418 MemStartRelToDbgStartInBits = *MemOffsetFromDbgInBytes * 8;
2419 // Add the difference of the offsets.
2420 MemStartRelToDbgStartInBits +=
2421 SliceOffsetInBits - (DbgPtrOffsetInBits + DbgExtractOffsetInBits);
2422 }
2423
2424 // Out-param. Invert offset to get offset from debug location.
2425 OffsetFromLocationInBits = -MemStartRelToDbgStartInBits;
2426
2427 // Check if the variable fragment sits outside (before) this memory slice.
2428 int64_t MemEndRelToDbgStart = MemStartRelToDbgStartInBits + SliceSizeInBits;
2429 if (MemEndRelToDbgStart < 0) {
2430 Result = {0, 0}; // Out-param.
2431 return true;
2432 }
2433
2434 // Work towards creating SliceOfVariable which is the bits of the variable
2435 // that the memory region covers.
2436 // 0 4 8 12 16 ...
2437 // | |
2438 // dbg location start with VarFrag offset=32
2439 // |
2440 // mem slice start: SliceOfVariable offset=40
2441 int64_t MemStartRelToVarInBits =
2442 MemStartRelToDbgStartInBits + VarFrag.OffsetInBits;
2443 int64_t MemEndRelToVarInBits = MemStartRelToVarInBits + SliceSizeInBits;
2444 // If the memory region starts before the debug location the fragment
2445 // offset would be negative, which we can't encode. Limit those to 0. This
2446 // is fine because those bits necessarily don't overlap with the existing
2447 // variable fragment.
2448 int64_t MemFragStart = std::max<int64_t>(0, MemStartRelToVarInBits);
2449 int64_t MemFragSize =
2450 std::max<int64_t>(0, MemEndRelToVarInBits - MemFragStart);
2451 DIExpression::FragmentInfo SliceOfVariable(MemFragSize, MemFragStart);
2452
2453 // Intersect the memory region fragment with the variable location fragment.
2454 DIExpression::FragmentInfo TrimmedSliceOfVariable =
2455 DIExpression::FragmentInfo::intersect(SliceOfVariable, VarFrag);
2456 if (TrimmedSliceOfVariable == VarFrag)
2457 Result = std::nullopt; // Out-param.
2458 else
2459 Result = TrimmedSliceOfVariable; // Out-param.
2460 return true;
2461}
2462
2463std::pair<DIExpression *, const ConstantInt *>
2465 // Copy the APInt so we can modify it.
2466 APInt NewInt = CI->getValue();
2468
2469 // Fold operators only at the beginning of the expression.
2470 bool First = true;
2471 bool Changed = false;
2472 for (auto Op : expr_ops()) {
2473 switch (Op.getOp()) {
2474 default:
2475 // We fold only the leading part of the expression; if we get to a part
2476 // that we're going to copy unchanged, and haven't done any folding,
2477 // then the entire expression is unchanged and we can return early.
2478 if (!Changed)
2479 return {this, CI};
2480 First = false;
2481 break;
2483 if (!First)
2484 break;
2485 Changed = true;
2486 if (Op.getArg(1) == dwarf::DW_ATE_signed)
2487 NewInt = NewInt.sextOrTrunc(Op.getArg(0));
2488 else {
2489 assert(Op.getArg(1) == dwarf::DW_ATE_unsigned && "Unexpected operand");
2490 NewInt = NewInt.zextOrTrunc(Op.getArg(0));
2491 }
2492 continue;
2493 }
2494 Op.appendToVector(Ops);
2495 }
2496 if (!Changed)
2497 return {this, CI};
2498 return {DIExpression::get(getContext(), Ops),
2499 ConstantInt::get(getContext(), NewInt)};
2500}
2501
2503 uint64_t Result = 0;
2504 for (auto ExprOp : expr_ops())
2505 if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
2506 Result = std::max(Result, ExprOp.getArg(0) + 1);
2507 assert(hasAllLocationOps(Result) &&
2508 "Expression is missing one or more location operands.");
2509 return Result;
2510}
2511
2512std::optional<DIExpression::SignedOrUnsignedConstant>
2514
2515 // Recognize signed and unsigned constants.
2516 // An signed constants can be represented as DW_OP_consts C DW_OP_stack_value
2517 // (DW_OP_LLVM_fragment of Len).
2518 // An unsigned constant can be represented as
2519 // DW_OP_constu C DW_OP_stack_value (DW_OP_LLVM_fragment of Len).
