110#define DEBUG_TYPE "instcombine"
118 "Number of instruction combining iterations performed");
119STATISTIC(NumOneIteration,
"Number of functions with one iteration");
120STATISTIC(NumTwoIterations,
"Number of functions with two iterations");
121STATISTIC(NumThreeIterations,
"Number of functions with three iterations");
123 "Number of functions with four or more iterations");
127STATISTIC(NumDeadInst ,
"Number of dead inst eliminated");
133 "Controls which instructions are visited");
140 "instcombine-max-sink-users",
cl::init(32),
141 cl::desc(
"Maximum number of undroppable users for instruction sinking"));
145 cl::desc(
"Maximum array size considered when doing a combine"));
157std::optional<Instruction *>
160 if (
II.getCalledFunction()->isTargetIntrinsic()) {
161 return TTIForTargetIntrinsicsOnly.instCombineIntrinsic(*
this,
II);
168 bool &KnownBitsComputed) {
170 if (
II.getCalledFunction()->isTargetIntrinsic()) {
171 return TTIForTargetIntrinsicsOnly.simplifyDemandedUseBitsIntrinsic(
172 *
this,
II, DemandedMask, Known, KnownBitsComputed);
183 if (
II.getCalledFunction()->isTargetIntrinsic()) {
184 return TTIForTargetIntrinsicsOnly.simplifyDemandedVectorEltsIntrinsic(
185 *
this,
II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3,
195 return TTIForTargetIntrinsicsOnly.isValidAddrSpaceCast(FromAS, ToAS);
205 Builder.SetInsertPoint(Inst);
209 if (Inst && !
GEP->hasAllConstantIndices() &&
210 !
GEP->getSourceElementType()->isIntegerTy(8)) {
212 *Inst, Builder.CreateGEP(Builder.getInt8Ty(),
GEP->getPointerOperand(),
230 Value *Sum =
nullptr;
231 Value *OneUseSum =
nullptr;
232 Value *OneUseBase =
nullptr;
239 IRBuilderBase::InsertPointGuard Guard(
Builder);
241 if (RewriteGEPs && Inst)
245 if (
Offset->getType() != IdxTy)
248 if (
GEP->hasOneUse()) {
253 OneUseBase =
GEP->getPointerOperand();
262 if (RewriteGEPs && Inst &&
263 !(
GEP->getSourceElementType()->isIntegerTy(8) &&
268 OneUseBase ? OneUseBase :
GEP->getPointerOperand(),
Offset,
"",
275 OneUseSum = OneUseBase =
nullptr;
279 Sum =
Add(Sum, OneUseSum);
290bool InstCombinerImpl::isDesirableIntType(
unsigned BitWidth)
const {
309bool InstCombinerImpl::shouldChangeType(
unsigned FromWidth,
310 unsigned ToWidth)
const {
311 bool FromLegal = FromWidth == 1 ||
DL.isLegalInteger(FromWidth);
312 bool ToLegal = ToWidth == 1 ||
DL.isLegalInteger(ToWidth);
316 if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
321 if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal)
326 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
337bool InstCombinerImpl::shouldChangeType(
Type *From,
Type *To)
const {
345 return shouldChangeType(FromWidth, ToWidth);
355 if (!OBO || !OBO->hasNoSignedWrap())
358 const APInt *BVal, *CVal;
363 bool Overflow =
false;
364 switch (
I.getOpcode()) {
365 case Instruction::Add:
366 (void)BVal->
sadd_ov(*CVal, Overflow);
368 case Instruction::Sub:
369 (void)BVal->
ssub_ov(*CVal, Overflow);
371 case Instruction::Mul:
372 (void)BVal->
smul_ov(*CVal, Overflow);
383 return OBO && OBO->hasNoUnsignedWrap();
388 return OBO && OBO->hasNoSignedWrap();
397 I.clearSubclassOptionalData();
402 I.clearSubclassOptionalData();
403 I.setFastMathFlags(FMF);
413 if (!Cast || !Cast->hasOneUse())
417 auto CastOpcode = Cast->getOpcode();
418 if (CastOpcode != Instruction::ZExt)
427 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
453 Cast->dropPoisonGeneratingFlags();
459Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(
Value *Val) {
461 if (IntToPtr &&
DL.getTypeSizeInBits(IntToPtr->getDestTy()) ==
462 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
464 Type *CastTy = IntToPtr->getDestTy();
467 PtrToInt->getSrcTy()->getPointerAddressSpace() &&
468 DL.getTypeSizeInBits(PtrToInt->getSrcTy()) ==
469 DL.getTypeSizeInBits(PtrToInt->getDestTy()))
470 return PtrToInt->getOperand(0);
507 if (
I.isCommutative()) {
508 if (
auto Pair = matchSymmetricPair(
I.getOperand(0),
I.getOperand(1))) {
518 if (
I.isAssociative()) {
541 I.setHasNoUnsignedWrap(
true);
544 I.setHasNoSignedWrap(
true);
573 if (
I.isAssociative() &&
I.isCommutative()) {
650 I.setHasNoUnsignedWrap(
true);
668 if (LOp == Instruction::And)
669 return ROp == Instruction::Or || ROp == Instruction::Xor;
672 if (LOp == Instruction::Or)
673 return ROp == Instruction::And;
677 if (LOp == Instruction::Mul)
678 return ROp == Instruction::Add || ROp == Instruction::Sub;
715 assert(
Op &&
"Expected a binary operator");
716 LHS =
Op->getOperand(0);
717 RHS =
Op->getOperand(1);
718 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
723 Instruction::Shl, ConstantInt::get(
Op->getType(), 1),
C);
724 assert(
RHS &&
"Constant folding of immediate constants failed");
725 return Instruction::Mul;
730 if (OtherOp && OtherOp->
getOpcode() == Instruction::AShr &&
733 return Instruction::AShr;
736 return Op->getOpcode();
745 assert(
A &&
B &&
C &&
D &&
"All values must be provided");
748 Value *RetVal =
nullptr;
759 if (
A ==
C || (InnerCommutative &&
A ==
D)) {
768 if (!V && (
LHS->hasOneUse() ||
RHS->hasOneUse()))
769 V = Builder.CreateBinOp(TopLevelOpcode,
B,
D,
RHS->getName());
771 RetVal = Builder.CreateBinOp(InnerOpcode,
A, V);
779 if (
B ==
D || (InnerCommutative &&
B ==
C)) {
788 if (!V && (
LHS->hasOneUse() ||
RHS->hasOneUse()))
789 V = Builder.CreateBinOp(TopLevelOpcode,
A,
C,
LHS->getName());
791 RetVal = Builder.CreateBinOp(InnerOpcode, V,
B);
806 HasNSW =
I.hasNoSignedWrap();
807 HasNUW =
I.hasNoUnsignedWrap();
810 HasNSW &= LOBO->hasNoSignedWrap();
811 HasNUW &= LOBO->hasNoUnsignedWrap();
815 HasNSW &= ROBO->hasNoSignedWrap();
816 HasNUW &= ROBO->hasNoUnsignedWrap();
819 if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) {
847 unsigned Opc =
I->getOpcode();
848 unsigned ConstIdx = 1;
855 case Instruction::Sub:
858 case Instruction::ICmp:
865 case Instruction::Or:
869 case Instruction::Add:
875 if (!
match(
I->getOperand(1 - ConstIdx),
885 Constant *BitWidthC = ConstantInt::get(Ty, Ty->getScalarSizeInBits());
891 if (!Cmp || !Cmp->isZeroValue())
896 bool Consumes =
false;
900 assert(NotOp !=
nullptr &&
901 "Desync between isFreeToInvert and getFreelyInverted");
903 Value *CtpopOfNotOp =
Builder.CreateIntrinsic(Ty, Intrinsic::ctpop, NotOp);
910 case Instruction::Sub:
913 case Instruction::Or:
914 case Instruction::Add:
917 case Instruction::ICmp:
953 auto IsValidBinOpc = [](
unsigned Opc) {
957 case Instruction::And:
958 case Instruction::Or:
959 case Instruction::Xor:
960 case Instruction::Add:
969 auto IsCompletelyDistributable = [](
unsigned BinOpc1,
unsigned BinOpc2,
971 assert(ShOpc != Instruction::AShr);
972 return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) ||
973 ShOpc == Instruction::Shl;
976 auto GetInvShift = [](
unsigned ShOpc) {
977 assert(ShOpc != Instruction::AShr);
978 return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr;
981 auto CanDistributeBinops = [&](
unsigned BinOpc1,
unsigned BinOpc2,
985 if (BinOpc1 == Instruction::And)
990 if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc))
996 if (BinOpc2 == Instruction::And)
1007 auto MatchBinOp = [&](
unsigned ShOpnum) ->
Instruction * {
1009 Value *
X, *
Y, *ShiftedX, *Mask, *Shift;
1010 if (!
match(
I.getOperand(ShOpnum),
1013 if (!
match(
I.getOperand(1 - ShOpnum),
1026 unsigned ShOpc = IY->getOpcode();
1027 if (ShOpc != IX->getOpcode())
1035 unsigned BinOpc = BO2->getOpcode();
1037 if (!IsValidBinOpc(
I.getOpcode()) || !IsValidBinOpc(BinOpc))
1040 if (ShOpc == Instruction::AShr) {
1054 if (BinOpc ==
I.getOpcode() &&
1055 IsCompletelyDistributable(
I.getOpcode(), BinOpc, ShOpc)) {
1070 if (!CanDistributeBinops(
I.getOpcode(), BinOpc, ShOpc, CMask, CShift))
1077 Value *NewBinOp1 =
Builder.CreateBinOp(
I.getOpcode(),
Y, NewBinOp2);
1084 return MatchBinOp(1);
1101 Value *LHS =
I.getOperand(0), *RHS =
I.getOperand(1);
1102 Value *
A, *CondVal, *TrueVal, *FalseVal;
1105 auto MatchSelectAndCast = [&](
Value *CastOp,
Value *SelectOp) {
1107 A->getType()->getScalarSizeInBits() == 1 &&
1114 if (MatchSelectAndCast(LHS, RHS))
1116 else if (MatchSelectAndCast(RHS, LHS))
1121 auto NewFoldedConst = [&](
bool IsTrueArm,
Value *V) {
1122 bool IsCastOpRHS = (CastOp == RHS);
1128 }
else if (IsZExt) {
1129 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1135 return IsCastOpRHS ?
