50 M =
BB->getParent()->getParent();
55 GV->setAlignment(M->getDataLayout().getPrefTypeAlign(
getInt8Ty()));
60 assert(
BB &&
BB->getParent() &&
"No current function!");
61 return BB->getParent()->getReturnType();
69 I->setDebugLoc(StoredDL.orElse(
I->getDebugLoc()));
73 Type *SrcTy = V->getType();
77 if (SrcTy->isAggregateType()) {
79 if (SrcTy->isStructTy()) {
82 "Expected StructTypes with equal number of elements");
83 NumElements = SrcTy->getStructNumElements();
85 assert(SrcTy->isArrayTy() && DestTy->
isArrayTy() &&
"Expected ArrayType");
87 "Expected ArrayTypes with equal number of elements");
88 NumElements = SrcTy->getArrayNumElements();
92 for (
unsigned I = 0;
I < NumElements; ++
I) {
117 Value *VScale =
B.CreateVScale(Ty);
121 return B.CreateNUWMul(VScale, ConstantInt::get(Ty, Scale));
125 if (EC.isFixed() || EC.isZero())
126 return ConstantInt::get(Ty, EC.getKnownMinValue());
132 if (
Size.isFixed() ||
Size.isZero())
133 return ConstantInt::get(Ty,
Size.getKnownMinValue());
141 Type *StepVecType = DstType;
150 if (StepVecType != DstType)
159 for (
unsigned i = 0; i < NumEls; ++i)
160 Indices.
push_back(ConstantInt::get(STy, i));
185 Type *Tys[] = {Dst->getType(),
Size->getType()};
215 assert((IntrID == Intrinsic::memcpy || IntrID == Intrinsic::memcpy_inline ||
216 IntrID == Intrinsic::memmove) &&
217 "Unexpected intrinsic ID");
219 Type *Tys[] = {Dst->getType(), Src->getType(),
Size->getType()};
225 MCI->setDestAlignment(*DstAlign);
227 MCI->setSourceAlignment(*SrcAlign);
228 MCI->setAAMetadata(AAInfo);
235 assert(DstAlign >= ElementSize &&
236 "Pointer alignment must be at least element size");
237 assert(SrcAlign >= ElementSize &&
238 "Pointer alignment must be at least element size");
240 Type *Tys[] = {Dst->getType(), Src->getType(),
Size->getType()};
247 AMCI->setDestAlignment(DstAlign);
248 AMCI->setSourceAlignment(SrcAlign);
249 AMCI->setAAMetadata(AAInfo);
255 assert(Val &&
"isConstantOne does not work with nullptr Val");
257 return CVal && CVal->
isOne();
269 ArraySize = ConstantInt::get(IntPtrTy, 1);
270 else if (ArraySize->
getType() != IntPtrTy)
275 AllocSize = ArraySize;
278 AllocSize =
CreateMul(ArraySize, AllocSize,
"mallocsize");
282 assert(AllocSize->
getType() == IntPtrTy &&
"malloc arg is wrong size");
284 Module *M =
BB->getParent()->getParent();
289 MallocFunc = M->getOrInsertFunction(
"malloc", BPTy, IntPtrTy);
295 F->setReturnDoesNotAlias();
307 return CreateMalloc(IntPtrTy, AllocTy, AllocSize, ArraySize, {}, MallocF,
314 assert(Source->getType()->isPointerTy() &&
315 "Can not free something of nonpointer type!");
317 Module *M =
BB->getParent()->getParent();
322 FunctionCallee FreeFunc = M->getOrInsertFunction(
"free", VoidTy, VoidPtrTy);
324 Result->setTailCall();
326 Result->setCallingConv(
F->getCallingConv());
334 assert(DstAlign >= ElementSize &&
335 "Pointer alignment must be at least element size");
336 assert(SrcAlign >= ElementSize &&
337 "Pointer alignment must be at least element size");
339 Type *Tys[] = {Dst->getType(), Src->getType(),
Size->getType()};
353 Type *Tys[] = { Src->getType() };
368 return getReductionIntrinsic(Intrinsic::vector_reduce_add, Src);
372 return getReductionIntrinsic(Intrinsic::vector_reduce_mul, Src);
