LLVM 22.0.0git
MachineInstr.h
Go to the documentation of this file.
1//===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the declaration of the MachineInstr class, which is the
10// basic representation for all target dependent machine instructions used by
11// the back end.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_MACHINEINSTR_H
16#define LLVM_CODEGEN_MACHINEINSTR_H
17
18#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/ilist.h"
22#include "llvm/ADT/ilist_node.h"
28#include "llvm/IR/DebugLoc.h"
29#include "llvm/IR/InlineAsm.h"
30#include "llvm/MC/MCInstrDesc.h"
31#include "llvm/MC/MCSymbol.h"
36#include <algorithm>
37#include <cassert>
38#include <cstdint>
39#include <utility>
40
41namespace llvm {
42
43class DILabel;
44class Instruction;
45class MDNode;
46class AAResults;
47class BatchAAResults;
48class DIExpression;
49class DILocalVariable;
50class LiveRegUnits;
52class MachineFunction;
55class raw_ostream;
56template <typename T> class SmallVectorImpl;
57class SmallBitVector;
58class StringRef;
59class TargetInstrInfo;
62
63//===----------------------------------------------------------------------===//
64/// Representation of each machine instruction.
65///
66/// This class isn't a POD type, but it must have a trivial destructor. When a
67/// MachineFunction is deleted, all the contained MachineInstrs are deallocated
68/// without having their destructor called.
69///
70class MachineInstr
71 : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
72 ilist_sentinel_tracking<true>> {
73public:
75
76 /// Flags to specify different kinds of comments to output in
77 /// assembly code. These flags carry semantic information not
78 /// otherwise easily derivable from the IR text.
79 ///
81 ReloadReuse = 0x1, // higher bits are reserved for target dep comments.
83 TAsmComments = 0x4 // Target Asm comments should start from this value.
84 };
85
86 enum MIFlag {
88 FrameSetup = 1 << 0, // Instruction is used as a part of
89 // function frame setup code.
90 FrameDestroy = 1 << 1, // Instruction is used as a part of
91 // function frame destruction code.
92 BundledPred = 1 << 2, // Instruction has bundled predecessors.
93 BundledSucc = 1 << 3, // Instruction has bundled successors.
94 FmNoNans = 1 << 4, // Instruction does not support Fast
95 // math nan values.
96 FmNoInfs = 1 << 5, // Instruction does not support Fast
97 // math infinity values.
98 FmNsz = 1 << 6, // Instruction is not required to retain
99 // signed zero values.
100 FmArcp = 1 << 7, // Instruction supports Fast math
101 // reciprocal approximations.
102 FmContract = 1 << 8, // Instruction supports Fast math
103 // contraction operations like fma.
104 FmAfn = 1 << 9, // Instruction may map to Fast math
105 // intrinsic approximation.
106 FmReassoc = 1 << 10, // Instruction supports Fast math
107 // reassociation of operand order.
108 NoUWrap = 1 << 11, // Instruction supports binary operator
109 // no unsigned wrap.
110 NoSWrap = 1 << 12, // Instruction supports binary operator
111 // no signed wrap.
112 IsExact = 1 << 13, // Instruction supports division is
113 // known to be exact.
114 NoFPExcept = 1 << 14, // Instruction does not raise
115 // floatint-point exceptions.
116 NoMerge = 1 << 15, // Passes that drop source location info
117 // (e.g. branch folding) should skip
118 // this instruction.
119 Unpredictable = 1 << 16, // Instruction with unpredictable condition.
120 NoConvergent = 1 << 17, // Call does not require convergence guarantees.
121 NonNeg = 1 << 18, // The operand is non-negative.
122 Disjoint = 1 << 19, // Each bit is zero in at least one of the inputs.
123 NoUSWrap = 1 << 20, // Instruction supports geps
124 // no unsigned signed wrap.
125 SameSign = 1 << 21, // Both operands have the same sign.
126 InBounds = 1 << 22 // Pointer arithmetic remains inbounds.
127 // Implies NoUSWrap.
128 };
129
130private:
131 const MCInstrDesc *MCID; // Instruction descriptor.
132 MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block.
133
134 // Operands are allocated by an ArrayRecycler.
135 MachineOperand *Operands = nullptr; // Pointer to the first operand.
136
137#define LLVM_MI_NUMOPERANDS_BITS 24
138#define LLVM_MI_FLAGS_BITS 24
139#define LLVM_MI_ASMPRINTERFLAGS_BITS 8
140
141 /// Number of operands on instruction.
143
144 // OperandCapacity has uint8_t size, so it should be next to NumOperands
145 // to properly pack.
146 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
147 OperandCapacity CapOperands; // Capacity of the Operands array.
148
149 /// Various bits of additional information about the machine instruction.
151
152 /// Various bits of information used by the AsmPrinter to emit helpful
153 /// comments. This is *not* semantic information. Do not use this for
154 /// anything other than to convey comment information to AsmPrinter.
155 uint32_t AsmPrinterFlags : LLVM_MI_ASMPRINTERFLAGS_BITS;
156
157 /// Internal implementation detail class that provides out-of-line storage for
158 /// extra info used by the machine instruction when this info cannot be stored
159 /// in-line within the instruction itself.
160 ///
161 /// This has to be defined eagerly due to the implementation constraints of
162 /// `PointerSumType` where it is used.
163 class ExtraInfo final
164 : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *, MDNode *,
165 uint32_t, Value *> {
166 public:
167 static ExtraInfo *create(BumpPtrAllocator &Allocator,
169 MCSymbol *PreInstrSymbol = nullptr,
170 MCSymbol *PostInstrSymbol = nullptr,
171 MDNode *HeapAllocMarker = nullptr,
172 MDNode *PCSections = nullptr, uint32_t CFIType = 0,
173 MDNode *MMRAs = nullptr, Value *DS = nullptr) {
174 bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
175 bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
176 bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
177 bool HasMMRAs = MMRAs != nullptr;
178 bool HasCFIType = CFIType != 0;
179 bool HasPCSections = PCSections != nullptr;
180 bool HasDS = DS != nullptr;
181 auto *Result = new (Allocator.Allocate(
182 totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *, uint32_t,
183 Value *>(
184 MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol,
185 HasHeapAllocMarker + HasPCSections + HasMMRAs, HasCFIType, HasDS),
186 alignof(ExtraInfo)))
187 ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol,
188 HasHeapAllocMarker, HasPCSections, HasCFIType, HasMMRAs,
189 HasDS);
190
191 // Copy the actual data into the trailing objects.
192 llvm::copy(MMOs, Result->getTrailingObjects<MachineMemOperand *>());
193
194 unsigned MDNodeIdx = 0;
195
196 if (HasPreInstrSymbol)
197 Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
198 if (HasPostInstrSymbol)
199 Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
200 PostInstrSymbol;
201 if (HasHeapAllocMarker)
202 Result->getTrailingObjects<MDNode *>()[MDNodeIdx++] = HeapAllocMarker;
203 if (HasPCSections)
204 Result->getTrailingObjects<MDNode *>()[MDNodeIdx++] = PCSections;
205 if (HasCFIType)
206 Result->getTrailingObjects<uint32_t>()[0] = CFIType;
207 if (HasMMRAs)
208 Result->getTrailingObjects<MDNode *>()[MDNodeIdx++] = MMRAs;
209 if (HasDS)
210 Result->getTrailingObjects<Value *>()[0] = DS;
211
212 return Result;
213 }
214
215 ArrayRef<MachineMemOperand *> getMMOs() const {
217 }
218
219 MCSymbol *getPreInstrSymbol() const {
220 return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
221 }
222
223 MCSymbol *getPostInstrSymbol() const {
224 return HasPostInstrSymbol
225 ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
226 : nullptr;
227 }
228
229 MDNode *getHeapAllocMarker() const {
230 return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr;
231 }
232
233 MDNode *getPCSections() const {
234 return HasPCSections
235 ? getTrailingObjects<MDNode *>()[HasHeapAllocMarker]
236 : nullptr;
237 }
238
239 uint32_t getCFIType() const {
240 return HasCFIType ? getTrailingObjects<uint32_t>()[0] : 0;
241 }
242
243 MDNode *getMMRAMetadata() const {
244 return HasMMRAs ? getTrailingObjects<MDNode *>()[HasHeapAllocMarker +
245 HasPCSections]
246 : nullptr;
247 }
248
249 Value *getDeactivationSymbol() const {
250 return HasDS ? getTrailingObjects<Value *>()[0] : 0;
251 }
252
253 private:
254 friend TrailingObjects;
255
256 // Description of the extra info, used to interpret the actual optional
257 // data appended.
258 //
259 // Note that this is not terribly space optimized. This leaves a great deal
260 // of flexibility to fit more in here later.
261 const int NumMMOs;
262 const bool HasPreInstrSymbol;
263 const bool HasPostInstrSymbol;
264 const bool HasHeapAllocMarker;
265 const bool HasPCSections;
266 const bool HasCFIType;
267 const bool HasMMRAs;
268 const bool HasDS;
269
270 // Implement the `TrailingObjects` internal API.
271 size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
272 return NumMMOs;
273 }
274 size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
275 return HasPreInstrSymbol + HasPostInstrSymbol;
276 }
277 size_t numTrailingObjects(OverloadToken<MDNode *>) const {
278 return HasHeapAllocMarker + HasPCSections;
279 }
280 size_t numTrailingObjects(OverloadToken<uint32_t>) const {
281 return HasCFIType;
282 }
283 size_t numTrailingObjects(OverloadToken<Value *>) const { return HasDS; }
284
285 // Just a boring constructor to allow us to initialize the sizes. Always use
286 // the `create` routine above.
287 ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol,
288 bool HasHeapAllocMarker, bool HasPCSections, bool HasCFIType,
289 bool HasMMRAs, bool HasDS)
290 : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
291 HasPostInstrSymbol(HasPostInstrSymbol),
292 HasHeapAllocMarker(HasHeapAllocMarker), HasPCSections(HasPCSections),
293 HasCFIType(HasCFIType), HasMMRAs(HasMMRAs), HasDS(HasDS) {}
294 };
295
296 /// Enumeration of the kinds of inline extra info available. It is important
297 /// that the `MachineMemOperand` inline kind has a tag value of zero to make
298 /// it accessible as an `ArrayRef`.
299 enum ExtraInfoInlineKinds {
300 EIIK_MMO = 0,
301 EIIK_PreInstrSymbol,
302 EIIK_PostInstrSymbol,
303 EIIK_OutOfLine
304 };
305
306 // We store extra information about the instruction here. The common case is
307 // expected to be nothing or a single pointer (typically a MMO or a symbol).
308 // We work to optimize this common case by storing it inline here rather than
309 // requiring a separate allocation, but we fall back to an allocation when
310 // multiple pointers are needed.
311 PointerSumType<ExtraInfoInlineKinds,
312 PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
313 PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
314 PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
315 PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
316 Info;
317
318 DebugLoc DbgLoc; // Source line information.
319
320 /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values
321 /// defined by this instruction.
322 unsigned DebugInstrNum;
323
324 /// Cached opcode from MCID.
325 uint16_t Opcode;
326
327 // Intrusive list support
328 friend struct ilist_traits<MachineInstr>;
330 void setParent(MachineBasicBlock *P) { Parent = P; }
331
332 /// This constructor creates a copy of the given
333 /// MachineInstr in the given MachineFunction.
335
336 /// This constructor create a MachineInstr and add the implicit operands.
337 /// It reserves space for number of operands specified by
338 /// MCInstrDesc. An explicit DebugLoc is supplied.
340 bool NoImp = false);
341
342 // MachineInstrs are pool-allocated and owned by MachineFunction.
343 friend class MachineFunction;
344
345 void
346 dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
347 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const;
348
349 static bool opIsRegDef(const MachineOperand &Op) {
350 return Op.isReg() && Op.isDef();
351 }
352
353 static bool opIsRegUse(const MachineOperand &Op) {
354 return Op.isReg() && Op.isUse();
355 }
356
357 MutableArrayRef<MachineOperand> operands_impl() {
358 return {Operands, NumOperands};
359 }
360 ArrayRef<MachineOperand> operands_impl() const {
361 return {Operands, NumOperands};
362 }
363
364public:
365 MachineInstr(const MachineInstr &) = delete;
366 MachineInstr &operator=(const MachineInstr &) = delete;
367 // Use MachineFunction::DeleteMachineInstr() instead.
368 ~MachineInstr() = delete;
369
370 const MachineBasicBlock* getParent() const { return Parent; }
371 MachineBasicBlock* getParent() { return Parent; }
372
373 /// Move the instruction before \p MovePos.
374 LLVM_ABI void moveBefore(MachineInstr *MovePos);
375
376 /// Return the function that contains the basic block that this instruction
377 /// belongs to.
378 ///
379 /// Note: this is undefined behaviour if the instruction does not have a
380 /// parent.
