LLVM  13.0.0git
InstCombineInternal.h
Go to the documentation of this file.
1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 ///
11 /// This file provides internal interfaces used to implement the InstCombine.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
16 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
17 
18 #include "llvm/ADT/Statistic.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/InstVisitor.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
30 #include <cassert>
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 using namespace llvm::PatternMatch;
35 
36 // As a default, let's assume that we want to be aggressive,
37 // and attempt to traverse with no limits in attempt to sink negation.
38 static constexpr unsigned NegatorDefaultMaxDepth = ~0U;
39 
40 // Let's guesstimate that most often we will end up visiting/producing
41 // fairly small number of new instructions.
42 static constexpr unsigned NegatorMaxNodesSSO = 16;
43 
44 namespace llvm {
45 
46 class AAResults;
47 class APInt;
48 class AssumptionCache;
49 class BlockFrequencyInfo;
50 class DataLayout;
51 class DominatorTree;
52 class GEPOperator;
53 class GlobalVariable;
54 class LoopInfo;
55 class OptimizationRemarkEmitter;
56 class ProfileSummaryInfo;
57 class TargetLibraryInfo;
58 class User;
59 
61  : public InstCombiner,
62  public InstVisitor<InstCombinerImpl, Instruction *> {
63 public:
65  bool MinimizeSize, AAResults *AA, AssumptionCache &AC,
69  const DataLayout &DL, LoopInfo *LI)
70  : InstCombiner(Worklist, Builder, MinimizeSize, AA, AC, TLI, TTI, DT, ORE,
71  BFI, PSI, DL, LI) {}
72 
73  virtual ~InstCombinerImpl() {}
74 
75  /// Run the combiner over the entire worklist until it is empty.
76  ///
77  /// \returns true if the IR is changed.
78  bool run();
79 
80  // Visitation implementation - Implement instruction combining for different
81  // instruction types. The semantics are as follows:
82  // Return Value:
83  // null - No change was made
84  // I - Change was made, I is still valid, I may be dead though
85  // otherwise - Change was made, replace I with returned instruction
86  //
87  Instruction *visitFNeg(UnaryOperator &I);
88  Instruction *visitAdd(BinaryOperator &I);
89  Instruction *visitFAdd(BinaryOperator &I);
90  Value *OptimizePointerDifference(
91  Value *LHS, Value *RHS, Type *Ty, bool isNUW);
92  Instruction *visitSub(BinaryOperator &I);
93  Instruction *visitFSub(BinaryOperator &I);
94  Instruction *visitMul(BinaryOperator &I);
95  Instruction *visitFMul(BinaryOperator &I);
96  Instruction *visitURem(BinaryOperator &I);
97  Instruction *visitSRem(BinaryOperator &I);
98  Instruction *visitFRem(BinaryOperator &I);
99  bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
100  Instruction *commonIRemTransforms(BinaryOperator &I);
101  Instruction *commonIDivTransforms(BinaryOperator &I);
102  Instruction *visitUDiv(BinaryOperator &I);
103  Instruction *visitSDiv(BinaryOperator &I);
104  Instruction *visitFDiv(BinaryOperator &I);
105  Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
106  Instruction *visitAnd(BinaryOperator &I);
107  Instruction *visitOr(BinaryOperator &I);
108  bool sinkNotIntoOtherHandOfAndOrOr(BinaryOperator &I);
109  Instruction *visitXor(BinaryOperator &I);
110  Instruction *visitShl(BinaryOperator &I);
111  Value *reassociateShiftAmtsOfTwoSameDirectionShifts(
112  BinaryOperator *Sh0, const SimplifyQuery &SQ,
113  bool AnalyzeForSignBitExtraction = false);
114  Instruction *canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
115  BinaryOperator &I);
116  Instruction *foldVariableSignZeroExtensionOfVariableHighBitExtract(
117  BinaryOperator &OldAShr);
118  Instruction *visitAShr(BinaryOperator &I);
119  Instruction *visitLShr(BinaryOperator &I);
120  Instruction *commonShiftTransforms(BinaryOperator &I);
121  Instruction *visitFCmpInst(FCmpInst &I);
122  CmpInst *canonicalizeICmpPredicate(CmpInst &I);
123  Instruction *visitICmpInst(ICmpInst &I);
124  Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
125  BinaryOperator &I);
126  Instruction *commonCastTransforms(CastInst &CI);
127  Instruction *commonPointerCastTransforms(CastInst &CI);
128  Instruction *visitTrunc(TruncInst &CI);
129  Instruction *visitZExt(ZExtInst &CI);
130  Instruction *visitSExt(SExtInst &CI);
131  Instruction *visitFPTrunc(FPTruncInst &CI);
132  Instruction *visitFPExt(CastInst &CI);
133  Instruction *visitFPToUI(FPToUIInst &FI);
134  Instruction *visitFPToSI(FPToSIInst &FI);
135  Instruction *visitUIToFP(CastInst &CI);
136  Instruction *visitSIToFP(CastInst &CI);
137  Instruction *visitPtrToInt(PtrToIntInst &CI);
138  Instruction *visitIntToPtr(IntToPtrInst &CI);
139  Instruction *visitBitCast(BitCastInst &CI);
140  Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
141  Instruction *foldItoFPtoI(CastInst &FI);
142  Instruction *visitSelectInst(SelectInst &SI);
143  Instruction *visitCallInst(CallInst &CI);
144  Instruction *visitInvokeInst(InvokeInst &II);
145  Instruction *visitCallBrInst(CallBrInst &CBI);
146 
147  Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
148  Instruction *visitPHINode(PHINode &PN);
149  Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
150  Instruction *visitAllocaInst(AllocaInst &AI);
151  Instruction *visitAllocSite(Instruction &FI);
152  Instruction *visitFree(CallInst &FI);
153  Instruction *visitLoadInst(LoadInst &LI);
154  Instruction *visitStoreInst(StoreInst &SI);
155  Instruction *visitAtomicRMWInst(AtomicRMWInst &SI);
156  Instruction *visitUnconditionalBranchInst(BranchInst &BI);
157  Instruction *visitBranchInst(BranchInst &BI);
158  Instruction *visitFenceInst(FenceInst &FI);
159  Instruction *visitSwitchInst(SwitchInst &SI);
160  Instruction *visitReturnInst(ReturnInst &RI);
161  Instruction *visitUnreachableInst(UnreachableInst &I);
162  Instruction *
163  foldAggregateConstructionIntoAggregateReuse(InsertValueInst &OrigIVI);
164  Instruction *visitInsertValueInst(InsertValueInst &IV);
165  Instruction *visitInsertElementInst(InsertElementInst &IE);
166  Instruction *visitExtractElementInst(ExtractElementInst &EI);
167  Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
168  Instruction *visitExtractValueInst(ExtractValueInst &EV);
169  Instruction *visitLandingPadInst(LandingPadInst &LI);
170  Instruction *visitVAEndInst(VAEndInst &I);
171  Instruction *visitFreeze(FreezeInst &I);
172 
173  /// Specify what to return for unhandled instructions.
