LLVM 20.0.0git
APFixedPoint.h
Go to the documentation of this file.
1//===- APFixedPoint.h - Fixed point constant handling -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Defines the fixed point number interface.
11/// This is a class for abstracting various operations performed on fixed point
12/// types.
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_APFIXEDPOINT_H
17#define LLVM_ADT_APFIXEDPOINT_H
18
19#include "llvm/ADT/APSInt.h"
20#include "llvm/ADT/Hashing.h"
23
24namespace llvm {
25
26class APFloat;
27struct fltSemantics;
28
29/// The fixed point semantics work similarly to fltSemantics. The width
30/// specifies the whole bit width of the underlying scaled integer (with padding
31/// if any). The scale represents the number of fractional bits in this type.
32/// When HasUnsignedPadding is true and this type is unsigned, the first bit
33/// in the value this represents is treated as padding.
35public:
36 static constexpr unsigned WidthBitWidth = 16;
37 static constexpr unsigned LsbWeightBitWidth = 13;
38 /// Used to differentiate between constructors with Width and Lsb from the
39 /// default Width and scale
40 struct Lsb {
42 };
43 FixedPointSemantics(unsigned Width, unsigned Scale, bool IsSigned,
44 bool IsSaturated, bool HasUnsignedPadding)
45 : FixedPointSemantics(Width, Lsb{-static_cast<int>(Scale)}, IsSigned,
46 IsSaturated, HasUnsignedPadding) {}
47 FixedPointSemantics(unsigned Width, Lsb Weight, bool IsSigned,
48 bool IsSaturated, bool HasUnsignedPadding)
49 : Width(Width), LsbWeight(Weight.LsbWeight), IsSigned(IsSigned),
50 IsSaturated(IsSaturated), HasUnsignedPadding(HasUnsignedPadding) {
51 assert(isUInt<WidthBitWidth>(Width) && isInt<LsbWeightBitWidth>(Weight.LsbWeight));
52 assert(!(IsSigned && HasUnsignedPadding) &&
53 "Cannot have unsigned padding on a signed type.");
54 }
55
56 /// Check if the Semantic follow the requirements of an older more limited
57 /// version of this class
58 bool isValidLegacySema() const {
59 return LsbWeight <= 0 && static_cast<int>(Width) >= -LsbWeight;
60 }
61 unsigned getWidth() const { return Width; }
62 unsigned getScale() const { assert(isValidLegacySema()); return -LsbWeight; }
63 int getLsbWeight() const { return LsbWeight; }
64 int getMsbWeight() const {
65 return LsbWeight + Width - 1 /*Both lsb and msb are both part of width*/;
66 }
67 bool isSigned() const { return IsSigned; }
68 bool isSaturated() const { return IsSaturated; }
69 bool hasUnsignedPadding() const { return HasUnsignedPadding; }
70
71 void setSaturated(bool Saturated) { IsSaturated = Saturated; }
72
73 /// return true if the first bit doesn't have a strictly positive weight
74 bool hasSignOrPaddingBit() const { return IsSigned || HasUnsignedPadding; }
75
76 /// Return the number of integral bits represented by these semantics. These
77 /// are separate from the fractional bits and do not include the sign or
78 /// padding bit.
79 unsigned getIntegralBits() const {
80 return std::max(getMsbWeight() + 1 - hasSignOrPaddingBit(), 0);
81 }
82
83 /// Return the FixedPointSemantics that allows for calculating the full
84 /// precision semantic that can precisely represent the precision and ranges
85 /// of both input values. This does not compute the resulting semantics for a
86 /// given binary operation.
89
90 /// Print semantics for debug purposes
91 void print(llvm::raw_ostream& OS) const;
92
93 /// Returns true if this fixed-point semantic with its value bits interpreted
94 /// as an integer can fit in the given floating point semantic without
95 /// overflowing to infinity.
96 /// For example, a signed 8-bit fixed-point semantic has a maximum and
97 /// minimum integer representation of 127 and -128, respectively. If both of
98 /// these values can be represented (possibly inexactly) in the floating
99 /// point semantic without overflowing, this returns true.