Builder.CreateBinOp(
Opc, V,
C)
1142 Value *NewTrueVal = NewFoldedConst(
false, TrueVal);
1144 NewFoldedConst(
true, FalseVal));
1148 Value *NewTrueVal = NewFoldedConst(
true, TrueVal);
1150 NewFoldedConst(
false, FalseVal));
1157 Value *LHS =
I.getOperand(0), *RHS =
I.getOperand(1);
1171 if (Op0 && Op1 && LHSOpcode == RHSOpcode)
1200 Value *LHS =
I.getOperand(0), *RHS =
I.getOperand(1);
1217 auto SQDistributive =
SQ.getWithInstruction(&
I).getWithoutUndef();
1225 C =
Builder.CreateBinOp(InnerOpcode, L, R);
1234 C =
Builder.CreateBinOp(TopLevelOpcode,
B,
C);
1243 C =
Builder.CreateBinOp(TopLevelOpcode,
A,
C);
1256 auto SQDistributive =
SQ.getWithInstruction(&
I).getWithoutUndef();
1264 A =
Builder.CreateBinOp(InnerOpcode, L, R);
1273 A =
Builder.CreateBinOp(TopLevelOpcode,
A,
C);
1282 A =
Builder.CreateBinOp(TopLevelOpcode,
A,
B);
1291static std::optional<std::pair<Value *, Value *>>
1293 if (
LHS->getParent() !=
RHS->getParent())
1294 return std::nullopt;
1296 if (
LHS->getNumIncomingValues() < 2)
1297 return std::nullopt;
1300 return std::nullopt;
1302 Value *L0 =
LHS->getIncomingValue(0);
1303 Value *R0 =
RHS->getIncomingValue(0);
1305 for (
unsigned I = 1,
E =
LHS->getNumIncomingValues();
I !=
E; ++
I) {
1309 if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1))
1312 return std::nullopt;
1315 return std::optional(std::pair(L0, R0));
1318std::optional<std::pair<Value *, Value *>>
1323 return std::nullopt;
1325 case Instruction::PHI:
1327 case Instruction::Select: {
1333 return std::pair(TrueVal, FalseVal);
1334 return std::nullopt;
1336 case Instruction::Call: {
1340 if (LHSMinMax && RHSMinMax &&
1347 return std::pair(LHSMinMax->
getLHS(), LHSMinMax->
getRHS());
1348 return std::nullopt;
1351 return std::nullopt;
1361 if (!LHSIsSelect && !RHSIsSelect)
1367 FMF =
I.getFastMathFlags();
1368 Builder.setFastMathFlags(FMF);
1374 Value *
Cond, *True =
nullptr, *False =
nullptr;
1382 if (Opcode != Instruction::Add || (!True && !False) || (True && False))
1397 if (LHSIsSelect && RHSIsSelect &&
A ==
D) {
1403 if (LHS->hasOneUse() && RHS->hasOneUse()) {
1405 True =
Builder.CreateBinOp(Opcode,
B, E);
1406 else if (True && !False)
1407 False =
Builder.CreateBinOp(Opcode,
C,
F);
1409 }
else if (LHSIsSelect && LHS->hasOneUse()) {
1414 if (
Value *NewSel = foldAddNegate(
B,
C, RHS))
1416 }
else if (RHSIsSelect && RHS->hasOneUse()) {
1421 if (
Value *NewSel = foldAddNegate(E,
F, LHS))
1425 if (!True || !False)
1438 if (U == IgnoredUser)
1441 case Instruction::Select: {
1444 SI->swapProfMetadata();
1447 case Instruction::Br: {
1454 case Instruction::Xor:
1461 "canFreelyInvertAllUsersOf() ?");
1471 for (
unsigned Idx = 0, End = DbgVal->getNumVariableLocationOps();
1473 if (DbgVal->getVariableLocationOp(Idx) ==
I)
1474 DbgVal->setExpression(
1481Value *InstCombinerImpl::dyn_castNegVal(
Value *V)
const {
1491 if (
C->getType()->getElementType()->isIntegerTy())
1495 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1511 if (CV->getType()->isVectorTy() &&
1512 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
1525Instruction *InstCombinerImpl::foldFBinOpOfIntCastsFromSign(
1526 BinaryOperator &BO,
bool OpsFromSigned, std::array<Value *, 2> IntOps,
1530 Type *IntTy = IntOps[0]->getType();
1535 unsigned MaxRepresentableBits =
1540 unsigned NumUsedLeadingBits[2] = {IntSz, IntSz};
1544 auto IsNonZero = [&](
unsigned OpNo) ->
bool {
1545 if (OpsKnown[OpNo].hasKnownBits() &&
1546 OpsKnown[OpNo].getKnownBits(
SQ).isNonZero())
1551 auto IsNonNeg = [&](
unsigned OpNo) ->
bool {
1555 return OpsKnown[OpNo].getKnownBits(
SQ).isNonNegative();
1559 auto IsValidPromotion = [&](
unsigned OpNo) ->
bool {
1570 if (MaxRepresentableBits < IntSz) {
1580 NumUsedLeadingBits[OpNo] =
1581 IntSz - OpsKnown[OpNo].getKnownBits(
SQ).countMinLeadingZeros();
1589 if (MaxRepresentableBits < NumUsedLeadingBits[OpNo])
1592 return !OpsFromSigned || BO.
getOpcode() != Instruction::FMul ||
1597 if (Op1FpC !=
nullptr) {
1599 if (OpsFromSigned && BO.
getOpcode() == Instruction::FMul &&
1604 OpsFromSigned ? Instruction::FPToSI : Instruction::FPToUI, Op1FpC,
1606 if (Op1IntC ==
nullptr)
1609 : Instruction::UIToFP,
1610 Op1IntC, FPTy,
DL) != Op1FpC)
1614 IntOps[1] = Op1IntC;
1618 if (IntTy != IntOps[1]->
getType())
1621 if (Op1FpC ==
nullptr) {
1622 if (!IsValidPromotion(1))
1625 if (!IsValidPromotion(0))
1631 bool NeedsOverflowCheck =
true;
1634 unsigned OverflowMaxOutputBits = OpsFromSigned ? 2 : 1;
1635 unsigned OverflowMaxCurBits =
1636 std::max(NumUsedLeadingBits[0], NumUsedLeadingBits[1]);
1637 bool OutputSigned = OpsFromSigned;
1639 case Instruction::FAdd:
1640 IntOpc = Instruction::Add;
1641 OverflowMaxOutputBits += OverflowMaxCurBits;
1643 case Instruction::FSub:
1644 IntOpc = Instruction::Sub;
1645 OverflowMaxOutputBits += OverflowMaxCurBits;
1647 case Instruction::FMul:
1648 IntOpc = Instruction::Mul;
1649 OverflowMaxOutputBits += OverflowMaxCurBits * 2;
1655 if (OverflowMaxOutputBits < IntSz) {
1656 NeedsOverflowCheck =
false;
1659 if (IntOpc == Instruction::Sub)
1660 OutputSigned =
true;
1666 if (NeedsOverflowCheck &&
1667 !willNotOverflow(IntOpc, IntOps[0], IntOps[1], BO, OutputSigned))
1670 Value *IntBinOp =
Builder.CreateBinOp(IntOpc, IntOps[0], IntOps[1]);
1672 IntBO->setHasNoSignedWrap(OutputSigned);
1673 IntBO->setHasNoUnsignedWrap(!OutputSigned);
1676 return new SIToFPInst(IntBinOp, FPTy);
1677 return new UIToFPInst(IntBinOp, FPTy);
1686 std::array<Value *, 2> IntOps = {
nullptr,
nullptr};
1706 if (Instruction *R = foldFBinOpOfIntCastsFromSign(BO,
false,
1707 IntOps, Op1FpC, OpsKnown))
1709 return foldFBinOpOfIntCastsFromSign(BO,
true, IntOps,
1725 !
X->getType()->isIntOrIntVectorTy(1))
1742 V = IsTrueArm ?
SI->getTrueValue() :
SI->getFalseValue();
1743 }
else if (
match(
SI->getCondition(),
1768 bool FoldWithMultiUse) {
1770 if (!
SI->hasOneUse() && !FoldWithMultiUse)
1773 Value *TV =
SI->getTrueValue();
1774 Value *FV =
SI->getFalseValue();
1777 if (
SI->getType()->isIntOrIntVectorTy(1))
1783 for (
Value *IntrinOp :
Op.operands())
1785 for (
Value *PhiOp : PN->operands())
1797 if (CI->hasOneUse()) {
1798 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1799 if (((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1)) &&
1800 !CI->isCommutative())
1809 if (!NewTV && !NewFV)
1829 Ops.push_back(InValue);
1861 bool AllowMultipleUses) {
1863 if (NumPHIValues == 0)
1870 bool IdenticalUsers =
false;
1871 if (!AllowMultipleUses && !OneUse) {
1875 if (UI != &
I && !
I.isIdenticalTo(UI))
1879 IdenticalUsers =
true;
1909 bool SeenNonSimplifiedInVal =
false;
1910 for (
unsigned i = 0; i != NumPHIValues; ++i) {
1921 auto WillFold = [&]() {
1926 const APInt *Ignored;
1947 if (!OneUse && !IdenticalUsers)
1950 if (SeenNonSimplifiedInVal)
1952 SeenNonSimplifiedInVal =
true;
1982 for (
auto OpIndex : OpsToMoveUseToIncomingBB) {
1993 U = U->DoPHITranslation(PN->
getParent(), OpBB);
1996 Clones.
insert({OpBB, Clone});
2001 NewPhiValues[
OpIndex] = Clone;
2010 for (
unsigned i = 0; i != NumPHIValues; ++i)
2013 if (IdenticalUsers) {
2044 BO0->getOpcode() !=
Opc || BO1->getOpcode() !=
Opc ||
2045 !BO0->isAssociative() || !BO1->isAssociative() ||
2046 BO0->getParent() != BO1->getParent())
2050 "Expected commutative instructions!");
2054 Value *Start0, *Step0, *Start1, *Step1;
2061 "Expected PHIs with two incoming values!");
2068 if (!Init0 || !Init1 || !C0 || !C1)
2083 if (
Opc == Instruction::FAdd ||
Opc == Instruction::FMul) {
2087 NewBO->setFastMathFlags(Intersect);
2091 Flags.AllKnownNonZero =
false;
2092 Flags.mergeFlags(*BO0);
2093 Flags.mergeFlags(*BO1);
2094 Flags.mergeFlags(BO);
2095 Flags.applyFlags(*NewBO);
2097 NewBO->takeName(&BO);
2107 "Invalid incoming block!");
2108 NewPN->addIncoming(
Init, BB);
2109 }
else if (V == BO0) {
2114 "Invalid incoming block!");
2115 NewPN->addIncoming(NewBO, BB);
2121 <<
"\n with " << *PN1 <<
"\n " << *BO1
2148 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
2149 Phi0->getNumOperands() != Phi1->getNumOperands())
2153 if (BO.