174  Instruction *visitInstruction(Instruction &I) { return nullptr; }
175 
176  /// True when DB dominates all uses of DI except UI.
177  /// UI must be in the same block as DI.
178  /// The routine checks that the DI parent and DB are different.
179  bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
180  const BasicBlock *DB) const;
181 
182  /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
183  bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
184  const unsigned SIOpd);
185 
186  LoadInst *combineLoadToNewType(LoadInst &LI, Type *NewTy,
187  const Twine &Suffix = "");
188 
189 private:
190  void annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI);
191  bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
192  bool shouldChangeType(Type *From, Type *To) const;
193  Value *dyn_castNegVal(Value *V) const;
194  Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
195  SmallVectorImpl<Value *> &NewIndices);
196 
197  /// Classify whether a cast is worth optimizing.
198  ///
199  /// This is a helper to decide whether the simplification of
200  /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
201  ///
202  /// \param CI The cast we are interested in.
203  ///
204  /// \return true if this cast actually results in any code being generated and
205  /// if it cannot already be eliminated by some other transformation.
206  bool shouldOptimizeCast(CastInst *CI);
207 
208  /// Try to optimize a sequence of instructions checking if an operation
209  /// on LHS and RHS overflows.
210  ///
211  /// If this overflow check is done via one of the overflow check intrinsics,
212  /// then CtxI has to be the call instruction calling that intrinsic. If this
213  /// overflow check is done by arithmetic followed by a compare, then CtxI has
214  /// to be the arithmetic instruction.
215  ///
216  /// If a simplification is possible, stores the simplified result of the
217  /// operation in OperationResult and result of the overflow check in
218  /// OverflowResult, and return true. If no simplification is possible,
219  /// returns false.
220  bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned,
221  Value *LHS, Value *RHS,
222  Instruction &CtxI, Value *&OperationResult,
224 
225  Instruction *visitCallBase(CallBase &Call);
226  Instruction *tryOptimizeCall(CallInst *CI);
227  bool transformConstExprCastCall(CallBase &Call);
228  Instruction *transformCallThroughTrampoline(CallBase &Call,
229  IntrinsicInst &Tramp);
230 
231  Value *simplifyMaskedLoad(IntrinsicInst &II);
232  Instruction *simplifyMaskedStore(IntrinsicInst &II);
233  Instruction *simplifyMaskedGather(IntrinsicInst &II);
234  Instruction *simplifyMaskedScatter(IntrinsicInst &II);
235 
236  /// Transform (zext icmp) to bitwise / integer operations in order to
237  /// eliminate it.
238  ///
239  /// \param ICI The icmp of the (zext icmp) pair we are interested in.
240  /// \parem CI The zext of the (zext icmp) pair we are interested in.
241  /// \param DoTransform Pass false to just test whether the given (zext icmp)
242  /// would be transformed. Pass true to actually perform the transformation.
243  ///
244  /// \return null if the transformation cannot be performed. If the
245  /// transformation can be performed the new instruction that replaces the
246  /// (zext icmp) pair will be returned (if \p DoTransform is false the
247  /// unmodified \p ICI will be returned in this case).