100 bool fitsInFloatSemantics(const fltSemantics &FloatSema) const;
101
102 /// Return the FixedPointSemantics for an integer type.
104 bool IsSigned) {
105 return FixedPointSemantics(Width, /*Scale=*/0, IsSigned,
106 /*IsSaturated=*/false,
107 /*HasUnsignedPadding=*/false);
108 }
109
111 return Width == Other.Width && LsbWeight == Other.LsbWeight &&
112 IsSigned == Other.IsSigned && IsSaturated == Other.IsSaturated &&
113 HasUnsignedPadding == Other.HasUnsignedPadding;
114 }
115 bool operator!=(FixedPointSemantics Other) const { return !(*this == Other); }
116
117private:
118 unsigned Width : WidthBitWidth;
119 signed int LsbWeight : LsbWeightBitWidth;
120 unsigned IsSigned : 1;
121 unsigned IsSaturated : 1;
122 unsigned HasUnsignedPadding : 1;
123};
124
125static_assert(sizeof(FixedPointSemantics) == 4, "");
126
128 return hash_value(bit_cast<uint32_t>(Val));
129}
130
133 return FixedPointSemantics(0, 0, false, false, false);
134 }
135
137 return FixedPointSemantics(0, 1, false, false, false);
138 }
139
140 static unsigned getHashValue(const FixedPointSemantics &Val) {
141 return hash_value(Val);
142 }
143
144 static bool isEqual(const char &LHS, const char &RHS) { return LHS == RHS; }
145};
146
147/// The APFixedPoint class works similarly to APInt/APSInt in that it is a
148/// functional replacement for a scaled integer. It supports a wide range of
149/// semantics including the one used by fixed point types proposed in ISO/IEC
150/// JTC1 SC22 WG14 N1169. The class carries the value and semantics of
151/// a fixed point, and provides different operations that would normally be
152/// performed on fixed point types.
154public:
155 APFixedPoint(const APInt &Val, const FixedPointSemantics &Sema)
156 : Val(Val, !Sema.isSigned()), Sema(Sema) {
157 assert(Val.getBitWidth() == Sema.getWidth() &&
158 "The value should have a bit width that matches the Sema width");
159 }
160
162 : APFixedPoint(APInt(Sema.getWidth(), Val, Sema.isSigned()), Sema) {}
163
164 // Zero initialization.
166
167 APSInt getValue() const { return APSInt(Val, !Sema.isSigned()); }
168 inline unsigned getWidth() const { return Sema.getWidth(); }
169 inline unsigned getScale() const { return Sema.getScale(); }
170 int getLsbWeight() const { return Sema.getLsbWeight(); }
171 int getMsbWeight() const { return Sema.getMsbWeight(); }
172 inline bool isSaturated() const { return Sema.isSaturated(); }
173 inline bool isSigned() const { return Sema.isSigned(); }
174 inline bool hasPadding() const { return Sema.hasUnsignedPadding(); }
175 FixedPointSemantics getSemantics() const { return Sema; }
176
177 bool getBoolValue() const { return Val.getBoolValue(); }
178
179 // Convert this number to match the semantics provided. If the overflow
180 // parameter is provided, set this value to true or false to indicate if this
181 // operation results in an overflow.
183 bool *Overflow = nullptr) const;
184
185 // Perform binary operations on a fixed point type. The resulting fixed point
186 // value will be in the common, full precision semantics that can represent
187 // the precision and ranges of both input values. See convert() for an
188 // explanation of the Overflow parameter.
189 APFixedPoint add(const APFixedPoint &Other, bool *Overflow = nullptr) const;
190 APFixedPoint sub(const APFixedPoint &Other, bool *Overflow = nullptr) const;
191 APFixedPoint mul(const APFixedPoint &Other, bool *Overflow = nullptr) const;
192 APFixedPoint div(const APFixedPoint &Other, bool *Overflow = nullptr) const;
193
194 // Perform shift operations on a fixed point type. Unlike the other binary
195 // operations, the resulting fixed point value will be in the original
196 // semantic.
197 APFixedPoint shl(unsigned Amt, bool *Overflow = nullptr) const;
198 APFixedPoint shr(unsigned Amt, bool *Overflow = nullptr) const {
199 // Right shift cannot overflow.
