40#ifndef LLVM_CODEGEN_MACHINEPIPELINER_H
41#define LLVM_CODEGEN_MACHINEPIPELINER_H
113 bool useSwingModuloScheduler();
114 bool useWindowScheduler(
bool Changed);
126 bool Scheduled =
false;
130 unsigned II_setByPragma = 0;
140 int ZeroLatencyDepth = 0;
141 int ZeroLatencyHeight = 0;
143 NodeInfo() =
default;
146 std::vector<NodeInfo> ScheduleInfo;
148 enum OrderKind { BottomUp = 0, TopDown = 1 };
165 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
169 std::vector<SUnit> &SUnits;
175 std::vector<int> *Node2Idx;
176 unsigned NumPaths = 0u;
177 static unsigned MaxPaths;
181 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {
182 Node2Idx =
new std::vector<int>(SUs.size());
184 for (
const auto &NodeNum : Topo)
185 Node2Idx->at(NodeNum) =
Idx++;
187 Circuits &operator=(
const Circuits &other) =
delete;
188 Circuits(
const Circuits &other) =
delete;
189 ~Circuits() {
delete Node2Idx; }
200 bool circuit(
int V,
int S,
NodeSetType &NodeSets,
bool HasBackedge =
false);
213 RegClassInfo(rci), II_setByPragma(
II), LoopPipelinerInfo(PLI),
215 P.MF->getSubtarget().getSMSMutations(Mutations);
217 Mutations.push_back(std::make_unique<CopyToPhiMutation>());
242 return ScheduleInfo[
Node->NodeNum].ZeroLatencyDepth;
251 return ScheduleInfo[
Node->NodeNum].ZeroLatencyHeight;
283 InstrChanges.
find(SU);
284 if (It != InstrChanges.
end())
285 return It->second.first;
290 Mutations.push_back(std::move(
Mutation));
296 void addLoopCarriedDependences(
AAResults *AA);
297 void updatePhiDependences();
298 void changeDependences();
299 unsigned calculateResMII();
300 unsigned calculateRecMII(NodeSetType &RecNodeSets);
301 void findCircuits(NodeSetType &NodeSets);
302 void fuseRecs(NodeSetType &NodeSets);
303 void removeDuplicateNodes(NodeSetType &NodeSets);
304 void computeNodeFunctions(NodeSetType &NodeSets);
305 void registerPressureFilter(NodeSetType &NodeSets);
306 void colocateNodeSets(NodeSetType &NodeSets);
307 void checkNodeSets(NodeSetType &NodeSets);
308 void groupRemainingNodes(NodeSetType &NodeSets);
311 void computeNodeOrder(NodeSetType &NodeSets);
312 void checkValidNodeOrder(
const NodeSetType &Circuits)
const;
317 unsigned &OffsetPos,
unsigned &NewBase,
319 void postProcessDAG();
321 void setMII(
unsigned ResMII,
unsigned RecMII);
330 bool HasRecurrence =
false;
333 unsigned MaxDepth = 0;
334 unsigned Colocate = 0;
335 SUnit *ExceedPressure =
nullptr;
336 unsigned Latency = 0;
346 for (
const SDep &Succ :
Node->Succs) {
348 if (!Nodes.count(SuccSUnit))
351 unsigned MaxLatency = 0;
352 if (SuccSUnitLatency.