381 LLVM_ABI const MachineFunction *getMF() const;
383 return const_cast<MachineFunction *>(
384 static_cast<const MachineInstr *>(this)->getMF());
385 }
386
387 /// Return the asm printer flags bitvector.
388 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
389
390 /// Clear the AsmPrinter bitvector.
391 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
392
393 /// Return whether an AsmPrinter flag is set.
396 "Flag is out of range for the AsmPrinterFlags field");
397 return AsmPrinterFlags & Flag;
398 }
399
400 /// Set a flag for the AsmPrinter.
403 "Flag is out of range for the AsmPrinterFlags field");
404 AsmPrinterFlags |= Flag;
405 }
406
407 /// Clear specific AsmPrinter flags.
410 "Flag is out of range for the AsmPrinterFlags field");
411 AsmPrinterFlags &= ~Flag;
412 }
413
414 /// Return the MI flags bitvector.
416 return Flags;
417 }
418
419 /// Return whether an MI flag is set.
420 bool getFlag(MIFlag Flag) const {
421 assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) &&
422 "Flag is out of range for the Flags field");
423 return Flags & Flag;
424 }
425
426 /// Set a MI flag.
427 void setFlag(MIFlag Flag) {
428 assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) &&
429 "Flag is out of range for the Flags field");
430 Flags |= (uint32_t)Flag;
431 }
432
433 void setFlags(unsigned flags) {
435 "flags to be set are out of range for the Flags field");
436 // Filter out the automatically maintained flags.
437 unsigned Mask = BundledPred | BundledSucc;
438 Flags = (Flags & Mask) | (flags & ~Mask);
439 }
440
441 /// clearFlag - Clear a MI flag.
442 void clearFlag(MIFlag Flag) {
443 assert(isUInt<LLVM_MI_FLAGS_BITS>(unsigned(Flag)) &&
444 "Flag to clear is out of range for the Flags field");
445 Flags &= ~((uint32_t)Flag);
446 }
447
448 void clearFlags(unsigned flags) {
450 "flags to be cleared are out of range for the Flags field");
451 Flags &= ~flags;
452 }
453
454 /// Return true if MI is in a bundle (but not the first MI in a bundle).
455 ///
456 /// A bundle looks like this before it's finalized:
457 /// ----------------
458 /// | MI |
459 /// ----------------
460 /// |
461 /// ----------------
462 /// | MI * |
463 /// ----------------
464 /// |
465 /// ----------------
466 /// | MI * |
467 /// ----------------
468 /// In this case, the first MI starts a bundle but is not inside a bundle, the
469 /// next 2 MIs are considered "inside" the bundle.
470 ///
471 /// After a bundle is finalized, it looks like this:
472 /// ----------------
473 /// | Bundle |
474 /// ----------------
475 /// |
476 /// ----------------
477 /// | MI * |
478 /// ----------------
479 /// |
480 /// ----------------
481 /// | MI * |
482 /// ----------------
483 /// |
484 /// ----------------
485 /// | MI * |
486 /// ----------------
487 /// The first instruction has the special opcode "BUNDLE". It's not "inside"
488 /// a bundle, but the next three MIs are.
489 bool isInsideBundle() const {
490 return getFlag(BundledPred);
491 }
492
493 /// Return true if this instruction part of a bundle. This is true
494 /// if either itself or its following instruction is marked "InsideBundle".
495 bool isBundled() const {
497 }
498
499 /// Return true if this instruction is part of a bundle, and it is not the
500 /// first instruction in the bundle.
501 bool isBundledWithPred() const { return getFlag(BundledPred); }
502
503 /// Return true if this instruction is part of a bundle, and it is not the
504 /// last instruction in the bundle.
505 bool isBundledWithSucc() const { return getFlag(BundledSucc); }
506
507 /// Bundle this instruction with its predecessor. This can be an unbundled
508 /// instruction, or it can be the first instruction in a bundle.
510
511 /// Bundle this instruction with its successor. This can be an unbundled
512 /// instruction, or it can be the last instruction in a bundle.
514
515 /// Break bundle above this instruction.
517
518 /// Break bundle below this instruction.
520
521 /// Returns the debug location id of this MachineInstr.
522 const DebugLoc &getDebugLoc() const { return DbgLoc; }
523
524 /// Return the operand containing the offset to be used if this DBG_VALUE
525 /// instruction is indirect; will be an invalid register if this value is
526 /// not indirect, and an immediate with value 0 otherwise.
528 assert(isNonListDebugValue() && "not a DBG_VALUE");
529 return getOperand(1);
530 }
532 assert(isNonListDebugValue() && "not a DBG_VALUE");
533 return getOperand(1);
534 }
535
536 /// Return the operand for the debug variable referenced by
537 /// this DBG_VALUE instruction.
540
541 /// Return the debug variable referenced by
542 /// this DBG_VALUE instruction.
544
545 /// Return the operand for the complex address expression referenced by
546 /// this DBG_VALUE instruction.
549
550 /// Return the complex address expression referenced by
551 /// this DBG_VALUE instruction.
553
554 /// Return the debug label referenced by
555 /// this DBG_LABEL instruction.
556 LLVM_ABI const DILabel *getDebugLabel() const;
557
558 /// Fetch the instruction number of this MachineInstr. If it does not have
559 /// one already, a new and unique number will be assigned.
560 LLVM_ABI unsigned getDebugInstrNum();
561
562 /// Fetch instruction number of this MachineInstr -- but before it's inserted
563 /// into \p MF. Needed for transformations that create an instruction but
564 /// don't immediately insert them.
566
567 /// Examine the instruction number of this MachineInstr. May be zero if
568 /// it hasn't been assigned a number yet.
569 unsigned peekDebugInstrNum() const { return DebugInstrNum; }
570
571 /// Set instruction number of this MachineInstr. Avoid using unless you're
572 /// deserializing this information.
573 void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; }
574
575 /// Drop any variable location debugging information associated with this
576 /// instruction. Use when an instruction is modified in such a way that it no
577 /// longer defines the value it used to. Variable locations using that value
578 /// will be dropped.
579 void dropDebugNumber() { DebugInstrNum = 0; }
580
581 /// For inline asm, get the !srcloc metadata node if we have it, and decode
582 /// the loc cookie from it.
583 LLVM_ABI const MDNode *getLocCookieMD() const;
584
585 /// Emit an error referring to the source location of this instruction. This
586 /// should only be used for inline assembly that is somehow impossible to
587 /// compile. Other errors should have been handled much earlier.
588 LLVM_ABI void emitInlineAsmError(const Twine &ErrMsg) const;
589
590 // Emit an error in the LLVMContext referring to the source location of this
591 // instruction, if available.
592 LLVM_ABI void emitGenericError(const Twine &ErrMsg) const;
593
594 /// Returns the target instruction descriptor of this MachineInstr.
595 const MCInstrDesc &getDesc() const { return *MCID; }
596
597 /// Returns the opcode of this MachineInstr.
598 unsigned getOpcode() const { return Opcode; }
599
600 /// Retuns the total number of operands.
601 unsigned getNumOperands() const { return NumOperands; }
602
603 /// Returns the total number of operands which are debug locations.
604 unsigned getNumDebugOperands() const { return size(debug_operands()); }
605
606 const MachineOperand &getOperand(unsigned i) const {
607 return operands_impl()[i];
608 }
609 MachineOperand &getOperand(unsigned i) { return operands_impl()[i]; }
610
612 assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
613 return *(debug_operands().begin() + Index);
614 }
615 const MachineOperand &getDebugOperand(unsigned Index) const {
616 assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
617 return *(debug_operands().begin() + Index);
618 }
619
620 /// Returns whether this debug value has at least one debug operand with the
621 /// register \p Reg.
623 return any_of(debug_operands(), [Reg](const MachineOperand &Op) {
624 return Op.isReg() && Op.getReg() == Reg;
625 });
626 }
627
628 /// Returns a range of all of the operands that correspond to a debug use of
629 /// \p Reg.
631 const MachineOperand *, std::function<bool(const MachineOperand &Op)>>>
635 std::function<bool(MachineOperand &Op)>>>
637
638 bool isDebugOperand(const MachineOperand *Op) const {
639 return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands());
640 }
641
642 unsigned getDebugOperandIndex(const MachineOperand *Op) const {
643 assert(isDebugOperand(Op) && "Expected a debug operand.");
644 return std::distance(adl_begin(debug_operands()), Op);
645 }
646
647 /// Returns the total number of definitions.
648 unsigned getNumDefs() const {
649 return getNumExplicitDefs() + MCID->implicit_defs().size();
650 }
651
652 /// Returns true if the instruction has implicit definition.
653 bool hasImplicitDef() const {
654 for (const MachineOperand &MO : implicit_operands())
655 if (MO.isDef())
656 return true;
657 return false;
658 }
659
660 /// Returns the implicit operands number.
661 unsigned getNumImplicitOperands() const {
663 }
664
665 /// Return true if operand \p OpIdx is a subregister index.
666 bool isOperandSubregIdx(unsigned OpIdx) const {
667 assert(getOperand(OpIdx).isImm() && "Expected MO_Immediate operand type.");
668 if (isExtractSubreg() && OpIdx == 2)
669 return true;
670 if (isInsertSubreg() && OpIdx == 3)
671 return true;
672 if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
673 return true;
674 if (isSubregToReg() && OpIdx == 3)
675 return true;
676 return false;
677 }
678
679 /// Returns the number of non-implicit operands.
680 LLVM_ABI unsigned getNumExplicitOperands() const;
681
682 /// Returns the number of non-implicit definitions.
683 LLVM_ABI unsigned getNumExplicitDefs() const;
684
685 /// iterator/begin/end - Iterate over all operands of a machine instruction.
686
687 // The operands must always be in the following order:
688 // - explicit reg defs,
689 // - other explicit operands (reg uses, immediates, etc.),
690 // - implicit reg defs
691 // - implicit reg uses
694
697
698 mop_iterator operands_begin() { return Operands; }
699 mop_iterator operands_end() { return Operands + NumOperands; }
700
701 const_mop_iterator operands_begin() const { return Operands; }
702 const_mop_iterator operands_end() const { return Operands + NumOperands; }
703
704 mop_range operands() { return operands_impl(); }
705 const_mop_range operands() const { return operands_impl(); }
706
708 return operands_impl().take_front(getNumExplicitOperands());
709 }
711 return operands_impl().take_front(getNumExplicitOperands());
712 }
714 return operands_impl().drop_front(getNumExplicitOperands());
715 }
717 return operands_impl().drop_front(getNumExplicitOperands());
718 }
719
720 /// Returns all operands that are used to determine the variable
721 /// location for this DBG_VALUE instruction.
723 assert(isDebugValueLike() && "Must be a debug value instruction.");
724 return isNonListDebugValue() ? operands_impl().take_front(1)
725 : operands_impl().drop_front(2);
726 }
727 /// \copydoc debug_operands()
729 assert(isDebugValueLike() && "Must be a debug value instruction.");
730 return isNonListDebugValue() ? operands_impl().take_front(1)
731 : operands_impl().drop_front(2);
732 }
733 /// Returns all explicit operands that are register definitions.
734 /// Implicit definition are not included!
735 mop_range defs() { return operands_impl().take_front(getNumExplicitDefs()); }
736 /// \copydoc defs()
738 return operands_impl().take_front(getNumExplicitDefs());
739 }
740 /// Returns all operands which may be register uses.
741 /// This may include unrelated operands which are not register uses.
742 mop_range uses() { return operands_impl().drop_front(getNumExplicitDefs()); }
743 /// \copydoc uses()
745 return operands_impl().drop_front(getNumExplicitDefs());
746 }
748 return operands_impl()
749 .take_front(getNumExplicitOperands())
750 .drop_front(getNumExplicitDefs());
751 }
753 return operands_impl()
754 .take_front(getNumExplicitOperands())
755 .drop_front(getNumExplicitDefs());
756 }
757
762
763 /// Returns an iterator range over all operands that are (explicit or
764 /// implicit) register defs.
766 return make_filter_range(operands(), opIsRegDef);
767 }
768 /// \copydoc all_defs()
770 return make_filter_range(operands(), opIsRegDef);
771 }
772
773 /// Returns an iterator range over all operands that are (explicit or
774 /// implicit) register uses.
776 return make_filter_range(uses(), opIsRegUse);
777 }
778 /// \copydoc all_uses()
780 return make_filter_range(uses(), opIsRegUse);
781 }
782
783 /// Returns the number of the operand iterator \p I points to.
785 return I - operands_begin();
786 }
787
788 /// Access to memory operands of the instruction. If there are none, that does
789 /// not imply anything about whether the function accesses memory. Instead,
790 /// the caller must behave conservatively.
792 if (!Info)
793 return {};
794
795 if (Info.is<EIIK_MMO>())
796 return ArrayRef(Info.getAddrOfZeroTagPointer(), 1);
797
798 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
799 return EI->getMMOs();
800
801 return {};
802 }
803
804 /// Access to memory operands of the instruction.