200 if (Overflow)
201 *Overflow = false;
202 return APFixedPoint(Val >> Amt, Sema);
203 }
204
205 /// Perform a unary negation (-X) on this fixed point type, taking into
206 /// account saturation if applicable.
207 APFixedPoint negate(bool *Overflow = nullptr) const;
208
209 /// Return the integral part of this fixed point number, rounded towards
210 /// zero. (-2.5k -> -2)
212 if (getMsbWeight() < 0)
213 return APSInt(APInt::getZero(getWidth()), Val.isUnsigned());
214 APSInt ExtVal =
215 (getLsbWeight() > 0) ? Val.extend(getWidth() + getLsbWeight()) : Val;
216 if (Val < 0 && Val != -Val) // Cover the case when we have the min val
217 return -((-ExtVal).relativeShl(getLsbWeight()));
218 return ExtVal.relativeShl(getLsbWeight());
219 }
220
221 /// Return the integral part of this fixed point number, rounded towards
222 /// zero. The value is stored into an APSInt with the provided width and sign.
223 /// If the overflow parameter is provided, and the integral value is not able
224 /// to be fully stored in the provided width and sign, the overflow parameter
225 /// is set to true.
226 APSInt convertToInt(unsigned DstWidth, bool DstSign,
227 bool *Overflow = nullptr) const;
228
229 /// Convert this fixed point number to a floating point value with the
230 /// provided semantics.
231 APFloat convertToFloat(const fltSemantics &FloatSema) const;
232
233 void toString(SmallVectorImpl<char> &Str) const;
234 std::string toString() const {
236 toString(S);
237 return std::string(S);
238 }
239
240 void print(raw_ostream &) const;
241 void dump() const;
242
243 // If LHS > RHS, return 1. If LHS == RHS, return 0. If LHS < RHS, return -1.
244 int compare(const APFixedPoint &Other) const;
245 bool operator==(const APFixedPoint &Other) const {
246 return compare(Other) == 0;
247 }
248 bool operator!=(const APFixedPoint &Other) const {
249 return compare(Other) != 0;
250 }
251 bool operator>(const APFixedPoint &Other) const { return compare(Other) > 0; }
252 bool operator<(const APFixedPoint &Other) const { return compare(Other) < 0; }
253 bool operator>=(const APFixedPoint &Other) const {
254 return compare(Other) >= 0;
255 }
256 bool operator<=(const APFixedPoint &Other) const {
257 return compare(Other) <= 0;
258 }
259
260 static APFixedPoint getMax(const FixedPointSemantics &Sema);
261 static APFixedPoint getMin(const FixedPointSemantics &Sema);
262 static APFixedPoint getEpsilon(const FixedPointSemantics &Sema);
263
264 /// Given a floating point semantic, return the next floating point semantic
265 /// with a larger exponent and larger or equal mantissa.
266 static const fltSemantics *promoteFloatSemantics(const fltSemantics *S);
267
268 /// Create an APFixedPoint with a value equal to that of the provided integer,
269 /// and in the same semantics as the provided target semantics. If the value
270 /// is not able to fit in the specified fixed point semantics, and the
271 /// overflow parameter is provided, it is set to true.
273 const FixedPointSemantics &DstFXSema,
274 bool *Overflow = nullptr);
275
276 /// Create an APFixedPoint with a value equal to that of the provided
277 /// floating point value, in the provided target semantics. If the value is
278 /// not able to fit in the specified fixed point semantics and the overflow
279 /// parameter is specified, it is set to true.
280 /// For NaN, the Overflow flag is always set. For +inf and -inf, if the
281 /// semantic is saturating, the value saturates. Otherwise, the Overflow flag
282 /// is set.