getParent() != Phi0->getParent() ||
2170 auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &>
T) {
2171 auto &Phi0Use = std::get<0>(
T);
2172 auto &Phi1Use = std::get<1>(
T);
2173 if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use))
2175 Value *Phi0UseV = Phi0Use.get();
2176 Value *Phi1UseV = Phi1Use.get();
2179 else if (Phi1UseV ==
C)
2186 if (
all_of(
zip(Phi0->operands(), Phi1->operands()),
2187 CanFoldIncomingValuePair)) {
2190 assert(NewIncomingValues.
size() == Phi0->getNumOperands() &&
2191 "The number of collected incoming values should equal the number "
2192 "of the original PHINode operands!");
2193 for (
unsigned I = 0;
I < Phi0->getNumOperands();
I++)
2194 NewPhi->
addIncoming(NewIncomingValues[
I], Phi0->getIncomingBlock(
I));
2199 if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
2206 ConstBB = Phi0->getIncomingBlock(0);
2207 OtherBB = Phi0->getIncomingBlock(1);
2209 ConstBB = Phi0->getIncomingBlock(1);
2210 OtherBB = Phi0->getIncomingBlock(0);
2221 if (!PredBlockBranch || PredBlockBranch->isConditional() ||
2222 !
DT.isReachableFromEntry(OtherBB))
2228 for (
auto BBIter = BO.
getParent()->begin(); &*BBIter != &BO; ++BBIter)
2239 Builder.SetInsertPoint(PredBlockBranch);
2241 Phi0->getIncomingValueForBlock(OtherBB),
2242 Phi1->getIncomingValueForBlock(OtherBB));
2244 NotFoldedNewBO->copyIRFlags(&BO);
2271 if (
GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
2300 for (
unsigned I = 0;
I < NumElts; ++
I) {
2302 if (ShMask[
I] >= 0) {
2303 assert(ShMask[
I] < (
int)NumElts &&
"Not expecting narrowing shuffle");
2314 NewVecC[ShMask[
I]] = CElt;
2334 Value *L0, *L1, *R0, *R1;
2338 LHS->hasOneUse() && RHS->hasOneUse() &&
2361 M, Intrinsic::vector_reverse, V->getType());
2372 (LHS->hasOneUse() || RHS->hasOneUse() ||
2373 (LHS == RHS && LHS->hasNUses(2))))
2374 return createBinOpReverse(V1, V2);
2378 return createBinOpReverse(V1, RHS);
2382 return createBinOpReverse(LHS, V2);
2393 M, Intrinsic::experimental_vp_reverse, V->getType());
2403 (LHS->hasOneUse() || RHS->hasOneUse() ||
2404 (LHS == RHS && LHS->hasNUses(2))))
2405 return createBinOpVPReverse(V1, V2, EVL);
2409 return createBinOpVPReverse(V1, RHS, EVL);
2415 return createBinOpVPReverse(LHS, V2, EVL);
2435 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
2437 return createBinOpShuffle(V1, V2, Mask);
2452 if (LShuf->isSelect() &&
2454 RShuf->isSelect() &&
2476 "Shuffle should not change scalar type");
2488 Value *NewLHS = ConstOp1 ? V1 : NewC;
2489 Value *NewRHS = ConstOp1 ? NewC : V1;
2490 return createBinOpShuffle(NewLHS, NewRHS, Mask);
2525 Value *NewSplat =
Builder.CreateShuffleVector(NewBO, NewMask);
2531 R->copyFastMathFlags(&Inst);
2535 NewInstBO->copyIRFlags(R);
2565 (Op0->
hasOneUse() || Op1->hasOneUse()))) {
2591 NewBinOp->setHasNoSignedWrap();
2593 NewBinOp->setHasNoUnsignedWrap();
2609 if (!
GEP.hasAllConstantIndices())
2625 Type *Ty =
GEP.getSourceElementType();
2626 Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC,
"", NW);
2627 Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC,
"", NW);
2637 if (
GEP.getNumIndices() != 1)
2647 unsigned IndexSizeInBits =
DL.getIndexTypeSizeInBits(PtrTy);
2658 if (NewOffset.
isZero() ||
2659 (Src->hasOneUse() &&
GEP.getOperand(1)->hasOneUse())) {
2661 if (
GEP.hasNoUnsignedWrap() &&
2681 if (!
GEP.hasAllConstantIndices())
2692 if (InnerGEP->hasAllConstantIndices())
2695 if (!InnerGEP->hasOneUse())
2704 if (Skipped.
empty())
2709 if (!InnerGEP->hasOneUse())
2714 if (InnerGEP->getType() != Ty)
2720 !InnerGEP->accumulateConstantOffset(
DL,
Offset))
2725 SkippedGEP->setNoWrapFlags(NW);
2749 if (
GEP.hasAllConstantIndices() &&
2750 (Src->hasOneUse() || Src->hasAllConstantIndices())) {
2754 bool IsFirstType =
true;
2755 unsigned NumVarIndices = 0;
2756 for (
auto Pair :
enumerate(Src->indices())) {
2759 IsFirstType =
false;
2760 NumVarIndices = Pair.index() + 1;
2767 if (NumVarIndices != Src->getNumIndices()) {
2787 if (!
Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero()))
2792 drop_end(Src->indices(), Src->getNumIndices() - NumVarIndices));
2794 Indices.
push_back(ConstantInt::get(
GEP.getContext(), Idx));
2799 if (Idx.isNonNegative() != ConstIndices[0].isNonNegative())
2801 if (!Idx.isNonNegative())
2806 GEP,
Builder.CreateGEP(Src->getSourceElementType(), Src->getOperand(0),
2810 if (Src->getResultElementType() !=
GEP.getSourceElementType())
2816 bool EndsWithSequential =
false;
2819 EndsWithSequential =
I.isSequential();
2822 if (EndsWithSequential) {
2825 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2842 Indices.
append(Src->op_begin()+1, Src->op_end()-1);
2847 Src->getNumOperands() != 1) {
2849 Indices.
append(Src->op_begin()+1, Src->op_end());
2854 unsigned NumVarIndices =
2856 if (NumVarIndices > 1)
2859 if (!Indices.
empty())
2862 Src->getSourceElementType(), Src->getOperand(0), Indices,
"",
2870 bool &DoesConsume,
unsigned Depth) {
2871 static Value *
const NonNull =
reinterpret_cast<Value *
>(uintptr_t(1));
2889 if (!WillInvertAllUses)
2896 return Builder->CreateCmp(
I->getInversePredicate(),
I->getOperand(0),
2905 DoesConsume,
Depth))
2908 DoesConsume,
Depth))
2917 DoesConsume,
Depth))
2920 DoesConsume,
Depth))
2929 DoesConsume,
Depth))
2938 DoesConsume,
Depth))
2950 bool LocalDoesConsume = DoesConsume;
2952 LocalDoesConsume,
Depth))
2955 LocalDoesConsume,
Depth)) {
2956 DoesConsume = LocalDoesConsume;
2959 DoesConsume,
Depth);
2960 assert(NotB !=
nullptr &&
2961 "Unable to build inverted value for known freely invertable op");
2963 return Builder->CreateBinaryIntrinsic(
2972 bool LocalDoesConsume = DoesConsume;
2974 for (
Use &U : PN->operands()) {
2975 BasicBlock *IncomingBlock = PN->getIncomingBlock(U);
2979 if (NewIncomingVal ==
nullptr)
2982 if (NewIncomingVal == V)
2985 IncomingValues.
emplace_back(NewIncomingVal, IncomingBlock);
2988 DoesConsume = LocalDoesConsume;
2993 Builder->CreatePHI(PN->getType(), PN->getNumIncomingValues());
2994 for (
auto [Val, Pred] : IncomingValues)
3003 DoesConsume,
Depth))
3004 return Builder ?
Builder->CreateSExt(AV, V->getType()) : NonNull;
3010 DoesConsume,
Depth))
3011 return Builder ?
Builder->CreateTrunc(AV, V->getType()) : NonNull;
3019 bool IsLogical,
Value *
A,
3021 bool LocalDoesConsume = DoesConsume;
3023 LocalDoesConsume,
Depth))
3026 LocalDoesConsume,
Depth)) {
3028 LocalDoesConsume,
Depth);
3029 DoesConsume = LocalDoesConsume;
3031 return Builder ?
Builder->CreateLogicalOp(Opcode, NotA, NotB) : NonNull;
3032 return Builder ?