count(SuccSUnit))
353 MaxLatency = SuccSUnitLatency[SuccSUnit];
354 if (CurLatency > MaxLatency)
355 SuccSUnitLatency[SuccSUnit] = CurLatency;
357 for (
auto SUnitLatency : SuccSUnitLatency)
358 Latency += SUnitLatency.second;
366 template <
typename UnaryPredicate>
bool remove_if(UnaryPredicate
P) {
394 for (
SUnit *SU : *
this) {
395 MaxMOV = std::max(MaxMOV, SSD->
getMOV(SU));
396 MaxDepth = std::max(MaxDepth, SSD->
getDepth(SU));
407 HasRecurrence =
false;
411 ExceedPressure =
nullptr;
421 if (RecMII ==
RHS.RecMII) {
422 if (Colocate != 0 &&
RHS.Colocate != 0 && Colocate !=
RHS.Colocate)
423 return Colocate <
RHS.Colocate;
424 if (MaxMOV ==
RHS.MaxMOV)
425 return MaxDepth >
RHS.MaxDepth;
426 return MaxMOV <
RHS.MaxMOV;
428 return RecMII >
RHS.RecMII;
432 return RecMII ==
RHS.RecMII && MaxMOV ==
RHS.MaxMOV &&
433 MaxDepth ==
RHS.MaxDepth;
442#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
473 int InitiationInterval = 0;
477 int calculateResMIIDFA()
const;
479 bool isOverbooked()
const;
488 int positiveModulo(
int Dividend,
int Divisor)
const {
490 int R = Dividend % Divisor;
496#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
502 : STI(ST), SM(ST->getSchedModel()), ST(ST),
TII(ST->getInstrInfo()),
503 DAG(DAG), UseDFA(ST->useDFAforSMS()),
504 ProcResourceMasks(SM.getNumProcResourceKinds(), 0),
505 IssueWidth(SM.IssueWidth) {
545 std::map<SUnit *, int> InstrToCycle;
555 int InitiationInterval = 0;
567 : ST(mf->getSubtarget()),
MRI(mf->getRegInfo()),
568 ProcItinResources(&ST, DAG) {}
571 ScheduledInstrs.
clear();
572 InstrToCycle.clear();
575 InitiationInterval = 0;
580 InitiationInterval = ii;
581 ProcItinResources.
init(ii);
604 bool insert(
SUnit *SU,
int StartCycle,
int EndCycle,
int II);
619 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
620 if (it == InstrToCycle.end())
622 return (it->second - FirstCycle) / InitiationInterval;
628 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
629 assert(it != InstrToCycle.end() &&
"Instruction hasn't been scheduled.");
630 return (it->second - FirstCycle) % InitiationInterval;
635 return (LastCycle - FirstCycle) / InitiationInterval;
640 return ScheduledInstrs[cycle];
649 const std::deque<SUnit *> &Instrs)
const;
657 std::deque<SUnit *> &Insts)
const;
unsigned const MachineRegisterInfo * MRI
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
const HexagonInstrInfo * TII
uint64_t IntrinsicInst * II
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements a set that has insertion order iteration characteristics.
Represent the analysis usage information of a pass.
iterator find(const_arg_type_t< KeyT > Val)
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
A possibly irreducible generalization of a Loop.
Itinerary data supplied by a subtarget to be used by a target.
Represents a single loop in the control flow graph.
Generic base class for all target subtargets.
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
Representation of each machine instruction.
MachineOperand class - Representation of each machine instruction operand.
The main class in the implementation of the target independent software pipeliner pass.
const TargetInstrInfo * TII
bool runOnMachineFunction(MachineFunction &MF) override
The "main" function for implementing Swing Modulo Scheduling.
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
const MachineDominatorTree * MDT
const MachineLoopInfo * MLI
MachineOptimizationRemarkEmitter * ORE
RegisterClassInfo RegClassInfo
const InstrItineraryData * InstrItins
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
A NodeSet contains a set of SUnit DAG nodes with additional information that assigns a priority to th...
SUnit * getNode(unsigned i) const
SetVector< SUnit * >::const_iterator iterator
void print(raw_ostream &os) const
bool isExceedSU(SUnit *SU)
void insert(iterator S, iterator E)
void setRecMII(unsigned mii)
void computeNodeSetInfo(SwingSchedulerDAG *SSD)
Summarize node functions for the entire node set.
unsigned count(SUnit *SU) const
void setColocate(unsigned c)
bool operator>(const NodeSet &RHS) const
Sort the node sets by importance.
int compareRecMII(NodeSet &RHS)
NodeSet(iterator S, iterator E)
bool operator!=(const NodeSet &RHS) const
LLVM_DUMP_METHOD void dump() const
bool operator==(const NodeSet &RHS) const
bool remove_if(UnaryPredicate P)
void setExceedPressure(SUnit *SU)
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
Pass interface - Implemented by all 'passes'.