376 return getReductionIntrinsic(Intrinsic::vector_reduce_and, Src);
380 return getReductionIntrinsic(Intrinsic::vector_reduce_or, Src);
384 return getReductionIntrinsic(Intrinsic::vector_reduce_xor, Src);
389 IsSigned ? Intrinsic::vector_reduce_smax : Intrinsic::vector_reduce_umax;
390 return getReductionIntrinsic(
ID, Src);
395 IsSigned ? Intrinsic::vector_reduce_smin : Intrinsic::vector_reduce_umin;
396 return getReductionIntrinsic(
ID, Src);
400 return getReductionIntrinsic(Intrinsic::vector_reduce_fmax, Src);
404 return getReductionIntrinsic(Intrinsic::vector_reduce_fmin, Src);
408 return getReductionIntrinsic(Intrinsic::vector_reduce_fmaximum, Src);
412 return getReductionIntrinsic(Intrinsic::vector_reduce_fminimum, Src);
417 "lifetime.start only applies to pointers.");
423 "lifetime.end only applies to pointers.");
430 "invariant.start only applies to pointers.");
435 "invariant.start requires the size to be an i64");
439 Type *ObjectPtr[1] = {
Ptr->getType()};
445 return V->getAlign();
453 "threadlocal_address only applies to thread local variables.");
467 "an assumption condition must be of type i1");
470 Module *M =
BB->getParent()->getParent();
493 assert(Ty->isVectorTy() &&
"Type should be vector");
494 assert(Mask &&
"Mask should not be all-ones (null)");
497 Type *OverloadedTypes[] = { Ty, PtrTy };
500 CreateMaskedIntrinsic(Intrinsic::masked_load,
Ops, OverloadedTypes, Name);
516 assert(Mask &&
"Mask should not be all-ones (null)");
517 Type *OverloadedTypes[] = { DataTy, PtrTy };
520 CreateMaskedIntrinsic(Intrinsic::masked_store,
Ops, OverloadedTypes);
551 assert(NumElts == PtrsTy->getElementCount() &&
"Element count mismatch");
559 Type *OverloadedTypes[] = {Ty, PtrsTy};
560 Value *
Ops[] = {Ptrs, Mask, PassThru};
564 CallInst *CI = CreateMaskedIntrinsic(Intrinsic::masked_gather,
Ops,
565 OverloadedTypes, Name);
586 Type *OverloadedTypes[] = {DataTy, PtrsTy};
592 CreateMaskedIntrinsic(Intrinsic::masked_scatter,
Ops, OverloadedTypes);
610 assert(Ty->isVectorTy() &&
"Type should be vector");
611 assert(Mask &&
"Mask should not be all-ones (null)");
614 Type *OverloadedTypes[] = {Ty};
616 CallInst *CI = CreateMaskedIntrinsic(Intrinsic::masked_expandload,
Ops,
617 OverloadedTypes, Name);
634 assert(Mask &&
"Mask should not be all-ones (null)");
635 Type *OverloadedTypes[] = {DataTy};
637 CallInst *CI = CreateMaskedIntrinsic(Intrinsic::masked_compressstore,
Ops,
644template <
typename T0>
645static std::vector<Value *>
648 std::vector<Value *> Args;
649 Args.push_back(
B.getInt64(
ID));
650 Args.push_back(
B.getInt32(NumPatchBytes));
651 Args.push_back(ActualCallee);
652 Args.push_back(
B.getInt32(CallArgs.
size()));
653 Args.push_back(
B.getInt32(Flags));
657 Args.push_back(
B.getInt32(0));
658 Args.push_back(
B.getInt32(0));
663template<
typename T1,
typename T2,
typename T3>
664static std::vector<OperandBundleDef>
668 std::vector<OperandBundleDef> Rval;
672 Rval.emplace_back(
"gc-transition",
679template <
typename T0,
typename T1,
typename T2,
typename T3>
686 Module *M = Builder->GetInsertBlock()->getParent()->getParent();
689 M, Intrinsic::experimental_gc_statepoint,
693 *Builder,
ID, NumPatchBytes, ActualCallee.