2520
2521 if ((getNumElements() != 2 && getNumElements() != 3 &&
2522 getNumElements() != 6) ||
2523 (getElement(0) != dwarf::DW_OP_consts &&
2524 getElement(0) != dwarf::DW_OP_constu))
2525 return std::nullopt;
2526
2527 if (getNumElements() == 2 && getElement(0) == dwarf::DW_OP_consts)
2529
2530 if ((getNumElements() == 3 && getElement(2) != dwarf::DW_OP_stack_value) ||
2531 (getNumElements() == 6 && (getElement(2) != dwarf::DW_OP_stack_value ||
2533 return std::nullopt;
2534 return getElement(0) == dwarf::DW_OP_constu
2537}
2538
2539DIExpression::ExtOps DIExpression::getExtOps(unsigned FromSize, unsigned ToSize,
2540 bool Signed) {
2541 dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned;
2543 dwarf::DW_OP_LLVM_convert, ToSize, TK}};
2544 return Ops;
2545}
2546
2547DIExpression *DIExpression::appendExt(const DIExpression *Expr,
2548 unsigned FromSize, unsigned ToSize,
2549 bool Signed) {
2550 return appendToStack(Expr, getExtOps(FromSize, ToSize, Signed));
2551}
2552
2554DIGlobalVariableExpression::getImpl(LLVMContext &Context, Metadata *Variable,
2556 bool ShouldCreate) {
2558 Metadata *Ops[] = {Variable, Expression};
2560}
2561DIObjCProperty::DIObjCProperty(LLVMContext &C, StorageType Storage,
2562 unsigned Line, unsigned Attributes,
2564 : DINode(C, DIObjCPropertyKind, Storage, dwarf::DW_TAG_APPLE_property, Ops),
2566
2567DIObjCProperty *DIObjCProperty::getImpl(
2568 LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line,
2569 MDString *GetterName, MDString *SetterName, unsigned Attributes,
2570 Metadata *Type, StorageType Storage, bool ShouldCreate) {
2571 assert(isCanonical(Name) && "Expected canonical MDString");
2572 assert(isCanonical(GetterName) && "Expected canonical MDString");
2573 assert(isCanonical(SetterName) && "Expected canonical MDString");
2574 DEFINE_GETIMPL_LOOKUP(DIObjCProperty, (Name, File, Line, GetterName,
2575 SetterName, Attributes, Type));
2577 DEFINE_GETIMPL_STORE(DIObjCProperty, (Line, Attributes), Ops);
2578}
2579
2580DIImportedEntity *DIImportedEntity::getImpl(LLVMContext &Context, unsigned Tag,
2581 Metadata *Scope, Metadata *Entity,
2582 Metadata *File, unsigned Line,
2583 MDString *Name, Metadata *Elements,
2584 StorageType Storage,
2585 bool ShouldCreate) {
2586 assert(isCanonical(Name) && "Expected canonical MDString");
2587 DEFINE_GETIMPL_LOOKUP(DIImportedEntity,
2588 (Tag, Scope, Entity, File, Line, Name, Elements));
2590 DEFINE_GETIMPL_STORE(DIImportedEntity, (Tag, Line), Ops);
2591}
2592
2593DIMacro *DIMacro::getImpl(LLVMContext &Context, unsigned MIType, unsigned Line,
2594 MDString *Name, MDString *Value, StorageType Storage,
2595 bool ShouldCreate) {
2596 assert(isCanonical(Name) && "Expected canonical MDString");
2598 Metadata *Ops[] = {Name, Value};
2599 DEFINE_GETIMPL_STORE(DIMacro, (MIType, Line), Ops);
2600}
2601
2602DIMacroFile *DIMacroFile::getImpl(LLVMContext &Context, unsigned MIType,
2603 unsigned Line, Metadata *File,
2604 Metadata *Elements, StorageType Storage,
2605 bool ShouldCreate) {
2606 DEFINE_GETIMPL_LOOKUP(DIMacroFile, (MIType, Line, File, Elements));
2607 Metadata *Ops[] = {File, Elements};
2608 DEFINE_GETIMPL_STORE(DIMacroFile, (MIType, Line), Ops);
2609}
2610
2611DIArgList *DIArgList::get(LLVMContext &Context,
2613 auto ExistingIt = Context.pImpl->DIArgLists.find_as(DIArgListKeyInfo(Args));
2614 if (ExistingIt != Context.pImpl->DIArgLists.end())
2615 return *ExistingIt;
2616 DIArgList *NewArgList = new DIArgList(Context, Args);
2617 Context.pImpl->DIArgLists.insert(NewArgList);
2618 return NewArgList;
2619}
2620
2622 ValueAsMetadata **OldVMPtr = static_cast<ValueAsMetadata **>(Ref);
2623 assert((!New || isa<ValueAsMetadata>(New)) &&
2624 "DIArgList must be passed a ValueAsMetadata");
2625 untrack();
2626 // We need to update the set storage once the Args are updated since they
2627 // form the key to the DIArgLists store.
2628 getContext().pImpl->DIArgLists.erase(this);
2630 for (ValueAsMetadata *&VM : Args) {
2631 if (&VM == OldVMPtr) {
2632 if (NewVM)
2633 VM = NewVM;
2634 else
2635 VM = ValueAsMetadata::get(PoisonValue::get(VM->getValue()->getType()));
2636 }
2637 }
2638 // We've changed the contents of this DIArgList, and the set storage may
2639 // already contain a DIArgList with our new set of args; if it does, then we
2640 // must RAUW this with the existing DIArgList, otherwise we simply insert this
2641 // back into the set storage.
2642 DIArgList *ExistingArgList = getUniqued(getContext().pImpl->DIArgLists, this);
2643 if (ExistingArgList) {
2644 replaceAllUsesWith(ExistingArgList);
2645 // Clear this here so we don't try to untrack in the destructor.