Builder->CreateBinOp(Opcode, NotA, NotB) : NonNull;
3039 return TryInvertAndOrUsingDeMorgan(Instruction::And,
false,
A,
3043 return TryInvertAndOrUsingDeMorgan(Instruction::Or,
false,
A,
3047 return TryInvertAndOrUsingDeMorgan(Instruction::And,
true,
A,
3051 return TryInvertAndOrUsingDeMorgan(Instruction::Or,
true,
A,
3060 Type *GEPEltType =
GEP.getSourceElementType();
3071 if (
GEP.getNumIndices() == 1 &&
3080 return PtrOpGep && PtrOpGep->hasAllConstantIndices() &&
3083 return match(V, m_APInt(C)) && !C->isZero();
3107 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() ||
3108 Op1->getSourceElementType() != Op2->getSourceElementType())
3116 Type *CurTy =
nullptr;
3118 for (
unsigned J = 0,
F = Op1->getNumOperands(); J !=
F; ++J) {
3119 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
3122 if (Op1->getOperand(J) != Op2->getOperand(J)) {
3131 assert(CurTy &&
"No current type?");
3151 CurTy = Op1->getSourceElementType();
3159 NW &= Op2->getNoWrapFlags();
3169 NewGEP->setNoWrapFlags(NW);
3181 Builder.SetInsertPoint(PN);
3182 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
3190 NewGEP->setOperand(DI, NewPN);
3193 NewGEP->insertBefore(*
GEP.getParent(),
GEP.getParent()->getFirstInsertionPt());
3200 Type *GEPType =
GEP.getType();
3201 Type *GEPEltType =
GEP.getSourceElementType();
3204 SQ.getWithInstruction(&
GEP)))
3211 auto VWidth = GEPFVTy->getNumElements();
3212 APInt PoisonElts(VWidth, 0);
3224 bool MadeChange =
false;
3228 Type *NewScalarIndexTy =
3229 DL.getIndexType(
GEP.getPointerOperandType()->getScalarType());
3238 Type *IndexTy = (*I)->getType();
3239 Type *NewIndexType =
3248 if (EltTy->
isSized() &&
DL.getTypeAllocSize(EltTy).isZero())
3254 if (IndexTy != NewIndexType) {
3260 if (
GEP.hasNoUnsignedWrap() &&
GEP.hasNoUnsignedSignedWrap())
3261 *
I =
Builder.CreateZExt(*
I, NewIndexType,
"",
true);
3263 *
I =
Builder.CreateSExt(*
I, NewIndexType);
3265 *
I =
Builder.CreateTrunc(*
I, NewIndexType,
"",
GEP.hasNoUnsignedWrap(),
3266 GEP.hasNoUnsignedSignedWrap());
3275 if (!GEPEltType->
isIntegerTy(8) &&
GEP.hasAllConstantIndices()) {
3280 GEP.getNoWrapFlags()));
3292 if (LastIdx && LastIdx->isNullValue() && !LastIdx->getType()->isVectorTy()) {
3300 if (FirstIdx && FirstIdx->isNullValue() &&
3301 !FirstIdx->getType()->isVectorTy()) {
3306 GEP.getPointerOperand(),
3308 GEP.getNoWrapFlags()));
3315 return Op->getType()->isVectorTy() && getSplatValue(Op);
3318 for (
auto &
Op :
GEP.operands()) {
3319 if (
Op->getType()->isVectorTy())
3329 GEP.getNoWrapFlags());
3332 Res =
Builder.CreateVectorSplat(EC, Res);
3337 bool SeenVarIndex =
false;
3338 for (
auto [IdxNum, Idx] :
enumerate(Indices)) {
3342 if (!SeenVarIndex) {
3343 SeenVarIndex =
true;
3350 Builder.CreateGEP(GEPEltType, PtrOp, FrontIndices,
3351 GEP.getName() +
".split",
GEP.getNoWrapFlags());
3358 BackIndices,
GEP.getNoWrapFlags());
3371 if (
GEP.getNumIndices() == 1) {
3372 unsigned AS =
GEP.getPointerAddressSpace();
3373 if (
GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
3374 DL.getIndexSizeInBits(AS)) {
3375 uint64_t TyAllocSize =
DL.getTypeAllocSize(GEPEltType).getFixedValue();
3377 if (TyAllocSize == 1) {
3386 GEPType ==
Y->getType()) {
3387 bool HasSameUnderlyingObject =
3390 GEP.replaceUsesWithIf(
Y, [&](
Use &U) {
3391 bool ShouldReplace = HasSameUnderlyingObject ||
3395 return ShouldReplace;
3399 }
else if (
auto *ExactIns =
3403 if (ExactIns->isExact()) {
3411 GEP.getPointerOperand(), V,
3412 GEP.getNoWrapFlags());
3415 if (ExactIns->isExact() && ExactIns->hasOneUse()) {
3421 std::optional<APInt> NewC;
3441 if (NewC.has_value()) {
3444 ConstantInt::get(V->getType(), *NewC));
3447 GEP.getPointerOperand(), NewOp,
3448 GEP.getNoWrapFlags());
3458 if (!
GEP.isInBounds()) {
3461 APInt BasePtrOffset(IdxWidth, 0);
3462 Value *UnderlyingPtrOp =
3464 bool CanBeNull, CanBeFreed;
3466 DL, CanBeNull, CanBeFreed);
3467 if (!CanBeNull && !CanBeFreed && DerefBytes != 0) {
3468 if (
GEP.accumulateConstantOffset(
DL, BasePtrOffset) &&
3470 APInt AllocSize(IdxWidth, DerefBytes);
3471 if (BasePtrOffset.
ule(AllocSize)) {
3473 GEP.getSourceElementType(), PtrOp, Indices,
GEP.getName());
3480 if (
GEP.hasNoUnsignedSignedWrap() && !
GEP.hasNoUnsignedWrap() &&
3482 return isKnownNonNegative(Idx, SQ.getWithInstruction(&GEP));
3490 if (
GEP.getNumIndices() == 1) {
3493 auto GetPreservedNoWrapFlags = [&](
bool AddIsNUW) {
3496 if (
GEP.hasNoUnsignedWrap() && AddIsNUW)
3497 return GEP.getNoWrapFlags();
3513 Builder.CreateGEP(
GEP.getSourceElementType(),
GEP.getPointerOperand(),
3516 Builder.CreateGEP(
GEP.getSourceElementType(),
3517 NewPtr, Idx2,
"", NWFlags));
3528 bool NUW =
match(
GEP.getOperand(1),
3531 auto *NewPtr =
Builder.CreateGEP(
3532 GEP.getSourceElementType(),
GEP.getPointerOperand(),
3533 Builder.CreateSExt(Idx1,
GEP.getOperand(1)->getType()),
"", NWFlags);
3536 Builder.CreateGEP(
GEP.getSourceElementType(), NewPtr,
3537 Builder.CreateSExt(
C,
GEP.getOperand(1)->getType()),
3577 return Dest && Dest->Ptr == UsedV;
3580static std::optional<ModRefInfo>
3592 switch (
I->getOpcode()) {
3595 return std::nullopt;
3597 case Instruction::AddrSpaceCast:
3598 case Instruction::BitCast:
3599 case Instruction::GetElementPtr:
3604 case Instruction::ICmp: {
3610 return std::nullopt;
3611 unsigned OtherIndex = (ICI->
getOperand(0) == PI) ? 1 : 0;
3613 return std::nullopt;
3618 auto AlignmentAndSizeKnownValid = [](
CallBase *CB) {
3622 const APInt *Alignment;
3624 return match(CB->getArgOperand(0),
m_APInt(Alignment)) &&
3630 if (CB && TLI.
getLibFunc(*CB->getCalledFunction(), TheLibFunc) &&
3631 TLI.
has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc &&
3632 !AlignmentAndSizeKnownValid(CB))
3633 return std::nullopt;
3638 case Instruction::Call:
3641 switch (
II->getIntrinsicID()) {
3643 return std::nullopt;
3645 case Intrinsic::memmove:
3646 case Intrinsic::memcpy:
3647 case Intrinsic::memset: {
3649 if (
MI->isVolatile())
3650 return std::nullopt;
3656 return std::nullopt;
3660 case Intrinsic::assume:
3661 case Intrinsic::invariant_start:
3662 case Intrinsic::invariant_end:
3663 case Intrinsic::lifetime_start:
3664 case Intrinsic::lifetime_end:
3665 case Intrinsic::objectsize:
3668 case Intrinsic::launder_invariant_group:
3669 case Intrinsic::strip_invariant_group:
3696 return std::nullopt;
3698 case Instruction::Store: {
3700 if (
SI->isVolatile() ||
SI->getPointerOperand() != PI)
3701 return std::nullopt;
3703 return std::nullopt;
3709 case Instruction::Load: {
3712 return std::nullopt;
3714 return std::nullopt;
3722 }
while (!Worklist.
empty());
3746 std::unique_ptr<DIBuilder> DIB;
3754 bool KnowInitUndef =
false;
3755 bool KnowInitZero =
false;
3760 KnowInitUndef =
true;
3761 else if (
Init->isNullValue())
3762 KnowInitZero =
true;
3766 auto &
F = *
MI.getFunction();
3767 if (
F.hasFnAttribute(Attribute::SanitizeMemory) ||
3768 F.hasFnAttribute(Attribute::SanitizeAddress))
3769 KnowInitUndef =
false;
3783 if (
II->getIntrinsicID() == Intrinsic::objectsize) {
3786 II,
DL, &
TLI,
AA,
true, &InsertedInstructions);
3787 for (
Instruction *Inserted : InsertedInstructions)
3795 if (KnowInitZero &&
isRefSet(*Removable)) {
3798 auto *M =
Builder.CreateMemSet(
3801 MTI->getLength(), MTI->getDestAlign());
3802 M->copyMetadata(*MTI);
3816 C->isFalseWhenEqual()));
3818 for (
auto *DVR : DVRs)
3819 if (DVR->isAddressOfVariable())
3826 assert(KnowInitZero || KnowInitUndef);
3841 F,
II->getNormalDest(),
II->getUnwindDest(), {},
"",
II->getParent());
3842 NewII->setDebugLoc(
II->getDebugLoc());
3870 for (
auto *DVR : DVRs)
3871 if (DVR->isAddressOfVariable() || DVR->getExpression()->startsWithDeref())
3872 DVR->eraseFromParent();
3918 if (FreeInstrBB->
size() != 2) {
3920 if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
3923 if (!Cast || !Cast->isNoopCast(
DL))
3944 "Broken CFG: missing edge from predecessor to successor");
3949 if (&Instr == FreeInstrBBTerminator)
3954 "Only the branch instruction should remain");
3965 Attrs = Attrs.removeParamAttribute(FI.
getContext(), 0, Attribute::NonNull);
3966 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
3967 if (Dereferenceable.
isValid()) {
3969 Attrs = Attrs.removeParamAttribute(FI.
getContext(), 0,
3970 Attribute::Dereferenceable);
3971 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.
getContext(), 0, Bytes);
4010 if (
TLI.getLibFunc(FI, Func) &&
TLI.has(Func) && Func == LibFunc_free)
4026 bool HasDereferenceable =
4027 F->getAttributes().getRetDereferenceableBytes() > 0;
4028 if (
F->hasRetAttribute(Attribute::NonNull) ||
4029 (HasDereferenceable &&
4031 if (
Value *V = simplifyNonNullOperand(RetVal, HasDereferenceable))
4036 if (!AttributeFuncs::isNoFPClassCompatibleType(RetTy))
4039 FPClassTest ReturnClass =
F->getAttributes().getRetNoFPClass();
4040 if (ReturnClass ==
fcNone)
4063 if (Prev->isEHPad())
4095 if (BBI != FirstInstr)
4097 }
while (BBI != FirstInstr && BBI->isDebugOrPseudoInst());
4111 if (!
