37#define DEBUG_TYPE "instcombine"
41using namespace PatternMatch;
51 if (!V->hasOneUse())
return nullptr;
53 bool MadeChange =
false;
57 Value *
A =
nullptr, *
B =
nullptr, *One =
nullptr;
67 if (
I &&
I->isLogicalShift() &&
76 if (
I->getOpcode() == Instruction::LShr && !
I->isExact()) {
81 if (
I->getOpcode() == Instruction::Shl && !
I->hasNoUnsignedWrap()) {
82 I->setHasNoUnsignedWrap();
91 return MadeChange ? V :
nullptr;
107 bool HasAnyNoWrap =
I.hasNoSignedWrap() ||
I.hasNoUnsignedWrap();
115 bool HasAnyNoWrap =
I.hasNoSignedWrap() ||
I.hasNoUnsignedWrap();
153 bool PropagateNSW = HasNSW && cast<ShlOperator>(
Y)->hasNoSignedWrap();
168 Value *Shl = Builder.
CreateShl(FrX, Z,
"mulshl", HasNUW, PropagateNSW);
189 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
207 Type *Ty =
I.getType();
209 const bool HasNSW =
I.hasNoSignedWrap();
210 const bool HasNUW =
I.hasNoUnsignedWrap();
229 assert(Shl &&
"Constant folding of immediate constants failed");
232 if (HasNUW &&
Mul->hasNoUnsignedWrap())
248 if (
match(NewCst,
m_APInt(V)) && *V != V->getBitWidth() - 1)
262 auto *Op1C = cast<Constant>(Op1);
266 HasNSW && Op1C->isNotMinSignedValue()));
275 const APInt *NegPow2C;
279 unsigned SrcWidth =
X->getType()->getScalarSizeInBits();
281 if (ShiftAmt >=
BitWidth - SrcWidth) {
284 return BinaryOperator::CreateShl(Z, ConstantInt::get(Ty, ShiftAmt));
305 auto *BOp0 = cast<BinaryOperator>(Op0);
307 (BOp0->getOpcode() == Instruction::Or || BOp0->hasNoUnsignedWrap());
309 auto *BO = BinaryOperator::CreateAdd(NewMul, NewC);
310 if (HasNUW && Op0NUW) {
312 if (
auto *NewMulBO = dyn_cast<BinaryOperator>(NewMul))
313 NewMulBO->setHasNoUnsignedWrap();
314 BO->setHasNoUnsignedWrap();
322 if (Op0 == Op1 &&
match(Op0, m_Intrinsic<Intrinsic::abs>(
m_Value(
X))))
323 return BinaryOperator::CreateMul(
X,
X);
328 if (
I.hasNoSignedWrap() &&
346 auto *NewMul = BinaryOperator::CreateMul(
X,
Y);
347 if (HasNSW && cast<OverflowingBinaryOperator>(Op0)->
hasNoSignedWrap() &&
349 NewMul->setHasNoSignedWrap();
362 return BinaryOperator::CreateMul(NegOp0,
X);
370 auto UDivCheck = [&C1](
const APInt &
C) {
return C.urem(*C1).isZero(); };
371 auto SDivCheck = [&C1](
const APInt &
C) {
379 auto BOpc = cast<BinaryOperator>(Op0)->getOpcode();
392 if (!Div || (Div->
getOpcode() != Instruction::UDiv &&
393 Div->
getOpcode() != Instruction::SDiv)) {
395 Div = dyn_cast<BinaryOperator>(Op1);
397 Value *Neg = dyn_castNegVal(
Y);
400 (Div->
getOpcode() == Instruction::UDiv ||
401 Div->
getOpcode() == Instruction::SDiv)) {
411 auto RemOpc = Div->
getOpcode() == Instruction::UDiv ? Instruction::URem
419 return BinaryOperator::CreateSub(XFreeze, Rem);
420 return BinaryOperator::CreateSub(Rem, XFreeze);
432 return BinaryOperator::CreateAnd(Op0, Op1);
444 X->getType()->isIntOrIntVectorTy(1) &&
X->getType() ==
Y->getType() &&
445 (Op0->
hasOneUse() || Op1->hasOneUse() ||