2646 Args.clear();
2647 delete this;
2648 return;
2649 }
2650 getContext().pImpl->DIArgLists.insert(this);
2651 track();
2652}
2653void DIArgList::track() {
2654 for (ValueAsMetadata *&VAM : Args)
2655 if (VAM)
2656 MetadataTracking::track(&VAM, *VAM, *this);
2657}
2658void DIArgList::untrack() {
2659 for (ValueAsMetadata *&VAM : Args)
2660 if (VAM)
2661 MetadataTracking::untrack(&VAM, *VAM);
2662}
2663void DIArgList::dropAllReferences(bool Untrack) {
2664 if (Untrack)
2665 untrack();
2666 Args.clear();
2667 ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
2668}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
constexpr LLT S1
AMDGPU Kernel Attributes
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::values(clEnumValN(DefaultIT, "arm-default-it", "Generate any type of IT block"), clEnumValN(RestrictedIT, "arm-restrict-it", "Disallow complex IT blocks")))
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_ABI
Definition Compiler.h:213
static ConstantAsMetadata * extractConstantMetadata(Metadata *ExtraData)
static const char * ChecksumKindName[DIFile::CSK_Last]
#define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS)
static void adjustColumn(unsigned &Column)
#define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS)
static std::pair< DIScope *, LineColumn > getNearestMatchingScope(const DILocation *L1, const DILocation *L2)
static LineColumn getLocalScopeLocationOr(DIScope *S, LineColumn Default)
Returns the location of DILocalScope, if present, or a default value.
std::pair< unsigned, unsigned > LineColumn
static bool isCanonical(const MDString *S)
#define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS)
#define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS)
#define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS)
static DILexicalBlockBase * cloneAndReplaceParentScope(DILexicalBlockBase *LBB, DIScope *NewParent)
static RegisterPass< DebugifyFunctionPass > DF("debugify-function", "Attach debug info to a function")
static unsigned encodingBits(unsigned C)
static unsigned encodeComponent(unsigned C)
static unsigned getNextComponentInDiscriminator(unsigned D)
Returns the next component stored in discriminator.
static unsigned getUnsignedFromPrefixEncoding(unsigned U)
Reverse transformation as getPrefixEncodingFromUnsigned.
@ Default
This file contains constants used for implementing Dwarf debug support.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
Return the first DebugLoc that has line number information, given a range of instructions.
#define T
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
This file implements a set that has insertion order iteration characteristics.
This file implements the StringSwitch template, which mimics a switch() statement whose cases are str...
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1041
Annotations lets you mark points and ranges inside source code, for tests:
Definition Annotations.h:53
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
const T & back() const
back - Get the last element.
Definition ArrayRef.h:151
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
Definition ArrayRef.h:195
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
ArrayRef< T > drop_back(size_t N=1) const
Drop the last N elements of the array.
Definition ArrayRef.h:201
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
static ConstantAsMetadata * get(Constant *C)
Definition Metadata.h:536
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:131
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:154
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI void handleChangedOperand(void *Ref, Metadata *New)
static LLVM_ABI DIArgList * get(LLVMContext &Context, ArrayRef< ValueAsMetadata * > Args)
static DIBasicType * getImpl(LLVMContext &Context, unsigned Tag, StringRef Name, uint64_t SizeInBits, uint32_t AlignInBits, unsigned Encoding, uint32_t NumExtraInhabitants, uint32_t DataSizeInBits, DIFlags Flags, StorageType Storage, bool ShouldCreate=true)
unsigned StringRef uint64_t FlagZero unsigned StringRef uint64_t uint32_t unsigned DIFlags Flags
DIBasicType(LLVMContext &C, StorageType Storage, unsigned Tag, uint32_t AlignInBits, unsigned Encoding, uint32_t NumExtraInhabitants, uint32_t DataSizeInBits, DIFlags Flags, ArrayRef< Metadata * > Ops)
unsigned StringRef uint64_t SizeInBits
LLVM_ABI std::optional< Signedness > getSignedness() const
Return the signedness of this type, or std::nullopt if this type is neither signed nor unsigned.
unsigned getEncoding() const
unsigned StringRef uint64_t FlagZero unsigned StringRef uint64_t uint32_t unsigned DIFlags Flags unsigned StringRef uint64_t uint32_t unsigned uint32_t NumExtraInhabitants
unsigned StringRef Name
unsigned StringRef uint64_t FlagZero unsigned StringRef uint64_t uint32_t AlignInBits
Debug common block.