805 ///
806 /// If `memoperands_begin() == memoperands_end()`, that does not imply
807 /// anything about whether the function accesses memory. Instead, the caller
808 /// must behave conservatively.
809 mmo_iterator memoperands_begin() const { return memoperands().begin(); }
810
811 /// Access to memory operands of the instruction.
812 ///
813 /// If `memoperands_begin() == memoperands_end()`, that does not imply
814 /// anything about whether the function accesses memory. Instead, the caller
815 /// must behave conservatively.
816 mmo_iterator memoperands_end() const { return memoperands().end(); }
817
818 /// Return true if we don't have any memory operands which described the
819 /// memory access done by this instruction. If this is true, calling code
820 /// must be conservative.
821 bool memoperands_empty() const { return memoperands().empty(); }
822
823 /// Return true if this instruction has exactly one MachineMemOperand.
824 bool hasOneMemOperand() const { return memoperands().size() == 1; }
825
826 /// Return the number of memory operands.
827 unsigned getNumMemOperands() const { return memoperands().size(); }
828
829 /// Helper to extract a pre-instruction symbol if one has been added.
831 if (!Info)
832 return nullptr;
833 if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
834 return S;
835 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
836 return EI->getPreInstrSymbol();
837
838 return nullptr;
839 }
840
841 /// Helper to extract a post-instruction symbol if one has been added.
843 if (!Info)
844 return nullptr;
845 if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
846 return S;
847 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
848 return EI->getPostInstrSymbol();
849
850 return nullptr;
851 }
852
853 /// Helper to extract a heap alloc marker if one has been added.
855 if (!Info)
856 return nullptr;
857 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
858 return EI->getHeapAllocMarker();
859
860 return nullptr;
861 }
862
863 /// Helper to extract PCSections metadata target sections.
865 if (!Info)
866 return nullptr;
867 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
868 return EI->getPCSections();
869
870 return nullptr;
871 }
872
873 /// Helper to extract mmra.op metadata.
875 if (!Info)
876 return nullptr;
877 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
878 return EI->getMMRAMetadata();
879 return nullptr;
880 }
881
883 if (!Info)
884 return nullptr;
885 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
886 return EI->getDeactivationSymbol();
887 return nullptr;
888 }
889
890 /// Helper to extract a CFI type hash if one has been added.
892 if (!Info)
893 return 0;
894 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
895 return EI->getCFIType();
896
897 return 0;
898 }
899
900 /// API for querying MachineInstr properties. They are the same as MCInstrDesc
901 /// queries but they are bundle aware.
902
904 IgnoreBundle, // Ignore bundles
905 AnyInBundle, // Return true if any instruction in bundle has property
906 AllInBundle // Return true if all instructions in bundle have property
907 };
908
909 /// Return true if the instruction (or in the case of a bundle,
910 /// the instructions inside the bundle) has the specified property.
911 /// The first argument is the property being queried.
912 /// The second argument indicates whether the query should look inside
913 /// instruction bundles.
914 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
915 assert(MCFlag < 64 &&
916 "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.");
917 // Inline the fast path for unbundled or bundle-internal instructions.
919 return getDesc().getFlags() & (1ULL << MCFlag);
920
921 // If this is the first instruction in a bundle, take the slow path.
922 return hasPropertyInBundle(1ULL << MCFlag, Type);
923 }
924
925 /// Return true if this is an instruction that should go through the usual
926 /// legalization steps.
930
931 /// Return true if this instruction can have a variable number of operands.
932 /// In this case, the variable operands will be after the normal
933 /// operands but before the implicit definitions and uses (if any are
934 /// present).
938
939 /// Set if this instruction has an optional definition, e.g.
940 /// ARM instructions which can set condition code if 's' bit is set.
944
945 /// Return true if this is a pseudo instruction that doesn't
946 /// correspond to a real machine instruction.
949 }
950
951 /// Return true if this instruction doesn't produce any output in the form of
952 /// executable instructions.
956
959 }
960
961 /// Return true if this is an instruction that marks the end of an EH scope,
962 /// i.e., a catchpad or a cleanuppad instruction.
966
968 return hasProperty(MCID::Call, Type);
969 }
970
971 /// Return true if this is a call instruction that may have an additional
972 /// information associated with it.
973 LLVM_ABI bool
975
976 /// Return true if copying, moving, or erasing this instruction requires
977 /// updating additional call info (see \ref copyCallInfo, \ref moveCallInfo,
978 /// \ref eraseCallInfo).
980
981 /// Returns true if the specified instruction stops control flow
982 /// from executing the instruction immediately following it. Examples include
983 /// unconditional branches and return instructions.
986 }
987
988 /// Returns true if this instruction part of the terminator for a basic block.
989 /// Typically this is things like return and branch instructions.
990 ///
991 /// Various passes use this to insert code into the bottom of a basic block,
992 /// but before control flow occurs.
996
997 /// Returns true if this is a conditional, unconditional, or indirect branch.
998 /// Predicates below can be used to discriminate between
999 /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to
1000 /// get more information.
1002 return hasProperty(MCID::Branch, Type);
1003 }
1004
1005 /// Return true if this is an indirect branch, such as a
1006 /// branch through a register.
1010
1011 /// Return true if this is a branch which may fall
1012 /// through to the next instruction or may transfer control flow to some other
1013 /// block. The TargetInstrInfo::analyzeBranch method can be used to get more
1014 /// information about this branch.
1018
1019 /// Return true if this is a branch which always
1020 /// transfers control flow to some other block. The
1021 /// TargetInstrInfo::analyzeBranch method can be used to get more information
1022 /// about this branch.
1026
1027 /// Return true if this instruction has a predicate operand that
1028 /// controls execution. It may be set to 'always', or may be set to other
1029 /// values. There are various methods in TargetInstrInfo that can be used to
1030 /// control and modify the predicate in this instruction.
1032 // If it's a bundle than all bundled instructions must be predicable for this
1033 // to return true.
1035 }
1036
1037 /// Return true if this instruction is a comparison.
1040 }
1041
1042 /// Return true if this instruction is a move immediate
1043 /// (including conditional moves) instruction.
1047
1048 /// Return true if this instruction is a register move.
1049 /// (including moving values from subreg to reg)
1052 }
1053
1054 /// Return true if this instruction is a bitcast instruction.
1057 }
1058
1059 /// Return true if this instruction is a select instruction.
1061 return hasProperty(MCID::Select, Type);
1062 }
1063
1064 /// Return true if this instruction cannot be safely duplicated.
1065 /// For example, if the instruction has a unique labels attached
1066 /// to it, duplicating it would cause multiple definition errors.
1069 return true;
1071 }
1072
1073 /// Return true if this instruction is convergent.
1074 /// Convergent instructions can not be made control-dependent on any
1075 /// additional values.
1077 if (isInlineAsm()) {
1078 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1079 if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1080 return true;
1081 }
1082 if (getFlag(NoConvergent))
1083 return false;
1085 }
1086
1087 /// Returns true if the specified instruction has a delay slot
1088 /// which must be filled by the code generator.
1092
1093 /// Return true for instructions that can be folded as
1094 /// memory operands in other instructions. The most common use for this
1095 /// is instructions that are simple loads from memory that don't modify
1096 /// the loaded value in any way, but it can also be used for instructions
1097 /// that can be expressed as constant-pool loads, such as V_SETALLONES
1098 /// on x86, to allow them to be folded when it is beneficial.
1099 /// This should only be set on instructions that return a value in their
1100 /// only virtual register definition.
1104
1105 /// Return true if this instruction behaves
1106 /// the same way as the generic REG_SEQUENCE instructions.
1107 /// E.g., on ARM,
1108 /// dX VMOVDRR rY, rZ
1109 /// is equivalent to
1110 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
1111 ///
1112 /// Note that for the optimizers to be able to take advantage of
1113 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
1114 /// override accordingly.
1118
1119 /// Return true if this instruction behaves
1120 /// the same way as the generic EXTRACT_SUBREG instructions.
1121 /// E.g., on ARM,
1122 /// rX, rY VMOVRRD dZ
1123 /// is equivalent to two EXTRACT_SUBREG:
1124 /// rX = EXTRACT_SUBREG dZ, ssub_0
1125 /// rY = EXTRACT_SUBREG dZ, ssub_1
1126 ///
1127 /// Note that for the optimizers to be able to take advantage of
1128 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
1129 /// override accordingly.
1133
1134 /// Return true if this instruction behaves
1135 /// the same way as the generic INSERT_SUBREG instructions.
1136 /// E.g., on ARM,
1137 /// dX = VSETLNi32 dY, rZ, Imm
1138 /// is equivalent to a INSERT_SUBREG:
1139 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
1140 ///
1141 /// Note that for the optimizers to be able to take advantage of
1142 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
1143 /// override accordingly.
1147
1148 //===--------------------------------------------------------------------===//
1149 // Side Effect Analysis
1150 //===--------------------------------------------------------------------===//
1151
1152 /// Return true if this instruction could possibly read memory.
1153 /// Instructions with this flag set are not necessarily simple load
1154 /// instructions, they may load a value and modify it, for example.
1156 if (isInlineAsm()) {
1157 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1158 if (ExtraInfo & InlineAsm::Extra_MayLoad)
1159 return true;
1160 }
1162 }
1163
1164 /// Return true if this instruction could possibly modify memory.
1165 /// Instructions with this flag set are not necessarily simple store
1166 /// instructions, they may store a modified value based on their operands, or
1167 /// may not actually modify anything, for example.
1169 if (isInlineAsm()) {
1170 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1171 if (ExtraInfo & InlineAsm::Extra_MayStore)
1172 return true;
1173 }
1175 }
1176
1177 /// Return true if this instruction could possibly read or modify memory.
1179 return mayLoad(Type) || mayStore(Type);
1180 }
1181
1182 /// Return true if this instruction could possibly raise a floating-point
1183 /// exception. This is the case if the instruction is a floating-point
1184 /// instruction that can in principle raise an exception, as indicated
1185 /// by the MCID::MayRaiseFPException property, *and* at the same time,
1186 /// the instruction is used in a context where we expect floating-point
1187 /// exceptions are not disabled, as indicated by the NoFPExcept MI flag.
1192
1193 //===--------------------------------------------------------------------===//
1194 // Flags that indicate whether an instruction can be modified by a method.
1195 //===--------------------------------------------------------------------===//
1196
1197 /// Return true if this may be a 2- or 3-address
1198 /// instruction (of the form "X = op Y, Z, ..."), which produces the same
1199 /// result if Y and Z are exchanged. If this flag is set, then the
1200 /// TargetInstrInfo::commuteInstruction method may be used to hack on the
1201 /// instruction.
1202 ///
1203 /// Note that this flag may be set on instructions that are only commutable
1204 /// sometimes. In these cases, the call to commuteInstruction will fail.
1205 /// Also note that some instructions require non-trivial modification to
1206 /// commute them.
1210
1211 /// Return true if this is a 2-address instruction
1212 /// which can be changed into a 3-address instruction if needed. Doing this
1213 /// transformation can be profitable in the register allocator, because it
1214 /// means that the instruction can use a 2-address form if possible, but
1215 /// degrade into a less efficient form if the source and dest register cannot
1216 /// be assigned to the same register. For example, this allows the x86
1217 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
1218 /// is the same speed as the shift but has bigger code size.
1219 ///
1220 /// If this returns true, then the target must implement the
1221 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
1222 /// is allowed to fail if the transformation isn't valid for this specific
1223 /// instruction (e.g. shl reg, 4 on x86).
1224 ///
1228
1229 /// Return true if this instruction requires
1230 /// custom insertion support when the DAG scheduler is inserting it into a
1231 /// machine basic block. If this is true for the instruction, it basically
1232 /// means that it is a pseudo instruction used at SelectionDAG time that is
1233 /// expanded out into magic code by the target when MachineInstrs are formed.
1234 ///
1235 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
1236 /// is used to insert this into the MachineBasicBlock.
1240
1241 /// Return true if this instruction requires *adjustment*
1242 /// after instruction selection by calling a target hook. For example, this
1243 /// can be used to fill in ARM 's' optional operand depending on whether
1244 /// the conditional flag register is used.
1248
1249 /// Returns true if this instruction is a candidate for remat.
1250 /// This flag is deprecated, please don't use it anymore. If this
1251 /// flag is set, the isReMaterializableImpl() method is called to
1252 /// verify the instruction is really rematerializable.
1254 // It's only possible to re-mat a bundle if all bundled instructions are
1255 // re-materializable.
1257 }
1258
1259 /// Returns true if this instruction has the same cost (or less) than a move
1260 /// instruction. This is useful during certain types of optimizations
1261 /// (e.g., remat during two-address conversion or machine licm)
1262 /// where we would like to remat or hoist the instruction, but not if it costs
1263 /// more than moving the instruction into the appropriate register. Note, we
1264 /// are not marking copies from and to the same register class with this flag.