X ==
Y)) {
454 X->getType()->isIntOrIntVectorTy(1) &&
X->getType() ==
Y->getType() &&
455 (Op0->
hasOneUse() || Op1->hasOneUse())) {
470 X->getType()->isIntOrIntVectorTy(1))
485 *
C ==
C->getBitWidth() - 1) {
497 *
C ==
C->getBitWidth() - 1) {
544 bool Changed =
false;
545 if (!HasNSW && willNotOverflowSignedMul(Op0, Op1,
I)) {
547 I.setHasNoSignedWrap(
true);
550 if (!HasNUW && willNotOverflowUnsignedMul(Op0, Op1,
I,
I.hasNoSignedWrap())) {
552 I.setHasNoUnsignedWrap(
true);
555 return Changed ? &
I :
nullptr;
560 assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
561 "Expected fmul or fdiv");
563 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
579 (Op0->
hasOneUse() || Op1->hasOneUse())) {
595 Intrinsic::powi, {
X->getType(), YZ->
getType()}, {
X, YZ}, &
I);
601 unsigned Opcode =
I.getOpcode();
602 assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
603 "Unexpected opcode");
610 Constant *One = ConstantInt::get(
Y->getType(), 1);
611 if (willNotOverflowSignedAdd(
Y, One,
I)) {
618 Value *Op0 =
I.getOperand(0);
619 Value *Op1 =
I.getOperand(1);
620 if (Opcode == Instruction::FMul &&
I.isOnlyUserOfAnyOperand() &&
625 Y->getType() == Z->getType()) {
630 if (Opcode == Instruction::FDiv &&
I.hasAllowReassoc() &&
I.hasNoNaNs()) {
637 willNotOverflowSignedSub(
Y, ConstantInt::get(
Y->getType(), 1),
I)) {
639 Instruction *NewPow = createPowiExpr(
I, *
this, Op1,
Y, NegOne);
650 willNotOverflowSignedSub(
Y, ConstantInt::get(
Y->getType(), 1),
I)) {
652 auto *NewPow = createPowiExpr(
I, *
this,
X,
Y, NegOne);
661 Value *Op0 =
I.getOperand(0);
662 Value *Op1 =
I.getOperand(1);
722 BinaryOperator *DivOp = cast<BinaryOperator>(((Z == Op0) ? Op1 : Op0));
747 if (
I.hasNoSignedZeros() &&
751 if (
I.hasNoSignedZeros() &&
758 if (
I.hasNoNaNs() &&
I.hasNoSignedZeros() && Op0 == Op1 && Op0->
hasNUses(2)) {
785 if (
I.isOnlyUserOfAnyOperand()) {
839 I.getFastMathFlags(),
865 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
880 {
I.getType()}, {Op1, Op0}, &
I);
891 if (
I.hasNoNaNs() &&
I.hasNoSignedZeros()) {
896 X->getType()->isIntOrIntVectorTy(1)) {
898 SI->copyFastMathFlags(
I.getFastMathFlags());
902 X->getType()->isIntOrIntVectorTy(1)) {
904 SI->copyFastMathFlags(
I.getFastMathFlags());
913 if (
I.hasAllowReassoc())
922 Log2 = cast<IntrinsicInst>(Op0);
927 Log2 = cast<IntrinsicInst>(Op1);
941 Value *Start =
nullptr, *Step =
nullptr;
955 if (!Result->hasNoNaNs())
956 Result->setHasNoInfs(
false);
967 SelectInst *SI = dyn_cast<SelectInst>(
I.getOperand(1));
992 Value *SelectCond = SI->getCondition();
993 if (SI->use_empty() && SelectCond->
hasOneUse())
999 while (BBI != BBFront) {
1007 for (
Use &
Op : BBI->operands()) {
1011 }
else if (
Op == SelectCond) {
1021 if (&*BBI == SelectCond)
1022 SelectCond =
nullptr;
1025 if (!SelectCond && !SI)
1036 Product = IsSigned ? C1.
smul_ov(C2, Overflow) : C1.
