LLVM  13.0.0git
InstCombineMulDivRem.cpp
Go to the documentation of this file.
1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
10 // srem, urem, frem.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/KnownBits.h"
37 #include <cassert>
38 #include <cstddef>
39 #include <cstdint>
40 #include <utility>
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 #define DEBUG_TYPE "instcombine"
46 
47 /// The specific integer value is used in a context where it is known to be
48 /// non-zero. If this allows us to simplify the computation, do so and return
49 /// the new operand, otherwise return null.
51  Instruction &CxtI) {
52  // If V has multiple uses, then we would have to do more analysis to determine
53  // if this is safe. For example, the use could be in dynamically unreached
54  // code.
55  if (!V->hasOneUse()) return nullptr;
56 
57  bool MadeChange = false;
58 
59  // ((1 << A) >>u B) --> (1 << (A-B))
60  // Because V cannot be zero, we know that B is less than A.
61  Value *A = nullptr, *B = nullptr, *One = nullptr;
62  if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
63  match(One, m_One())) {
64  A = IC.Builder.CreateSub(A, B);
65  return IC.Builder.CreateShl(One, A);
66  }
67 
68  // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
69  // inexact. Similarly for <<.
70  BinaryOperator *I = dyn_cast<BinaryOperator>(V);
71  if (I && I->isLogicalShift() &&
72  IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
73  // We know that this is an exact/nuw shift and that the input is a
74  // non-zero context as well.
75  if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
76  IC.replaceOperand(*I, 0, V2);
77  MadeChange = true;
78  }
79 
80  if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
81  I->setIsExact();
82  MadeChange = true;
83  }
84 
85  if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
86  I->setHasNoUnsignedWrap();
87  MadeChange = true;
88  }
89  }
90 
91  // TODO: Lots more we could do here:
92  // If V is a phi node, we can call this on each of its operands.
93  // "select cond, X, 0" can simplify to "X".
94 
95  return MadeChange ? V : nullptr;
96 }
97 
98 // TODO: This is a specific form of a much more general pattern.
99 // We could detect a select with any binop identity constant, or we
100 // could use SimplifyBinOp to see if either arm of the select reduces.
101 // But that needs to be done carefully and/or while removing potential
102 // reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
105  Value *Cond, *OtherOp;
106 
107  // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
108  // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
110  m_Value(OtherOp))))
111  return Builder.CreateSelect(Cond, OtherOp, Builder.CreateNeg(OtherOp));
112 
113  // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
114  // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
116  m_Value(OtherOp))))
117  return Builder.CreateSelect(Cond, Builder.CreateNeg(OtherOp), OtherOp);
118 
119  // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
120  // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
122  m_SpecificFP(-1.0))),
123  m_Value(OtherOp)))) {
125  Builder.setFastMathFlags(I.getFastMathFlags());
126  return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
127  }
128 
129  // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
130  // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
132  m_SpecificFP(1.0))),
133  m_Value(OtherOp)))) {
135  Builder.setFastMathFlags(I.getFastMathFlags());
136  return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
137  }
138 
139  return nullptr;
140 }
141 
143  if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
144  SQ.getWithInstruction(&I)))
145  return replaceInstUsesWith(I, V);
146 
147  if (SimplifyAssociativeOrCommutative(I))
148  return &I;
149 
150  if (Instruction *X = foldVectorBinop(I))
151  return X;
152 
153  if (Value *V = SimplifyUsingDistributiveLaws(I))
154  return replaceInstUsesWith(I, V);
155 
156  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
157  unsigned BitWidth = I.getType()->getScalarSizeInBits();
158 
159  // X * -1 == 0 - X
160  if (match(Op1, m_AllOnes())) {
161  BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
162  if (I.hasNoSignedWrap())
163  BO->setHasNoSignedWrap();
164  return BO;
165  }
166 
167  // Also allow combining multiply instructions on vectors.
168  {
169  Value *NewOp;
170  Constant *C1, *C2;
171  const APInt *IVal;
172  if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
173  m_Constant(C1))) &&
174  match(C1, m_APInt(IVal))) {
175  // ((X << C2)*C1) == (X * (C1 << C2))
176  Constant *Shl = ConstantExpr::getShl(C1, C2);
177  BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
178  BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
179  if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
180  BO->setHasNoUnsignedWrap();
181  if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
182  Shl->isNotMinSignedValue())
183  BO->setHasNoSignedWrap();
184  return BO;
185  }
186 
187  if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
188  // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
189  if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) {
190  BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
191 
192  if (I.hasNoUnsignedWrap())
193  Shl->setHasNoUnsignedWrap();
194  if (I.hasNoSignedWrap()) {
195  const APInt *V;
196  if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
197  Shl->setHasNoSignedWrap();
198  }
199 
200  return Shl;
201  }
202  }
203  }
204 
205  if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) {
206  // Interpret X * (-1<<C) as (-X) * (1<<C) and try to sink the negation.
207  // The "* (1<<C)" thus becomes a potential shifting opportunity.
208  if (Value *NegOp0 = Negator::Negate(/*IsNegation*/ true, Op0, *this))
210  NegOp0, ConstantExpr::getNeg(cast<Constant>(Op1)), I.getName());
211  }
212 
213  if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
214  return FoldedMul;
215 
216  if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
217  return replaceInstUsesWith(I, FoldedMul);
218 
219  // Simplify mul instructions with a constant RHS.
220  if (isa<Constant>(Op1)) {
221  // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
222  Value *X;
223  Constant *C1;
224  if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
225  Value *Mul = Builder.CreateMul(C1, Op1);
226  // Only go forward with the transform if C1*CI simplifies to a tidier
227  // constant.
228  if (!match(Mul, m_Mul(m_Value(), m_Value())))
229  return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
230  }
231  }
232 
233  // abs(X) * abs(X) -> X * X
234  // nabs(X) * nabs(X) -> X * X
235  if (Op0 == Op1) {
236  Value *X, *Y;
238  if (SPF == SPF_ABS || SPF == SPF_NABS)
239  return BinaryOperator::CreateMul(X, X);
240 
241  if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
242  return BinaryOperator::CreateMul(X, X);
243  }
244 
245  // -X * C --> X * -C
246  Value *X, *Y;
247  Constant *Op1C;
248  if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
250 
251  // -X * -Y --> X * Y
252  if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
253  auto *NewMul = BinaryOperator::CreateMul(X, Y);
254  if (I.hasNoSignedWrap() &&
255  cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
256  cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
257  NewMul->setHasNoSignedWrap();
258  return NewMul;
259  }
260 
261  // -X * Y --> -(X * Y)
262  // X * -Y --> -(X * Y)
263  if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
264  return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
265 
266  // (X / Y) * Y = X - (X % Y)
267  // (X / Y) * -Y = (X % Y) - X
268  {
269  Value *Y = Op1;
270  BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
271  if (!Div || (Div->getOpcode() != Instruction::UDiv &&
272  Div->getOpcode() != Instruction::SDiv)) {
273  Y = Op0;
274  Div = dyn_cast<BinaryOperator>(Op1);
275  }
276  Value *Neg = dyn_castNegVal(Y);
277  if (Div && Div->hasOneUse() &&
278  (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
279  (Div->getOpcode() == Instruction::UDiv ||
280  Div->getOpcode() == Instruction::SDiv)) {
281  Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
282 
283  // If the division is exact, X % Y is zero, so we end up with X or -X.
284  if (Div->isExact()) {
285  if (DivOp1 == Y)
286  return replaceInstUsesWith(I, X);
288  }
289 
290  auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
291  : Instruction::SRem;
292  Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
293  if (DivOp1 == Y)
294  return BinaryOperator::CreateSub(X, Rem);
295  return BinaryOperator::CreateSub(Rem, X);
296  }
297  }
298 
299  /// i1 mul -> i1 and.