DeadEdges.insert({From, To}).second)
4116 for (
Use &U : PN.incoming_values())
4133 std::next(
I->getReverseIterator())))) {
4134 if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) {
4138 if (Inst.isEHPad() || Inst.getType()->isTokenTy())
4141 Inst.dropDbgRecords();
4163 return DeadEdges.contains({Pred, BB}) ||
DT.dominates(BB, Pred);
4176 if (Succ == LiveSucc)
4250 if (
DT.dominates(Edge0, U)) {
4256 if (
DT.dominates(Edge1, U)) {
4263 DC.registerBranch(&BI);
4273 unsigned CstOpIdx = IsTrueArm ? 1 : 2;
4278 BasicBlock *CstBB =
SI.findCaseValue(
C)->getCaseSuccessor();
4279 if (CstBB !=
SI.getDefaultDest())
4292 for (
auto Case :
SI.cases())
4293 if (!CR.
contains(Case.getCaseValue()->getValue()))
4305 for (
auto Case :
SI.cases()) {
4308 "Result of expression should be constant");
4317 for (
auto Case :
SI.cases()) {
4320 "Result of expression should be constant");
4329 all_of(
SI.cases(), [&](
const auto &Case) {
4330 return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt;
4336 Value *NewCond = Op0;
4343 for (
auto Case :
SI.cases()) {
4344 const APInt &CaseVal = Case.getCaseValue()->getValue();
4346 : CaseVal.
lshr(ShiftAmt);
4347 Case.setValue(ConstantInt::get(
SI.getContext(), ShiftedCase));
4359 if (
all_of(
SI.cases(), [&](
const auto &Case) {
4360 const APInt &CaseVal = Case.getCaseValue()->getValue();
4361 return IsZExt ? CaseVal.isIntN(NewWidth)
4362 : CaseVal.isSignedIntN(NewWidth);
4364 for (
auto &Case :
SI.cases()) {
4365 APInt TruncatedCase = Case.getCaseValue()->getValue().
trunc(NewWidth);
4366 Case.setValue(ConstantInt::get(
SI.getContext(), TruncatedCase));
4388 for (
const auto &
C :
SI.cases()) {
4390 std::min(LeadingKnownZeros,
C.getCaseValue()->getValue().countl_zero());
4392 std::min(LeadingKnownOnes,
C.getCaseValue()->getValue().countl_one());
4395 unsigned NewWidth = Known.
getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
4401 if (NewWidth > 0 && NewWidth < Known.
getBitWidth() &&
4402 shouldChangeType(Known.
getBitWidth(), NewWidth)) {
4407 for (
auto Case :
SI.cases()) {
4408 APInt TruncatedCase = Case.getCaseValue()->getValue().
trunc(NewWidth);
4409 Case.setValue(ConstantInt::get(
SI.getContext(), TruncatedCase));
4420 SI.findCaseValue(CI)->getCaseSuccessor());
4434 const APInt *
C =
nullptr;
4436 if (*EV.
idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow ||
4437 OvID == Intrinsic::umul_with_overflow)) {
4442 if (
C->isPowerOf2()) {
4443 return BinaryOperator::CreateShl(
4445 ConstantInt::get(WO->getLHS()->getType(),
C->logBase2()));
4453 if (!WO->hasOneUse())
4467 assert(*EV.
idx_begin() == 1 &&
"Unexpected extract index for overflow inst");
4470 if (OvID == Intrinsic::usub_with_overflow)
4475 if (OvID == Intrinsic::smul_with_overflow &&
4476 WO->getLHS()->getType()->isIntOrIntVectorTy(1))
4477 return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS());
4480 if (OvID == Intrinsic::umul_with_overflow && WO->getLHS() == WO->getRHS()) {
4481 unsigned BitWidth = WO->getLHS()->getType()->getScalarSizeInBits();
4484 return new ICmpInst(
4486 ConstantInt::get(WO->getLHS()->getType(),
4497 WO->getBinaryOp(), *
C, WO->getNoWrapKind());
4502 auto *OpTy = WO->getRHS()->getType();
4503 auto *NewLHS = WO->getLHS();
4505 NewLHS =
Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy,
Offset));
4507 ConstantInt::get(OpTy, NewRHSC));
4524 const APFloat *ConstVal =
nullptr;
4525 Value *VarOp =
nullptr;
4526 bool ConstIsTrue =
false;
4533 ConstIsTrue =
false;
4538 Builder.SetInsertPoint(&EV);
4544 Value *NewEV = Builder.CreateExtractValue(NewFrexp, 0,
"mantissa");
4549 Constant *ConstantMantissa = ConstantFP::get(TrueVal->getType(), Mantissa);
4551 Value *NewSel = Builder.CreateSelectFMF(
4552 Cond, ConstIsTrue ? ConstantMantissa : NewEV,
4553 ConstIsTrue ? NewEV : ConstantMantissa,
SelectInst,
"select.frexp");
4563 SQ.getWithInstruction(&EV)))
4577 const unsigned *exti, *exte, *insi, *inse;
4578 for (exti = EV.
idx_begin(), insi =
IV->idx_begin(),
4579 exte = EV.
idx_end(), inse =
IV->idx_end();
4580 exti != exte && insi != inse;
4594 if (exti == exte && insi == inse)
4609 Value *NewEV =
Builder.CreateExtractValue(
IV->getAggregateOperand(),
4627 if (
Instruction *R = foldExtractOfOverflowIntrinsic(EV))
4633 STy && STy->isScalableTy())
4641 if (L->isSimple() && L->hasOneUse()) {
4646 for (
unsigned Idx : EV.
indices())
4653 L->getPointerOperand(), Indices);
4687 switch (Personality) {
4731 bool MakeNewInstruction =
false;
4737 bool isLastClause = i + 1 == e;
4745 if (AlreadyCaught.
insert(TypeInfo).second) {
4750 MakeNewInstruction =
true;
4757 MakeNewInstruction =
true;
4758 CleanupFlag =
false;
4777 if (!NumTypeInfos) {
4780 MakeNewInstruction =
true;
4781 CleanupFlag =
false;
4785 bool MakeNewFilter =
false;
4789 assert(NumTypeInfos > 0 &&
"Should have handled empty filter already!");
4795 MakeNewInstruction =
true;
4802 if (NumTypeInfos > 1)
4803 MakeNewFilter =
true;
4807 NewFilterElts.
reserve(NumTypeInfos);
4812 bool SawCatchAll =
false;
4813 for (
unsigned j = 0; j != NumTypeInfos; ++j) {
4841 if (SeenInFilter.
insert(TypeInfo).second)
4847 MakeNewInstruction =
true;
4852 if (NewFilterElts.
size() < NumTypeInfos)
4853 MakeNewFilter =
true;
4855 if (MakeNewFilter) {
4857 NewFilterElts.
size());
4859 MakeNewInstruction =
true;
4868 if (MakeNewFilter && !NewFilterElts.
size()) {
4869 assert(MakeNewInstruction &&
"New filter but not a new instruction!");
4870 CleanupFlag =
false;
4881 for (
unsigned i = 0, e = NewClauses.
size(); i + 1 < e; ) {
4884 for (j = i; j != e; ++j)
4891 for (
unsigned k = i; k + 1 < j; ++k)
4895 std::stable_sort(NewClauses.
begin() + i, NewClauses.
begin() + j,
4897 MakeNewInstruction =
true;
4916 for (
unsigned i = 0; i + 1 < NewClauses.
size(); ++i) {
4926 for (
unsigned j = NewClauses.
size() - 1; j != i; --j) {
4927 Value *LFilter = NewClauses[j];
4938 NewClauses.
erase(J);
4939 MakeNewInstruction =
true;
4943 unsigned LElts = LTy->getNumElements();
4953 assert(FElts <= LElts &&
"Should have handled this case earlier!");
4955 NewClauses.
erase(J);
4956 MakeNewInstruction =
true;
4965 assert(FElts > 0 &&
"Should have eliminated the empty filter earlier!");
4966 for (
unsigned l = 0; l != LElts; ++l)
4969 NewClauses.
erase(J);
4970 MakeNewInstruction =
true;
4981 bool AllFound =
true;
4982 for (
unsigned f = 0; f != FElts; ++f) {
4985 for (
unsigned l = 0; l != LElts; ++l) {
4987 if (LTypeInfo == FTypeInfo) {
4997 NewClauses.
erase(J);
4998 MakeNewInstruction =
true;
5006 if (MakeNewInstruction) {
5014 if (NewClauses.empty())
5023 assert(!CleanupFlag &&
"Adding a cleanup, not removing one?!");
5045 auto CanPushFreeze = [](
Value *V) {
5066 Value *V = U->get();
5067 if (!CanPushFreeze(V)) {
5073 Builder.SetInsertPoint(UserI);
5074 Value *Frozen =
Builder.CreateFreeze(V, V->getName() +
".fr");
5080 if (!Visited.
insert(
I).second)
5091 I->dropPoisonGeneratingAnnotations();
5092 this->Worklist.add(
I);
5095 return OrigUse->get();
5105 Use *StartU =
nullptr;
5123 Value *StartV = StartU->get();
5135 if (!Visited.
insert(V).second)
5138 if (Visited.
size() > 32)
5155 I->dropPoisonGeneratingAnnotations();
5157 if (StartNeedsFreeze) {
5185 MoveBefore = *MoveBeforeOpt;
5189 MoveBefore.setHeadBit(
false);
5192 if (&FI != &*MoveBefore) {
5193 FI.
moveBefore(*MoveBefore->getParent(), MoveBefore);
5197 Op->replaceUsesWithIf(&FI, [&](
Use &U) ->
bool {
5198 bool Dominates =
DT.dominates(&FI, U);
5208 for (
auto *U : V->users()) {
5218 Value *Op0 =
I.getOperand(0);
5247 auto getUndefReplacement = [&](
Type *Ty) {
5248 Value *BestValue =
nullptr;
5250 for (
const auto *U :
I.users()) {
5251 Value *V = NullValue;
5263 else if (BestValue != V)
5264 BestValue = NullValue;
5266 assert(BestValue &&
"Must have at least one use");
5280 Type *Ty =
C->getType();
5284 unsigned NumElts = VTy->getNumElements();
5286 for (
unsigned i = 0; i != NumElts; ++i) {
5287 Constant *EltC =
C->getAggregateElement(i);
5298 !
C->containsConstantExpression()) {
5299 if (
Constant *Repl = getFreezeVectorReplacement(
C))
5333 for (
const User *U :
I.users()) {
5334 if (Visited.
insert(U).second)
5339 while (!AllocaUsers.
empty()) {
5362 if (
isa<PHINode>(
I) ||
I->isEHPad() ||
I->mayThrow() || !
I->willReturn() ||
5379 if (CI->isConvergent())
5385 if (
I->mayWriteToMemory()) {
5392 if (
I->mayReadFromMemory() &&
5393 !