Wrapper class representing virtual and physical registers.
int calculateResMII() const
void initProcResourceVectors(const MCSchedModel &SM, SmallVectorImpl< uint64_t > &Masks)
ResourceManager(const TargetSubtargetInfo *ST, ScheduleDAGInstrs *DAG)
void init(int II)
Initialize resources with the initiation interval II.
bool canReserveResources(SUnit &SU, int Cycle)
Check if the resources occupied by a machine instruction are available in the current state.
Kind getKind() const
Returns an enum value representing the kind of the dependence.
@ Anti
A register anti-dependence (aka WAR).
unsigned getLatency() const
Returns the latency value for this edge, which roughly means the minimum number of cycles that must e...
This class represents the scheduled code.
std::deque< SUnit * > reorderInstructions(const SwingSchedulerDAG *SSD, const std::deque< SUnit * > &Instrs) const
int earliestCycleInChain(const SDep &Dep)
Return the cycle of the earliest scheduled instruction in the dependence chain.
void setInitiationInterval(int ii)
Set the initiation interval for this schedule.
SmallSet< SUnit *, 8 > computeUnpipelineableNodes(SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI)
Determine transitive dependences of unpipelineable instructions.
void dump() const
Utility function used for debugging to print the schedule.
bool insert(SUnit *SU, int StartCycle, int EndCycle, int II)
Try to schedule the node at the specified StartCycle and continue until the node is schedule or the E...
unsigned getMaxStageCount()
Return the maximum stage count needed for this schedule.
void print(raw_ostream &os) const
Print the schedule information to the given output.
int latestCycleInChain(const SDep &Dep)
Return the cycle of the latest scheduled instruction in the dependence chain.
int stageScheduled(SUnit *SU) const
Return the stage for a scheduled instruction.
bool isScheduledAtStage(SUnit *SU, unsigned StageNum)
Return true if the instruction is scheduled at the specified stage.
void orderDependence(const SwingSchedulerDAG *SSD, SUnit *SU, std::deque< SUnit * > &Insts) const
Order the instructions within a cycle so that the definitions occur before the uses.
bool isValidSchedule(SwingSchedulerDAG *SSD)
int getInitiationInterval() const
Return the initiation interval for this schedule.
std::deque< SUnit * > & getInstructions(int cycle)
Return the instructions that are scheduled at the specified cycle.
int getFirstCycle() const
Return the first cycle in the completed schedule.
bool isLoopCarriedDefOfUse(const SwingSchedulerDAG *SSD, MachineInstr *Def, MachineOperand &MO) const
Return true if the instruction is a definition that is loop carried and defines the use on the next i...
unsigned cycleScheduled(SUnit *SU) const
Return the cycle for a scheduled instruction.
void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, int II, SwingSchedulerDAG *DAG)
Compute the scheduling start slot for the instruction.
SMSchedule(MachineFunction *mf, SwingSchedulerDAG *DAG)
bool onlyHasLoopCarriedOutputOrOrderPreds(SUnit *SU, SwingSchedulerDAG *DAG) const
Return true if all scheduled predecessors are loop-carried output/order dependencies.
bool normalizeNonPipelinedInstructions(SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI)
bool isLoopCarried(const SwingSchedulerDAG *SSD, MachineInstr &Phi) const
Return true if the scheduled Phi has a loop carried operand.
int getFinalCycle() const
Return the last cycle in the finalized schedule.
void finalizeSchedule(SwingSchedulerDAG *SSD)
After the schedule has been formed, call this function to combine the instructions from the different...