Metadata Metadata * Decl
Metadata Metadata MDString Metadata unsigned LineNo
Metadata Metadata MDString * Name
Metadata Metadata MDString Metadata * File
static LLVM_ABI const char * nameTableKindString(DebugNameTableKind PK)
static LLVM_ABI const char * emissionKindString(DebugEmissionKind EK)
DISourceLanguageName Metadata MDString bool MDString unsigned MDString unsigned Metadata Metadata Metadata Metadata Metadata uint64_t bool bool unsigned bool MDString * SysRoot
DISourceLanguageName Metadata MDString bool MDString * Flags
DISourceLanguageName Metadata MDString bool MDString unsigned MDString unsigned Metadata Metadata Metadata Metadata Metadata uint64_t bool bool unsigned bool MDString MDString * SDK
DISourceLanguageName Metadata MDString bool MDString unsigned MDString unsigned Metadata Metadata Metadata * GlobalVariables
DebugEmissionKind getEmissionKind() const
DISourceLanguageName Metadata MDString bool MDString unsigned MDString unsigned Metadata * EnumTypes
DISourceLanguageName Metadata MDString * Producer
DISourceLanguageName Metadata MDString bool MDString unsigned MDString unsigned Metadata Metadata * RetainedTypes
DISourceLanguageName Metadata MDString bool MDString unsigned MDString * SplitDebugFilename
DISourceLanguageName Metadata MDString bool MDString unsigned MDString unsigned Metadata Metadata Metadata Metadata * ImportedEntities
DISourceLanguageName Metadata MDString bool MDString unsigned MDString unsigned Metadata Metadata Metadata Metadata Metadata * Macros
DebugNameTableKind getNameTableKind() const
DISourceLanguageName Metadata * File
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t AlignInBits
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > EnumKind
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata MDString Metadata Metadata * DataLocation
static LLVM_ABI DICompositeType * buildODRType(LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name, Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType, Metadata *SizeInBits, uint32_t AlignInBits, Metadata *OffsetInBits, Metadata *Specification, uint32_t NumExtraInhabitants, DIFlags Flags, Metadata *Elements, unsigned RuntimeLang, std::optional< uint32_t > EnumKind, Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator, Metadata *DataLocation, Metadata *Associated, Metadata *Allocated, Metadata *Rank, Metadata *Annotations, Metadata *BitStride)
Build a DICompositeType with the given ODR identifier.
unsigned MDString Metadata unsigned Line
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata * Elements
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned RuntimeLang
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata MDString Metadata Metadata Metadata Metadata Metadata Metadata * Annotations
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata MDString * Identifier
static LLVM_ABI DICompositeType * getODRTypeIfExists(LLVMContext &Context, MDString &Identifier)
unsigned MDString * Name
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata MDString Metadata * Discriminator
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata * TemplateParams
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t OffsetInBits
unsigned MDString Metadata unsigned Metadata * Scope
unsigned MDString Metadata * File
unsigned MDString Metadata unsigned Metadata Metadata * BaseType
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Flags
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata MDString Metadata Metadata Metadata Metadata * Allocated
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata MDString Metadata Metadata Metadata Metadata Metadata Metadata Metadata * Specification
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata * VTableHolder
unsigned MDString Metadata unsigned Metadata Metadata uint64_t SizeInBits
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata MDString Metadata Metadata Metadata * Associated
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata MDString Metadata Metadata Metadata Metadata Metadata Metadata Metadata uint32_t NumExtraInhabitants
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata MDString Metadata Metadata Metadata Metadata Metadata * Rank
unsigned MDString Metadata unsigned Metadata Metadata uint64_t uint32_t uint64_t DIFlags Metadata unsigned std::optional< uint32_t > Metadata Metadata MDString Metadata Metadata Metadata Metadata Metadata Metadata Metadata uint32_t Metadata * BitStride
unsigned StringRef DIFile unsigned DIScope DIType Metadata uint32_t Metadata * OffsetInBits
unsigned StringRef DIFile unsigned DIScope DIType Metadata uint32_t AlignInBits
unsigned StringRef DIFile unsigned DIScope DIType Metadata uint32_t Metadata std::optional< unsigned > std::optional< PtrAuthData > PtrAuthData
Metadata * getExtraData() const
Get extra data associated with this derived type.
unsigned StringRef DIFile * File
unsigned StringRef DIFile unsigned DIScope DIType Metadata uint32_t Metadata std::optional< unsigned > DWARFAddressSpace
LLVM_ABI DIType * getClassType() const
Get casted version of extra data.
LLVM_ABI Constant * getConstant() const
unsigned StringRef DIFile unsigned DIScope DIType Metadata * SizeInBits
LLVM_ABI Constant * getStorageOffsetInBits() const
LLVM_ABI Constant * getDiscriminantValue() const
unsigned StringRef Name
LLVM_ABI uint32_t getVBPtrOffset() const
Enumeration value.
int64_t bool MDString * Name
LLVM_ABI unsigned getSize() const
Return the size of the operand.
uint64_t getOp() const
Get the operand code.
An iterator for expression operands.
DWARF expression.
element_iterator elements_end() const
LLVM_ABI bool isEntryValue() const
Check if the expression consists of exactly one entry value operand.
iterator_range< expr_op_iterator > expr_ops() const
static LLVM_ABI DIExpression * append(const DIExpression *Expr, ArrayRef< uint64_t > Ops)
Append the opcodes Ops to DIExpr.
std::array< uint64_t, 6 > ExtOps
unsigned getNumElements() const
static LLVM_ABI ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
expr_op_iterator expr_op_begin() const
Visit the elements via ExprOperand wrappers.