I->hasMetadata(LLVMContext::MD_invariant_load)) {
5400 E =
I->getParent()->end();
5402 if (Scan->mayWriteToMemory())
5406 I->dropDroppableUses([&](
const Use *U) {
5408 if (
I &&
I->getParent() != DestBlock) {
5418 I->moveBefore(*DestBlock, InsertPos);
5428 if (!DbgVariableRecords.
empty())
5430 DbgVariableRecords);
5453 for (
auto &DVR : DbgVariableRecords)
5454 if (DVR->getParent() != DestBlock)
5455 DbgVariableRecordsToSalvage.
push_back(DVR);
5461 if (DVR->getParent() == SrcBlock)
5462 DbgVariableRecordsToSink.
push_back(DVR);
5469 return B->getInstruction()->comesBefore(
A->getInstruction());
5476 using InstVarPair = std::pair<const Instruction *, DebugVariable>;
5478 if (DbgVariableRecordsToSink.
size() > 1) {
5484 DVR->getDebugLoc()->getInlinedAt());
5485 CountMap[std::make_pair(DVR->getInstruction(), DbgUserVariable)] += 1;
5491 for (
auto It : CountMap) {
5492 if (It.second > 1) {
5493 FilterOutMap[It.first] =
nullptr;
5494 DupSet.
insert(It.first.first);
5505 DVR.getDebugLoc()->getInlinedAt());
5507 FilterOutMap.
find(std::make_pair(Inst, DbgUserVariable));
5508 if (FilterIt == FilterOutMap.
end())
5510 if (FilterIt->second !=
nullptr)
5512 FilterIt->second = &DVR;
5527 DVR->getDebugLoc()->getInlinedAt());
5531 if (!FilterOutMap.
empty()) {
5532 InstVarPair IVP = std::make_pair(DVR->getInstruction(), DbgUserVariable);
5533 auto It = FilterOutMap.
find(IVP);
5536 if (It != FilterOutMap.
end() && It->second != DVR)
5540 if (!SunkVariables.
insert(DbgUserVariable).second)
5543 if (DVR->isDbgAssign())
5551 if (DVRClones.
empty())
5565 assert(InsertPos.getHeadBit());
5567 InsertPos->getParent()->insertDbgRecordBefore(DVRClone, InsertPos);
5591 if (
I ==
nullptr)
continue;
5606 auto getOptionalSinkBlockForInst =
5607 [
this](
Instruction *
I) -> std::optional<BasicBlock *> {
5609 return std::nullopt;
5613 unsigned NumUsers = 0;
5615 for (
Use &U :
I->uses()) {
5620 return std::nullopt;
5626 UserBB = PN->getIncomingBlock(U);
5630 if (UserParent && UserParent != UserBB)
5631 return std::nullopt;
5632 UserParent = UserBB;
5636 if (NumUsers == 0) {
5639 if (UserParent == BB || !
DT.isReachableFromEntry(UserParent))
5640 return std::nullopt;
5652 return std::nullopt;
5654 assert(
DT.dominates(BB, UserParent) &&
"Dominance relation broken?");
5662 return std::nullopt;
5667 auto OptBB = getOptionalSinkBlockForInst(
I);
5669 auto *UserParent = *OptBB;
5677 for (
Use &U :
I->operands())
5685 Builder.CollectMetadataToCopy(
5686 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
5699 <<
" New = " << *Result <<
'\n');
5704 Result->setDebugLoc(Result->getDebugLoc().orElse(
I->getDebugLoc()));
5706 Result->copyMetadata(*
I, LLVMContext::MD_annotation);
5708 I->replaceAllUsesWith(Result);
5711 Result->takeName(
I);
5726 Result->insertInto(InstParent, InsertPos);
5729 Worklist.pushUsersToWorkList(*Result);
5735 <<
" New = " << *
I <<
'\n');
5767 if (!
I->hasMetadataOtherThanDebugLoc())
5770 auto Track = [](
Metadata *ScopeList,
auto &Container) {
5772 if (!MDScopeList || !Container.insert(MDScopeList).second)
5774 for (
const auto &
MDOperand : MDScopeList->operands())
5776 Container.insert(MDScope);
5779 Track(
I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
5780 Track(
I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
5789 "llvm.experimental.noalias.scope.decl in use ?");
5792 "llvm.experimental.noalias.scope should refer to a single scope");
5795 return !UsedAliasScopesAndLists.contains(MD) ||
5796 !UsedNoAliasScopesAndLists.contains(MD);
5820 if (Succ != LiveSucc &&
DeadEdges.insert({BB, Succ}).second)
5821 for (
PHINode &PN : Succ->phis())
5822 for (
Use &U : PN.incoming_values())
5831 return DeadEdges.contains({Pred, BB}) ||
DT.dominates(BB, Pred);
5833 HandleOnlyLiveSuccessor(BB,
nullptr);
5840 if (!Inst.use_empty() &&
5841 (Inst.getNumOperands() == 0 ||
isa<Constant>(Inst.getOperand(0))))
5845 Inst.replaceAllUsesWith(
C);
5848 Inst.eraseFromParent();
5854 for (
Use &U : Inst.operands()) {
5859 Constant *&FoldRes = FoldedConstants[
C];
5865 <<
"\n Old = " << *
C
5866 <<
"\n New = " << *FoldRes <<
'\n');
5875 if (!Inst.isDebugOrPseudoInst()) {
5876 InstrsForInstructionWorklist.
push_back(&Inst);
5877 SeenAliasScopes.
analyse(&Inst);
5887 HandleOnlyLiveSuccessor(BB,
nullptr);
5891 bool CondVal =
Cond->getZExtValue();
5892 HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal));
5898 HandleOnlyLiveSuccessor(BB,
nullptr);
5902 HandleOnlyLiveSuccessor(BB,
5903 SI->findCaseValue(
Cond)->getCaseSuccessor());
5913 if (LiveBlocks.
count(&BB))
5916 unsigned NumDeadInstInBB;
5920 NumDeadInst += NumDeadInstInBB;
5937 Inst->eraseFromParent();
5966 auto &
DL =
F.getDataLayout();
5968 !
F.hasFnAttribute(
"instcombine-no-verify-fixpoint");
5984 bool MadeIRChange =
false;
5989 unsigned Iteration = 0;
5993 <<
" on " <<
F.getName()
5994 <<
" reached; stopping without verifying fixpoint\n");
5999 ++NumWorklistIterations;
6000 LLVM_DEBUG(
dbgs() <<
"\n\nINSTCOMBINE ITERATION #" << Iteration <<
" on "
6001 <<
F.getName() <<
"\n");
6004 ORE, BFI, BPI, PSI,
DL, RPOT);
6007 MadeChangeInThisIteration |= IC.
run();
6008 if (!MadeChangeInThisIteration)
6011 MadeIRChange =
true;
6014 "Instruction Combining on " +
Twine(
F.getName()) +
6017 "Use 'instcombine<no-verify-fixpoint>' or function attribute "
6018 "'instcombine-no-verify-fixpoint' to suppress this error.");
6024 else if (Iteration == 2)
6026 else if (Iteration == 3)
6027 ++NumThreeIterations;
6029 ++NumFourOrMoreIterations;
6031 return MadeIRChange;
6039 OS, MapClassName2PassName);
6041 OS <<
"max-iterations=" << Options.MaxIterations <<
";";
6042 OS << (Options.VerifyFixpoint ?
"" :
"no-") <<
"verify-fixpoint";
6046char InstCombinePass::ID = 0;
6052 if (LRT.shouldSkip(&ID))
6065 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
6070 BFI, BPI, PSI, Options)) {
6072 LRT.update(&ID,
false);
6078 LRT.update(&ID,
true);
6120 if (
auto *WrapperPass =
6122 BPI = &WrapperPass->getBPI();
6135 "Combine redundant instructions",
false,
false)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
This file defines the DenseMap class.
static bool isSigned(unsigned int Opcode)
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This header defines various interfaces for pass management in LLVM.
This defines the Use class.
iv Induction Variable Users
static bool leftDistributesOverRight(Instruction::BinaryOps LOp, bool HasNUW, bool HasNSW, Intrinsic::ID ROp)
Return whether "X LOp (Y ROp Z)" is always equal to "(X LOp Y) ROp (X LOp Z)".
This file provides internal interfaces used to implement the InstCombine.
This file provides the primary interface to the instcombine pass.
static Value * simplifySwitchOnSelectUsingRanges(SwitchInst &SI, SelectInst *Select, bool IsTrueArm)
static bool isUsedWithinShuffleVector(Value *V)
static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, Instruction *AI)
static bool shorter_filter(const Value *LHS, const Value *RHS)
static Instruction * combineConstantOffsets(GetElementPtrInst &GEP, InstCombinerImpl &IC)
Combine constant offsets separated by variable offsets.
static Instruction * foldSelectGEP(GetElementPtrInst &GEP, InstCombiner::BuilderTy &Builder)
Thread a GEP operation with constant indices through the constant true/false arms of a select.
static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src)
static cl::opt< unsigned > MaxArraySize("instcombine-maxarray-size", cl::init(1024), cl::desc("Maximum array size considered when doing a combine"))
static cl::opt< unsigned > ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", cl::Hidden, cl::init(true))
static bool hasNoSignedWrap(BinaryOperator &I)
static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, InstCombinerImpl &IC)
Combine constant operands of associative operations either before or after a cast to eliminate one of...
static bool combineInstructionsOverFunction(Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI, ProfileSummaryInfo *PSI, const InstCombineOptions &Opts)
static Value * simplifyInstructionWithPHI(Instruction &I, PHINode *PN, Value *InValue, BasicBlock *InBB, const DataLayout &DL, const SimplifyQuery SQ)
static bool shouldCanonicalizeGEPToPtrAdd(GetElementPtrInst &GEP)
Return true if we should canonicalize the gep to an i8 ptradd.
static void ClearSubclassDataAfterReassociation(BinaryOperator &I)
Conservatively clears subclassOptionalData after a reassociation or commutation.
static Value * getIdentityValue(Instruction::BinaryOps Opcode, Value *V)
This function returns identity value for given opcode, which can be used to factor patterns like (X *...
static Value * foldFrexpOfSelect(ExtractValueInst &EV, IntrinsicInst *FrexpCall, SelectInst *SelectInst, InstCombiner::BuilderTy &Builder)
static std::optional< std::pair< Value *, Value * > > matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS)
static Value * foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI, Value *NewOp, InstCombiner &IC)
static Instruction * canonicalizeGEPOfConstGEPI8(GetElementPtrInst &GEP, GEPOperator *Src, InstCombinerImpl &IC)
static Instruction * tryToMoveFreeBeforeNullTest(CallInst &FI, const DataLayout &DL)
Move the call to free before a NULL test.