umul_ov(C2, Overflow);
1063 assert((
I.getOpcode() == Instruction::SDiv ||
1064 I.getOpcode() == Instruction::UDiv) &&
1065 "Expected integer divide");
1067 bool IsSigned =
I.getOpcode() == Instruction::SDiv;
1068 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1069 Type *Ty =
I.getType();
1078 auto *
Mul = cast<OverflowingBinaryOperator>(Op0);
1079 auto *Shl = cast<OverflowingBinaryOperator>(Op1);
1080 bool HasNUW =
Mul->hasNoUnsignedWrap() && Shl->hasNoUnsignedWrap();
1081 bool HasNSW =
Mul->hasNoSignedWrap() && Shl->hasNoSignedWrap();
1084 if (!IsSigned && HasNUW)
1088 if (IsSigned && HasNSW && (Op0->
hasOneUse() || Op1->hasOneUse())) {
1098 auto *Shl0 = cast<OverflowingBinaryOperator>(Op0);
1099 auto *Shl1 = cast<OverflowingBinaryOperator>(Op1);
1105 ((Shl0->hasNoUnsignedWrap() && Shl1->hasNoUnsignedWrap()) ||
1106 (Shl0->hasNoUnsignedWrap() && Shl0->hasNoSignedWrap() &&
1107 Shl1->hasNoSignedWrap())))
1112 if (IsSigned && Shl0->hasNoSignedWrap() && Shl1->hasNoSignedWrap() &&
1113 Shl1->hasNoUnsignedWrap())
1121 auto *Shl0 = cast<OverflowingBinaryOperator>(Op0);
1122 auto *Shl1 = cast<OverflowingBinaryOperator>(Op1);
1124 if (IsSigned ? (Shl0->hasNoSignedWrap() && Shl1->hasNoSignedWrap())
1125 : (Shl0->hasNoUnsignedWrap() && Shl1->hasNoUnsignedWrap())) {
1126 Constant *One = ConstantInt::get(
X->getType(), 1);
1130 One,
Y,
"shl.dividend",
1133 IsSigned ? (Shl0->hasNoUnsignedWrap() || Shl1->hasNoUnsignedWrap())
1134 : Shl0->hasNoSignedWrap());
1135 return Builder.
CreateLShr(Dividend, Z,
"",
I.isExact());
1144 assert(
I.isIntDivRem() &&
"Unexpected instruction");
1145 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1149 auto *Op1C = dyn_cast<Constant>(Op1);
1150 Type *Ty =
I.getType();
1151 auto *VTy = dyn_cast<FixedVectorType>(Ty);
1153 unsigned NumElts = VTy->getNumElements();
1154 for (
unsigned i = 0; i != NumElts; ++i) {
1156 if (Elt && (Elt->
isNullValue() || isa<UndefValue>(Elt)))
1194 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1195 bool IsSigned =
I.getOpcode() == Instruction::SDiv;
1196 Type *Ty =
I.getType();
1209 ConstantInt::get(Ty, Product));
1217 if (
isMultiple(*C2, *C1, Quotient, IsSigned)) {
1219 ConstantInt::get(Ty, Quotient));
1220 NewDiv->setIsExact(
I.isExact());
1225 if (
isMultiple(*C1, *C2, Quotient, IsSigned)) {
1227 ConstantInt::get(Ty, Quotient));
1228 auto *OBO = cast<OverflowingBinaryOperator>(Op0);
1229 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
1230 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
1243 if (
isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
1245 ConstantInt::get(Ty, Quotient));
1246 BO->setIsExact(
I.isExact());
1251 if (
isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
1253 ConstantInt::get(Ty, Quotient));
1254 auto *OBO = cast<OverflowingBinaryOperator>(Op0);
1255 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
1256 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
1269 return BinaryOperator::CreateNSWAdd(
X, ConstantInt::get(Ty, Quotient));
1274 return BinaryOperator::CreateNUWAdd(
X,
1275 ConstantInt::get(Ty, C1->
udiv(*C2)));
1316 return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1),
Y);