getCallee(), Flags, CallArgs);
710 CallArgs, std::nullopt , DeoptArgs, GCArgs, Name);
720 this,
ID, NumPatchBytes, ActualCallee, Flags, CallArgs, TransitionArgs,
721 DeoptArgs, GCArgs, Name);
730 CallArgs, std::nullopt, DeoptArgs, GCArgs, Name);
733template <
typename T0,
typename T1,
typename T2,
typename T3>
741 Module *M = Builder->GetInsertBlock()->getParent()->getParent();
744 M, Intrinsic::experimental_gc_statepoint,
747 std::vector<Value *> Args =
752 FnStatepoint, NormalDest, UnwindDest, Args,
766 this,
ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest,
768 std::nullopt , DeoptArgs, GCArgs, Name);
778 this,
ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest, Flags,
779 InvokeArgs, TransitionArgs, DeoptArgs, GCArgs, Name);
788 this,
ID, NumPatchBytes, ActualInvokee, NormalDest, UnwindDest,
796 Type *Types[] = {ResultType};
798 Value *Args[] = {Statepoint};
803 int BaseOffset,
int DerivedOffset,
805 Type *Types[] = {ResultType};
808 return CreateIntrinsic(Intrinsic::experimental_gc_relocate, Types, Args, {},
816 {PtrTy, PtrTy}, {DerivedPtr}, {}, Name);
822 return CreateIntrinsic(Intrinsic::experimental_gc_get_pointer_offset, {PtrTy},
823 {DerivedPtr}, {}, Name);
831 return createCallHelper(Fn, {V}, Name,
FMFSource);
842 return createCallHelper(Fn, {LHS, RHS}, Name,
FMFSource);
852 return createCallHelper(Fn, Args, Name,
FMFSource);
872 matchIntrinsicSignature(FTy,
TableRef, OverloadTys);
875 "Wrong types for intrinsic!");
879 return createCallHelper(Fn, Args, Name,
FMFSource);
884 const Twine &Name,
MDNode *FPMathTag, std::optional<RoundingMode> Rounding,
885 std::optional<fp::ExceptionBehavior> Except) {
886 Value *RoundingV = getConstrainedFPRounding(Rounding);
887 Value *ExceptV = getConstrainedFPExcept(Except);
892 {L, R, RoundingV, ExceptV},
nullptr, Name);
894 setFPAttrs(
C, FPMathTag, UseFMF);
901 std::optional<RoundingMode> Rounding,
902 std::optional<fp::ExceptionBehavior> Except) {
903 Value *RoundingV = getConstrainedFPRounding(Rounding);
904 Value *ExceptV = getConstrainedFPExcept(Except);
914 setFPAttrs(
C, FPMathTag, UseFMF);
921 std::optional<fp::ExceptionBehavior> Except) {
922 Value *ExceptV = getConstrainedFPExcept(Except);
929 setFPAttrs(
C, FPMathTag, UseFMF);
936 assert(
Ops.size() == 2 &&
"Invalid number of operands!");
938 Ops[0],
Ops[1], Name, FPMathTag);
941 assert(
Ops.size() == 1 &&
"Invalid number of operands!");
943 Ops[0], Name, FPMathTag);
950 const Twine &Name,
MDNode *FPMathTag, std::optional<RoundingMode> Rounding,
951 std::optional<fp::ExceptionBehavior> Except) {
952 Value *ExceptV = getConstrainedFPExcept(Except);
958 Value *RoundingV = getConstrainedFPRounding(Rounding);
968 setFPAttrs(
C, FPMathTag, UseFMF);
977 auto ID = IsSignaling ? Intrinsic::experimental_constrained_fcmps
978 : Intrinsic::experimental_constrained_fcmp;
991 const Twine &Name, std::optional<fp::ExceptionBehavior> Except) {
992 Value *PredicateV = getConstrainedFPPredicate(
P);
993 Value *ExceptV = getConstrainedFPExcept(Except);
996 {L, R, PredicateV, ExceptV},
nullptr, Name);
1003 std::optional<RoundingMode> Rounding,
1004 std::optional<fp::ExceptionBehavior> Except) {
1008 UseArgs.
push_back(getConstrainedFPRounding(Rounding));