static Value * simplifyOperationIntoSelectOperand(Instruction &I, SelectInst *SI, bool IsTrueArm)
static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp)
Return whether "(X LOp Y) ROp Z" is always equal to "(X ROp Z) LOp (Y ROp Z)".
static Value * tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ, InstCombiner::BuilderTy &Builder, Instruction::BinaryOps InnerOpcode, Value *A, Value *B, Value *C, Value *D)
This tries to simplify binary operations by factorizing out common terms (e.
static bool isRemovableWrite(CallBase &CB, Value *UsedV, const TargetLibraryInfo &TLI)
Given a call CB which uses an address UsedV, return true if we can prove the call's only possible eff...
static Instruction::BinaryOps getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, Value *&LHS, Value *&RHS, BinaryOperator *OtherOp)
This function predicates factorization using distributive laws.
static bool hasNoUnsignedWrap(BinaryOperator &I)
static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI)
Check for case where the call writes to an otherwise dead alloca.
static cl::opt< unsigned > MaxSinkNumUsers("instcombine-max-sink-users", cl::init(32), cl::desc("Maximum number of undroppable users for instruction sinking"))
static Instruction * foldGEPOfPhi(GetElementPtrInst &GEP, PHINode *PN, IRBuilderBase &Builder)
static std::optional< ModRefInfo > isAllocSiteRemovable(Instruction *AI, SmallVectorImpl< WeakTrackingVH > &Users, const TargetLibraryInfo &TLI, bool KnowInit)
static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo)
Return 'true' if the given typeinfo will match anything.
static cl::opt< bool > EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), cl::init(true))
static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C)
static GEPNoWrapFlags getMergedGEPNoWrapFlags(GEPOperator &GEP1, GEPOperator &GEP2)
Determine nowrap flags for (gep (gep p, x), y) to (gep p, (x + y)) transform.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
uint64_t IntrinsicInst * II
static bool IsSelect(MachineInstr &MI)
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
const SmallVectorImpl< MachineOperand > & Cond
static unsigned getNumElements(Type *Ty)
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static const uint32_t IV[8]
bool isNoAliasScopeDeclDead(Instruction *Inst)
void analyse(Instruction *I)
A manager for alias analyses.
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static LLVM_ABI void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
static LLVM_ABI void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
LLVM_ABI void setPreservesCFG()
This function should be called by the pass, iff they do not:
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
ArrayRef< T > take_front(size_t N=1) const
Return a copy of *this with only the first N elements.
size_t size() const
size - Get the array size.
Class to represent array types.
static LLVM_ABI ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
uint64_t getNumElements() const
Type * getElementType() const
A function analysis which provides an AssumptionCache.
An immutable pass that tracks lazily created AssumptionCache objects.
A cache of @llvm.assume calls within a function.
LLVM_ABI void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI uint64_t getDereferenceableBytes() const
Returns the number of dereferenceable bytes from the dereferenceable attribute.
bool isValid() const
Return true if the attribute is any kind of attribute.
Legacy wrapper pass to provide the BasicAAResult object.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI iterator_range< filter_iterator< BasicBlock::const_iterator, std::function< bool(const Instruction &)> > > instructionsWithoutDebug(bool SkipPseudoOp=true) const
Return a const iterator range over the instructions in the block, skipping any debug instructions.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction & front() const
LLVM_ABI const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
InstListType::iterator iterator
Instruction iterators...
LLVM_ABI const_iterator getFirstNonPHIOrDbgOrAlloca() const
Returns an iterator to the first instruction in this block that is not a PHINode, a debug intrinsic,...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
LLVM_ABI void swapSuccessors()
Swap the successors of this branch instruction.
bool isConditional() const
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
Value * getCondition() const
Analysis pass which computes BranchProbabilityInfo.
Analysis providing branch probability information.
Represents analyses that only rely on functions' control flow.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
void setAttributes(AttributeList A)
Set the attributes for this call.
bool doesNotThrow() const
Determine if the call cannot unwind.
Value * getArgOperand(unsigned i) const
AttributeList getAttributes() const
Return the attributes for this call.
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
ConstantArray - Constant Array Declarations.
static LLVM_ABI Constant * get(ArrayType *T, ArrayRef< Constant * > V)
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNot(Constant *C)
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
This class represents a range of values.
LLVM_ABI bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const
Set up Pred and RHS such that ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static LLVM_ABI ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp, const APInt &Other, unsigned NoWrapKind)
Produce the range that contains X if and only if "X BinOp Other" does not wrap.
Constant Vector Declarations.
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static LLVM_ABI Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
const Constant * stripPointerCasts() const
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
A parsed version of the target data layout string in and methods for querying it.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
static bool shouldExecute(unsigned CounterName)
Identifies a unique instance of a variable.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Analysis pass which computes a DominatorTree.
Legacy analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Utility class for floating point operations which can have information about relaxed accuracy require...
Convenience struct for specifying and reasoning about fast-math flags.
This class represents a freeze function that returns random concrete value if an operand is either a ...
FunctionPass class - This class is used to implement most global optimizations.
bool skipFunction(const Function &F) const
Optional passes call this function to check whether the pass should be skipped.
const BasicBlock & getEntryBlock() const
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutNoUnsignedSignedWrap() const
static GEPNoWrapFlags all()
static GEPNoWrapFlags noUnsignedWrap()
GEPNoWrapFlags intersectForReassociate(GEPNoWrapFlags Other) const
Given (gep (gep p, x), y), determine the nowrap flags for (gep (gep, p, y), x).
bool hasNoUnsignedWrap() const
GEPNoWrapFlags intersectForOffsetAdd(GEPNoWrapFlags Other) const
Given (gep (gep p, x), y), determine the nowrap flags for (gep p, x+y).
GEPNoWrapFlags withoutNoUnsignedWrap() const
static GEPNoWrapFlags none()
GEPNoWrapFlags getNoWrapFlags() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static LLVM_ABI Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
static GetElementPtrInst * CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Create an "inbounds" getelementptr.
Legacy wrapper pass to provide the GlobalsAAResult object.
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getCmpPredicate() const
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
Common base class shared among various IRBuilders.
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
ConstantInt * getInt(const APInt &AI)
Get a constant integer value.
Provides an 'InsertHelper' that calls a user-provided callback after performing the default insertion...
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
This instruction inserts a struct field of array element value into an aggregate value.
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI InstCombinePass(InstCombineOptions Opts={})
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I)
Tries to simplify binops of select and cast of the select condition.
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Instruction * visitGEPOfGEP(GetElementPtrInst &GEP, GEPOperator *Src)
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * foldBinOpShiftWithShift(BinaryOperator &I)
Instruction * visitUnreachableInst(UnreachableInst &I)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
void handleUnreachableFrom(Instruction *I, SmallVectorImpl< BasicBlock * > &Worklist)
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
Instruction * visitFreeze(FreezeInst &I)
void handlePotentiallyDeadBlocks(SmallVectorImpl< BasicBlock * > &Worklist)
bool prepareWorklist(Function &F)
Perform early cleanup and prepare the InstCombine worklist.
Instruction * visitFree(CallInst &FI, Value *FreedOp)
Instruction * visitExtractValueInst(ExtractValueInst &EV)
void handlePotentiallyDeadSuccessors(BasicBlock *BB, BasicBlock *LiveSucc)
Instruction * visitUnconditionalBranchInst(BranchInst &BI)
Instruction * foldBinopWithRecurrence(BinaryOperator &BO)
Try to fold binary operators whose operands are simple interleaved recurrences to a single recurrence...
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * visitLandingPadInst(LandingPadInst &LI)
Instruction * visitReturnInst(ReturnInst &RI)
Instruction * visitSwitchInst(SwitchInst &SI)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
bool mergeStoreIntoSuccessor(StoreInst &SI)
Try to transform: if () { *P = v1; } else { *P = v2 } or: *P = v1; if () { *P = v2; }...
Instruction * tryFoldInstWithCtpopWithNot(Instruction *I)
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
Value * pushFreezeToPreventPoisonFromPropagating(FreezeInst &FI)
bool run()
Run the combiner over the entire worklist until it is empty.
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
bool removeInstructionsBeforeUnreachable(Instruction &I)
Value * SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, Value *RHS)
void tryToSinkInstructionDbgVariableRecords(Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock, BasicBlock *DestBlock, SmallVectorImpl< DbgVariableRecord * > &DPUsers)
void addDeadEdge(BasicBlock *From, BasicBlock *To, SmallVectorImpl< BasicBlock * > &Worklist)
Constant * unshuffleConstant(ArrayRef< int > ShMask, Constant *C, VectorType *NewCTy)
Find a constant NewC that has property: shuffle(NewC, ShMask) = C Returns nullptr if such a constant ...
Instruction * visitAllocSite(Instruction &FI)
Instruction * visitGetElementPtrInst(GetElementPtrInst &GEP)
Instruction * visitBranchInst(BranchInst &BI)
Value * tryFactorizationFolds(BinaryOperator &I)
This tries to simplify binary operations by factorizing out common terms (e.
Instruction * foldFreezeIntoRecurrence(FreezeInst &I, PHINode *PN)
Value * SimplifyDemandedUseFPClass(Value *V, FPClassTest DemandedMask, KnownFPClass &Known, Instruction *CxtI, unsigned Depth=0)
Attempts to replace V with a simpler value based on the demanded floating-point classes.
bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock)
Try to move the specified instruction from its current block into the beginning of DestBlock,...
bool freezeOtherUses(FreezeInst &FI)
void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser=nullptr)
Freely adapt every user of V as-if V was changed to !V.
The core instruction combiner logic.
const DataLayout & getDataLayout() const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
static unsigned getComplexity(Value *V)
Assign a complexity or rank value to LLVM Values.
unsigned ComputeNumSignBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
uint64_t MaxArraySizeForCombine
Maximum size of array considered when transforming.
static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI)
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
static bool isCanonicalPredicate(CmpPredicate Pred)
Predicate canonicalization reduces the number of patterns that need to be matched by other transforms...
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
Instruction * InsertNewInstWith(Instruction *New, BasicBlock::iterator Old)
Same as InsertNewInstBefore, but also sets the debug loc.