1318 return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1),
Y);
1322 bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
1323 bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
1324 if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
1333 if (!IsSigned && Op1->hasOneUse() &&
1351 auto *InnerDiv = cast<PossiblyExactOperator>(Op0);
1352 auto *
Mul = cast<OverflowingBinaryOperator>(InnerDiv->getOperand(0));
1354 if (!IsSigned &&
Mul->hasNoUnsignedWrap())
1355 NewDiv = BinaryOperator::CreateUDiv(
X,
Y);
1356 else if (IsSigned &&
Mul->hasNoSignedWrap())
1357 NewDiv = BinaryOperator::CreateSDiv(
X,
Y);
1361 NewDiv->
setIsExact(
I.isExact() && InnerDiv->isExact());
1368 auto OB0HasNSW = cast<OverflowingBinaryOperator>(Op0)->
hasNoSignedWrap();
1369 auto OB0HasNUW = cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap();
1372 auto OB1HasNSW = cast<OverflowingBinaryOperator>(Op1)->
hasNoSignedWrap();
1374 cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
1375 const APInt *C1, *C2;
1376 if (IsSigned && OB0HasNSW) {
1378 return BinaryOperator::CreateSDiv(
A,
B);
1380 if (!IsSigned && OB0HasNUW) {
1382 return BinaryOperator::CreateUDiv(
A,
B);
1384 return BinaryOperator::CreateUDiv(
A,
B);
1390 if (
auto *Val = CreateDivOrNull(
Y, Z))
1394 if (
auto *Val = CreateDivOrNull(
X, Z))
1405 return reinterpret_cast<Value *
>(-1);
1413 return IfFold([&]() {
1434 auto *TI = cast<TruncInst>(
Op);
1435 if (AssumeNonZero || TI->hasNoUnsignedWrap())
1437 return IfFold([&]() {
1439 TI->hasNoUnsignedWrap());
1446 auto *BO = cast<OverflowingBinaryOperator>(
Op);
1448 if (AssumeNonZero || BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap())
1456 auto *PEO = cast<PossiblyExactOperator>(
Op);
1457 if (AssumeNonZero || PEO->isExact())
1466 return IfFold([&]() {
return LogX; });
1468 return IfFold([&]() {
return LogY; });
1477 return IfFold([&]() {
1483 auto *
MinMax = dyn_cast<MinMaxIntrinsic>(
Op);
1491 return IfFold([&]() {
1507 Type *Ty =
I.getType();
1510 X->getType() ==
Y->getType() && (
N->hasOneUse() ||
D->hasOneUse())) {
1556 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1558 const APInt *C1, *C2;
1566 X, ConstantInt::get(
X->getType(), C2ShlC1));
1575 Type *Ty =
I.getType();
1596 if (
I.isExact() && cast<PossiblyExactOperator>(Op0)->isExact())
1601 auto GetShiftableDenom = [&](
Value *Denom) ->
Value * {
1617 if (
auto *Res = GetShiftableDenom(Op1))
1636 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1637 Type *Ty =
I.getType();
1653 return BinaryOperator::CreateExactAShr(Op0,
C);
1659 return BinaryOperator::CreateExactAShr(Op0, ShAmt);
1694 Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
1728 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1,
I.getName());
1729 BO->setIsExact(
I.isExact());
1747 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1,
I.getName());
1748 BO->setIsExact(
I.isExact());
1778 if (
I.hasNoNaNs() &&
1783 Intrinsic::copysign, {
C->getType()},
1792 if (!(
C->hasExactInverseFP() || (
I.hasAllowReciprocal() &&
C->isNormalFP())))
1800 Instruction::FDiv, ConstantFP::get(
I.getType(), 1.0),
C,
DL);
1801 if (!RecipC || !RecipC->isNormalFP())
1821 if (!