1009 UseArgs.
push_back(getConstrainedFPExcept(Except));
1019 const Twine &Name) {
1036 if (
auto *V =
Folder.FoldSelect(
C, True, False))
1043 Sel = addBranchMetadata(Sel, Prof, Unpred);
1047 return Insert(Sel, Name);
1051 const Twine &Name) {
1052 assert(LHS->getType() == RHS->getType() &&
1053 "Pointer subtraction operand types must match!");
1063 "launder.invariant.group only applies to pointers.");
1064 auto *PtrType =
Ptr->getType();
1065 Module *M =
BB->getParent()->getParent();
1067 M, Intrinsic::launder_invariant_group, {PtrType});
1072 "LaunderInvariantGroup should take and return the same type");
1079 "strip.invariant.group only applies to pointers.");
1081 auto *PtrType =
Ptr->getType();
1082 Module *M =
BB->getParent()->getParent();
1084 M, Intrinsic::strip_invariant_group, {PtrType});
1089 "StripInvariantGroup should take and return the same type");
1097 Module *M =
BB->getParent()->getParent();
1104 int NumElts = Ty->getElementCount().getKnownMinValue();
1105 for (
int i = 0; i < NumElts; ++i)
1111 const Twine &Name) {
1114 "Splice expects matching operand types!");
1117 Module *M =
BB->getParent()->getParent();
1126 assert(((-Imm <= NumElts) || (Imm < NumElts)) &&
1127 "Invalid immediate for vector splice!");
1130 unsigned Idx = (NumElts + Imm) % NumElts;
1132 for (
unsigned I = 0;
I < NumElts; ++
I)
1133 Mask.push_back(Idx +
I);
1139 const Twine &Name) {
1145 const Twine &Name) {
1146 assert(EC.isNonZero() &&
"Cannot splat to an empty vector!");
1154 Zeros.
resize(EC.getKnownMinValue());
1159 const Twine &Name) {
1161 "Unexpected number of operands to interleave");
1167 for (
unsigned I = 1;
I <
Ops.size();
I++) {
1169 "Vector interleave expects matching operand types!");
1176 SubvecTy->getElementCount() *
Ops.size());
1186 "Invalid Base ptr type for preserve.array.access.index.");
1202 Fn->
setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
1210 "Invalid Base ptr type for preserve.union.access.index.");
1217 Fn->
setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
1223 Type *ElTy,
Value *
Base,
unsigned Index,
unsigned FieldIndex,
1227 "Invalid Base ptr type for preserve.struct.access.index.");
1241 Fn->
setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
1255 Value *OffsetValue) {
1266 Value *OffsetValue) {
1268 "trying to create an alignment assumption on a non-pointer?");
1269 assert(Alignment != 0 &&
"Invalid Alignment");
1272 Value *AlignValue = ConstantInt::get(IntPtrTy, Alignment);
1273 return CreateAlignmentAssumptionHelper(
DL, PtrValue, AlignValue, OffsetValue);
1279 Value *OffsetValue) {
1281 "trying to create an alignment assumption on a non-pointer?");
1282 return CreateAlignmentAssumptionHelper(
DL, PtrValue, Alignment, OffsetValue);
1288 "trying to create an deferenceable assumption on a non-pointer?");
1292 {DereferenceableOpB});
1298void ConstantFolder::anchor() {}
1299void NoFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
ArrayRef< TableEntry > TableRef
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static bool isConstantOne(const Value *Val)
isConstantOne - Return true only if val is constant int 1
static InvokeInst * CreateGCStatepointInvokeCommon(IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee, BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags, ArrayRef< T0 > InvokeArgs, std::optional< ArrayRef< T1 > > TransitionArgs, std::optional< ArrayRef< T2 > > DeoptArgs, ArrayRef< T3 > GCArgs, const Twine &Name)
static CallInst * CreateGCStatepointCallCommon(IRBuilderBase *Builder, uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualCallee, uint32_t Flags, ArrayRef< T0 > CallArgs, std::optional< ArrayRef< T1 > > TransitionArgs, std::optional< ArrayRef< T2 > > DeoptArgs, ArrayRef< T3 > GCArgs, const Twine &Name)
static Value * CreateVScaleMultiple(IRBuilderBase &B, Type *Ty, uint64_t Scale)
static std::vector< OperandBundleDef > getStatepointBundles(std::optional< ArrayRef< T1 > > TransitionArgs, std::optional< ArrayRef< T2 > > DeoptArgs, ArrayRef< T3 > GCArgs)
static std::vector< Value * > getStatepointArgs(IRBuilderBase &B, uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee, uint32_t Flags, ArrayRef< T0 > CallArgs)
Module.h This file contains the declarations for the Module class.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static SymbolRef::Type getType(const Symbol *Sym)
static const char PassName[]
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
static LLVM_ABI Attribute get(LLVMContext &Context, AttrKind Kind, uint64_t Val=0)
Return a uniquified Attribute object.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
void setCallingConv(CallingConv::ID CC)
void addRetAttr(Attribute::AttrKind Kind)
Adds the attribute to the return value.