Scheduling unit. This is a node in the scheduling DAG.
MachineInstr * getInstr() const
Returns the representative MachineInstr for this SUnit.
A ScheduleDAG for scheduling lists of MachineInstr.
const MachineLoopInfo * MLI
Mutate the DAG as a postpass after normal DAG building.
This class can compute a topological ordering for SUnits and provides methods for dynamically updatin...
std::vector< SUnit > SUnits
The scheduling units.
MachineFunction & MF
Machine function.
SUnit ExitSU
Special node for the region exit.
A vector that has set insertion semantics.
bool remove_if(UnaryPredicate P)
Remove items from the set vector based on a predicate function.
size_type size() const
Determine the number of elements in the SetVector.
iterator end()
Get an iterator to the end of the SetVector.
typename vector_type::const_iterator const_iterator
void clear()
Completely clear the SetVector.
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool empty() const
Determine if the SetVector is empty or not.
iterator begin()
Get an iterator to the beginning of the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class builds the dependence graph for the instructions in a loop, and attempts to schedule the i...
unsigned getInstrBaseReg(SUnit *SU) const
Return the new base register that was stored away for the changed instruction.
unsigned getDepth(SUnit *Node)
The depth, in the dependence graph, for a node.
int getASAP(SUnit *Node)
Return the earliest time an instruction may be scheduled.
void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule)
Apply changes to the instruction if needed.
void finishBlock() override
Clean up after the software pipeliner runs.
void fixupRegisterOverlaps(std::deque< SUnit * > &Instrs)
Attempt to fix the degenerate cases when the instruction serialization causes the register lifetimes ...
bool hasNewSchedule()
Return true if the loop kernel has been scheduled.
void addMutation(std::unique_ptr< ScheduleDAGMutation > Mutation)
SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, const RegisterClassInfo &rci, unsigned II, TargetInstrInfo::PipelinerLoopInfo *PLI)
int getZeroLatencyDepth(SUnit *Node)
The maximum unweighted length of a path from an arbitrary node to the given node in which each edge h...
bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc=true)
Return true for an order or output dependence that is loop carried potentially.
unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep)
The distance function, which indicates that operation V of iteration I depends on operations U of ite...
void schedule() override
We override the schedule function in ScheduleDAGInstrs to implement the scheduling part of the Swing ...
int getMOV(SUnit *Node)
The mobility function, which the number of slots in which an instruction may be scheduled.
int getZeroLatencyHeight(SUnit *Node)
The maximum unweighted length of a path from the given node to an arbitrary node in which each edge h...
bool isBackedge(SUnit *Source, const SDep &Dep)
Return true if the dependence is a back-edge in the data dependence graph.
static bool classof(const ScheduleDAGInstrs *DAG)
unsigned getHeight(SUnit *Node)
The height, in the dependence graph, for a node.
int getALAP(SUnit *Node)
Return the latest time an instruction my be scheduled.
Object returned by analyzeLoopForPipelining.
TargetInstrInfo - Interface to description of machine instruction set.
TargetSubtargetInfo - Generic base class for all target subtargets.
This class implements an extremely fast bulk output stream that can only output to a stream.
std::set< NodeId > NodeSet
This is an optimization pass for GlobalISel generic memory operations.
void initializeMachinePipelinerPass(PassRegistry &)
cl::opt< bool > SwpEnableCopyToPhi
static const int DefaultProcResSize
cl::opt< int > SwpForceIssueWidth
A command line argument to force pipeliner to use specified issue width.
Summarize the scheduling resources required for an instruction of a particular scheduling class.
Machine model for scheduling, bundling, and heuristics.
Cache the target analysis information about the loop.
MachineInstr * LoopInductionVar
SmallVector< MachineOperand, 4 > BrCond
MachineInstr * LoopCompare
std::unique_ptr< TargetInstrInfo::PipelinerLoopInfo > LoopPipelinerInfo