LLVM_ABI bool extractIfOffset(int64_t &Offset) const
If this is a constant offset, extract it.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
DbgVariableFragmentInfo FragmentInfo
LLVM_ABI bool startsWithDeref() const
Return whether the first element a DW_OP_deref.
static LLVM_ABI bool isEqualExpression(const DIExpression *FirstExpr, bool FirstIndirect, const DIExpression *SecondExpr, bool SecondIndirect)
Determines whether two debug values should produce equivalent DWARF expressions, using their DIExpres...
expr_op_iterator expr_op_end() const
LLVM_ABI bool isImplicit() const
Return whether this is an implicit location description.
static LLVM_ABI bool calculateFragmentIntersect(const DataLayout &DL, const Value *SliceStart, uint64_t SliceOffsetInBits, uint64_t SliceSizeInBits, const Value *DbgPtr, int64_t DbgPtrOffsetInBits, int64_t DbgExtractOffsetInBits, DIExpression::FragmentInfo VarFrag, std::optional< DIExpression::FragmentInfo > &Result, int64_t &OffsetFromLocationInBits)
Computes a fragment, bit-extract operation if needed, and new constant offset to describe a part of a...
element_iterator elements_begin() const
LLVM_ABI bool hasAllLocationOps(unsigned N) const
Returns true iff this DIExpression contains at least one instance of DW_OP_LLVM_arg,...
std::optional< FragmentInfo > getFragmentInfo() const
Retrieve the details of this fragment expression.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
LLVM_ABI bool isComplex() const
Return whether the location is computed on the expression stack, meaning it cannot be a simple regist...
static LLVM_ABI std::optional< FragmentInfo > getFragmentInfo(expr_op_iterator Start, expr_op_iterator End)
Retrieve the details of this fragment expression.
static LLVM_ABI std::optional< const DIExpression * > convertToNonVariadicExpression(const DIExpression *Expr)
If Expr is a valid single-location expression, i.e.
LLVM_ABI std::pair< DIExpression *, const ConstantInt * > constantFold(const ConstantInt *CI)
Try to shorten an expression with an initial constant operand.
LLVM_ABI bool isDeref() const
Return whether there is exactly one operator and it is a DW_OP_deref;.
static LLVM_ABI const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
LLVM_ABI uint64_t getNumLocationOperands() const
Return the number of unique location operands referred to (via DW_OP_LLVM_arg) in this expression; th...
ArrayRef< uint64_t > getElements() const
static LLVM_ABI DIExpression * replaceArg(const DIExpression *Expr, uint64_t OldArg, uint64_t NewArg)
Create a copy of Expr with each instance of DW_OP_LLVM_arg, \p OldArg replaced with DW_OP_LLVM_arg,...
LLVM_ABI std::optional< uint64_t > getActiveBits(DIVariable *Var)
Return the number of bits that have an active value, i.e.
static LLVM_ABI void canonicalizeExpressionOps(SmallVectorImpl< uint64_t > &Ops, const DIExpression *Expr, bool IsIndirect)
Inserts the elements of Expr into Ops modified to a canonical form, which uses DW_OP_LLVM_arg (i....
uint64_t getElement(unsigned I) const
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
static LLVM_ABI const DIExpression * convertToUndefExpression(const DIExpression *Expr)
Removes all elements from Expr that do not apply to an undef debug value, which includes every operat...
static LLVM_ABI DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
static LLVM_ABI DIExpression * appendToStack(const DIExpression *Expr, ArrayRef< uint64_t > Ops)
Convert DIExpr into a stack value if it isn't one already by appending DW_OP_deref if needed,...
static LLVM_ABI DIExpression * appendExt(const DIExpression *Expr, unsigned FromSize, unsigned ToSize, bool Signed)
Append a zero- or sign-extension to Expr.
LLVM_ABI std::optional< ArrayRef< uint64_t > > getSingleLocationExpressionElements() const
Returns a reference to the elements contained in this expression, skipping past the leading DW_OP_LLV...
LLVM_ABI bool isSingleLocationExpression() const
Return whether the evaluated expression makes use of a single location at the start of the expression...
LLVM_ABI bool extractLeadingOffset(int64_t &OffsetInBytes, SmallVectorImpl< uint64_t > &RemainingOps) const
Assuming that the expression operates on an address, extract a constant offset and the successive ops...
LLVM_ABI std::optional< SignedOrUnsignedConstant > isConstant() const
Determine whether this represents a constant value, if so.
LLVM_ABI bool isValid() const
static LLVM_ABI const DIExpression * extractAddressClass(const DIExpression *Expr, unsigned &AddrClass)
Checks if the last 4 elements of the expression are DW_OP_constu <DWARFAddress Space> DW_OP_swap DW_O...
static LLVM_ABI DIExpression * prependOpcodes(const DIExpression *Expr, SmallVectorImpl< uint64_t > &Ops, bool StackValue=false, bool EntryValue=false)
Prepend DIExpr with the given opcodes and optionally turn it into a stack value.
MDString MDString * Directory
MDString MDString std::optional< ChecksumInfo< MDString * > > MDString * Source
MDString * Filename
static LLVM_ABI std::optional< ChecksumKind > getChecksumKind(StringRef CSKindStr)
MDString MDString std::optional< ChecksumInfo< MDString * > > CS
unsigned StringRef uint64_t uint32_t unsigned DIFlags unsigned int Factor
static LLVM_ABI std::optional< FixedPointKind > getFixedPointKind(StringRef Str)
static LLVM_ABI const char * fixedPointKindString(FixedPointKind)
unsigned StringRef uint64_t uint32_t unsigned Encoding
unsigned StringRef uint64_t uint32_t AlignInBits
LLVM_ABI bool isSigned() const
@ FixedPointBinary
Scale factor 2^Factor.
@ FixedPointDecimal
Scale factor 10^Factor.