I.hasAllowReassoc() || !
I.hasAllowReciprocal())
1846 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1847 auto *
II = dyn_cast<IntrinsicInst>(Op1);
1848 if (!
II || !
II->hasOneUse() || !
I.hasAllowReassoc() ||
1849 !
I.hasAllowReciprocal())
1859 case Intrinsic::pow:
1860 Args.push_back(
II->getArgOperand(0));
1863 case Intrinsic::powi: {
1871 Args.push_back(
II->getArgOperand(0));
1872 Args.push_back(Builder.
CreateNeg(
II->getArgOperand(1)));
1873 Type *Tys[] = {
I.getType(),
II->getArgOperand(1)->getType()};
1877 case Intrinsic::exp:
1878 case Intrinsic::exp2:
1893 if (!
I.hasAllowReassoc() || !
I.hasAllowReciprocal())
1895 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1896 auto *
II = dyn_cast<IntrinsicInst>(Op1);
1897 if (!
II ||
II->getIntrinsicID() != Intrinsic::sqrt || !
II->hasOneUse() ||
1898 !
II->hasAllowReassoc() || !
II->hasAllowReciprocal())
1902 auto *DivOp = dyn_cast<Instruction>(
II->getOperand(0));
1907 if (!DivOp->hasAllowReassoc() || !
I.hasAllowReciprocal() ||
1908 !DivOp->hasOneUse())
1920 I.getFastMathFlags(),
1939 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1940 if (isa<Constant>(Op0))
1941 if (
SelectInst *SI = dyn_cast<SelectInst>(Op1))
1945 if (isa<Constant>(Op1))
1946 if (
SelectInst *SI = dyn_cast<SelectInst>(Op0))
1950 if (
I.hasAllowReassoc() &&
I.hasAllowReciprocal()) {
1953 (!isa<Constant>(
Y) || !isa<Constant>(Op1))) {
1959 (!isa<Constant>(
Y) || !isa<Constant>(Op0))) {
1974 if (
I.hasAllowReassoc() && Op0->
hasOneUse() && Op1->hasOneUse()) {
1978 bool IsTan =
match(Op0, m_Intrinsic<Intrinsic::sin>(
m_Value(
X))) &&
1981 !IsTan &&
match(Op0, m_Intrinsic<Intrinsic::cos>(
m_Value(
X))) &&
1984 if ((IsTan || IsCot) &&
hasFloatFn(M, &
TLI,
I.getType(), LibFunc_tan,
1985 LibFunc_tanf, LibFunc_tanl)) {
1988 B.setFastMathFlags(
I.getFastMathFlags());
1990 cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
1992 LibFunc_tanl,
B, Attrs);
1994 Res =
B.CreateFDiv(ConstantFP::get(
I.getType(), 1.0), Res);
2003 if (
I.hasNoNaNs() &&
I.hasAllowReassoc() &&
2012 if (
I.hasNoNaNs() &&
I.hasNoInfs() &&
2016 Intrinsic::copysign, ConstantFP::get(
I.getType(), 1.0),
X, &
I);
2027 if (
I.hasAllowReassoc() &&
2050 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1), *
X =
nullptr;
2052 bool ShiftByX =
false;
2056 bool &PreserveNSW) ->
bool {
2057 const APInt *Tmp =
nullptr;
2076 const APInt *Tmp =
nullptr;
2088 bool Op0PreserveNSW =
true, Op1PreserveNSW =
true;
2089 if (MatchShiftOrMulXC(Op0,
X,
Y, Op0PreserveNSW) &&
2090 MatchShiftOrMulXC(Op1,
X, Z, Op1PreserveNSW)) {
2092 }
else if (MatchShiftCX(Op0,
Y,
X) && MatchShiftCX(Op1, Z,
X)) {
2098 bool IsSRem =
I.getOpcode() == Instruction::SRem;
2105 bool BO0NoWrap = IsSRem ? BO0HasNSW : BO0HasNUW;
2107 APInt RemYZ = IsSRem ?
Y.srem(Z) :
Y.urem(Z);
2111 if (RemYZ.