300  if (I.getType()->isIntOrIntVectorTy(1))
301  return BinaryOperator::CreateAnd(Op0, Op1);
302 
303  // X*(1 << Y) --> X << Y
304  // (1 << Y)*X --> X << Y
305  {
306  Value *Y;
307  BinaryOperator *BO = nullptr;
308  bool ShlNSW = false;
309  if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
310  BO = BinaryOperator::CreateShl(Op1, Y);
311  ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
312  } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
313  BO = BinaryOperator::CreateShl(Op0, Y);
314  ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
315  }
316  if (BO) {
317  if (I.hasNoUnsignedWrap())
318  BO->setHasNoUnsignedWrap();
319  if (I.hasNoSignedWrap() && ShlNSW)
320  BO->setHasNoSignedWrap();
321  return BO;
322  }
323  }
324 
325  // (zext bool X) * (zext bool Y) --> zext (and X, Y)
326  // (sext bool X) * (sext bool Y) --> zext (and X, Y)
327  // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
328  if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
329  (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
330  X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
331  (Op0->hasOneUse() || Op1->hasOneUse())) {
332  Value *And = Builder.CreateAnd(X, Y, "mulbool");
333  return CastInst::Create(Instruction::ZExt, And, I.getType());
334  }
335  // (sext bool X) * (zext bool Y) --> sext (and X, Y)
336  // (zext bool X) * (sext bool Y) --> sext (and X, Y)
337  // Note: -1 * 1 == 1 * -1 == -1
338  if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
339  (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
340  X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
341  (Op0->hasOneUse() || Op1->hasOneUse())) {
342  Value *And = Builder.CreateAnd(X, Y, "mulbool");
343  return CastInst::Create(Instruction::SExt, And, I.getType());
344  }
345 
346  // (bool X) * Y --> X ? Y : 0
347  // Y * (bool X) --> X ? Y : 0
348  if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
349  return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
350  if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
351  return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
352 
353  // (lshr X, 31) * Y --> (ashr X, 31) & Y
354  // Y * (lshr X, 31) --> (ashr X, 31) & Y
355  // TODO: We are not checking one-use because the elimination of the multiply
356  // is better for analysis?
357  // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
358  // more similar to what we're doing above.
359  const APInt *C;
360  if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
361  return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
362  if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
363  return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
364 
365  // ((ashr X, 31) | 1) * X --> abs(X)
366  // X * ((ashr X, 31) | 1) --> abs(X)
369  m_One()),
370  m_Deferred(X)))) {
371  Value *Abs = Builder.CreateBinaryIntrinsic(
372  Intrinsic::abs, X,
373  ConstantInt::getBool(I.getContext(), I.hasNoSignedWrap()));
374  Abs->takeName(&I);
375  return replaceInstUsesWith(I, Abs);
376  }
377 
378  if (Instruction *Ext = narrowMathIfNoOverflow(I))
379  return Ext;
380 
381  bool Changed = false;
382  if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
383  Changed = true;
384  I.setHasNoSignedWrap(true);
385  }
386 
387  if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
388  Changed = true;
389  I.setHasNoUnsignedWrap(true);
390  }
391 
392  return Changed ? &I : nullptr;
393 }
394 
395 Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
396  BinaryOperator::BinaryOps Opcode = I.getOpcode();
397  assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
398  "Expected fmul or fdiv");
399 
400  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
401  Value *X, *Y;
402 
403  // -X * -Y --> X * Y
404  // -X / -Y --> X / Y
405  if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
406  return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
407 
408  // fabs(X) * fabs(X) -> X * X
409  // fabs(X) / fabs(X) -> X / X
410  if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X))))
411  return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
412 
413  // fabs(X) * fabs(Y) --> fabs(X * Y)
414  // fabs(X) / fabs(Y) --> fabs(X / Y)
415  if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) &&
416  (Op0->hasOneUse() || Op1->hasOneUse())) {
418  Builder.setFastMathFlags(I.getFastMathFlags());
419  Value *XY = Builder.CreateBinOp(Opcode, X, Y);
420  Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
421  Fabs->takeName(&I);
422  return replaceInstUsesWith(I, Fabs);
423  }
424 
425  return nullptr;
426 }
427 
429  if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
430  I.getFastMathFlags(),
431  SQ.getWithInstruction(&I)))
432  return replaceInstUsesWith(I, V);
433 
434  if (SimplifyAssociativeOrCommutative(I))
435  return &I;
436 
437  if (Instruction *X = foldVectorBinop(I))
438  return X;
439 
440  if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
441  return FoldedMul;
442 
443  if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
444  return replaceInstUsesWith(I, FoldedMul);
445 
446  if (Instruction *R = foldFPSignBitOps(I))
447  return R;
448 
449  // X * -1.0 --> -X
450  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
451  if (match(Op1, m_SpecificFP(-1.0)))
452  return UnaryOperator::CreateFNegFMF(Op0, &I);
453 
454  // -X * C --> X * -C
455  Value *X, *Y;
456  Constant *C;
457  if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
459 
460  // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
461  if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
462  return replaceInstUsesWith(I, V);
463 
464  if (I.hasAllowReassoc()) {
465  // Reassociate constant RHS with another constant to form constant
466  // expression.
467  if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
468  Constant *C1;
469  if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
470  // (C1 / X) * C --> (C * C1) / X
472  if (CC1->isNormalFP())
473  return BinaryOperator::CreateFDivFMF(CC1, X, &I);
474  }
475  if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
476  // (X / C1) * C --> X * (C / C1)
477  Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
478  if (CDivC1->isNormalFP())
479  return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
480 
481  // If the constant was a denormal, try reassociating differently.
482  // (X / C1) * C --> X / (C1 / C)
483  Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
484  if (Op0->hasOneUse() && C1DivC->isNormalFP())
485  return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
486  }
487 
488  // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
489  // canonicalized to 'fadd X, C'. Distributing the multiply may allow
490  // further folds and (X * C) + C2 is 'fma'.
491  if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
492  // (X + C1) * C --> (X * C) + (C * C1)
494  Value *XC = Builder.CreateFMulFMF(X, C, &I);
495  return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
496  }
497  if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
498  // (C1 - X) * C --> (C * C1) - (X * C)
500  Value *XC = Builder.CreateFMulFMF(X, C, &I);
501  return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
502  }
503  }
504 
505  Value *Z;
507  m_Value(Z)))) {
508  // Sink division: (X / Y) * Z --> (X * Z) / Y
509  Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
510  return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
511  }
512 
513  // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
514  // nnan disallows the possibility of returning a number if both operands are
515  // negative (in that case, we should return NaN).
516  if (I.hasNoNaNs() &&
517  match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
518  match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
519  Value *XY = Builder.CreateFMulFMF(X, Y, &I);
520  Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
521  return replaceInstUsesWith(I, Sqrt);
522  }
523 
524  // The following transforms are done irrespective of the number of uses
525  // for the expression "1.0/sqrt(X)".
526  // 1) 1.0/sqrt(X) * X -> X/sqrt(X)
527  // 2) X * 1.0/sqrt(X) -> X/sqrt(X)
528  // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
529  // has the necessary (reassoc) fast-math-flags.
530  if (I.hasNoSignedZeros() &&
531  match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
532  match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op1 == X)
533  return BinaryOperator::CreateFDivFMF(X, Y, &I);
534  if (I.hasNoSignedZeros() &&
535  match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
536  match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op0 == X)
537  return BinaryOperator::CreateFDivFMF(X, Y, &I);
538 
539  // Like the similar transform in instsimplify, this requires 'nsz' because
540  // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
541  if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
542  Op0->hasNUses(2)) {
543  // Peek through fdiv to find squaring of square root:
544  // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
545  if (match(Op0, m_FDiv(m_Value(X),
546  m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
547  Value *XX = Builder.CreateFMulFMF(X, X, &I);
548  return BinaryOperator::CreateFDivFMF(XX, Y, &I);
549  }
550  // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
551  if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)),
552  m_Value(X)))) {
553  Value *XX = Builder.CreateFMulFMF(X, X, &I);
554  return BinaryOperator::CreateFDivFMF(Y, XX, &I);
555  }
556  }
557 
558  // exp(X) * exp(Y) -> exp(X + Y)
559  // Match as long as at least one of exp has only one use.
560  if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
561  match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y))) &&
562  (Op0->hasOneUse() || Op1->hasOneUse())) {
563  Value *XY = Builder.CreateFAddFMF(X, Y, &I);
564  Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
565  return replaceInstUsesWith(I, Exp);
566  }
567 
568  // exp2(X) * exp2(Y) -> exp2(X + Y)
569  // Match as long as at least one of exp2 has only one use.
570  if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
571  match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y))) &&
572  (Op0->hasOneUse() || Op1->hasOneUse())) {
573  Value *XY = Builder.CreateFAddFMF(X, Y, &I);
574  Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
575  return replaceInstUsesWith(I, Exp2);
576  }
577 
578  // (X*Y) * X => (X*X) * Y where Y != X
579  // The purpose is two-fold:
580  // 1) to form a power expression (of X).
581  // 2) potentially shorten the critical path: After transformation, the
582  // latency of the instruction Y is amortized by the expression of X*X,
583  // and therefore Y is in a "less critical" position compared to what it
584  // was before the transformation.