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
void setTailCall(bool IsTc=true)
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
static LLVM_ABI Constant * getString(LLVMContext &Context, StringRef Initializer, bool AddNull=true)
This method constructs a CDS and initializes it with a text string.
static LLVM_ABI Constant * getSizeOf(Type *Ty)
getSizeOf constant expr - computes the (alloc) size of a type (in address-units, not bits) in a targe...
This is the shared class of boolean and integer constants.
bool isOne() const
This is just a convenience method to make client code smaller for a common case.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
A parsed version of the target data layout string in and methods for querying it.
static constexpr ElementCount getFixed(ScalarTy MinVal)
This instruction compares its operands according to the predicate given to the constructor.
This provides a helper for copying FMF from an instruction or setting specified flags.
FastMathFlags get(FastMathFlags Default) const
Convenience struct for specifying and reasoning about fast-math flags.
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
FunctionType * getFunctionType()
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
static LLVM_ABI FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Type * getReturnType() const
Returns the type of the ret val.
static Type * getGEPReturnType(Value *Ptr, ArrayRef< Value * > IdxList)
Returns the pointer type returned by the GEP instruction, which may be a vector of pointers.
@ PrivateLinkage
Like Internal, but omit from symbol table.
Common base class shared among various IRBuilders.
Value * CreateExactSDiv(Value *LHS, Value *RHS, const Twine &Name="")
ConstantInt * getInt1(bool V)
Get a constant value representing either true or false.
LLVM_ABI Value * CreatePtrDiff(Type *ElemTy, Value *LHS, Value *RHS, const Twine &Name="")
Return the i64 difference between two pointer values, dividing out the size of the pointed-to objects...
LLVM_ABI CallInst * CreateMulReduce(Value *Src)
Create a vector int mul reduction intrinsic of the source vector.
LLVM_ABI CallInst * CreateFAddReduce(Value *Acc, Value *Src)
Create a sequential vector fadd reduction intrinsic of the source vector.
LLVM_ABI Value * CreateLaunderInvariantGroup(Value *Ptr)
Create a launder.invariant.group intrinsic call.
LLVM_ABI CallInst * CreateConstrainedFPUnroundedBinOp(Intrinsic::ID ID, Value *L, Value *R, FMFSource FMFSource={}, const Twine &Name="", MDNode *FPMathTag=nullptr, std::optional< fp::ExceptionBehavior > Except=std::nullopt)
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
LLVM_ABI CallInst * CreateThreadLocalAddress(Value *Ptr)
Create a call to llvm.threadlocal.address intrinsic.
IntegerType * getInt1Ty()
Fetch the type representing a single bit.
LLVM_ABI CallInst * CreateMaskedCompressStore(Value *Val, Value *Ptr, MaybeAlign Align, Value *Mask=nullptr)
Create a call to Masked Compress Store intrinsic.
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
LLVM_ABI Type * getCurrentFunctionReturnType() const
Get the return type of the current function that we're emitting into.
LLVM_ABI CallInst * CreateGCGetPointerBase(Value *DerivedPtr, const Twine &Name="")
Create a call to the experimental.gc.pointer.base intrinsic to get the base pointer for the specified...
LLVM_ABI CallInst * CreateLifetimeStart(Value *Ptr)
Create a lifetime.start intrinsic.
LLVM_ABI CallInst * CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualCallee, ArrayRef< Value * > CallArgs, std::optional< ArrayRef< Value * > > DeoptArgs, ArrayRef< Value * > GCArgs, const Twine &Name="")
Create a call to the experimental.gc.statepoint intrinsic to start a new statepoint sequence.
LLVM_ABI CallInst * CreateLifetimeEnd(Value *Ptr)
Create a lifetime.end intrinsic.
LLVM_ABI CallInst * CreateConstrainedFPCmp(Intrinsic::ID ID, CmpInst::Predicate P, Value *L, Value *R, const Twine &Name="", std::optional< fp::ExceptionBehavior > Except=std::nullopt)
LLVM_ABI Value * CreateSelectFMF(Value *C, Value *True, Value *False, FMFSource FMFSource, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI CallInst * CreateAndReduce(Value *Src)
Create a vector int AND reduction intrinsic of the source vector.