isZero() && BO0NoWrap)
2117 auto CreateMulOrShift =
2119 Value *RemSimplification =
2120 ConstantInt::get(
I.getType(), RemSimplificationC);
2121 return ShiftByX ? BinaryOperator::CreateShl(RemSimplification,
X)
2122 : BinaryOperator::CreateMul(
X, RemSimplification);
2128 bool BO1NoWrap = IsSRem ? BO1HasNSW : BO1HasNUW;
2132 if (RemYZ ==
Y && BO1NoWrap) {
2143 if (
Y.uge(Z) && (IsSRem ? (BO0HasNSW && BO1HasNSW) : BO0HasNUW)) {
2161 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
2163 if (isa<Constant>(Op1)) {
2164 if (
Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
2165 if (
SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
2168 }
else if (
auto *PN = dyn_cast<PHINode>(Op0I)) {
2169 const APInt *Op1Int;
2171 (
I.getOpcode() == Instruction::URem ||
2208 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
2209 Type *Ty =
I.getType();
2215 return BinaryOperator::CreateAnd(Op0,
Add);
2241 Value *FrozenOp0 = Op0;
2254 Value *FrozenOp0 = Op0;
2277 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
2296 return BinaryOperator::CreateURem(Op0, Op1,
I.getName());
2300 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
2302 unsigned VWidth = cast<FixedVectorType>(
C->getType())->getNumElements();
2304 bool hasNegative =
false;
2305 bool hasMissing =
false;
2306 for (
unsigned i = 0; i != VWidth; ++i) {
2307 Constant *Elt =
C->getAggregateElement(i);
2314 if (
RHS->isNegative())
2318 if (hasNegative && !hasMissing) {
2320 for (
unsigned i = 0; i != VWidth; ++i) {
2321 Elts[i] =
C->getAggregateElement(i);
2323 if (
RHS->isNegative())
2339 I.getFastMathFlags(),
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
This file provides internal interfaces used to implement the InstCombine.
static Instruction * simplifyIRemMulShl(BinaryOperator &I, InstCombinerImpl &IC)
static Instruction * narrowUDivURem(BinaryOperator &I, InstCombinerImpl &IC)
If we have zero-extended operands of an unsigned div or rem, we may be able to narrow the operation (...
static Value * simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC, Instruction &CxtI)
The specific integer value is used in a context where it is known to be non-zero.
static Value * foldMulSelectToNegate(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static Instruction * foldFDivPowDivisor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Negate the exponent of pow/exp to fold division-by-pow() into multiply.
static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product, bool IsSigned)
True if the multiply can not be expressed in an int this size.
static Value * foldMulShl1(BinaryOperator &Mul, bool CommuteOperands, InstCombiner::BuilderTy &Builder)
Reduce integer multiplication patterns that contain a (+/-1 << Z) factor.
static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient, bool IsSigned)
True if C1 is a multiple of C2. Quotient contains C1/C2.
static Instruction * foldFDivSqrtDivisor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Convert div to mul if we have an sqrt divisor iff sqrt's operand is a fdiv instruction.
static Instruction * foldFDivConstantDividend(BinaryOperator &I)
Remove negation and try to reassociate constant math.
static Value * foldIDivShl(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
This file provides the interface for the instcombine pass implementation.
static bool hasNoSignedWrap(BinaryOperator &I)
static bool hasNoUnsignedWrap(BinaryOperator &I)
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
Class for arbitrary precision integers.