585  if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
586  Op1 != Y) {
587  Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
588  return BinaryOperator::CreateFMulFMF(XX, Y, &I);
589  }
590  if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
591  Op0 != Y) {
592  Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
593  return BinaryOperator::CreateFMulFMF(XX, Y, &I);
594  }
595  }
596 
597  // log2(X * 0.5) * Y = log2(X) * Y - Y
598  if (I.isFast()) {
599  IntrinsicInst *Log2 = nullptr;
600  if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
601  m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
602  Log2 = cast<IntrinsicInst>(Op0);
603  Y = Op1;
604  }
605  if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
606  m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
607  Log2 = cast<IntrinsicInst>(Op1);
608  Y = Op0;
609  }
610  if (Log2) {
611  Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
612  Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
613  return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
614  }
615  }
616 
617  return nullptr;
618 }
619 
620 /// Fold a divide or remainder with a select instruction divisor when one of the
621 /// select operands is zero. In that case, we can use the other select operand
622 /// because div/rem by zero is undefined.
624  SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
625  if (!SI)
626  return false;
627 
628  int NonNullOperand;
629  if (match(SI->getTrueValue(), m_Zero()))
630  // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
631  NonNullOperand = 2;
632  else if (match(SI->getFalseValue(), m_Zero()))
633  // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
634  NonNullOperand = 1;
635  else
636  return false;
637 
638  // Change the div/rem to use 'Y' instead of the select.
639  replaceOperand(I, 1, SI->getOperand(NonNullOperand));
640 
641  // Okay, we know we replace the operand of the div/rem with 'Y' with no
642  // problem. However, the select, or the condition of the select may have
643  // multiple uses. Based on our knowledge that the operand must be non-zero,
644  // propagate the known value for the select into other uses of it, and
645  // propagate a known value of the condition into its other users.
646 
647  // If the select and condition only have a single use, don't bother with this,
648  // early exit.
649  Value *SelectCond = SI->getCondition();
650  if (SI->use_empty() && SelectCond->hasOneUse())
651  return true;
652 
653  // Scan the current block backward, looking for other uses of SI.
654  BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
655  Type *CondTy = SelectCond->getType();
656  while (BBI != BBFront) {
657  --BBI;
658  // If we found an instruction that we can't assume will return, so
659  // information from below it cannot be propagated above it.
661  break;
662 
663  // Replace uses of the select or its condition with the known values.
664  for (Use &Op : BBI->operands()) {
665  if (Op == SI) {
666  replaceUse(Op, SI->getOperand(NonNullOperand));
667  Worklist.push(&*BBI);
668  } else if (Op == SelectCond) {
669  replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
670  : ConstantInt::getFalse(CondTy));
671  Worklist.push(&*BBI);
672  }
673  }
674 
675  // If we past the instruction, quit looking for it.
676  if (&*BBI == SI)
677  SI = nullptr;
678  if (&*BBI == SelectCond)
679  SelectCond = nullptr;
680 
681  // If we ran out of things to eliminate, break out of the loop.
682  if (!SelectCond && !SI)
683  break;
684 
685  }
686  return true;
687 }
688 
689 /// True if the multiply can not be expressed in an int this size.
690 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
691  bool IsSigned) {
692  bool Overflow;
693  Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
694  return Overflow;
695 }
696 
697 /// True if C1 is a multiple of C2. Quotient contains C1/C2.
698 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
699  bool IsSigned) {
700  assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
701 
702  // Bail if we will divide by zero.
703  if (C2.isNullValue())
704  return false;
705 
706  // Bail if we would divide INT_MIN by -1.
707  if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
708  return false;
709 
710  APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
711  if (IsSigned)
712  APInt::sdivrem(C1, C2, Quotient, Remainder);
713  else
714  APInt::udivrem(C1, C2, Quotient, Remainder);
715 
716  return Remainder.isMinValue();
717 }
718 
719 /// This function implements the transforms common to both integer division
720 /// instructions (udiv and sdiv). It is called by the visitors to those integer
721 /// division instructions.
722 /// Common integer divide transforms
724  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
725  bool IsSigned = I.getOpcode() == Instruction::SDiv;
726  Type *Ty = I.getType();
727 
728  // The RHS is known non-zero.
729  if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
730  return replaceOperand(I, 1, V);
731 
732  // Handle cases involving: [su]div X, (select Cond, Y, Z)
733  // This does not apply for fdiv.
734  if (simplifyDivRemOfSelectWithZeroOp(I))
735  return &I;
736 
737  const APInt *C2;
738  if (match(Op1, m_APInt(C2))) {
739  Value *X;
740  const APInt *C1;
741 
742  // (X / C1) / C2 -> X / (C1*C2)
743  if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
744  (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
745  APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
746  if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
747  return BinaryOperator::Create(I.getOpcode(), X,
748  ConstantInt::get(Ty, Product));
749  }
750 
751  if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
752  (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
753  APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
754 
755  // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
756  if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
757  auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
758  ConstantInt::get(Ty, Quotient));
759  NewDiv->setIsExact(I.isExact());
760  return NewDiv;
761  }
762 
763  // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
764  if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
765  auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
766  ConstantInt::get(Ty, Quotient));
767  auto *OBO = cast<OverflowingBinaryOperator>(Op0);
768  Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
769  Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
770  return Mul;
771  }
772  }
773 
774  if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
775  *C1 != C1->getBitWidth() - 1) ||
776  (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) {
777  APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
778  APInt C1Shifted = APInt::getOneBitSet(
779  C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
780 
781  // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
782  if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
783  auto *BO = BinaryOperator::Create(I.getOpcode(), X,
784  ConstantInt::get(Ty, Quotient));
785  BO->setIsExact(I.isExact());
786  return BO;
787  }
788 
789  // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
790  if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
791  auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
792  ConstantInt::get(Ty, Quotient));
793  auto *OBO = cast<OverflowingBinaryOperator>(Op0);
794  Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
795  Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
796  return Mul;
797  }
798  }
799 
800  if (!C2->isNullValue()) // avoid X udiv 0
801  if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
802  return FoldedDiv;
803  }
804 
805  if (match(Op0, m_One())) {
806  assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
807  if (IsSigned) {
808  // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
809  // result is one, if Op1 is -1 then the result is minus one, otherwise
810  // it's zero.
811  Value *Inc = Builder.CreateAdd(Op1, Op0);
812  Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
813  return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
814  } else {
815  // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
816  // result is one, otherwise it's zero.
817  return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
818  }
819  }
820 
821  // See if we can fold away this div instruction.
822  if (SimplifyDemandedInstructionBits(I))
823  return &I;
824 
825  // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
826  Value *X, *Z;
827  if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
828  if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
829  (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
830  return BinaryOperator::Create(I.getOpcode(), X, Op1);
831 
832  // (X << Y) / X -> 1 << Y
833  Value *Y;
834  if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
835  return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
836  if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
837  return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
838 
839  // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
840  if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
841  bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
842  bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
843  if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
844  replaceOperand(I, 0, ConstantInt::get(Ty, 1));
845  replaceOperand(I, 1, Y);
846  return &I;
847  }
848  }
849 
850  return nullptr;
851 }
852 
853 static const unsigned MaxDepth = 6;
854 
855 namespace {
856 
857 using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
858  const BinaryOperator &I,
859  InstCombinerImpl &IC);
860 
861 /// Used to maintain state for visitUDivOperand().
862 struct UDivFoldAction {
863  /// Informs visitUDiv() how to fold this operand. This can be zero if this
864  /// action joins two actions together.
865  FoldUDivOperandCb FoldAction;
866 
867  /// Which operand to fold.
868  Value *OperandToFold;
869 
870  union {
871  /// The instruction returned when FoldAction is invoked.
872  Instruction *FoldResult;
873 
874  /// Stores the LHS action index if this action joins two actions together.
875  size_t SelectLHSIdx;
876  };
877 
878  UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
879  : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
880  UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
881  : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
882 };
883 
884 } // end anonymous namespace
885 
886 // X udiv 2^C -> X >> C
888  const BinaryOperator &I,
889  InstCombinerImpl &IC) {
890  Constant *C1 = ConstantExpr::getExactLogBase2(cast<Constant>(Op1));
891  if (!C1)
892  llvm_unreachable("Failed to constant fold udiv -> logbase2");
893  BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
894  if (I.isExact())
895  LShr->setIsExact();
896  return LShr;
897 }
898 
899 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
900 // X udiv (zext (C1 << N)), where C1 is "1<<C2" --> X >> (N+C2)
901 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
902  InstCombinerImpl &IC) {
903  Value *ShiftLeft;
904  if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
905  ShiftLeft = Op1;
906 
907  Constant *CI;
908  Value *N;
909  if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
910  llvm_unreachable("match should never fail here!");
912  if (!Log2Base)
913  llvm_unreachable("getLogBase2 should never fail here!");
914  N = IC.Builder.CreateAdd(N, Log2Base);
915  if (Op1 != ShiftLeft)
916  N = IC.Builder.CreateZExt(N, Op1->getType());
917  BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
918  if (I.isExact())
919  LShr->setIsExact();
920  return LShr;
921 }
922 
923 // Recursively visits the possible right hand operands of a udiv
924 // instruction, seeing through select instructions, to determine if we can
925 // replace the udiv with something simpler. If we find that an operand is not
926 // able to simplify the udiv, we abort the entire transformation.