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI CallInst * CreateAssumption(Value *Cond, ArrayRef< OperandBundleDef > OpBundles={})
Create an assume intrinsic call that allows the optimizer to assume that the provided condition will ...
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
LLVM_ABI Value * CreatePreserveStructAccessIndex(Type *ElTy, Value *Base, unsigned Index, unsigned FieldIndex, MDNode *DbgInfo)
LLVM_ABI CallInst * CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue, unsigned Alignment, Value *OffsetValue=nullptr)
Create an assume intrinsic call that represents an alignment assumption on the provided pointer.
LLVM_ABI CallInst * CreateMaskedLoad(Type *Ty, Value *Ptr, Align Alignment, Value *Mask, Value *PassThru=nullptr, const Twine &Name="")
Create a call to Masked Load intrinsic.
LLVM_ABI CallInst * CreateConstrainedFPCall(Function *Callee, ArrayRef< Value * > Args, const Twine &Name="", std::optional< RoundingMode > Rounding=std::nullopt, std::optional< fp::ExceptionBehavior > Except=std::nullopt)
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI CallInst * CreateGCGetPointerOffset(Value *DerivedPtr, const Twine &Name="")
Create a call to the experimental.gc.get.pointer.offset intrinsic to get the offset of the specified ...
LLVM_ABI CallInst * CreateAddReduce(Value *Src)
Create a vector int add reduction intrinsic of the source vector.
LLVM_ABI CallInst * CreateConstrainedFPBinOp(Intrinsic::ID ID, Value *L, Value *R, FMFSource FMFSource={}, const Twine &Name="", MDNode *FPMathTag=nullptr, std::optional< RoundingMode > Rounding=std::nullopt, std::optional< fp::ExceptionBehavior > Except=std::nullopt)
IntegerType * getIntPtrTy(const DataLayout &DL, unsigned AddrSpace=0)
Fetch the type of an integer with size at least as big as that of a pointer in the given address spac...
LLVM_ABI Value * CreateAggregateCast(Value *V, Type *DestTy)
Cast between aggregate types that must have identical structure but may differ in their leaf types.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
LLVM_ABI CallInst * CreateElementUnorderedAtomicMemMove(Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size, uint32_t ElementSize, const AAMDNodes &AAInfo=AAMDNodes())
Create and insert an element unordered-atomic memmove between the specified pointers.
LLVM_ABI Value * CreateVectorReverse(Value *V, const Twine &Name="")
Return a vector value that contains the vector V reversed.
LLVM_ABI CallInst * CreateXorReduce(Value *Src)
Create a vector int XOR reduction intrinsic of the source vector.
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
Value * getAllOnesMask(ElementCount NumElts)
Return an all true boolean vector (mask) with NumElts lanes.
Value * CreateUnOp(Instruction::UnaryOps Opc, Value *V, const Twine &Name="", MDNode *FPMathTag=nullptr)
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
LLVM_ABI CallInst * CreateMalloc(Type *IntPtrTy, Type *AllocTy, Value *AllocSize, Value *ArraySize, ArrayRef< OperandBundleDef > OpB, Function *MallocF=nullptr, const Twine &Name="")
LLVM_ABI CallInst * CreateFPMinReduce(Value *Src)
Create a vector float min reduction intrinsic of the source vector.
LLVM_ABI CallInst * CreateFPMaximumReduce(Value *Src)
Create a vector float maximum reduction intrinsic of the source vector.
LLVM_ABI Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
LLVM_ABI Value * createIsFPClass(Value *FPNum, unsigned Test)
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
LLVM_ABI CallInst * CreateFPMaxReduce(Value *Src)
Create a vector float max reduction intrinsic of the source vector.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
LLVM_ABI CallInst * CreateFree(Value *Source, ArrayRef< OperandBundleDef > Bundles={})
Generate the IR for a call to the builtin free function.
Value * CreateBitOrPointerCast(Value *V, Type *DestTy, const Twine &Name="")
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
LLVM_ABI DebugLoc getCurrentDebugLocation() const
Get location information used by debugging information.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
LLVM_ABI CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
CallInst * CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val, uint64_t Size, Align Alignment, uint32_t ElementSize, const AAMDNodes &AAInfo=AAMDNodes())
Create and insert an element unordered-atomic memset of the region of memory starting at the given po...