1266 // Only returns true for a bundle if all bundled instructions are cheap.
1268 }
1269
1270 /// Returns true if this instruction source operands
1271 /// have special register allocation requirements that are not captured by the
1272 /// operand register classes. e.g. ARM::STRD's two source registers must be an
1273 /// even / odd pair, ARM::STM registers have to be in ascending order.
1274 /// Post-register allocation passes should not attempt to change allocations
1275 /// for sources of instructions with this flag.
1279
1280 /// Returns true if this instruction def operands
1281 /// have special register allocation requirements that are not captured by the
1282 /// operand register classes. e.g. ARM::LDRD's two def registers must be an
1283 /// even / odd pair, ARM::LDM registers have to be in ascending order.
1284 /// Post-register allocation passes should not attempt to change allocations
1285 /// for definitions of instructions with this flag.
1289
1291 CheckDefs, // Check all operands for equality
1292 CheckKillDead, // Check all operands including kill / dead markers
1293 IgnoreDefs, // Ignore all definitions
1294 IgnoreVRegDefs // Ignore virtual register definitions
1295 };
1296
1297 /// Return true if this instruction is identical to \p Other.
1298 /// Two instructions are identical if they have the same opcode and all their
1299 /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
1300 /// Note that this means liveness related flags (dead, undef, kill) do not
1301 /// affect the notion of identical.
1303 MICheckType Check = CheckDefs) const;
1304
1305 /// Returns true if this instruction is a debug instruction that represents an
1306 /// identical debug value to \p Other.
1307 /// This function considers these debug instructions equivalent if they have
1308 /// identical variables, debug locations, and debug operands, and if the
1309 /// DIExpressions combined with the directness flags are equivalent.
1311
1312 /// Unlink 'this' from the containing basic block, and return it without
1313 /// deleting it.
1314 ///
1315 /// This function can not be used on bundled instructions, use
1316 /// removeFromBundle() to remove individual instructions from a bundle.
1318
1319 /// Unlink this instruction from its basic block and return it without
1320 /// deleting it.
1321 ///
1322 /// If the instruction is part of a bundle, the other instructions in the
1323 /// bundle remain bundled.
1325
1326 /// Unlink 'this' from the containing basic block and delete it.
1327 ///
1328 /// If this instruction is the header of a bundle, the whole bundle is erased.
1329 /// This function can not be used for instructions inside a bundle, use
1330 /// eraseFromBundle() to erase individual bundled instructions.
1332
1333 /// Unlink 'this' from its basic block and delete it.
1334 ///
1335 /// If the instruction is part of a bundle, the other instructions in the
1336 /// bundle remain bundled.
1338
1339 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
1340 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
1341 bool isAnnotationLabel() const {
1342 return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
1343 }
1344
1345 bool isLifetimeMarker() const {
1346 return getOpcode() == TargetOpcode::LIFETIME_START ||
1347 getOpcode() == TargetOpcode::LIFETIME_END;
1348 }
1349
1350 /// Returns true if the MachineInstr represents a label.
1351 bool isLabel() const {
1352 return isEHLabel() || isGCLabel() || isAnnotationLabel();
1353 }
1354
1355 bool isCFIInstruction() const {
1356 return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
1357 }
1358
1359 bool isPseudoProbe() const {
1360 return getOpcode() == TargetOpcode::PSEUDO_PROBE;
1361 }
1362
1363 // True if the instruction represents a position in the function.
1364 bool isPosition() const { return isLabel() || isCFIInstruction(); }
1365
1366 bool isNonListDebugValue() const {
1367 return getOpcode() == TargetOpcode::DBG_VALUE;
1368 }
1369 bool isDebugValueList() const {
1370 return getOpcode() == TargetOpcode::DBG_VALUE_LIST;
1371 }
1372 bool isDebugValue() const {
1374 }
1375 bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
1376 bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; }
1377 bool isDebugValueLike() const { return isDebugValue() || isDebugRef(); }
1378 bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; }
1379 bool isDebugInstr() const {
1380 return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI();
1381 }
1383 return isDebugInstr() || isPseudoProbe();
1384 }
1385
1386 bool isDebugOffsetImm() const {
1388 }
1389
1390 /// A DBG_VALUE is indirect iff the location operand is a register and
1391 /// the offset operand is an immediate.
1393 return isDebugOffsetImm() && getDebugOperand(0).isReg();
1394 }
1395
1396 /// A DBG_VALUE is an entry value iff its debug expression contains the
1397 /// DW_OP_LLVM_entry_value operation.
1398 LLVM_ABI bool isDebugEntryValue() const;
1399
1400 /// Return true if the instruction is a debug value which describes a part of
1401 /// a variable as unavailable.
1402 bool isUndefDebugValue() const {
1403 if (!isDebugValue())
1404 return false;
1405 // If any $noreg locations are given, this DV is undef.
1406 for (const MachineOperand &Op : debug_operands())
1407 if (Op.isReg() && !Op.getReg().isValid())
1408 return true;
1409 return false;
1410 }
1411
1413 return getOpcode() == TargetOpcode::JUMP_TABLE_DEBUG_INFO;
1414 }
1415
1416 bool isPHI() const {
1417 return getOpcode() == TargetOpcode::PHI ||
1418 getOpcode() == TargetOpcode::G_PHI;
1419 }
1420 bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
1421 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
1422 bool isInlineAsm() const {
1423 return getOpcode() == TargetOpcode::INLINEASM ||
1424 getOpcode() == TargetOpcode::INLINEASM_BR;
1425 }
1426 /// Returns true if the register operand can be folded with a load or store
1427 /// into a frame index. Does so by checking the InlineAsm::Flag immediate
1428 /// operand at OpId - 1.
1429 LLVM_ABI bool mayFoldInlineAsmRegOp(unsigned OpId) const;
1430
1433
1434 bool isInsertSubreg() const {
1435 return getOpcode() == TargetOpcode::INSERT_SUBREG;
1436 }
1437
1438 bool isSubregToReg() const {
1439 return getOpcode() == TargetOpcode::SUBREG_TO_REG;
1440 }
1441
1442 bool isRegSequence() const {
1443 return getOpcode() == TargetOpcode::REG_SEQUENCE;
1444 }
1445
1446 bool isBundle() const {
1447 return getOpcode() == TargetOpcode::BUNDLE;
1448 }
1449
1450 bool isCopy() const {
1451 return getOpcode() == TargetOpcode::COPY;
1452 }
1453
1454 bool isCopyLaneMask() const {
1455 return getOpcode() == TargetOpcode::COPY_LANEMASK;
1456 }
1457
1458 bool isFullCopy() const {
1459 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
1460 }
1461
1462 bool isExtractSubreg() const {
1463 return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
1464 }
1465
1466 bool isFakeUse() const { return getOpcode() == TargetOpcode::FAKE_USE; }
1467
1468 /// Return true if the instruction behaves like a copy.
1469 /// This does not include native copy instructions.
1470 bool isCopyLike() const {
1471 return isCopy() || isSubregToReg();
1472 }
1473
1474 /// Return true is the instruction is an identity copy.
1475 bool isIdentityCopy() const {
1476 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
1478 }
1479
1480 /// Return true if this is a transient instruction that is either very likely
1481 /// to be eliminated during register allocation (such as copy-like
1482 /// instructions), or if this instruction doesn't have an execution-time cost.
1483 bool isTransient() const {
1484 switch (getOpcode()) {
1485 default:
1486 return isMetaInstruction();
1487 // Copy-like instructions are usually eliminated during register allocation.
1488 case TargetOpcode::PHI:
1489 case TargetOpcode::G_PHI:
1490 case TargetOpcode::COPY:
1491 case TargetOpcode::COPY_LANEMASK:
1492 case TargetOpcode::INSERT_SUBREG:
1493 case TargetOpcode::SUBREG_TO_REG:
1494 case TargetOpcode::REG_SEQUENCE:
1495 return true;
1496 }
1497 }
1498
1499 /// Return the number of instructions inside the MI bundle, excluding the
1500 /// bundle header.
1501 ///
1502 /// This is the number of instructions that MachineBasicBlock::iterator
1503 /// skips, 0 for unbundled instructions.
1504 LLVM_ABI unsigned getBundleSize() const;
1505
1506 /// Return true if the MachineInstr reads the specified register.
1507 /// If TargetRegisterInfo is non-null, then it also checks if there
1508 /// is a read of a super-register.
1509 /// This does not count partial redefines of virtual registers as reads:
1510 /// %reg1024:6 = OP.
1512 return findRegisterUseOperandIdx(Reg, TRI, false) != -1;
1513 }
1514
1515 /// Return true if the MachineInstr reads the specified virtual register.
1516 /// Take into account that a partial define is a
1517 /// read-modify-write operation.
1519 return readsWritesVirtualRegister(Reg).first;
1520 }
1521
1522 /// Return a pair of bools (reads, writes) indicating if this instruction
1523 /// reads or writes Reg. This also considers partial defines.
1524 /// If Ops is not null, all operand indices for Reg are added.
1525 LLVM_ABI std::pair<bool, bool>
1527 SmallVectorImpl<unsigned> *Ops = nullptr) const;
1528
1529 /// Return true if the MachineInstr kills the specified register.
1530 /// If TargetRegisterInfo is non-null, then it also checks if there is
1531 /// a kill of a super-register.
1533 return findRegisterUseOperandIdx(Reg, TRI, true) != -1;
1534 }
1535
1536 /// Return true if the MachineInstr fully defines the specified register.
1537 /// If TargetRegisterInfo is non-null, then it also checks
1538 /// if there is a def of a super-register.
1539 /// NOTE: It's ignoring subreg indices on virtual registers.
1541 return findRegisterDefOperandIdx(Reg, TRI, false, false) != -1;
1542 }
1543
1544 /// Return true if the MachineInstr modifies (fully define or partially
1545 /// define) the specified register.
1546 /// NOTE: It's ignoring subreg indices on virtual registers.
1548 return findRegisterDefOperandIdx(Reg, TRI, false, true) != -1;
1549 }
1550
1551 /// Returns true if the register is dead in this machine instruction.
1552 /// If TargetRegisterInfo is non-null, then it also checks
1553 /// if there is a dead def of a super-register.
1555 return findRegisterDefOperandIdx(Reg, TRI, true, false) != -1;
1556 }
1557
1558 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1559 /// the given register (not considering sub/super-registers).
1561
1562 /// Returns the operand index that is a use of the specific register or -1
1563 /// if it is not found. It further tightens the search criteria to a use
1564 /// that kills the register if isKill is true.
1566 const TargetRegisterInfo *TRI,
1567 bool isKill = false) const;
1568
1569 /// Wrapper for findRegisterUseOperandIdx, it returns
1570 /// a pointer to the MachineOperand rather than an index.
1572 const TargetRegisterInfo *TRI,
1573 bool isKill = false) {
1575 return (Idx == -1) ? nullptr : &getOperand(Idx);
1576 }
1577
1579 const TargetRegisterInfo *TRI,
1580 bool isKill = false) const {
1581 return const_cast<MachineInstr *>(this)->findRegisterUseOperand(Reg, TRI,
1582 isKill);
1583 }
1584
1585 /// Returns the operand index that is a def of the specified register or
1586 /// -1 if it is not found. If isDead is true, defs that are not dead are
1587 /// skipped. If Overlap is true, then it also looks for defs that merely
1588 /// overlap the specified register. If TargetRegisterInfo is non-null,
1589 /// then it also checks if there is a def of a super-register.
1590 /// This may also return a register mask operand when Overlap is true.
1592 const TargetRegisterInfo *TRI,
1593 bool isDead = false,
1594 bool Overlap = false) const;
1595
1596 /// Wrapper for findRegisterDefOperandIdx, it returns
1597 /// a pointer to the MachineOperand rather than an index.
1599 const TargetRegisterInfo *TRI,
1600 bool isDead = false,
1601 bool Overlap = false) {
1602 int Idx = findRegisterDefOperandIdx(Reg, TRI, isDead, Overlap);
1603 return (Idx == -1) ? nullptr : &getOperand(Idx);
1604 }
1605
1607 const TargetRegisterInfo *TRI,
1608 bool isDead = false,
1609 bool Overlap = false) const {
1610 return const_cast<MachineInstr *>(this)->findRegisterDefOperand(
1611 Reg, TRI, isDead, Overlap);
1612 }
1613
1614 /// Find the index of the first operand in the
1615 /// operand list that is used to represent the predicate. It returns -1 if
1616 /// none is found.
1618
1619 /// Find the index of the flag word operand that
1620 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if
1621 /// getOperand(OpIdx) does not belong to an inline asm operand group.
1622 ///
1623 /// If GroupNo is not NULL, it will receive the number of the operand group
1624 /// containing OpIdx.