927 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
929  unsigned Depth = 0) {
930  // FIXME: assert that Op1 isn't/doesn't contain undef.
931 
932  // Check to see if this is an unsigned division with an exact power of 2,
933  // if so, convert to a right shift.
934  if (match(Op1, m_Power2())) {
935  Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
936  return Actions.size();
937  }
938 
939  // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
940  if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
941  match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
942  Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
943  return Actions.size();
944  }
945 
946  // The remaining tests are all recursive, so bail out if we hit the limit.
947  if (Depth++ == MaxDepth)
948  return 0;
949 
950  if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
951  // FIXME: missed optimization: if one of the hands of select is/contains
952  // undef, just directly pick the other one.
953  // FIXME: can both hands contain undef?
954  if (size_t LHSIdx =
955  visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
956  if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
957  Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
958  return Actions.size();
959  }
960 
961  return 0;
962 }
963 
964 /// If we have zero-extended operands of an unsigned div or rem, we may be able
965 /// to narrow the operation (sink the zext below the math).
968  Instruction::BinaryOps Opcode = I.getOpcode();
969  Value *N = I.getOperand(0);
970  Value *D = I.getOperand(1);
971  Type *Ty = I.getType();
972  Value *X, *Y;
973  if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
974  X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
975  // udiv (zext X), (zext Y) --> zext (udiv X, Y)
976  // urem (zext X), (zext Y) --> zext (urem X, Y)
977  Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
978  return new ZExtInst(NarrowOp, Ty);
979  }
980 
981  Constant *C;
982  if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
983  (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
984  // If the constant is the same in the smaller type, use the narrow version.
985  Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
986  if (ConstantExpr::getZExt(TruncC, Ty) != C)
987  return nullptr;
988 
989  // udiv (zext X), C --> zext (udiv X, C')
990  // urem (zext X), C --> zext (urem X, C')
991  // udiv C, (zext X) --> zext (udiv C', X)
992  // urem C, (zext X) --> zext (urem C', X)
993  Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
994  : Builder.CreateBinOp(Opcode, TruncC, X);
995  return new ZExtInst(NarrowOp, Ty);
996  }
997 
998  return nullptr;
999 }
1000 
1002  if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
1003  SQ.getWithInstruction(&I)))
1004  return replaceInstUsesWith(I, V);
1005 
1006  if (Instruction *X = foldVectorBinop(I))
1007  return X;
1008 
1009  // Handle the integer div common cases
1010  if (Instruction *Common = commonIDivTransforms(I))
1011  return Common;
1012 
1013  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1014  Value *X;
1015  const APInt *C1, *C2;
1016  if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
1017  // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
1018  bool Overflow;
1019  APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1020  if (!Overflow) {
1021  bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1022  BinaryOperator *BO = BinaryOperator::CreateUDiv(
1023  X, ConstantInt::get(X->getType(), C2ShlC1));
1024  if (IsExact)
1025  BO->setIsExact();
1026  return BO;
1027  }
1028  }
1029 
1030  // Op0 / C where C is large (negative) --> zext (Op0 >= C)
1031  // TODO: Could use isKnownNegative() to handle non-constant values.
1032  Type *Ty = I.getType();
1033  if (match(Op1, m_Negative())) {
1034  Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
1035  return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1036  }
1037  // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
1038  if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1039  Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1040  return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1041  }
1042 
1043  if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
1044  return NarrowDiv;
1045 
1046  // If the udiv operands are non-overflowing multiplies with a common operand,
1047  // then eliminate the common factor:
1048  // (A * B) / (A * X) --> B / X (and commuted variants)
1049  // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
1050  // TODO: If -reassociation handled this generally, we could remove this.
1051  Value *A, *B;
1052  if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
1053  if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
1054  match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
1055  return BinaryOperator::CreateUDiv(B, X);
1056  if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
1057  match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
1058  return BinaryOperator::CreateUDiv(A, X);
1059  }
1060 
1061  // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
1062  SmallVector<UDivFoldAction, 6> UDivActions;
1063  if (visitUDivOperand(Op0, Op1, I, UDivActions))
1064  for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
1065  FoldUDivOperandCb Action = UDivActions[i].FoldAction;
1066  Value *ActionOp1 = UDivActions[i].OperandToFold;
1067  Instruction *Inst;
1068  if (Action)
1069  Inst = Action(Op0, ActionOp1, I, *this);
1070  else {
1071  // This action joins two actions together. The RHS of this action is
1072  // simply the last action we processed, we saved the LHS action index in
1073  // the joining action.
1074  size_t SelectRHSIdx = i - 1;
1075  Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
1076  size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
1077  Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
1078  Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
1079  SelectLHS, SelectRHS);
1080  }
1081 
1082  // If this is the last action to process, return it to the InstCombiner.
1083  // Otherwise, we insert it before the UDiv and record it so that we may
1084  // use it as part of a joining action (i.e., a SelectInst).
1085  if (e - i != 1) {
1086  Inst->insertBefore(&I);
1087  UDivActions[i].FoldResult = Inst;
1088  } else
1089  return Inst;
1090  }
1091 
1092  return nullptr;
1093 }
1094 
1096  if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
1097  SQ.getWithInstruction(&I)))
1098  return replaceInstUsesWith(I, V);
1099 
1100  if (Instruction *X = foldVectorBinop(I))
1101  return X;
1102 
1103  // Handle the integer div common cases
1104  if (Instruction *Common = commonIDivTransforms(I))
1105  return Common;
1106 
1107  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1108  Type *Ty = I.getType();
1109  Value *X;
1110  // sdiv Op0, -1 --> -Op0
1111  // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1112  if (match(Op1, m_AllOnes()) ||
1113  (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1114  return BinaryOperator::CreateNeg(Op0);
1115 
1116  // X / INT_MIN --> X == INT_MIN
1117  if (match(Op1, m_SignMask()))
1118  return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty);
1119 
1120  // sdiv exact X, 1<<C --> ashr exact X, C iff 1<<C is non-negative
1121  // sdiv exact X, -1<<C --> -(ashr exact X, C)
1122  if (I.isExact() && ((match(Op1, m_Power2()) && match(Op1, m_NonNegative())) ||
1123  match(Op1, m_NegatedPower2()))) {
1124  bool DivisorWasNegative = match(Op1, m_NegatedPower2());
1125  if (DivisorWasNegative)
1126  Op1 = ConstantExpr::getNeg(cast<Constant>(Op1));
1127  auto *AShr = BinaryOperator::CreateExactAShr(
1128  Op0, ConstantExpr::getExactLogBase2(cast<Constant>(Op1)), I.getName());
1129  if (!DivisorWasNegative)
1130  return AShr;
1131  Builder.Insert(AShr);
1132  AShr->setName(I.getName() + ".neg");
1133  return BinaryOperator::CreateNeg(AShr, I.getName());
1134  }
1135 
1136  const APInt *Op1C;
1137  if (match(Op1, m_APInt(Op1C))) {
1138  // If the dividend is sign-extended and the constant divisor is small enough
1139  // to fit in the source type, shrink the division to the narrower type:
1140  // (sext X) sdiv C --> sext (X sdiv C)
1141  Value *Op0Src;
1142  if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1143  Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
1144 
1145  // In the general case, we need to make sure that the dividend is not the
1146  // minimum signed value because dividing that by -1 is UB. But here, we
1147  // know that the -1 divisor case is already handled above.
1148 
1149  Constant *NarrowDivisor =
1150  ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1151  Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1152  return new SExtInst(NarrowOp, Ty);
1153  }
1154 
1155  // -X / C --> X / -C (if the negation doesn't overflow).
1156  // TODO: This could be enhanced to handle arbitrary vector constants by
1157  // checking if all elements are not the min-signed-val.
1158  if (!Op1C->isMinSignedValue() &&
1159  match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1160  Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
1161  Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
1162  BO->setIsExact(I.isExact());
1163  return BO;
1164  }
1165  }
1166 
1167  // -X / Y --> -(X / Y)
1168  Value *Y;
1169  if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1171  Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
1172 
1173  // abs(X) / X --> X > -1 ? 1 : -1
1174  // X / abs(X) --> X > -1 ? 1 : -1
1175  if (match(&I, m_c_BinOp(
1176  m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())),
1177  m_Deferred(X)))) {
1178  Constant *NegOne = ConstantInt::getAllOnesValue(Ty);
1179  Value *Cond = Builder.CreateICmpSGT(X, NegOne);
1180  return SelectInst::Create(Cond, ConstantInt::get(Ty, 1), NegOne);
1181  }
1182 
1183  // If the sign bits of both operands are zero (i.e. we can prove they are
1184  // unsigned inputs), turn this into a udiv.