248  Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
249  bool DoTransform = true);
250 
251  Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
252 
253  bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
254  const Instruction &CxtI) const {
255  return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
257  }
258 
259  bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
260  const Instruction &CxtI) const {
261  return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
263  }
264 
265  bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
266  const Instruction &CxtI, bool IsSigned) const {
267  return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
268  : willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
269  }
270 
271  bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
272  const Instruction &CxtI) const {
273  return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
275  }
276 
277  bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
278  const Instruction &CxtI) const {
279  return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
281  }
282 
283  bool willNotOverflowSub(const Value *LHS, const Value *RHS,
284  const Instruction &CxtI, bool IsSigned) const {
285  return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
286  : willNotOverflowUnsignedSub(LHS, RHS, CxtI);
287  }
288 
289  bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
290  const Instruction &CxtI) const {
291  return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
293  }
294 
295  bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
296  const Instruction &CxtI) const {
297  return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
299  }
300 
301  bool willNotOverflowMul(const Value *LHS, const Value *RHS,
302  const Instruction &CxtI, bool IsSigned) const {
303  return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
304  : willNotOverflowUnsignedMul(LHS, RHS, CxtI);
305  }
306 
307  bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
308  const Value *RHS, const Instruction &CxtI,
309  bool IsSigned) const {
310  switch (Opcode) {
311  case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
312  case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
313  case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
314  default: llvm_unreachable("Unexpected opcode for overflow query");
315  }
316  }
317 
318  Value *EmitGEPOffset(User *GEP);
319  Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
320  Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
321  Instruction *narrowBinOp(TruncInst &Trunc);
322  Instruction *narrowMaskedBinOp(BinaryOperator &And);
323  Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
324  Instruction *narrowFunnelShift(TruncInst &Trunc);
325  Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
326  Instruction *matchSAddSubSat(SelectInst &MinMax1);
327 
328  void freelyInvertAllUsersOf(Value *V);
329 
330  /// Determine if a pair of casts can be replaced by a single cast.
331  ///
332  /// \param CI1 The first of a pair of casts.
333  /// \param CI2 The second of a pair of casts.
334  ///
335  /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
336  /// Instruction::CastOps value for a cast that can replace the pair, casting
337  /// CI1->getSrcTy() to CI2->getDstTy().
338  ///
339  /// \see CastInst::isEliminableCastPair
340  Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
341  const CastInst *CI2);
342 
343  Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &And);
344  Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Or);
345  Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Xor);
346 
347  /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
348  /// NOTE: Unlike most of instcombine, this returns a Value which should
349  /// already be inserted into the function.
350  Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd);
351 
352  Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
353  Instruction *CxtI, bool IsAnd,
354  bool IsLogical = false);
355  Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D);
356  Value *getSelectCondition(Value *A, Value *B);
357 
358  Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II);
359  Instruction *foldFPSignBitOps(BinaryOperator &I);
360 
361  // Optimize one of these forms:
362  // and i1 Op, SI / select i1 Op, i1 SI, i1 false (if IsAnd = true)
363  // or i1 Op, SI / select i1 Op, i1 true, i1 SI (if IsAnd = false)
364  // into simplier select instruction using isImpliedCondition.
365  Instruction *foldAndOrOfSelectUsingImpliedCond(Value *Op, SelectInst &SI,
366  bool IsAnd);
367 
368 public:
369  /// Inserts an instruction \p New before instruction \p Old
370  ///
371  /// Also adds the new instruction to the worklist and returns \p New so that
372  /// it is suitable for use as the return from the visitation patterns.
374  assert(New && !New->getParent() &&
375  "New instruction already inserted into a basic block!");
376  BasicBlock *BB = Old.getParent();
377  BB->getInstList().insert(Old.getIterator(), New); // Insert inst
378  Worklist.add(New);
379  return New;
380  }
381 
382  /// Same as InsertNewInstBefore, but also sets the debug loc.
384  New->setDebugLoc(Old.getDebugLoc());
385  return InsertNewInstBefore(New, Old);
386  }
387 
388  /// A combiner-aware RAUW-like routine.
389  ///
390  /// This method is to be used when an instruction is found to be dead,
391  /// replaceable with another preexisting expression. Here we add all uses of
392  /// I to the worklist, replace all uses of I with the new value, then return
393  /// I, so that the inst combiner will know that I was modified.
395  // If there are no uses to replace, then we return nullptr to indicate that
396  // no changes were made to the program.
397  if (I.use_empty()) return nullptr;
398 
399  Worklist.pushUsersToWorkList(I); // Add all modified instrs to worklist.
400 
401  // If we are replacing the instruction with itself, this must be in a
402  // segment of unreachable code, so just clobber the instruction.
403  if (&I == V)
404  V = UndefValue::get(I.getType());
405 
406  LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
407  << " with " << *V << '\n');
408 
409  I.replaceAllUsesWith(V);
410  MadeIRChange = true;
411  return &I;
412  }
413 
414  /// Replace operand of instruction and add old operand to the worklist.
415  Instruction *replaceOperand(Instruction &I, unsigned OpNum, Value *V) {
416  Worklist.addValue(I.getOperand(OpNum));
417  I.setOperand(OpNum, V);
418  return &I;
419  }
420 
421  /// Replace use and add the previously used value to the worklist.
422  void replaceUse(Use &U, Value *NewValue) {
423  Worklist.addValue(U);
424  U = NewValue;
425  }
426 
427  /// Creates a result tuple for an overflow intrinsic \p II with a given
428  /// \p Result and a constant \p Overflow value.
430  Constant *Overflow) {
431  Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
432  StructType *ST = cast<StructType>(II->getType());
433  Constant *Struct = ConstantStruct::get(ST, V);
434  return InsertValueInst::Create(Struct, Result, 0);
435  }
436 
437  /// Create and insert the idiom we use to indicate a block is unreachable
438  /// without having to rewrite the CFG from within InstCombine.
440  auto &Ctx = InsertAt->getContext();
443  InsertAt);
444  }
445 
446 
447  /// Combiner aware instruction erasure.
448  ///
449  /// When dealing with an instruction that has side effects or produces a void
450  /// value, we can't rely on DCE to delete the instruction. Instead, visit
451  /// methods should return the value returned by this function.
453  LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
454  assert(I.use_empty() && "Cannot erase instruction that is used!");
456 
457  // Make sure that we reprocess all operands now that we reduced their
458  // use counts.