1625 LLVM_ABI int findInlineAsmFlagIdx(unsigned OpIdx,
1626 unsigned *GroupNo = nullptr) const;
1627
1628 /// Compute the static register class constraint for operand OpIdx.
1629 /// For normal instructions, this is derived from the MCInstrDesc.
1630 /// For inline assembly it is derived from the flag words.
1631 ///
1632 /// Returns NULL if the static register class constraint cannot be
1633 /// determined.
1636 const TargetRegisterInfo *TRI) const;
1637
1638 /// Applies the constraints (def/use) implied by this MI on \p Reg to
1639 /// the given \p CurRC.
1640 /// If \p ExploreBundle is set and MI is part of a bundle, all the
1641 /// instructions inside the bundle will be taken into account. In other words,
1642 /// this method accumulates all the constraints of the operand of this MI and
1643 /// the related bundle if MI is a bundle or inside a bundle.
1644 ///
1645 /// Returns the register class that satisfies both \p CurRC and the
1646 /// constraints set by MI. Returns NULL if such a register class does not
1647 /// exist.
1648 ///
1649 /// \pre CurRC must not be NULL.
1651 Register Reg, const TargetRegisterClass *CurRC,
1653 bool ExploreBundle = false) const;
1654
1655 /// Applies the constraints (def/use) implied by the \p OpIdx operand
1656 /// to the given \p CurRC.
1657 ///
1658 /// Returns the register class that satisfies both \p CurRC and the
1659 /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1660 /// does not exist.
1661 ///
1662 /// \pre CurRC must not be NULL.
1663 /// \pre The operand at \p OpIdx must be a register.
1666 const TargetInstrInfo *TII,
1667 const TargetRegisterInfo *TRI) const;
1668
1669 /// Add a tie between the register operands at DefIdx and UseIdx.
1670 /// The tie will cause the register allocator to ensure that the two
1671 /// operands are assigned the same physical register.
1672 ///
1673 /// Tied operands are managed automatically for explicit operands in the
1674 /// MCInstrDesc. This method is for exceptional cases like inline asm.
1675 LLVM_ABI void tieOperands(unsigned DefIdx, unsigned UseIdx);
1676
1677 /// Given the index of a tied register operand, find the
1678 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1679 /// index of the tied operand which must exist.
1680 LLVM_ABI unsigned findTiedOperandIdx(unsigned OpIdx) const;
1681
1682 /// Given the index of a register def operand,
1683 /// check if the register def is tied to a source operand, due to either
1684 /// two-address elimination or inline assembly constraints. Returns the
1685 /// first tied use operand index by reference if UseOpIdx is not null.
1686 bool isRegTiedToUseOperand(unsigned DefOpIdx,
1687 unsigned *UseOpIdx = nullptr) const {
1688 const MachineOperand &MO = getOperand(DefOpIdx);
1689 if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1690 return false;
1691 if (UseOpIdx)
1692 *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1693 return true;
1694 }
1695
1696 /// Return true if the use operand of the specified index is tied to a def
1697 /// operand. It also returns the def operand index by reference if DefOpIdx
1698 /// is not null.
1699 bool isRegTiedToDefOperand(unsigned UseOpIdx,
1700 unsigned *DefOpIdx = nullptr) const {
1701 const MachineOperand &MO = getOperand(UseOpIdx);
1702 if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1703 return false;
1704 if (DefOpIdx)
1705 *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1706 return true;
1707 }
1708
1709 /// Clears kill flags on all operands.
1710 LLVM_ABI void clearKillInfo();
1711
1712 /// Replace all occurrences of FromReg with ToReg:SubIdx,
1713 /// properly composing subreg indices where necessary.
1714 LLVM_ABI void substituteRegister(Register FromReg, Register ToReg,
1715 unsigned SubIdx,
1717
1718 /// We have determined MI kills a register. Look for the
1719 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1720 /// add a implicit operand if it's not found. Returns true if the operand
1721 /// exists / is added.
1722 LLVM_ABI bool addRegisterKilled(Register IncomingReg,
1724 bool AddIfNotFound = false);
1725
1726 /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes
1727 /// all aliasing registers.
1730
1731 /// We have determined MI defined a register without a use.
1732 /// Look for the operand that defines it and mark it as IsDead. If
1733 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1734 /// true if the operand exists / is added.
1736 bool AddIfNotFound = false);
1737
1738 /// Clear all dead flags on operands defining register @p Reg.
1740
1741 /// Mark all subregister defs of register @p Reg with the undef flag.
1742 /// This function is used when we determined to have a subregister def in an
1743 /// otherwise undefined super register.
1744 LLVM_ABI void setRegisterDefReadUndef(Register Reg, bool IsUndef = true);
1745
1746 /// We have determined MI defines a register. Make sure there is an operand
1747 /// defining Reg.
1749 const TargetRegisterInfo *RegInfo = nullptr);
1750
1751 /// Mark every physreg used by this instruction as
1752 /// dead except those in the UsedRegs list.
1753 ///
1754 /// On instructions with register mask operands, also add implicit-def
1755 /// operands for all registers in UsedRegs.
1757 const TargetRegisterInfo &TRI);
1758
1759 /// Return true if it is safe to move this instruction. If
1760 /// SawStore is set to true, it means that there is a store (or call) between
1761 /// the instruction's location and its intended destination.
1762 LLVM_ABI bool isSafeToMove(bool &SawStore) const;
1763
1764 /// Return true if this instruction would be trivially dead if all of its
1765 /// defined registers were dead.
1766 LLVM_ABI bool wouldBeTriviallyDead() const;
1767
1768 /// Check whether an MI is dead. If \p LivePhysRegs is provided, it is assumed
1769 /// to be at the position of MI and will be used to check the Liveness of
1770 /// physical register defs. If \p LivePhysRegs is not provided, this will
1771 /// pessimistically assume any PhysReg def is live.
1772 /// For trivially dead instructions (i.e. those without hard to model effects
1773 /// / wouldBeTriviallyDead), this checks deadness by analyzing defs of the
1774 /// MachineInstr. If the instruction wouldBeTriviallyDead, and all the defs
1775 /// either have dead flags or have no uses, then the instruction is said to be
1776 /// dead.
1778 LiveRegUnits *LivePhysRegs = nullptr) const;
1779
1780 /// Returns true if this instruction's memory access aliases the memory
1781 /// access of Other.
1782 //
1783 /// Assumes any physical registers used to compute addresses
1784 /// have the same value for both instructions. Returns false if neither
1785 /// instruction writes to memory.
1786 ///
1787 /// @param AA Optional alias analysis, used to compare memory operands.
1788 /// @param Other MachineInstr to check aliasing against.
1789 /// @param UseTBAA Whether to pass TBAA information to alias analysis.
1791 bool UseTBAA) const;
1793 bool UseTBAA) const;
1794
1795 /// Return true if this instruction may have an ordered
1796 /// or volatile memory reference, or if the information describing the memory
1797 /// reference is not available. Return false if it is known to have no
1798 /// ordered or volatile memory references.
1799 LLVM_ABI bool hasOrderedMemoryRef() const;
1800
1801 /// Return true if this load instruction never traps and points to a memory
1802 /// location whose value doesn't change during the execution of this function.
1803 ///
1804 /// Examples include loading a value from the constant pool or from the
1805 /// argument area of a function (if it does not change). If the instruction
1806 /// does multiple loads, this returns true only if all of the loads are
1807 /// dereferenceable and invariant.
1809
1810 /// If the specified instruction is a PHI that always merges together the
1811 /// same virtual register, return the register, otherwise return Register().
1813
1814 /// Return true if this instruction has side effects that are not modeled
1815 /// by mayLoad / mayStore, etc.
1816 /// For all instructions, the property is encoded in MCInstrDesc::Flags
1817 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1818 /// INLINEASM instruction, in which case the side effect property is encoded
1819 /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1820 ///
1821 LLVM_ABI bool hasUnmodeledSideEffects() const;
1822
1823 /// Returns true if it is illegal to fold a load across this instruction.
1824 LLVM_ABI bool isLoadFoldBarrier() const;
1825
1826 /// Return true if all the defs of this instruction are dead.
1827 LLVM_ABI bool allDefsAreDead() const;
1828
1829 /// Return true if all the implicit defs of this instruction are dead.
1830 LLVM_ABI bool allImplicitDefsAreDead() const;
1831
1832 /// Return a valid size if the instruction is a spill instruction.
1833 LLVM_ABI std::optional<LocationSize>
1834 getSpillSize(const TargetInstrInfo *TII) const;
1835
1836 /// Return a valid size if the instruction is a folded spill instruction.
1837 LLVM_ABI std::optional<LocationSize>
1839
1840 /// Return a valid size if the instruction is a restore instruction.
1841 LLVM_ABI std::optional<LocationSize>
1842 getRestoreSize(const TargetInstrInfo *TII) const;
1843
1844 /// Return a valid size if the instruction is a folded restore instruction.
1845 LLVM_ABI std::optional<LocationSize>
1847
1848 /// Copy implicit register operands from specified
1849 /// instruction to this instruction.
1851
1852 /// Debugging support
1853 /// @{
1854 /// Determine the generic type to be printed (if needed) on uses and defs.
1855 LLVM_ABI LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1856 const MachineRegisterInfo &MRI) const;
1857
1858 /// Return true when an instruction has tied register that can't be determined
1859 /// by the instruction's descriptor. This is useful for MIR printing, to
1860 /// determine whether we need to print the ties or not.
1861 LLVM_ABI bool hasComplexRegisterTies() const;
1862
1863 /// Print this MI to \p OS.
1864 /// Don't print information that can be inferred from other instructions if
1865 /// \p IsStandalone is false. It is usually true when only a fragment of the
1866 /// function is printed.
1867 /// Only print the defs and the opcode if \p SkipOpers is true.
1868 /// Otherwise, also print operands if \p SkipDebugLoc is true.
1869 /// Otherwise, also print the debug loc, with a terminating newline.
1870 /// \p TII is used to print the opcode name. If it's not present, but the
1871 /// MI is in a function, the opcode will be printed using the function's TII.
1872 LLVM_ABI void print(raw_ostream &OS, bool IsStandalone = true,
1873 bool SkipOpers = false, bool SkipDebugLoc = false,
1874 bool AddNewLine = true,
1875 const TargetInstrInfo *TII = nullptr) const;
1877 bool IsStandalone = true, bool SkipOpers = false,
1878 bool SkipDebugLoc = false, bool AddNewLine = true,
1879 const TargetInstrInfo *TII = nullptr) const;
1880 LLVM_ABI void dump() const;
1881 /// Print on dbgs() the current instruction and the instructions defining its
1882 /// operands and so on until we reach \p MaxDepth.
1884 unsigned MaxDepth = UINT_MAX) const;
1885 /// @}
1886
1887 //===--------------------------------------------------------------------===//
1888 // Accessors used to build up machine instructions.
1889
1890 /// Add the specified operand to the instruction. If it is an implicit
1891 /// operand, it is added to the end of the operand list. If it is an
1892 /// explicit operand it is added at the end of the explicit operand list
1893 /// (before the first implicit operand).
1894 ///
1895 /// MF must be the machine function that was used to allocate this
1896 /// instruction.
1897 ///
1898 /// MachineInstrBuilder provides a more convenient interface for creating
1899 /// instructions and adding operands.
1901
1902 /// Add an operand without providing an MF reference. This only works for
1903 /// instructions that are inserted in a basic block.
1904 ///
1905 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1906 /// preferred.
1907 LLVM_ABI void addOperand(const MachineOperand &Op);
1908
1909 /// Inserts Ops BEFORE It. Can untie/retie tied operands.
1911
1912 /// Replace the instruction descriptor (thus opcode) of
1913 /// the current instruction with a new one.
1914 LLVM_ABI void setDesc(const MCInstrDesc &TID);
1915
1916 /// Replace current source information with new such.
1917 /// Avoid using this, the constructor argument is preferable.
1919 DbgLoc = std::move(DL);
1920 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
1921 }
1922
1923 /// Erase an operand from an instruction, leaving it with one
1924 /// fewer operand than it started with.
1925 LLVM_ABI void removeOperand(unsigned OpNo);
1926
1927 /// Clear this MachineInstr's memory reference descriptor list. This resets
1928 /// the memrefs to their most conservative state. This should be used only
1929 /// as a last resort since it greatly pessimizes our knowledge of the memory
1930 /// access performed by the instruction.
1932
1933 /// Assign this MachineInstr's memory reference descriptor list.
1934 ///
1935 /// Unlike other methods, this *will* allocate them into a new array
1936 /// associated with the provided `MachineFunction`.
1939
1940 /// Add a MachineMemOperand to the machine instruction.
1941 /// This function should be used only occasionally. The setMemRefs function
1942 /// is the primary method for setting up a MachineInstr's MemRefs list.
1944
1945 /// Clone another MachineInstr's memory reference descriptor list and replace
1946 /// ours with it.
1947 ///
1948 /// Note that `*this` may be the incoming MI!