1186  if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
1187  if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
1188  // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1189  auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1190  BO->setIsExact(I.isExact());
1191  return BO;
1192  }
1193 
1194  if (match(Op1, m_NegatedPower2())) {
1195  // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
1196  // -> -(X udiv (1 << C)) -> -(X u>> C)
1198  Op0, ConstantExpr::getNeg(cast<Constant>(Op1)), I, *this)));
1199  }
1200 
1201  if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1202  // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1203  // Safe because the only negative value (1 << Y) can take on is
1204  // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1205  // the sign bit set.
1206  auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1207  BO->setIsExact(I.isExact());
1208  return BO;
1209  }
1210  }
1211 
1212  return nullptr;
1213 }
1214 
1215 /// Remove negation and try to convert division into multiplication.
1217  Constant *C;
1218  if (!match(I.getOperand(1), m_Constant(C)))
1219  return nullptr;
1220 
1221  // -X / C --> X / -C
1222  Value *X;
1223  if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1225 
1226  // If the constant divisor has an exact inverse, this is always safe. If not,
1227  // then we can still create a reciprocal if fast-math-flags allow it and the
1228  // constant is a regular number (not zero, infinite, or denormal).
1229  if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1230  return nullptr;
1231 
1232  // Disallow denormal constants because we don't know what would happen
1233  // on all targets.
1234  // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1235  // denorms are flushed?
1236  auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
1237  if (!RecipC->isNormalFP())
1238  return nullptr;
1239 
1240  // X / C --> X * (1 / C)
1241  return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1242 }
1243 
1244 /// Remove negation and try to reassociate constant math.
1246  Constant *C;
1247  if (!match(I.getOperand(0), m_Constant(C)))
1248  return nullptr;
1249 
1250  // C / -X --> -C / X
1251  Value *X;
1252  if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1254 
1255  if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1256  return nullptr;
1257 
1258  // Try to reassociate C / X expressions where X includes another constant.
1259  Constant *C2, *NewC = nullptr;
1260  if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1261  // C / (X * C2) --> (C / C2) / X
1262  NewC = ConstantExpr::getFDiv(C, C2);
1263  } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1264  // C / (X / C2) --> (C * C2) / X
1265  NewC = ConstantExpr::getFMul(C, C2);
1266  }
1267  // Disallow denormal constants because we don't know what would happen
1268  // on all targets.
1269  // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1270  // denorms are flushed?
1271  if (!NewC || !NewC->isNormalFP())
1272  return nullptr;
1273 
1274  return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1275 }
1276 
1277 /// Negate the exponent of pow/exp to fold division-by-pow() into multiply.
1280  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1281  auto *II = dyn_cast<IntrinsicInst>(Op1);
1282  if (!II || !II->hasOneUse() || !I.hasAllowReassoc() ||
1283  !I.hasAllowReciprocal())
1284  return nullptr;
1285 
1286  // Z / pow(X, Y) --> Z * pow(X, -Y)
1287  // Z / exp{2}(Y) --> Z * exp{2}(-Y)
1288  // In the general case, this creates an extra instruction, but fmul allows
1289  // for better canonicalization and optimization than fdiv.
1290  Intrinsic::ID IID = II->getIntrinsicID();
1292  switch (IID) {
1293  case Intrinsic::pow:
1294  Args.push_back(II->getArgOperand(0));
1295  Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I));
1296  break;
1297  case Intrinsic::powi:
1298  // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable.
1299  // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so
1300  // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows
1301  // non-standard results, so this corner case should be acceptable if the
1302  // code rules out INF values.
1303  if (!I.hasNoInfs())
1304  return nullptr;
1305  Args.push_back(II->getArgOperand(0));
1306  Args.push_back(Builder.CreateNeg(II->getArgOperand(1)));
1307  break;
1308  case Intrinsic::exp:
1309  case Intrinsic::exp2:
1310  Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I));
1311  break;
1312  default:
1313  return nullptr;
1314  }
1315  Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I);
1316  return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1317 }
1318 
1320  if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
1321  I.getFastMathFlags(),
1322  SQ.getWithInstruction(&I)))
1323  return replaceInstUsesWith(I, V);
1324 
1325  if (Instruction *X = foldVectorBinop(I))
1326  return X;
1327 
1329  return R;
1330 
1332  return R;
1333 
1334  if (Instruction *R = foldFPSignBitOps(I))
1335  return R;
1336 
1337  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1338  if (isa<Constant>(Op0))
1339  if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1340  if (Instruction *R = FoldOpIntoSelect(I, SI))
1341  return R;
1342 
1343  if (isa<Constant>(Op1))
1344  if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1345  if (Instruction *R = FoldOpIntoSelect(I, SI))
1346  return R;
1347 
1348  if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1349  Value *X, *Y;
1350  if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1351  (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1352  // (X / Y) / Z => X / (Y * Z)
1353  Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1354  return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1355  }
1356  if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1357  (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1358  // Z / (X / Y) => (Y * Z) / X
1359  Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1360  return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1361  }
1362  // Z / (1.0 / Y) => (Y * Z)
1363  //
1364  // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
1365  // m_OneUse check is avoided because even in the case of the multiple uses
1366  // for 1.0/Y, the number of instructions remain the same and a division is
1367  // replaced by a multiplication.
1368  if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
1369  return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
1370  }
1371 
1372  if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1373  // sin(X) / cos(X) -> tan(X)
1374  // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1375  Value *X;
1376  bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1377  match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1378  bool IsCot =
1379  !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1380  match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1381 
1382  if ((IsTan || IsCot) &&
1383  hasFloatFn(&TLI, I.getType(), LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
1384  IRBuilder<> B(&I);
1386  B.setFastMathFlags(I.getFastMathFlags());
1388  cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
1389  Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
1390  LibFunc_tanl, B, Attrs);
1391  if (IsCot)
1392  Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1393  return replaceInstUsesWith(I, Res);
1394  }
1395  }
1396 
1397  // X / (X * Y) --> 1.0 / Y
1398  // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1399  // We can ignore the possibility that X is infinity because INF/INF is NaN.
1400  Value *X, *Y;
1401  if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1402  match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1403  replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
1404  replaceOperand(I, 1, Y);
1405  return &I;
1406  }
1407 
1408  // X / fabs(X) -> copysign(1.0, X)
1409  // fabs(X) / X -> copysign(1.0, X)
1410  if (I.hasNoNaNs() && I.hasNoInfs() &&
1411  (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) ||
1412  match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) {
1413  Value *V = Builder.CreateBinaryIntrinsic(
1414  Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
1415  return replaceInstUsesWith(I, V);
1416  }
1417 
1419  return Mul;
1420 
1421  return nullptr;
1422 }
1423 
1424 /// This function implements the transforms common to both integer remainder
1425 /// instructions (urem and srem). It is called by the visitors to those integer
1426 /// remainder instructions.
1427 /// Common integer remainder transforms
1429  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1430 
1431  // The RHS is known non-zero.
1432  if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
1433  return replaceOperand(I, 1, V);
1434 
1435  // Handle cases involving: rem X, (select Cond, Y, Z)
1436  if (simplifyDivRemOfSelectWithZeroOp(I))
1437  return &I;
1438 
1439  if (isa<Constant>(Op1)) {
1440  if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1441  if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1442  if (Instruction *R = FoldOpIntoSelect(I, SI))
1443  return R;
1444  } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
1445  const APInt *Op1Int;
1446  if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1447  (I.getOpcode() == Instruction::URem ||
1448  !Op1Int->isMinSignedValue())) {
1449  // foldOpIntoPhi will speculate instructions to the end of the PHI's
1450  // predecessor blocks, so do this only if we know the srem or urem
1451  // will not fault.
1452  if (Instruction *NV = foldOpIntoPhi(I, PN))
1453  return NV;
1454  }
1455  }
1456 
1457  // See if we can fold away this rem instruction.
1458  if (SimplifyDemandedInstructionBits(I))
1459  return &I;
1460  }
1461  }
1462 
1463  return nullptr;
1464 }
1465 
1467  if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
1468  SQ.getWithInstruction(&I)))
1469  return replaceInstUsesWith(I, V);
1470 
1471  if (Instruction *X = foldVectorBinop(I))
1472  return X;
1473 
1474  if (Instruction *common = commonIRemTransforms(I))
1475  return common;
1476 
1477  if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
1478  return NarrowRem;
1479 
1480  // X urem Y -> X and Y-1, where Y is a power of 2,
1481  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1482  Type *Ty = I.getType();
1483  if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1484  // This may increase instruction count, we don't enforce that Y is a
1485  // constant.