284 const FixedPointSemantics &DstFXSema,
285 bool *Overflow = nullptr);
286
287private:
288 APSInt Val;
290};
291
293 OS << FX.toString();
294 return OS;
295}
296
298 return hash_combine(Val.getSemantics(), Val.getValue());
299}
300
301template <> struct DenseMapInfo<APFixedPoint> {
302 static inline APFixedPoint getEmptyKey() {
304 }
305
308 }
309
310 static unsigned getHashValue(const APFixedPoint &Val) {
311 return hash_value(Val);
312 }
313
314 static bool isEqual(const APFixedPoint &LHS, const APFixedPoint &RHS) {
315 return LHS.getSemantics() == RHS.getSemantics() &&
316 LHS.getValue() == RHS.getValue();
317 }
318};
319
320} // namespace llvm
321
322#endif
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
expand large fp convert
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
This file defines the SmallString class.
Value * RHS
Value * LHS
The APFixedPoint class works similarly to APInt/APSInt in that it is a functional replacement for a s...
Definition: APFixedPoint.h:153
void toString(SmallVectorImpl< char > &Str) const
APFixedPoint(const APInt &Val, const FixedPointSemantics &Sema)
Definition: APFixedPoint.h:155
static APFixedPoint getMin(const FixedPointSemantics &Sema)
bool operator==(const APFixedPoint &Other) const
Definition: APFixedPoint.h:245
bool operator!=(const APFixedPoint &Other) const
Definition: APFixedPoint.h:248
int getLsbWeight() const
Definition: APFixedPoint.h:170
FixedPointSemantics getSemantics() const
Definition: APFixedPoint.h:175
int compare(const APFixedPoint &Other) const
bool operator<(const APFixedPoint &Other) const
Definition: APFixedPoint.h:252
APSInt convertToInt(unsigned DstWidth, bool DstSign, bool *Overflow=nullptr) const
Return the integral part of this fixed point number, rounded towards zero.
APFixedPoint shr(unsigned Amt, bool *Overflow=nullptr) const
Definition: APFixedPoint.h:198
static APFixedPoint getFromFloatValue(const APFloat &Value, const FixedPointSemantics &DstFXSema, bool *Overflow=nullptr)
Create an APFixedPoint with a value equal to that of the provided floating point value,...
APFixedPoint(const FixedPointSemantics &Sema)
Definition: APFixedPoint.h:165
APFixedPoint sub(const APFixedPoint &Other, bool *Overflow=nullptr) const
APFloat convertToFloat(const fltSemantics &FloatSema) const
Convert this fixed point number to a floating point value with the provided semantics.
APFixedPoint(uint64_t Val, const FixedPointSemantics &Sema)
Definition: APFixedPoint.h:161
static APFixedPoint getFromIntValue(const APSInt &Value, const FixedPointSemantics &DstFXSema, bool *Overflow=nullptr)
Create an APFixedPoint with a value equal to that of the provided integer, and in the same semantics ...
unsigned getScale() const
Definition: APFixedPoint.h:169
std::string toString() const
Definition: APFixedPoint.h:234
void print(raw_ostream &) const
APSInt getValue() const
Definition: APFixedPoint.h:167
unsigned getWidth() const
Definition: APFixedPoint.h:168
bool isSigned() const
Definition: APFixedPoint.h:173
bool operator>=(const APFixedPoint &Other) const
Definition: APFixedPoint.h:253
bool hasPadding() const
Definition: APFixedPoint.h:174
APFixedPoint negate(bool *Overflow=nullptr) const
Perform a unary negation (-X) on this fixed point type, taking into account saturation if applicable.
APFixedPoint shl(unsigned Amt, bool *Overflow=nullptr) const
bool operator<=(const APFixedPoint &Other) const
Definition: APFixedPoint.h:256
bool operator>(const APFixedPoint &Other) const
Definition: APFixedPoint.h:251
bool isSaturated() const
Definition: APFixedPoint.h:172
static APFixedPoint getEpsilon(const FixedPointSemantics &Sema)
static const fltSemantics * promoteFloatSemantics(const fltSemantics *S)
Given a floating point semantic, return the next floating point semantic with a larger exponent and l...
APFixedPoint div(const APFixedPoint &Other, bool *Overflow=nullptr) const
APFixedPoint mul(const APFixedPoint &Other, bool *Overflow=nullptr) const
APSInt getIntPart() const
Return the integral part of this fixed point number, rounded towards zero.