459  for (Use &Operand : I.operands())
460  if (auto *Inst = dyn_cast<Instruction>(Operand))
461  Worklist.add(Inst);
462 
463  Worklist.remove(&I);
464  I.eraseFromParent();
465  MadeIRChange = true;
466  return nullptr; // Don't do anything with FI
467  }
468 
469  void computeKnownBits(const Value *V, KnownBits &Known,
470  unsigned Depth, const Instruction *CxtI) const {
471  llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
472  }
473 
474  KnownBits computeKnownBits(const Value *V, unsigned Depth,
475  const Instruction *CxtI) const {
476  return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
477  }
478 
479  bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
480  unsigned Depth = 0,
481  const Instruction *CxtI = nullptr) {
482  return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
483  }
484 
485  bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
486  const Instruction *CxtI = nullptr) const {
487  return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
488  }
489 
490  unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
491  const Instruction *CxtI = nullptr) const {
492  return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
493  }
494 
496  const Value *RHS,
497  const Instruction *CxtI) const {
498  return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
499  }
500 
502  const Value *RHS,
503  const Instruction *CxtI) const {
504  return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
505  }
506 
508  const Value *RHS,
509  const Instruction *CxtI) const {
510  return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
511  }
512 
514  const Value *RHS,
515  const Instruction *CxtI) const {
516  return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
517  }
518 
520  const Value *RHS,
521  const Instruction *CxtI) const {
522  return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
523  }
524 
526  const Instruction *CxtI) const {
527  return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
528  }
529 
530  OverflowResult computeOverflow(
531  Instruction::BinaryOps BinaryOp, bool IsSigned,
532  Value *LHS, Value *RHS, Instruction *CxtI) const;
533 
534  /// Performs a few simplifications for operators which are associative
535  /// or commutative.
536  bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
537 
538  /// Tries to simplify binary operations which some other binary
539  /// operation distributes over.
540  ///
541  /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
542  /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
543  /// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified
544  /// value, or null if it didn't simplify.
545  Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
546 
547  /// Tries to simplify add operations using the definition of remainder.
548  ///
549  /// The definition of remainder is X % C = X - (X / C ) * C. The add
550  /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
551  /// X % (C0 * C1)
552  Value *SimplifyAddWithRemainder(BinaryOperator &I);
553 
554  // Binary Op helper for select operations where the expression can be
555  // efficiently reorganized.
556  Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
557  Value *RHS);
558 
559  /// This tries to simplify binary operations by factorizing out common terms
560  /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
561  Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *,
562  Value *, Value *, Value *);
563 
564  /// Match a select chain which produces one of three values based on whether
565  /// the LHS is less than, equal to, or greater than RHS respectively.
566  /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
567  /// Equal and Greater values are saved in the matching process and returned to
568  /// the caller.
569  bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
571  ConstantInt *&Greater);
572 
573  /// Attempts to replace V with a simpler value based on the demanded
574  /// bits.
575  Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
576  unsigned Depth, Instruction *CxtI);
577  bool SimplifyDemandedBits(Instruction *I, unsigned Op,
578  const APInt &DemandedMask, KnownBits &Known,
579  unsigned Depth = 0) override;
580 
581  /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
582  /// bits. It also tries to handle simplifications that can be done based on
583  /// DemandedMask, but without modifying the Instruction.
584  Value *SimplifyMultipleUseDemandedBits(Instruction *I,
585  const APInt &DemandedMask,
586  KnownBits &Known,
587  unsigned Depth, Instruction *CxtI);
588 
589  /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
590  /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
591  Value *simplifyShrShlDemandedBits(
592  Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
593  const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
594 
595  /// Tries to simplify operands to an integer instruction based on its
596  /// demanded bits.
597  bool SimplifyDemandedInstructionBits(Instruction &Inst);
598 
599  virtual Value *
600  SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &UndefElts,
601  unsigned Depth = 0,
602  bool AllowMultipleUsers = false) override;
603 
604  /// Canonicalize the position of binops relative to shufflevector.
605  Instruction *foldVectorBinop(BinaryOperator &Inst);
606  Instruction *foldVectorSelect(SelectInst &Sel);
607 
608  /// Given a binary operator, cast instruction, or select which has a PHI node
609  /// as operand #0, see if we can fold the instruction into the PHI (which is
610  /// only possible if all operands to the PHI are constants).
611  Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
612 
613  /// Given an instruction with a select as one operand and a constant as the
614  /// other operand, try to fold the binary operator into the select arguments.
615  /// This also works for Cast instructions, which obviously do not have a
616  /// second operand.
617  Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
618 
619  /// This is a convenience wrapper function for the above two functions.
620  Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
621 
622  Instruction *foldAddWithConstant(BinaryOperator &Add);
623 
624  /// Try to rotate an operation below a PHI node, using PHI nodes for
625  /// its operands.
626  Instruction *foldPHIArgOpIntoPHI(PHINode &PN);
627  Instruction *foldPHIArgBinOpIntoPHI(PHINode &PN);
628  Instruction *foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN);
629  Instruction *foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN);
630  Instruction *foldPHIArgGEPIntoPHI(PHINode &PN);
631  Instruction *foldPHIArgLoadIntoPHI(PHINode &PN);
632  Instruction *foldPHIArgZextsIntoPHI(PHINode &PN);
633 
634  /// If an integer typed PHI has only one use which is an IntToPtr operation,
635  /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
636  /// insert a new pointer typed PHI and replace the original one.
637  Instruction *foldIntegerTypedPHI(PHINode &PN);
638 
639  /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
640  /// folded operation.