1487  Value *Add = Builder.CreateAdd(Op1, N1);
1488  return BinaryOperator::CreateAnd(Op0, Add);
1489  }
1490 
1491  // 1 urem X -> zext(X != 1)
1492  if (match(Op0, m_One())) {
1493  Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
1494  return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1495  }
1496 
1497  // X urem C -> X < C ? X : X - C, where C >= signbit.
1498  if (match(Op1, m_Negative())) {
1499  Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
1500  Value *Sub = Builder.CreateSub(Op0, Op1);
1501  return SelectInst::Create(Cmp, Op0, Sub);
1502  }
1503 
1504  // If the divisor is a sext of a boolean, then the divisor must be max
1505  // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
1506  // max unsigned value. In that case, the remainder is 0:
1507  // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
1508  Value *X;
1509  if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1510  Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1511  return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
1512  }
1513 
1514  return nullptr;
1515 }
1516 
1518  if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
1519  SQ.getWithInstruction(&I)))
1520  return replaceInstUsesWith(I, V);
1521 
1522  if (Instruction *X = foldVectorBinop(I))
1523  return X;
1524 
1525  // Handle the integer rem common cases
1526  if (Instruction *Common = commonIRemTransforms(I))
1527  return Common;
1528 
1529  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1530  {
1531  const APInt *Y;
1532  // X % -Y -> X % Y
1533  if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
1534  return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
1535  }
1536 
1537  // -X srem Y --> -(X srem Y)
1538  Value *X, *Y;
1539  if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1540  return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
1541 
1542  // If the sign bits of both operands are zero (i.e. we can prove they are
1543  // unsigned inputs), turn this into a urem.
1544  APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1545  if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1546  MaskedValueIsZero(Op0, Mask, 0, &I)) {
1547  // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1548  return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1549  }
1550 
1551  // If it's a constant vector, flip any negative values positive.
1552  if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1553  Constant *C = cast<Constant>(Op1);
1554  unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements();
1555 
1556  bool hasNegative = false;
1557  bool hasMissing = false;
1558  for (unsigned i = 0; i != VWidth; ++i) {
1559  Constant *Elt = C->getAggregateElement(i);
1560  if (!Elt) {
1561  hasMissing = true;
1562  break;
1563  }
1564 
1565  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1566  if (RHS->isNegative())
1567  hasNegative = true;
1568  }
1569 
1570  if (hasNegative && !hasMissing) {
1571  SmallVector<Constant *, 16> Elts(VWidth);
1572  for (unsigned i = 0; i != VWidth; ++i) {
1573  Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
1574  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1575  if (RHS->isNegative())
1576  Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1577  }
1578  }
1579 
1580  Constant *NewRHSV = ConstantVector::get(Elts);
1581  if (NewRHSV != C) // Don't loop on -MININT
1582  return replaceOperand(I, 1, NewRHSV);
1583  }
1584  }
1585 
1586  return nullptr;
1587 }
1588 
1590  if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
1591  I.getFastMathFlags(),
1592  SQ.getWithInstruction(&I)))
1593  return replaceInstUsesWith(I, V);
1594 
1595  if (Instruction *X = foldVectorBinop(I))
1596  return X;
1597 
1598  return nullptr;
1599 }
i
i
Definition: README.txt:29
llvm::InstCombinerImpl::isKnownToBeAPowerOfTwo
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, unsigned Depth=0, const Instruction *CxtI=nullptr)
Definition: InstCombineInternal.h:470
Attrs
Function Attrs
Definition: README_ALTIVEC.txt:215
llvm::SimplifyMulInst
Value * SimplifyMulInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a Mul, fold the result or return null.
Definition: InstructionSimplify.cpp:917
llvm::PatternMatch::m_NonNegative
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
Definition: PatternMatch.h:435
llvm
This class represents lattice values for constants.
Definition: AllocatorList.h:23
llvm::SimplifyURemInst
Value * SimplifyURemInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a URem, fold the result or return null.
Definition: InstructionSimplify.cpp:1196
llvm::Constant::isNormalFP
bool isNormalFP() const
Return true if this is a normal (as opposed to denormal, infinity, nan, or zero) floating-point scala...
Definition: Constants.cpp:241
llvm::ConstantExpr::getFDiv
static Constant * getFDiv(Constant *C1, Constant *C2)
Definition: Constants.cpp:2682
llvm::APInt::udivrem
static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
Definition: APInt.cpp:1785
llvm::MaskedValueIsZero
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if 'V & Mask' is known to be zero.
Definition: ValueTracking.cpp:386
llvm::Value::hasOneUse
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:437
InstCombiner.h
llvm::PatternMatch::m_SpecificFP
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
Definition: PatternMatch.h:796
llvm::BasicBlock::iterator
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:90
IntrinsicInst.h
llvm::PatternMatch::m_NegatedPower2
cst_pred_ty< is_negated_power2 > m_NegatedPower2()
Match a integer or vector negated power-of-2.
Definition: PatternMatch.h:512
llvm::ConstantExpr::getZExt
static Constant * getZExt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:2072
llvm::SimplifyFDivInst
Value * SimplifyFDivInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q)
Given operands for an FDiv, fold the result or return null.
Definition: InstructionSimplify.cpp:5084
llvm::SelectPatternResult::Flavor
SelectPatternFlavor Flavor
Definition: ValueTracking.h:679
llvm::PatternMatch::m_LShr
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1098
C1
instcombine should handle this C2 when C1
Definition: README.txt:263
llvm::APInt::getMinSignedBits
unsigned getMinSignedBits() const
Get the minimum bit size for this signed APInt.
Definition: APInt.h:1624
llvm::SmallVector
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1168
llvm::InstCombiner::Builder
BuilderTy & Builder
Definition: InstCombiner.h:56
foldUDivPow2Cst
static Instruction * foldUDivPow2Cst(Value *Op0, Value *Op1, const BinaryOperator &I, InstCombinerImpl &IC)
Definition: InstCombineMulDivRem.cpp:887
llvm::BinaryOperator::CreateFDivFMF
static BinaryOperator * CreateFDivFMF(Value *V1, Value *V2, Instruction *FMFSource, const Twine &Name="")
Definition: InstrTypes.h:275
llvm::PatternMatch::m_Add
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
Definition: PatternMatch.h:959
foldFDivConstantDivisor
static Instruction * foldFDivConstantDivisor(BinaryOperator &I)
Remove negation and try to convert division into multiplication.
Definition: InstCombineMulDivRem.cpp:1216
ErrorHandling.h
llvm::IRBuilder< TargetFolder, IRBuilderCallbackInserter >
llvm::InstCombinerImpl::visitSRem
Instruction * visitSRem(BinaryOperator &I)
Definition: InstCombineMulDivRem.cpp:1517
llvm::CastInst::Create
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Definition: Instructions.cpp:2932
llvm::InstCombinerImpl::visitFDiv
Instruction * visitFDiv(BinaryOperator &I)
Definition: InstCombineMulDivRem.cpp:1319
llvm::Instruction::insertBefore
void insertBefore(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified instruction.
Definition: Instruction.cpp:83
APInt.h
llvm::Depth
@ Depth
Definition: SIMachineScheduler.h:34
llvm::PatternMatch::m_NUWShl
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1194
llvm::SimplifyFRemInst
Value * SimplifyFRemInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q)
Given operands for an FRem, fold the result or return null.
Definition: InstructionSimplify.cpp:5112
llvm::Type
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:46
llvm::APInt::getBitWidth
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1581
llvm::AttributeList
Definition: Attributes.h:365
llvm::Instruction::setHasNoUnsignedWrap
void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
Definition: Instruction.cpp:119
llvm::ore::NV
DiagnosticInfoOptimizationBase::Argument NV
Definition: OptimizationRemarkEmitter.h:128
llvm::PatternMatch::m_AShr
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1104
Operator.h
llvm::ConstantExpr::getExactLogBase2
static Constant * getExactLogBase2(Constant *C)
If C is a scalar/fixed width vector of known powers of 2, then this function returns a new scalar/fix...
Definition: Constants.cpp:2732
llvm::matchSelectPattern
SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
Definition: ValueTracking.cpp:5913
llvm::BinaryOperator::CreateNeg
NUW NUW NUW NUW Exact static Exact BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", Instruction *InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
Definition: Instructions.cpp:2552
llvm::SelectPatternFlavor
SelectPatternFlavor
Specific patterns of select instructions we can match.
Definition: ValueTracking.h:655
llvm::Instruction::setIsExact
void setIsExact(bool b=true)
Set or clear the exact flag on this instruction, which must be an operator which supports this flag.
Definition: Instruction.cpp:127
llvm::BitmaskEnumDetail::Mask
std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:80
llvm::APInt::isMinValue
bool isMinValue() const
Determine if this is the smallest unsigned value.
Definition: APInt.h:442
isMultiple
static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient, bool IsSigned)
True if C1 is a multiple of C2. Quotient contains C1/C2.