@ FixedPointRational
Arbitrary rational scale factor.
unsigned StringRef uint64_t uint32_t unsigned DIFlags unsigned int APInt Numerator
unsigned StringRef uint64_t uint32_t unsigned DIFlags unsigned int APInt APInt Denominator
unsigned StringRef uint64_t SizeInBits
Metadata * getRawLowerBound() const
Metadata * getRawCountNode() const
Metadata * getRawStride() const
LLVM_ABI BoundType getLowerBound() const
Metadata * getRawUpperBound() const
LLVM_ABI BoundType getCount() const
LLVM_ABI BoundType getUpperBound() const
PointerUnion< DIVariable *, DIExpression * > BoundType
LLVM_ABI BoundType getStride() const
A pair of DIGlobalVariable and DIExpression.
Metadata MDString MDString Metadata unsigned Metadata bool bool Metadata Metadata * TemplateParams
Metadata MDString MDString Metadata unsigned Line
Metadata MDString MDString Metadata unsigned Metadata * Type
Metadata MDString MDString Metadata unsigned Metadata bool bool Metadata Metadata uint32_t Metadata * Annotations
Metadata MDString * Name
Metadata MDString MDString Metadata unsigned Metadata bool bool Metadata * StaticDataMemberDeclaration
Metadata MDString MDString * LinkageName
Metadata MDString MDString Metadata * File
Metadata MDString MDString Metadata unsigned Metadata bool bool Metadata Metadata uint32_t AlignInBits
An imported module (C++ using directive or similar).
unsigned Metadata Metadata * Entity
unsigned Metadata Metadata Metadata unsigned Line
unsigned Metadata Metadata Metadata unsigned MDString * Name
unsigned Metadata Metadata Metadata * File
unsigned Metadata * Scope
Metadata MDString Metadata unsigned unsigned bool std::optional< unsigned > CoroSuspendIdx
Metadata MDString Metadata unsigned unsigned Column
Metadata MDString Metadata unsigned unsigned bool IsArtificial
Metadata MDString Metadata unsigned Line
Metadata MDString * Name
Metadata MDString Metadata * File
LLVM_ABI DILexicalBlockBase(LLVMContext &C, unsigned ID, StorageType Storage, ArrayRef< Metadata * > Ops)
Metadata Metadata unsigned Discriminator
Debug lexical block.
Metadata Metadata unsigned unsigned Column
Metadata Metadata * File
A scope for locals.
LLVM_ABI DISubprogram * getSubprogram() const
Get the subprogram for this scope.
LLVM_ABI DILocalScope * getNonLexicalBlockFileScope() const
Get the first non DILexicalBlockFile scope of this scope.
DILocalScope(LLVMContext &C, unsigned ID, StorageType Storage, unsigned Tag, ArrayRef< Metadata * > Ops)
static LLVM_ABI DILocalScope * cloneScopeForSubprogram(DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx, DenseMap< const MDNode *, MDNode * > &Cache)
Traverses the scope chain rooted at RootScope until it hits a Subprogram, recreating the chain with "...
Metadata MDString Metadata unsigned Metadata * Type
Metadata MDString Metadata * File
DILocalScope * getScope() const
Get the local scope for this variable.
Metadata MDString * Name
Metadata MDString Metadata unsigned Line
Metadata MDString Metadata unsigned Metadata unsigned DIFlags uint32_t Metadata * Annotations
Metadata MDString Metadata unsigned Metadata unsigned DIFlags uint32_t AlignInBits
unsigned unsigned DILocalScope * Scope
static LLVM_ABI DILocation * getMergedLocations(ArrayRef< DILocation * > Locs)
Try to combine the vector of locations passed as input in a single one.
static LLVM_ABI std::optional< unsigned > encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI)
Raw encoding of the discriminator.
unsigned unsigned DILocalScope DILocation bool ImplicitCode
static LLVM_ABI void decodeDiscriminator(unsigned D, unsigned &BD, unsigned &DF, unsigned &CI)
Raw decoder for values in an encoded discriminator D.
static LLVM_ABI DILocation * getMergedLocation(DILocation *LocA, DILocation *LocB)
Attempts to merge LocA and LocB into a single location; see DebugLoc::getMergedLocation for more deta...
unsigned unsigned Column
unsigned unsigned DILocalScope DILocation * InlinedAt
unsigned unsigned Metadata * File
unsigned unsigned Line
unsigned unsigned Metadata Metadata * Elements
unsigned unsigned MDString MDString * Value
unsigned unsigned MDString * Name
unsigned unsigned Line
Represents a module in the programming language, for example, a Clang module, or a Fortran module.
Metadata Metadata * Scope
Metadata Metadata MDString * Name
Metadata Metadata MDString MDString MDString MDString * APINotesFile
Metadata Metadata MDString MDString MDString * IncludePath
Metadata Metadata MDString MDString * ConfigurationMacros
Metadata Metadata MDString MDString MDString MDString unsigned LineNo
Debug lexical block.
Metadata MDString bool ExportSymbols
Metadata MDString * Name
Tagged DWARF-like metadata node.
LLVM_ABI dwarf::Tag getTag() const
static LLVM_ABI DIFlags getFlag(StringRef Flag)
static LLVM_ABI DIFlags splitFlags(DIFlags Flags, SmallVectorImpl< DIFlags > &SplitFlags)
Split up a flags bitfield.