BranchProbabilityInfo * BPI
ReversePostOrderTraversal< BasicBlock * > & RPOT
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
std::optional< Instruction * > targetInstCombineIntrinsic(IntrinsicInst &II)
void addToWorklist(Instruction *I)
Value * getFreelyInvertedImpl(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume, unsigned Depth)
Return nonnull value if V is free to invert under the condition of WillInvertAllUses.
SmallDenseSet< std::pair< const BasicBlock *, const BasicBlock * >, 8 > BackEdges
Backedges, used to avoid pushing instructions across backedges in cases where this may result in infi...
std::optional< Value * > targetSimplifyDemandedVectorEltsIntrinsic(IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
static Constant * getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant)
Some binary operators require special handling to avoid poison and undefined behavior.
SmallDenseSet< std::pair< BasicBlock *, BasicBlock * >, 8 > DeadEdges
Edges that are known to never be taken.
std::optional< Value * > targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed)
bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
bool isBackEdge(const BasicBlock *From, const BasicBlock *To)
void visit(Iterator Start, Iterator End)
The legacy pass manager's instcombine pass.
InstructionCombiningPass()
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
bool runOnFunction(Function &F) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
InstructionWorklist - This is the worklist management logic for InstCombine and other simplification ...
void add(Instruction *I)
Add instruction to the worklist.
LLVM_ABI void dropUBImplyingAttrsAndMetadata(ArrayRef< unsigned > Keep={})
Drop any attributes or metadata that can cause immediate undefined behavior.
static bool isBitwiseLogicOp(unsigned Opcode)
Determine if the Opcode is and/or/xor.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
LLVM_ABI bool isAssociative() const LLVM_READONLY
Return true if the instruction is associative:
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
bool isTerminator() const
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
LLVM_ABI bool willReturn() const LLVM_READONLY
Return true if the instruction will return (unwinding is considered as a form of returning control fl...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
bool isBitwiseLogicOp() const
Return true if this is and/or/xor.
LLVM_ABI void dropPoisonGeneratingFlags()
Drops flags that may cause this instruction to evaluate to poison despite having non-poison inputs.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
A wrapper class for inspecting calls to intrinsic functions.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
The landingpad instruction holds all of the information necessary to generate correct exception handl...
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
unsigned getNumClauses() const
Get the number of clauses for this landing pad.
static LLVM_ABI LandingPadInst * Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedClauses is a hint for the number of incoming clauses that this landingpad w...
LLVM_ABI void addClause(Constant *ClauseVal)
Add a catch or filter clause to the landing pad.
bool isCatch(unsigned Idx) const
Return 'true' if the clause and index Idx is a catch clause.
bool isFilter(unsigned Idx) const
Return 'true' if the clause and index Idx is a filter clause.
Constant * getClause(unsigned Idx) const
Get the value of the clause at index Idx.
void setCleanup(bool V)
Indicate that this landingpad instruction is a cleanup.
A function/module analysis which provides an empty LastRunTrackingInfo.
This is an alternative analysis pass to BlockFrequencyInfoWrapperPass.
static void getLazyBFIAnalysisUsage(AnalysisUsage &AU)
Helper for client passes to set up the analysis usage on behalf of this pass.
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
const MDOperand & getOperand(unsigned I) const
unsigned getNumOperands() const
Return number of MDNode operands.
Tracking metadata reference owned by Metadata.
This is the common base class for memset/memcpy/memmove.
static LLVM_ABI MemoryLocation getForDest(const MemIntrinsic *MI)
Return a location representing the destination of a memory set or transfer.
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
A Module instance is used to store all the information related to an LLVM module.
MDNode * getScopeList() const
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
AnalysisType & getAnalysis() const
getAnalysis<AnalysisType>() - This function is used by subclasses to get to the analysis information ...
AnalysisType * getAnalysisIfAvailable() const
getAnalysisIfAvailable<AnalysisType>() - Subclasses use this function to get analysis information tha...
In order to facilitate speculative execution, many instructions do not invoke immediate undefined beh...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
An analysis pass based on legacy pass manager to deliver ProfileSummaryInfo.
Analysis providing profile information.
bool hasProfileSummary() const
Returns true if profile summary is available.
A global registry used in conjunction with static constructors to make pluggable components (like tar...
Return a value (possibly void), from a function.
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
static ReturnInst * Create(LLVMContext &C, Value *retVal=nullptr, InsertPosition InsertBefore=nullptr)
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
const Value * getFalseValue() const
const Value * getCondition() const
const Value * getTrueValue() const
bool insert(const value_type &X)
Insert a new element into the SetVector.
This instruction constructs a fixed permutation of two input vectors.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
typename SuperClass::iterator iterator
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
TargetFolder - Create constants with target dependent folding.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
const Use & getOperandUse(unsigned i) const
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM_ABI bool isDroppable() const
A droppable user is a user for which uses can be dropped without affecting correctness and should be ...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
bool hasUseList() const
Check if this Value has a use-list.
LLVM_ABI bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Value handle that is nullable, but tries to track the Value.
An efficient, type-erasing, non-owning reference to a callable.
Type * getIndexedType() const
const ParentTy * getParent() const
reverse_self_iterator getReverseIterator()
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrAdd_match< PointerOpTy, OffsetOpTy > m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp)
Matches GEP with i8 source element type.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
br_match m_UnconditionalBr(BasicBlock *&Succ)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
NNegZExt_match< OpTy > m_NNegZExt(const OpTy &Op)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
ThreeOps_match< decltype(m_Value()), LHS, RHS, Instruction::Select, true > m_c_Select(const LHS &L, const RHS &R)
Match Select(C, LHS, RHS) or Select(C, RHS, LHS)
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
CastInst_match< OpTy, UIToFPInst > m_UIToFP(const OpTy &Op)
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
CastInst_match< OpTy, SIToFPInst > m_SIToFP(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
cstfp_pred_ty< is_non_zero_fp > m_NonZeroFP()
Match a floating-point non-zero.
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
apfloat_match m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
initializer< Ty > init(const Ty &Val)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
void stable_sort(R &&Range)
LLVM_ABI void initializeInstructionCombiningPassPass(PassRegistry &)
LLVM_ABI unsigned removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB)
Remove all instructions from a basic block other than its terminator and any present EH pad instructi...
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Value * simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef< Value * > Indices, GEPNoWrapFlags NW, const SimplifyQuery &Q)
Given operands for a GetElementPtrInst, fold the result or return null.
LLVM_ABI Constant * getInitialValueOfAllocation(const Value *V, const TargetLibraryInfo *TLI, Type *Ty)
If this is a call to an allocation function that initializes memory to a fixed value,...
bool succ_empty(const Instruction *I)
LLVM_ABI Value * simplifyFreezeInst(Value *Op, const SimplifyQuery &Q)
Given an operand for a Freeze, see if we can fold the result.
LLVM_ABI FunctionPass * createInstructionCombiningPass()
LLVM_ABI void findDbgValues(Value *V, SmallVectorImpl< DbgVariableRecord * > &DbgVariableRecords)
Finds the dbg.values describing a value.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
auto successors(const MachineBasicBlock *BB)
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
LLVM_ABI bool isRemovableAlloc(const CallBase *V, const TargetLibraryInfo *TLI)
Return true if this is a call to an allocation function that does not have side effects that we are r...
LLVM_ABI std::optional< StringRef > getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI)
If a function is part of an allocation family (e.g.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
LLVM_ABI Value * lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, bool MustSucceed)
Try to turn a call to @llvm.objectsize into an integer value of the given Type.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI Value * simplifyInstructionWithOperands(Instruction *I, ArrayRef< Value * > NewOps, const SimplifyQuery &Q)
Like simplifyInstruction but the operands of I are replaced with NewOps.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
gep_type_iterator gep_type_end(const User *GEP)
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI Value * getReallocatedOperand(const CallBase *CB)
If this is a call to a realloc function, return the reallocated operand.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
LLVM_ABI bool isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI)
Tests if a value is a call or invoke to a library function that allocates memory (either malloc,...
LLVM_ABI bool handleUnreachableTerminator(Instruction *I, SmallVectorImpl< Value * > &PoisonedValues)
If a terminator in an unreachable basic block has an operand of type Instruction, transform it into p...
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
LLVM_ABI Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
constexpr bool has_single_bit(T Value) noexcept
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_ABI Value * emitGEPOffset(IRBuilderBase *Builder, const DataLayout &DL, User *GEP, bool NoAssumptions=false)
Given a getelementptr instruction/constantexpr, emit the code necessary to compute the offset from th...
constexpr unsigned MaxAnalysisRecursionDepth
auto reverse(ContainerTy &&C)
bool isModSet(const ModRefInfo MRI)
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI bool LowerDbgDeclare(Function &F)
Lowers dbg.declare records into appropriate set of dbg.value records.
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
generic_gep_type_iterator<> gep_type_iterator
LLVM_ABI void ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, StoreInst *SI, DIBuilder &Builder)
Inserts a dbg.value record before a store to an alloca'd value that has an associated dbg....
LLVM_ABI void salvageDebugInfoForDbgValues(Instruction &I, ArrayRef< DbgVariableRecord * > DPInsns)
Implementation of salvageDebugInfo, applying only to instructions in Insns, rather than all debug use...
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI Value * simplifyExtractValueInst(Value *Agg, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an ExtractValueInst, fold the result or return null.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT)
Point debug users of From to To or salvage them.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
ModRefInfo
Flags indicating whether a memory access modifies or references memory.
@ Ref
The access may reference the value stored in memory.
@ ModRef
The access may reference and may modify the value stored in memory.
@ Mod
The access may modify the value stored in memory.
@ NoModRef
The access neither references nor modifies the value stored in memory.
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
@ Sub
Subtraction of integers.
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI Value * getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI)
If this if a call to a free function, return the freed operand.
constexpr unsigned BitWidth
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
gep_type_iterator gep_type_begin(const User *GEP)
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
AAResults AliasAnalysis
Temporary typedef for legacy code that uses a generic AliasAnalysis pointer or reference.
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI void initializeInstCombine(PassRegistry &)
Initialize all passes linked into the InstCombine library.
LLVM_ABI void findDbgUsers(Value *V, SmallVectorImpl< DbgVariableRecord * > &DbgVariableRecords)
Finds the debug info records describing a value.
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
bool isRefSet(const ModRefInfo MRI)
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
static constexpr roundingMode rmNearestTiesToEven
static LLVM_ABI unsigned int semanticsPrecision(const fltSemantics &)
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
unsigned getBitWidth() const
Get the bit width of this value.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
A CRTP mix-in to automatically provide informational APIs needed for passes.
SimplifyQuery getWithInstruction(const Instruction *I) const