1949 ///
1950 /// Prefer this API whenever possible as it can avoid allocations in common
1951 /// cases.
1953
1954 /// Clone the merge of multiple MachineInstrs' memory reference descriptors
1955 /// list and replace ours with it.
1956 ///
1957 /// Note that `*this` may be one of the incoming MIs!
1958 ///
1959 /// Prefer this API whenever possible as it can avoid allocations in common
1960 /// cases.
1963
1964 /// Set a symbol that will be emitted just prior to the instruction itself.
1965 ///
1966 /// Setting this to a null pointer will remove any such symbol.
1967 ///
1968 /// FIXME: This is not fully implemented yet.
1970
1971 /// Set a symbol that will be emitted just after the instruction itself.
1972 ///
1973 /// Setting this to a null pointer will remove any such symbol.
1974 ///
1975 /// FIXME: This is not fully implemented yet.
1977
1978 /// Clone another MachineInstr's pre- and post- instruction symbols and
1979 /// replace ours with it.
1981
1982 /// Set a marker on instructions that denotes where we should create and emit
1983 /// heap alloc site labels. This waits until after instruction selection and
1984 /// optimizations to create the label, so it should still work if the
1985 /// instruction is removed or duplicated.
1987
1988 // Set metadata on instructions that say which sections to emit instruction
1989 // addresses into.
1991
1993
1994 /// Set the CFI type for the instruction.
1996
1998
1999 /// Return the MIFlags which represent both MachineInstrs. This
2000 /// should be used when merging two MachineInstrs into one. This routine does
2001 /// not modify the MIFlags of this MachineInstr.
2003
2005
2006 /// Copy all flags to MachineInst MIFlags
2007 LLVM_ABI void copyIRFlags(const Instruction &I);
2008
2009 /// Break any tie involving OpIdx.
2010 void untieRegOperand(unsigned OpIdx) {
2012 if (MO.isReg() && MO.isTied()) {
2013 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
2014 MO.TiedTo = 0;
2015 }
2016 }
2017
2018 /// Add all implicit def and use operands to this instruction.
2020
2021 /// Scan instructions immediately following MI and collect any matching
2022 /// DBG_VALUEs.
2024
2025 /// Find all DBG_VALUEs that point to the register def in this instruction
2026 /// and point them to \p Reg instead.
2028
2029 /// Remove all incoming values of Phi instruction for the given block.
2030 ///
2031 /// Return deleted operands count.
2032 ///
2033 /// Method does not erase PHI instruction even if it has single income or does
2034 /// not have incoming values at all. It is a caller responsibility to make
2035 /// decision how to process PHI instruction after incoming values removed.
2037
2038 /// Sets all register debug operands in this debug value instruction to be
2039 /// undef.
2041 assert(isDebugValue() && "Must be a debug value instruction.");
2042 for (MachineOperand &MO : debug_operands()) {
2043 if (MO.isReg()) {
2044 MO.setReg(0);
2045 MO.setSubReg(0);
2046 }
2047 }
2048 }
2049
2050 std::tuple<Register, Register> getFirst2Regs() const {
2051 return std::tuple(getOperand(0).getReg(), getOperand(1).getReg());
2052 }
2053
2054 std::tuple<Register, Register, Register> getFirst3Regs() const {
2055 return std::tuple(getOperand(0).getReg(), getOperand(1).getReg(),
2056 getOperand(2).getReg());
2057 }
2058
2059 std::tuple<Register, Register, Register, Register> getFirst4Regs() const {
2060 return std::tuple(getOperand(0).getReg(), getOperand(1).getReg(),
2061 getOperand(2).getReg(), getOperand(3).getReg());
2062 }
2063
2064 std::tuple<Register, Register, Register, Register, Register>
2066 return std::tuple(getOperand(0).getReg(), getOperand(1).getReg(),
2068 getOperand(4).getReg());
2069 }
2070
2071 LLVM_ABI std::tuple<LLT, LLT> getFirst2LLTs() const;
2072 LLVM_ABI std::tuple<LLT, LLT, LLT> getFirst3LLTs() const;
2073 LLVM_ABI std::tuple<LLT, LLT, LLT, LLT> getFirst4LLTs() const;
2074 LLVM_ABI std::tuple<LLT, LLT, LLT, LLT, LLT> getFirst5LLTs() const;
2075
2076 LLVM_ABI std::tuple<Register, LLT, Register, LLT> getFirst2RegLLTs() const;
2077 LLVM_ABI std::tuple<Register, LLT, Register, LLT, Register, LLT>
2078 getFirst3RegLLTs() const;
2079 LLVM_ABI
2080 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT>
2081 getFirst4RegLLTs() const;
2083 LLT, Register, LLT>
2084 getFirst5RegLLTs() const;
2085
2086private:
2087 /// If this instruction is embedded into a MachineFunction, return the
2088 /// MachineRegisterInfo object for the current function, otherwise
2089 /// return null.
2090 MachineRegisterInfo *getRegInfo();
2091 const MachineRegisterInfo *getRegInfo() const;
2092
2093 /// Unlink all of the register operands in this instruction from their
2094 /// respective use lists. This requires that the operands already be on their
2095 /// use lists.
2096 void removeRegOperandsFromUseLists(MachineRegisterInfo&);
2097
2098 /// Add all of the register operands in this instruction from their
2099 /// respective use lists. This requires that the operands not be on their
2100 /// use lists yet.
2101 void addRegOperandsToUseLists(MachineRegisterInfo&);
2102
2103 /// Slow path for hasProperty when we're dealing with a bundle.
2104 LLVM_ABI bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
2105
2106 /// Implements the logic of getRegClassConstraintEffectForVReg for the
2107 /// this MI and the given operand index \p OpIdx.
2108 /// If the related operand does not constrained Reg, this returns CurRC.
2109 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
2110 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
2111 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
2112
2113 /// Stores extra instruction information inline or allocates as ExtraInfo
2114 /// based on the number of pointers.
2115 void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs,
2116 MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol,
2117 MDNode *HeapAllocMarker, MDNode *PCSections,
2118 uint32_t CFIType, MDNode *MMRAs, Value *DS);
2119};
2120
2121/// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
2122/// instruction rather than by pointer value.
2123/// The hashing and equality testing functions ignore definitions so this is
2124/// useful for CSE, etc.
2126 static inline MachineInstr *getEmptyKey() {
2127 return nullptr;
2128 }
2129
2131 return reinterpret_cast<MachineInstr*>(-1);
2132 }
2133
2134 LLVM_ABI static unsigned getHashValue(const MachineInstr *const &MI);
2135
2136 static bool isEqual(const MachineInstr* const &LHS,
2137 const MachineInstr* const &RHS) {
2138 if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
2139 LHS == getEmptyKey() || LHS == getTombstoneKey())
2140 return LHS == RHS;
2141 return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
2142 }
2143};
2144
2145//===----------------------------------------------------------------------===//
2146// Debugging Support
2147
2149 MI.print(OS);
2150 return OS;
2151}
2152
2153} // end namespace llvm
2154
2155#endif // LLVM_CODEGEN_MACHINEINSTR_H
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
#define LLVM_ABI
Definition Compiler.h:213
This file defines DenseMapInfo traits for DenseMap.
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define I(x, y, z)
Definition MD5.cpp:57
#define LLVM_MI_ASMPRINTERFLAGS_BITS
#define LLVM_MI_FLAGS_BITS
#define LLVM_MI_NUMOPERANDS_BITS
Register Reg
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
static MCRegister getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
MachineInstr unsigned OpIdx
#define P(N)
Basic Register Allocator
bool isDead(const MachineInstr &MI, const MachineRegisterInfo &MRI)
static cl::opt< bool > UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"))
This header defines support for implementing classes that have some trailing object (or arrays of obj...
Value * RHS
Value * LHS
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
const_pointer iterator
Definition ArrayRef.h:47
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
DWARF expression.
A debug info location.
Definition DebugLoc.h:124
A set of physical registers with utility functions to track liveness when walking backward/forward th...
A set of register units used to track register liveness.
Describe properties that are true of each instruction in the target description file.
uint64_t getFlags() const
Return flags of this instruction.
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition MCSymbol.h:42
Metadata node.
Definition Metadata.h:1078
Representation of each machine instruction.
mop_iterator operands_begin()
bool mayRaiseFPException() const
Return true if this instruction could possibly raise a floating-point exception.
ArrayRef< MachineMemOperand * >::iterator mmo_iterator
std::tuple< Register, Register, Register, Register, Register > getFirst5Regs() const
mop_range defs()
Returns all explicit operands that are register definitions.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
unsigned getNumImplicitOperands() const
Returns the implicit operands number.
bool isReturn(QueryType Type=AnyInBundle) const
LLVM_ABI void setRegisterDefReadUndef(Register Reg, bool IsUndef=true)
Mark all subregister defs of register Reg with the undef flag.
bool hasDebugOperandForReg(Register Reg) const
Returns whether this debug value has at least one debug operand with the register Reg.
bool isDebugValueList() const
LLVM_ABI void bundleWithPred()
Bundle this instruction with its predecessor.
CommentFlag
Flags to specify different kinds of comments to output in assembly code.
bool isPosition() const
void setDebugValueUndef()
Sets all register debug operands in this debug value instruction to be undef.
bool isTerminator(QueryType Type=AnyInBundle) const
Returns true if this instruction part of the terminator for a basic block.
iterator_range< filter_iterator< const_mop_iterator, bool(*)(const MachineOperand &)> > filtered_const_mop_range
bool hasExtraDefRegAllocReq(QueryType Type=AnyInBundle) const
Returns true if this instruction def operands have special register allocation requirements that are ...
std::tuple< Register, Register, Register, Register > getFirst4Regs() const
bool isImplicitDef() const
LLVM_ABI std::tuple< Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register, LLT > getFirst5RegLLTs() const
iterator_range< const_mop_iterator > const_mop_range
LLVM_ABI iterator_range< filter_iterator< const MachineOperand *, std::function< bool(const MachineOperand &Op)> > > getDebugOperandsForReg(Register Reg) const
Returns a range of all of the operands that correspond to a debug use of Reg.
mop_range debug_operands()
Returns all operands that are used to determine the variable location for this DBG_VALUE instruction.
bool mayLoadOrStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read or modify memory.
LLVM_ABI void setCFIType(MachineFunction &MF, uint32_t Type)
Set the CFI type for the instruction.
bool isCopy() const
const_mop_range debug_operands() const
Returns all operands that are used to determine the variable location for this DBG_VALUE instruction.
LLVM_ABI MachineInstr * removeFromParent()
Unlink 'this' from the containing basic block, and return it without deleting it.
filtered_const_mop_range all_uses() const
Returns an iterator range over all operands that are (explicit or implicit) register uses.
void clearAsmPrinterFlags()
Clear the AsmPrinter bitvector.
const MachineBasicBlock * getParent() const
bool isCopyLike() const
Return true if the instruction behaves like a copy.
void dropDebugNumber()
Drop any variable location debugging information associated with this instruction.
MDNode * getMMRAMetadata() const
Helper to extract mmra.op metadata.
LLVM_ABI void bundleWithSucc()
Bundle this instruction with its successor.
uint32_t getCFIType() const
Helper to extract a CFI type hash if one has been added.
bool readsRegister(Register Reg, const TargetRegisterInfo *TRI) const
Return true if the MachineInstr reads the specified register.
bool isDebugLabel() const
LLVM_ABI void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol)
Set a symbol that will be emitted just prior to the instruction itself.
bool isDebugOffsetImm() const
bool hasProperty(unsigned MCFlag, QueryType Type=AnyInBundle) const
Return true if the instruction (or in the case of a bundle, the instructions inside the bundle) has t...
LLVM_ABI bool isDereferenceableInvariantLoad() const
Return true if this load instruction never traps and points to a memory location whose value doesn't ...
void setFlags(unsigned flags)
MachineFunction * getMF()
QueryType
API for querying MachineInstr properties.
bool isPredicable(QueryType Type=AllInBundle) const
Return true if this instruction has a predicate operand that controls execution.
LLVM_ABI void addImplicitDefUseOperands(MachineFunction &MF)
Add all implicit def and use operands to this instruction.
bool isBarrier(QueryType Type=AnyInBundle) const
Returns true if the specified instruction stops control flow from executing the instruction immediate...
filtered_mop_range all_defs()
Returns an iterator range over all operands that are (explicit or implicit) register defs.
LLVM_ABI std::tuple< LLT, LLT, LLT, LLT, LLT > getFirst5LLTs() const
MachineBasicBlock * getParent()
bool isSelect(QueryType Type=IgnoreBundle) const
Return true if this instruction is a select instruction.
bool isCall(QueryType Type=AnyInBundle) const
LLVM_ABI std::tuple< Register, LLT, Register, LLT, Register, LLT > getFirst3RegLLTs() const
bool usesCustomInsertionHook(QueryType Type=IgnoreBundle) const
Return true if this instruction requires custom insertion support when the DAG scheduler is inserting...
bool getFlag(MIFlag Flag) const
Return whether an MI flag is set.
void clearAsmPrinterFlag(CommentFlag Flag)
Clear specific AsmPrinter flags.