DINode(LLVMContext &C, unsigned ID, StorageType Storage, unsigned Tag, ArrayRef< Metadata * > Ops1, ArrayRef< Metadata * > Ops2={})
static LLVM_ABI StringRef getFlagString(DIFlags Flag)
DIFlags
Debug info flags.
MDString Metadata * File
MDString Metadata unsigned MDString MDString unsigned Metadata * Type
MDString Metadata unsigned MDString * GetterName
MDString Metadata unsigned MDString MDString * SetterName
Base class for scope-like contexts.
LLVM_ABI StringRef getName() const
DIFile * getFile() const
LLVM_ABI DIScope * getScope() const
DIScope(LLVMContext &C, unsigned ID, StorageType Storage, unsigned Tag, ArrayRef< Metadata * > Ops)
Wrapper structure that holds a language name and its version.
String type, Fortran CHARACTER(n)
unsigned MDString * Name
unsigned MDString Metadata Metadata Metadata uint64_t SizeInBits
unsigned MDString Metadata Metadata Metadata uint64_t uint32_t AlignInBits
unsigned MDString Metadata Metadata Metadata * StringLocationExp
unsigned MDString Metadata Metadata * StringLengthExp
unsigned MDString Metadata Metadata Metadata uint64_t uint32_t unsigned Encoding
unsigned MDString Metadata * StringLength
Subprogram description. Uses SubclassData1.
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags Metadata Metadata Metadata Metadata Metadata Metadata MDString bool UsesKeyInstructions
Metadata MDString MDString Metadata unsigned Metadata unsigned ScopeLine
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags SPFlags
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata * ContainingType
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags Metadata Metadata * TemplateParams
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags Metadata Metadata Metadata * Declaration
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags Metadata Metadata Metadata Metadata Metadata Metadata MDString * TargetFuncName
static LLVM_ABI DISPFlags toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized, unsigned Virtuality=SPFlagNonvirtual, bool IsMainSubprogram=false)
static const DIScope * getRawRetainedNodeScope(const MDNode *N)
Metadata MDString * Name
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags Metadata Metadata Metadata Metadata Metadata * ThrownTypes
static LLVM_ABI DISPFlags getFlag(StringRef Flag)
Metadata MDString MDString Metadata * File
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned VirtualIndex
static LLVM_ABI DISPFlags splitFlags(DISPFlags Flags, SmallVectorImpl< DISPFlags > &SplitFlags)
Split up a flags bitfield for easier printing.
static LLVM_ABI StringRef getFlagString(DISPFlags Flag)
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int DIFlags DISPFlags Metadata Metadata Metadata Metadata * RetainedNodes
DISPFlags
Debug info subprogram flags.
Metadata MDString MDString Metadata unsigned Metadata unsigned Metadata unsigned int ThisAdjustment
LLVM_ABI bool describes(const Function *F) const
Check if this subprogram describes the given function.
StringRef DIFile unsigned Line
StringRef DIFile unsigned DIScope uint64_t uint32_t DIFlags DIType Metadata Metadata * UpperBound
PointerUnion< ConstantInt *, DIVariable *, DIExpression * > BoundType
StringRef DIFile unsigned DIScope uint64_t uint32_t DIFlags DIType Metadata Metadata Metadata Metadata * Bias
StringRef DIFile unsigned DIScope uint64_t uint32_t DIFlags DIType Metadata Metadata Metadata * Stride
StringRef DIFile unsigned DIScope uint64_t SizeInBits
StringRef DIFile * File
StringRef DIFile unsigned DIScope uint64_t uint32_t AlignInBits
StringRef DIFile unsigned DIScope uint64_t uint32_t DIFlags DIType Metadata * LowerBound
StringRef DIFile unsigned DIScope uint64_t uint32_t DIFlags Flags
Array subrange.
LLVM_ABI BoundType getUpperBound() const
LLVM_ABI BoundType getStride() const
LLVM_ABI BoundType getLowerBound() const
LLVM_ABI BoundType getCount() const
Type array for a subprogram.
DIFlags uint8_t Metadata * TypeArray
Base class for template parameters.
unsigned MDString Metadata * Type
unsigned MDString Metadata bool Metadata * Value
Base class for types.
bool isBitField() const
bool isStaticMember() const
DIType(LLVMContext &C, unsigned ID, StorageType Storage, unsigned Tag, unsigned Line, uint32_t AlignInBits, uint32_t NumExtraInhabitants, DIFlags Flags, ArrayRef< Metadata * > Ops)
LLVM_ABI uint32_t getAlignInBits() const
Base class for variables.
std::optional< DIBasicType::Signedness > getSignedness() const
Return the signedness of this variable's type, or std::nullopt if this type is neither signed nor uns...
LLVM_ABI std::optional< uint64_t > getSizeInBits() const
Determines the size of the variable's type.
Metadata * getRawType() const
LLVM_ABI DIVariable(LLVMContext &C, unsigned ID, StorageType Storage, signed Line, ArrayRef< Metadata * > Ops, uint32_t AlignInBits=0)
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LLVM_ABI DebugVariableAggregate(const DbgVariableRecord *DVR)
const DILocation * getInlinedAt() const
const DILocalVariable * getVariable() const
LLVM_ABI DebugVariable(const DbgVariableRecord *DVR)
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:248
iterator end()
Definition DenseMap.h:81
Class representing an expression and its matching format.
Generic tagged DWARF-like metadata node.