641  void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
642 
643  Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
645  Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca,
646  const Value *Other);
647  Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
648  GlobalVariable *GV, CmpInst &ICI,
649  ConstantInt *AndCst = nullptr);
650  Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
651  Constant *RHSC);
652  Instruction *foldICmpAddOpConst(Value *X, const APInt &C,
653  ICmpInst::Predicate Pred);
654  Instruction *foldICmpWithCastOp(ICmpInst &ICI);
655 
656  Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
658  Instruction *foldICmpWithConstant(ICmpInst &Cmp);
659  Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
660  Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
661  Instruction *foldICmpBinOp(ICmpInst &Cmp, const SimplifyQuery &SQ);
662  Instruction *foldICmpEquality(ICmpInst &Cmp);
663  Instruction *foldIRemByPowerOfTwoToBitTest(ICmpInst &I);
664  Instruction *foldSignBitTest(ICmpInst &I);
665  Instruction *foldICmpWithZero(ICmpInst &Cmp);
666 
667  Value *foldUnsignedMultiplicationOverflowCheck(ICmpInst &Cmp);
668 
669  Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
670  ConstantInt *C);
671  Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
672  const APInt &C);
673  Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
674  const APInt &C);
675  Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
676  const APInt &C);
677  Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
678  const APInt &C);
679  Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
680  const APInt &C);
681  Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
682  const APInt &C);
683  Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
684  const APInt &C);
685  Instruction *foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
686  const APInt &C);
687  Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
688  const APInt &C);
689  Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
690  const APInt &C);
691  Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
692  const APInt &C);
693  Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
694  const APInt &C);
695  Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
696  const APInt &C1);
697  Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
698  const APInt &C1, const APInt &C2);
699  Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
700  const APInt &C2);
701  Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
702  const APInt &C2);
703 
704  Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
705  BinaryOperator *BO,
706  const APInt &C);
707  Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
708  const APInt &C);
709  Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
710  const APInt &C);
711 
712  // Helpers of visitSelectInst().
713  Instruction *foldSelectExtConst(SelectInst &Sel);
714  Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
715  Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
716  Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
717  Value *A, Value *B, Instruction &Outer,
718  SelectPatternFlavor SPF2, Value *C);
719  Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
720  Instruction *foldSelectValueEquivalence(SelectInst &SI, ICmpInst &ICI);
721 
722  Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
723  bool isSigned, bool Inside);
724  Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
725  bool mergeStoreIntoSuccessor(StoreInst &SI);
726 
727  /// Given an initial instruction, check to see if it is the root of a
728  /// bswap/bitreverse idiom. If so, return the equivalent bswap/bitreverse
729  /// intrinsic.
730  Instruction *matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps,
731  bool MatchBitReversals);
732 
733  Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
734  Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
735 
736  Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
737 
738  /// Returns a value X such that Val = X * Scale, or null if none.
739  ///
740  /// If the multiplication is known not to overflow then NoSignedWrap is set.
741  Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
742 };
743 
744 class Negator final {
745  /// Top-to-bottom, def-to-use negated instruction tree we produced.
747 
750 
751  const DataLayout &DL;
752  AssumptionCache &AC;
753  const DominatorTree &DT;
754 
755  const bool IsTrulyNegation;
756 
757  SmallDenseMap<Value *, Value *> NegationsCache;
758 
760  const DominatorTree &DT, bool IsTrulyNegation);
761 
762 #if LLVM_ENABLE_STATS
763  unsigned NumValuesVisitedInThisNegator = 0;
764  ~Negator();
765 #endif
766 
767  using Result = std::pair<ArrayRef<Instruction *> /*NewInstructions*/,
768  Value * /*NegatedRoot*/>;
769 
770  std::array<Value *, 2> getSortedOperandsOfBinOp(Instruction *I);
771 
772  LLVM_NODISCARD Value *visitImpl(Value *V, unsigned Depth);
773 
774  LLVM_NODISCARD Value *negate(Value *V, unsigned Depth);
775 
776  /// Recurse depth-first and attempt to sink the negation.
777  /// FIXME: use worklist?
779 
780  Negator(const Negator &) = delete;
781  Negator(Negator &&) = delete;
782  Negator &operator=(const Negator &) = delete;
783  Negator &operator=(Negator &&) = delete;
784 
785 public:
786  /// Attempt to negate \p Root. Retuns nullptr if negation can't be performed,
787  /// otherwise returns negated value.
788  LLVM_NODISCARD static Value *Negate(bool LHSIsZero, Value *Root,
789  InstCombinerImpl &IC);
790 };
791 
792 } // end namespace llvm
793 
794 #undef DEBUG_TYPE
795 
796 #endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
llvm::InstCombinerImpl::isKnownToBeAPowerOfTwo
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, unsigned Depth=0, const Instruction *CxtI=nullptr)
Definition: InstCombineInternal.h:479
MI
IRTranslator LLVM IR MI
Definition: IRTranslator.cpp:100
llvm::object::Equal
@ Equal
Definition: COFFModuleDefinition.cpp:38
llvm
Definition: AllocatorList.h:23
llvm::SystemZII::IsLogical
@ IsLogical
Definition: SystemZInstrInfo.h:49
llvm::OverflowResult::NeverOverflows
@ NeverOverflows
Never overflows.
llvm::ReturnInst
Return a value (possibly void), from a function.
Definition: Instructions.h:2925
llvm::MaskedValueIsZero
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if 'V & Mask' is known to be zero.
Definition: ValueTracking.cpp:360
llvm::DataLayout
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:112
InstCombiner.h
llvm::CmpInst::Predicate
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:722
llvm::computeOverflowForUnsignedMul
OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo=true)
Definition: ValueTracking.cpp:4659
llvm::SimplifyQuery
Definition: InstructionSimplify.h:94
llvm::ExtractElementInst
This instruction extracts a single (scalar) element from a VectorType value.