APInt umul_ov(const APInt &RHS, bool &Overflow) const
APInt udiv(const APInt &RHS) const
Unsigned division operation.
static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
bool isMinValue() const
Determine if this is the smallest unsigned value.
unsigned countr_zero() const
Count the number of trailing zero bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
APInt ushl_ov(const APInt &Amt, bool &Overflow) const
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
APInt smul_ov(const APInt &RHS, bool &Overflow) const
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
InstListType::iterator iterator
Instruction iterators...
static BinaryOperator * CreateFAddFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
static BinaryOperator * CreateExact(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateFMulFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static BinaryOperator * CreateFDivFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static BinaryOperator * CreateFSubFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static BinaryOperator * CreateWithCopiedFlags(BinaryOps Opc, Value *V1, Value *V2, Value *CopyO, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static BinaryOperator * CreateNSWNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
This class represents a function call, abstracting a target machine's calling convention.
static CastInst * CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt or BitCast cast instruction.
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
@ ICMP_ULT
unsigned less than
static Constant * getNeg(Constant *C, bool HasNSW=false)
static Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static Constant * getExactLogBase2(Constant *C)
If C is a scalar/fixed width vector of known powers of 2, then this function returns a new scalar/fix...
static Constant * getInfinity(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
static ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getFalse(LLVMContext &Context)
static ConstantInt * getBool(LLVMContext &Context, bool V)
static Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static Constant * getAllOnesValue(Type *Ty)
bool isNormalFP() const
Return true if this is a normal (as opposed to denormal, infinity, nan, or zero) floating-point scala...
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
bool isNotMinSignedValue() const
Return true if the value is not the smallest signed value, or, for vectors, does not contain smallest...
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Convenience struct for specifying and reasoning about fast-math flags.
bool allowReassoc() const
Flag queries.
Value * CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateSRem(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateSelectFMF(Value *C, Value *True, Value *False, FMFSource FMFSource, const Twine &Name="", Instruction *MDFrom=nullptr)
ConstantInt * getTrue()
Get the constant value for i1 true.
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Value * CreateIsNotNeg(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg > -1.
Value * CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateUDiv(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNSW=false)
Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateBinOpFMF(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, FMFSource FMFSource, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateIsNeg(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg < 0.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateSDiv(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateFAddFMF(Value *L, Value *R, FMFSource FMFSource, const Twine &Name="", MDNode *FPMD=nullptr)
Value * CreateAShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Value * CreateFNegFMF(Value *V, FMFSource FMFSource, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateFDivFMF(Value *L, Value *R, FMFSource FMFSource, const Twine &Name="", MDNode *FPMD=nullptr)
Value * CreateFMulFMF(Value *L, Value *R, FMFSource FMFSource, const Twine &Name="", MDNode *FPMD=nullptr)
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Instruction * visitMul(BinaryOperator &I)
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I)
Tries to simplify binops of select and cast of the select condition.
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
Instruction * visitUDiv(BinaryOperator &I)
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * visitURem(BinaryOperator &I)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Value * takeLog2(Value *Op, unsigned Depth, bool AssumeNonZero, bool DoFold)
Take the exact integer log2 of the value.
Instruction * visitSRem(BinaryOperator &I)
Instruction * visitFDiv(BinaryOperator &I)
bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I)
Fold a divide or remainder with a select instruction divisor when one of the select operands is zero.
Constant * getLosslessUnsignedTrunc(Constant *C, Type *TruncTy)
Instruction * commonIDivRemTransforms(BinaryOperator &I)
Common integer divide/remainder transforms.
Value * tryGetLog2(Value *Op, bool AssumeNonZero)
Instruction * commonIDivTransforms(BinaryOperator &I)
This function implements the transforms common to both integer division instructions (udiv and sdiv).
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
Instruction * visitFRem(BinaryOperator &I)
bool SimplifyDemandedInstructionBits(Instruction &Inst)
Tries to simplify operands to an integer instruction based on its demanded bits.
Instruction * visitFMul(BinaryOperator &I)
Instruction * foldFMulReassoc(BinaryOperator &I)
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
Value * SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, Value *RHS)
Instruction * foldPowiReassoc(BinaryOperator &I)
Instruction * visitSDiv(BinaryOperator &I)
Instruction * commonIRemTransforms(BinaryOperator &I)
This function implements the transforms common to both integer remainder instructions (urem and srem)...