LLVM_ABI uint32_t mergeFlagsWith(const MachineInstr &Other) const
Return the MIFlags which represent both MachineInstrs.
LLVM_ABI const MachineOperand & getDebugExpressionOp() const
Return the operand for the complex address expression referenced by this DBG_VALUE instruction.
LLVM_ABI std::pair< bool, bool > readsWritesVirtualRegister(Register Reg, SmallVectorImpl< unsigned > *Ops=nullptr) const
Return a pair of bools (reads, writes) indicating if this instruction reads or writes Reg.
const_mop_range implicit_operands() const
LLVM_ABI Register isConstantValuePHI() const
If the specified instruction is a PHI that always merges together the same virtual register,...
bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx=nullptr) const
Return true if the use operand of the specified index is tied to a def operand.
LLVM_ABI bool allImplicitDefsAreDead() const
Return true if all the implicit defs of this instruction are dead.
LLVM_ABI void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI)
Clone another MachineInstr's memory reference descriptor list and replace ours with it.
LLVM_ABI const TargetRegisterClass * getRegClassConstraintEffectForVReg(Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, bool ExploreBundle=false) const
Applies the constraints (def/use) implied by this MI on Reg to the given CurRC.
LLVM_ABI bool isSafeToMove(bool &SawStore) const
Return true if it is safe to move this instruction.
LLVM_ABI bool mayAlias(BatchAAResults *AA, const MachineInstr &Other, bool UseTBAA) const
Returns true if this instruction's memory access aliases the memory access of Other.
bool isBundle() const
bool isDebugInstr() const
unsigned getNumDebugOperands() const
Returns the total number of operands which are debug locations.
unsigned getNumOperands() const
Retuns the total number of operands.
void setDebugInstrNum(unsigned Num)
Set instruction number of this MachineInstr.
LLVM_ABI void addOperand(MachineFunction &MF, const MachineOperand &Op)
Add the specified operand to the instruction.
LLVM_ABI MachineInstr * removeFromBundle()
Unlink this instruction from its basic block and return it without deleting it.
const MachineOperand * const_mop_iterator
LLVM_ABI void dumpr(const MachineRegisterInfo &MRI, unsigned MaxDepth=UINT_MAX) const
Print on dbgs() the current instruction and the instructions defining its operands and so on until we...
bool getAsmPrinterFlag(CommentFlag Flag) const
Return whether an AsmPrinter flag is set.
LLVM_ABI void copyIRFlags(const Instruction &I)
Copy all flags to MachineInst MIFlags.
bool isDebugValueLike() const
bool isInlineAsm() const
bool memoperands_empty() const
Return true if we don't have any memory operands which described the memory access done by this instr...
const_mop_range uses() const
Returns all operands which may be register uses.
mmo_iterator memoperands_end() const
Access to memory operands of the instruction.
bool isDebugRef() const
bool isAnnotationLabel() const
LLVM_ABI void collectDebugValues(SmallVectorImpl< MachineInstr * > &DbgValues)
Scan instructions immediately following MI and collect any matching DBG_VALUEs.
MachineOperand & getDebugOffset()
unsigned peekDebugInstrNum() const
Examine the instruction number of this MachineInstr.
LLVM_ABI std::optional< LocationSize > getRestoreSize(const TargetInstrInfo *TII) const
Return a valid size if the instruction is a restore instruction.
unsigned getOperandNo(const_mop_iterator I) const
Returns the number of the operand iterator I points to.
LLVM_ABI unsigned getNumExplicitOperands() const
Returns the number of non-implicit operands.
mop_range implicit_operands()
bool isSubregToReg() const
bool isCompare(QueryType Type=IgnoreBundle) const
Return true if this instruction is a comparison.
bool hasImplicitDef() const
Returns true if the instruction has implicit definition.
bool isBranch(QueryType Type=AnyInBundle) const
Returns true if this is a conditional, unconditional, or indirect branch.
LLVM_ABI void setMemRefs(MachineFunction &MF, ArrayRef< MachineMemOperand * > MemRefs)
Assign this MachineInstr's memory reference descriptor list.
LLVM_ABI bool wouldBeTriviallyDead() const
Return true if this instruction would be trivially dead if all of its defined registers were dead.
bool isBundledWithPred() const
Return true if this instruction is part of a bundle, and it is not the first instruction in the bundl...
bool isDebugPHI() const
MachineOperand & getOperand(unsigned i)
LLVM_ABI std::tuple< LLT, LLT > getFirst2LLTs() const
LLVM_ABI std::optional< LocationSize > getFoldedSpillSize(const TargetInstrInfo *TII) const
Return a valid size if the instruction is a folded spill instruction.
const_mop_iterator operands_end() const
bool modifiesRegister(Register Reg, const TargetRegisterInfo *TRI) const
Return true if the MachineInstr modifies (fully define or partially define) the specified register.
bool isCopyLaneMask() const
LLVM_ABI void unbundleFromPred()
Break bundle above this instruction.
LLVM_ABI void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI)
Copy implicit register operands from specified instruction to this instruction.
bool hasPostISelHook(QueryType Type=IgnoreBundle) const
Return true if this instruction requires adjustment after instruction selection by calling a target h...
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
void setAsmPrinterFlag(uint8_t Flag)
Set a flag for the AsmPrinter.
bool isDebugOrPseudoInstr() const
LLVM_ABI bool isStackAligningInlineAsm() const
bool isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx=nullptr) const
Given the index of a register def operand, check if the register def is tied to a source operand,...
LLVM_ABI void dropMemRefs(MachineFunction &MF)
Clear this MachineInstr's memory reference descriptor list.
mop_iterator operands_end()
bool isFullCopy() const
LLVM_ABI int findRegisterUseOperandIdx(Register Reg, const TargetRegisterInfo *TRI, bool isKill=false) const
Returns the operand index that is a use of the specific register or -1 if it is not found.
MDNode * getPCSections() const
Helper to extract PCSections metadata target sections.
bool isCFIInstruction() const
LLVM_ABI int findFirstPredOperandIdx() const
Find the index of the first operand in the operand list that is used to represent the predicate.
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
LLVM_ABI unsigned getBundleSize() const
Return the number of instructions inside the MI bundle, excluding the bundle header.
void clearFlags(unsigned flags)
bool hasExtraSrcRegAllocReq(QueryType Type=AnyInBundle) const
Returns true if this instruction source operands have special register allocation requirements that a...
bool isCommutable(QueryType Type=IgnoreBundle) const
Return true if this may be a 2- or 3-address instruction (of the form "X = op Y, Z,...
MachineInstr & operator=(const MachineInstr &)=delete
LLVM_ABI void cloneMergedMemRefs(MachineFunction &MF, ArrayRef< const MachineInstr * > MIs)
Clone the merge of multiple MachineInstrs' memory reference descriptors list and replace ours with it...
mop_range operands()
bool isConditionalBranch(QueryType Type=AnyInBundle) const
Return true if this is a branch which may fall through to the next instruction or may transfer contro...
bool isNotDuplicable(QueryType Type=AnyInBundle) const
Return true if this instruction cannot be safely duplicated.
LLVM_ABI bool isCandidateForAdditionalCallInfo(QueryType Type=IgnoreBundle) const
Return true if this is a call instruction that may have an additional information associated with it.
LLVM_ABI std::tuple< Register, LLT, Register, LLT, Register, LLT, Register, LLT > getFirst4RegLLTs() const
bool killsRegister(Register Reg, const TargetRegisterInfo *TRI) const
Return true if the MachineInstr kills the specified register.
LLVM_ABI std::tuple< Register, LLT, Register, LLT > getFirst2RegLLTs() const
unsigned getNumMemOperands() const
Return the number of memory operands.
mop_range explicit_uses()
void clearFlag(MIFlag Flag)
clearFlag - Clear a MI flag.
bool isGCLabel() const
LLVM_ABI std::optional< LocationSize > getFoldedRestoreSize(const TargetInstrInfo *TII) const
Return a valid size if the instruction is a folded restore instruction.
uint8_t getAsmPrinterFlags() const
Return the asm printer flags bitvector.
LLVM_ABI const TargetRegisterClass * getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const
Applies the constraints (def/use) implied by the OpIdx operand to the given CurRC.
bool isOperandSubregIdx(unsigned OpIdx) const
Return true if operand OpIdx is a subregister index.
LLVM_ABI InlineAsm::AsmDialect getInlineAsmDialect() const
LLVM_ABI bool hasUnmodeledSideEffects() const
Return true if this instruction has side effects that are not modeled by mayLoad / mayStore,...
LLVM_ABI bool isEquivalentDbgInstr(const MachineInstr &Other) const
Returns true if this instruction is a debug instruction that represents an identical debug value to O...
bool isRegSequence() const
bool isExtractSubregLike(QueryType Type=IgnoreBundle) const
Return true if this instruction behaves the same way as the generic EXTRACT_SUBREG instructions.
LLVM_ABI const DILabel * getDebugLabel() const
Return the debug label referenced by this DBG_LABEL instruction.
void untieRegOperand(unsigned OpIdx)
Break any tie involving OpIdx.
bool registerDefIsDead(Register Reg, const TargetRegisterInfo *TRI) const
Returns true if the register is dead in this machine instruction.
const_mop_iterator operands_begin() const
static LLVM_ABI uint32_t copyFlagsFromInstruction(const Instruction &I)
bool definesRegister(Register Reg, const TargetRegisterInfo *TRI) const
Return true if the MachineInstr fully defines the specified register.
LLVM_ABI unsigned removePHIIncomingValueFor(const MachineBasicBlock &MBB)
Remove all incoming values of Phi instruction for the given block.
LLVM_ABI void insert(mop_iterator InsertBefore, ArrayRef< MachineOperand > Ops)
Inserts Ops BEFORE It. Can untie/retie tied operands.
LLVM_ABI void setDesc(const MCInstrDesc &TID)
Replace the instruction descriptor (thus opcode) of the current instruction with a new one.
bool isUnconditionalBranch(QueryType Type=AnyInBundle) const
Return true if this is a branch which always transfers control flow to some other block.
const MachineOperand * findRegisterUseOperand(Register Reg, const TargetRegisterInfo *TRI, bool isKill=false) const
bool isJumpTableDebugInfo() const
std::tuple< Register, Register, Register > getFirst3Regs() const
LLVM_ABI unsigned getNumExplicitDefs() const
Returns the number of non-implicit definitions.
LLVM_ABI void eraseFromBundle()
Unlink 'this' from its basic block and delete it.
bool hasDelaySlot(QueryType Type=AnyInBundle) const
Returns true if the specified instruction has a delay slot which must be filled by the code generator...
bool hasOneMemOperand() const
Return true if this instruction has exactly one MachineMemOperand.
LLVM_ABI void setHeapAllocMarker(MachineFunction &MF, MDNode *MD)
Set a marker on instructions that denotes where we should create and emit heap alloc site labels.
bool isMoveReg(QueryType Type=IgnoreBundle) const
Return true if this instruction is a register move.
const_mop_range explicit_uses() const
LLVM_ABI const DILocalVariable * getDebugVariable() const
Return the debug variable referenced by this DBG_VALUE instruction.
LLVM_ABI bool hasComplexRegisterTies() const
Return true when an instruction has tied register that can't be determined by the instruction's descr...
LLVM_ABI LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, const MachineRegisterInfo &MRI) const
Debugging supportDetermine the generic type to be printed (if needed) on uses and defs.
bool isInsertSubreg() const
bool isLifetimeMarker() const
LLVM_ABI void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx, const TargetRegisterInfo &RegInfo)
Replace all occurrences of FromReg with ToReg:SubIdx, properly composing subreg indices where necessa...
mop_range explicit_operands()
LLVM_ABI unsigned findTiedOperandIdx(unsigned OpIdx) const
Given the index of a tied register operand, find the operand it is tied to.
LLVM_ABI void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
bool isConvertibleTo3Addr(QueryType Type=IgnoreBundle) const
Return true if this is a 2-address instruction which can be changed into a 3-address instruction if n...
mmo_iterator memoperands_begin() const
Access to memory operands of the instruction.
LLVM_ABI void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI)
Clone another MachineInstr's pre- and post- instruction symbols and replace ours with it.
bool isInsideBundle() const
Return true if MI is in a bundle (but not the first MI in a bundle).
LLVM_ABI void changeDebugValuesDefReg(Register Reg)
Find all DBG_VALUEs that point to the register def in this instruction and point them to Reg instead.
LLVM_ABI bool isIdenticalTo(const MachineInstr &Other, MICheckType Check=CheckDefs) const
Return true if this instruction is identical to Other.