Definition: APFixedPoint.h:211
APFixedPoint add(const APFixedPoint &Other, bool *Overflow=nullptr) const
bool getBoolValue() const
Definition: APFixedPoint.h:177
int getMsbWeight() const
Definition: APFixedPoint.h:171
static APFixedPoint getMax(const FixedPointSemantics &Sema)
Class for arbitrary precision integers.
Definition: APInt.h:78
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1446
bool getBoolValue() const
Convert APInt to a boolean value.
Definition: APInt.h:449
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition: APInt.h:178
An arbitrary precision integer that knows its signedness.
Definition: APSInt.h:23
APSInt relativeShl(unsigned Amt) const
Definition: APSInt.h:217
bool isUnsigned() const
Definition: APSInt.h:78
APSInt extend(uint32_t width) const
Definition: APSInt.h:112
The fixed point semantics work similarly to fltSemantics.
Definition: APFixedPoint.h:34
static constexpr unsigned WidthBitWidth
Definition: APFixedPoint.h:36
unsigned getWidth() const
Definition: APFixedPoint.h:61
void setSaturated(bool Saturated)
Definition: APFixedPoint.h:71
bool hasUnsignedPadding() const
Definition: APFixedPoint.h:69
static constexpr unsigned LsbWeightBitWidth
Definition: APFixedPoint.h:37
unsigned getScale() const
Definition: APFixedPoint.h:62
unsigned getIntegralBits() const
Return the number of integral bits represented by these semantics.
Definition: APFixedPoint.h:79
FixedPointSemantics getCommonSemantics(const FixedPointSemantics &Other) const
Return the FixedPointSemantics that allows for calculating the full precision semantic that can preci...
bool operator!=(FixedPointSemantics Other) const
Definition: APFixedPoint.h:115
bool operator==(FixedPointSemantics Other) const
Definition: APFixedPoint.h:110
void print(llvm::raw_ostream &OS) const
Print semantics for debug purposes.
bool fitsInFloatSemantics(const fltSemantics &FloatSema) const
Returns true if this fixed-point semantic with its value bits interpreted as an integer can fit in th...
bool hasSignOrPaddingBit() const
return true if the first bit doesn't have a strictly positive weight
Definition: APFixedPoint.h:74
FixedPointSemantics(unsigned Width, Lsb Weight, bool IsSigned, bool IsSaturated, bool HasUnsignedPadding)
Definition: APFixedPoint.h:47
FixedPointSemantics(unsigned Width, unsigned Scale, bool IsSigned, bool IsSaturated, bool HasUnsignedPadding)
Definition: APFixedPoint.h:43
bool isValidLegacySema() const
Check if the Semantic follow the requirements of an older more limited version of this class.
Definition: APFixedPoint.h:58
static FixedPointSemantics GetIntegerSemantics(unsigned Width, bool IsSigned)
Return the FixedPointSemantics for an integer type.
Definition: APFixedPoint.h:103
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition: SmallString.h:26
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
LLVM Value Representation.
Definition: Value.h:74
An opaque object representing a hash code.
Definition: Hashing.h:75
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
hash_code hash_value(const FixedPointSemantics &Val)
Definition: APFixedPoint.h:127
@ Other
Any other memory.
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
Definition: APFixedPoint.h:292
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition: Hashing.h:593
static unsigned getHashValue(const APFixedPoint &Val)
Definition: APFixedPoint.h:310
static APFixedPoint getTombstoneKey()
Definition: APFixedPoint.h:306
static bool isEqual(const APFixedPoint &LHS, const APFixedPoint &RHS)
Definition: APFixedPoint.h:314
static APFixedPoint getEmptyKey()
Definition: APFixedPoint.h:302
static FixedPointSemantics getEmptyKey()
Definition: APFixedPoint.h:132
static bool isEqual(const char &LHS, const char &RHS)
Definition: APFixedPoint.h:144
static unsigned getHashValue(const FixedPointSemantics &Val)
Definition: APFixedPoint.h:140
static FixedPointSemantics getTombstoneKey()
Definition: APFixedPoint.h:136
An information struct used to provide DenseMap with the various necessary components for a given valu...
Definition: DenseMapInfo.h:52
Used to differentiate between constructors with Width and Lsb from the default Width and scale.
Definition: APFixedPoint.h:40