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, unsigned Depth=0, const Instruction *CxtI=nullptr)
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, const Instruction *CxtI) const
bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth=0, const Instruction *CxtI=nullptr) const
void push(Instruction *I)
Push the instruction onto the worklist stack.
void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
void setIsExact(bool b=true)
Set or clear the exact flag on this instruction, which must be an operator which supports this flag.
A wrapper class for inspecting calls to intrinsic functions.
A Module instance is used to store all the information related to an LLVM module.
static Value * Negate(bool LHSIsZero, bool IsNSW, Value *Root, InstCombinerImpl &IC)
Attempt to negate Root.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
StringRef getName() const
Return a constant reference to the value's name.
void takeName(Value *V)
Transfer the name from V to this value.
This class represents zero extension of integer types.
An efficient, type-erasing, non-owning reference to a callable.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
cst_pred_ty< is_negative > m_Negative()
Match an integer or vector of negative values.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
AllowReassoc_match< T > m_AllowReassoc(const T &SubPattern)
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
BinaryOp_match< LHS, RHS, Instruction::FMul > m_FMul(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
OverflowingBinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWNeg(const ValTy &V)
Matches a 'Neg' as 'sub nsw 0, V'.
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
m_Intrinsic_Ty< Opnd0 >::Ty m_Sqrt(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
OneUse_match< T > m_OneUse(const T &SubPattern)
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a 'Neg' as 'sub 0, V'.
match_combine_and< class_match< Constant >, match_unless< constantexpr_match > > m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap > m_NSWShl(const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
cst_pred_ty< is_negated_power2 > m_NegatedPower2()
Match a integer or vector negated power-of-2.
cst_pred_ty< custom_checkfn< APInt > > m_CheckedInt(function_ref< bool(const APInt &)> CheckFn)
Match an integer or vector where CheckFn(ele) for each element is true.
apfloat_match m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
CastInst_match< OpTy, UIToFPInst > m_UIToFP(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
Exact_match< T > m_Exact(const T &SubPattern)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FDiv > m_FDiv(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
BinaryOp_match< cst_pred_ty< is_all_ones >, ValTy, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap > m_NSWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
This is an optimization pass for GlobalISel generic memory operations.
Value * emitUnaryFloatFnCall(Value *Op, const TargetLibraryInfo *TLI, StringRef Name, IRBuilderBase &B, const AttributeList &Attrs)
Emit a call to the unary function named 'Name' (e.g.
Value * simplifyFMulInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FMul, fold the result or return null.
Value * simplifySDivInst(Value *LHS, Value *RHS, bool IsExact, const SimplifyQuery &Q)
Given operands for an SDiv, fold the result or return null.
Value * simplifyMulInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Mul, fold the result or return null.
bool hasFloatFn(const Module *M, const TargetLibraryInfo *TLI, Type *Ty, LibFunc DoubleFn, LibFunc FloatFn, LibFunc LongDoubleFn)
Check whether the overloaded floating point function corresponding to Ty is available.
bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
constexpr unsigned MaxAnalysisRecursionDepth
Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
Value * simplifyFRemInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FRem, fold the result or return null.
Value * simplifyICmpInst(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an ICmpInst, fold the result or return null.
Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
Value * simplifyFDivInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FDiv, fold the result or return null.
@ Mul
Product of integers.
@ And
Bitwise or logical AND of integers.
Value * simplifyUDivInst(Value *LHS, Value *RHS, bool IsExact, const SimplifyQuery &Q)
Given operands for a UDiv, fold the result or return null.
DWARFExpression::Operation Op
constexpr unsigned BitWidth
bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
Value * simplifySRemInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an SRem, fold the result or return null.
unsigned Log2(Align A)
Returns the log2 of the alignment.
bool isKnownNeverNaN(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
Value * simplifyURemInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a URem, fold the result or return null.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
bool isNonNegative() const
Returns true if this value is known to be non-negative.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
SimplifyQuery getWithInstruction(const Instruction *I) const