LLVM_ABI bool hasOrderedMemoryRef() const
Return true if this instruction may have an ordered or volatile memory reference, or if the informati...
mop_range uses()
Returns all operands which may be register uses.
LLVM_ABI void emitGenericError(const Twine &ErrMsg) const
const_mop_range explicit_operands() const
bool isConvergent(QueryType Type=AnyInBundle) const
Return true if this instruction is convergent.
LLVM_ABI const MachineFunction * getMF() const
Return the function that contains the basic block that this instruction belongs to.
const_mop_range defs() const
Returns all explicit operands that are register definitions.
LLVM_ABI const DIExpression * getDebugExpression() const
Return the complex address expression referenced by this DBG_VALUE instruction.
ArrayRef< MachineMemOperand * > memoperands() const
Access to memory operands of the instruction.
bool isLabel() const
Returns true if the MachineInstr represents a label.
LLVM_ABI void print(raw_ostream &OS, bool IsStandalone=true, bool SkipOpers=false, bool SkipDebugLoc=false, bool AddNewLine=true, const TargetInstrInfo *TII=nullptr) const
Print this MI to OS.
bool isExtractSubreg() const
bool isNonListDebugValue() const
MachineOperand * mop_iterator
iterator/begin/end - Iterate over all operands of a machine instruction.
MachineOperand * findRegisterUseOperand(Register Reg, const TargetRegisterInfo *TRI, bool isKill=false)
Wrapper for findRegisterUseOperandIdx, it returns a pointer to the MachineOperand rather than an inde...
LLVM_ABI bool isLoadFoldBarrier() const
Returns true if it is illegal to fold a load across this instruction.
bool mayStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly modify memory.
void setFlag(MIFlag Flag)
Set a MI flag.
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
LLVM_ABI bool isDead(const MachineRegisterInfo &MRI, LiveRegUnits *LivePhysRegs=nullptr) const
Check whether an MI is dead.
LLVM_ABI std::tuple< LLT, LLT, LLT > getFirst3LLTs() const
bool isMoveImmediate(QueryType Type=IgnoreBundle) const
Return true if this instruction is a move immediate (including conditional moves) instruction.
bool isPreISelOpcode(QueryType Type=IgnoreBundle) const
Return true if this is an instruction that should go through the usual legalization steps.
bool isEHScopeReturn(QueryType Type=AnyInBundle) const
Return true if this is an instruction that marks the end of an EH scope, i.e., a catchpad or a cleanu...
bool isPseudo(QueryType Type=IgnoreBundle) const
Return true if this is a pseudo instruction that doesn't correspond to a real machine instruction.
LLVM_ABI const MachineOperand & getDebugVariableOp() const
Return the operand for the debug variable referenced by this DBG_VALUE instruction.
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
LLVM_ABI void setPhysRegsDeadExcept(ArrayRef< Register > UsedRegs, const TargetRegisterInfo &TRI)
Mark every physreg used by this instruction as dead except those in the UsedRegs list.
LLVM_ABI void removeOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with.
friend class MachineFunction
filtered_mop_range all_uses()
Returns an iterator range over all operands that are (explicit or implicit) register uses.
MCSymbol * getPreInstrSymbol() const
Helper to extract a pre-instruction symbol if one has been added.
LLVM_ABI bool addRegisterKilled(Register IncomingReg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound=false)
We have determined MI kills a register.
bool readsVirtualRegister(Register Reg) const
Return true if the MachineInstr reads the specified virtual register.
LLVM_ABI void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol)
Set a symbol that will be emitted just after the instruction itself.
bool isBitcast(QueryType Type=IgnoreBundle) const
Return true if this instruction is a bitcast instruction.
bool hasOptionalDef(QueryType Type=IgnoreBundle) const
Set if this instruction has an optional definition, e.g.
bool isTransient() const
Return true if this is a transient instruction that is either very likely to be eliminated during reg...
bool isDebugValue() const
LLVM_ABI void dump() const
unsigned getDebugOperandIndex(const MachineOperand *Op) const
const MachineOperand & getDebugOffset() const
Return the operand containing the offset to be used if this DBG_VALUE instruction is indirect; will b...
MachineOperand & getDebugOperand(unsigned Index)
LLVM_ABI std::optional< LocationSize > getSpillSize(const TargetInstrInfo *TII) const
Return a valid size if the instruction is a spill instruction.
bool isBundledWithSucc() const
Return true if this instruction is part of a bundle, and it is not the last instruction in the bundle...
LLVM_ABI void addRegisterDefined(Register Reg, const TargetRegisterInfo *RegInfo=nullptr)
We have determined MI defines a register.
MDNode * getHeapAllocMarker() const
Helper to extract a heap alloc marker if one has been added.
bool isInsertSubregLike(QueryType Type=IgnoreBundle) const
Return true if this instruction behaves the same way as the generic INSERT_SUBREG instructions.
LLVM_ABI unsigned getDebugInstrNum()
Fetch the instruction number of this MachineInstr.
bool isDebugOperand(const MachineOperand *Op) const
LLVM_ABI std::tuple< LLT, LLT, LLT, LLT > getFirst4LLTs() const
LLVM_ABI void clearRegisterDeads(Register Reg)
Clear all dead flags on operands defining register Reg.
LLVM_ABI void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo)
Clear all kill flags affecting Reg.
const MachineOperand & getOperand(unsigned i) const
LLVM_ABI void emitInlineAsmError(const Twine &ErrMsg) const
Emit an error referring to the source location of this instruction.
uint32_t getFlags() const
Return the MI flags bitvector.
bool isEHLabel() const
bool isPseudoProbe() const
LLVM_ABI bool hasRegisterImplicitUseOperand(Register Reg) const
Returns true if the MachineInstr has an implicit-use operand of exactly the given register (not consi...
LLVM_ABI bool shouldUpdateAdditionalCallInfo() const
Return true if copying, moving, or erasing this instruction requires updating additional call info (s...
LLVM_ABI void setDeactivationSymbol(MachineFunction &MF, Value *DS)
bool isUndefDebugValue() const
Return true if the instruction is a debug value which describes a part of a variable as unavailable.
Value * getDeactivationSymbol() const
bool isIdentityCopy() const
Return true is the instruction is an identity copy.
MCSymbol * getPostInstrSymbol() const
Helper to extract a post-instruction symbol if one has been added.
LLVM_ABI void unbundleFromSucc()
Break bundle below this instruction.
const MachineOperand & getDebugOperand(unsigned Index) const
iterator_range< filter_iterator< mop_iterator, bool(*)(const MachineOperand &)> > filtered_mop_range
LLVM_ABI void clearKillInfo()
Clears kill flags on all operands.
LLVM_ABI bool isDebugEntryValue() const
A DBG_VALUE is an entry value iff its debug expression contains the DW_OP_LLVM_entry_value operation.
bool isIndirectDebugValue() const
A DBG_VALUE is indirect iff the location operand is a register and the offset operand is an immediate...
unsigned getNumDefs() const
Returns the total number of definitions.
LLVM_ABI void setPCSections(MachineFunction &MF, MDNode *MD)
MachineInstr(const MachineInstr &)=delete
bool isKill() const
LLVM_ABI const MDNode * getLocCookieMD() const
For inline asm, get the !srcloc metadata node if we have it, and decode the loc cookie from it.
const MachineOperand * findRegisterDefOperand(Register Reg, const TargetRegisterInfo *TRI, bool isDead=false, bool Overlap=false) const
LLVM_ABI int findRegisterDefOperandIdx(Register Reg, const TargetRegisterInfo *TRI, bool isDead=false, bool Overlap=false) const
Returns the operand index that is a def of the specified register or -1 if it is not found.
iterator_range< mop_iterator > mop_range
bool isMetaInstruction(QueryType Type=IgnoreBundle) const
Return true if this instruction doesn't produce any output in the form of executable instructions.
bool canFoldAsLoad(QueryType Type=IgnoreBundle) const
Return true for instructions that can be folded as memory operands in other instructions.
void setDebugLoc(DebugLoc DL)
Replace current source information with new such.
bool isIndirectBranch(QueryType Type=AnyInBundle) const
Return true if this is an indirect branch, such as a branch through a register.
bool isFakeUse() const
filtered_const_mop_range all_defs() const
Returns an iterator range over all operands that are (explicit or implicit) register defs.
bool isVariadic(QueryType Type=IgnoreBundle) const
Return true if this instruction can have a variable number of operands.
LLVM_ABI int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo=nullptr) const
Find the index of the flag word operand that corresponds to operand OpIdx on an inline asm instructio...
LLVM_ABI bool allDefsAreDead() const
Return true if all the defs of this instruction are dead.
LLVM_ABI void setMMRAMetadata(MachineFunction &MF, MDNode *MMRAs)
bool isRegSequenceLike(QueryType Type=IgnoreBundle) const
Return true if this instruction behaves the same way as the generic REG_SEQUENCE instructions.
LLVM_ABI const TargetRegisterClass * getRegClassConstraint(unsigned OpIdx, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const
Compute the static register class constraint for operand OpIdx.
bool isAsCheapAsAMove(QueryType Type=AllInBundle) const
Returns true if this instruction has the same cost (or less) than a move instruction.
const_mop_range operands() const
LLVM_ABI void moveBefore(MachineInstr *MovePos)
Move the instruction before MovePos.
MachineOperand * findRegisterDefOperand(Register Reg, const TargetRegisterInfo *TRI, bool isDead=false, bool Overlap=false)
Wrapper for findRegisterDefOperandIdx, it returns a pointer to the MachineOperand rather than an inde...
LLVM_ABI void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
bool isBundled() const
Return true if this instruction part of a bundle.
bool isRematerializable(QueryType Type=AllInBundle) const
Returns true if this instruction is a candidate for remat.
LLVM_ABI bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound=false)
We have determined MI defined a register without a use.
LLVM_ABI bool mayFoldInlineAsmRegOp(unsigned OpId) const
Returns true if the register operand can be folded with a load or store into a frame index.
std::tuple< Register, Register > getFirst2Regs() const
~MachineInstr()=delete
A description of a memory reference used in the backend.
MachineOperand class - Representation of each machine instruction operand.
unsigned getSubReg() const
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Manage lifetime of a slot tracker for printing IR.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
TargetInstrInfo - Interface to description of machine instruction set.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
static constexpr std::enable_if_t< std::is_same_v< Foo< TrailingTys... >, Foo< Tys... > >, size_t > totalSizeToAlloc(typename trailing_objects_internal::ExtractSecondType< TrailingTys, size_t >::type... Counts)
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM Value Representation.
Definition Value.h:75
A range adaptor for a pair of iterators.
IteratorT begin() const
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
This file defines classes to implement an intrusive doubly linked list class (i.e.
This file defines the ilist_node class template, which is a convenient base class for creating classe...
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
Abstract Attribute helper functions.
Definition Attributor.h:165
@ ExtraDefRegAllocReq
@ MayRaiseFPException
@ ExtraSrcRegAllocReq
This is an optimization pass for GlobalISel generic memory operations.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1655
constexpr auto adl_begin(RangeT &&range) -> decltype(adl_detail::begin_impl(std::forward< RangeT >(range)))
Returns the begin iterator to range using std::begin and function found through Argument-Dependent Lo...
Definition ADL.h:78
constexpr auto adl_end(RangeT &&range) -> decltype(adl_detail::end_impl(std::forward< RangeT >(range)))
Returns the end iterator to range using std::end and functions found through Argument-Dependent Looku...
Definition ADL.h:86
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
Definition MathExtras.h:189
iterator_range< filter_iterator< detail::IterOfRange< RangeT >, PredicateT > > make_filter_range(RangeT &&Range, PredicateT Pred)
Convenience function that takes a range of elements and a predicate, and return a new filter_iterator...
Definition STLExtras.h:550
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
@ Other
Any other memory.
Definition ModRef.h:68
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
ArrayRef(const T &OneElt) -> ArrayRef< T >
OutputIt copy(R &&Range, OutputIt Out)
Definition STLExtras.h:1835
filter_iterator_impl< WrappedIteratorT, PredicateT, detail::fwd_or_bidi_tag< WrappedIteratorT > > filter_iterator
Defines filter_iterator to a suitable specialization of filter_iterator_impl, based on the underlying...
Definition STLExtras.h:537
BumpPtrAllocatorImpl<> BumpPtrAllocator
The standard BumpPtrAllocator which just uses the default template parameters.
Definition Allocator.h:383
An information struct used to provide DenseMap with the various necessary components for a given valu...
Special DenseMapInfo traits to compare MachineInstr* by value of the instruction rather than by point...
static MachineInstr * getEmptyKey()
static LLVM_ABI unsigned getHashValue(const MachineInstr *const &MI)
static MachineInstr * getTombstoneKey()
static bool isEqual(const MachineInstr *const &LHS, const MachineInstr *const &RHS)
Callbacks do nothing by default in iplist and ilist.
Definition ilist.h:65
Template traits for intrusive list.
Definition ilist.h:90