Definition: Instructions.h:1850
TargetFolder.h
llvm::ConstantStruct::get
static Constant * get(StructType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:1326
llvm::BitCastInst
This class represents a no-op cast from one type to another.
Definition: Instructions.h:5138
C1
instcombine should handle this C2 when C1
Definition: README.txt:263
llvm::SmallVector
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1168
llvm::InstCombinerImpl::InsertNewInstBefore
Instruction * InsertNewInstBefore(Instruction *New, Instruction &Old)
Inserts an instruction New before instruction Old.
Definition: InstCombineInternal.h:373
Statistic.h
llvm::LandingPadInst
The landingpad instruction holds all of the information necessary to generate correct exception handl...
Definition: Instructions.h:2824
llvm::MipsISD::Lo
@ Lo
Definition: MipsISelLowering.h:79
llvm::TargetTransformInfo
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Definition: TargetTransformInfo.h:167
llvm::IRBuilder< TargetFolder, IRBuilderCallbackInserter >
llvm::InsertValueInst::Create
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Definition: Instructions.h:2469
llvm::GlobalVariable
Definition: GlobalVariable.h:40
llvm::SmallDenseMap
Definition: DenseMap.h:880
llvm::computeOverflowForUnsignedAdd
OverflowResult computeOverflowForUnsignedAdd(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo=true)
Definition: ValueTracking.cpp:4715
ValueTracking.h
Local.h
llvm::DominatorTree
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:151
llvm::InstCombinerImpl::~InstCombinerImpl
virtual ~InstCombinerImpl()
Definition: InstCombineInternal.h:73
llvm::Depth
@ Depth
Definition: SIMachineScheduler.h:34
llvm::Type
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:46
llvm::InstCombinerImpl::computeKnownBits
KnownBits computeKnownBits(const Value *V, unsigned Depth, const Instruction *CxtI) const
Definition: InstCombineInternal.h:474
llvm::InstCombinerImpl::replaceInstUsesWith
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
Definition: InstCombineInternal.h:394
llvm::Optional
Definition: APInt.h:33
llvm::FenceInst
An instruction for ordering other memory operations.
Definition: Instructions.h:444
Offset
uint64_t Offset
Definition: ELFObjHandler.cpp:81
llvm::ComputeNumSignBits
unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return the number of times the sign bit of the register is replicated into the other bits.
Definition: ValueTracking.cpp:384
llvm::UnaryOperator
Definition: InstrTypes.h:103
llvm::SelectPatternFlavor
SelectPatternFlavor
Specific patterns of select instructions we can match.
Definition: ValueTracking.h:657
llvm::BitmaskEnumDetail::Mask
std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:80
llvm::EmitGEPOffset
Value * EmitGEPOffset(IRBuilderTy *Builder, const DataLayout &DL, User *GEP, bool NoAssumptions=false)
Given a getelementptr instruction/constantexpr, emit the code necessary to compute the offset from th...
Definition: Local.h:29
LLVM_DEBUG
#define LLVM_DEBUG(X)
Definition: Debug.h:122
KnownBits.h
llvm::BasicBlock
LLVM Basic Block Representation.
Definition: BasicBlock.h:58
llvm::MipsISD::Hi
@ Hi
Definition: MipsISelLowering.h:75
llvm::dbgs
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:132
llvm::InstCombinerImpl::eraseInstFromFunction
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Definition: InstCombineInternal.h:452
llvm::ConstantInt
This is the shared class of boolean and integer constants.
Definition: Constants.h:77
llvm::computeOverflowForSignedSub
OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT)
Definition: ValueTracking.cpp:4814
llvm::BlockFrequencyInfo
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Definition: BlockFrequencyInfo.h:37
llvm::AddrSpaceCastInst
This class represents a conversion between pointers from one address space to another.
Definition: Instructions.h:5178
llvm::computeOverflowForSignedAdd
OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr)
Definition: ValueTracking.cpp:5215
llvm::AAResults
Definition: AliasAnalysis.h:456
C
(vector float) vec_cmpeq(*A, *B) C
Definition: README_ALTIVEC.txt:86
llvm::InstCombinerImpl::CreateOverflowTuple
Instruction * CreateOverflowTuple(IntrinsicInst *II, Value *Result, Constant *Overflow)
Creates a result tuple for an overflow intrinsic II with a given Result and a constant Overflow value...
Definition: InstCombineInternal.h:429
llvm::FCmpInst
This instruction compares its operands according to the predicate given to the constructor.
Definition: Instructions.h:1344
llvm::InsertElementInst
This instruction inserts a single (scalar) element into a VectorType value.
Definition: Instructions.h:1914
B
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
llvm::Instruction::CastOps
CastOps
Definition: Instruction.h:782
llvm::Instruction
Definition: Instruction.h:45
llvm::InstCombinerImpl::computeOverflowForUnsignedMul
OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const Instruction *CxtI) const
Definition: InstCombineInternal.h:495
llvm::UndefValue::get
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
Definition: Constants.cpp:1784
llvm::InstCombinerImpl
Definition: InstCombineInternal.h:60
InstCombineWorklist.h
llvm::InstCombineWorklist
InstCombineWorklist - This is the worklist management logic for InstCombine.