CallInst * CreateMemSet(Value *Ptr, Value *Val, uint64_t Size, MaybeAlign Align, bool isVolatile=false, const AAMDNodes &AAInfo=AAMDNodes())
Create and insert a memset to the specified pointer and the specified value.
LLVM_ABI Value * CreateNAryOp(unsigned Opc, ArrayRef< Value * > Ops, const Twine &Name="", MDNode *FPMathTag=nullptr)
Create either a UnaryOperator or BinaryOperator depending on Opc.
LLVM_ABI CallInst * CreateConstrainedFPIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource, const Twine &Name, MDNode *FPMathTag=nullptr, std::optional< RoundingMode > Rounding=std::nullopt, std::optional< fp::ExceptionBehavior > Except=std::nullopt)
This function is like CreateIntrinsic for constrained fp intrinsics.
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
LLVMContext & getContext() const
LLVM_ABI Value * CreatePreserveUnionAccessIndex(Value *Base, unsigned FieldIndex, MDNode *DbgInfo)
LLVM_ABI CallInst * CreateIntMaxReduce(Value *Src, bool IsSigned=false)
Create a vector integer max reduction intrinsic of the source vector.
LLVM_ABI Value * CreateSelectWithUnknownProfile(Value *C, Value *True, Value *False, StringRef PassName, const Twine &Name="")
LLVM_ABI CallInst * CreateMaskedStore(Value *Val, Value *Ptr, Align Alignment, Value *Mask)
Create a call to Masked Store intrinsic.
Value * CreatePtrToInt(Value *V, Type *DestTy, const Twine &Name="")
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
LLVM_ABI CallInst * CreateGCResult(Instruction *Statepoint, Type *ResultType, const Twine &Name="")
Create a call to the experimental.gc.result intrinsic to extract the result from a call wrapped in a ...
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
LLVM_ABI Value * CreateTypeSize(Type *Ty, TypeSize Size)
Create an expression which evaluates to the number of units in Size at runtime.
LLVM_ABI CallInst * CreateDereferenceableAssumption(Value *PtrValue, Value *SizeValue)
Create an assume intrinsic call that represents an dereferencable assumption on the provided pointer.
Value * CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name="")
LLVM_ABI CallInst * CreateIntMinReduce(Value *Src, bool IsSigned=false)
Create a vector integer min reduction intrinsic of the source vector.
LLVM_ABI CallInst * CreateElementUnorderedAtomicMemCpy(Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size, uint32_t ElementSize, const AAMDNodes &AAInfo=AAMDNodes())
Create and insert an element unordered-atomic memcpy between the specified pointers.
void setConstrainedFPCallAttr(CallBase *I)
LLVM_ABI InvokeInst * CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee, BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef< Value * > InvokeArgs, std::optional< ArrayRef< Value * > > DeoptArgs, ArrayRef< Value * > GCArgs, const Twine &Name="")
Create an invoke to the experimental.gc.statepoint intrinsic to start a new statepoint sequence.
LLVM_ABI CallInst * CreateMaskedExpandLoad(Type *Ty, Value *Ptr, MaybeAlign Align, Value *Mask=nullptr, Value *PassThru=nullptr, const Twine &Name="")
Create a call to Masked Expand Load intrinsic.
const IRBuilderFolder & Folder
LLVM_ABI CallInst * CreateMemTransferInst(Intrinsic::ID IntrID, Value *Dst, MaybeAlign DstAlign, Value *Src, MaybeAlign SrcAlign, Value *Size, bool isVolatile=false, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI Value * CreateVectorInterleave(ArrayRef< Value * > Ops, const Twine &Name="")
LLVM_ABI CallInst * CreateFMulReduce(Value *Acc, Value *Src)
Create a sequential vector fmul reduction intrinsic of the source vector.
LLVM_ABI CallInst * CreateMemSetInline(Value *Dst, MaybeAlign DstAlign, Value *Val, Value *Size, bool IsVolatile=false, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI void SetInstDebugLocation(Instruction *I) const
If this builder has a current debug location, set it on the specified instruction.
IntegerType * getInt8Ty()
Fetch the type representing an 8-bit integer.