LLVM_ABI dwarf::Tag getTag() const
unsigned MDString * Header
unsigned MDString ArrayRef< Metadata * > DwarfOps
DenseSet< DIArgList *, DIArgListInfo > DIArgLists
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
LLVMContextImpl *const pImpl
Definition LLVMContext.h:70
Metadata node.
Definition Metadata.h:1078
friend class DIAssignID
Definition Metadata.h:1081
static MDTuple * getDistinct(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1577
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1569
LLVM_ABI TempMDNode clone() const
Create a (temporary) clone of this.
Definition Metadata.cpp:669
static T * storeImpl(T *N, StorageType Storage, StoreT &Store)
LLVMContext & getContext() const
Definition Metadata.h:1242
static std::enable_if_t< std::is_base_of< MDNode, T >::value, T * > replaceWithUniqued(std::unique_ptr< T, TempMDNodeDeleter > N)
Replace a temporary node with a uniqued one.
Definition Metadata.h:1317
A single uniqued string.
Definition Metadata.h:721
LLVM_ABI StringRef getString() const
Definition Metadata.cpp:618
static void untrack(Metadata *&MD)
Stop tracking a reference to metadata.
Definition Metadata.h:357
static bool track(Metadata *&MD)
Track the reference to metadata.
Definition Metadata.h:323
Root of the metadata hierarchy.
Definition Metadata.h:64
StorageType
Active type of storage.
Definition Metadata.h:72
unsigned short SubclassData16
Definition Metadata.h:78
unsigned SubclassData32
Definition Metadata.h:79
unsigned char Storage
Storage flag for non-uniqued, otherwise unowned, metadata.
Definition Metadata.h:75
unsigned char SubclassData1
Definition Metadata.h:77
Metadata(unsigned ID, StorageType Storage)
Definition Metadata.h:88
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
LLVM_ABI void replaceAllUsesWith(Metadata *MD)
Replace all uses of this with MD.
Definition Metadata.cpp:369
LLVMContext & getContext() const
Definition Metadata.h:408
LLVM_ABI void resolveAllUses(bool ResolveUsers=true)
Resolve all uses of this.
Definition Metadata.cpp:422
Implements a dense probed hash-table based set with some number of buckets stored inline.
Definition DenseSet.h:291
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:337
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:143
A switch()-like statement whose cases are string literals.
StringSwitch & Case(StringLiteral S, T Value)
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:297
Value wrapper in the Metadata hierarchy.
Definition Metadata.h:458
static LLVM_ABI ValueAsMetadata * get(Value *V)
Definition Metadata.cpp:503
LLVM Value Representation.
Definition Value.h:75
LLVM_ABI std::optional< int64_t > getPointerOffsetFrom(const Value *Other, const DataLayout &DL) const
If this ptr is provably equal to Other plus a constant offset, return that offset in bytes.
Definition Value.cpp:1052
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
initializer< Ty > init(const Ty &Val)
Calculates the starting offsets for various sections within the .debug_names section.
Definition Dwarf.h:35
@ DW_OP_LLVM_entry_value
Only used in LLVM metadata.
Definition Dwarf.h:147
@ DW_OP_LLVM_implicit_pointer
Only used in LLVM metadata.
Definition Dwarf.h:148
@ DW_OP_LLVM_extract_bits_zext
Only used in LLVM metadata.
Definition Dwarf.h:151
@ DW_OP_LLVM_tag_offset
Only used in LLVM metadata.
Definition Dwarf.h:146
@ DW_OP_LLVM_fragment
Only used in LLVM metadata.
Definition Dwarf.h:144
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
Definition Dwarf.h:149
@ DW_OP_LLVM_convert
Only used in LLVM metadata.
Definition Dwarf.h:145
@ DW_OP_LLVM_extract_bits_sext
Only used in LLVM metadata.
Definition Dwarf.h:150
@ DW_VIRTUALITY_max
Definition Dwarf.h:200
@ NameTableKind
Definition LLToken.h:506
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
@ Offset
Definition DWP.cpp:532
static T * getUniqued(DenseSet< T *, InfoT > &Store, const typename InfoT::KeyTy &Key)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI cl::opt< bool > EnableFSDiscriminator
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2136
auto cast_or_null(const Y &Val)
Definition Casting.h:714
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1739
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
@ Ref
The access may reference the value stored in memory.
Definition ModRef.h:32
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:74
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI cl::opt< bool > PickMergedSourceLocations("pick-merged-source-locations", cl::init(false), cl::Hidden, cl::desc("Preserve line and column number when merging locations."))
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:867
#define N
SmallPtrSet< DIScope *, 8 > Scopes
void insert(DIScope *S, LineColumn Loc)
DIScope * match(DIScope *S, LineColumn Loc)
void insert(DIScope *S, LineColumn Loc)
DIScope * match(DIScope *S, LineColumn Loc)
SmallMapVector< std::pair< DIFile *, LineColumn >, SmallSetVector< DIScope *, 8 >, 8 > Scopes
A single checksum, represented by a Kind and a Value (a string).
static DbgVariableFragmentInfo intersect(DbgVariableFragmentInfo A, DbgVariableFragmentInfo B)
Returns a zero-sized fragment if A and B don't intersect.
A MapVector that performs no allocations if smaller than a certain size.
Definition MapVector.h:257