Definition: InstCombineMulDivRem.cpp:698
llvm::PatternMatch::m_Deferred
deferredval_ty< Value > m_Deferred(Value *const &V)
A commutative-friendly version of m_Specific().
Definition: PatternMatch.h:771
llvm::PatternMatch::m_FDiv
BinaryOp_match< LHS, RHS, Instruction::FDiv > m_FDiv(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1050
llvm::PatternMatch::m_FAdd
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
Definition: PatternMatch.h:965
KnownBits.h
llvm::PatternMatch::m_FSub
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
Definition: PatternMatch.h:977
llvm::PatternMatch::m_OneUse
OneUse_match< T > m_OneUse(const T &SubPattern)
Definition: PatternMatch.h:67
visitUDivOperand
static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I, SmallVectorImpl< UDivFoldAction > &Actions, unsigned Depth=0)
Definition: InstCombineMulDivRem.cpp:927
Instruction.h
llvm::PatternMatch::m_APInt
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
Definition: PatternMatch.h:226
llvm::ConstantInt::get
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:876
simplifyValueKnownNonZero
static Value * simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC, Instruction &CxtI)
The specific integer value is used in a context where it is known to be non-zero.
Definition: InstCombineMulDivRem.cpp:50
llvm::SPF_NABS
@ SPF_NABS
Absolute value.
Definition: ValueTracking.h:664
llvm::PatternMatch::m_c_BinOp
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
Definition: PatternMatch.h:2155
llvm::SimplifySDivInst
Value * SimplifySDivInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an SDiv, fold the result or return null.
Definition: InstructionSimplify.cpp:1153
llvm::ConstantInt
This is the shared class of boolean and integer constants.
Definition: Constants.h:77
foldMulSelectToNegate
static Value * foldMulSelectToNegate(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Definition: InstCombineMulDivRem.cpp:103
llvm::InstCombinerImpl::commonIRemTransforms
Instruction * commonIRemTransforms(BinaryOperator &I)
This function implements the transforms common to both integer remainder instructions (urem and srem)...
Definition: InstCombineMulDivRem.cpp:1428
llvm::SelectInst::Create
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", Instruction *InsertBefore=nullptr, Instruction *MDFrom=nullptr)
Definition: Instructions.h:1746
llvm::RecurKind::And
@ And
Bitwise or logical AND of integers.
InstCombineInternal.h
llvm::PatternMatch::m_Select
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
Definition: PatternMatch.h:1423
Constants.h
llvm::PatternMatch::match
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
llvm::Instruction::setHasNoSignedWrap
void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
Definition: Instruction.cpp:123
llvm::PatternMatch::m_Exact
Exact_match< T > m_Exact(const T &SubPattern)
Definition: PatternMatch.h:1312
llvm::PatternMatch::m_SpecificIntAllowUndef
specific_intval< true > m_SpecificIntAllowUndef(APInt V)
Definition: PatternMatch.h:844
Intrinsics.h
C
(vector float) vec_cmpeq(*A, *B) C
Definition: README_ALTIVEC.txt:86
InstrTypes.h
llvm::Log2
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition: Alignment.h:217
Y
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
SI
@ SI
Definition: SIInstrInfo.cpp:7382
llvm::PatternMatch::m_ZExt
CastClass_match< OpTy, Instruction::ZExt > m_ZExt(const OpTy &Op)
Matches ZExt.
Definition: PatternMatch.h:1590
B
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
llvm::PatternMatch::m_FNeg
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
Definition: PatternMatch.h:1014
llvm::Constant::getAllOnesValue
static Constant * getAllOnesValue(Type *Ty)
Definition: Constants.cpp:405
llvm::PatternMatch::m_SDiv
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1044
llvm::BinaryOperator::getOpcode
BinaryOps getOpcode() const
Definition: InstrTypes.h:395
llvm::Instruction
Definition: Instruction.h:45
llvm::PatternMatch::m_NSWMul
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap > m_NSWMul(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1153
llvm::Type::getScalarSizeInBits
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition: Type.cpp:147
APFloat.h
This file declares a class to represent arbitrary precision floating point values and provide a varie...
llvm::InstCombinerImpl
Definition: InstCombineInternal.h:60
llvm::PatternMatch::m_NSWSub
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1145
InstCombineWorklist.h
llvm::SimplifyFMulInst
Value * SimplifyFMulInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q)
Given operands for an FMul, fold the result or return null.
Definition: InstructionSimplify.cpp:5034
llvm::PatternMatch::m_URem
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1056
PatternMatch.h
llvm::SimplifySRemInst
Value * SimplifySRemInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an SRem, fold the result or return null.
Definition: InstructionSimplify.cpp:1185
Type.h
llvm::ConstantExpr::getFNeg
static Constant * getFNeg(Constant *C)
Definition: Constants.cpp:2627
llvm::APInt::isAllOnesValue
bool isAllOnesValue() const
Determine if all bits are set.
Definition: APInt.h:401
X
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
llvm::PatternMatch::m_One
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
Definition: PatternMatch.h:469
llvm::Function::getAttributes
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:239
llvm::PatternMatch::m_Power2
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
Definition: PatternMatch.h:500
llvm::IRBuilderBase::CreateZExt
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1938
llvm::APInt::getOneBitSet
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition: APInt.h:593
llvm::ConstantExpr::getTrunc
static Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:2044
BasicBlock.h
llvm::PatternMatch::m_Zero
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
Definition: PatternMatch.h:491
llvm::MipsISD::Ext
@ Ext
Definition: MipsISelLowering.h:156
llvm::Constant
This is an important base class in LLVM.
Definition: Constant.h:41
llvm::UnaryOperator::CreateFNegFMF
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="", Instruction *InsertBefore=nullptr)
Definition: InstrTypes.h:166
llvm::BinaryOperator::CreateFMulFMF
static BinaryOperator * CreateFMulFMF(Value *V1, Value *V2, Instruction *FMFSource, const Twine &Name="")
Definition: InstrTypes.h:270
D
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
llvm::APInt::sdivrem
static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Definition: APInt.cpp:1917
llvm::PatternMatch::m_Or
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1080
llvm::PatternMatch::m_AllOnes
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
Definition: PatternMatch.h:401
llvm::numbers::e
constexpr double e
Definition: MathExtras.h:58
foldUDivShl
static Instruction * foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I, InstCombinerImpl &IC)
Definition: InstCombineMulDivRem.cpp:901
I
#define I(x, y, z)
Definition: MD5.cpp:59
llvm::SystemZISD::XC
@ XC
Definition: SystemZISelLowering.h:130
llvm::ConstantExpr::getShl
static Constant * getShl(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2715
llvm::InstCombinerImpl::commonIDivTransforms
Instruction * commonIDivTransforms(BinaryOperator &I)
This function implements the transforms common to both integer division instructions (udiv and sdiv).
Definition: InstCombineMulDivRem.cpp:723
llvm::PatternMatch::m_FAbs
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
Definition: PatternMatch.h:2116
llvm::IRBuilderBase::CreateAdd
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1187
llvm::PatternMatch::m_SRem
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1062
assert
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
llvm::PatternMatch::m_Sub
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
Definition: PatternMatch.h:971
llvm::SPF_ABS
@ SPF_ABS
Floating point maxnum.
Definition: ValueTracking.h:663
llvm::Negator::Negate
static LLVM_NODISCARD Value * Negate(bool LHSIsZero, Value *Root, InstCombinerImpl &IC)
Attempt to negate Root.
Definition: InstCombineNegator.cpp:489
llvm::SelectInst
This class represents the LLVM 'select' instruction.
Definition: Instructions.h:1715
llvm::PatternMatch::m_Negative
cst_pred_ty< is_negative > m_Negative()
Match an integer or vector of negative values.
Definition: PatternMatch.h:423
llvm::PatternMatch::m_Constant
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
Definition: PatternMatch.h:98
llvm::InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp
bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I)
Fold a divide or remainder with a select instruction divisor when one of the select operands is zero.
Definition: InstCombineMulDivRem.cpp:623
llvm::InstCombinerImpl::visitSDiv
Instruction * visitSDiv(BinaryOperator &I)
Definition: InstCombineMulDivRem.cpp:1095
Builder
assume Assume Builder
Definition: AssumeBundleBuilder.cpp:643
llvm::PatternMatch::m_Value
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:76
llvm::ZExtInst
This class represents zero extension of integer types.
Definition: Instructions.h:4730
llvm::APInt
Class for arbitrary precision integers.
Definition: APInt.h:70
foldFDivConstantDividend
static Instruction * foldFDivConstantDividend(BinaryOperator &I)
Remove negation and try to reassociate constant math.
Definition: InstCombineMulDivRem.cpp:1245
llvm::PatternMatch::m_SExt
CastClass_match< OpTy, Instruction::SExt > m_SExt(const OpTy &Op)
Matches SExt.