Definition: InstCombineWorklist.h:27
PatternMatch.h
willNotOverflow
static bool willNotOverflow(BinaryOpIntrinsic *BO, LazyValueInfo *LVI)
Definition: CorrelatedValuePropagation.cpp:391
llvm::Type::getInt1PtrTy
static PointerType * getInt1PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:245
NegatorDefaultMaxDepth
static constexpr unsigned NegatorDefaultMaxDepth
Definition: InstCombineInternal.h:38
llvm::InstCombinerImpl::computeOverflowForSignedMul
OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const Instruction *CxtI) const
Definition: InstCombineInternal.h:501
X
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
llvm::InstCombinerImpl::InstCombinerImpl
InstCombinerImpl(InstCombineWorklist &Worklist, BuilderTy &Builder, bool MinimizeSize, AAResults *AA, AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, const DataLayout &DL, LoopInfo *LI)
Definition: InstCombineInternal.h:64
llvm::AnyMemTransferInst
Definition: IntrinsicInst.h:982
llvm::OverflowResult
OverflowResult
Definition: ValueTracking.h:487
llvm::ProfileSummaryInfo
Analysis providing profile information.
Definition: ProfileSummaryInfo.h:39
llvm::InvokeInst
Invoke instruction.
Definition: Instructions.h:3688
llvm::ARM_PROC::IE
@ IE
Definition: ARMBaseInfo.h:27
llvm::CmpInst
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:712
llvm::StoreInst
An instruction for storing to memory.
Definition: Instructions.h:303
llvm::Constant
This is an important base class in LLVM.
Definition: Constant.h:41
llvm::ICmpInst
This instruction compares its operands according to the predicate given to the constructor.
Definition: Instructions.h:1178
llvm::FPToSIInst
This class represents a cast from floating point to signed integer.
Definition: Instructions.h:5005
D
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
llvm::ARM_MB::ST
@ ST
Definition: ARMBaseInfo.h:73
llvm::TruncInst
This class represents a truncation of integer types.
Definition: Instructions.h:4693
llvm::computeOverflowForUnsignedSub
OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT)
Definition: ValueTracking.cpp:4791
llvm::CallBrInst
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
Definition: Instructions.h:3897
llvm::LLVMContext
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:68
I
#define I(x, y, z)
Definition: MD5.cpp:59
llvm::GetElementPtrInst
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:905
llvm::InstCombinerImpl::replaceUse
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
Definition: InstCombineInternal.h:422
llvm::PointerType
Class to represent pointers.
Definition: DerivedTypes.h:634
llvm::InstCombinerImpl::computeOverflowForSignedAdd
OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS, const Instruction *CxtI) const
Definition: InstCombineInternal.h:513
llvm::computeKnownBits
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, OptimizationRemarkEmitter *ORE=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
Definition: ValueTracking.cpp:212
IRBuilder.h
assert
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
SI
StandardInstrumentations SI(Debug, VerifyEach)
llvm::SelectInst
This class represents the LLVM 'select' instruction.
Definition: Instructions.h:1715
llvm::FPToUIInst
This class represents a cast from floating point to unsigned integer.
Definition: Instructions.h:4966
llvm::GEPOperator
Definition: Operator.h:457
Builder
assume Assume Builder
Definition: AssumeBundleBuilder.cpp:651
llvm::APInt
Class for arbitrary precision integers.
Definition: APInt.h:70
llvm::ZExtInst
This class represents zero extension of integer types.
Definition: Instructions.h:4732
NegatorMaxNodesSSO
static constexpr unsigned NegatorMaxNodesSSO
Definition: InstCombineInternal.h:42
llvm::InstCombinerImpl::visitInstruction
Instruction * visitInstruction(Instruction &I)
Specify what to return for unhandled instructions.
Definition: InstCombineInternal.h:174
llvm::Negator
Definition: InstCombineInternal.h:744
llvm::LoopInfo
Definition: LoopInfo.h:1080
llvm::VAEndInst
This represents the llvm.va_end intrinsic.
Definition: IntrinsicInst.h:1054
llvm::BinaryOperator
Definition: InstrTypes.h:190
llvm::OptimizationRemarkEmitter
The optimization diagnostic interface.
Definition: OptimizationRemarkEmitter.h:33
llvm::InstCombinerImpl::ComputeNumSignBits
unsigned ComputeNumSignBits(const Value *Op, unsigned Depth=0, const Instruction *CxtI=nullptr) const
Definition: InstCombineInternal.h:490
llvm::StructType
Class to represent struct types.
Definition: DerivedTypes.h:212
Cond
SmallVector< MachineOperand, 4 > Cond
Definition: BasicBlockSections.cpp:167
InstVisitor.h
llvm::AssumptionCache
A cache of @llvm.assume calls within a function.
Definition: AssumptionCache.h:41
llvm_unreachable
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Definition: ErrorHandling.h:136
llvm::Value::getType
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:256
llvm::Value::getContext
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:952
llvm::ilist_node_impl::getIterator
self_iterator getIterator()
Definition: ilist_node.h:81
DL
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Definition: AArch64SLSHardening.cpp:76
llvm::PtrToIntInst
This class represents a cast from a pointer to an integer.
Definition: Instructions.h:5087
LLVM_LIBRARY_VISIBILITY
#define LLVM_LIBRARY_VISIBILITY
LLVM_LIBRARY_VISIBILITY - If a class marked with this attribute is linked into a shared library,...
Definition: Compiler.h:131
llvm::InstVisitor
Base class for instruction visitors.
Definition: InstVisitor.h:79
llvm::CastInst
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:432
llvm::AMDGPUISD::BFI
@ BFI
Definition: AMDGPUISelLowering.h:418
llvm::SExtInst
This class represents a sign extension of integer types.
Definition: Instructions.h:4771
llvm::LoadInst
An instruction for reading from memory.