LLVM_ABI CallInst * CreateGCRelocate(Instruction *Statepoint, int BaseOffset, int DerivedOffset, Type *ResultType, const Twine &Name="")
Create a call to the experimental.gc.relocate intrinsics to project the relocated value of one pointe...
LLVM_ABI Value * CreateStepVector(Type *DstType, const Twine &Name="")
Creates a vector of type DstType with the linear sequence <0, 1, ...>
LLVM_ABI Value * CreatePreserveArrayAccessIndex(Type *ElTy, Value *Base, unsigned Dimension, unsigned LastIndex, MDNode *DbgInfo)
LLVM_ABI CallInst * CreateInvariantStart(Value *Ptr, ConstantInt *Size=nullptr)
Create a call to invariant.start intrinsic.
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
LLVM_ABI Instruction * CreateNoAliasScopeDeclaration(Value *Scope)
Create a llvm.experimental.noalias.scope.decl intrinsic call.
LLVM_ABI CallInst * CreateMaskedScatter(Value *Val, Value *Ptrs, Align Alignment, Value *Mask=nullptr)
Create a call to Masked Scatter intrinsic.
LLVM_ABI GlobalVariable * CreateGlobalString(StringRef Str, const Twine &Name="", unsigned AddressSpace=0, Module *M=nullptr, bool AddNull=true)
Make a new global variable with initializer type i8*.
LLVM_ABI Value * CreateElementCount(Type *Ty, ElementCount EC)
Create an expression which evaluates to the number of elements in EC at runtime.
LLVM_ABI CallInst * CreateFPMinimumReduce(Value *Src)
Create a vector float minimum reduction intrinsic of the source vector.
LLVM_ABI CallInst * CreateConstrainedFPCast(Intrinsic::ID ID, Value *V, Type *DestTy, FMFSource FMFSource={}, const Twine &Name="", MDNode *FPMathTag=nullptr, std::optional< RoundingMode > Rounding=std::nullopt, std::optional< fp::ExceptionBehavior > Except=std::nullopt)
LLVM_ABI Value * CreateStripInvariantGroup(Value *Ptr)
Create a strip.invariant.group intrinsic call.
LLVM_ABI CallInst * CreateMaskedGather(Type *Ty, Value *Ptrs, Align Alignment, Value *Mask=nullptr, Value *PassThru=nullptr, const Twine &Name="")
Create a call to Masked Gather intrinsic.
~IRBuilderCallbackInserter() override
virtual ~IRBuilderDefaultInserter()
virtual Value * FoldCmp(CmpInst::Predicate P, Value *LHS, Value *RHS) const =0
virtual ~IRBuilderFolder()
LLVM_ABI void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
LLVM_ABI void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
A Module instance is used to store all the information related to an LLVM module.
A container for an operand bundle being viewed as a set of values rather than a set of uses.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
void reserve(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
LLVM_ABI Type * getStructElementType(unsigned N) const
bool isVectorTy() const
True if this is an instance of VectorType.
bool isArrayTy() const
True if this is an instance of ArrayType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Type * getArrayElementType() const
LLVM_ABI unsigned getStructNumElements() const
LLVM_ABI uint64_t getArrayNumElements() const
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isVoidTy() const
Return true if this is 'void'.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI void getIntrinsicInfoTableEntries(ID id, SmallVectorImpl< IITDescriptor > &T)
Return the IIT table descriptor for the specified intrinsic into an array of IITDescriptors.
MatchIntrinsicTypesResult
@ MatchIntrinsicTypes_Match
LLVM_ABI bool hasConstrainedFPRoundingModeOperand(ID QID)
Returns true if the intrinsic ID is for one of the "ConstrainedFloating-Point Intrinsics" that take r...
LLVM_ABI Intrinsic::ID getInterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.interleaveN intrinsic for factor N.
This is an optimization pass for GlobalISel generic memory operations.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI void setExplicitlyUnknownBranchWeightsIfProfiled(Instruction &I, Function &F, StringRef PassName)
Like setExplicitlyUnknownBranchWeights(...), but only sets unknown branch weights in the new instruct...
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
FunctionAddr VTableAddr uintptr_t uintptr_t Data
ArrayRef(const T &OneElt) -> ArrayRef< T >
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
This struct is a compact representation of a valid (non-zero power of two) alignment.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.