Definition: PatternMatch.h:1584
llvm::PatternMatch::m_NUWMul
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1186
llvm::BinaryOperator
Definition: InstrTypes.h:190
Cond
SmallVector< MachineOperand, 4 > Cond
Definition: BasicBlockSections.cpp:167
llvm_unreachable
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Definition: ErrorHandling.h:136
llvm::Constant::getAggregateElement
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:421
llvm::Value::getType
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:246
llvm::InstCombinerImpl::visitFMul
Instruction * visitFMul(BinaryOperator &I)
Definition: InstCombineMulDivRem.cpp:428
llvm::Instruction::isExact
bool isExact() const
Determine whether the exact flag is set.
Definition: Instruction.cpp:164
llvm::RecurKind::Mul
@ Mul
Product of integers.
llvm::ConstantVector::get
static Constant * get(ArrayRef< Constant * > V)
Definition: Constants.cpp:1335
llvm::ConstantExpr::getFMul
static Constant * getFMul(Constant *C1, Constant *C2)
Definition: Constants.cpp:2668
llvm::SExtInst
This class represents a sign extension of integer types.
Definition: Instructions.h:4769
llvm::emitUnaryFloatFnCall
Value * emitUnaryFloatFnCall(Value *Op, StringRef Name, IRBuilderBase &B, const AttributeList &Attrs)
Emit a call to the unary function named 'Name' (e.g.
Definition: BuildLibCalls.cpp:1460
llvm::ConstantInt::getFalse
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:831
MaxDepth
static const unsigned MaxDepth
Definition: InstCombineMulDivRem.cpp:853
llvm::hasFloatFn
bool hasFloatFn(const TargetLibraryInfo *TLI, Type *Ty, LibFunc DoubleFn, LibFunc FloatFn, LibFunc LongDoubleFn)
Check whether the overloaded floating point function corresponding to Ty is available.
Definition: BuildLibCalls.cpp:1174
llvm::InstCombinerImpl::visitURem
Instruction * visitURem(BinaryOperator &I)
Definition: InstCombineMulDivRem.cpp:1466
Constant.h
llvm::NVPTX::PTXLdStInstCode::V2
@ V2
Definition: NVPTX.h:123
llvm::ConstantInt::getTrue
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:824
llvm::Constant::getNullValue
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:347
llvm::PatternMatch::m_UDiv
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1038
llvm::APInt::isMinSignedValue
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition: APInt.h:448
llvm::BinaryOperator::CreateFAddFMF
static BinaryOperator * CreateFAddFMF(Value *V1, Value *V2, Instruction *FMFSource, const Twine &Name="")
Definition: InstrTypes.h:260
llvm::InstCombinerImpl::visitFRem
Instruction * visitFRem(BinaryOperator &I)
Definition: InstCombineMulDivRem.cpp:1589
llvm::ConstantExpr::getNeg
static Constant * getNeg(Constant *C, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2620
llvm::InstCombinerImpl::visitMul
Instruction * visitMul(BinaryOperator &I)
Definition: InstCombineMulDivRem.cpp:142
llvm::AMDGPU::SendMsg::Op
Op
Definition: SIDefines.h:302
llvm::ConstantInt::getBool
static ConstantInt * getBool(LLVMContext &Context, bool V)
Definition: Constants.cpp:838
llvm::Type::isIntOrIntVectorTy
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:208
llvm::ConstantFP::get
static Constant * get(Type *Ty, double V)
This returns a ConstantFP, or a vector containing a splat of a ConstantFP, for the specified value in...
Definition: Constants.cpp:923
llvm::isGuaranteedToTransferExecutionToSuccessor
bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
Definition: ValueTracking.cpp:5055
Casting.h
llvm::PatternMatch::m_SignMask
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
Definition: PatternMatch.h:536
llvm::Value::hasNUses
bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
Definition: Value.cpp:146
llvm::BitWidth
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:147
llvm::BinaryOperator::CreateNSWNeg
static BinaryOperator * CreateNSWNeg(Value *Op, const Twine &Name="", Instruction *InsertBefore=nullptr)
Definition: Instructions.cpp:2568
llvm::PatternMatch::m_NSWShl
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap > m_NSWShl(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1161
foldFDivPowDivisor
static Instruction * foldFDivPowDivisor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Negate the exponent of pow/exp to fold division-by-pow() into multiply.
Definition: InstCombineMulDivRem.cpp:1278
powi
This is blocked on not handling X *X *X powi(X, 3)(see note above). The issue is that we end up getting t
llvm::log2
static double log2(double V)
Definition: AMDGPULibCalls.cpp:841
llvm::PatternMatch::m_c_Mul
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
Definition: PatternMatch.h:2177
multiplyOverflows
static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product, bool IsSigned)
True if the multiply can not be expressed in an int this size.
Definition: InstCombineMulDivRem.cpp:690
llvm::IntrinsicInst
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:44
llvm::SimplifyUDivInst
Value * SimplifyUDivInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a UDiv, fold the result or return null.
Definition: InstructionSimplify.cpp:1164
llvm::APInt::isNullValue
bool isNullValue() const
Determine if all bits are clear.
Definition: APInt.h:411
llvm::InstCombinerImpl::replaceOperand
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
Definition: InstCombineInternal.h:406
llvm::Instruction::BinaryOps
BinaryOps
Definition: Instruction.h:761
llvm::APInt::getSignMask
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition: APInt.h:560
llvm::PatternMatch::m_c_FMul
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
Definition: PatternMatch.h:2272
Instructions.h
SmallVector.h
llvm::PatternMatch::m_Specific
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:758
CreateMul
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, Instruction *InsertBefore, Value *FlagsOp)
Definition: Reassociate.cpp:246
N
#define N
llvm::IRBuilderBase::CreateShl
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1276
InstructionSimplify.h
llvm::SmallVectorImpl
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:43
llvm::Constant::isNotMinSignedValue
bool isNotMinSignedValue() const
Return true if the value is not the smallest signed value, or, for vectors, does not contain smallest...
Definition: Constants.cpp:203
llvm::PatternMatch::m_Neg
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a 'Neg' as 'sub 0, V'.
Definition: PatternMatch.h:2206
llvm::isKnownToBeAPowerOfTwo
bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if the given value is known to have exactly one bit set when defined.
Definition: ValueTracking.cpp:322
llvm::IRBuilderBase::CreateSub
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1204
CreateAdd
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, Instruction *InsertBefore, Value *FlagsOp)
Definition: Reassociate.cpp:234
llvm::Value::takeName
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:373
llvm::AMDGPU::HSAMD::Kernel::Key::Args
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
Definition: AMDGPUMetadata.h:379
llvm::User::getOperand
Value * getOperand(unsigned i) const
Definition: User.h:169
llvm::CastInst::CreateZExtOrBitCast
static CastInst * CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Create a ZExt or BitCast cast instruction.
Definition: Instructions.cpp:2976
llvm::BinaryOperator::Create
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), Instruction *InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
Definition: Instructions.cpp:2536
llvm::PatternMatch::m_FMul
BinaryOp_match< LHS, RHS, Instruction::FMul > m_FMul(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1032
Value.h
llvm::abs
APFloat abs(APFloat X)
Returns the absolute value of the argument.
Definition: APFloat.h:1272
llvm::BinaryOperator::CreateWithCopiedFlags
static BinaryOperator * CreateWithCopiedFlags(BinaryOps Opc, Value *V1, Value *V2, Instruction *CopyO, const Twine &Name="")
Definition: InstrTypes.h:251
BuildLibCalls.h
llvm::Value
LLVM Value Representation.
Definition: Value.h:75
llvm::PatternMatch::m_Shl
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1092
llvm::APInt::ushl_ov
APInt ushl_ov(const APInt &Amt, bool &Overflow) const
Definition: APInt.cpp:2027
llvm::InstCombinerImpl::visitUDiv
Instruction * visitUDiv(BinaryOperator &I)
Definition: InstCombineMulDivRem.cpp:1001
narrowUDivURem
static Instruction * narrowUDivURem(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
If we have zero-extended operands of an unsigned div or rem, we may be able to narrow the operation (...
Definition: InstCombineMulDivRem.cpp:966
llvm::BinaryOperator::CreateFSubFMF
static BinaryOperator * CreateFSubFMF(Value *V1, Value *V2, Instruction *FMFSource, const Twine &Name="")
Definition: InstrTypes.h:265
llvm::PatternMatch::m_Mul
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
Definition: PatternMatch.h:1026
llvm::Use
A Use represents the edge between a Value definition and its users.
Definition: Use.h:44
llvm::Intrinsic::ID
unsigned ID
Definition: TargetTransformInfo.h:37