Definition: Instructions.h:174
llvm::AtomicRMWInst
an instruction that atomically reads a memory location, combines it with another value,...
Definition: Instructions.h:702
llvm::MCID::Select
@ Select
Definition: MCInstrDesc.h:162
llvm::Twine
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:80
llvm::ConstantInt::getTrue
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:847
llvm::KnownBits
Definition: KnownBits.h:23
llvm::InstCombinerImpl::InsertNewInstWith
Instruction * InsertNewInstWith(Instruction *New, Instruction &Old)
Same as InsertNewInstBefore, but also sets the debug loc.
Definition: InstCombineInternal.h:383
llvm::AnyMemSetInst
This class represents any memset intrinsic.
Definition: IntrinsicInst.h:963
llvm::InstCombinerImpl::computeOverflowForSignedSub
OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const Instruction *CxtI) const
Definition: InstCombineInternal.h:525
llvm::AMDGPU::SendMsg::Op
Op
Definition: SIDefines.h:314
llvm::ExtractValueInst
This instruction extracts a struct member or array element value from an aggregate value.
Definition: Instructions.h:2318
LLVM_NODISCARD
#define LLVM_NODISCARD
LLVM_NODISCARD - Warn if a type or return value is discarded.
Definition: Compiler.h:161
llvm::TargetStackID::Value
Value
Definition: TargetFrameLowering.h:27
llvm::InstCombinerImpl::CreateNonTerminatorUnreachable
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
Definition: InstCombineInternal.h:439
llvm::salvageDebugInfo
void salvageDebugInfo(Instruction &I)
Assuming the instruction I is going to be deleted, attempt to salvage debug users of I by writing the...
Definition: Local.cpp:1720
llvm::TargetLibraryInfo
Provides information about what library functions are available for the current target.
Definition: TargetLibraryInfo.h:208
llvm::computeOverflowForSignedMul
OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, bool UseInstrInfo=true)
Definition: ValueTracking.cpp:4673
llvm::MCID::Add
@ Add
Definition: MCInstrDesc.h:183
llvm::IntToPtrInst
This class represents a cast from an integer to a pointer.
Definition: Instructions.h:5044
llvm::InstCombiner
The core instruction combiner logic.
Definition: InstCombiner.h:45
llvm::IntrinsicInst
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:45
llvm::InstCombinerImpl::replaceOperand
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
Definition: InstCombineInternal.h:415
llvm::Instruction::BinaryOps
BinaryOps
Definition: Instruction.h:768
llvm::ShuffleVectorInst
This instruction constructs a fixed permutation of two input vectors.
Definition: Instructions.h:1986
llvm::Instruction::getDebugLoc
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:365
llvm::FreezeInst
This class represents a freeze function that returns random concrete value if an operand is either a ...
Definition: Instructions.h:5298
llvm::FPTruncInst
This class represents a truncation of floating point types.
Definition: Instructions.h:4810
llvm::Instruction::getParent
const BasicBlock * getParent() const
Definition: Instruction.h:94
InstructionSimplify.h
llvm::InstCombinerImpl::computeOverflowForUnsignedAdd
OverflowResult computeOverflowForUnsignedAdd(const Value *LHS, const Value *RHS, const Instruction *CxtI) const
Definition: InstCombineInternal.h:507
llvm::InstCombinerImpl::computeOverflowForUnsignedSub
OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const Instruction *CxtI) const
Definition: InstCombineInternal.h:519
llvm::PHINode
Definition: Instructions.h:2572
llvm::PatternMatch
Definition: PatternMatch.h:47
llvm::SmallVectorImpl< Value * >
llvm::CallBase
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1164
llvm::CallInst
This class represents a function call, abstracting a target machine's calling convention.
Definition: Instructions.h:1450
BB
Common register allocation spilling lr str ldr sxth r3 ldr mla r4 can lr mov lr str ldr sxth r3 mla r4 and then merge mul and lr str ldr sxth r3 mla r4 It also increase the likelihood the store may become dead bb27 Successors according to LLVM BB
Definition: README.txt:39
GEP
Hexagon Common GEP
Definition: HexagonCommonGEP.cpp:171
llvm::UnreachableInst
This function has undefined behavior.
Definition: Instructions.h:4652
llvm::isKnownToBeAPowerOfTwo
bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if the given value is known to have exactly one bit set when defined.
Definition: ValueTracking.cpp:296
From
BlockVerifier::State From
Definition: BlockVerifier.cpp:55
llvm::SwitchInst
Multiway switch.
Definition: Instructions.h:3151
llvm::AllocaInst
an instruction to allocate memory on the stack
Definition: Instructions.h:61
llvm::BranchInst
Conditional or Unconditional Branch instruction.
Definition: Instructions.h:3007
llvm::CodeGenOpt::Less
@ Less
Definition: CodeGen.h:54
llvm::InsertValueInst
This instruction inserts a struct field of array element value into an aggregate value.
Definition: Instructions.h:2429
foldICmpWithDominatingICmp
static bool foldICmpWithDominatingICmp(CmpInst *Cmp, const TargetLowering &TLI)
For pattern like:
Definition: CodeGenPrepare.cpp:1652
llvm::Value
LLVM Value Representation.
Definition: Value.h:75
Debug.h
llvm::InstCombinerImpl::MaskedValueIsZero
bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth=0, const Instruction *CxtI=nullptr) const
Definition: InstCombineInternal.h:485
llvm::InstCombinerImpl::computeKnownBits
void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, const Instruction *CxtI) const
Definition: InstCombineInternal.h:469
llvm::Use
A Use represents the edge between a Value definition and its users.
Definition: Use.h:44